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Abstract

We consider demand function competition with a finite number of agents and private informa-

tion. We analyze how the structure of the private information shapes the market power of each

agent and the price volatility. We show that any degree of market power can arise in the unique

equilibrium under an information structure that is arbitrarily close to complete information. In par-

ticular, regardless of the number of agents and the correlation of payoff shocks, market power may

be arbitrarily close to zero (so we obtain the competitive outcome) or arbitrarily large (so there is no

trade in equilibrium). By contrast, price volatility is always less than the variance of the aggregate

shock across agents across all information structures, hence we can provide sharp and robust bounds

on some but not all equilibrium statistics.

We then compare demand function competition with a different uniform price trading mechanism,

namely Cournot competition. Interestingly, in Cournot competition, the market power is uniquely

determined while the price volatility cannot be bounded by the variance of the aggregate shock.
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1 Introduction

1.1 Motivation and Results

Models of demand function competition (or equivalently, supply function competition) are a cornerstone

to the analysis of markets in industrial organization and finance. Economic agents submit demand

functions and an auctioneer chooses a price that clears the market. Demand function competition is

an accurate description of many important economic markets, such as treasury auctions or electricity

markets. In addition, it can be seen as a stylized representation of many other markets, where there

may not be an actual auctioneer but agents can condition their bids on market prices and markets clear

at equilibrium prices.

Under complete information, there is a well known multiplicity of equilibria under demand function

competition (see Klemperer and Meyer (1989)). In particular, under demand function competition, the

degree of market power —which measures the distortion of the allocation as a result of strategic with-

holding of demand —is indeterminate. This indeterminacy arises because, under complete information,

an agent is indifferent about what demand to submit at prices that do not arise in equilibrium. Making

the realistic assumption that there is incomplete information removes the indeterminacy because every

price can arise with positive probability in equilibrium. We therefore analyze demand function com-

petition under incomplete information (Vives (2011)). We consider a setting where a finite number of

agents have linear-quadratic preferences over their holdings of a divisible good, and the marginal utility

of an agent is determined by a payoff shock; we restrict attention to symmetric environments (in terms

of payoff shocks and information structures) and symmetric linear Nash equilibria.

The outcome of demand function competition under incomplete information will depend on the

fundamentals of the economic environment - the number of agents and the distribution of payoff shocks

- but also on which information structure is assumed. However, it will rarely be clear what would

be reasonable assumptions to make about the information structure. We therefore examine if it is

possible to make predictions about outcomes under demand function competition in a given economic

environment that are robust to the exact modelling of the information structure.

Our first main result establishes the impossibility of robust predictions about market power. We show

that any degree of market power can arise in the unique equilibrium under an information structure

that is arbitrarily close to complete information. In particular, regardless of the number of agents

and the correlation of payoff shocks, market power may be arbitrarily close to zero (so we obtain the

competitive outcome) or arbitrarily large (so there is no trade in equilibrium). The reason is that,

when there is incomplete information, prices convey information to agents. The slope of the demand

2



function an agent submits will then depend on what information is being revealed, and this will pin

down market power in equilibrium.

While the information structures giving rise to extremal outcomes are special, we document that

the sensitivity to fine details of the information structure arises for very natural information structures.

We give one illustration here. We can always decompose agents’payoff shocks into idiosyncratic and

common components. If there was common knowledge of the common component, but agents observed

noisy signals of their idiosyncratic component, there would be a unique equilibrium and we can identify

the market power as the noise goes to zero. If instead there was common knowledge of the idiosyncratic

components, but each agent observed a different noisy signal of the common component, there will be

a different unique equilibrium and a different market power in the limit as the noise goes to zero. In

the latter case, unlike in the former case, higher prices will reveal positive information about the value

of the good to agents and, as a result, agents will submit less price elastic demand functions and there

will be high market power. More generally, if agents have distinct noisy but accurate signals of the

idiosyncratic and common components of payoff shocks of the other traders, then market power will be

determined by the relative accuracy of the signals, even when all signals are very accurate.

Given the sharp indeterminacy in the level of market power induced by the information structure,

it is natural to ask what predictions– if any– hold across all information structures.

Our second main result shows that —for any level of market power — price volatility is always (that is,

regardless of the information structure) less than the price volatility that is achieved by an equilibrium

under complete information. A direct corollary of our result is that price volatility is less than the

variance of the average shock across agents across all information structures. Hence, we show that it

is possible to provide sharp bounds on some equilibrium statistics, which hold across all information

structures.

The first two results in our paper focus on market power and price volatility. There are two nat-

ural questions that follow: (i) to what extent can we study other possible statistics of an equilibrium

outcome?, and (ii) how many statistics of an equilibrium outcome are necessary to consider in order to

fully determine an equilibrium outcome?

The third main result of our paper characterizes the set of outcomes that can be achieved in demand

function competition in terms of necessary and suffi cient conditions. We show that any distribution of

outcomes – that is, any distribution of quantities, payoff shocks and prices– that is an equilibrium

outcome is fully determined by only 3 statistics. The first two statistic are essentially the level of

market power and price volatility, while the third statistic is the dispersion in the quantities bought by

agents. Once these three statistics have been determined all other moments of an equilibrium outcome
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are uniquely pinned down by the equilibrium conditions and the payoff structure of the game.

The methodology used to study volatility bounds can also be used to compare the set of outcomes of

different trading mechanisms across all information structures. We define a distribution of outcomes as

the joint distribution of quantities, payoff shocks and price that is induced by an equilibrium outcome.

A distribution of outcomes provides a description of the outcome of demand function competition that

allows the analyst to abstract from the strategies used in equilibrium and the precise description of

the information structure. The key conceptual innovation is to describe the outcomes of the demand

function competition game not in terms of the strategies used by the agents (that is, the demand

functions), but instead, in terms of the induced economic outcomes (purchased quantity and price) and

payoff shocks.

A critical advantage of the focus on the distribution of outcomes is that it can be easily compared

with the distribution of outcomes induced by any other trading mechanisms. In the paper we focus our

analysis in comparing demand function competition with Cournot competition, as a particular instance

of what we call uniform price mechanism. The set of possible first moments under demand function

competition has one more degree of freedom than under Cournot competition, while the set of possible

second moments under demand function competition has one less degree of freedom than under Cournot

competition. This apparently abstract description of the two mechanisms allow us to conclude that price

volatility is bounded by the size of aggregate shocks in demand function competition, while in Cournot

competition price volatility cannot be bounded by the size of the aggregate shocks. By contrast, the

first moment, the market power, or the average volume of trade is uniquely determined in the Cournot

competition (unlike in demand function competition).

1.2 Related Literature

The multiplicity of equilibria in demand function competition under complete information was identified

by Wilson (1979), Grossman (1981) and Hart (1985), see also Vives (1999) for a more detailed account.

Klemperer and Meyer (1989) emphasized that the complete information multiplicity was driven by the

fact that agents’demand at non-equilibrium prices was indeterminate. They showed that introducing

noise that pinned down best responses lead to a unique equilibrium and thus determinate market power.

And they showed that the equilibrium selected was independent of shape of the noise, as the noise became

small. They were thus able to offer a compelling prediction about market power. Our results show

that their results rely on a maintained private values assumption, implying that agents cannot learn

from prices. We replicate the Klemperer and Meyer (1989) finding that small perturbations select a

unique equilibrium but - by allowing for the possibility of a common value component of values - we
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can say nothing about market power in the perturbed equilibria.

Vives (2011) pioneered the study of asymmetric information under demand function competition,

and we work in his setting of linear-quadratic payoffs and interdependent values. He studied a particular

class of information structures where each trader observes a noisy signal of his own payoff type. We

study what happens for all information structures. We show that the impact of asymmetric information

on the equilibrium market power can even be larger than the ones derived from the one-dimensional

signals studied in Vives (2011). Our results overturn some of the comparative statics and bounds that

are found using the specific class of one-dimensional signal structures. In particular, in this paper but

not in Vives (2011) market power can be large even when any of the following conditions is satisfied:

(i) the amount of asymmetric information is small, (ii) the number of players is large, or (iii) payoff

shocks are independently distributed.

Bergemann and Morris (2016) described a general approach for finding equilibria under all informa-

tion structures in a given game and Bergemann, Heumann, and Morris (2015b) used this methodology

in the context of a symmetric game with quadratic payoffs and normal uncertainty. An innovation of

this paper with respect to this earlier literature is that we characterize economic outcomes arising in

equilibrium (quantities and prices), abstracting from strategic choices (i.e., demand functions). This

methodological extension allows a novel comparison of alternative mechanisms, i.e., demand function

and Cournot competition.

Our "anything goes" result for market power has the same flavor as abstract game theory results

establishing that fine details of the information structure can be chosen to select among multiple ra-

tionalizable or equilibrium outcomes of complete information games (Rubinstein (1989) and Weinstein

and Yildiz (2007)). Our result is an illustration of the practical importance of these ideas. Demand

function competition under complete information is a game with a large degree of indeterminacy built

in. Our results show that in this context very natural perturbations lead to very dramatic equilibrium

selection. In particular, we do not make an assumption analogous to the "richness" assumption in

Weinstein and Yildiz (2007), which in our context would require the strong assumption that there exist

"types" with a dominant strategy to submit particular demand functions.
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2 Model

PayoffEnvironment There are N agents who have demand for a divisible good. The utility of agent

i ∈ {1, ..., N} who buys q ∈ R units of the good at price p ∈ R is given by:

ui(θi, qi, p) , θiqi − pqi −
1

2
q2
i , (1)

where θi ∈ R is the payoff shock of agent i. The payoff shock θi describes the marginal willingness to
pay of agent i for the good at q = 0. The payoff shocks are symmetrically and normally distributed

across the agents, and for any i, j: θi

θj

 ∼ N
 µθ

µθ

 ,

 σ2
θ ρθθσ

2
θ

ρθθσ
2
θ σ2

θ

 ,

where ρθθ is the correlation coeffi cient between the payoff shocks θi and θj .

The realized average payoff shock among all the agents is denoted by:

θ =
1

N

∑
i∈N

θi, (2)

and the corresponding joint distribution of θi and θ is given by θi

θ

 ∼ N
 µθ

µθ

 ,

 σ2
θ

1+(N−1)ρθθ
N σ2

θ

1+(N−1)ρθθ
N σ2

θ
1+(N−1)ρθθ

N σ2
θ

 .

The supply of the good is given by an exogenous supply function S(p) as represented by a linear

inverse supply function with α, β ∈ R+:

p(q) = α+ βq. (3)

For notational simplicity, we normalize the intercept α of the affi ne supply function to zero.

Information Structure Each agent i observes a multi-dimensional signals si ∈ RJ about the payoff
shocks:

si , (si1, ..., sij , ..., siJ).

The joint distribution of signals and payoff shocks

(s1, ..., sN , θ1, ..., θN )

is symmetrically and normally distributed. We discuss specific examples of multivariate normal infor-

mation structures in the following sections.
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Demand Function Competition The agents compete via demand functions. Each agent i submits

a demand function xi : RJ+1 → R that specifies the demanded quantity as a function of the received

signal si and the market price p, denoted by xi (si, p). The Walrasian auctioneer sets a price p∗ such

that the market clears for every signal realization s:

p∗ = β
∑
i∈N

xi(si, p
∗) (4)

We study the Nash equilibrium of the demand function competition game. The strategy profile

(x∗1, ..., x
∗
N ) forms a Nash equilibrium if:

x∗i ∈ arg max
{xi:RJ+1→R}

E
[
θixi(si, p

∗)− p∗xi(si, p∗)−
xi(si, p

∗)2

2

]
,

where

p∗ = β(xi(si, p
∗) +

∑
j 6=i

x∗j (sj , p
∗)).

We say a Nash equilibrium (x∗1, ..., x
∗
N ) is linear and symmetric if there exists (c0, ..., cJ ,m) ∈ RJ+2 such

that for all i ∈ N :

xi (si, p) = c0 +
∑
j∈J

cjsij −mp.

Throughout the paper we focus on symmetric linear Nash equilibria and so hereafter we drop the

qualifications “symmetric”and “linear”. When we say an equilibrium is unique, we refer to uniqueness

within this class of equilibria. In a linear-quadric setting like ours, Du and Zhu (2017) show that there

does not exist a nonlinear ex post equilibrium.1

Equilibrium Statistics: Market Power and Price Volatility We analyze the set of equilibrium

outcomes in demand function competition under incomplete information. We frequently describe the

equilibrium outcome through two central statistics of the equilibrium: market power and price volatility.

The marginal utility of agent i from consuming the qi-th unit of the good is θi − qi. We define the
market power of agent i as the difference between the agent’s marginal utility and the equilibrium price

divided by the equilibrium price:

li ,
θi − qi − p

p
.

This is the natural demand side analogue of the supply side price markup defined by Lerner (1934),

commonly referred to as the “Lerner’s index”. We define the (expected) equilibrium market power by:

l , E
[

1

N

∑
i∈N

li

]
=

1

N
E
[∑

i∈N (θi − qi − p)
p

]
. (5)

1They focus on a model in which the agents observe one-dimensional signals and the supply of the asset is inelastic.
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The market power l is defined as the expected average of the Lerner index across all agents. If the

agents were price takers, then the market power would be l = 0.

A second equilibrium statistic of interest is price volatility, the variance of the equilibrium price,

which we denote by:

σ2
p , var(p). (6)

Price volatility measures the ex ante uncertainty about the equilibrium price. In the subsequent analysis

we find that market power is proportional to the aggregate demand, and that price volatility is propor-

tional to the variance of aggregate demand. Thus, these two equilibrium statistics will represent the

first and second moments of the aggregate equilibrium demand.

3 Complete Information: A Review

We first review what happens in demand function competition with complete information. That is,

every agent i observes the entire vector of payoff shocks (θ1, ..., θN ) before submitting his demand

xi (θ, p). This is a natural starting point to understand the essential elements of demand function

competition and allows us to introduce some key ideas. The set of equilibrium outcomes under complete

information will play a key role in identifying what happens under incomplete information.

The residual supply faced by agent i will be determined by the demand functions of all the agents

other than i. We suppress the dependence of the demand function on the vector θ in this section for

notational simplicity, and thus xi (θ, p) , xi (p).

ri(p) , S(p)−
∑
j 6=i

xj(p). (7)

Agent i can then be viewed as a monopsonist over his residual supply. That is, if agent i submits

demand xi(p), then the equilibrium price p∗ satisfies xi(p∗) = ri(p
∗) for every i. Hence, agent i only

needs to determine what is the optimal point along the curve ri(p); this will determine the quantity

that agent i purchases and the equilibrium price.

To compute the first order condition for agent i’s demand, it is useful to define the price impact λi

of agent i:
1

λi
, ∂ri(p)

∂p
.

The price impact determines the rate at which the price increases when the quantity bought by agent

i increases:

λi =
∂p

∂ri(p)
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The first order condition of agent i determines the equilibrium demand of agent i:

xi(p
∗) =

θi − p∗
1 + λi

.

It is easy to check that λi determines how much demand agent i withholds to decrease the price at

which he purchases the good. For example, if λi = 0, then agent i behaves as a price taker. As λi

increases, agent i withholds more demand to decrease the equilibrium price. Hence, λi determines the

incentive of agent i to withhold demand to decrease the price.

In the complete information setting, there is a well known indeterminacy of equilibrium price impact.

If agent j submits a suffi ciently elastic demand, then the price impact of agent i will be close to 0; any

increase in the quantity bought by agent i will be offset by a decrease in the quantity bought by agent

j, keeping the equilibrium price unchanged. If agent j submits a suffi ciently inelastic demand, then the

price impact of agent i may be arbitrarily large; any increase in the quantity bought by agent i will be

reinforced by an increase in the quantity bought by agent j, leading to arbitrarily large changes in the

equilibrium price.

We characterize the set of symmetric linear Nash equilibria. In this class of Nash equilibria all

agents have the same price impact, and the price impact is independent of the realization of the shocks

(θ1, ..., θN ). We focus on the equilibrium price impact and the equilibrium price.

Proposition 1 (Equilibrium with Complete Information)

For every λ ≥ −1/2, there exists a symmetric linear equilibrium where the price impact is λ and the

equilibrium price is:

p∗ =
β

1 + βN + λ

∑
i∈N

θi. (8)

Proposition 1 characterizes the price impact and equilibrium price in a continuum of equilibria

parametrized by the price impact λ. As the price impact λ increases, every agent withholds more

demand to lower the price. This leads to a lower equilibrium price. It is easy to check that, for every

λ ≥ −1/2, the equilibrium quantity bought by agent i is given by:

qi =
1

1 + βN + λ

1

N

∑
j∈N

θj +
1

1 + λ
(θi −

1

N

∑
j∈N

θj).

Thus, as the price impact λ increases, not only does the price decrease, but also the differences between

the quantity bought by agent i and agent j decreases. Thus, as price impact increases, the equilibrium

becomes less effi cient because the total quantity demanded by all agents is too small (which leads to a

lower price) and the quantities are ineffi ciently allocated across agents.
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It is informative to describe the symmetric linear Nash equilibria in terms of the equilibrium statis-

tics, market power l and price volatility σ2
p, as defined earlier.

Corollary 1 (Equilibrium Statistics with Complete Information)

In the symmetric linear Nash equilibrium under complete information with price impact λ ≥ −1
2 , market

power and the price volatility are given by:

l =
λ

βN
and σ2

p =
(βN)2

(1 + βN + λ)2
σ2
θ
, (9)

Market power is a linear function of price impact as the price impact determines how much an agent

withholds demand in order to lower prices. Similarly, the equilibrium price (8) is decreasing in the

level of price impact. As the price impact increases, agents buy less, which leads to less volatility as a

function of the payoff shocks.

By looking at (9), we can see that there is a direct relation between price volatility and market

power. Thus we know that market power l is only bounded from below by

l ≥ − 1

2βN
, (10)

and that the price volatility can be directly expressed in terms of the market power:

σ2
p =

(βN)2

(1 + βN(1 + l))2
σ2
θ
. (11)

In Figure 1 we plot all feasible equilibrium pairs of market power and price volatility that can be a

achieved under complete information. The equilibrium outcome that would be attained under complete

information if we selected the outcome using the equilibrium selection proposed by Klemperer and

Meyer (1989) is depicted in Point A. As we study other information structures, we will appeal to a

graphic representation of all possible pairs of market power and price volatility similar to Figure 1.

The reason for multiple equilibria is that each agent has multiple best responses. In particular, there

are multiple affi ne functions xi(p) that intercept with ri(p) at the same point. Agent i is indifferent

between the multiple demand functions that intercept with ri(p) at the same point. Yet, the slope of

xi(p) determines the slope of rj(p), which is important for agent j; a more inelastic demand of agent

i leads to a higher price impact for agent j. By changing the slope of the demands that each agent

submits, it is possible to generate different equilibria that lead to different outcomes.

The multiplicity is an artifact of the complete information assumption. With incomplete information,

agents’best responses will typically be pinned down everywhere and there will be a unique equilibrium

for any given information structure.
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1
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3

1

Market Power

1

3

6

Price Volatility

p
2

A

Figure 1: Set of equilibrium pairs
(
l, σ2

p

)
of market power and price volatility with complete information

(β = 1, N = 3) .

4 Market Power and Price Volatility

We now study the set of equilibrium outcomes in demand function competition under incomplete in-

formation, focussing on two statistics of equilibrium outcomes: market power and price volatility. Our

approach in this paper is to ask what can happen for all information structures. But we illustrate our

main results by studying the equilibrium outcomes induced by “natural”information structures – that

is, information structures that have a straightforward interpretation and have appeared in the earlier

literature. These examples will illustrate how a given information structure dramatically impacts the

structure of the equilibrium and provide some initial intuition for where the bounds come from.

4.1 Robust Predictions about Market Power and Price Volatility

With incomplete information, market power and price volatility will be uniquely pinned down given a

specific information structure. What robust predictions can be made then that do not depend on the

fine details of the information structure? We will show that we cannot make any robust predictions

about market power: any positive market power can arise as the unique equilibrium even when we

restrict to arbitrarily small amounts of incomplete information. But we can make a sharp prediction

about price volatility: no matter the amount of incomplete information, it cannot be higher than what

happens in complete information.
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We say that an information structure is ε−close to complete information if the conditional variance
of the estimate of each payoff shock θj is small given the signal received by agent i:

∀i, j ∈ N, var(θj |si) < ε. (12)

In an information structure that is ε-close to complete information an agent can observe his own payoff

shock and the payoff shock of the other agents with a residual uncertainty of at most ε. If an information

structure is ε−close to complete information for a suffi ciently small ε, then the information structure will
effectively be a perturbation of complete information. We now show that any equilibrium under complete

information can be selected as the unique equilibrium in a perturbation of complete information.

Theorem 1 (Equilibrium Selection)

For every ε > 0, and for every pair of market power and price volatility (l, σ2
p) such that:

l ≥ −1

2

1

βN
and σ2

p =
(βN)2

(1 + βN(1 + l))2
σ2
θ
,

there exists an information structure that is ε−close to complete information and induces (l, σ2
p) as the

unique equilibrium.

Theorem 1 shows that all combinations of market power and price volatility that can be achieved

as an equilibrium under complete information can also be achieved as a unique equilibrium in an infor-

mation structure that is close to complete information. In fact, the result is stronger, every equilibrium

outcome under complete information is the unique equilibrium outcome of an information structure

that is close to complete information.

The proof of Theorem 1, relegated to the Appendix, uses a class of information structures that

we refer to as noise-free signals. In the next section, we augment our understanding of how private

information determines price volatility and market power using information structures that appeared

in earlier work.

Theorem 1 shows that, (i) all equilibrium outcomes under complete information can turn into

unique equilibrium outcomes under incomplete information, and (ii) restricting attention to information

structures close to complete information do not allow us to provide sharper predictions about market

power and price volatility. The large indeterminacy in the set of possible outcomes suggests that it is

diffi cult to offer robust predictions for market power under demand function competition. By contrast,

it is possible to provide sharp predictions regarding price volatility with demand function competition.
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Theorem 2 (Equilibria Under All Information Structures)

There exists an information structure that induces a pair of market power and price volatility (l, σ2
p) if

and only if:

l ≥ −1

2

1

βN
and σ2

p ≤
(βN)2

(1 + βN(1 + l))2
σ2
θ
. (13)

Moreover, all feasible pairs (l, σ2
p) are induced by a unique equilibrium for some information structure.

Theorem 2 provides a sharp bound on all possible equilibrium outcomes. It shows that the equi-

librium outcome is bounded by the outcomes that are achieved under complete information. Thus the

outcomes that arise under complete information can be seen as the “upper boundary” of the set of

outcomes that can arise under all information structures.

The “if”part of the statement closely resembles the proof of Theorem 1. In particular, the set of

market power and price volatility that satisfy (13) would be achieved under complete information if

one could reduce the variance of the aggregate shocks (i.e. by making var( 1
N

∑
i∈N θi) smaller). By

decomposing the payoff shocks into an observable and a non-observable component, we can effectively

achieve the same outcomes as if there was complete information but the variance of the shocks was

smaller.

The “only if”part of the statement is economically more interesting because it uses the restrictions

that arise from agents’first order condition. The proof establishes that the equilibrium price has to

satisfy:

p∗ =
β

1 + βN(1 + l)

∑
i∈N

E[θi|si, p∗]. (14)

That is, the equilibrium price is proportional to the average of the agents’expected payoff shocks. It

is crucial that the expected payoff shock of agent i is computed conditional on the equilibrium price

– this is an implication of the fact that agents compete in demand functions and hence agent i can

condition the quantity he buys on the equilibrium price. The fact that an agent can condition on the

equilibrium price disciplines beliefs, which ultimately allows us to bound the price volatility. As we

discuss in Section 6, in Cournot competition agents cannot condition the quantity they buy on the

equilibrium price, which may result in unbounded volatility even if the volatility of the average shock

is arbitrarily small.

4.2 How Private Information Determines Market Power and Price Volatility

We now study three different parametrized classes of information structures: (i) noisy one-dimensional

signals, (ii) multi-dimensional signals, and (iii) confounding signals. We study market power and price

13



volatility under these three information structures and use this to provide an intuition of different

elements that come into play in our main results, Theorem 1 and Theorem 2.

Under noisy one-dimensional signals, market power always increases with the amount of incomplete

information, and large market power can only be induced by a large amount of incomplete information.

These are the key findings of Vives (2011), but we will see that they are special to this information

structure and in particular will not hold for the others that we consider in this section. If agents

observe multidimensional signals, the equilibrium outcomes closely track – within some range– the

set of outcomes under complete information. We use these signals to provide an intuition of why

small amounts of incomplete information can lead to large variations in market power. Finally, the

confounding signals provide a set of information structures in which market power is less than the one

induced by the complete information selection proposed by Klemperer and Meyer (1989), which leads

to a higher price volatility.

One-Dimensional Noisy Signals The first information structure consists of one-dimensional noisy

signals. Each agent observes his payoff state with conditionally independent noise. That is, agent i

observes the noisy one-dimensional signal

si = θi + γεi, (15)

where the noise terms {εi}i∈N are independent standard normal. Vives (2011) uses a noisy one-

dimensional signal to study the impact of incomplete information on market power. The one-dimensional

noisy signals are parametrized by a one-dimensional parameter: the standard deviation of the noise term

γ ∈ [0,∞). For every γ, there is a unique linear Nash equilibrium.

In Figure 2 we plot in a yellow curve the set of market power and price volatility that are achieved by

one-dimensional noisy signals for all γ ∈ R (the red dashed curve is the set of outcomes under complete
information). Point A corresponds to the outcome when γ = 0: an agent knows his own payoff shock

but remains uncertain about the payoff shock of other agents. Market power is increasing in γ and price

volatility is decreasing in γ. Market power increases with γ because – as the signals becomes more

noisy – relative to si, signal sj becomes more informative about θi. So agent i wants to buy a larger

quantity when agent j observes a high signal. For this reason, agent i submits a more inelastic demand;

this increases the correlation between the quantity he buys and the quantity bought by agent j. This

in turn increase the market power of agent j.

The price volatility decreases because market power increases (as in complete information equilibria)

but also because the price becomes less correlated with the average payoff shock of agents. Hence, price

14
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of market power and price volatility under noisy one-

dimensional signals.

volatility decreases at a faster rate (as a function of market power) than under complete information.

Therefore, there is a tight link between market power and a price that is less informative and less

volatile.

We assumed that the individual payoff shocks θi and θj were positively but not perfectly correlated.

The most natural reason for this is that they reflect common and idiosyncratic components. This

suggests that we decompose the payoff shocks into a common and an idiosyncratic component, ω and

τ i respectively:

θi = ω + τ i, (16)

where ω and {τ i}i∈N are normally distributed and independent of each other.2 It is now natural to

allow information to reflect common and idiosyncratic components in different ways.

Multi-Dimensional Noisy Signals Our second information structure consists of noisy multi-

dimensional signals. Each agent observes a separate noisy signal about all the idiosyncratic and the

2Given our assumption that the θi were normally distributed with mean 0, standard deviation σθ and correlation ρθθ,

this decomposition would have ω and the τ i independently normally distributed with mean 0 and standard deviations

σ2
ω = ρθθσ

2
θ and σ

2
τ = (1− ρθθ)σ

2
θ respectively. Observe that σ

2
θ̄ = var(ω + 1

N

∑
τ i) = σ2

ω + σ2
τ/N .
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common components in the payoff state, and thus each agent i observes N + 1 signals:

∀i ∈ N, sii = τ i, (17)

∀j 6= i ∈ N, sij = τ j + δεij , (18)

∀i ∈ N, siω = ω + γεiω (19)

where all noise terms are again independent standard normal. Agents know their own idiosyncratic

component for sure. They additionally have signals of others’ idiosyncratic components, which we

assume to be very accurate (i.e., 0 < δ � 1). The multidimensional signals are parametrized by a

one-dimensional parameter: the standard deviation of noise on the common component γ ∈ [0,∞). For

every γ, there is a unique linear Nash equilibrium.

In Figure 3 we plot the set of market power and price volatility that are achieved by multi-dimensional

noisy signals for all γ ∈ R in a green curve (the red dashed curve is the set of outcomes under complete
information). As before, point A corresponds to the outcome when γ = 0: an agent knows his own

payoff shock but remains uncertain about the payoff shocks of the other agents. Initially, as γ increases,

market power increases. The intuition is similar to the case of one-dimensional noisy signals; because

agents have interdependent values an agent wants to increase the correlation between the quantity he

buys and the quantity bought by other agents. But as γ → ∞ the signals about the common shock

become irrelevant, and so we are back to the case in which all the relevant sources of uncertainty are

the idiosyncratic shocks. Therefore as γ →∞, market power is reduced back to the same level as γ = 0,

but with lower volatility because the price does not reflect the common component.

The picture illustrates that the set of market power and price volatility under multi-dimensional

signals “tracks”very closely the set of outcomes under complete information. The agents are effectively

close to complete information as each agent i observes precise signals about {τ j}j∈N and ω. The market
power is determined by agent i’s relative uncertainty about τ j and ω rather than by an absolute level of

uncertainty. Thus even close to complete information, we can have large changes in the induced level of

market power and price volatility. Point B in Figure 3 corresponds to a point in which both δ and γ are

small, but γ is relatively larger than δ.3 This degree of uncertainty about payoff shocks did not have

a significant impact in the case of one-dimensional normal signals because relative uncertainty about

common and idiosyncratic components was not present.

Market power is equal to 1 when agents have common values; this would happen if an agent observed

perfectly the idiosyncratic shock of other agents (i.e. if the variance of the noise in (18) was 0 instead

3The parametrization is given by δ = 0.01 and γ = 0.53. The variances of the payoff shocks are given by στ = 1 and

σω = 5/2. Thus, both (18) and (19) are precise signals about the respective payoff shocks.
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dimensional signals.

of δ). In this case, the price perfectly reveals the expected value of ω conditional on all private signals.

So an increase in the quantity bought by agent i leads to an equal increase in the quantity bought

by all other agents. Although a small amount of incomplete information can generate a large market

power, in our multi-dimensional signals example, market power is never above 1. However, Theorem

1 establishes that there is no upper bound on market power across all information structures. This is

because it is possible to construct information structures in which an increase in the quantity bought

by agent i leads to an even bigger increase in the quantity bought by all other agents, which in turns

leads to a market power larger than 1.

Confounding Signals The third information structure consists of confounding signals. Each agent

observes a weighted sum of the common and idiosyncratic components of his payoff state. Agent i

observes the confounding signal:

si = τ i + γω, (20)

with γ ∈ R (note that we allow for γ < 0). Here there is no noise, but the one-dimensional signal

may disproportionately reflect either the common component or the idiosyncratic component. The

confounding signals are parametrized by a one-dimensional parameter: the confounding parameter

γ ∈ R. For every γ, there is a unique linear Nash equilibrium.
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An alternative representation of the confounding signals is to note that θi can be written as

θi = v(si, ω),

where v(·, ·) is a linear function. Hence, the utility of agent i depends directly on the signal si that he
observes and on the realization of a common value shock. In addition the signals are independently

distributed across agents conditional on ω. Information structures similar to (20) have been used by

Wilson (1977) and Reny and Perry (2006), among others.

In Figure 4 we plot the set of market power and price volatility that are achieved by one-dimensional

noisy signals for all γ ∈ R in the blue curve (the red dashed curve is the set of outcomes under complete
information). In this case, point A corresponds to the outcome when γ = 1. As γ decreases to 0, the

market power and price volatility approaches point D. As γ diverges to ∞, the market power and price
volatility approaches point C. The rest of the points are achieved by a negative γ.

It is clear to see that point C (achieved in the limit γ →∞) already achieves a higher price volatility
and a lower market power than point A (a possibility that did not arise with the noisy multi-dimensional

signals example). The reason is that a high signal of agent j is indicative of a low shock of agent i.

Hence, agent i submits a more elastic demand, in order to decrease the correlation between the quantity

he buys and the quantity bought by agent j. This in turn decreases the market power of agent j and

increases the price volatility.

We note that it is even possible to achieve negative market power. This happens when a good signal

for agent i is suffi ciently negative information for agent j. In this case, when agent i increases the

quantity he buys, this induces an even bigger decrease in the total quantity bought by the other agents.

Hence, overall, when agent i buys a larger quantity the price decreases (due to the response of other

agents).

We used three information structures to provide an intuition of how private information impacts

market power and price volatility. Each of these information structures yield different comparative

statics and can be used to understand how information determines the equilibrium outcome. The

fact that it was necessary to study three “natural” information structures to account for the richness

that come into play in Theorem 1 and Theorem 2 should also be a sign of caution; this illustrates

how sensitive the set of possible equilibrium outcomes are to the exact specification of the information

structure. An analyst, when assuming a specific information structure, may be inadvertently imposing

severe restrictions on the set outcomes that are being considered. Thus, we seek predictions regarding

the demand function competition outcomes that are robust to the specification of the information

structure.
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5 The Entire Set of Equilibrium Outcomes

In Section 4 we studied how the structure of private information can determine market power and

price volatility. We showed that the set of outcomes under complete information completely captures

the set of all possible equilibrium pairs of market power and price volatility that can be attained with

any information structure. There are two natural questions that follow: (i) does the set of complete

information equilibria also identify the set of all possible outcomes if we consider other relevant statistics

of an equilibrium outcome; and (ii) can we characterize all moments of the equilibrium outcomes rather

than a lower dimensional subset of statistics? We now answer both of these questions by characterizing

the set of all possible equilibrium outcomes.

5.1 Distribution of Outcomes

We provide a description of the equilibrium outcomes from an ex ante perspective. We say that the

joint distribution of variables (θ1, ..., θN , q1, ..., qN , p) is an outcome distribution of the demand function

competition if the distribution is induced by an equilibrium outcome. The advantage of the description

in terms of distributions of equilibrium outcomes is that it does not depend on the detailed description

of the information structure. That is, two information structures may induce different beliefs and may

induce different realizations over outcomes ex post, but as long as the distribution of outcomes ex ante

is the same, these two information structures will be indistinguishable in terms of outcomes.
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Since we focus on symmetric outcomes, we can simplify the description of the distribution. We

define the common component of the payoff shock and the common component of the quantities:

θ̄ , 1

N

∑
i∈N

θi; q̄ ,
1

N

∑
i∈N

qi.

In symmetric environments, the joint distribution of variables (θ1, ..., θN , q1, ..., qN , p) is fully determined

by the joint distribution of variables (θi, θ̄, qi, q̄, p). That is, we can focus attention on the joint distrib-

ution of the payoff shock and quantity of an individual agent with the corresponding averages. Finally,

since the average quantity q̄ is collinear with the price p due to the market clearing condition, we can

omit the average quantity and we simply describe the joint distribution of variables (θi, θ̄, qi, p).

In the multivariate normal environment, the joint distribution is hence completely characterized by

the first and second moments:
θi

θ̄

qi

p

 ∼ N



µθ

µθ

µq

µp

 ,


σ2
θ ρθ̄θσθσθ̄ ρqθσθσq ρpθσθσp

ρθθ̄σθσθ̄ σ2
θ̄

ρqθ̄σθ̄σq ρpθ̄σθ̄σp

ρqθσθσq ρqθ̄σθ̄σq σ2
q ρqpσqσp

ρpθσθσp ρpθ̄σθ̄σp ρqpσqσp σ2
p



 . (21)

Some of the coeffi cients are part of the distribution of payoff shocks, and hence, they are exogenously

determined: (i) the expected payoff shock of every agent (µθ), (ii) the expected average payoff shock

(µθ̄), (iii) the variance of the payoff shock of an agent σ2
θ, (iv) the variance of the average payoff shock

σ2
θ̄
, and (v) the correlation between the payoff shock of an agent and the average payoff shock (ρθθ̄).

The rest of the coeffi cients are endogenously determined by the equilibrium outcome.

The joint distribution of outcomes thus contains nine endogenous variables: (i) the mean quantity

bought by agent (µq) , (ii) the mean price (µp), (iii) the variance of the quantity bought by an agent

(σ2
q), (iv) the price volatility (σ2

p), (v) the correlation between the price and the payoff shock of an agent

(ρpθ), (vi) the correlation between the price and the average payoff shock (ρpθ̄), (vii) the correlation

between the quantity bought by an agent and the payoff shock of this agent (ρqθ), (viii) the correlation

between the quantity bought by an agent and the average payoffshock (ρqθ̄), (ix) the correlation between

the quantity bought by an agent and the price (ρqp).

To characterize the set of all possible feasible distributions it is useful to define the orthogonal

components in the payoffs shocks and the demanded quantities:

∆θi , θi − θ and ∆qi , qi − q.

The variable ∆θi is the difference between the payoff shock of agent i and the average payoff shock (and

analogously∆qi). Hence, the variance σ2
∆θi

is the dispersion of the payoff shocks (and analogously σ2
∆qi
).
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The correlation ρ∆q∆θ is an economically important quantity; it measures how effi ciently the good is

allocated across agents. In other words, the correlation ρ∆q∆θ measures how much of the dispersion

in the allocation across agents is caused by fundamental shocks and how much it is caused by noise.

Note that ∆θi is a linear combination of the variables θi and θ̄, while ∆qi is a linear combination of the

variables qi and p. Hence, the distribution (21) completely determines the correlation ρ∆qi,∆θi .

5.2 Set of Feasible Distributions

We now provide a description of all equilibrium outcome distributions. For this it is useful to note that

any distribution (21) completely determines the induced market power (as defined in (5)).

Theorem 3 (Set of Feasible Outcomes)

There exists an information structure that induces outcome distribution (21) if and only if the induced

triple (l, ρpθ̄, ρ∆q∆θ) satisfies:

l ≥ − 1

2βN
; ρpθ̄ ∈ [0, 1] ; ρ∆q∆θ ∈ [0, 1]. (22)

The theorem characterizes the set of all outcome distributions that can be implemented as a Nash

equilibrium of the demand function competition game for some information structure. The theorem

provides two different results regarding the set of outcomes. First, it shows that an equilibrium outcome

is fully determined by the triple (l, ρpθ̄, ρ∆q∆θ). Hence, any other moment of the distribution can

be inferred simply from observing these three coeffi cients. Second, it establishes that there are few

restrictions on the set of feasible triples (l, ρpθ̄, ρ∆q∆θ). More precisely, the only restrictions on these

three coeffi cients are: (i) market power is bounded from below by −1/2βN , and (ii) the correlations

are positive. Thus, the equilibrium conditions of demand function competition impose essentially no

restrictions on these three coeffi cients – not even the distribution of payoff shocks (which is exogenous)

imposes any restrictions on the triple (l, ρpθ̄, ρ∆q∆θ).

We now describe how the triple (l, ρpθ̄, ρ∆q∆θ) determines the distribution of outcomes. We distin-

guish between two types of restrictions (i) statistical restrictions that are independent of the equilibrium

conditions (that is, they hold for any strategy profile of agents, not only the equilibrium ones), and (ii)

restrictions imposed by the equilibrium conditions. Among the latter ones, we separate the restrictions

imposed on the first and second moments of the distribution.

The equilibrium conditions are derived using the individual best response conditions. In particular,

in any linear Nash equilibrium the quantity bought by agent i, the payoff shock of agent i, the price p
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and the market power must satisfy the following condition:

qi =
E[θi|si, p]− p
1 + βN(1 + l)

. (23)

Heuristically, this relation can be derived from simply taking the first order condition of (1) with respect

to qi and replacing
∂p
∂qi

with βNl. The market clearing condition and (23) allow us to write an equation

for the price

p∗ =
β

1 + βN(1 + l)

∑
i∈N

E[θi|si, p∗], (24)

which describes the equilibrium price in terms of the equilibrium beliefs of the agents. This is suffi cient

to characterize the mean price.

Lemma 1 (Equilibrium Mean Price)

The expected price of any linear Nash equilibrium must satisfy:

µp =
Nβµθ

1 + βN(1 + l)
, (25)

where l is the equilibrium market power, and the expected equilibrium demand is

µq =
µp
βN

.

The expected equilibrium price is then determined only by the mean payoff shock and the equi-

librium market power. In particular, there is a one-to-one relation between the mean price and the

equilibrium market power. The relation between market power and the mean price is derived by taking

the expectation of (24) and using the law of iterated expectations. The relation between the expected

equilibrium demand and the expected price is implied by the market clearing condition.

We now show how (23) and (24) provide additional restrictions on the second moments of any

equilibrium distribution.

Lemma 2 (Equilibrium Variance)

The second moments of any linear Nash equilibrium must satisfy:

σ2
p =

(
ρpθ̄σθ̄βN

1 + βN(1 + l)

)2

, (26)

σ2
q =

(
ρpθ̄σθ̄

1 + βN(1 + l)

)2

+

(
ρ∆q∆θ

1 + lβN

)2

(σ2
θ − σ2

θ̄), (27)

and

σp =ρqpσqβN. (28)
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We can see that the variance of the price and the variance of the quantities bought by agents is

determined by (i) the correlations ρpθ̄ and ρ∆q∆θ, and (ii) the market power. The market clearing

condition then imposes the relationship between the variance of price and quantity. The price volatility

is increasing with ρpθ̄ and thus the price volatility is driven by the average payoff shocks. Furthermore,

the price volatility is decreasing with l as more market power means that the agents trade less. By

multiplying (24) by p∗, taking expectations and using the law of iterated expectations we derive the

following equation:

E[(p∗)2] =
β

1 + βN(1 + l)

∑
i∈N

E[θip
∗]. (29)

The restriction (26) can now be derived directly from (25) and (29).

The variance of the aggregate quantity, σ2
q , can be understood in a similar way. The expression

(27) identifies two components that contribute to the quantity volatility. The first component depends

only on the average quantity q̄ traded by agents. As the average quantity purchased by the agents is

collinear with the price, the intuition for this component is similar to the price volatility. In addition

to the contribution of the average quantity q̄, the variance of the quantity traded by agents is also

determined by the orthogonal component of the quantity traded by the agents; this is the second

component of (27). If the quantity traded by agent i is very volatile even when conditioning on q̄, then

this will contribute substantially to σq.

Finally, we can use the payoff environment and the symmetry condition to determine the remaining

moments of the distribution.

Lemma 3 (Statistical Conditions on the Distributions)

Every distribution of outcomes must satisfy

ρpθ = ρpθ̄ρθθ̄, ρqθ̄ = ρpθ̄ρqp; (30)

and

ρ∆q∆θ =
ρqθ − ρpθ̄ρpqρθθ̄√
(1− ρ2

qp)(1− ρ2
θθ̄

)
. (31)

The previous lemma imposes several restrictions on the moments of a distribution of outcomes. The

constraints (30) and (31) are consistency requirements that arise only from the fact that the distribution

of quantities and payoff shocks is symmetric and that the price is collinear with the average quantity

traded by agents.
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5.3 How Private Information Determines the Moments

So far we approached the equilibrium outcomes of demand function competition by deliberately avoiding

the use of specific information structure that give rise to the equilibrium behavior. This contrasts with

the more conventional approach in the analysis of games with incomplete information. There, specific

assumption are made regarding the true information structure and the analysts solves the equilibrium

for a given information structure, or a class of parametrized information structures. In this subsection,

we indicate how to relate these two approaches. In particular, we define some parametrized classes

of information structures and describe the equilibrium outcomes they induce. For each information

structure we compute the triple (l, ρpθ̄, ρ∆q∆θ); the market power, the correlation between the price

and the average shocks and the correlation between the orthogonal components of quantities and payoff

shocks. In doing so, we link the representation of the equilibrium outcomes in Theorem 3 with specific

classes of parameterized information structures.

Recall that in Section 4.2, we studied three different information structures (one-dimensional noisy

signals, multi-dimensional noisy signals and confounding signals) in order to get intuition for how market

power and price volatility varied as we varied a one-dimensional parameter in natural information

structures. In this section, we complement the analysis therein by studying two additional information

structures: noise-free signals and canonical signals. The former allows us to decentralize the same

outcomes as the set of equilibria under complete information while the latter allows decentralizing all

equilibrium outcomes. Thus, they will give a complementary view of how the information structure

determines the equilibrium outcome. We also use the one-dimensional signals (studied in Section 4.2)

to help build intuition for how the canonical signals determine the equilibrium outcome.

Noise-Free Signals The class of noise-free signals decentralize all outcomes that arise under complete

information as a unique equilibrium under incomplete information, and we used them to establish

Theorem 1. Here, each agent i observes:

si = θi + (γ − 1)
1

N

∑
j∈N

θj , (32)

where γ ∈ R. In this case, the outcome of the demand function competition game is given by:

ρpθ̄ = 1, ρ∆θ∆q = 1, l = L(γ),

where the function L(·) is defined as follows:

L(γ) , 1

2βN

−Nβ (N − 1)γ − 1

(N − 1)γ + 1
− 1 +

√(
Nβ

(N − 1)γ − 1

(N − 1)γ + 1

)2

+ 2βN + 1

 .
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Figure 5: Set of equilibrium pairs
(
l, σ2

p

)
of market power and price volatility under noise-free signals.

Under the noise-free signals the correlations (ρpθ̄, ρ∆θ∆q) are equal to one. The noise free signals decen-

tralize the outcomes of the complete information equilibria in which there is no extraneous noise in the

outcomes – thus the correlations are equal to one. On the other hand the market power is determined

by the confounding parameter γ using the function L (γ), which we plot in Figure 5. We can see that

the range of L (γ) is [−1/2,∞), which implies that all market powers can be decentralized for some

γ. As γ → −1/(N − 1), L (γ) approaches an asymptote; for values γ < −1/(N − 1) the function is

negative; in the limit as γ →∞ the function L (γ) approaches 0.

Finally, we remark that (32) is not the same signal as (20). If we decompose the payoff shock in

terms of a common and an idiosyncratic component (as in (16)), then (32) would be written as follows:

si = τ i + γ · ω + (γ − 1)
1

N

∑
j∈N

τ j .

Even though this signal and (20) look similar, the former decentralizes all the points in the red dashed

curve while the latter allows to decentralize the points in a blue curve in Figure 4. This serves as an

additional illustration of how small changes in an information structure may lead to large changes in

the equilibrium outcomes.
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Canonical Signals The third class of signal combines elements of the noise-free signals and the

one-dimensional noisy signals. We assume that agent i observes a one-dimensional signal si given by:

si = θi + εi + (γ − 1)(θ̄ + ε̄). (33)

The term εi is a noise term that is independent of all payoff shocks {θi}i∈N , has a variance of σ2
ε, and

a correlation ρεε across signals.

We refer to (33) as canonical signals because they allow us to decentralize all feasible outcomes. In

other words, for every distribution of outcomes that can be implemented by some information struc-

ture, it can also be implemented by a canonical information structure. The relevant moments of the

equilibrium outcome are now given by:

ρ2
pθ̄ =

1

1 + ρεεN+(1−ρεε)
ρθθN+(1−ρθθ)

σ2
ε

σ2
θ

, ρ2
∆q∆θ =

1

1 + 1−ρεε
1−ρθθ

σ2
ε

σ2
θ

, l = L(γ
ρ2

∆θ∆q

ρ2
pθ̄

).

The correlation coeffi cient are determined by the variance of the noise term in an analogous way to the

noisy one-dimensional signals. In contrast to the noisy one-dimensional signals, we now allow the noise

terms to be correlated across agents, which is incorporated in the computation of the correlations. The

market power combines the intuitions from the noise-free signals and the noisy one-dimensional signals;

here the market power is determined by both the confounding parameter and the correlations. It is

now easy to check that by varying (σ2
ε, ρεε, γ) we can span all values of (ρpθ̄, ρ∆q∆θ, l). Hence, these

canonical signals allow us to span all possible outcomes.

6 Cournot vs. Demand Function Competition

The competition in demand functions constitutes a market mechanism that balances demand and supply

with a uniform price across traders. As the competition in demand function is only one of many

mechanisms that match demand and supply on the basis of a uniform price, it is natural to compare the

outcome under demand function competition with other uniform price market mechanisms. A natural

candidate to consider is Cournot competition or competition in quantities.

We maintain the payoff environment as described in Section 2, but we now assume that the agents

submit unconditional quantities {qi}i∈N . The market clearing price is given by:

p∗ = β
∑
i∈N

qi.

The equilibrium trading behavior in quantity competition differs from demand function competition

in two important respects. First, in demand function competition the agents can make their trade

26



contingent on the equilibrium price, whereas in quantity competition the demand has to be stated

unconditional. Second, in demand function competition the price impact of each agent depends on the

submitted demand function of all other agents, whereas in quantity competition the price impact is

constant and simply given by the supply conditions. We show how these two aspects induce important

differences in the set of possible outcomes across these two forms of market mechanisms, even when

we compare across all possible information structure.4 In recent work, Lambert, Ostrovksy, and Panov

(2018) consider how informationally sensitive the trading outcomes are in a hybrid model between

demand function competition and Cournot competition. They study the informational effi ciency of the

Kyle (1985) model in a high-dimensional model and their analysis also relies on the multivariate normal

structure of payoffs and signals.

We compare the set of feasible pairs of market power and price volatility for Cournot competition

and demand function competition. Similarly to the analysis of the demand function competition, we

can obtain a description of the equilibrium outcomes under all information structures. In this section

we refine the definition of market power in terms of the ratio of the expectations:

l =
1

N

E
[∑

i∈N θi − qi − p
]

E [p]
.

With demand function competition, this always coincides with the expectation of the ratio. Here, we

use this refined measure to convey most directly that under Cournot competition, the agents’market

power is constant.

Theorem 4 (Cournot Equilibria Under All Information Structures)

There exists an information structure that induces a pair of market power and price volatility (l, σ2
p) if

and only if:

l =
1

N
and σ2

p ≤
1

4

√1 + βσθ̄ +
√

(β + βN + 1)σ2
∆θ + (1 + β)σ2

θ̄√
1 + β(β + βN + 1)

2

. (34)

Moreover, all feasible pairs of market power and price volatility (l, σ2
p) are induced by a unique equilibrium

for some information structure.

In Cournot competition the first moment of the individual and aggregate demand is independent of

the information structure. In particular, the market power is always equal to l = 1/N . By contrast, in

4 In an early version of this paper, Bergemann, Heumann, and Morris (2015a), we provide a more exhaustive comparison

of the equilibrium behavior across many uniform price mechanisms, including the Bertrand price mechanism, the Kyle

trading mechanism and noisy price mechanism.
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demand function competition, the set of feasible market powers is a one-dimensional object without an

upper bound.

Yet, under Cournot competition the maximum price volatility can be larger than under demand

function competition. From Theorem 2 we can infer that the maximum price volatility under demand

function competition is given by:

σ2
p =

(βN)2

(1
2 + βN)2

σ2
θ̄,

and the maximum price volatility under quantity competition is displayed in (34). In contrast to demand

function competition, the price volatility can grow even as the variance of the average payoff shock

shrinks. As the inequality in (34) documents, the maximal price volatility under quantity competition

grows if the contribution of the idiosyncratic component in the payoff shock increases, that is if 1− ρθθ
increases.

The extra degree of freedom that demand function competition has on the first moment is a re-

flection of the fact that market power is endogenously determined. The extra degree of freedom that

Cournot competition has in the second moments is reflective of the fact that the agents cannot con-

dition the quantity bought on the equilibrium price. Hence, there is less information that disciplines

the quantities bought by agents. In Cournot competition, the price volatility and the volatility in the

quantity demanded by the agents are not determined separately (as σ2
p and σ

2
q in (26) and (27)) but

rather there is a single equation that jointly determines the volatility in the quantities demanded by

agents. This implies that the price volatility can increase with the absolute level of uncertainty about

payoff shocks, σ2
θ, and not only with the uncertainty about the average payoff shock σ

2
θ̄
. We illustrate

the different behavior of the first and second moments across these market mechanism in Figure 6.

Most importantly, we see that for Cournot competition the level of market power is constant across

information structures, while with demand function competition the market power varies substantially

with the information structure.

The lack of common conditioning device in quantity competition also leads to fewer restriction on the

correlation coeffi cients that describe the entire matrix of second moments. With quantity competition

the set of feasible second moments is a three dimensional object. In particular, for any (ρpθ̄, ρ∆q∆θ, ρqq) ∈
[0, 1]3, there exists an information structure that induces a distribution of outcomes under quantity

competition with correlations (ρpθ̄, ρ∆q∆θ, ρqq). Yet, for a fixed first moment, the set of possible second

moments in the demand function competition is a two dimensional object as stated in Theorem 3.
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Figure 6: Comparison of the first and second equilibrium moments under demand function competition

and quantity competition.

7 Conclusions

In this paper we study demand function competition. Our results provide positive and negative results

regarding our ability to make predictions in this form of market microstructure. On the one hand,

we showed that any market power is possible– from −1/2 to infinity. Considering small amounts of

incomplete information does not allow us to provide any sharper predictions, unless one is able to make

additional restrictive assumptions regarding the nature of the incomplete information. On the other

hand, we showed that we can provide many substantive predictions on the outcome of demand function

competition that are robust to the information structure.

The analysis in our paper provides a way of thinking about demand function competition in a more

abstract way. In particular, we analyze directly quantities and payoff shocks, abstracting from the

specific demands that are submitted in equilibrium. While this allows us to analyze demand function

competition, it may also be helpful to analyze other forms of market microstructure, and perhaps more

interestingly, to compare between them. We believe this may a fruitful direction for future work.

The comparison between demand function and Cournot competition indicates that distinct trading

mechanisms for the same allocation problem may respond surprisingly different to small changes in the

structure of private information.
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8 Appendix

We first present three lemmas that are used to prove the results in the main text.

Lemma 4 (Characterization of Linear Nash Equilibrium)

The demand function x(si, p) = c0 +
∑

j∈J cjsij −mp is a linear Nash equilibrium if and only if:

x(si, p) = c0 +
∑
j∈J

cjsij −mp =
E[θi|p, si]− p

1 + λ
, (35)

where λ is given by:

λ =
β

1 + βm(N − 1)
, (36)

and it satisfies λ ≥ −1/2. The expectation E[θi|p, si] is computed using the induced price distribution,
which is given by:

p =
β(Nc0 +

∑
i∈N

∑
j∈J cjsij)

1 +mβN
. (37)

Proof. We conjecture a symmetric linear Nash equilibrium in which agent i submits demand

function:

xi = c0 +
∑
j∈J

cjsij −mp. (38)

and show that this is a symmetric linear Nash equilibrium if and only if (35) and (36) are satisfied and

the equilibrium price is determined by (37)

If all agents submit linear demand function as in (38), then market clearing implies that:

p∗ = β
∑
i∈N

x(si, p
∗) = β(Nc0 +

∑
i∈N

∑
j∈J

cjsij)− βNmp∗.

Solving for p∗ we conclude that market clearing implies that:

p∗ =
β(Nc0 +

∑
i∈N

∑
j∈J cjsij)

1 +mβN
.

Thus (37) is satisfied.

We now examine agent i’s maximization problem. Given the demands submitted by other agents

{xj(p)}j 6=i, agent i maximizes:

max
xi(p)∈C(R)

E[θixi(p
∗)− p∗xi(p∗)−

xi(p
∗)2

2
] (39)

where β
∑
k∈N

xk(p
∗) = p∗.
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A linear demand functions is a Nash equilibrium if and only if the demand function of agent i solves

(39). An alternative way to write the market clearing condition is to write it in terms of agent i’s

residual supply. Agent i’s residual supply is given by:

ri(p) =
p− β

∑
k 6=i xk(p)

β
. (40)

If agent i submits a demand xi(p), then market clearing implies that xi(p∗) = ri(p
∗).

We first solve agent i’s maximization problem assuming that he knows his residual supply. This

corresponds to finding the quantity qi that maximizes agent i’s expected utility conditional on agent i’s

signals and agent i’s residual supply. If agent i knows his residual supply, then he solves:

max
qi∈R

E[θi|ri(p), si]qi − r−1(qi)qi −
1

2
qi, (41)

where r−1
i (·) is the inverse function of ri (defined in (40)). Note that the residual supply of agent i may

contain information about θi so this is added as a conditioning variable. In other words, in a linear

Nash equilibrium the intercept of the residual supply ri(p) is measurable with respect to:∑
k 6=i

∑
j∈J

cjskj .

Hence, agent i can use the intercept of ri(p) as additional information about θi. Note that in a linear

Nash equilibrium the slope of ri(p) does not depend on the realization of the signals {sij}i∈N,j∈J .
Taking the first order condition of (41) we obtain:

E[θi|ri, si]− r−1(q∗i )− q∗i
∂r−1(q∗i )

∂q∗i
− q∗i = 0.

The derivative of the inverse residual supply is given by:

∂r−1(qi)

∂qi
=

(
∂ri(p)

∂p

)−1

=
β

1 + βm(N − 1)
,

where the first equality is using the implicit function theorem and the second equality is taking the

derivative of (40) with respect to p. Note that the derivative of the inverse residual supply is equal to

λ (as defined in (36)):

λ =

(
∂ri(p)

∂p

)−1

.

The objective function of the maximization problem (41) is a quadratic function of qi and the coeffi cient

on the quadratic component is equal to −(λ+ 1/2). Thus, the second order conditions is satisfied if and

only if λ ≥ −1/2. It is clear that, if λ < 1/2 then the agent’s objective function is strictly convex and

hence (41) does not have a solution. Therefore, there is no equilibrium with λ > 1/2.
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If agent i knows his residual demand, then the first order condition can be written as follows:

q∗i =
E[θi|ri, si]− r−1(q∗i )

1 + λ
.

Note that r−1(q∗i ) is the equilibrium price:

p∗ = r−1(q∗i ).

Hence, we can write the first order condition of agent i as follows:

q∗i =
E[θi|p∗, si]− p∗

1 + λ
.

Note that the equilibrium price p∗ is informationally equivalent to the intercept of the residual supply

faced by agent i. This is because p∗ is computed using ri and the demand function submitted by agent

i. Hence, for agent i, conditioning on the residual supply or the equilibrium price is informationally

equivalent. Hence, we can replace it as a conditioning variables.

In demand function competition agent i does not know his residual supply but an agent submits a

whole demand schedule. If agent i submits demand schedule:

x(p) =
E[θi|p, si]− p

1 + λ
, (42)

then he will buy the same quantity as if he knew his residual supply. Thus, for any set of linear demands

submitted by the other agents {xj(sj)}j 6=i, agent i′s best response is given by (42). The expectation
E[θi|p, si] is computed the same way as if p was the equilibrium price. That is, for any residual supply

ri(p), if agent i submits demand function (42), then p∗ is chosen to satisfy x(p∗) = ri(p
∗). Hence, agent

i buys a quantity:

q∗i =
E[θi|ri, si]− p

1 + λ
,

which is the optimal quantity as if he knew his residual supply.

Hence, a linear Nash equilibrium is determined by constants (c0, ...., cJ ,m) such that:

c0 +
∑
j∈J

cjsj −mp =
E[θi|p, si]− p

1 + λ
,

where λ is given by:

λ =
β

1 + βm(N − 1)
,

and where expectation E[θi|p, si] is computed the same way as if p was the equilibrium price.

Lemma 5 (Relation between Price Impact and Market Power)

In every symmetric linear Nash equilibrium where agents’price impact is λ, the induced market power

is l = λ/(βN).
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Proof. Lemma 4 shows that in every linear Nash equilibrium in which agents have price impact λ,

they submit demands

x(si, p) =
E[θi|p, si]− p

1 + λ
, (43)

Rearranging terms, we obtain:

λx(si, p) = E[θi|p, si]− x(si, p)− p. (44)

Summing up over all agents and multiplying times β, we get:

λβ
∑
i∈N

x(si, p) = β
∑
i∈N

(E[θi|p, si]− x(si, p)− p). (45)

Note that x(si, p) is the quantity bought by agent i in equilibrium so the market clearing condition

implies that β
∑

i∈N x(si, p) = p. Thus (45) can be written as follows:

λp = β
∑
i∈N

E[θi − qi − p|p, si]. (46)

Here we wrote qi and p inside the expectation; this is possible because they are measurable with respect

to the conditioning variables. Taking the expectation of the previous equation conditional on p (i.e.

taking expectation E[·|p]) and using the law of iterated expectations:

λp = β
∑
i∈N

E[θi − qi − p|p], (47)

Rearranging terms, we have:

λ = (βN)
1

N

∑
i∈N

E[
θi − qi − p

p
|p]. (48)

Taking the expectation of the previous equation and using the law of iterated expectations

λ

βN
=

1

N

∑
i∈N

E[
θi − qi − p

p
] = l, (49)

which establishes the result.

Lemma 6 (Continuum of Equilibria)

Under complete information, for every λ ≥ −1/2, the following demand function is a symmetric Nash

equilibrium:

xi(p) =
1

1 + λ

(
θi − (1− γ̂(λ))θ̄

)
− 1

N − 1
(
1

λ
− 1

β
)p, (50)

where γ̂ is defined as follows:

γ̂(λ) , (λ+ 1)(βN − λ)

λ(N − 1)(βN + λ+ 1)
. (51)
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Proof. We check that the demand function (50) satisfy (35) and (36). The equilibrium price satisfies

β
∑
i∈N

xi(p
∗) = p∗.

When agents submit demand functions as in (50) the market clearing condition implies that:

β
∑
i∈N

xi(p
∗) = β

(
N

1 + λ
γ̂θ̄ − N

N − 1
(
1

λ
− 1

β
)p∗
)

= p∗.

Rearranging terms, the equilibrium price can be written as follows:

p∗ =
βNθ̄

1 + λ+ βN
. (52)

Using (52) we note that:

−(1− γ̂)θ̄

1 + λ
− 1

N − 1
(
1

λ
− 1

β
)p∗ +

1

1 + λ
p∗ = 0.

This equation can be verified by replacing p∗ with the expression in (52). It follows that:

E[θi|θi, p∗]
1 + λ

=
θi

1 + λ
− (1− γ̂)θ̄

1 + λ
− 1

N − 1
(
1

λ
− 1

β
)p∗ +

1

1 + λ
p∗.

Here the equality follows from the fact that the last three terms cancel each other. Hence, we can write

(50) as follows:

xi(p) =
1

1 + λ

(
θi − (1− γ̂)θ̄

)
− 1

N − 1
(
1

λ
− 1

β
)p

=
θi − p
1 + λ

− (1− γ̂)θ̄

1 + λ
− 1

N − 1
(
1

λ
− 1

β
)p+

1

1 + λ
p

=
E[θi|si, p]− p

1 + λ
. (53)

Hence, (35) from Lemma 4 is satisfied. Additionally, note that, if agents submit demand functions as

in (50), then

m =
1

N − 1
(
1

λ
− 1

β
).

Inverting the function, we obtain:

λ =
β

1 + βm(N − 1)
.

Hence, (36) is also satisfied. Using Lemma 4, this establishes the linear Nash equilibrium.

Proof of Proposition 1. In the proof of Lemma 6 we showed that in every symmetric linear

Nash equilibrium in which agents have price impact λ, the equilibrium price is given by (see (52)):

p∗ =
βNθ̄

1 + λ+ βN
.
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Moreover, we also proved that there exists an equilibrium in which agents have price impact λ for all

λ ≥ −1/2, which establishes the result.

Proof of Corollary 1. Lemma 5 states that in every symmetric linear Nash equilibrium in which

agents’have price impact λ, the induce market power is l = λ/(βN). In the proof of Lemma 6, we show

that in every symmetric linear Nash equilibrium in which agents’have price impact λ, the equilibrium

price is given by (see (52)):

p∗ =
βNθ̄

1 + λ+ βN
.

Thus, the price volatility is given by:

σ2
p =

(
βN

1 + λ+ βN

)2

var(θ̄),

which establishes the result.

Proof Theorem 1. We prove the result by decomposing the payoff shock, into two independent

payoff shocks:

θi , ηi + φi. (54)

We assume that the sets of payoff shocks {ηi}i∈N are independent of the shocks {φi}i∈N , the shocks are
jointly normally distributed, and:

µη = µφ =
µθ
2

and corr(ηi, ηj) = corr(φi, φj) = corr(θi, θj). (55)

Finally, we assume that the variance of the shocks {φi}i∈N is equal to ε:

var(φi) = ε and var(ηi) = (σ2
θ − ε). (56)

We remark that (55) and (56) guarantee that:

var(φi + ηi) = σ2
θ; cov(φi + ηi, φj + ηj) = cov(θi, θj),

and thus, the joint distribution of the random variables {ηi+φi}i∈N is equal to the the joint distribution
of the original payoff shocks {θi}i∈N .

We assume that every agent observes the realization of all shocks {ηi}i∈N . In other words, each
agent observes N signals, each signal being equal to one of the shocks ηi. Additionally, agent i observes

a signal that is equal to a weighted difference between his shock φi and the average of all shocks {φj}j∈N

si = φi − (1− γ)
1

N

∑
j∈N

φj . (57)
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Here γ ∈ R is any number in the real line. Throughout this proof si denotes only the one-dimensional
signal (57) and not the whole vector of signals an agent observes. We remark that under this information

structure:

∀i, j ∈ N, var(θi|η1, ..., ηN , sj) = var(φi|sj) ≤ var(φi) = ε.

It follows that under this information structure (12) is satisfied.

In any linear Nash equilibrium, the equilibrium price must be a linear function of the shocks {ηi}i∈N
and the signals {si}i∈N . The symmetry of the conjectured equilibrium, implies that there exists con-
stants ĉ0, ĉ1, ĉ2 such that the equilibrium price satisfies:

p∗ = ĉ0 + ĉ1φ̄+ ĉ2η̄.
5

Regardless of the values of ĉ0, ĉ1, ĉ2 the following equation is satisfied:

E[θi|{ηi}i∈N , si, p∗] = θi.

That is, agent i can infer perfectly θi using the realization of the shocks {ηi}i∈N , the signal si and the
equilibrium price. This is because agent i can infer φ̄ from p∗, which in addition to si, allows agent i to

perfectly infer φi (note that η̄ is common knowledge).

Lemma 4 states that agent i submits demand function:

xi(p) =
E[θi|{ηi}i∈N , si, p∗]− p

1 + λ
,

for some λ ≥ −1/2. However, in equilibrium E[θi|{ηi}i∈N , si, p∗] = θi so in equilibrium agent i buys a

quantity equal to:

q∗i =
θi − p∗
1 + λ

, (58)

for some λ ≥ −1/2. The market clearing condition implies that p∗ = β
∑
q∗i , and so the equilibrium

price is given by:

p∗ =
βNθ̄

1 + λ+ βN
, (59)

for some λ ≥ −1/2. Hence, the equilibrium price is measurable with respect to θ̄. That is, the equilibrium

price must satisfy that ĉ1 = ĉ2. It is important to clarify that the linearity and symmetry of the

conjectured equilibrium guarantees that the price is an affi ne function of η̄ and φ̄. Yet, since the

equilibrium price plus the private signals observed by agent i allows agent i to infer θi, the quantity

bought by agent i is measurable with respect to θi. Hence, using the linearity and the symmetry, the

price must be a linear function of θ̄. Note that for a fixed γ, the quantity bough by agent i and the price

5Recall that according to the notation introduced in the main text η̄ =
∑
i∈N ηi/N and φ̄ =

∑
i∈N φi/N .
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are equal to (58) and (59) respectively. This is the same as the equilibrium under complete information

when agents have price impact λ (compare with (53) and (52)). Thus, we are only left with showing

that for a fixed γ there is a unique equilibrium and every price impact λ ≥ −1/2 is spanned by some

γ ∈ R.
Given the equilibrium price in (59) (as a function of λ), we can find an expression for E[θi|{ηi}i∈N , si, p∗]

(in terms of the conditioning variables). We first note that:(
p∗

βN
(1 + λ+ βN)− η̄

)
= φ̄.

Hence, the expectation can be written as follows:

E[θi|p∗, si, {ηi}i∈N ] = si + ηi + (1− γ)

(
p∗

βN
(1 + λ+ βN)− η̄

)
= θi.

Recall that in equilibrium agent i submits demand function:

xi(p) =
E[θi|p∗, si, {ηi}i∈N ]− p

1 + λ
.

Hence, the slope of the demand submitted by agent i is equal to:

m = −∂xi(p)
∂p

=
−1

1 + λ
(
∂E[θi|p∗, si, {ηi}i∈N ]

∂p∗
− 1)

=
1− (1− γ) 1

βN (1 + λ+ βN)

1 + λ
.

The previous equation gives a relation between agent i’s price impact (i.e. λ) and the slope of the

demand function submitted by agent i (i.e. m). Equation (36) is a second equation that relates λ and

m. Using these two equations we can find λ in terms of the confounding parameter γ:

λ =
1

2

(
− 1−Nβγ(N − 1)− 1

γ(N − 1) + 1
±

√(
Nβ

γ(N − 1)− 1

γ(N − 1) + 1

)2

+ 2Nβ + 1

)
. (60)

Only the positive root is a valid solution as the negative root yields a λ less than −1/2 (which violates

the condition in Lemma 4). Hence, there is a unique equilibrium in which the price impact is equal to

the positive root of (60).

Finally, to show that the noise-free signals span the same outcomes as the outcomes under complete

information we need to show that for all λ ≥ −1/2, there exists a γ that satisfies (60) with the positive

root. To check this note that inverting (60) (using the positive solution), we have that γ as a function

of λ is given by (51). Hence, for any λ ≥ −1/2, if γ is given by (51), there exists a unique linear Nash

equilibrium in which the equilibrium outcome is the same as the equilibrium outcome under complete

information when the price impact is λ.
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Proof of Theorem 2. We prove necessity and suffi ciency separately.

“If” Part. Let (l, σ2
p) be such that (13) is satisfied. We show that there exists an information

structure that induces this market power and price volatility as a unique equilibrium. Suppose the

payoff shocks are decomposed as in (54) and (55). Additionally, assume that the variances are given by:

var(ηi) = σ2
p

N

ρθθ(N − 1) + 1

(1 + βN(1 + l))2

(βN)2
and var(φi) = (σ2

θ − var(ηi)). (61)

Note that var(φi) (as defined in (61)) is always positive because the theorem states that:

σ2
p ≤

(βN)2

(1 + βN(1 + l))2
σ2
θ

and so var(ηi) (as defined in (61)) is less or equal than var(θi). We assume that the payoff shocks {ηi}i∈N
are common knowledge (i.e. every agent observes all shocks {ηi}i∈N ) and agents have no information
on the realization of the shocks {φi}i∈N . This model is isomorphic to a model in which agents have
complete information and the only shocks are {ηi}i∈N .

Corollary 1 states that in the complete information equilibrium with price impact is λ the induced

market power is l = λ/β ·N and the price volatility is:

(βN)2

(1 + βN + λ)2
var(

1

N

∑
i∈N

ηi) =
(βN)2

(1 + βN + λ)2

ρηη(N − 1) + 1

N
var(ηi).

Since var(ηi) is defined as in (61) and ρηη = ρθθ, the previous equation implies that the price volatility is

given by σ2
p. Thus, there exists an equilibrium that induces (l, σ2

p). In this equilibrium the shocks {ηi}∈N
are common knowledge and agents have no information on {φi}∈N . Under this information structure
the market power and price volatility (l, σ2

p) are not induced as a unique equilibrium. However, the

model is isomorphic to a model of complete information in which the only shocks are {ηi}∈N . We
can then use Theorem 1, which states that this market power and price volatility are induced as the

unique symmetric linear Nash equilibrium for some information structure when agents have incomplete

information. This concludes the first part of the proof.

“Only If”Part. Using Lemma 4, in any linear Nash equilibrium:

xi(p
∗) =

E[θi|si, p∗]− p∗
1 + λ

, (62)

where λ ≥ −1/2 is agent i’s price impact. Adding (62) over all agents and multiplying by β we get:

β
∑
i∈N

xi(p
∗) = β

∑
i∈N

E[θi|si, p∗]− p∗
1 + λ

.

Market clearing implies that β
∑

i∈N xi(p
∗) = p∗. It follows that

p∗ = β
∑
i∈N

E[θi|si, p∗]− p∗
1 + λ

.
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Rearranging terms we obtain

p∗ =
βN

1 + λ+ βN

1

N

∑
i∈N

E[θi|si, p∗]. (63)

Taking the expectation of the previous equation conditional on p∗ (i.e., taking the expectation E[·|p∗])
and using the law of iterated expectations:

p∗ =
βN

1 + λ+ βN

1

N

∑
i∈N

E[θi|p∗] =
βN

1 + λ+ βN
E[

1

N

∑
i∈N

θi|p∗]. (64)

It follows that:

σ2
p =

(
βN

1 + λ+ βN

)
cov(p, θ).

Hence, we have that:

σ2
p =

(
βN

1 + λ+ βN

)2

ρ2
pθ̄σ

2
θ̄. (65)

Since ρ2
pθ̄
≤ 1, this proves the necessity part for the price volatility. Lemma 4 shows that in any linear

Nash equilibrium agents’price impact is greater or equal than −1/2 (i.e. λ ≥ −1/2). Lemma 5 shows

that the induce market power is given by l = λ/(βN). Thus, the equilibrium market power satisfies

l = −1/(2βN). This concludes the proof.

Proof of Theorem 3. We first note that cov(∆θi, θ̄) = 0, which can be verified as follows:

cov(∆θi, θ̄) = cov(
∑
i∈N

θi − θ̄, θ̄) (66)

=
∑
i∈N

cov(θi − θ̄, θ̄) (67)

=
∑
i∈N

∑
j∈N

cov(θi, θj)− cov(θi, θj) = 0. (68)

The explanations of the steps is as follows: (66) is by the definition of ∆θi, (67) is using the collinearity

of the covariance, and (68) is using the definition of θ̄ and the collinearity of the covariance. In an

analogous way it is easy to prove that cov(∆θi, q̄) = cov(∆qi, θ̄) = cov(∆qi, q̄) = 0.

Thus, we can write the joint distribution of random variables (∆θi, θ̄,∆qi, p) as follows:
∆θi

θ̄

∆qi

p

 ∼ N



0

µθ

0

µp

 ,


σ2

∆θ 0 ρ∆q∆θσ∆θσ∆q 0

0 σ2
θ̄

0 ρpθ̄σθ̄σp

ρ∆q∆θσ∆θσ∆q 0 σ2
∆q 0

0 ρpθ̄σθ̄σp 0 σ2
p



 . (69)

39



Note that the variables (∆θi, θ̄,∆qi, p) can be written as a linear combination of the variables (θi, θ̄, qi, p)

as follows: 
∆θi

θ̄

∆qi

p

 =


1 −1 0 0

0 1 0 0

0 0 1 −1/(βN)

0 0 0 1




θi

θ̄

qi

p

 .

Thus by characterizing the joint distribution of variables (∆θi, θ̄,∆qi, p) we are also characterizing the

joint distribution variables of (θi, θ, qi, p).

“If”Part. We fix a triple (l̂, ρ̂pθ̄, ρ̂∆q∆θ) ∈ [−1/2,∞)×[0, 1]×[0, 1] that satisfies (22) and show there

exists an information structure that induces this triple. We consider a set of N normally distributed

noise terms {εi}i∈N , which are jointly independent of {θi}i∈N with variance and correlation across

agents given by

σ2
ε =

ρ̂2
pθ̄

(−Nρ̂2
∆q∆θ + (N − 1)(1− ρθθ)) + ρ̂2

∆q∆θ((N − 1)ρθθ + 1)

Nρ̂2
pθ̄
ρ̂2

∆q∆θ

σ2
θ ;

ρεε =
ρ̂2
pθ̄

(−Nρ̂2
∆q∆θρθθ + ρθθ − 1) + (N − 1)ρ̂2

∆q∆θρθθ + ρ̂2
∆q∆θ

ρ̂2
pθ̄

(−N(ρ̂2
∆q∆θ + ρθθ − 1) + ρθθ − 1) + (N − 1)ρ̂2

∆q∆θρθθ + ρ̂2
∆q∆θ

.

The variance and correlation of the noise terms satisfy the following relation with the correlations

(ρ̂pθ̄, ρ̂∆q∆θ):

ρ̂pθ̄ =

√
σ2
θ̄

σ2
θ̄

+ σ2
ε̄

and ρ̂∆q∆θ =

√
σ2

∆θ

σ2
∆θ + σ2

∆ε

, (70)

where ε̄ and∆εi are defined in an analogous way to θ̄ and∆θi. The only relevant part of the construction

of the noise terms is that (70) is satisfied; the specific definitions of σ2
ε and ρεε are not used again

throughout the proof. We assume agents observe a one-dimensional signal as follows:

si = (∆θi + ∆εi) + γ(θ̄ + ε̄), (71)

were γ is given by:

γ =
(l̂βN + 1)(βN − l̂βN)

l̂βN(N − 1)(βN(1 + l̂) + 1)

ρ̂2
pθ̄

ρ̂2
∆q∆θ

. (72)

The variance and correlation of the noise terms plus the definition of the signal (71) completely deter-

mines the information structure. We now show that the induced equilibrium triple is (l̂, ρ̂pθ̄, ρ̂∆q∆θ).

Consistent with the notation previously used we define:

s̄ , γ(θ̄ + ε̄) and ∆si , ∆θi + ∆εi.
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The random variables (θ̄, ε̄, s̄) are orthogonal to (∆θi,∆εi,∆si) (the proof is analogous to (66)-(68)) so

the expectation of θi conditional on (∆si, s̄) can be written as follows:

E[θi|si, s̄] =
σ2

∆θ

σ2
∆θ + σ2

∆ε

∆si +
σ2
θ̄

σ2
θ̄

+ σ2
ε̄

1

γ
s̄. (73)

Finally, it is useful to define:

γ̃ , γ
ρ̂2

∆q∆θ

ρ̂2
pθ̄

. (74)

The expectation (73) can be rewritten as follows:

E[θi|si, s̄] =
σ2

∆θ

σ2
∆θ + σ2

∆ε

si + (1− γ̃)

(
σθ̄

σθ̄ + σε̄

1

γ
s̄

)
. (75)

In any linear Nash equilibrium, the equilibrium price must be a linear function of the signals {si}i∈N .
Using the symmetry of the conjectured equilibrium, we have that in any symmetric linear Nash equi-

librium, there exists constants ĉ0, ĉ1 such that the equilibrium price satisfies:

p∗ = ĉ0 + ĉ1(
1

N

∑
i∈N

si).

We note that:

E[θi|si, p∗] = E[θi|si, s̄].

Hence, agent i in equilibrium buys a quantity:

q∗i =
E[θi|si, s̄]− p∗

1 + λ
, (76)

for some λ ≥ −1/2. Replacing the expression for the expectation (73) in (76) and using the market

clearing condition we obtain:

p∗ = β
∑
i∈N

qi = Nβ

σ2
θ̄

σ2
θ̄
+σ2

ε̄

1
γ s̄− p

∗

1 + λ
,

Note that
∑

i∈N ∆si = 0 so the terms with ∆si cancel out in the previous expression when we sum over

all agents. Solving for p∗ we obtain:

p∗ =
βN(

σ2
θ̄

σ2
θ̄
+σ2

ε̄

1
γ s̄)

1 + λ+ βN
. (77)

Because p∗ is collinear with s̄, it is immediate that:

corr(p, θ̄) = corr(s̄, θ̄) =
σ2
θ̄

σ2
θ̄

+ σ2
ε̄

.

41



Since σ2
ε and ρεε were chosen so that (70) is satisfied, we have that the correlation between the price

and the average shock is ρ̂pθ̄; as desired. Similarly, using (76) to compute ∆q∗i we obtain:

∆q∗i = q∗i − q̄∗ =
E[∆θi|∆si]

1 + λ
. (78)

Because ∆q∗i is collinear with ∆si it is immediate that:

corr(∆qi,∆θi) = corr(∆si,∆θi) =
σ2

∆θ

σ2
∆θ + σ2

∆ε

.

Since σ2
ε and ρεε were fixed so that (70) is satisfied, we have that the correlation between the ∆qi and

∆θi is ρ̂∆q∆θ; as desired. Therefore, the induced correlations by the equilibrium are (ρ̂pθ̄, ρ̂∆q∆), which

is the desired quantities. We now show that the equilibrium market power is l̂.

Given the equilibrium price in (77), we can find an expression for the expected value of θi conditional

on the private information of agent i and the equilibrium price:

E[θi|p∗, si] =

(
σ2

∆θ

σ2
∆θ + σ2

∆ε

si + (1− γ̃)
p∗

βN
(1 + λ+ βN)

)
. (79)

The previous equation is obtained by rewriting (75) in terms of p∗ instead of s̄. Recall that in equilibrium

agent i submits demand function:

xi(p) =
E[θi|p∗, si]− p

1 + λ
.

Using the expression for the expectation (79) we write the slope of the demand submitted by agent i

as follows:

m =
1− (1− γ̃) 1

βN (1 + λ+ βN)

1 + λ
. (80)

Recall that λ and m must also satisfy (36). Using (36) and (80) we can find the equilibrium price

impact:

λ =
1

2

(
− 1−Nβ γ̃(N − 1)− 1

γ̃(N − 1) + 1
±

√(
Nβ

γ̃(N − 1)− 1

γ̃(N − 1) + 1

)2

+ 2Nβ + 1

)
. (81)

Only the positive root is a valid solution as the negative root yields a λ less than −1/2, which violates

the condition in Lemma 4. Hence, for a fixed γ, there is a unique symmetric linear Nash equilibrium.

Finally, we show that the definition of γ̃ implies that the induced market power is l (as conjectured).

Using the definitions of γ (see (72)), the variable γ̃ can be written as follows:

γ̃ = γ
ρ̂2

∆q∆θ

ρ̂2
pθ̄

=
(l̂βN + 1)(βN − l̂βN)

l̂βN(N − 1)(βN(1 + l̂) + 1)
.

Replacing the previous expression of γ̃ into the expression for the price impact (i.e. (81)), we obtain

that the price impact is given by:

λ = l̂βN.
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However, Lemma 5 shows that in this case the equilibrium market power is l̂; which is the desired

induced market power.

“Only If Part” Lemma 4 states that in any linear Nash equilibrium the price impact is greater or

equal than -1/2 and Lemma 5 states that the price impact is equal to the market power divided by

(βN). Thus in any linear Nash equilibrium the market power satisfies l ≥ −1/(2βN).

In the proof of Theorem 2 we established that (see (64)):

p∗ =
βN

1 + λ+ βN
E[

1

N

∑
i∈N

θi|p∗] =
βN

1 + λ+ βN
E[θ̄|p∗]. (82)

Observe that p∗ appears on the left-hand-side and as a conditioning variable on the right-hand-side,

and thus, corr(p∗, θ̄) ≥ 0. A statistical condition of a correlation is that corr(p∗, θ̄) ≤ 1. Therefore, in

any linear Nash equilibrium corr(p∗, θ̄) ∈ [0, 1].

Using Lemma 4, in any linear Nash equilibrium:

xi(p
∗) =

E[θi|si, p∗]− p∗
1 + λ

, (83)

We now use that, xi(p∗) = qi (i.e. xi(p∗) is the quantity bought by agent i in equilibrium) and market

clearing implies p∗ = Nβq̄, thus

∆qi = qi − q̄ =
E[θi|si, p∗]− p∗

1 + λ
− p∗

βN
=
βNE[θi|si, p∗]− (1 + λ+ βN)p∗

βN(1 + λ)
, (84)

We now observe that (∆qi, p
∗) is measurable with respect to (si, p

∗). Taking expectation of the previous

equation conditional on (∆qi, p
∗) (i.e., taking expectation E[·|∆qi, p∗]) and using the law of iterated

expectations we get:

∆qi =
βNE[θi|∆qi, p∗]− (1 + λ+ βN)p∗

βN(1 + λ)
, (85)

Using (64) we have that

p∗ =
βN

1 + λ+ βN
E[

1

N

∑
i∈N

θi|p∗] =
βN

1 + λ+ βN
E[θ̄|p∗].

Replacing p∗ in (84) we get:

∆qi =
E[θi|∆qi, p∗]− E[θ̄|p∗]

1 + λ
. (86)

Finally, we note that cov(θ̄,∆qi) = cov(∆θi, p
∗) and so E[θi|∆qi, p∗] = E[∆θi|∆qi] + E[θ̄|p∗]. Therefore,

∆qi =
E[∆θi|∆qi]

1 + λ
. (87)

Observe that ∆qi appears on the left-hand-side and as a conditioning variable on the right-hand-side

and so corr(∆θi,∆qi) ≥ 0. A statistical condition of a correlation is that corr(∆θi,∆qi) ≤ 1. Therefore,

in any linear Nash equilibrium corr(∆θi,∆qi) ∈ [0, 1].
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“Uniqueness of Distribution”. Finally, we prove that for every (l, ρpθ̄, ρ∆θ) ∈ [−1/(βN2),∞) ×
[0, 1] × [0, 1] there exists a unique distribution that is the outcome of a linear Nash equilibrium. For

this we note that the only coeffi cients missing in distribution (69) are σp, σ∆q and µp. In Lemma 1 and

Lemma 2 we show that these are uniquely determined by (l, ρpθ̄, ρ∆θ).

Proof of Lemma 1 . We rewrite (63) for the convenience of the reader:

p∗ =
βN

1 + λ+ βN

1

N

∑
i∈N

E[θi|si, p∗]. (88)

Taking expectations of the previous equation and using the law of iterated expectations we get:

µp =
βN

1 + λ+ βN
µθ̄. (89)

Lemma 5 states that λ = lβN . To prove the second equation note that the market clearing condition

is given by:

p = β
∑
i∈N

qi.

Taking expectations of this equation:

E[p] = β
∑
i∈N

E[qi].

Symmetry implies that E[qi] = E[qj ], and so we get µp = βNµq.

Proof of Lemma 2. We first rewrite (65):

σ2
p =

(
βN

1 + λ+ βN

)2

ρ2
pθ̄σ

2
θ̄. (90)

Lemma 5 shows that λ = lβN , which proves (26). We rewrite (87):

∆qi =
E[∆θi|∆qi]

1 + λ
. (91)

which implies that:

σ2
∆θi

=
ρ2

∆θ∆qσ
2
∆θ

(1 + λ)2
. (92)

Since p∗ is collinear in q̄ (due to the market clearing condition), it is clear that

σ2
q̄ =

(
1

1 + λ+ βN

)2

ρ2
pθ̄σ

2
θ̄. (93)

Since cov(∆qi, q̄) = 0, we have

σ2
qi = σ2

q̄ + σ2
∆qi ,

and thus:

σ2
qi =

(
1

1 + βN(1 + l)

)2

ρ2
pθ̄σ

2
θ̄ +

ρ2
∆θ∆qσ

2
∆θ

(1 + βNl)2
,
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where we once again use Lemma 5 to write λ in terms of l. Finally, we note that σ2
∆θ = σ2

θ − σ2
θ̄
, and

so we get the second equation.

To prove the last equation note that the price is collinear with the price, and hence:

σp = βNσq̄.

We now use that σq̄ = ρqq̄σq = ρqpσq and conclude that σp = βNρqpσq.

Proof of Lemma 3. Symmetry implies that cov(θi, p) = cov(θj , p), and thus:

cov(θi, p) =
1

N

∑
j∈N

cov(θj , p) = cov(θ̄, p).

It follows that ρθpσθσp = ρθ̄pσθ̄σp. We now note that cov(θ̄, θ̄) = cov(θ̄, θi), which implies that σθ̄ =

ρθθ̄σθ. Therefore, we get ρθp = ρθ̄pρθθ̄.

Symmetry implies that cov(qi, θ̄) = cov(qj , θ̄), and thus:

cov(qi, θ̄) =
1

N

∑
j∈N

cov(qj , θ̄) = cov(q̄, θ̄).

We therefore get that ρqθ̄σqσθ̄ = ρq̄θ̄σq̄σθ̄. We also have that σq̄ = ρqq̄σq (this can be proved the same

way as we proved that σθ̄ = ρθθ̄σθ). Since q̄ is collinear with p, ρq̄θ̄ = ρpθ̄ and ρqq̄ = ρqp. Hence, we get

that ρqθ̄ = ρpθ̄ρqp.

Finally, we have:

ρ∆q∆θ =
cov(∆qi,∆θi)

σ∆qσ∆θ
(94)

=
cov(qi, θi)− cov(q̄, θ̄)

σ∆qσ∆θ
(95)

=
(ρqθσqσθ − ρpθ̄ρpqσqρθθ̄σθ)

σ∆qσ∆θ
(96)

=
(ρqθσqσθ − ρpθ̄ρpqσqρθθ̄σθ)√

(1− ρ2
qp)σ

2
q(1− ρ2

θθ̄
)σ2
θ

(97)

=
(ρqθ − ρpθ̄ρpqρθθ̄)√
(1− ρ2

qp)(1− ρ2
θθ̄

)
. (98)

The definition of the covariance is given by (94). (95) follows from:

cov(∆qi,∆θi) = cov(qi − q̄, θi − θ̄) = cov(qi, θi)− cov(q̄, θ̄),

where the symmetry of the distribution is used to show that cov(q̄, θ̄) = cov(qi, θ̄) = cov(q̄, θi). The

numerator of (96) is using the definition of the covariance and σ2
θ̄

= ρθ̄θσ
2
θ and σ

2
q̄ = ρpqσ

2
q (note that p
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is collinear with q̄ and so ρpq = ρq̄q). The denominator of (97) is found as follows:

σ2
∆θ = cov(θi − θ̄, θi − θ̄) = σ2

θ − σ2
θ̄ = (1− ρ2

θθ̄)σ
2
θ,

where once again we use that σ2
θ̄

= ρθ̄θσ
2
θ. The variance σ

2
∆q is calculated in an analogous way. (98) is

obtained after simplifying the variances. This proves (31).

Proof of Theorem 4. We first show that for all (l, σ2
p) that satisfy (34) with equality, there

exists an information structure that induced this market power and this price volatility. In a linear

Nash equilibrium of the Cournot competition game an agent’s best response is given by:

0 = E[θi − (1 + β)qi − β
∑
j∈N

qj |si].

The previous equation corresponds simply to the first order condition of (1) where we replace p =

β
∑

j∈N qj . Because qi is measurable with respect to si, we can take qi outside of the expectation. We

can write the first order condition as follows:

βqi = E[θi − qi − β
∑
j∈N

qj |si].

Summing up the previous equation over all agents we obtain:

β
∑
i∈N

qi = p =
∑
i∈N

E[θi − qi − β
∑
j∈N

qj |si].

Here we used that market clearing implies that β
∑

i∈N qi. Taking expectations of the previous equation

and using the law of iterated expectations, we obtain:

E[p] =
∑
i∈N

E[θi − qi − β
∑
j∈N

qj ].

Thus, we obtain that:
1
N

∑
i∈N E[θi − qi − β

∑
j∈N qj ]

E[p]
=

1

N
.

Therefore, the market power is constant and equal to 1/N . To prove that the price volatility is less or

equal than the expression in (34) we consider the following noise-free signals:

si = θi − (1− λ)θ̄.

By using a guess-and-verify method, we find that the unique linear Nash equilibrium is given by:

qi(si) =

(
λσ2

θ̄
+ σ2

∆θ

βλ2Nσ2
θ̄

+ (β + 1)
(
λ2σ2

θ̄
+ σ2

∆θ

))si.
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The equilibrium price is given by β
∑

i∈N qi and so we can find the λ that maximizes the price volatility.

We define:

(σ∗p)
2 , max

λ∈R
β
∑
i∈N

var

((
λσ2

θ̄
+ σ2

∆θ

βλ2Nσ2
θ̄

+ (β + 1)
(
λ2σ2

θ̄
+ σ2

∆θ

))si),
and obtain that:

(σ∗p)
2 =

1

4

√1 + βσθ̄ +
√

(β + βN + 1)σ2
∆θ + (1 + β)σ2

θ̄√
1 + β(β + βN + 1)

2

.

This is the upper bound found in Theorem 4. By using the same arguments as in Bergemann, Heumann,

and Morris (2015b) it is possible to show that all information structures yield a weakly lower price

volatility, which establishes the result. Moreover, decomposing the payoff shock in an analogous way

to that in the proof of Theorem 1 and Theorem 2, it is easy to check that all price volatilities can be

achieved by some information structure.
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