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An Analysis of Top Trading Cycles in Two-Sided

Matching Markets

Yeon-Koo Che∗ Olivier Tercieux†

July 30, 2015

Preliminary and incomplete.

Abstract

We study top trading cycles in a two-sided matching environment (Abdulkadiroglu

and Sonmez (2003)) under the assumption that individuals’ preferences and objects’

priorities are drawn iid uniformly. The distributions of agents’ preferences and ob-

jects’ priorities remaining after a given round of TTC depend nontrivially on the

exact history of the algorithm up to that round (and so need not be uniform iid).

Despite the nontrivial history-dependence of evolving economies, we show that the

number of individuals/objects assigned at each round follows a simple Markov chain

and we explicitly derive the transition probabilities.

JEL Classification Numbers: C70, D47, D61, D63.

Keywords: Random matching markets, Markov property.

1 Introduction

Top Trading Cycles (TTC) algorithm, introduced by Abdulkadiroglu and Sonmez (2003)

in a two-sided matching environment has been an influential method for achieving efficient

outcomes in particular in school choice environments. For instance, TTC was used until

recently in New Orleans school systems for assigning students to public high schools and

∗Department of Economics, Columbia University, USA. Email: yeonkooche@gmail.com.
†Department of Economics, Paris School of Economics, France. Email: tercieux@pse.ens.fr.
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recently San Francisco school system announced plans to implement a top trading cycles

mechanism. A generalized version of TTC is also used for kidney exchange among donor-

patient pairs with incompatible donor kidneys (see Sonmez and Unver (2011)).

The TTC algorithm proceeds in multiple rounds as follows: In Round t = 1, ..., each

individual i ∈ I points to his most preferred object (if any). Each object o ∈ O points to the

individual who has the highest priority at that object. Since the number of individuals and

objects are finite, the directed graph thus obtained has at least one cycle. Every individual

who belongs to a cycle is assigned the object he is pointing at. Any individuals and objects

that are assigned are then removed. The algorithm terminates when all individuals have

been assigned; otherwise, it proceeds to Round t+ 1.

In the sequel, we shall simply consider an random market consisting of a set I of agents

and a set O of objects such that the preferences of each side with respect to the other side are

drawn iid uniformly. The difficulty with the analysis of TTC in this random environment

stems from the fact that the preferences of the agents and objects remaining after the first

round of TTC need not be uniform, with their distributions affected nontrivially by the

realized event of the first round of TTC, and the nature of the conditioning is difficult to

analyze.1 The current paper shows that, even though the exact composition of cycles are

subject to the conditioning issue, the number of agents assigned in each round follows a

Markov chain, and is thus free from the conditioning issue. Indeed, our main result stated

below states that the numbers of agents and objects that are assigned in each round of

TTC follow a simple Markov chain depending only on the numbers of agents and objects

at the beginning of that round. It also characterizes the probability structure of the Markov

chain. This implies that there are no conditioning issues at least with respect to the total

numbers of agents and objects that are assigned in each round of TTC. Namely, one does

not need to keep track of the precise history leading up to a particular economy at the

beginning of a round, as far as the numbers of objects assigned in that round is concerned.

1To see this, assume that the set of agents and objects have the same size n and that they are indexed

from 1, . . . , n. Observe first that in Round 1 of TTC, each pair of an individual and an object has probability

1/n2 to form a cycle of order 2. Since there are n2 such pairs, at Round 1, the expected number of cycles

of order 2 is 1. Now, to see where the conditioning issue comes from, consider the event that at Round 1 of

TTC, each object points to the individual with the same index while each individual with index k ≤ n− 1

points to the object with index k + 1. Finally assume that individual n points to object n. Given this

event, observe that at Round 1 a single cycle clears and it only involves the individual and the object with

index n. Thus, conditionally on this event, the expected number of cycles of order 2 in Round 2 is much

smaller than 1. Indeed, in Round 2, only individual n−1 can be part of a cycle of order 2 and the only way

for this to happen is for individual n− 1 to point to object n− 1. This occurs with probability 1/(n− 1)

and so the expected number of cycles of order 2 goes to 0 as n grows.
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The formal statement is as follows:

Theorem 1. Suppose any round of TTC begins with n agents and o objects remaining in

the market. Then, the probability that there are m ≤ min{o, n} agents assigned at the end

of that round is

pn,o;m =

(
m

(on)m+1

)(
n!

(n−m)!

)(
o!

(o−m)!

)
(o+ n−m).

Thus, denoting ni and oi the number of individuals and objects remaining in the market at

any round i, the random sequence (ni, oi) is a Markov chain.

Beyond the technical contribution, this result can be useful for several purposes. First,

we believe the result can be useful in order to analyze the distribution of the number of steps

needed for TTC to converge. Because of this, one may expect that this result will help to get

a better understanding of the distribution of ranks of individuals/objects under TTC which

is directly welfare relevant. Second, even though the random environment we consider does

not allow for correlation in agents’ preferences, as we show in Che and Tercieux (2015), this

result can actually be used in order to make interesting predictions in richer environments

where agents’ preferences are positively correlated. Indeed, appealing to Theorem 1, Che

and Tercieux (2015) show that the fraction of agents/objects assigned via cycles of order

strictly greater than 2 does not converge in probability to 0. In the environment where

agents have positively correlated preferences, they show that this can be used in order to

prove that with probability bounded away from 0 there will be a significant number of pairs

of agents and objects who would significantly benefit from being matched together rather

than with their partners given by TTC.

Finally, we note that Theorem 1 parallels the corresponding result by Frieze and Pittel

(1995) on the Shapley-Scarf version of TTC. The difference between the two versions of

TTC is not trivial, so their proofs do not carry over. Section 2 below is devoted to the

proof of this result while Section 3 discusses some of implication of the main result.

2 Proof of Theorem 1

Consider any two finite sets I and O, with cardinalities |I| = n, |O| = o. A bipartite

digraghG = (I×O,E) consists of vertices I andO on two separate sides and directed edges

E ⊂ (I×O)∪(O×I), comprising ordered pairs of the form (i, o) or (o, i) (corresponding to

edge originating from i and pointing to o and an edge from o to i, respectively). A rooted
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tree is a bipartite digraph where all vertices have out-degree 1 except the root which has

out-degree 0.2 A rooted forest is a bipartite graph which consists of a collection of disjoint

rooted trees. A spanning rooted forest over I ∪O is a forest comprising vertices I ∪O.

From now on, a spanning forest will be understood as being over I ∪O.

We begin by noting that TTC induces a random sequence of spanning rooted forests.

Indeed, one could see the beginning of the first round of TTC as a situation where we have

the trivial forest consisting of |I| + |O| trees with isolated vertices. Within this step each

vertex in I will randomly point to a vertex in O and each vertex in O will randomly point to

a vertex in I. Note that once we delete the realized cycles, we again get a spanning rooted

forest. So we can think again of the beginning of the second round of TTC as a situation

where we start with a spanning rooted forest where the agents and objects remaining from

the first round form this spanning rooted forest, where the roots consist of those agents and

objects that had pointed to the entities that were cleared via cycles. Here again objects

that are roots randomly point to a remaining individual and individuals that are roots

randomly point to a remaining object. Once cycles are cleared we again obtain a forest

and the process goes on like this.

Formally, the random sequence of forests, F1, F2, .... is defined as follows. First, we let

F1 be a trivial unique forest consisting of |I|+ |O| trees with isolated vertices, forming their

own roots. For any i = 2, ..., we first create a random directed edge from each root of Fi−1

to a vertex on the other side, and then delete the resulting cycles (these are the agents and

objects assigned in round i− 1) and Fi is defined to be the resulting rooted forest.

2.1 Preliminaries

We shall later use the following lemma, which characterizes the number of spanning rooted

forests.

Lemma 1 (Jin and Liu (2004)). Let V1 ⊂ I and V2 ⊂ O where |V1| = ` and |V2| = k. The

number of spanning rooted forests having k roots in V1 and ` roots in V2 is f(n, o, k, `) :=

on−k−1no−`−1(`n+ ko− k`).

For the next result, consider agents I ′ and objects O′ such that |I ′| = |O′| = m > 0.

We say a mapping f = h ◦ g is a bipartite bijection, if g : I ′ → O′ and h : O′ → I ′ are

2Sometimes, a tree is defined as an acyclic undirected connected graph. In such a case, a tree is rooted

when we name one of its vertex a “root.” Starting from such a rooted tree, if all edges now have a direction

leading toward the root, then the out-degree of any vertex (except the root) is 1. So the two definitions

are actually equivalent.
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both bijections. A cycle of a bipartite bijection is a cycle of the induced digraph. Note

that a bipartite bijection consists of disjoint cycles. A random bipartite bijection is a

(uniform) random selection of a bipartite bijection from the set of all bipartite bijections.

The following result will prove useful for a later analysis.

Lemma 2. Fix sets I ′ and O′ with |I ′| = |O′| = m > 0, and a subset K ⊂ I ′∪O′, containing

a ≥ 0 vertices in I ′ and b ≥ 0 vertices in O′. The probability that each cycle in a random

bipartite bijection contains at least one vertex from K is

a+ b

m
− ab

m2
.

Proof. We begin with a few definitions. A permutation of X is a bijection f : X →
X. A cycle of a permutation is a cycle of the digraph induced by the permutation. A per-

mutation consists of disjoint cycles. A random permutation chooses uniform randomly

a permutation f from the set of all possible permutations. Our proof will invoke following

result:

Fact 1 (Lovasz (1979) Exercise 3.6). The probability that each cycle of a random permu-

tation of a finite set X contains at least one element of a set Y ⊂ X is |Y |/|X|.

To begin, observe first that a bipartite bijection h ◦ g induces a permutation of set I ′.

Thus, a random bipartite bijection defined over I ′×O′ induces a random permutation of I ′.

To compute the probability that each cycle of a random bipartite bijection h◦g contains at

least one vertex in K ⊂ I ′×O′, we shall apply Fact 1 to this induced random permutation

of I ′.

Indeed, each cycle of a random bipartite bijection contains at least one vertex in K ⊂
I ′ × O′ if and only if each cycle of the induced random permutation of I ′ contains either

a vertex in K ∩ I ′ or a vertex in I ′ \ K that points to a vertex in K ∩ O′ in the original

random bipartite bijection. Hence, the relevant set Y ⊂ I ′ for the purpose of applying Fact

1 is a random set that contains |K ∩ I ′| = a vertices of the former kind and Z vertices of

the latter kind.

The number Z is random and takes a value z, max{b−a, 0} ≤ z ≤ min{m−a, b}, with

probability:

Pr{Z = z} =

(
m−a
z

)(
a
b−z

)(
m
b

) .

This formula is explained as follows. Pr{Z = z} is the ratio of the number of bipartite

bijections having exactly z vertices in I ′ \K pointing toward K ∩ O′ to the total number

of bipartite bijections.
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Note that since we consider bipartite bijections, the number of vertices in I ′ pointing

to the vertices in K ∩ O′ must be equal to b. Focusing first on the numerator, we have

to compute the number of bipartite bijections having exactly z vertices in I ′ \K pointing

toward K ∩ O′ and the remaining b− z vertices pointing to the remaining K ∩ O′. There

are
(
m−a
z

)(
a
b−z

)
ways one can choose z vertices from I ′ \K and b− z vertices from K ∩ I ′.

Thus, the total number of bipartite bijections having exactly z vertices in I ′ \K that point

to K ∩ O′ is
(
m−a
z

)(
a
b−z

)
υ, where υ is the total number of bipartite bijections in which the

b vertices thus chosen point to the vertices in K ∩O′. This gives us the numerator. As for

the denominator, the total number of bipartite bijections having b vertices in I ′ pointing

to K ∩ O′ is
(
m
b

)
(the number of ways b vertices are chosen from I ′), multiplied by υ (the

number of bijections in which the b vertices thus chosen point to the vertices in K ∩ O′).
Hence, the denominator is

(
m
b

)
υ. Thus, we get the above formula.

Recall our goal is to compute the probability that each cycle of the random permutation

induced by the random bipartite bijection contains at least one vertex in the random set

Y , with |Y | = a + Z, where Pr{Z = z} =
(m−a

z )( a
b−z)

(m
b )

. Applying Fact 1, then the desired

probability is

E
[
|Y |
|I ′|

]
=

min{m−a,b}∑
z=max{b−a,0}

Pr{Z = z}a+ z

m

=
a

m
+

min{m−a,b}∑
z=max{b−a,0}

Pr{Z = z} z
m

=
a

m
+

min{m−a,b}∑
z=max{b−a,0}

(
m−a
z

)(
a
b−z

)(
m
b

) ( z
m

)

=
a

m
+

(
m− a
m
(
m
b

) ) min{m−a,b}∑
z=max{b−a,1}

(
a

b− z

)(
m− a− 1

z − 1

)

=
a

m
+

(
m− a
m
(
m
b

) )(m− 1

b− 1

)
=
a

m
+
b(m− a)

m2

=
a+ b

m
− ab

m2
,

where the fifth equality follows from Vandermonde’s identity. �
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2.2 Markov Chain Property of TTC

For any rooted forest Fi, let Ni = Ii ∪ Oi be its vertex set and ki = (kIi , k
O
i ) be the vector

denoting the numbers of roots on both sides, and use (Ni, ki) to summarize this information.

And let FNi,ki denote the set of all rooted forests having Ni as the vertex set and ki as the

vector of its root numbers.

Lemma 3. Given (Nj, kj), j = 1, ..., i, every (rooted) forest of FNi,ki is equally likely.

Proof. We prove this result by induction on i. Since for i = 1, by construction, the

trivial forest is the unique forest which can occur, this is trivially true for i = 1. Fix i ≥ 2,

and assume our statement is true for i− 1.

Fix Ni = Ii ∪Oi ⊂ Ni+1 = Ii+1 ∪Oi+1, and ki and ki+1. For each forest F ∈ FNi+1,ki+1
,

we consider a possible pair (F ′, φ) that could have given rise to F , where F ′ ∈ FNi,ki and φ

maps the roots of F ′ in Ii to its vertices in Oi as well as the roots of F ′ in Oi to its vertices

in Ii. In words, such a pair (F ′, φ) corresponds to a set Ni of agents and objects remaining

at the beginning of round i of TTC, of which kIi agents of Ii and kOi objects have lost their

favorite parties (and thus they must repoint to new partners in Ni under TTC in round i),

and the way in which they repoint to the new partners under TTC in round i causes a new

forest F to emerge at the beginning of round i + 1 of TTC. There are typically multiple

such pairs that could give rise to F .

We start by showing that each forest F ∈ FNi+1,ki+1
arises from the same number of

such pairs—i.e., that the number of pairs (F ′, φ), F ′ ∈ FNi,ki , causing F to arise does not

depend on the particular F ∈ FNi+1,ki+1
. To this end, for any given F ∈ FNi+1,ki+1

, we

construct all such pairs by choosing a quadruplet (a, b, c, d) of four non-negative integers

with a+ c = kIi and b+ d = kOi ,

(i) choosing c old roots from Ii+1, and similarly, d old roots from Oi+1,

(ii) choosing a old roots from Ii\Ii+1 and similarly, b old roots from Oi\Oi+1,

(iii) choosing a partition into cycles of Ni\Ni+1, each cycle of which contains at least one

old root from (ii),3

3Within round i of TTC, one cannot have a cycle creating only with nodes that are not roots in the

forest obtained at the beginning of round i. This is due to the simple fact that a forest is an acyclic graph.

Thus, each cycle creating must contain at least one old root. Given that, by definition, these roots are

eliminated from the set of available nodes in round i+ 1, these old roots that each cycle must contain must

be from (ii).
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(iv) choosing a mapping of the kIi+1 + kOi+1 new roots to Ni\Ni+1.4

Clearly, the number of pairs (F ′, φ), F ′ ∈ FNi,ki , satisfying the above restrictions de-

pends only on |Ii|, |Oi|, ki, ki+1, and |Ni+1| − |Ni|.5 We denote the number of such pairs

by β(|Ii|, |Oi|, ki; |Ni+1| − |Ni|, ki+1). Let φi = (φIi , φ
O
i ) where φIi is the random mapping

from the roots of Fi in Ii to Oi and φOi is the random mapping from the roots of Fi in Oi

to Ii. Let φ = (φI , φO) be a generic mapping of that sort. Since, conditional on Fi = F ′,

the mappings φIi and φOi are uniform, we get

Pr(Fi+1 = F |Fi = F ′) =
1

|Oi|k
I
i

1

|Ii|k
O
i

∑
φ

Pr(Fi+1 = F |Fi = F ′, φi = φ). (1)

Therefore, we obtain

Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki))

=
∑

F ′∈FNi,ki

Pr(Fi+1 = F, Fi = F ′|(N1, k1), ..., (Ni, ki))

=
∑

F ′∈FNi,ki

Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki), Fi = F ′) Pr(Fi = F ′|(N1, k1), ...., (Ni, ki))

=
1

|FNi,ki |
∑

F ′∈FNi,ki

Pr(Fi+1 = F |Fi = F ′)

=
1

|FNi,ki |
∑

F ′∈FNi,ki

1

|Oi|k
I
i

1

|Ii|k
O
i

∑
φ

Pr(Fi+1 = F |Fi = F ′, φi = φ)

=
1

|FNi,ki |
1

|Oi|k
I
i

1

|Ii|k
O
i

∑
F ′∈FNi,ki

∑
φ

Pr(Fi+1 = F |Fi = F ′, φi = φ)

=
1

|FNi,ki |
1

|Oi|k
I
i

1

|Ii|k
O
i

β(|Ii|, |Oi|, ki; |Ni+1| − |Ni|, ki+1), (2)

where the third equality follows from the induction hypothesis and the Markov property of

{Fj}, the fourth follows from (1), and the last follows from the definition of β and from the

fact that the conditional probability in the sum of the penultimate line is 1 or 0, depending

upon whether the forest F arises from the pair (F
′
, φ) or not. Note that this probability is

4Since, by definition, any root in F ∈ FNi+1,ki+1
does not point, this means that, in the previous round,

this node was pointing to another node which was eliminated at the end of that round.
5Recall that by definition of TTC, whenever a cycle creates, the same number of individuals and objects

must be eliminated in this cycle. Hence, |Oi+1| − |Oi| = |Ii+1| − |Ii| and |Ni+1| − |Ni| = 2|Ii+1| − |Ii|.
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independent of F ∈ FNi+1,ki+1
. Hence,

Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki), (Ni+1, ki+1))

=
Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki))

Pr(Fi+1 ∈ FNi+1,ki+1
|(N1, k1), ..., (Ni, ki))

=
Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki))∑

F̃∈FNi+1,ki+1
Pr(Fi+1 = F̃ |(N1, k1), ..., (Ni, ki))

=
1

|FNi+1,ki+1
|
, (3)

which proves that, given (Nj, kj), j = 1, ..., i, every rooted forest of FNi,ki is equally likely.

�

The next lemma then follows easily.

Lemma 4. Random sequence (Ni, ki) forms a Markov chain.

Proof. By (2) we must have

Pr((Ni+1, ki+1)|(N1, k1), ...., (Ni, ki)) =
∑

F∈FNi+1,ki+1

Pr(Fi+1 = F |(N1, k1), ...., (Ni, ki))

=
∑

F∈FNi+1,ki+1

1

|FNi,ki |
1

|Oi|k
I
i

1

|Ii|k
O
i

β(|Ii|, |Oi|, ki; |Ni+1| − |Ni|, ki+1).

Observing that the conditional probability depends only on (Ni+1, ki+1) and (Ni, ki), the

Markov chain property is established. �

The proof of Lemma 4 reveals in fact that the conditional probability of (Ni+1, ki+1)

depends on Ni) only through its cardinalities (|Ii|, |Oi|), leading to the following conclusion.

Let ni := |Ii| and oi := |Oi|.

Corollary 1. Random sequence {(ni, oi, kIi , kOi )} forms a Markov chain.

Proof. By symmetry, given (n1, o1, k
I
1, k

O
1 ), ..., (ni, oi, k

I
i , k

O
i ), the set (Ii, Oi) is chosen

9



uniformly at random among all the
(
n
ni

)(
o
oi

)
possible sets. Hence,

Pr((ni+1, oi+1, k
I
i+1, k

O
i+1)|(n1, o1, k

I
1, k

O
1 ), ...., (ni, oi, k

I
i , k

O
i ))

=
∑

(Ii,Oi):|Ii|=ni,|Oi|=oi

Pr{(ni+1, oi+1, k
I
i+1, k

O
i+1)|(n1, o1, k

I
1, k

O
1 ), ...., (ni, oi, k

I
i , k

O
i ), (Ii, Oi)}

× Pr
{

(Ii, Oi) | (n1, o1, k
I
1, k

O
1 ), ..., (ni, oi, k

I
i , k

O
i )
}

=

 ∑
(Ii,Oi):|Ii|=ni,|Oi|=oi

Pr{(ni+1, oi+1, k
I
i+1, k

O
i+1)|(n1, o1, k

I
1, k

O
1 ), ...., (Ii, Oi, k

I
i , k

O
i )}

 1(
n
ni

)(
o
oi

)
=

 ∑
(Ii,Oi):|Ii|=ni,|Oi|=oi

(Ii+1,Oi+1):|Ii+1|=ni+1,|Oi+1|=oi+1

Pr{(Ii+1, Oi+1, k
I
i+1, k

O
i+1)|(n1, o1, k

I
1, k

O
1 ), ...., (Ii, Oi, k

I
i , k

O
i )}


× 1(

n
ni

)(
o
oi

)
=

1(
n
ni

)(
o
oi

) ∑
(Ii,Oi):|Ii|=ni,|Oi|=oi

(Ii+1,Oi+1):|Ii+1|=ni+1,|Oi+1|=oi+1

Pr{(Ii+1, Oi+1, k
I
i+1, k

O
i+1)|(Ii, Oi, k

I
i , k

O
i )},

where the second equality follows from the above reasoning and the last equality follows

from the Markov property of {(Ii, Oi, k
I
i , k

O
i )}. The proof is complete by the fact that the

last line, as shown in the proof of Lemma 4, depends only on (ni+1, oi+1, k
I
i+1, k

O
i+1), (ni, oi, k

I
i , k

O
i )).

�

We are now in a position to obtain our main result:

Lemma 5. The random sequence (ni, oi) is a Markov chain, with transition probability given

by

pn,o;m := Pr{ni − ni+1 = oi − oi+1 = m|ni = n, oi = o}

=

(
m

(on)m+1

)(
n!

(n−m)!

)(
o!

(o−m)!

)
(o+ n−m).

Proof. We first compute the probability of transition from (ni, oi, k
I
i , k

O
i ) such that

kIi + kOi = κ to (ni+1, oi+1, k
I
i+1, k

O
i+1) such that kIi+1 = λI and kOi+1 = λO:

P(n, o, κ;m,λI , λO)

:= Pr
{
ni − ni+1 = oi − oi+1 = m, kIi+1 = λI , kOi+1 = λO | ni = n, oi = o, kIi + kOi = κ

}
.

This will be computed as a fraction Θ
Υ
. The denominator Υ counts the number of rooted

forests in the bipartite digraph with kIi roots in Ii and kOi roots in Oi where kIi + kOi = κ,
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multiplied by the ways in which kIi roots of Ii could point to Oi and kOi roots of Oi could

point to Ii.
6 Hence, letting f(n, o, kI , kO) denote the number of rooted forests in a bipartite

digraph (with n and o vertices on both sides) containing kI and kO roots on both sides.

Υ =
∑

(kI ,kO):kI+kO=κ

ok
I

nk
O

f(n, o, kI , kO)

=
∑

kI+kO=κ

ok
I

nk
O

(
n

kI

)(
o

kO

)
on−k

I−1no−k
O−1(nkO + okI − kIkO)

=
∑

kI+kO=κ

(
n

kI

)(
o

kO

)
on−1no−1(nkO + okI − kIkO)

=onno
(

2

(
n+ o− 1

κ− 1

)
−
(
n+ o− 2

κ− 2

))
.

The first equality follows from the fact that there are ok
I
nk

O
ways in which kI roots in Ii

point to Oi and kO roots in Oi could point to Ii. The second equality follows from Lemma

1. The last uses Vandermonde’s identity.

The numerator Θ counts the number of ways in which m agents are chosen from Ii and

m objects are chosen from Oi to form a bipartite bijection each cycle of which contains

at least one of κ old roots, and for each such choice, the number of ways in which the

remaining vertices form a spanning rooted forest and the λI roots in Ii+1 point to objects

in Oi \ Oi+1 and λO roots in Oi+1 point to agents in Oi \ Oi+1. To compute this, we first

compute

α(n, o, κ;m,λI , λO) =
∑

(kI ,kO):kI+kO=κ

β(n, o, kI , kO;m,λI , λO),

where β is defined in the proof of Lemma 3. In words, α counts, for any F with n−m agents

and o − m objects and roots λI and λO on both sides, the total number of pairs (F ′, φ)

that could have given rise to F , where F ′ has n agents and o objects with κ roots and φ

maps the roots to the remaining vertices. Following the construction in the beginning of

6Given that we have ni = n individuals, oi = o objects and kIi + kOi = κ roots at the beginning of

step i under TTC, one may think of this as the total number of possible bipartite digraph one may obtain

via TTC at the end of step i when we let kIi roots in Ii point to their remaining most favorite object and

kOi roots in Oi point to their remaining most favorite individual.

11



the proof of Lemma 3, the number of such pairs is computed as

α(n, o, κ;m,λI , λO)

:=
∑

a+b+c+d=κ

(
n−m
c

)(
o−m
d

)(
m

a

)(
m

b

)(
a+ b

m
− ab

m2

)
(m!)2mλI+λO

=(m!)2mλI+λO ×

( ∑
a+b+c+d=κ

(
n−m
c

)(
o−m
d

)(
m− 1

a− 1

)(
m

b

)

+
∑

a+b+c+d=κ

(
n−m
c

)(
o−m
d

)(
m

a

)(
m− 1

b− 1

)
−

∑
a+b+c+d=κ

(
n−m
c

)(
o−m
d

)(
m− 1

a− 1

)(
m− 1

b− 1

))

=(m!)2mλI+λO
(

2

(
n+ o− 1

κ− 1

)
−
(
n+ o− 2

κ− 2

))
.

The first equality follows from Lemma 2, along with the fact that there are (m!)2 possible

bipartite bijections between n −m agents and o −m objects, and the fact that there are

mλImλO ways in which new roots λI agents and λO objects) could have pointed to 2m

cyclic vertices (m on the individuals’ side and m on the objects’ side), and the last equality

follows from Vandermonde’s identity.

The numerator Θ is now computed as:

Θ =

(
n

m

)(
o

m

)
f(n−m, o−m,λI , λO)α(n, o, κ;m,λI , λO)

=

(
n

m

)(
o

m

)
f(n−m, o−m,λI , λO)(m!)2mλI+λO

(
2

(
n+ o− 1

κ− 1

)
−
(
n+ o− 2

κ− 2

))
.

=

(
n!

(n−m)!

)(
o!

(o−m)!

)
mλI+λOf(n−m, o−m,λI , λO)

(
2

(
n+ o− 1

κ− 1

)
−
(
n+ o− 2

κ− 2

))
.

Collecting terms, let us compute

P(n, o, κ;m,λI , λO) =
1

onno

(
n!

(n−m)!

)(
o!

(o−m)!

)
mλI+λOf(n−m, o−m,λI , λO).

A key observation is that this expression does not depend on κ, which implies that (ni, oi)

forms a Markov chain.

Its transition probability can be derived by summing the expression over all possible

(λI , λO)’s:

pn,o;m :=
∑

0≤λI≤n−m,0≤λO≤o−m

P (n, o, κ;m,λI , λO).
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To this end, we obtain:∑
0≤λI≤n−m

∑
0≤λO≤o−m

mλImλOf(n−m, o−m,λI , λO)

=
∑

0≤λI≤n−m

∑
0≤λO≤o−m

mλImλO
(
n−m
λI

)(
o−m
λO

)
×

(o−m)n−m−λ
I−1(n−m)o−m−λ

O−1((n−m)λO + (o−m)λI − λIλO)

=m

 ∑
0≤λI≤n−m

(
n−m
λI

)
mλI (o−m)n−m−λ

I

 ∑
1≤λO≤o−m

(
o−m− 1

λO − 1

)
mλO−1(n−m)o−m−λ

O


+m

 ∑
1≤λI≤n−m

(
n−m− 1

λI − 1

)
mλI−1(o−m)n−m−λ

I

 ∑
0≤λO≤o−m

(
o−m
λO

)
mλO(n−m)o−m−λ

O


−m2

 ∑
1≤λI≤n−m

(
n−m− 1

λI − 1

)
mλI−1(o−m)n−m−λ

I

 ∑
1≤λO≤o−m

(
o−m− 1

λO − 1

)
mλO−1(n−m)o−m−λ

O


=mon−mno−m−1 +mon−m−1no−m −m2on−m−1no−m−1

=mon−m−1no−m−1(n+ o−m),

where the first equality follows from Lemma 1, and the third follows from the Binomial

Theorem.

Multiplying the term 1
onno

(
n!

(n−m)!

)(
o!

(o−m)!

)
, we get the formula stated in the Lemma.

�

This last lemma concludes the proof of Theorem 1.

3 Discussion

We show how our result can be exploited in order to compute the expected number of

agents matched at a given stage of TTC given the the remaining number of individuals

and objects at the beginning of that round.

Consider an arbitrary mapping, g : I → O and h : O → I, defined over our finite sets I

and O. Note that such a mapping naturally induces a bipartite digraph with vertices I ∪O
and directed edges with the number of outgoing edges equal to the number of vertices, one

for each vertex. In this digraph, i ∈ I points to g(i) ∈ O while o ∈ O points to h(o) ∈ I.

Such a mapping will be called a bipartite mapping. A cycle of a bipartite mapping is

13



a cycle in the induced bipartite digraph, namely, distinct vertices (i1, o1, ...., ik−1, ok−1, ik)

such that g(ij) = oj, h(oj) = ij+1, j = 1, ..., k− 1, ik = i1. A random bipartite mapping

selects a composite map h◦g uniformly from a setH×G = IO×OI of all bipartite mappings.

Note that a random bipartite mapping induces a random bipartite digraph consisting of

vertices I ∪ O and directed edges emanating from vertices, one for each vertex. We say

that a vertex in a digraph is cyclic if it is in a cycle of the digraph.

The following lemma states the number of cyclic vertices in a random bipartite digraph

induced by a random bipartite mapping.

Lemma 6 (Jaworski (1985), Corollary 3). The number q of the cyclic vertices in a random

bipartite digraph induced by a random bipartite mapping g : I → O and h : O → I has an

expected value of

E[q] := 2

min{o,n}∑
i=1

(o)i(n)i
oini

,

and a variance of

8

min{o,n}∑
i=1

(o)i(n)i
oini

i− E[q]− E2[q],

where (x)j := x(x− 1) · · · (x− j − 1).

It is clear that at the beginning of the first round of TTC, if there are n agents and o

objects in the economy, the distribution of the number of individuals and objects assigned

is the same as that of q. Appealing to Theorem 1 we can further obtain that for any round

of TTC which begins with n agents and o objects remaining in the market, the number of

individuals and objects assigned has the same distribution as q. Hence, the first and second

moments of the number of individuals/objects matched at that round corresponds exactly

to those in the above lemma. Jaworski (1985) also shows that asymptotically (as o and n

grow) the expectation of q is
√

2π no
n+o

(1 + o(1)) while its variance is (4− π) 2no
n+o

(1 + o(1)).

Given the number n of individuals and o of objects available at the beginning of Stage t

of TTC, if we denote Xt the number of agents and objects matched at that stage, we have

that E[ Xt√
2π no

n+o

] converges to 1 as n grows while the variance of Xt√
2π no

n+o

converges to the

constant 4−π
π

.

Finally, Frieze and Pittel (1995) get a similar markov chain result for TTC but in a

Shapley-Scarf economy. Our result allows to compare the two Markov chains. Interestingly,

we can order the two chains in terms of likelihood ratio order To see this, let us recall the
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transition probabilities of the Markov chain obtained by Frieze and Pittel (1995):

p̂n;m =
n!

nm(n−m)!

m

n

By Theorem 1,we obtain (assuming n = o):

pn;m : = pn,n;m =

(
m

(n)2(m+1)

)(
n!

(n−m)!

)2

(2n−m)

=

(
n!

nm(n−m)!

)2(
m(2n−m)

n2

)
.

Let us compare the two distributions in terms of likelihood ratio order. Fix n ≥ 1 and

any m′ ≥ m. It is easy to check that

p̂n,m′

p̂n,m
=

nm(n−m)!

nm′(n−m′)!
m′

m

while
pn,m′

pn,m
=

(
nm(n−m)!

nm′(n−m′)!

)2
m′

m

2n−m′

2n−m
.

Now, observe that(
p̂n,m′

p̂n,m

)−1
pn,m′

pn,m
=

(
1

nm′−m

)(
(n−m)!

(n−m′)!

)
(2n−m′)
(2n−m)

=
(n−m)(n−m− 1)...(n−m′ + 1)

nm′−m
2n−m′

2n−m
≤ 1.

This proves that for any n, the distribution p̂n,· dominates pn,· in terms of likelihood ratio

order. One can prove prove an interesting implication of this result: for each t ≥ 1, the

probability that TTC stops before Round t is smaller than the probability that Shapley-

Scarf TTC stops before Round t. Put in another way, the random round at which TTC

stops is (first order) stochastically dominated by that at which the Shapley-Scarf TTC

stops.
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