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Abstract

We analyze a model in which agents make investments and then
match into pairs to create a surplus. The agents can make trans-
fers to reallocate their pretransfer ownership claims on the surplus.
Mailath, Postlewaite, and Samuelson (2013) showed that when invest-
ments are unobservable, equilibrium investments are generally ineffi-
cient. In this paper we work with a more structured model that is
sufficiently tractable to analyze the nature of the investment ineffi-
ciencies. We provide conditions under which investment is inefficiently
high or low and conditions under which changes in the pretransfer
ownership claims on the surplus will be Pareto improving, as well as
examine how the degree of heterogeneity on either side of the market
affects investment efficiency.
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Premuneration Values and Investments in Matching Markets

1 Introduction

1.1 Motivation

How are heterogeneous workers matched with heterogeneous firms? What
determines the division of the resulting surplus? When will outcomes be
efficient? We are interested in these questions in the context of a market
in which workers and firms first make productivity-enhancing investments,
and then match into pairs to produce a surplus.

It is a familiar result that if workers and firms cannot contract prior
to making investments, then market power at the matching stage can lead
to inefficient investments. However, Cole, Mailath, and Postlewaite (2001)
show that if the matching market is competitive, then efficient two-sided
investments are consistent with equilibrium.1 However, the results of Cole,
Mailath, and Postlewaite (2001) and Peters and Siow (2002) depend cru-
cially on there being complete information about investments. Mailath,
Postlewaite, and Samuelson (2013) study an economy similar to that in
Cole, Mailath, and Postlewaite (2001), but with the difference that workers’
investments are not observable when workers and firms match. The results
are also different: except in the extreme case that firms’ pretransfer val-
ues from a match are independent of the worker with whom they match,
investments will not be efficient.

Our interest is in the nature of the inefficiency. Will investments be inef-
ficiently low, or can they be inefficiently high? How does the magnitude of ex
ante heterogeneity of workers affect the inefficiency, and are there policy in-
terventions that might ameliorate the inefficiencies? How does the allocation
of property rights to the surplus affect investments? Mailath, Postlewaite,
and Samuelson’s (2013) model is too general to answer these questions. We
address these questions here in the context of a more structured model.

1.2 Investment and Matching Markets

The agents in our analysis can be interpreted in many ways—we opened our
earlier paper by referring to firms and workers, but we could just as well

1Peters and Siow (2002) show that efficiency also holds in a nontransferable utility
setting (more specifically, when transfers are not possible). Nöldeke and Samuelson (2015)
extend the results of Cole, Mailath, and Postlewaite (2001) and Peters and Siow (2002)
to general nontransferable utility settings.
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think of students and universities, men and women, lawyers and clients,
and so on. For concreteness, we henceforth refer to them as laboratories
and researchers, terms chosen with the view that either side may own the
output of the relationship, and that payments may flow either way.

We examine a market with a large set of laboratories of differing sophis-
tication on one side and an analogous set of researchers of different abilities
on the other side. Researchers first have the opportunity to invest in human
capital, and then laboratories and researchers are matched into pairs.2 Each
pair produces a surplus, arising (for now) from the patents they create.

The patents that arise out of a laboratory/researcher match may belong
to the laboratory, or may belong to the researcher, or ownership may be
shared. When there is no uncertainty about matching-relevant character-
istics it makes no difference for most problems whether the patents belong
to the laboratory or to the researcher. We expect laboratories to hire re-
searchers in the former case and researchers to buy or rent laboratories in
the latter case. In either case, a monetary payment from the party that
owns the patents to the other party delivers the equilibrium division of the
surplus. For any change in the distribution of patent ownership, there is an
offsetting change in the equilibrium monetary transfer between agents pre-
serving the equilibrium welfare distribution and investments.3 In particular,
outcomes with efficient investments exist no matter who owns the patents. If
laboratories own the patents, for example, competition among laboratories
to hire talented researchers will ensure that the latter capture the returns
from their investments and hence face efficient investment incentives.

If researchers’ match-relevant characteristics are unobservable, initial
ownership will play a central role in the efficiency of investments and in the
final welfare distribution.4 Laboratories now cannot observe a researcher’s
investment, precluding the enhanced competition that facilitates the re-
searcher’s capture of the returns on her investment when laboratories own

2In order to focus on the implications of unobservable researcher investments, we as-
sume in much of the paper that laboratories’ investments are fixed (in Section 4, we also
allow laboratories to make investments).

3See Cole, Mailath, and Postlewaite (2001) and Mailath, Postlewaite, and Samuelson
(2013, Section 6.1 and Appendix E) for details.

4This is reminiscent of the Coase theorem (Coase, 1960): in the absence of bargaining
frictions (such as asymmetric information), bargaining will result in an efficient allocation
irrespective of the original allocation of property rights. On other hand, in the presence of
asymmetric information, the possibility of reaching an efficient agreement depends on the
original allocation of property rights (see, for example, Cramton, Gibbons, and Klemperer
(1987)). However, the similarity is superficial, since the Coase theorem ignores investments
that may be taken before bargaining (Grossman and Hart, 1986).
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the patents, and potentially leading to inefficient investments. More im-
portantly, increasing the share of the patents owned by the researcher then
provides incentives to invest more efficiently, giving rise to a link between
initial ownership and investments that is the focus of this paper, and that
can have unexpected implications.

1.3 Premuneration Values

In general, the surplus generated by a match will be a composite of many
different items in addition to patents, with the ownership of these various
items split between the laboratory and researcher in different ways. The
researcher’s value of the match includes the value of the human capital she
accumulates at the laboratory, as well as the value from contacts she makes
at the laboratory. The researcher may also derive utility from laboratory
parties and social opportunities, but may derive disutility from exerting
costly effort. The laboratory’s value of the match may include the prestige of
employing a noted researcher, as well as the accumulation of organizational
capital that will be of use in other research endeavors, but may also include
the costs of training the researcher. In addition, some of the value from the
researcher’s contacts may accrue to the firm, perhaps because they make it
easier to hire additional researchers.

Rather than itemize all the elements that comprise the surplus in the
match between the laboratory and researcher, we take as the primitive the
aggregate match value to each of the agents in the absence of any transfers.
Mailath, Postlewaite, and Samuelson (2013) call these values premuneration
values (from pre plus the Latin munerare, to give or pay). The total surplus
in a match is then simply the sum of the matched parties’ premuneration
values. The premuneration values determine the division of the surplus in
the absence of transfers. In equilibrium, of course, there typically will be
transfers. What is central to our problem is that any transfers that reallocate
surplus are determined after investments have been made.

We find that premuneration values matter.5 More specifically:

• When researchers do not own all the surplus from a match, they invest
less than is efficient; their investments and payoffs increase as their
premuneration value increases.

5Liu, Mailath, Postlewaite, and Samuelson (2014) examine a finite matching model
with incomplete information but no investments in which premuneration values also play
a central role.
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• Laboratories’ equilibrium payoffs increase as researcher premuneration
values increase if the latter are small, and then decrease. In particular,
increasing the share owned by researchers can lead to more investment,
with the laboratories enjoying some of the fruits of that investment.
In addition, there is competition among researchers for laboratories,
and researchers who own more of the surplus find all laboratories more
valuable. This intensifies the competition for laboratories, leading to
higher market prices for laboratories. When the share of the surplus
owned by researchers is small, both sides can gain by having premu-
neration values allocate more of the surplus to researchers.

• When both sides invest, but researchers’ attributes are unobservable,
laboratories invest more than is efficient when researchers invest close
to their efficient levels (which occurs when researchers are more het-
erogeneous).

• The increase of researcher investments and payoffs as their premu-
neration values increase depends on the ex ante heterogeneity of re-
searchers. If researchers are identical, competition will ensure that all
surplus goes to laboratories, and in this case the premuneration values
of the researchers is irrelevant. But heterogeneity among researchers
will attenuate researchers’ competition for laboratories and researchers
will accordingly get positive surplus in equilibrium. Their equilibrium
welfare then increases in their premuneration values and increases in
the heterogeneity of their investment costs.

It is a familiar result that inefficiencies can arise when the character-
istics of the agents on one side of the market cannot be observed. The
important finding is that the equilibrium allocation depends upon premu-
neration values, sometimes counterintuitively. Premuneration values matter
whenever there are unobserved exogenous attributes or unobserved invest-
ments, though we focus on the latter. Investments in human capital are
especially difficult to verify, bringing any market for skilled labor within the
scope of our model.

Our analysis assumes that laboratories cannot learn researchers’ at-
tributes. In an online appendix, we examine the researcher-investment case
on which the paper is focussed, but allow laboratories to learn the attributes
of researchers at a cost. Changes in premuneration values can have further
surprising effects on which laboratories become informed and on the result-
ing division of the surplus.
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1.4 Why Do We Care?

The finding that premuneration values matter would be relatively innocuous
if we could simply redesign them appropriately. Indeed, in the absence of
any obstacles, the specification of premuneration values would simply be part
of an optimal contracting problem between a researcher and a laboratory.
However, we believe premuneration values are often determined by the legal
and institutional environment, and so should serve from the researchers’
and laboratory’s point of view as exogenous points of departure for their
contracting problem.

Efficiency may yet simply be a matter of designing premuneration val-
ues appropriately, even if this is a legal rather than contract design problem.
However, some (perhaps many) configurations of premuneration values may
be impossible to achieve. Laws that prohibit selling one’s human capital
or prohibit relinquishing legal rights may preclude some allocations. Mea-
surement or collection problems may preclude others. Premuneration values
often include future returns, requiring future costly actions and hence moral
hazard problems that preclude reallocation.6

To illustrate the difficulties in redesigning premuneration values, consider
a match between a student and a university. While at the university, the stu-
dent acquires knowledge and skills that lead to higher lifetime earnings and
a greater satisfaction in life after school. She may also make contacts that
will be important in her career, and she may be a regular at campus parties
and generally enjoy the social life of the university. Each of these increases
the student’s value of the match, and consequently the surplus in the match.
The university may derive value from the contribution to its ranking caused
by her stellar SAT score, from touting the student’s background and her
ability to play the saxophone as additions to its diverse and artistically rich
community, as well as from claiming her as a graduate when she achieves
fame and fortune. The university’s value of these items also contributes to
the surplus of the match. Each side owns some of these components, in the
sense that the value of that component accrues to them. Some components
might be owned by either side, depending on circumstances, but others are
inextricably linked to a particular side. We might be able to reallocate the
ownership of the student’s future income stream, perhaps by financing her
education with income-contingent loans, but there are obvious limits in the
possible shifting. There is no obvious way to reallocate her utility from
partying.

6See Mailath, Postlewaite, and Samuelson (2013, Sections 1.4 and 6.5) for a discussion
of this issue.
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1.5 Related Literature

Other papers have also investigated the relationship between the incentives
for efficient investments and subsequent bargaining.7 Acemoglu and Shimer
(1999) analyze a worker-firm model in which firms (only) make ex ante in-
vestments. If wages are determined by post-match bargaining, a standard
hold-up problem induces firms to underinvest. The hold-up problem disap-
pears if workers have no bargaining power, but then there is excess entry on
the part of firms. Acemoglu and Shimer show that efficient outcomes can be
achieved if the bargaining process is replaced by wage-posting on the part of
firms, followed by competitive search. de Meza and Lockwood (2010) exam-
ine an investment and matching model that gives rise to excess investment.
Their overinvestment possibility rests on a discrete set of investment choices
and the presence of bargaining power in a noncompetitive post-investment
stage.

In contrast, the competitive post-investment markets of Cole, Mailath,
and Postlewaite (2001) and Peters and Siow (2002) lead to efficient two-sided
investments. Our analysis shows that this efficiency rests on both ex post
competition and complete information, with the latter allowing prices to be
conditioned on both worker and firm characteristics. Gall, Legros, and New-
man (2006, 2009) and Bhaskar and Hopkins (2011) examine an alternative
class of models in which information is complete and hence different prices
can be set for different workers, but inefficiencies arise out of limitations on
the ability to reallocate the surplus in a match via transfers, including lim-
iting cases in which no transfers can be made. In contrast to these models,
monetary transfers allow us to achieve any division of the surplus between
a pair of matched agents.

Moving from complete-information to incomplete-information matching
models typically gives rise to issues of either screening, as considered here,
or signaling. Cole, Mailath, and Postlewaite (1995), Hopkins (2012), Hoppe,
Moldovanu, and Sela (2009) and Rege (2008) analyze models incorporating
signaling into matching models with investments.8

7Early literature suggesting that frictionless, competitive search might create efficient
investment incentives include Hosios (1990), Moen (1997), and Shi (2001). Eeckhout and
Kircher (2010) provide an extension to asymmetric information, while Masters (2011)
examines a model with two-sided investments.

8The inability to observe workers’ characteristics forces a firm to offer the same payment
to all workers. Firms setting the “impersonal prices” of Bulow and Levin (2006) similarly
offer the same price to all workers, but Bulow and Levin offer a motivation in terms of
institutional constraints rather than incomplete information, including the possibility that
firms may be able and desirous of committing to such prices in order to secure a more
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2 The Model

There is a unit measure of researchers whose types (names) are indexed by
ρ and are distributed uniformly on [0, 1], and a unit measure of laboratories
whose types are indexed by λ and distributed uniformly on [0, 1]. For ease
of reference, researchers are female and laboratories male.

At the first stage, each researcher chooses an attribute r ∈ R+. Each
laboratory is characterized by an attribute `, where for convenience we take
the attribute of laboratory λ to be fixed at ` = λ. Following the attribute
choices, researchers and laboratories match, with a researcher with attribute
r receiving a premuneration value of hR(r, `) from a match with a laboratory
with attribute `, and with the laboratory’s premuneration value from the
same match denoted by hL(r, `). The second-stage values depend only on
the attributes of the researcher and laboratory, r and `, and not on their
underlying types.

Researcher attributes are costly, with researcher ρ paying a cost of c(r, ρ)
to acquire attribute r. We assume

1. hR and hL are both C2, increasing in r and `, and

∂2hR
∂r∂`

> 0 and
∂2hL
∂r∂`

≥ 0,

2. c is C2, strictly increasing, and convex in r, with c(0, ρ) = ∂c(0, ρ)/∂r =
0, and

∂2c

∂r∂ρ
< 0,

and

3. there exists r̄ > 0 such that for all r > r̄ and for all `, and all ρ,

hR(r, `) + hL(r, `)− c(r, ρ) < 0.

This is the model of Mailath, Postlewaite, and Samuelson (2013), with
the restriction that laboratory attributes are exogenous (in our earlier paper,
attributes are treated symmetrically on the two sides of the market).

lucrative equilibrium.
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2.1 Efficient Allocations

The cost function c(r, ρ) satisfies a single crossing condition, ensuring that
researchers with larger indices choose larger attributes. The supermodu-
larity of the premuneration values then implies that efficient matching is
positive assortative on index, so that researcher ρ matches with laboratory
λ = ρ. Finally, the investment choice re(ρ) in a match between researcher ρ
and laboratory λ = ρ (and hence with attribute ` = λ) maximizes

hR(r, `) + hL(r, `)− c(r, ρ) = hR(r, ρ) + hL(r, ρ)− c(r, ρ).

If the researchers’ investments are observable, then this model is a special
case of the complete-information model described in Section 6.1 of Mailath,
Postlewaite, and Samuelson (2013). The appropriate equilibrium concept for
the complete-information case is a personalized pricing equilibrium, which
is the counterpart of Cole, Mailath, and Postlewaite’s (2001) ex post con-
tracting equilibrium in the current setting. When investments are two-sided,
coordination failures can give rise to inefficient personalized price equilib-
ria, but in the current one-sided investment setting, every personalized price
equilibrium of the complete-information case is efficient. Section 3.2 presents
the notion of a personalized pricing equilibrium and the attendant efficiency
result for the parametric example considered in Section 3. The following
subsection defines a matching equilibrium for the incomplete-information
case that is our primary interest.

2.2 Equilibrium

Matching takes place in a competitive market. Laboratories’ attributes are
observable and priced, with p(`) denoting the price of a laboratory with
attribute `. Researchers’ attributes are not observable to laboratories, hence
the price of laboratory with attribute `, p(`), is the same to all researchers.
Given a price function p, each researcher optimally chooses her attribute
and the laboratory with whom she wishes to match. That is, researcher ρ
solves

max
`,r

hR(r, `)− p(`)− c(r, ρ). (1)

We denote by rR : [0, 1] → R+ the function describing the attributes cho-
sen by researchers and by `R : [0, 1] → [0, 1] the function describing the
laboratories chosen by researchers.

The function `R is market-clearing if it is one-to-one, onto, and every

8



set of researchers R, is mapped to a set of equal size of laboratories.9 Given
a price function p and researcher behavior rR and `R (where `R is market
clearing), the payoff to laboratory ` is hL(rR(`−1R (`)), `) + p(`).

Definition 1 A price function p and researcher choices (`R, rR) constitute
a matching equilibrium if

1. for every ρ ∈ [0, 1], the choice (`R(ρ), rR(ρ)) solves the researcher-
optimization problem (1),

2. every researcher and laboratory earns nonnegative payoffs, and

3. `R is market-clearing.

The second property of equilibrium is an individual rationality requirement,
ensuring that all agents prefer participation to not participating. This equi-
librium notion is the analogue in our setting (since laboratories do not choose
attributes) of Mailath, Postlewaite, and Samuelson’s (2013) uniform price
equilibrium.

We begin by identifying three useful properties of a matching equilibria
(the proofs are in Appendix A).10 The first is a direct implication of market
clearing:

Lemma 1 Every equilibrium price function p is strictly increasing and con-
tinuous.

The researchers’ cost functions satisfy a single-crossing condition, giving
the following lemma.

Lemma 2 Every equilibrium researcher attribute-choice function rR is strictly
increasing.

9Formally, if µ is Lebesgue measure and R is a measurable set of researcher types, then
µ(R) = µ{`|` = `R(ρ) for some ρ ∈ R}. Our assumption that laboratory attributes are
exogenously and uniformly distributed on an interval allows us to avoid various technical
issues that arise with a continuum of agents in two-sided investment models; see Mailath,
Postlewaite, and Samuelson (2013, Section 3.2) for a discussion.

10Analogues of Lemmas 1–3 should hold in the two-sided investment model of Mailath,
Postlewaite, and Samuelson (2013), but the two-sided investments and associated more
complicated notion of matching feasibility preclude the simple arguments used here. We
expect an argument mimicking the existence argument from Mailath, Postlewaite, and
Samuelson (2013) to yield existence of matching equilibria in the current context. Much
of this paper studies a parametric example for which existence is immediate.

9



The supermodularity of the surplus function ensures that matching is
assortative.

Lemma 3 Every equilibrium researcher laboratory-choice function `R is given
by

`R(ρ) = ρ.

2.3 Underinvestment

Mailath, Postlewaite, and Samuelson (2013) showed that in general, at-
tribute investments in uniform price equilibria are inefficient. Inefficiencies
arise from coordination failures (since both sides invest) and from a lack
of full appropriability of the returns from investment. Unfortunately, that
model is too general to permit a more precise determination of the nature
of the inefficiency.

By assuming that one side’s attributes are exogenously determined, we
both avoid the possibility of coordination failures, and can unambiguously
determine the direction of inefficiency. This gives us our fundamental un-
derinvestment result, arising from the researchers’ inability to capture the
full social return on investments.

Proposition 1 Suppose the first derivative of social surplus with respect to
r has a unique strictly positive zero for all ρ > 0. If hL has a strictly positive
derivative with respect to r, then in any matching equilibrium (p, (`R, rR)),
for almost all ρ > 0, the equilibrium investment rR(ρ) is lower than the
efficient investment.

The assumption that dhL/dr > 0 indicates that the a laboratory’s premu-
neration value is increasing in the investment of a researcher with whom
the laboratory is matched. This assumption most obviously fails when hL
is identically zero, so that all of the value created by a match is captured in
the researcher’s premuneration value. In Section 3, this is the only way this
assumption can fail.

Proof. Let

f(r; ρ) :=
∂hR(r, ρ)

∂r
+
∂hL(r, ρ)

∂r
− ∂c(r, ρ)

∂r

denote the first derivative of the social surplus. Then, f( · ; ρ) is C1 on R+

10



and

f(r; ρ)





> 0, r < re(ρ),

= 0, r = re(ρ),

< 0, r > re(ρ).

Suppose (p, (`R, rR)) is a matching equilibrium. Then, as rR(ρ) is inte-
rior, it satisfies the first order condition (using Lemma 3)

∂hR(r, ρ)

∂r
− ∂c(r, ρ)

∂r
= 0.

Since hL has a strictly positive derivative with respect to r, f(rR(ρ), ρ) > 0,
and so rR(ρ) < re(ρ).

3 A More Structured Model

3.1 The Premuneration Values and Cost Function

We next analyze equilibrium investments in more detail for a class of pre-
muneration and cost functions. The premuneration values of a match, as a
function of the attributes ` and r of the agents in the match, are

hR(r, `) = θr` (2)

and
hL(r, `) = (1− θ)r`, (3)

so that the total surplus in a match is given by

v(`, r) = `r.

The parameter θ describes the researcher’s premuneration value share of the
surplus, while (1− θ) describes the laboratory’s share. From Section 2, the
basic properties we need are that the premuneration values are increasing
in both attributes and are supermodular, i.e., have a positive cross deriva-
tive. The surplus function `r is a special case of a Cobb-Douglas production
function, and exhibits these properties while being simple enough to exhibit
closed-form solutions. The constant share embodied in (2)–(3) ensures that
these properties are inherited by the premuneration values. Premuneration
shares may be constant if researchers and laboratories own different compo-
nents of the value of a match (e.g., the researcher may own her accumulated

11



human capital, while the laboratory may own the value of patents produced
in the interaction) that arise in constant proportions across interactions.

Our choice of cost function is guided by our desire to examine the effects
of changes in the strength of competition in the market for researchers as
well as changes in premuneration values. We assume the cost of attribute
r ∈ R+ to researcher ρ > 0 is given by

c(r, ρ) =
r2+k

(2 + k)ρk
, k ∈ R+.

We constrain ρ = 0 to choose r = 0. When k = 0, researchers are homoge-
neous in the sense that all have the same cost. We can thus expect fierce
competition between researchers for laboratories. When k > 0, researchers
are heterogeneous, with higher ρ researchers having a lower cost of acquiring
any level of the attribute. As k increases, so does the curvature of the cost
function. In particular, the marginal cost of attribute r = ρ for researcher
ρ remains fixed at r as k varies, but the slope of the marginal cost function
through this point increases as does k. As a result, researcher ρ becomes
increasingly reluctant to stray from the attribute r = ρ as k increases. This
makes it less attractive for researcher ρ mimic the attribute and labora-
tory choice of researcher ρ′ 6= ρ, thus dampening the competition between
researchers for laboratories.

The cost function has the property that efficient researcher investments
are independent of k. This allows us to study how the effects of changes in
premuneration values vary with k, and how these changes affect the efficiency
of investments.

3.2 Complete Information and Efficient Outcomes

As a point of comparison, we first consider the complete information scenario
mentioned in Section 2.1 in which researchers’ investments are observable.
Matching takes place in a competitive market, characterized by a person-
alized price function p(`, r) specifying, for any laboratory attribute ` and
researcher attribute r, the payment from the laboratory to the research
if the pair form a match. When laboratories cannot distinguish between
researchers, the equilibrium requirement that each laboratory chooses a re-
searcher reduces to individual rationality. Under complete information, lab-
oratories can distinguish researchers and equilibrium requires that the lab-
oratory chosen by a researcher chooses that researcher.11 The appropriate

11The complete information scenario is a special case of Cole, Mailath, and Postlewaite
(2001), and their notion of ex post contracting equilibrium applied to the current setting
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competitive equilibrium notion under complete information is personalized
pricing equilibrium:

Definition 2 A personalized price function p̃ and researcher choices (˜̀
R, r̃R)

constitute a personalized pricing equilibrium if

1. for every ρ ∈ [0, 1], the choice (˜̀
R(ρ), r̃R(ρ)) maximizes

hR(r, `)− p̃(`, r)− c(r, ρ),

2. for all ` ∈ ˜̀
R([0, 1]),

r̃R(`) ∈ arg max
r

hL(r, `) + p̃(`, r),

3. every researcher and laboratory earns nonnegative payoffs, and

4. ˜̀
R is market-clearing.

Personalized pricing equilibria exist and are, because investments are
one-sided, efficient.12 Efficient researcher attribute choices have a partic-
ularly simple form. First, strict supermodularity of the surplus function
`r implies that, for any strictly increasing researcher attribute choice func-
tion, total surplus is maximized under assortative matching. Second, the
cost function for researchers is decreasing in researcher index ρ, so for any
researcher attribute distribution, the minimum cost of obtaining that dis-
tribution is for the attribute choice function rR to be (weakly) increasing.
Thus, total net surplus is maximized when the matching on indices λ and
ρ is positively assortative: laboratory λ will be matched with researcher
ρ = λ. Total net surplus is thus maximized when the net surplus for each
such matched pair is maximized. For the ρ-matched pair of laboratory and
researcher, the surplus-maximization problem is (since laboratory λ = ρ has
attribute ` = ρ)

max
r

ρr − r2+k

(2 + k)ρk
. (4)

The first-order condition is

ρ =
r1+k

ρk
,

yields the same outcomes as personalized pricing equilibrium.
12The proof of efficiency follows that of Cole, Mailath, and Postlewaite (2001, Lemma

2).
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immediately implying
r = ρ. (5)

Hence, efficiency requires rR(ρ) = ρ and `R(ρ) = ρ. As we indicated earlier,
the efficient allocation does not depend on k, the degree of heterogeneity of
the researchers.

It is straightforward to verify that the equilibrium personalized pricing
function is

p̃(r, `) =
1

2
`2 − (1− θ)r`.

The personalized prices are important in achieving positive assortative
matching on index and efficiency. Researcher ρ would prefer to match with
laboratory ` = ρ+ ε if researcher ρ could do so while retaining her current
investment and trading at the equilibrium price that appears in the match
between researcher ρ + ε and laboratory ` = ρ + ε. But the personalized
prices preclude this. Researcher ρ can match with laboratory ` = ρ+ ε only
if she boosts her investment to match that of researcher ρ + ε or pays a
higher price, which researcher ρ prefers not to do.

Personalized pricing is impossible when researcher attributes are unob-
servable. Each laboratory is now characterized by a single price at which it
stands ready to hire all willing researchers. If we attach to each laboratory
the price at which it trades in the personalized price equilibrium, the result
will not be an equilibrium. Now nothing deters researcher ρ from matching
with some laboratory ` = ρ+ ε, and the market does not clear. Equilibrium
matching under incomplete information is still positive assortative (Lemma
3), so there is no inefficiency in matching, but this sorting in general requires
equilibrium prices to increase more slowly in laboratories’ types than in the
complete-information case. This attenuates the incentives for reseachers to
invest, leading to inefficient investments.

3.3 Incomplete Information Matching Equilibrium

We turn now to the structure of the matching equilibrium. First, suppose
that the equilibrium price of laboratories is differentiable, a supposition that
will be validated by the equilibrium we construct.13 Researcher ρ’s problem

13A standard revealed preference argument shows that in fact every equilibrium price
function is differentiable, and so the equilibrium investment function is unique. This is
true even when the bottom index for researchers and laboratories is strictly positive, so
that the surplus at the bottom is strictly positive. In the latter case, there are multiple
equilibrium price functions (though they only differ by a constant).
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is to choose ` and r to maximize

θ`r − p(`)− c(r, ρ) = θ`r − p(`)− r2+k

(2 + k)ρk
.

The first order conditions are

θ` =
r1+k

ρk
(6)

and
θr = p′(`). (7)

In equilibrium, researcher ρ is matched with laboratory ` = ρ, hence from
(6) we have that in equilibrium

rR(ρ) = ρ · θ 1
1+k . (8)

For all θ ∈ (0, 1), θ
1

1+k ∈ (0, 1), and hence rR(ρ) < ρ; for θ = 1, rR(ρ) = ρ.
For any given researcher ρ, rR(ρ) is increasing in both k and θ. As θ

increases, the researcher has a larger share of the surplus, and hence has
an increased incentive to invest; when k increases, less of a researcher’s
benefit is competed away, giving researchers further reason to increase their
investment.

Combining the two first order conditions (7) and (8) gives

p′(`) = ` · θ · θ 1
1+k

and hence
p(`) = 1

2`
2 · θ

2+k
1+k (9)

(the constant of integration is set so that p(0) = 0, as required by the
individual-rationality requirement that payoffs be nonnegative).

Summarizing the above discussion, we have the following proposition.

Proposition 2 There is a unique matching equilibrium, with researcher in-
vestment function given by (8) and price function by (9). Investment is
therefore below the efficient level of r = ρ unless θ = 1.

Remark 1 A natural conjecture is that the pervasive inefficiency reflected
in Proposition 1 and the investment function (8) simply reflects that we
have given laboratories too meager an arsenal of contracting weapons. As
discussed in Section 1.4, we view the specification of premuneration values
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as part of the contracting environment, just as are the specification of the
surplus and cost functions. The price function p(`) already allows the con-
tract between a researcher and a laboratory to be conditioned on all of the
observable variables in their interaction. However, instead of simply posting
a price, we could allow laboratories to force the researchers who approach
them to play a direct revelation game, announcing a type r̂, with the price
p(`, r̂) then depending on both the laboratory’s price and the researcher’s
announced type. This brings the laboratory no new flexibility. The re-
searcher’s payoff depends on her announcement only through its effect on
the price, and every researcher approaching laboratory ` would name that
type r̂ that elicits the most favorable price. �

3.4 Payoffs

Given the equilibrium choices, laboratory λ’s payoff given θ and k is (insert-
ing the equilibrium investment function to obtain the second line and the
equilibrium price function to obtain the third)

uL(θ, k, λ) ≡ (1− θ)`r + p(`)

= (1− θ)λ(λθ
1

1+k ) + p(`)

= (1− θ)λ2θ 1
1+k + 1

2λ
2θ

2+k
1+k

= 1
2θ

1
1+k (2− θ)λ2. (10)

We are interested in identifying conditions under which the laboratory’s
payoff increases when the researcher’s share of the surplus, θ, increases.
From (10), the laboratory’s payoff is increasing in its share of the surplus

when d
dθθ

1
1+k (2− θ) < 0. This derivative is given by

d

dθ
θ

1
1+k (2− θ) = 1

1+kθ
−k
1+k (2− θ)− θ 1

1+k

= θ
−k
1+k

[
1

1+k (2− θ)− θ
]
.

Thus the sign of duL/dθ is the same as the sign of 1
1+k (2 − θ) − θ, that is,

of 2− (2 + k)θ.
Figure 1 shows the region in which laboratories’ payoffs increase as the

researchers’ premuneration values increase: (θ, k) combinations that are be-
low and to the left of the curved line are situations in which the laboratories’
payoff increases when the researchers’ premuneration values increase.
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Figure 1: Parameter regions for which laboratory payoffs are increasing or
decreasing in laboratory premuneration values.

Above the line, laboratories’ payoffs decrease as researchers’ premuner-
ation value increases. Hence, the line represents the optimal premuneration
values from the laboratory’s perspective. In summary:

Proposition 3 Laboratories’ equilibrium payoffs are first increasing in θ,
the researchers’ premuneration value share, are maximized at 2/(2+k), and
then are decreasing in θ.

For k = 0, the laboratory’s payoff is increasing for all θ, that is, lab-
oratories’ payoffs are maximized when premuneration values assign all the
surplus to researchers. When k = 0, researchers are identical and so the
competition for laboratories is the most intense, with researchers bidding
away all rents in the competition for higher attribute laboratories. Since
laboratories ultimately capture all the surplus through market competition,
they do best when total surplus is maximized, which is when θ = 1.

For positive but small k, the laboratories’ payoffs are maximized with
θ near, but less than, 1. When θ < 1, researchers’ attribute choices will
be less than the attribute choices that maximize total net surplus. This is
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nevertheless optimal for laboratories since they will not capture the entire
surplus in the market given that competition among researchers is imper-
fect when k > 0. As k increases, competition among researchers decreases
as researchers become more heterogeneous (and their choices become more
efficient) and the researcher share of the surplus that maximizes laboratory
payoff decreases, approaching zero as k gets large.

The researcher’s payoff can be calculated as the total net surplus minus
the laboratory’s payoff. The total net surplus for a matched pair ρ = λ is

θ
1

1+k ρ2 − (θ
1

1+k ρ)2+k

(2 + k)ρk
= ρ2θ

1
1+k

[
1− 1

(2+k)θ
]
.

From (10), the laboratory’s payoff is ρ2θ
1

1+k (1 − 1
2θ), so the researcher’s

payoff is

uR(θ, k, ρ) ≡ ρ2θ 1
1+k

[
1− 1

2+kθ
]
− ρ2θ 1

1+k
(
1− 1

2θ
)

= θ
1

1+k ρ2
[
1− θ

2+k − 1 + θ
2

]

=
kθ

2+k
1+k

2(2 + k)
ρ2. (11)

Proposition 4 Researchers’ equilibrium payoffs increase in θ, i.e., as re-
searchers’ premuneration value share increases.

Thus, both researchers’ and laboratories’ payoffs increase, as the researcher’s
premuneration value increases, in the solid shaded region in Figure 1.

3.5 The Impact of Competition on Payoffs

We next investigate the effect of changes in the heterogeneity of researchers,
via changes in k, on payoffs. The equilibrium payoffs of laboratories and
researchers are given by (10) and (11). Figure 2 illustrates these payoffs as
a function of k.

As k increases, researchers’ investments increase toward the efficient
level, increasing the value created in each equilibrium match. The price
function p(`) also increases. Increasing k dampens the competition between
laboratories, suggesting that prices for matching with laboratories should
decrease, but it also leads to higher investments, making matches more
valuable.
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Figure 2: Payoffs for the scenario in which the researchers choose attributes
for θ = 1

2 and ρ = λ = 1. Since researcher (respectively, laboratory) payoffs
for index ρ (resp., λ) are proportional to ρ2 (resp., λ2), these also represent
the proportionality factors for the other indices. The maximum surplus can
be calculated to be (k + 1)/(k + 2).

Researchers’ payoffs increase in k, reflecting the enhanced investment
incentives of reduced competition and reduced investment costs. Labora-
tories’ payoffs increase with k. A larger value of k makes researchers more
heterogeneous, and hence dampens their competition for laboratories, seem-
ingly to the latter’s deficit. However, this is outweighed by the enhanced
researcher investment incentives of increasing k.

In the limit, when k = 0, all researchers are identical, giving rise to fierce
competition that allows laboratories to capture all the surplus:

lim
k→0

uR(θ, k, ρ) = 0

and lim
k→0

uL(θ, k, λ) = θ
2(2− θ)λ2.

At the other extreme, as k →∞, researchers have increasingly different
values for any particular laboratory, dampening their competition. We then
get efficient attribute choices, but the premuneration values still matter in
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terms of the division:

lim
k→∞

uR(θ, k, ρ) =
θρ2

2

and lim
k→0

uL(θ, k, λ) =

(
1− θ

2

)
λ2.

4 Laboratories Also Invest

Researchers’ investments are inefficiently low when laboratory premunera-
tion values are not degenerate. To understand the source and nature of
the inefficiency, this section maintains our previous information structure
(laboratories’ attributes are commonly known but researchers’ attributes
are not), but now laboratories as well as researchers choose attributes. Our
model contains the model of Section 3 (in which only researchers choose
attributes) as the limiting case where laboratories become arbitrarily het-
erogeneous.

Once again, we find that if θ < 1, so that laboratories have nontrivial
premuneration values, then researchers’ investments are inefficiently low. In
addition, we find that laboratories investments are in general also inefficient,
though this inefficiency reflects forces that can be quite different from those
that shape researcher investments. When θ (and as a result, researchers’
premuneration values) is large, laboratories overinvest.

Our model also contains as a limiting case a setting in which researchers’
attributes are fixed and only laboratories choose attributes, though re-
searchers’ attributes are still unobservable. Here, we find that the labo-
ratories’ investments are inefficiently large, no matter what the value of
θ.14 Hence, it is the unobservability of researcher’s attributes that causes
inefficient investments, regardless of who makes the investment.

4.1 The Premuneration Values and Cost Functions

As before, matching takes place in a competitive market, with laboratory
attributes observable and priced. We use the diacritic ˆ to distinguish the
equilibrium prices, attribute choices and payoffs here from their analogs in
Section 3.

We retain the assumption that premuneration values are given by hR(r, `) =
θr` for researchers and hL(r, `) = (1− θ)r` for laboratories, and hence that

14The model is continuous: for any value of θ, if researchers are sufficiently heteroge-
neous, then laboratories overinvest.
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the total surplus in a match is given by v(`, r) = `r.
The cost to researcher ρ of attribute r is again given by

c(r, ρ) =
r2+k

(2 + k)ρk
.

The cost of attribute ` ∈ R+ to laboratory λ is similarly given by

ψ(`, λ) =
`2+κ

(2 + κ)λk
, β, κ ∈ R+.

4.2 Efficient Outcomes

An efficient outcome again exhibits positive assortative matching. The effi-
cient attribute choices re(ρ) and `e(λ) maximize, for any ρ = λ,

r`− r2+k

(2 + k)ρk
− `2+κ

(2 + κ)ρκ
.

The first-order conditions for this maximization can be written as

`ρk = r1+k (12)

rρκ = `1+κ. (13)

The efficient choices are independent of k and κ, and researcher ρ to choose
attribute r = ρ and for laboratory λ to choose attribute ` = λ. We denote
the efficient choices by r̂e and ˆ̀e.

4.3 Incomplete Information Matching Equilibrium

The market is characterized by a price function p̂, with p̂(`) identifying the
price at which any research can buy a match with attribute `. Given the
price function p̂, researcher ρ chooses (r, `) to maximize

θ`r − p̂(`)− c(r, ρ).

We denote by r̂R, ˆ̀
R : [0, 1] → R+ the functions describing the researcher

and laboratory attributes selected by researchers.
Laboratories choose attributes given (p̂, r̂L), where r̂L : R+ → R+ is the

matching function that specifies the attribute r̂L(`) of the researcher that
the market matches to a laboratory with attribute `. Laboratory λ chooses
` ∈ R+ to maximize

(1− θ)`r̂L(`) + p̂(`)− ψ(`, λ).
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We denote by ˆ̀
L : [0, 1] → R+ the function describing the laboratories’

attribute choices.
The specification of a matching equilibrium is similar to that of Section

3, though we must now specify investments on both sides of the market.15

Definition 3 A price function p̂, matching function r̂L, and strictly in-
creasing attribute choices (r̂R, ˆ̀

R, ˆ̀
L) constitute a matching equilibrium if

1. (r̂R(ρ), ˆ̀
R(ρ)) is an optimal pair of attribute choices for researcher ρ,

for all ρ ∈ [0, 1],

2. ˆ̀
L(λ) is an optimal laboratory attribute for laboratory λ, for all λ ∈

[0, 1],

3. every researcher and laboratory earns nonnegative payoffs, and

4. markets clear: r̂L(ˆ̀
R(ρ)) = r̂R(ρ) for all ρ ∈ [0, 1] and ˆ̀

R(λ) = ˆ̀
L(λ)

for all λ ∈ [0, 1].

Appendix A contains the calculations behind the following:

Proposition 5 A matching equilibrium is given by the collection (p̂, r̂L, r̂R, ˆ̀
R, ˆ̀

L),
where

p̂(`) =
1

2
θ
ζ

ξ
`2,

r̂L(`) =
ζ

ξ
`,

r̂R(ρ) = ζρ,

ˆ̀
R(ρ) = ξρ, and

ˆ̀
L(λ) = ξλ,

15As in the initial model, we are able to avoid many technical details. In particular, our
notion of equilibrium assumes that ˆ̀

R and ˆ̀
L are strictly increasing; these properties can

be deduced from the general model of Mailath, Postlewaite, and Samuelson (2013). Given
these assumptions, market clearing requires r̂L(ˆ̀

R(ρ)) = r̂R(ρ) and ˆ̀
R(λ) = ˆ̀

L(λ).
In the equilibrium we analyze, the range of `R is an interval starting at 0, and so we

need place no further restrictions on r̂L (though setting r̂L(`) = r̂R(1) for ` > ˆ̀
R(1)

would be natural). A central concern of Mailath, Postlewaite, and Samuelson (2013) is
the appropriate treatment of matches when an attribute is chosen outside the range of
putative equilibrium attributes and the set of such attributes does not form an interval.
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with the constants ζ and ξ given by

ζ = θ
κ+1

kκ+k+κ (2− θ) 1
kκ+k+κ

and ξ = θ
1

kκ+κ+k (2− θ)
k+1

kκ+k+κ .

Equilibrium payoffs are given by

ûR(θ, k, κ, ρ) =
k

2(2 + k)
θ

(κ+1)(k+2)
kκ+k+κ (2− θ)

k+2
kκ+k+κ ρ2

and

ûL(θ, k, κ, λ) =
κ

2(2 + κ)
θ

κ+2
kκ+k+κ (2− θ)

(k+1)(κ+2)
kκ+k+κ .

We now compare the equilibrium investments to the efficient investments
r̂e(ρ) = ρ and ˆ̀e(λ) = λ. It is a straightforward calculation that ζ < 1 as
long as θ < 1. Hence, once again, researchers underinvest. Underinvestment
on the part of researchers is a robust result, and reflects familiar holdup
reasoning. As long as θ < 1, the researcher does not capture all of the
marginal gain of an investment, and so underinvests.

The situation for laboratories is more involved. For small values of θ,
we have ξ < 1, and hence laboratories also underinvest. Researchers’ in-
vestments are very small when θ is small, and hence so are the returns to
laboratories’ investments. As a result, laboratories underinvest. However,
for larger θ, we have ξ > 1, and laboratories overinvest relative to the ef-
ficient level. The boundary value of θ above which laboratories overinvest
depends only on k, the parameter of the researchers’ cost function, and de-
creases as k increases (see Figure 3). Thus, laboratories overinvest when
researchers are more heterogeneous.

Laboratories overinvest because of researchers’ response to their invest-
ments. Consider laboratory λ’s equilibrium investment. It is higher than
the efficient level, so why doesn’t the laboratory decrease its investment?

In the calculation of the efficient investment level, we know that an
efficient outcome must match agents assortatively on index. If a labora-
tory’s investment is too high, we can decrease the investment keeping the
matching fixed, and thereby increase the surplus. In contrast, in the market
equilibrium, a laboratory that decreased its investment level from the equi-
librium level would find that the researcher’s attribute that the laboratory
is matched with decreases. It is this concern for the quality of the researcher
(which it doesn’t observe) with whom it is matched that makes it optimal
for laboratories to invest more than the efficient level.
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Figure 3: Laboratories overinvest when researchers are more heterogeneous
(i.e., for sufficiently large k). Laboratories overinvest if ξ > 1 and underin-
vest if ξ < 1.

The intuition for laboratories’ overinvestment is quite general, as long
as laboratories’ premuneration values increase with the attribute of their
matched partner. Laboratories want higher-attribute researchers, and are
willing to pay for them. But when they cannot directly observe researchers’
attributes, they cannot simply pay for higher-attribute researchers by ac-
cepting lower prices to match, since that would be equally attractive to all
researchers. But they can increase their attractiveness to matched part-
ners by investing more. This makes a laboratory more attractive to all
researchers, but more so for higher attribute researchers. Hence, a labo-
ratory can combine an increase in their attribute with an increase in their
price that will screen potential researchers so that only higher attribute
researchers will find the combination attractive.

4.4 The Effects of Competition

As k increases, the range of values of θ for which laboratories overinvest
expands. This naturally directs our attention to the effect on investment in-
centives as k and κ, and hence the degree of competition between researchers
and laboratories, vary.
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First, we hold k fixed and consider the limits with respect to κ:

lim
κ→∞

ζ = θ1/(1+k), lim
κ→0

ζ = [θ(2− θ)]1/k,

lim
κ→∞

ξ = 1, and lim
κ→0

ξ = θ1/k(2− θ)(k+1)/k.

As κ grows large, the cost function for laboratory λ becomes increasing
sharply curved around the attribute ` = λ, and the attribute cost function
approaches a function that is kinked at the value ` = λ. This pushes labora-
tory λ’s attribute choice to ` = λ, and returns us to the one-sided investment
case of Section 3. The value ζ approaches θ1/(1+k), duplicating the solution
from Section 3.

As κ→ 0, the laboratories become more homogeneous. The difference in
limit behavior of the researchers reflects the limit behavior of the laboratories
in the following sense: if k is such that the laboratories overinvest (relative to
the efficient level), then limκ→∞ ζ < limκ→0 ζ, and conversely. Moreover, as
laboratories become more homogeneous, their equilibrium payoffs converge
to zero as competition allows the researchers to capture all the surplus.

Second, we fix κ and take limits with respect to k, giving

lim
k→∞

ζ = 1, lim
k→0

ζ = θ(κ+1)/κ(2− θ)1/κ,

lim
k→∞

ξ = (2− θ)1/(1+κ) and lim
k→0

ξ = [θ(2− θ)]1/κ.

In this case, as k → ∞, researcher ρ’s investment approaches r = ρ (as
limk→∞ ζ = 1), and we obtain the one-sided investment case in which re-
searcher attributes are fixed and laboratories invest. Moreover, limk→∞ ξ =
(2−θ)1/(1+k) > 1, and hence laboratories overinvest. Again, we see that the
inefficiency arises our of the unobservability of researchers’ attributes rather
than the nature of investment. However, when only laboratories invest, we
have overinvestment, arising out of laboratories’ attempts to attract better
researchers (at higher prices) by increasing their investments.

As researchers become homogenous (i.e., k → 0), laboratories necessarily
underinvest (consistent with our intuition from the previous section).

Third, we take limits as k = κ, giving

lim
k=κ→∞

ζ = 1, lim
k=κ→0

ζ = 0,

lim
k=κ→∞

ξ = 1, and lim
k=κ→0

ξ = 0.

Here we approach the efficient outcome as k = κ gets large and no invest-
ments as k = κ vanish. However, care should be taken in the interpretation

25



of these limits, since the order matters. For example, limκ→∞ limk→∞ ζ =
1 6= 0 = limk→∞ limκ→∞ ζ. The first order reflects a scenario where re-
searchers are more heterogenous than laboratories, and the second the re-
verse.

5 Discussion

Our basic result is that researchers underinvest. To keep our discussion
simple, we focus on the case in which researchers only invest. In equilibrium,
researcher ρ chooses investment

rR(ρ) = ρ · θ 1
1+k , (14)

while the efficient investment is r = ρ. It is apparent from (14) that the
underinvestment problem is most severe in markets in which researchers’
premuneration values are relatively low (θ is small), and researchers are rel-
atively homogeneous and consequently compete aggressively (k is small).
An important part of researchers’ premuneration value is the human capital
they acquire in the course of a match. We can accordingly expect underin-
vestment to be especially problematic in occupations in which researchers
(workers) acquire relatively little human capital. Similarly, for given pre-
muneration values, underinvestment will be severe in occupation in which
workers learn a specific skill (e.g., passing a certification exam that is a pre-
requisite for performing some duty), and workers who have acquired that
skill are largely substitutes. In this case, those who invest will compete away
the benefits of the acquired skill, with the benefits of the increased efficiency
accruing to the firms.

Our model not only indicates when underinvestment is likely to be par-
ticularly problematic, but also allows us to examine how one might address
this underinvestment. We first consider subsidizing investments. An invest-
ment subsidy is a program that transforms a researcher’s index ρ into the
index ρ̂, where

ρ̂ = b0 + b1ρ.

If ρ̂ > ρ, then the cost of investment for this researcher has been decreased.
Setting b0 = 0 has the effect of multiplying the cost function by b−k1 , and
hence gives simply a proportionate reduction in every cost. Setting b0 >
0 and letting b1 diminish reduces the sensitivity of costs to the type of
researcher. Indeed, as b1 → 0, the researchers become identical, while as
b1 →∞, the researchers become arbitrarily heterogeneous.
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Policies that increase b0 confer a cost reduction that is not directly re-
lated to a researcher’s type. We might think of the investment costs as
reflecting primarily the costs of higher education, including monetary costs,
opportunity costs, and the disutility of attached to seemingly endless prob-
lem sets. Policies to decrease the costs across the board might include tuition
subsidies, free access to junior colleges for all, subsidized loans to replace lost
earnings, and enhanced K-12 education programs to make the work more
bearable.16

Policies that increase b1 have a differential impact on high-ability re-
searchers. These might include steps that make a college education more
effective, such as acquiring new technology for teaching or adopting effective
teaching methods, creating internship and research programs, enhancing li-
braries, and so on. These policies may have effects on all, but may benefit
some researchers more than others. Suppose, for example, that investment
consists of sitting in the library and memorizing formulas. Suppose that all
researchers are equally proficient at the task—everyone can memorize the
same number of formulas per hour—but that researchers vary in the disu-
tility they get from sitting in the library and memorizing. Then making the
library more pleasant, perhaps by installing comfortable chairs, free coffee,
more flexible opening hours, and air conditioning, will lower the cost of in-
vesting to all workers, but will do so differentially. The workers who invest
most (those who spend the most time in the library) will be subsidized more,
with a greater efficiency gain than if the extra cost were somehow distributed
evenly across all workers. Alternatively, suppose researchers differ in ability
to memorize formulas, with the higher ability researchers able to memorize
more per hour than the lower ability, and suppose also that all researchers
have the same opportunity cost of time. Here, merit-based scholarships will
better target the higher investing workers than increased amenities.

One might also encourage researcher investments by enhancing labora-
tories’ attributes. Larger values of ` increase the surplus, in turn giving rise
to enhanced incentives for researchers to invest. We could accordingly think
of programs that transform laboratory investment ` = λ into ˆ̀, where

ˆ̀= a0 + a1λ.

As a1 → 0, the laboratories become more homogenous, while as a1 → ∞,
the laboratories become arbitrarily heterogeneous. One might think of subsi-

16Increasing b0 makes researchers more homogeneous, leading to enhanced competition
that shifts payoffs towards laboratories. There is then an argument for taxing laboratories
to pay for the subsidies.
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dizing the computerization of laboratory operations, or supporting research
into new techniques.

Since we continue to have single crossing, market clearing still requires
researcher ρ be matched with laboratory λ, which implies that researcher of
type ρ̂ be matched with laboratory with attribute

ˆ̀= a0 −
a1b0
b1

+
a1
b1
ρ̂ =: α+ βρ̂.

It is straightforward to verify that the matching equilibrium researcher
attribute choice function is given by

r̂R(ρ̂) = θ1/(1+k)re(ρ̂),

where
r̂e(ρ̂) := [(α+ βρ)ρk]1/(1+k)

is the efficient attribute choice.
As one would expect, changing the costs of investments changes re-

searchers’ efficient attribute choice. However subsidizing either researcher
investment costs or laboratory attributes does not affect the relative under-
investment of researchers in the matching equilibrium. One may identify
other reasons for subsidizing investments, but closing the equilibrium ineffi-
ciency in investments is not one of them.

One might focus on the outputs rather than inputs of a match, con-
sidering taxes and subsidies on the portions of the surplus accruing to the
researcher and laboratory. Indeed, the unfettered ability to tax or subsidize
premuneration values provides a perfect remedy for underinvestment. One
need only impose a hundred-percent tax on laboratories’ premuneration val-
ues, with a corresponding subsidy on researchers’ premuneration values, in
order to ensure efficient investments. A tax of one hundred percent sounds
draconian, but notice that if k is not too large (i.e., researchers are not
too heterogeneous, which is precisely the circumstances in which underin-
vestment is particularly problematic), then laboratory payoffs under such a
program will be very close to the that which they would receive if θ was set
so as to maximize their payoff.

The difficulty is that the same legal and institutional obstacles the pre-
clude arbitrarily rearranging premuneration values may make it impractical
to tax them. The government may find it difficult to tax human capital,
Instead, it is likely that we can tax some but not all of the factors that
determine θ`r − p(`) for the researcher and (1− θ)`r + p(`) for the labora-
tory. Examining this optimal tax problem would require a yet more detailed
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model, delving into the details of how premuneration values are determined.
Notice, however, that the basic problem is to increase investments. A pro-
portional subsidy to the payoff θ`r−p(`) is equivalent to a cost subsidy, and
hence (as we have seen) will not close the efficiency gap. Instead, we will
need subsidies to researchers whose marginal value increases as premunera-
tion values increase, building in a degree of regressiveness.

We have obtained clean comparative static results with respect to im-
portant aspects of prematch investment behavior by putting structure on
the surplus function, premuneration values and cost functions. It is clear
that the precise nature of the results depends on that structure. However,
the value of the model extends beyond these particular results, with the
framework underlying the analysis allowing us to identify which aspects of a
particular problem can be important, and how they are likely to qualitatively
affect investment decisions.

A Proofs

Proof of Lemma 1. En route to a contradiction, suppose p is not strictly
increasing. Then there are two laboratories `′ < ` satisfying p(`′) ≥ p(`).
But then no researcher will choose laboratory `′ — why pay just as much
or more for an inferior laboratory? Hence, `R cannot be market clearing.
Continuity similarly follows from the observation that if the function p takes
an upward jump at `′, then there will be an interval of laboratories (`′, `′+ε)
that will be unchosen by researchers, again contradicting our assumption
that `R is market clearing.

Proof of Lemma 2. We first argue that rR is weakly increasing. Suppose
not, so that there exist researchers ρ̂ > ρ such that r̂ = rR(ρ̂) < rR(ρ) = r.
Since researchers are optimizing in their attribute and laboratory choices,

hR(r, `R(ρ))− p(`R(ρ))− c(r, ρ) ≥ hR(r̂, `R(ρ̂))− p(`R(ρ̂))− c(r̂, ρ)

and

hR(r̂, `R(ρ̂))− p(`R(ρ̂))− c(r̂, ρ̂) ≥ hR(r, `R(ρ))− p(`R(ρ))− c(r, ρ̂),

which when added together, gives

c(r, ρ) + c(r̂, ρ̂) ≤ c(r̂, ρ) + c(r, ρ̂),

a contradiction.
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We now argue that rR is strictly increasing. If rR is not strictly increas-
ing, there exist ρ̂ > ρ such that `R(ρ̂) = ˆ̀ and r̂ = rR(ρ̂) = r = rR(ρ), and
so ˆ̀ is an optimal choice for both ρ̂ and ρ at r. Since `R is market clearing,
we can assume `R(ρ̂) = ˆ̀ > 0. But this implies that ρ’s choice of r = r̂
must be optimal given ˆ̀. But this is impossible (since the marginal cost of
attributes is strictly decreasing in ρ).

Proof of Lemma 3. We first argue that in equilibrium, the researcher
laboratory-choice function is strictly increasing. Let ρ̂ > ρ and hence, from
Lemma 2, r̂ = rR(ρ̂) > rR(ρ) = r. We need to show that ˆ̀ = `R(ρ̂) >
`R(ρ) = `. Suppose this is not the case. Then since researchers with at-
tributes r and r̂ are optimizing in their choice of laboratories, we have

hR(r, `)− p(`) ≥ hR(r, ˆ̀)− p(ˆ̀)

and hR(r̂, ˆ̀)− p(ˆ̀) ≥ hR(r̂, `)− p(`),

which when added, give

hR(r, `) + hR(r̂, ˆ̀) ≥ hR(r, ˆ̀) + hR(r̂, `),

which is impossible if ˆ̀≤ ` when r̂ > r.
The conclusion of the lemma then follows from equilibrium `R being a

strictly increasing and measure-preserving map from [0, 1] onto [0, 1]: Fixing
ρ ∈ [0, 1], and recalling footnote 9, we have µ{`|` = `R(ρ̂) for ρ̂ ∈ [0, ρ]} =
µ([0, `R(ρ)]) = `R(ρ), and so ρ = µ([0, ρ]) = `R(ρ).

Proof of Proposition 5.
We conjecture that there is an equilibrium in linear strategies:

r̂R(ρ) = ζρ ˆ̀
R(ρ) = ξρ, and ˆ̀

L(λ) = ξλ.

The last equality of the coefficients in ˆ̀
R and ˆ̀

L comes from market clearing.
The first order conditions are

θ` =
r1+k

ρk
, (A.1)

θr = p̂′(`), and (A.2)

(1− θ)[r̂(`) + `r̂′(`))] + p̂′(`) =
`κ+1

λκ
. (A.3)

We can eliminate p̂′ by combining (A.2) and (A.3) to get

(1− θ)[r̂(`) + `r̂′(`))] + θr̂(`) =
`κ+1

λκ
. (A.4)
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Substituting the conjectured linear equilibrium functional forms into (A.1)
gives

θξρ =
(ζρ)1+k

ρk
=⇒ θξ = ζ1+k.

From (A.4), we get

(1− θ)2ζ
ξ

+
θζ

ξ
=

(ξλ)κ

λκ

=⇒ (2− θ)ζ = ξκ+1

=⇒ (2− θ)ζ =

(
ζ1+k

θ

)κ+1

=⇒ ζkκ+k+κ = θκ+1(2− θ)

which implies

ζ = θ
κ+1

kκ+k+κ (2− θ) 1
kκ+k+κ , (A.5)

and so

ξ =
ζk+1

θ
=
θ

(κ+1)(k+1)
kκ+k+κ (2− θ)

k+1
kκ+k+κ

θ

= θ
1

kκ+κ+k (2− θ)
k+1

kκ+k+κ . (A.6)

The expressions for equilibrium payoffs are the result of a straightforward
calculation.
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Supplementary Appendix: Endogenizing Information
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S.1 Introduction

Our analysis has assumed that laboratories could not learn researchers’ at-
tributes. This section examines the researcher-investment case on which
the paper is focussed, but allows laboratories to learn the attributes of re-
searchers at a cost. We will see that changes in premuneration values can
have surprising effects on which laboratories become informed and on the
resulting division of the surplus.

S.2 Endogenous-Information Equilibria

We suppose that, by incurring a cost κ > 0, any given laboratory can
acquire the ability to observe the attribute of each researcher. We can
think of κ as the cost of hiring an agent who can test any applicant or
the cost of installing a testing procedure. Assume that laboratories make
their decisions of whether to become informed and researcher choose their
investments simultaneously.4

If κ is sufficiently large, the gain in efficiency would not warrant a lab-
oratory incurring the cost to become informed. On the other hand, for κ
small, it is generally not an equilibrium for all laboratories to remain un-
informed. To illustrate, suppose all laboratories are uninformed and that
researchers choose attributes according to (8). If a laboratory deviates by
becoming informed, it then can target any available researcher attribute,
i.e., any attribute in the set [0, rR(1)] = [0, θ1/(1+k)]. Suppose a laboratory

1Department of Economics, University of Pennsylvania, and Research School of Eco-
nomics, Australian National University; gmailath@econ.upenn.edu.

2Department of Economics, University of Pennsylvania; apostlew@econ.upenn.edu.
3Department of Economics, Yale University; Larry.Samuelson@yale.edu
4This ensures that a laboratory cannot induce a change in researcher investment be-

havior by deciding to become informed.
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λ < θ
1

1+k with (by assumption) ` = λ becomes informed and then offers a
price p to the researcher with attribute r = `, i.e., to a researcher of type
ρ = λθ−1/(1+k).5 Since the price is simply a transfer between the two agents,
such an offer is a profitable deviation if and only if the surplus generated by
the resulting match, `r − κ exceeds the ex post equilibrium payoffs of the
two agents (using (10)-(11) for the first equality):

uL(θ, k, λ) + uR(θ, k, λθ−1/(1+k)) + c(λ, λθ−1/(1+k))

=

[
1

2
θ1/(1+k)(2− θ) +

k

2(2 + k)
θk/(1+k) +

1

(2 + k)
θk/(1+k)

]
λ2

=
θ1/(1+k)

2

[
2− θ + θ(k−1)/(1+k)

]
λ2 =: g(θ)λ2.

A straightforward calculation verifies the inequality g(θ) < 1 for all interior
θ (in particular, g(1) = 1, g′(1) = 0 and g is concave).

Thus for κ > 0 but not too large, in equilibrium, some laboratories will
choose to become informed. However, it is clear that not all laboratories
will choose to become informed, since laboratories with types near 0 cannot
under any circumstance generate sufficient surplus to cover the cost κ.

A natural hypothesis is that for positive but not too large κ, there will
be a hybrid equilibrium characterized by a threshold λ̃ with laboratories
λ > λ̃ incurring the cost to become informed and laboratories with λ < λ̃
not incurring the cost.

In such an equilibrium, informed laboratories are priced by a function
p̂ : [λ̃, 1]×R+ → R+, where p̂(`, r) is the price paid by researcher of attribute
r to laboratory of attribute `. We extend p̂ to [0, 1]×R+ to cover uninformed
laboratories by requiring p̂ to be independent of r for ` < λ̃. Researcher ρ
maximizes

max
`,r

θ`r − p̂(`, r)− r2+k

(2 + k)ρk
. (S.1)

Definition S.1 A price function p̂, cutoff λ̃ ∈ [0, 1], and researcher choices
(`R, rR) constitute a hybrid equilibrium if

1. for every ρ ∈ [0, 1], the choice (`R(ρ), rR(ρ)) solves (S.1),

2. for every ` ∈ [0, λ̃], for all r and r′, p̂(`, r) = p̂(`, r′),

3. no laboratory λ ∈ [1, λ̃) strictly prefers to be informed at a cost of κ,

5The bound λ < θ1/(1+k) ensures that r = ` is feasible, i.e., r < θ1/(1+k).
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ρ
λ̃ = .5 10

r

.25

.5

1

ρ

λ̃ = .5 1

maximum
surplus

uL + uR

0

surplus

1/6 ≈ .17
11/96 ≈ .11

2/3 ≈ .67

11/24 ≈ .46

Figure S.1: The researcher attribute choice function for the case k = 1,
κ = 5

96 , θ = 1
4 , and λ̃ = 1

2 is illustrated on the left. At λ̃ = 1
2 , the efficiency

gain from efficient investments equals 5
96 .

4. no laboratory λ ∈ [λ̃, 1] strictly prefers to be uninformed,

5. every researcher and laboratory earns nonnegative payoffs, and

6. `R is market-clearing.

Intuitively, higher type researchers choose higher attributes, and match
with higher attribute laboratories. Market clearing then implies that re-
searchers ρ ∈ [λ̃, 1] match with informed laboratories and so choose efficient
investments.

S.3 An Example

We present here a hybrid equilibrium for the case in which κ = 5
96 , θ = 1

4

and k = 1 (thus θ
1

1+k = 1
2), and with switch point λ̃ = 1

2 , and then examine
its comparative statics. See Section S.5 for the analysis of general parameter
values that underlies our discussion here.

The left panel of Figure S.1 shows the researchers’ investment levels,
which jump at λ̃ as researchers switch from the investments appropriate
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for matching with uninformed laboratories (described in (8)) to the efficient
levels appropriate for matching with informed laboratories. Despite this
discontinuity in investments, the payoffs of both researchers and laboratories
must be continuous as their indices move across index λ̃, since otherwise an
agent just on the low-payoff side of λ̃ would have an incentive to make the
same investment as that of an agent just on the other side (high-payoff)
of λ̃. This joint indifference implies that at the switch point λ̃ the gain in
surplus equals the cost κ of becoming informed. Figure S.1 (right panel)
shows that the threshold pair λ̃ = 1

2 gives an efficiency gain of 5
96 , which

equals the assumed value of κ.
The equilibrium price function is given by

p̂(`, r) =

{
1
16`

2, if ` < 1
2 ,

1
2`

2 − 3
4r`+ 7

192 , if ` ≥ 1
2 .

For ` < 1
2 , p̂(`, r) is given by (9), while for ` ≥ 1

2 , the price function is
determined by the requirement that payoffs are continuous at 1

2 and that
efficient investments are optimal for the high index researchers. A researcher
choosing an uninformed laboratory ` = 1

2 pays a price of 1
64 . The price

paid by a researcher choosing r = 1
2 to an informed laboratory ` = 1

2 is
lower, taking the negative value of − 5

192 , compensating the researcher for
the upward jump in investment from 1

4 to 1
2 . Figure S.2 illustrates the

resulting payoff functions, which have a kink but not a discontinuity at 1
2 .

S.4 Comparative Statics

If the fixed cost of information κ decreased, the threshold λ̃ that determines
which laboratories decide to invest would decrease, until the net surplus in-
crease that is a consequence of the threshold laboratory’s becoming informed
again equals κ.

More interesting is the role of premuneration values in determining who
becomes informed, and the resulting payoffs. As θ decreases, researchers’ in-
vestments decrease, and hence the inefficiency associated with any matched
pair increases. The threshold for laboratories to become informed must
then decrease, in order for the gain from becoming informed to be equal to
κ. Hence, the extent of information acquisition increases as the researchers’
premuneration value share decreases.

Not only does the threshold change in response to changes in θ, but the
division of the surplus between laboratories and researchers is affected. If
all laboratories are informed (such as would arise if κ = 0), investments
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ûL − κ+ φ

uL
.152

laboratory
payoffs

.11

λ̃ = .5

.164
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û′L − κ+ φ′

u′L

.047

λ̃′ ≈ .388 0 ρ

uR

ûR − φ

researcher
payoffs

.005

λ̃ = .5

.036

.023

.6

.001

λ̃′ ≈ .388

u′R

û′R − φ′

Figure S.2: Payoffs in the hybrid equilibrium for the case k = 1, for λ ≤ .6.
The cost of becoming informed is κ = 1

6 − 11
96 = 5

96 . Two values of θ

are illustrated, θ = 1
4 (which implies λ̃ = 1

2) and θ = 1
9 (which implies

λ̃′ ≈ .388). The expressions for θ = 1
9 are indicated by a prime. For λ below

λ̃, laboratory payoffs are given by uL, while for indices above λ̃, they are
given by ûL − κ + φ. For ρ below λ̃, researcher payoffs are given by uR,
while for indices above λ̃, they are given by ûR − φ. The constant in the
price function (S.4) is φ = 7

192 for θ = 1
4 , and φ′ = 65

2688 ≈ .024 for θ = 1
9 .
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are efficient and laboratory and researcher payoffs are independent of θ.
In contrast, when κ > 0, as illustrated in Figure S.2, the premuneration
values affect the location of the threshold, and so affect all agents’ payoffs,
including those involving fully informed laboratories. For example, under
the lower premuneration value share of θ = 1

9 , all researchers matched with
uninformed laboratories have a lower payoff than under θ = 1

4 . However,
all researchers matched with informed laboratories under θ = 1

4 are strictly
better off under the lower premuneration value share of θ = 1

9 . Moreover,
all laboratories prefer the scenario of the higher researcher premuneration
value share of 1

4 .
Finally, hybrid equilibria do not exist for all parameters, and in particular

do not exist if researchers’ premuneration values are too large. If we fix κ,
laboratories close to λ = 1 will have vanishingly small possible gains from
acquiring information as θ goes to 1, and hence will choose not to become
informed.

S.5 Calculations

This section presents the calculations behind the hybrid equilibrium of the
preceding sections. Let

κ̄(θ) :=
1

(2 + k)

[
1 + k − (2 + k)θ1/(1+k) + θ(2+k)/(1+k)

]
.

Since κ̄(1) = 0 and κ′(θ) < 0, we have κ̄(θ) > 0 for all θ ∈ [0, 1).

Proposition S.1 Suppose

2(2− θ)κ̄(θ) > θ1/(1+k)(1− θ)2. (S.2)

For any κ ∈ (θ2κ̄(θ), κ̄(θ)), satisfying

1

2
≥ κ

[
1− 1

2κ̄(θ)

]
+

√
κ

κ̄(θ)
, (S.3)

there exists a hybrid equilibrium with switch point

λ̃ =

√
κ

κ̄(θ)
.
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For all θ, the condition (S.2) fails for sufficiently large k. Since, limk→∞ κ̄(θ) =
0, as researcher heterogeneity becomes large (and so researcher choices be-
come efficient), the critical cost of becoming informed must converge to zero.
If k = 1, then condition (S.2) simplifies to

f(θ) := 8− 4θ + θ1/2
{

16θ − 15− 5θ2
}
> 0.

The function f has one root θ̃ ≈ 0.629 in the open interval (0, 1), with
f(θ) > 0 for θ < θ̃ and f(θ) < 0 for θ > θ̃.

For k = 1 and θ = 1
4 , κ̄(14) = 5

24 , and so κ = 5
96 is in the interval

(θ2κ̄(θ), κ̄(θ)) and implies λ̃ = 1
2 . These parameter values satisfy λ̃ > θ,

(S.2) and (S.3).

S.5.1 Informed Laboratories

This subsection characterizes the behavior and payoffs for the laboratories
that are informed and the researchers with whom they match. We are
interested in the case in which laboratories with indices in the interval [λ̃, 1]
are informed, and (in equilibrium) match with researchers with the same set
of indices. In this subsection, we accordingly suppose that researcher and
laboratory indices are uniformly distributed on the interval [λ̃, 1].

For appropriate values of φ, the price function

p̂(`, r) = φ+
`2

2
− (1− θ)`r (S.4)

will clear markets with researcher ρ choosing the efficient ` = ρ and r = ρ.
In particular, researcher ρ’s payoff from ` and r is

θ`r − p̂(`, r)− r2+k

(2 + k)ρk
= `r − φ− 1

2
`2 − r2+k

(2 + k)ρk
.

Maximizing the payoff yields ` = ρ and r = ρ (the efficient choices), and a
payoff value of

k

2(2 + k)
ρ2 − φ =: ûR(θ, k, ρ)− φ.

Laboratory payoffs under p̂ are given by

1

2
λ2 + φ =: ûL(θ, k, λ) + φ.

Note that the payoff functions ûR and ûL are defined to exclude the φ surplus
reallocation. Moreover,

ûR(θ, k, ρ) + ûL(θ, k, ρ)− (uR(θ, k, ρ) + uL(θ, k, ρ)) = κ̄(θ)ρ2. (S.5)
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If λ̃ = 0, then individual rationality implies φ = 0, and the equilibrium
is unique. If λ̃ > 0, there is a one parameter family of equilibrium price
functions, indexed by

φ ∈ [−ûL(θ, k, λ̃), ûR(θ, k, λ̃)] =

[
−λ̃2

2
,

kλ̃2

2(2 + k)

]
.

All these price functions induce the same efficient attribute choices, but
imply different divisions of the surplus.

The total net surplus of the pair with index ρ is

k

2(2 + k)
ρ2 +

1

2
ρ2 =

(1 + k)

(2 + k)
ρ2,

which is the maximum (i.e., efficient) value of the ρ-match surplus.

S.5.2 Equilibrium

Fix λ̃ ∈ [0, 1] and consider a putative equilibrium in which laboratories with
λ ≤ λ̃ are uninformed and laboratories with λ > λ̃ choose to be informed.
Within each region, researchers will be choosing attributes increasing in
index, and researcher ρ will be matched with laboratory λ = ρ. Thus,
researcher ρ ≤ λ̃ will choose r = θ1/(1+k)ρ and be matched with the un-
informed laboratory λ = ρ. Researcher ρ > λ̃ will choose r = ρ and be
matched with the informed laboratory λ = ρ.

In this putative equilibrium, the set of chosen researcher attributes is
[0, r̃] ∪ (λ̃, 1], where r̃ = θ1/(1+k)λ̃ < λ̃.

Recalling (S.5), for κ < κ̄(θ), we choose λ̃ ∈ (0, 1) so that the ex ante
efficient surplus from the match of researcher λ̃ and laboratory λ̃ exactly
exceeds the uninformed laboratory equilibrium match surplus by κ:

κ = ûR(θ, k, λ̃) + ûL(θ, k, λ̃)− uR(θ, k, λ̃)− uL(θ, k, λ̃) = κ̄(θ)λ̃2. (S.6)

The pricing constant

φ :=
k

2(2 + k)

[
1− θ(2+k)/(1+k))

]
λ̃2

in (S.4) makes laboratory λ̃ indifferent between being informed and not:

ûL(θ, k, λ̃) + φ− κ = uL(θ, k, λ̃).
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This immediately implies that researcher λ̃ is also indifferent ex ante
between being matched with an informed or uninformed laboratory. We
should then be able to simply “paste” the informed laboratory equilibrium
for λ ≥ λ̃ to the uninformed laboratory equilibrium for λ < λ̃.

S.5.3 Researcher Incentives to Deviate

For the researchers, we need only verify that researchers with indices below
(respectively, above) λ̃ prefer to be matched with uninformed (respectively,
informed) laboratories rather than choosing a sufficiently high (respectively,
low) attribute to be matched with an informed (respectively, uninformed)
laboratory. But this follows from the single crossing property on the cost
function together with the implied indifference for researcher λ̃.

S.5.4 Laboratory Incentives to Deviate

Turning to the laboratories, there are two potentially profitable types of
deviations. The first is that a laboratory with index λ < λ̃ may find it
profitable to be informed. The second is that a laboratory with index λ > λ̃
may find it profitable to be uninformed.

Do Uninformed Laboratories Wish to be Informed? Consider first
a deviation by a laboratory λ ≤ λ̃ to becoming informed and targeting a
researcher with attribute r ≤ r̃. The attribute r is chosen by researcher
ρ = θ−1/(1+k)r, and matches with λ = ρ = θ−1/(1+k)r, paying a price of
ρ2θ(2+k)/(1+k)/2 = θk/(1+k)r2/2. The resulting ex post payoff is the re-
searcher’s share of the surplus less the price, θ×θ−1/(1+k)r2−θk/(1+k)r2/2 =
θk/(1+k)r2/2. An offer of a price p satisfying

θk/(1+k)r2/2 < θλr − p

will induce the researcher to accept the deviating offer. Such an offer is
profitable for the laboratory if

uL(θ, k, λ) < (1− θ)λr + p− κ.

Thus, there is a p for which the deviation by the laboratory is strictly prof-
itable if, and only if,

κ < λr − θk/(1+k)r2/2− uL(θ, k, λ)

= λr − θk/(1+k)r2/2− 1

2
θ1/(1+k)(2− θ)λ2 =: ∆(λ, r).
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For λ ≤ θλ̃, ∆(λ, ·) is maximized at r = θ−k/(1+k)λ ≤ r̃, and has value
θ−k/(1+k)λ2(1−θ)2/2. Note that θ−k/(1+k)θλ̃ = r̃. Moreover, for λ ∈ [θλ̃, λ̃],
∆(λ, r̃) is uniquely maximized at λ = λ̃/(2 − θ). This implies that the
maximum of ∆(λ, r) over (λ, r) ∈ [0, λ̃]× [0, r̃] is achieved at (λ̃/(2− θ), r̃).
Thus, there is no strictly profitable deviation if

κ ≥ ∆(λ̃/(2− θ), r̃) =
θ1/(1+k)λ̃2(1− θ)2

2(2− θ) .

Substituting for λ̃ from (S.6) and canceling κ yields (S.2).

Do Informed Laboratories Wish to be Uninformed? If laboratory
λ ≥ λ̃ deviates to being uninformed, then by posting a price p, the laboratory
attracts all researchers who find matching with laboratory λ at that price
attractive. The laboratory must have beliefs over the researchers attracted
by such a deviation. We assume pessimistic beliefs: the laboratory assumes
that the lowest attribute researcher will match.

We begin by considering λ = 1, and suppose this laboratory chooses to
be uninformed. If it were to charge p = φ − 1

2 + θ, the equilibrium price
paid by researcher ρ = 1 to match with laboratory λ = 1, researcher ρ = 1
incentives are unchanged. But that match is no longer relevant (given our
assumption on beliefs), since lower attribute researchers are willing to pay
that price. The most profitable deviation is to charge a higher price in
attempt to screen out lower attribute researchers.6

We now argue that if θ < λ̃, the most profitable deviation by laboratory
λ = 1 is to charge such a high price that ρ = λ̃ is indifferent, and that such
a deviation is not profitable. Researcher ρ ≥ λ̃ has chosen attribute ρ and
has payoffs gross of costs of

ρ2

6
− φ+

ρ2

3
=
ρ2

2
− φ,

and is willing to match with the deviating laboratory λ = 1 at a price p
if θρ − p ≥ ρ2/2 − φ, i.e., if θρ − ρ2/2 + φ ≥ p. The laboratory’s goal
is to maximize the lowest ρ satisfying this inequality through his choice of
p. The quadratic on the left of the inequality is maximized at ρ = θ and
is monotonically decreasing for larger ρ. This implies that if θ < λ̃, the

6At higher prices the highest attribute researcher prefers to match with laboratory
1−ε, for ε small. But since the laboratory believes he will match with the lowest attracted
attribute, this is irrelevant.
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optimal choice of p makes researcher λ̃ just indifferent (p = θλ̃− λ̃2/2 + φ);
no researcher is willing to match at a larger p.

The laboratory does not find this deviation profitable if

1

2
+ φ− κ ≥ (1− θ)λ̃+ θλ̃− λ̃2/2 + φ

⇐⇒ 1

2
− κ ≥ λ̃− λ̃2/2.

Using (S.6) to eliminate λ̃ in the inequality and rearranging, one obtains
condition (S.3).

Lower index informed laboratories also have no incentive to become un-
informed, though for some this deterrence involves a concern that the re-
searcher will have an attribute less than θ1/2λ̃, rather than λ̃. Lower in-
formed laboratories may find it optimal to become informed if they could
guarantee no researcher with an attribute below λ̃ would find the price at-
tractive. However, this is impossible: By becoming uninformed, laboratory
ρ = λ̃ cannot deter lower attribute researchers without deterring all re-
searchers. A (loose) upper bound on the payoff from deviating is obtained
by assuming that at the price p which makes the researcher with attribute
λ̃ just indifferent, the laboratory is guaranteed that the only additional re-
searcher attribute attracted is r̃ = θ1/2λ̃. It can be verified that even with
such a payoff, the deviation is not profitable.
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