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Efficiency and Stability in Large Matching Markets ∗

Yeon-Koo Che† Olivier Tercieux‡

July 30, 2015

Abstract

We study efficient and stable mechanisms in matching markets when the number of

agents is large and individuals’ preferences and priorities are drawn randomly. When

agents’ preferences are uncorrelated, then both efficiency and stability can be achieved

in an asymptotic sense via standard mechanisms such as deferred acceptance and top

trading cycles. When agents’ preferences are correlated over objects, however, these

mechanisms are either inefficient or unstable even in an asymptotic sense. We propose a

variant of deferred acceptance that is asymptotically efficient, asymptotically stable and

asymptotically incentive compatible. This new mechanism performs well in a counter-

factual calibration based on New York City school choice data.

JEL Classification Numbers: C70, D47, D61, D63.

Keywords: Large matching markets, Pareto efficiency, Stability, Fairness, Asymptotic

efficiency, and asymptotic stability.

1 Introduction

Assigning indivisible resources, such as housing, public school seats, employment contracts,

branch postings and human organs, is an important subject for modern market design. Two

central goals in designing such matching markets are efficiency and stability. Pareto efficiency

∗We are grateful to Ludovic Lelièvre, Charles Maurin and Xingye Wu for their research assistance and

to Eduardo Azevedo, Julien Combe, Olivier Compte, Tadashi Hashimoto, Yash Kanoria, Fuhito Kojima,

Scott Kominers, SangMok Lee, Bobak Pakzad-Hurson, Debraj Ray, Rajiv Sethi, and seminar participants

at Columbia; KAEA Conference, Maryland; NYC Market Design Workshop, NYU; PSE Market Design con-

ference, UCL; Warwick Micro Theory conference, Wisconsin; and WCU Market Design conference at Yonsei

University for helpful comments.
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means exhausting all gains from trade, a basic desideratum in any allocation problem. Sta-

bility means eliminating incentives for individuals to “block”—or circumvent—a suggested

assignment. Not only is stability crucial for the long-term sustainability of a market, as

pointed out by Roth and Sotomayor (1990), but it also guarantees a sense of fairness in elim-

inating so-called “justified envy.”1 For instance, in the school choice context, eliminating

justified envy means that no student would lose a school seat to another student with a lower

priority at that school.

Unfortunately, these two goals are incompatible (see Roth (1982)). Matching mechanisms

such as serial dictatorship and top trading cycles (henceforth, TTC) attain efficiency but fail

to be stable. Meanwhile, stable mechanisms such as Gale and Shapley’s deferred acceptance

algorithms (henceforth, DA) do not guarantee efficiency. In light of the impossibility of achiev-

ing both goals, the prevailing approach, particularly in the context of school choice, strives to

attain one objective with the minimum possible sacrifice of the other goal. For instance, DA

selects a stable matching that Pareto dominates all other stable matchings for the proposing

side (Gale and Shapley, 1962). Similarly, there is a sense in which TTC, which allows agents

to trade their priorities sequentially, satisfies efficiency at the minimal incidence of instabilities

(Abdulkadiroglu, Che, Pathak, Roth, and Tercieux, 2015).2

While the tradeoff between efficiency and stability is well understood, it remains unclear

how best to resolve the tradeoff when both goals are important. As noted above, the standard

approach is to attain one goal at the minimal sacrifice of the other. Whether this is the best

way to resolve the tradeoff is far from clear. For instance, one can imagine a mechanism that

is neither stable nor efficient but may be superior to DA and TTC because it involves very

little loss on either objective.

The purpose of the current paper is to answer these questions and, in the process, pro-

vide useful insights for practical market design. These questions remain outstanding because

existing analytical frameworks are driven primarily by “qualitative” notions of the two goals.

To progress, we therefore need to relax them “quantitatively.” Doing so requires imposing

some structure on the model. First, we consider markets that are “large” in the number of

1See Balinski and Sönmez (1999) and Abdulkadiroglu and Sonmez (2003). This fairness property may

be more important in applications such as school choice, where the supply side is under public control, so

strategic blocking is not a serious concern.
2This version of TTC was proposed by Abdulkadiroglu and Sonmez (2003): In each round, each agent

points to the most preferred (acceptable) object that remains in the market, and each object points to the agent

with the highest priority. A cycle is then formed, the agents involved in that cycle are assigned the objects they

point to, and the same procedure is repeated with the remaining agents and the remaining objects until the

market is exhausted. Abdulkadiroglu, Che, Pathak, Roth, and Tercieux (2015) shows that this version of TTC

is envy minimal in one-to-one matching in the sense that there is no efficient and strategy-proof mechanism

that entails a smaller set of blocking pairs than TTC (smaller in the set inclusion sense) for all preferences,

strictly so for some preferences.
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participants and in the number of object types. Large markets are clearly relevant in many

settings. For instance, in the US medical matching system, each year there are approximately

20,000 applicants for positions at 3,000 to 4,000 programs. In the New York City (NYC)

school choice, approximately 90,000 students apply each year to over 700 high school pro-

grams. Second, we assume that agents’ preferences are generated randomly according to some

reasonable distributions. Specifically, we consider a model in which each agent’s utility from

an object depends on a common component (that does not vary across agents) and an idiosyn-

cratic component that is independently drawn at random (and thus varies across the agents),

and the agents’ priorities over objects are drawn according to a distribution identically and

independently.3

Studying the limit properties of a large market with random preferences generated in this

way provides a framework for answering our questions. In particular, this framework enables

us to perform meaningful “quantitative” relaxations of the two desiderata: we can search

for mechanisms that are asymptotically efficient, in the sense that as the economy grows

large, with high probability (i.e., approaching one), the proportion of agents who would gain

discretely from a Pareto-improving assignment vanishes, and mechanisms that are asymp-

totically stable, in the sense that in a sufficiently large economy, with high probability, the

proportion of agents who would have justified envy toward a significant number of agents

vanishes.

Our findings are as follows. First, we find that the efficiency loss from DA and the stability

loss from TTC do not disappear when agents’ preferences for the objects are significantly

correlated. The potential inefficiencies of DA and instabilities of TTC are well known from

the existing literature; our novel finding here is that they remain “quantitatively” significant

(even) in a large market.

These findings can be explained in intuitive terms. Suppose that the objects come in

two tiers, high quality and low quality, and that every high-quality object is preferred to

every low-quality object by each agent regardless of his idiosyncratic preferences. In this case,

the (agent-proposing) DA has all agents compete first for every high-quality object before

they compete for a low-quality object. Such competition means that in a stable matching—

including agent-optimal stable matching—the outcome is dictated largely by how the objects

rank the agents and not by how the agents rank the objects. In other words, the competition

among agents entails significant welfare loss in the presence of the stability requirement.

Meanwhile, under TTC, with non-vanishing probability, a significant proportion of agents

who are assigned low-quality objects exhibit justified envy toward a significant number of

agents who obtain high-quality objects. The reason is that many of these latter agents obtain

3We discuss in Sections 6 and 7 how our results carry over to richer environments in which agents’ priorities

are correlated.
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high-quality objects through the trading of their priorities. Given the nature of TTC, they

have high priorities with the objects they are trading off, but they could well have very low

priorities with the objects they are trading in.

Taken together, these two findings have an important practical market design implication,

as they suggest that the standard approach of achieving one goal with a minimal sacrifice of

the other may not be the best.

Motivated by these results, we develop a new mechanism, called Deferred Acceptance with

Circuit Breaker (DACB), that is both asymptotically efficient and asymptotically stable. This

mechanism modifies DA to prevent participants from competing excessively. Specifically, all

agents are ordered in some manner (for instance, at random), and following that order, each

agent applies one at a time to the best object that has not yet rejected him,4 and the proposed

object accepts or rejects the applicant, much as in standard DA. If at any point, an agent

applies to an object that holds an application, one agent is rejected, and the rejected agent

in turn applies to the best object among those that have not rejected him. This process

continues until an agent makes a certain “threshold” number κ of offers for the first time.

Then, the stage is terminated at that point, and all tentative assignments up to that point

become final. The next stage then begins with the agent who was rejected at the end of the

last stage applying to the best remaining object and the number of proposals for that agent

being reset to zero. The stages proceed in this fashion until no rejection occurs.

This “staged” version of DA resembles standard DA except for one crucial difference: The

mechanism periodically terminates a stage and finalizes the tentative assignment up to that

point. The event triggering the termination of a stage is an agent reaching a threshold number

of offers. Intuitively, the mechanism activates a “circuit breaker” whenever the competition

“overheats” to an extent that places an agent at the risk of losing an object he ranks highly to

an agent who ranks it relatively lowly (more precisely, above the threshold rank). This feature

ensures that each object assigned at each stage goes to an agent who ranks it relatively highly

among the objects available at that stage.

Given the independent drawing of idiosyncratic shocks, the “right” κ is shown to be be-

tween log2(n) and n, where n is the number of agents. Given the threshold, the DACB

produces an assignment that is both asymptotically stable and asymptotically efficient. The

analytical case for this mechanism rests on limit analysis, but the mechanism performs well

even away from the limit. Our simulation shows that, even for a moderately large market

and a more general preference distribution, our mechanism performs considerably better than

DA in terms of utilitarian welfare and entails significantly less stability loss than efficient

mechanisms such as TTC.

4A version of DA in which offers are made according to a serial order was first introduced by McVitie and

Wilson (1971).
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One potential concern about this mechanism is its incentive property. While the mecha-

nism is not strategy proof, the incentive problem does not appear to be severe. A manipulation

incentive arises only when an agent is in a position to trigger the circuit breaker because the

agent may then wish to apply to some safer object instead of a more popular one that has a

high probability of rejecting him. The probability of this situation is one over the number of

agents assigned in the current stage, which is on the order of n; hence, with a sufficient number

of participants, the incentive issue is rather small. Formally, we show that the mechanism

induces truthful reporting as an ε-Bayes-Nash equilibrium.

Finally, another potential concern with this mechanism is the required bound on κ ≥
log2(n). In practice, applicants are often constrained to make a small number of applications,

possibly below log2(n) (a case in point is the high school assignment in NYC; see Section 6).

To address such a situation, we generalize our mechanism such that for each κ, the termination

of a stage is triggered only when at least j ≥ 1 agents have each made more than κ offers.

We provide a joint condition on (κ, j) that ensures that the generalized version of DACB is

both asymptotically stable and asymptotically efficient. In particular, the required κ can be

quite small for a sufficiently large j.

To study how our findings apply to a realistic market, we analyze the preference data

supplied by the New York City Department of Education for public high school assignment

during the 2009-2010 school year. Their main round (Round 2) employed a student-proposing

DA in which each applicant submits a rank-ordered list of up to 12 programs. We find that

the outcome of this mechanism is inefficient: on average, 4,139 students (out of 78,000) are

Pareto improvable with respect to the DA matching. TTC would eliminate inefficiency but,

according to our calibration, would entail 46,882 incidences of justified envy.5 This result

is consistent with our theoretical finding that the tradeoffs do not disappear when the two

prominent mechanisms are employed in a large market. Our calibration of DACB finds a range

of different outcomes that spans alternative ways of balancing the tradeoff. For instance, a

DACB with (κ, j) = (4, 2000) reduces the incidences of justified envy to 7,512 while keeping

the number of Pareto-improvable students at 2,033.

The DACB mechanism bears some resemblance to features observed in popular real-world

matching algorithms. The “staged termination” feature is present in the school assignment

program in China (Chen and Kesten (2014)). More important, the feature that prohibits an

5These figures are broadly in line with Abdulkadiroglu, Pathak, and Roth (2009)’s analysis of the 2006-

2007 choice data, which finds that approximately 5,800 students would be made better off from a Pareto

improvement on the DA matching. They also show that if these students were assigned via an efficient

mechanism (unlike the DA mechanism), then approximately 35,000 students would have justified envy. Note

that their efficient matching does not coincide with TTC. Instead, Abdulkadiroglu, Pathak, and Roth (2009)

produce efficient matching by first running DA and then running a Shapley-Scarf TTC based on the DA

assignment.
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agent from “outcompeting” another over an object that the former ranks lowly but the latter

ranks highly is present in the truncation of participants’ choice lists, which is practiced in

most real-world implementations of DA. Our large market result could provide a potential

rationale for this practice that is common in the actual implementation of DA but has thus

far been difficult to rationalize (see Haeringer and Klijn (2009), Calsamiglia, Haeringer, and

Klijn (2010), Pathak and Sömez (2013) and Ashlagi, Nikzad, and Romm (2015)).

The present paper is connected with several strands of literature. First, it is related to

the literature that studies large matching markets, particularly those with a large number of

object types and random preferences; see Immorlica and Mahdian (2005), Kojima and Pathak

(2008), Lee (2014), Knuth (1997), Pittel (1989), Ashlagi, Braverman, and Hassidim (2014),

Ashlagi, Kanoria, and Leshno (2013) and Lee and Yariv (2014). The first three papers are

largely concerned with the incentive issues arising in DA. The last five papers are concerned

with the ranks of the partners achieved by the agents on the two sides of the market under DA.

Among them, Ashlagi, Braverman, and Hassidim (2014), Ashlagi, Kanoria, and Leshno (2013)

and Lee and Yariv (2014) address the large market efficiency performance of DA, and their

relationship with the current paper will be discussed more fully below. Unlike these papers,

our paper considers not only DA but also other mechanisms and adopts broader perspectives

concerning both efficiency and stability.6

2 Model

A finite set of agents are assigned a finite set of objects, at most one object for each agent.

Because our analysis will involve studying the limit of a sequence of such finite economies

as they become large, it is convenient to index the economy by its size n. An n-economy

En = (In, On) consists of agents In and objects On, where |In| = |On| = n. The assumption

that these sets are of equal size is purely for convenience. Provided that they grow at the

same rate, our results hold even if the sets are not of equal size. For much of the analysis, we

suppress the superscript n for notational convenience.

6Another strand of literature studying large matching markets considers a large number of agents matched

with a finite number of object types (or firms/schools) on the other side; see Abdulkadiroglu, Che, and Yasuda

(2015), Che and Kojima (2010), Kojima and Manea (2010), Azevedo and Leshno (2011) and Che, Kim, and

Kojima (2013), among others. The assumption of a finite number of object types enables one to use a

continuum economy as a limit benchmark in these models. This feature makes substantial differences for

both the analysis and the insights. The two strands of large matching market models capture issues that are

relevant in different real-world settings and thus complement one another.
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2.1 Preliminaries

Throughout, we will consider a general class of random preferences that allows for a positive

correlation among agents on the objects. Specifically, each agent i ∈ In receives utility from

obtaining object type o ∈ On:

Ui(o) = U(uo, ξi,o),

where uo is a common value, and the idiosyncratic shock ξi,o is a random variable drawn

independently and identically from [0, 1] according to the uniform distribution.7

The common values take finite values {u1, ..., uK} such that u1 > ... > uK , and for each

n-economy, the objects On are partitioned into tiers, {On
1 , ...., O

n
K}, such that each object

in tier On
k yields a common value of uk to the agent who is assigned it. (With a slight

abuse of notation, the largest cardinality K also denotes the set of indexes.) We assume that

the proportion of tier-k objects, |On
k |/n, converges to xk > 0 such that

∑
k∈K xk = 1. We

sometimes use the notation O≥k to denote the set of objects in ∪`≥kO`. Similarly, O≤k denotes

the set of objects in the complement of O≥k+1. One can imagine an alternative model in which

the common value is drawn randomly from {u1, ..., uK} according to some distribution that

may converge to {x1, ..., xK} as n → ∞. Such a treatment will yield the same results as the

current treatment, which can be regarded as considering each realization of such a random

drawing.

We further assume that the function U(·, ·) takes values in R+, is strictly increasing in the

common value and idiosyncratic shock and is continuous in the latter. The utility of remaining

unmatched is assumed to be 0, which implies that each agent finds all objects acceptable.8

Next, the priorities agents have with different objects—or objects’ “preferences” over

agents—are drawn uniform randomly. Formally, we assume that individual i achieves a pri-

ority score:

Vi(o) = V (ηi,o),

at object o ∈ O, where idiosyncratic shock ηi,o is a random variable drawn independently and

identically from [0, 1] according to the uniform distribution. This assumption simplifies the

analysis. Although restrictive, this assumption captures a class of plausible circumstances

under which a tradeoff between the two objectives persists and can be addressed more ef-

fectively by a novel mechanism. More importantly, we discuss in Sections 6 and 7 how we

can generalize the mechanism when there is significant correlation in the agents’ priorities.

The function V (·) takes values in R+ and is strictly increasing and continuous. The utility of

7This assumption is without loss of generality provided that the type distribution is atom-less and bounded,

as one can always focus on the quantile corresponding to the agent’s type as a normalized type and redefine

the payoff function as a function of the normalized type.
8This feature does not play a crucial role in our results, which hold provided that a linear fraction of

objects are acceptable to all agents.
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remaining unmatched is assumed to be 0, which implies that all objects find all individuals

acceptable.

Fix an n-economy. We will consider a class of matching mechanisms that are Pareto

efficient. A matching µ in an n-economy is a mapping µ : I → O∪{∅} with the interpretation

that agent i with µ(i) = ∅ is unmatched. In addition, µ(i) 6= µ(j) for any j 6= i, whenever

µ(i) 6= ∅ or µ(j) 6= ∅. Let M denote the set of all matchings. All of these objects depend on

n, although their dependence is suppressed for notational convenience.

A matching mechanism is a function that maps states to matchings, where a state ω =

({ξi,o, ηi,o}i∈I,o∈O) consists of the realized profile {ξi,o}i∈I,o∈O of the idiosyncratic component of

agents’ payoffs and the realized profile {ηi,o}i∈I,o∈O of agents’ priorities with the objects. With

a slight abuse of notation, we will use µ = {µω(i)}ω∈Ω,i∈I to denote a matching mechanism,

which selects a matching µω(·) in state ω. The set of all states is denoted by Ω. LetM denote

the set of all matching mechanisms. For convenience, we will often suppress the dependence

of the matching mechanism on ω.

Note that matching mechanisms depend on cardinal preferences/priorities in our model,

whereas standard mechanisms such as top trading cycles and deferred acceptance depend only

on ordinal preferences and priorities. Obviously, cardinal preferences/priorities induce ordinal

preferences/priorities, and the current treatment clearly encompasses these mechanisms. We

focus on cardinal utilities and priorities to operationalize the asymptotic notions of efficiency

and stability. Our results do not depend on the particular cardinalization of utilities.

2.2 Welfare and Fairness Notion in Large Markets

A matching µ ∈M is Pareto efficient if there is no other matching µ′ ∈M such that Ui(µ
′(i)) ≥

Ui(µ(i)) for all i ∈ I and Ui(µ
′(i)) > Ui(µ(i)) for some i ∈ I. A matching mechanism µ ∈ M

is Pareto efficient if, for each state ω ∈ Ω, the matching it induces, i.e., µω(·), is Pareto

efficient. Let M∗
n denote the set of all Pareto-efficient mechanisms in the n-economy. A

matching µ at a given state is stable if there is no pair (i, o) such that Ui(o) > Ui(µ(i)) and

Vo(i) > Vo(µ(o))—i.e., a pair wish to match with each other rather than their partners in

matching µ. A matching mechanism µ ∈ M is stable if, for each state ω ∈ Ω, the matching

it induces, i.e., µω(·), is stable.

Throughout, we will invoke the following implication of Pareto efficiency.

Lemma 1 (Che and Tercieux (2015b)). For any sequence of Pareto-efficient matching mech-

anisms {µn}, ∑
i∈I Ui(µ

n(i))

|I|
p−→

K∑
k=1

U(uk, 1).
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Notice that the right-hand side gives the (normalized) total utility that would be obtained

if all agents attained the highest possible idiosyncratic value; hence, it is the utilitarian upper

bound. The lemma states that the aggregate utilities agents enjoy in any Pareto-efficient

mechanism approach that bound in probability as n→∞.

We next suggest how efficiency and stability can be weakened in the large market setting.

We say that a matching mechanism µ is asymptotically efficient if, for any ε > 0 and for

any mechanism µ′ that Pareto dominates µ:

|Iε(µ′|µ)|
n

p−→ 0,

where

Iε(µ
′|µ) := {i ∈ I|Ui(µ(i)) < Ui(µ

′(i))− ε}

is the set of agents who would benefit more than ε by switching from µ to µ′. In words, a

matching is asymptotically efficient if the fraction of agents who could benefit discretely from

any Pareto-improving rematching vanishes in probability as the economy becomes large.

The notion of stability can be weakened in a similar way. We say that a matching mecha-

nism µ is asymptotically stable if, for any ε > 0:

|Jε(µ)|
n(n− 1)

p−→ 0,

where

Jε(µ) := {(i, o) ∈ I ×O|Ui(o) > Ui(µ(i)) + ε and Vo(i) > Vo(µ(o)) + ε}

is the set of ε-blocks—namely, the set of pairs of an unmatched agent and an object who

would each gain ε or more from matching with one another rather than matching according to

µ. Asymptotic stability requires that for any ε > 0, the fraction of these ε-blocks as a share of

all n(n−1) “possible” blocking pairs vanishes in probability as the economy grows large. It is

possible even in an asymptotically stable matching that some agents may be willing to ε-block

with a large number of objects, but the number of such agents will vanish in probability.

This can be stated more formally. For any ε > 0, let Ôi
ε(µ) := {o ∈ O|(i, o) ∈ Jε(µ)} be the

set of objects agent i can form an ε-block with against µ. Then, a matching is asymptotically

stable if and only if the set of agents who can form an ε-block with a non-vanishing fraction

of objects vanishes in probability, i.e., for any ε, δ > 0:

|Iε,δ(µ)|
n

p−→ 0,

where

Iε,δ(µ) :=

{
i ∈ I

∣∣∣∣|Ôi
ε(µ)| ≥ δn

}
.
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If, as is plausible in many circumstances, agents form ε-blocks by randomly sampling a finite

number of potential partners (i.e., objects), asymptotic stability would mean that only a

vanishing proportion of agents will succeed in finding blocking partners in a large market.

A similar implication can be drawn in terms of fairness. Asymptotic stability of matching

implies that only a vanishing proportion of agents would have (a discrete amount of) justified

envy toward a non-vanishing proportion of agents. If an individual becomes aggrieved from

justifiably envying, for example, someone from a random sample of finite agents (e.g., friends

or neighbors), then the property will guarantee that only a vanishing fraction of individuals

will suffer significant aggrievement as the economy grows large.

2.3 Two Prominent Mechanisms

As mentioned above, the existing literature and school choice programs in practice center on

the following two mechanisms, and the tradeoff between the two will be an important part of

our inquiry.

� Top Trading Cycles (TTC) Mechanism:

The Top Trading Cycles algorithm, originally introduced by Shapley and Scarf (1974)

and later adapted by Abdulkadiroglu and Sonmez (2003) to the context of strict priorities,

has been an influential method for achieving efficiency.9 The mechanism has some notable

applications. For instance, the TTC mechanism was used until recently to assign students to

public high schools in the New Orleans school system, and recently, the San Francisco school

system announced plans to implement a TTC mechanism. A generalized version of TTC is

also used for kidney exchange among donor-patient pairs with incompatible donor kidneys

(see Sonmez and Unver (2011)).

The TTC algorithm (defined by Abdulkadiroglu and Sonmez (2003)) proceeds in multiple

rounds as follows. In Round t = 1, ...,, each individual i ∈ I points to his most preferred

object (if any). Each object o ∈ O points to the individual who has the highest priority with

that object. Because the numbers of individuals and objects are finite, the directed graph

thus obtained has at least one cycle. Every individual who belongs to a cycle is assigned

the object at which he is pointing. The assigned individuals and objects are then removed.

The algorithm terminates when all individuals have been assigned; otherwise, it proceeds to

Round t+ 1.

This algorithm terminates in finite rounds. Indeed, there are finite individuals, and at least

one individual is removed at the end of each round. The TTC mechanism selects a matching

via this algorithm for each realization of individuals’ preferences and objects’ priorities.

As is well known, the TTC mechanism is Pareto efficient and strategy proof (i.e., it is a

9The original idea is attributed to David Gale by Shapley and Scarf (1974).
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dominant strategy for agents to report their preferences truthfully) but not stable.

� The Deferred Acceptance (DA) Mechanism

The best-known mechanism for attaining stability is the deferred acceptance algorithm.

Since introduced by Gale and Shapley (1962), the mechanism has been applied widely in a

variety of contexts. The medical matching system in the US and other countries adopt DA for

assigning doctors to hospitals for residency programs. The school systems in Boston and New

York City use DA to assign eighth-grade students to public high schools (see Abdulkadiroglu,

Pathak, and Roth (2005) and Abdulkadiroglu, Pathak, Roth, and Sonmez (2005)). College

admissions are organized via DA in many provinces in Australia.

For our purpose, it is more convenient to define DA as proposed by McVitie and Wilson

(1971), proceeding in multiple steps as follows:

Step 0: Linearly order individuals in I.

Step 1: Let individual 1 make an offer to his favorite object in O. This object tentatively

holds individual 1; go to Step 2.

Step i ≥ 2: Let individual i make an offer to his favorite object o in O from among the

objects to which he has not yet made an offer. If o does not have a tentatively accepted agent,

then o tentatively accepts i. If i = n, end the algorithm; otherwise, iterate to Step i + 1. If,

however, o has a tentatively accepted agent—call him i∗—object o chooses between i and i∗

and tentatively accepts the one with the higher priority (or who is more preferred by o) and

rejects the other. The rejected agent is named i, and we return to the beginning of Step i.

Note that the algorithm iterates to Step i + 1 only after all offers made in Step i are

processed and there are no more rejections. The algorithm terminates in n Steps, with finite

offers having been made. the DA mechanism selects a matching via this process for each

realization of individuals’ preferences and objects’ priorities.

As is well known, the (agent-proposing) DA mechanism selects a stable matching that

Pareto dominates all other stable matchings, and it is also strategy proof (Dubins and Freed-

man (1981); Roth (1982)). However, the DA matching is not Pareto efficient, meaning that

the agents may all be better off under another matching (which is not stable).

3 Efficiency and Stability with Uncorrelated Preferences

We first consider the case in which the participants’ preferences for the objects are uncorre-

lated. That is, the support of the common component of the agents’ utilities is degenerate,

with a single tier K = 1 for the objects. This case has been considered extensively in the com-

puter science literature (Wilson (1972), Pittel (1989), Pittel (1992), Frieze and Pittel (1995),
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Knuth (1997)). In particular, for DA, those papers characterize the asymptotics of the ranks

of individuals and objects under DA. Specifically, let RDA
i be the rank of individual i under

DA, i.e., RDA
i = ` if i obtains his `th most favorite object under DA. Similarly, we define RDA

o

to be the rank of object o under DA. We will repeatedly utilize the following results.

Lemma 2 (Pittel (1989, 1992)). In the uncorrelated case,

Pr

{
max
i∈I

RDA
i ≤ log2(n)

}
→ 1 as n→∞.

In addition, for any δ > 0,

Pr

{
1

n

∑
o∈O

RDA
o ≤ (1 + δ)

n

log(n)

}
→ 1 as n→∞.

In the uncorrelated preferences case, both DA and TTC involve little tradeoff:

Theorem 1. If K = 1 (i.e., agents’ preferences are uncorrelated), then any Pareto-efficient

mechanism, and hence TTC, is asymptotically stable, and DA is asymptotically efficient.10

Proof. The asymptotic stability of a Pareto-efficient mechanism follows from Lemma

1, which implies that for any ε > 0, the proportion of the set Iε(µ̃) of agents who realize

payoffs less than U(u1, 1) − ε in any Pareto-efficient matching mechanism µ̃ ∈ M∗
n vanishes

in probability as n→∞. Because Iε,δ(µ̃) ⊂ Iε(µ̃), asymptotic stability then follows.

The asymptotic efficiency of DA is shown as follows. Let E1 be the event that all agents

are assigned objects that they rank within log2(n). By Lemma 2, the probability of that event

goes to 1 as n→∞. Now, fix any small ε > 0 and let E2 be the event that all agents would

receive a payoff greater than U(u1, 1)− ε from each of their top log2(n) objects. Because for

any δ > 0, log2(n) ≤ δ|O1| = δn for a sufficiently large n, by Lemma 3-(i) in Appendix A, the

probability of that event goes to 1 as n→∞. Clearly, whenever both events occur, all agents

will receive a payoff greater than U(u1, 1) − ε under DA. As the probability of both events

occurring goes to 1, the DA mechanism is asymptotically efficient.11 �

It is worth noting that the tradeoffs of the two mechanisms do not disappear qualitatively

even in large markets: DA remains inefficient and TTC remains unstable even as the market

10It is worth noting that the result of the theorem holds regardless of the objects’ priorities. Hence, there

is no need here to draw these randomly.
11Our notion of efficiency focuses on one side of the market: the individuals’ side. It is worth noting here

that even if we were to focus only on the other side, the objects’ side, asymptotic efficiency would still follow

from the second part of Lemma 2 despite our use of a DA in which individuals are the proposers (see the proof

of Proposition 1 for a formal argument). This also implies that under a DA in which schools are the proposers,

in our environment (in which priorities are drawn randomly), asymptotic efficiency on the individual side can

be achieved. Thus, any stable mechanism is asymptotically efficient in this context.
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grows large. In fact, given random priorities on the objects, the acyclicity conditions required

for the efficiency of DA and stability of TTC according to Ergin (2002) and Kesten (2006),

respectively, fail almost surely as the market grows large. What Theorem 1 suggests is that

the tradeoff disappears quantitatively, provided that the agents have uncorrelated preferences.

Uncorrelated preferences mean that the conflicts that agents may have over the goods

disappear as the economy grows large, as each agent is increasingly able to find an object that

he likes that others do not like. This, in turn, implies that the agents can attain high payoffs,

in fact, arbitrarily close to their payoff upper bound as n → ∞ under DA. This eliminates

(probabilistically) the possibility that a significant fraction of agents can be made discretely

better off from rematching, thus explaining the asymptotic efficiency of DA. Similarly, under

TTC, the agents enjoy payoffs that are arbitrarily close to their payoff upper bound as n→∞,

which guarantees that the number of agents who each would justifiably envy a significant

number of agents vanishes in the large market.

4 Efficiency and Stability under General Preferences

We now consider our main model in which agents’ preferences are correlated. In particular,

we assume that some objects are regarded by “all” agents as better than the other objects.

This situation is common in many contexts such as school assignment, as schools have distinct

qualities that students and parents care about in a similar fashion.

To consider such an environment in a simple way, we suppose that the objects are divided

into two tiers O1 and O2 such that |I| = |O1| + |O2| = n. As assumed above, limn→∞
|Ok|
n

=

xk > 0. Our arguments in this section generalize in an obvious way to a case with more

than two tiers. In addition, we assume that every agent considers each object in O1 to be

better than each object in O2: U(u1, 0) > U(u2, 1). In the school choice context, for instance,

this feature corresponds to a situation in which students agree on the preference rankings

over schools across different districts but may disagree on the rankings of schools within each

district. Agents’ priorities with objects are given by idiosyncratic random shocks, as assumed

above.

In this environment, we will show that the standard tradeoff between DA and TTC extends

to large markets even in the asymptotic sense—namely, DA is not asymptotically efficient and

TTC is not asymptotically stable.

4.0.1 Asymptotic Instability of TTC

Our first result is that, with correlated preferences, TTC fails to be asymptotically stable.

13



Theorem 2. In our model with two tiers, TTC is not asymptotically stable. More precisely,

there exists ε > 0 such that:
|Jε(TTC)|
n(n− 1)

p

6→ 0.

We provide the main idea of the proof here; the full proof is in Appendix B. In essence,

the asymptotic instability of TTC arises from the key feature of this mechanism. In TTC,

agents attain efficiency by “trading” among themselves the objects at which they have high

priorities. This process entails instabilities because an agent could have a very low priority

with an object and yet could obtain it if he has a high priority with an object that is demanded

by another agent who has a high priority with the former object. This insight is well known

but provides little information on the magnitude of the instabilities. Recall, for instance, that

instabilities are not significant in the case in which agents’ preferences are uncorrelated. In

that case, the agents’ preferences do not conflict with one another, and they all attain close

to their “bliss” payoffs in TTC, resulting in only a vanishing number of agents with justifiable

envy toward any significant number of agents.

The case is different, however, when their preferences are correlated. In the two-tier case,

for instance, a large number of agents are assigned objects in O2, and they would all envy

the agents who are assigned objects in O1. The asymptotic stability of the mechanism then

depends on whether a significant number of the latter agents (those assigned objects in O1)

would have lower priorities (with the objects they obtain) relative to the former agents who

envy them.

This latter question boils down to the length of the cycles through which the latter agents

(who are assigned the objects in O1) are assigned in the TTC mechanism. Call a cycle of

length two—namely, an agent points to an object, which in turn points back to that agent—a

short cycle and any cycle of length greater than two a long cycle.

Intuitively, the agents who are assigned via short cycles are likely to have high priorities

with their assigned objects.12 By contrast, the agents who are assigned via long cycles are

unlikely to have high priorities. Agents in the long cycles tend to have high priorities with

the objects they trade up (because the objects must have pointed to them), but they could

have very low priorities with the objects they trade in. For instance, in Figure 1, agent i

need not have a high priority with b, although agent j does. In fact, their priorities with

the objects they are assigned play no (contributory) role in the formation of such a cycle.13

12This is obvious for the agents assigned in the first round, as they have the highest priorities. However,

even those assigned in later rounds are likely to have high priorities provided that they are assigned via short

cycles: Lemma 1 implies that almost all agents are assigned within a number of steps in TTC that is sub

linear—i.e., small relative to n, meaning that those assigned via short cycles tend to have relatively high

priorities.
13If anything, the role of their priorities is negative. That an agent is assigned via a long cycle, as opposed
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Figure 1: Possible justified envy by k toward j

Hence, their priorities with the objects they are assigned (in O1) are at best simple iid draws,

and hence each of them has at most a one-half probability of having a higher priority than an

agent assigned an object in O2. This suggests that any agent assigned an object in O2 will

have on average a significant amount of justified envy toward one-half of those agents who are

assigned objects in O1 via long cycles. In Figure 1, agent k (who is assigned an object in O2)

has probability 1/2 of having a higher priority with b than agent i.

The crucial part of the proof of Theorem 2 is to show that the number of agents assigned O1

via long cycles is significant—i.e., the number does not vanish in probability as n→∞. While

this result is intuitive, its proof is not trivial. By an appropriate extension of “random mapping

theory” (see Bollobas (2001, Chapter 14)), we can compute the expected number of objects

in O1 that are assigned via long cycles in the first round of TTC. However, this is insufficient

for our purpose because the number of objects that are assigned in the first round of TTC

(which is on the order of
√
n) comprises a vanishing proportion of n as the market becomes

large. However, extending the random mapping analysis to the subsequent rounds of TTC is

difficult because the distribution of the preferences and priorities of the agents remaining after

the first round depends on the specific realization of the first round of TTC. In particular,

their preferences for the remaining objects in O1 are no longer iid. This conditioning issue

requires a deeper understanding of the precise random structure through which the algorithm

evolves over rounds. We do this in Che and Tercieux (2015a). In particular, we establish that

the number of objects (and thus of agents) assigned in each round of TTC follows a simple

Markov chain, implying that the number of agents cleared in each round is not subject to

the conditioning issue.14 However, the composition of the cycles, in particular short versus

to a short cycle, means that she does not have the highest priority with the object she receives in that round.
14The Markov Chain result is of independent interest and likely to be useful beyond the current paper. For
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long cycles, is subject to the conditioning issue. Nevertheless, in the Supplementary Material

S.1, we are able to bound the number of short cycles formed in each round of TTC, and this

bound, combined with the Markov property of the number of objects assigned in each round,

produces the result.

4.0.2 Asymptotic Inefficiency of DA

Given correlated preferences, we also find that the inefficiency of DA is significant in the large

market:

Theorem 3. In our two-tier model, DA is not asymptotically efficient. More precisely, there

exist ε > 0 and a matching µ that Pareto dominates DA in each n-economy15 such that:

|Iε(µ|DA)|
|I|

p

6→ 0.

as n→∞.

Corollary 1. Any stable matching mechanism fails to be asymptotically efficient in our

two-tier model.

Proof. The DA matching Pareto dominates all other stable matchings, as shown by

Gale and Shapley (1962). Hence, any matching µ that Pareto dominates DA and satisfies the

property stated in Theorem 3 will Pareto dominate any stable matching and satisfy the same

property. �

The proof of Theorem 3 is in the Supplementary Material S.2; we explain its intuition

here. When the agents’ preferences are correlated, agents tend to compete excessively for the

same set of objects, and this competition results in a significant welfare loss under a stable

mechanism. To see this intuition more clearly, recall that all agents prefer every object in

O1 to any object in O2. This means that in the DA, they all first apply for objects in O1

before they ever apply for any object in O2. The first phase of the DA (in its McVitie-Wilson

version) is then effectively a sub-market consisting of I agents and O1 objects with random

preferences and priorities. As there are excess agents of size |I| − |O1|, which grows linearly

in n, even those agents who are fortunate enough to be assigned objects in O1 must have

competed to the extent that they have suffered a significant welfare loss.16

instance, given the number of agents and objects remaining at a given stage of TTC, we explicitly derived

the formula for the distribution of the number of agents matched at that step. This formula can be used to

analyze the welfare of agents under TTC even for a finite economy.
15Recall that the dependence of the matching µ that Pareto dominates DA on the n-economy is suppressed

for notational simplicity.
16This result is obtained by Ashlagi, Kanoria, and Leshno (2013) and Ashlagi, Braverman, and Hassidim
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Indeed, note that each of the agents who is eventually assigned an object in O2 must have

made |O1| offers to the objects in O1 before he/she is rejected by all of them. This means that

each object in O1 must receive at least |I| − |O1| offers. Then, from an agent’s perspective, to

be assigned an object in O1, he must survive competition from at least |I|− |O1| other agents.

The odds of this equal 1
|I|−|O1| , as the agents are all ex ante symmetric. Hence, the odds that

an agent is rejected by his top δn choices, for small enough δ > 0, is at least(
1− 1

|I| − |O1|

)δn
→
(

1

e

) δ
(1−x1)

, (1)

because |I|−|O1|
n
→ (1−x1) as n→∞. Note that this probability approaches one as δ becomes

sufficiently small. This probability is not conditional on whether an agent is assigned an

object in O1, and clearly the probability is 1, conditional on the agent not being assigned

any object in O1. However an agent is assigned an object in O1 with positive probability

(i.e., approaching x1 > 0), and hence for the unconditional probability of an agent making at

least δn offers to be close to one, the same event must occur with positive probability even

conditional on being assigned an object in O1. As shown more precisely in Appendix S.2,

therefore, even those agents who are fortunate enough to be assigned objects in O1 have a

non-vanishing chance of suffering a significant number of rejections before they are assigned.

These agents will therefore attain payoffs that are, on average, bounded away from U(u1, 1).

This outcome is inconsistent with asymptotic efficiency. To see this, suppose that, once

objects are assigned through DA, the Shapley-Scarf TTC is run with their DA assignment

serving as the agents’ initial endowment. The resulting reassignment Pareto dominates the

DA assignment. Further, it is Pareto efficient. Then, by Lemma 1, with probability going to

1, a fraction arbitrarily close to 1 of agents assigned to O1 enjoy payoffs arbitrarily close to

U(u1, 1) when the market grows large. This implies that a significant number of agents will

enjoy a significant welfare gain from a Pareto-dominating reassignment.

It is worth emphasizing that in the presence of systematic correlation in agents’ preferences,

DA, or equivalently stability, forces the agents to compete with one another so intensively as

to entail significant welfare loss. This observation serves as a key motivation for designing a

new mechanism that, as we show next, is asymptotically efficient and asymptotically stable.

(2014) building on the algorithm originally developed by Knuth, Motwani, and Pittel (1990) and Immorlica

and Mahdian (2005). Here, we provide a direct proof that is much simpler. This proof is sketched here and

detailed in Appendix S.2.
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5 Deferred Acceptance with Circuit Breaker

As we just saw, two of the most prominent mechanisms fail to find matchings that are asymp-

totically efficient and asymptotically stable. Is there a mechanism that satisfies both proper-

ties? In the sequel, we propose a new mechanism that satisfies both desiderata.17 To be more

precise, we define a class of mechanisms indexed by some integer κ (allowed to be ∞). For

a given κ, the new mechanism then modifies (the McVitie-Wilson version of) DA to finalize

tentative assignments whenever an agent has made κ offers for the first time. We will show

how κ can be chosen to achieve our goal. For further applicability, we next generalize the

mechanism such that the assignment is triggered when a certain number j ≥ 1 of agents have

each made κ offers. For expositional clarity, we begin with the simplest version and present

the generalized version in a second step.

5.1 Basic Algorithm

Given a value κ, the DA with Circuit Breaker (DACB) begins by collecting agents’ preference

rankings of objects. Next, the agents are given serial orders: 1, . . . n. We do not specify how

the serial orders of the agents are determined, except to assume that they admit basic

uncertainty from the agents’ perspective: for each k = 1, ..., n, the probability that any agent

i receives the serial order k goes to zero as n→∞. This property holds trivially if the agents’

serial orders are chosen randomly according to the uniform distribution but holds much more

generally, for instance, even when an agent could anticipate this distribution to some extent

based on his priorities.

Given the agents’ preference rankings and serial orders, DACB with κ is defined recursively

on triplets: Î and Ô, the sets of remaining agents and objects, respectively, and a counter for

each agent that records the number of offers an agent makes. We first initialize Î = I and

Ô = O and set the counter for each agent to zero.

Step i ≥ 1: The agent with index i (i.e., i-th lowest serial order) in Î makes an offer to his

favorite object o in Ô among the objects to which he has not yet made an offer. The counter

for that agent increases by one. If o is not tentatively holding any agent, then o tentatively

holds the agent that made the offer. In this case, if the index of the agent who made an offer

is equal to |Î|, end the algorithm. If o is already holding an agent tentatively, it tentatively

17The feasibility of attaining both asymptotic efficiency and asymptotic stability can be seen directly

by appealing to the Erdös-Renyi theorem. Exploiting this theorem, one can construct a mechanism that is

asymptotically efficient and asymptotically stable. However, this mechanism would not be desirable for several

reasons. In particular, as we discuss in the Supplementary Material S.3, it would not have good incentive

properties. By contrast, the mechanism that is proposed here does have a good incentive property, as we show

below.
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accepts the agent who is higher on its priority list and rejects the other. There are two cases

to consider.

1. If the counter for the agent who has made an offer is greater than or equal to κ, then

each agent who is tentatively assigned an object in Steps 1, ..., i is assigned that object.

Reset Ô to be the set of unassigned objects and Î to be the set of unassigned agents.

Reset the counter for the agent rejected at step i to zero. If Î is non-empty, return to

Step 1; otherwise, terminate the algorithm.

2. If the counter for the agent who has made an offer is strictly below κ, then if he made

an offer to an unmatched object, we move to Step i + 1; otherwise, we return to the

beginning of Step i where—instead of the agent with serial order i—the agent rejected

by o makes an offer.

The Steps 1, ..., i, taken until a threshold κ is reached, are called a Stage. Specifically, a

Stage begins whenever Ô is reset, and the Stages are numbered 1, 2, .... serially. Each Stage

has finite Steps, and there will be finite Stages. This algorithm modifies the McVitie and

Wilson (1971) version of DA such that tentative assignments are periodically finalized.

The DACB mechanism encompasses a broad spectrum of mechanisms depending on the

value of κ. If κ = 1, then each Stage consists of one Step, wherein an agent acts as a dictator

with respect to the objects remaining at that Stage. Hence, with κ = 1, the DACB reduces to

a serial dictatorship mechanism with the predetermined serial order. A serial dictatorship is

efficient but obviously fails to satisfy (even asymptotic) stability because it completely ignores

the agents’ priorities with the objects. By contrast, if κ = +∞, then the DACB mechanism

coincides with the DA mechanism. As demonstrated above, DA is stable but fails to be

asymptotically efficient. Thus, intuitively, κ should be sufficiently large to allow agents to

make enough offers (otherwise, we would not achieve asymptotic stability) but sufficiently

small to avoid excessive competition by the agents (otherwise, the outcome would not be

asymptotically efficient).

The next theorem provides the relevant lower and upper bounds on κ to ensure that the

DACB mechanism attains both asymptotic efficiency and asymptotic stability.

Theorem 4. If κ(n) ≥ log2(n) and κ(n) = o(n), then DACB is asymptotically efficient and

asymptotically stable.18

Theorem 4 shows that DACB is superior to DA and TTC in large markets when the

designer cares about both (asymptotic) efficiency and (asymptotic) stability.

18Recall that κ(n) = o(n) means that limn→∞
κ(n)
n = 0
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Roughly speaking, the idea of DACB is to endogenously segment the market into “bal-

anced” submarkets. To appreciate this idea, consider a thought experiment wherein the

designer partitions agents (for example, randomly) into K groups with the number of agents

Ik in group k = 1, ..., K set equal to |Ok|; the designer then runs DA separately for each sub-

market consisting of Ik and Ok. Lemma 2 then implies that, with high probability,19 all except

for a vanishing fraction of agents would enjoy idiosyncratic payoffs and priorities arbitrarily

close to the upper bounds in each submarket. Asymptotic efficiency and asymptotic stability

would thus follow. In particular, the segmentation avoids the significant welfare loss that

would result from excessive competition for top-tier objects under DA (without segmenta-

tion). In practice, however, such a precise segmentation would be difficult to achieve because

the designer would not know the exact preference structure of the agents; for instance, the

designer would not know exactly which set of objects belongs to the top tier, which set belongs

to the second tier, and so forth. Moreover, such an exogenous segmentation could be highly

susceptible to possible misspecification of segments by the designer. DACB, with its periodic

clearing of markets, achieves the necessary segmentation of the market endogenously, without

exact knowledge on the part of the designer.

How the segmentation works under DACB—namely the proof of Theorem 4 (available

in Appendix C)—is explained as follows. First, as κ(n) is sublinear in n, with probability

approaching one as n → ∞, all agents find their κ(n) most preferred objects to be in O1

(a fact proven in Appendix A). Therefore, all first |O1| agents in terms of serial order would

compete for objects in O1. Because κ(n) ≥ log2(n), Theorem 2 implies that, with high

probability, the first |O1| Steps of DACB would proceed without the threshold κ(n) being

reached by any agent, meaning that with high probability, the first |O1| Steps would proceed

precisely the same as if DA were run on the “hypothetical” submarket consisting of the first

|O1| agents and the objects O1. It then follows that with high probability, the entire O1 would

be assigned without triggering the termination of the first Stage. In addition, all agents

involved up to that step (except for a vanishing fraction) would enjoy idiosyncratic payoffs

and priorities arbitrarily close to the upper bounds, exactly as in the hypothetical balanced

submarket.

Next comes Step |O1| + 1. By then, with high probability, all objects in O1 are assigned,

and hence given the first observation, some agent up to that point must be rejected at least

κ(n) times before the Step |O1|+1 concludes, and thus the end of Stage 1 must be triggered at

that Step. Since, with high probability, all objects’ payoffs are arbitrarily close to the upper

bound by the end of Step |O1|, this must also be the case by the end of Step |O1|+ 1 because

these objects will have received even more offers. Further, by definition, all the |O1|+1 agents

(except for one) participating in this stage will be matched to one of their κ(n) top choices.

19For a sequence of events En, we say that this sequence occurs with high probability if Pr(En) converges

to 1 as n goes to infinity.
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Because κ(n) is sublinear in n, by the end of Stage 1, these agents will still receive payoffs

arbitrarily close to the maximum achievable when matched to O1 objects (this is proven in

Appendix A). Although the first stage is likely to end at Step |O1|+ 1 and thus involves one

more agent than the number of objects, the resulting market is “approximately” balanced, and

the competition among agents is still moderate because of the offer bound κ(n).20 The same

observation applies to the subsequent Stages, suggesting that a segmentation of the market

into balanced submarkets would emerge endogenously under DACB.

Several remarks are in order on the parameter κ(n). Unlike the exogenous segmentation,

the threshold κ(n) does not depend on the precise tier structure of the objects and thus can be

implemented without knowing it. Second, there is a fairly broad range of κ(n) that produces

asymptotic efficiency and asymptotic stability. This means that the performance of DACB is

robust to the possible misspecification of κ(n) on the part of the designer. Third, the precise

range of κ(n) will certainly depend on the preference structure, which may depart from that

assumed in our model, but, as we illustrate in Section 6, it can be fine-tuned to a specific

market based on a careful study of its data.

One potential drawback of DACB is that it is not strategy proof. In particular, the agent

who is eventually unassigned at each Stage may wish to misreport his preferences by including

among his κ-best ranked objects a “safe” item that is outside his top κ favorite objects but is

unlikely to be popular with other agents. Such misreporting could benefit the agent because

the safe item would not have received any other offer and thus would accept him, whereas

truthful reporting could leave him unassigned at that stage and result in the agent receiving

a worse object.21

20Ashlagi, Kanoria, and Leshno (2013) show that a small imbalance of only one agent is enough to increase

the average rank enjoyed by the agent from the order of log n to n/ log(n). While even the latter rank will

give rise to a high payoff in our setup, the first stage of DACB differs from the DA with a small imbalance.

Due to the bound on the offer, the maximal rank to be enjoyed by the agent is κ, which differs from n/ log(n)

in general.
21This observation can be made precise. Suppose that there are four agents and four objects. Agent 1

prefers o1 most and o2 second most, but he has the lowest priority with each of these two objects. Agent 1’s

third most preferred object is o3, but he enjoys the highest priority with that object. Agents 2 and 3 rank

o2 and o3, respectively, at the top of their preference lists, while agent 4 ranks o1 first. Consider DACB with

κ = 2 for this economy.

Suppose first all agents report truthfully, including agent 1. One can verify that agent 1 triggers the end

of Stage 1 and is assigned o4. Specifically, in the first three Steps, agents 1, 2, and 3 apply to o1, o2 and o3,

respectively, and are tentatively accepted by them. In Step 4, agent 4 applies to o1, which keeps him and

rejects agent 1. Agent 1 then applies to o2 and is rejected, at which point Stage 1 ends. In Stage 2, agent 1

is assigned object o4. Suppose next agent 1 misreports by ranking o3 among his two most favorite objects.

Then, he can guarantee himself o3. In sum, agent 1 benefits from misreporting his preference, suggesting that

truthful reporting is not a Bayes-Nash equilibrium behavior. Nevertheless, we argue below that in the large

economy, truthful reporting is a ε-Bayes-Nash equilibrium.
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However, the odds of becoming such an agent is roughly one over the number of agents

assigned in the stage; hence for an appropriate choice of κ and given the basic uncertainty

over one’s serial order, the odds are very small from the perspective of each agent in a large

economy. Hence, the incentive problem with the DACB is not very serious. To formalize

this idea, we study the Bayesian game induced by DACB. In this game, the set of types

for each agent corresponds to his vector of cardinal utilities, i.e., {Ui(o)}o∈O, or equivalently,

ξi := {ξi,o}o∈O. These values are drawn according to the distributions assumed thus far. The

underlying informational environment is Bayesian: each agent only knows his own preferences,

labeled his “type,” and knows the distribution of others’ preferences and the distribution of

priorities (including his own).

DACB is an ordinal mechanism, i.e., it maps profiles of ordinal preferences reported by

the agents and agents’ priorities with objects into matchings. In the game induced by DACB,

the set of actions by agent i of a given type ξi is the set of all possible ordinal preferences the

agent may report. A typical element of that set will be denoted Pi. Each type ξi induces an

ordinal preference that we denote Pi = P (ξi). This is interpreted as the truthful report of

agent i of type ξi. Given any ε > 0, truth-telling is an interim ε-Bayes-Nash equilibrium if,

for each agent i, each type ξi and any possible report of ordinal preferences P ′i , we have

E [Ui(DACBi(P (ξi), ·)) | ξi] ≥ E [Ui(DACBi(P
′
i , ·)) | ξi]− ε,

where Ui(DACB(Pi, .)) denotes the utility that i receives when he reports Pi.

Theorem 5. Fix any ε > 0. Then, under DACB with κ(n) ≥ log2(n) and κ(n) = o(n), there

exists N > 0 such that for all n > N , truth-telling is an interim ε-Bayes-Nash equilibrium.

Proof. See Supplementary Material S.5. �

Thus far, the informational environment assumes that each agent only knows his own

preferences. One could assume further that the agent’s private information contains some

additional information such as his priorities. In such a case, agent i’s type would be a pair

(ξi, ηi) := ({ξi,o}o∈O, {ηi,o}o∈O). Note that DACB still has good incentive properties even in

this richer context. Indeed, given any κ(n) (i.e., κ(n) ≥ log2(n) and κ(n) = o(n)), for any

ε > 0, it is an ex ante ε-Bayes-Nash equilibrium to report truthfully when the number of

agents is large enough.22

To see this, fix k = 1, ..., K and agent with serial order i ∈ {|O≤k−1| + 2, ..., |O≤k| + 1}
(with the convention that |O≤0| + 2 = 1 and |O≤K | + 1 = n). As argued from Theorem 4,

given truthful reporting by all agents, the agent is assigned one of his κ(n) most preferred

22Truthful reporting means reporting one’s true preferences irrespective of one’s priorities. Such a behavior

is an ex ante ε-Bayes-Nash equilibrium if for any ε > 0, the gain from deviating from that behavior is less

than ε ex ante (i.e., prior to the realization of preferences and priorities) for an n that is sufficiently large.
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objects in Ok—and hence enjoys a payoff arbitrarily close to U(uk, 1)—with high probability.

Further, given truthful reporting by the other agents, with high probability, Stage k′ < k

ends before agent i takes his turn, irrespective of his behavior. These two facts imply that a

deviation from truthful behavior cannot make the deviating agent ε-better off in ex ante terms

for sufficiently large n. Hence, truthful reporting is an ex ante ε-Bayes-Nash equilibrium. This

does not imply that all types (ξi, ηi) have incentives for reporting truthfully, but it does imply

that almost all types of agents will have incentives for truth-telling.

5.2 Extended Algorithm

In many real-world matching mechanisms, applicants are allowed or willing to list only a small

number of objects. A case in point is the NYC school choice, which is the field application

considered in the next section. In such cases, our lower bound on κ(n) stated in Theorem 4

may in some instances be too large. Hence, we consider a generalization of our mechanism

under which a significantly smaller lower bound can be achieved.

The new version of DACB collects preference rankings from agents and assigns them

serial orders in the same manner as before. However, it is indexed by two integers j and κ.

Termination of a Stage is now triggered whenever there are j individuals, each having made

at least κ offers. Specifically, in Step i ≥ 1, if i makes an offer to an object that is already

tentatively assigned, then we return to the beginning of Step i if and only if strictly fewer than

j individuals have each made at least κ offers. In other words, we allow up to j−1 individuals

to make more than κ offers before the circuit breaker is activated. Obviously, when j = 1,

we return to our original version of DACB. Under this version of DACB indexed by j(n) and

κ(n) (where n is the size of the market), we obtain the following result.

Theorem 6. If lim infn→∞
j(n)κ(n)
n log(n)

> 1 and j(n) and κ(n) are o(n), then DACB is asymptot-

ically efficient and asymptotically stable.

Proof. See the Supplementary Material S.6. �

Remark 1. Theorem 4 is not a special case of Theorem 6. Indeed, for j(n) = 1, the above

theorem gives n log(n) as a lower bound on κ(n), which is obviously much greater than log2(n)

and, more generally, has no bite because, trivially, agents rank at most n objects. Theorem 6

is therefore useful only for a sufficiently large j. Finally, the arguments in the proof of each

of these two results are distinct.

The new feature of DACB with (κ, j), j � 1, is that among those taking turns in Stage

k, up to j agents will likely fail to receive objects in Ok. However, as the market grows large,

j becomes very small relative to the number of agents assigned during that Stage. Hence,

given (a suitable generalization of) basic uncertainty regarding the serial order, each agent
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finds the odds of being one of such agents or unmatched negligible in the large economy. This

feature ensures that the extended algorithm retains the same desirable incentive properties as

the basic algorithm. Specifically, in the Supplementary Material S.6, we show that Theorem

5 extends to DACB with (κ, j), satisfying the condition of Theorem 6 (see Theorem S4).

5.3 Relationship with the Chinese Mechanism

One implication of DACB is that the agents who receive bad (i.e., high) serial orders are ex-

cluded from competing for popular objects assigned in early stages. Accordingly, the outcome

can be unfavorable to such agents. Note, however, that this feature is not unique to DACB

but is rather common when transfers cannot be used: a common allocation method such as

(random) serial dictatorship has a similar issue. This fairness issue can be addressed at least

from the ex ante perspective by randomizing serial orders across agents. Recall also that this

feature of DACB is what contributes significantly to the overall welfare, as shown by Theorem

4.

Could one harness the central feature of DACB without sacrificing ex post equal opportu-

nity for all agents? Consider the modification of DACB-(κ, j) with j =∞, such that in each

stage, only those agents having made fewer than κ offers are assigned and those rejected more

than κ times are sent to the next stage.23 Such a mechanism ensures equal (ex post) access

to all objects by all agents in each stage but limits competition, much like DACB.

Remarkably, this mechanism coincides with a matching procedure observed in practice,

most notably in college admissions in China (see Chen and Kesten (2014)). Chinese provinces

assign university seats based on a “staged” version of DA in which in each stage, all agents

(who are not assigned in the previous stages) participate in a DA algorithm but with their

rank-ordered list truncated to κ. Although potentially appealing from an ex post fairness

standpoint, one drawback of the Chinese mechanism is that a significant number—of the

same order as the market size—of applicants are unassigned, which means that each partic-

ipant faces a significant incentive to manipulate preferences by moving up safe items in his

preference list. By contrast, such an incentive problem is absent in our DACB because the

likelihood that a participant active in a given stage will be unassigned is extremely remote.24

Despite the incentive problem, we believe that the Chinese mechanism possesses the desir-

able characteristics of DACB and could very well exhibit a similar asymptotic property in

equilibrium.25

23By contrast, in the extended DACB algorithm, as many as j−1 agents may continue to make offers after

κ rejections without triggering the end of a stage.
24Recall that only one agent is unassigned at the end of each stage.
25It remains an open question, both theoretically and empirically, how students would react to the strategic

environment of the Chinese mechanism.
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6 Field Application: NYC School Choice

Thus far, we have considered a large one-to-one matching market (in the limiting sense) with

a class of random preferences and priorities. Real-world markets may depart from this model;

for instance, school choice involves many-to-one matching, and the size of the market may not

be very large. In particular, for finite many-to-one matching markets, the tradeoff between

efficiency and stability may not disappear. Nevertheless, it is interesting to assess whether

DACB could offer a more desirable compromise on the tradeoff between efficiency and stability

in a real-world market. We explore this question using NYC school choice data.

In New York City, each year approximately 90,000 middle school students (mostly 8th

graders) are assigned to over 700 public high school programs through a centralized match-

ing process. The process involves multiple rounds, but the main round, Round 2, employs

the deferred acceptance algorithm to assign participants to programs in several categories:

screened, limited unscreened, unscreened, ed-op, zoned and audition.26 The participants in

the main round are allowed to submit a rank-ordered list (ROL) of up to 12 programs, and

each program ranks applicants who included it in their ROL according to its priority criteria,

which depend on the type of the program. The priorities are coarse for many programs, and

ties are broken by a single (uniform) lottery for all programs.

Our analysis focuses on the 2009-2010 assignment. That year, 78,112 students (out of

83,127 total participants) and 652 programs participated in Round 2. We calibrate the per-

formances of DACB with several (κ, j)s against the current NYC algorithm and TTC as

benchmarks. As detailed in the Appendix, the constraint on the ROLs in the mechanism

limits the observed data in a way that also has some implications for what we can learn from

our calibration exercises. In particular, with DACB, the data restriction limits the range

of DACBs that can be calibrated. We therefore consider a generalized DACB mechanism

indexed by (κ, j), where κ = 2, 4, 6 and j = 1, 1000, 2000, 3000, 4000. For instance, DACB

with (k, j) = (4, 2000) means that whenever 2,000 students in the data apply to more than

4 schools in the McVitie-Wilson DA, we trigger termination of a Stage and finalize tentative

assignment in that stage.

Even for κ < 12, the data limitation prevents us from iterating the stages of DACB after

the applicants exhaust their 12 choices.27 This means that calibration will understate the

26Assignment to the so-called specialized “exam” schools is processed through the first round, which takes

place before the main round. Since 2010, the first round and the main round have been merged into a single

round, but the process for the main round remains unchanged.
27We envision DACB to be run in such a way that after each stage, the applicants who are not assigned

are allowed to rank up to an additional κ programs that are still available. It is possible that in such a

program, students may apply to more programs than they are allowed to in the current system. As noted

in the Supplementary Material S.8, applicants who are not assigned during the main round rank additional

programs in the third round under the current system.
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Table 1: The efficiency and stability of alternative algorithms (random serial order for DACB)

DA DACB-(6, 1000) DACB-(4, 2000) DACB-(2, 1000) TTC

# Pareto improvable 4158.7 (55.18) 3656.07 (75.85) 1720.12 (44.37) 192.04 (35.57) 0

# blocking pairs 0 2029 (249.97) 14927.82 (219.17) 43163.87 (224.78) 46881.53 (263.04)

# assigned to top choice 35200.87 (53.67) 35508.12 (62.49) 36783.78 (53.24) 37651.72 (51.51) 38090.25 (36.58)

# unassigned 8458.21 (29.31) 8561.81 (30.15) 9235.7 (45.90) 9797.46 (47.12) 9693.7 (31.31)

# better off than DA 0 1894.89 (219.28) 10164.06 (103.18) 14167.5 (101.52) 8172.15 (74.16)

# worse off than DA 0 904.36 (112.79) 6364.12 (78.66) 10601.58 (80.74) 3807.07 (39.88)

Note: Each algorithm was run with independent draws of lotteries and its preference is averaged.29

Standard errors in parentheses.

Table 2: The efficiency and stability of alternative algorithms (priority-based serial order for

DACB)

DA DACB-(6, 1000) DACB-(4, 2000) DACB-(2, 1000) TTC

# Pareto improvable 4158.7 (55.18) 3791.35 (59.65) 2033.07 (50.01) 332.76 (29.71) 0

# blocking pairs 0 560.5 (78.17) 7512.37 (160.16) 32178.85 (704.14) 46881.53 (263.04)

# assigned to top choice 35200.87 (53.67) 35389.37 (58.30) 36543.19 (53.41) 37687.69 (53.30) 38090.25 (36.58)

# unassigned 8458.21 (29.31) 8542.79 (28.40) 8808.26 (33.00) 9236.57 (35.48) 9693.7 (31.31)

# better off than DA 0 746.02 (89.63) 5043.38 (91.14) 9220.86 (91.43) 8172.15 (74.16)

# worse off than DA 0 356.38 (42.97) 2791.32 (49.14) 5546.36 (59.97) 3807.07 (39.88)

Note: Each algorithm was run with independent draws of lotteries and its preference is averaged.

Standard errors in parentheses.

performance of DACB. In addition, the data limitation causes our calibration to potentially

overstate the efficiency performance of DA and the stability of TTC, thus understating the

magnitude of the tradeoff between efficiency and stability.28 Consequently, the results below

can be interpreted as conservative estimates of the tradeoff between DA and TTC and the

benefits achievable from DACB.

Tables 1 and 2 describe average performances of alternative algorithms according to various

measures.30 Table 1 considers DACBs in which the serial order of applicants is drawn at

28The reason is that under the truncated DA, an agent may not list a popular choice that he/she is unlikely

to obtain. Moreover, as we describe in the Supplementary Material S.8, our data do not contain a student’s

priority at a school he/she does not include in his/her ROL; to run TTC, therefore, we assume that a student

has a low priority at the schools he/she does not rank. This treatment likely understates the number of

blocking pairs under TTC.
30The average here is taken over 100 independent draws of a single lottery used to break ties in schools’
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random. Table 2 considers DACBs in which the serial order of the applicants is chosen to

reflect their average priorities with the programs; specifically, an agent with a higher average

priority has a lower serial order in the DACB.31

The first row describes, for each mechanism, the average number of students who would be

better off from a Pareto-improving reassignment of the original outcome using the Shapley-

Scarf TTC. The larger this number is, the more inefficient the matching is, and the number is

zero for an efficient matching algorithm such as TTC. Hence, this number can be interpreted

as a measure of inefficiency. The second row counts the number of blocking pairs arising

from alternative algorithms. Obviously, DA admits no blocking pairs. As expected, TTC

admits the largest number of blocking pairs. DACB provides a compromise between DA

and TTC, yielding higher efficiency than DA and a smaller number of blocking pairs than

TTC. As expected, the efficiency of DACB grows as κ falls, while its stability increases as κ

increases. The next two rows present the number of applicants assigned to their top choice

and the number of students who are not matched (by Round 2). The last two rows display

the numbers of students who would be better off and worse off than under DA, respectively,

when matching mechanism changes from DA to the mechanism in question. The difference

between the two would offer another measure of efficiency gain relative to DA.

A comparison of Tables 1 and 2 shows that the second method of determining the serial

order performs better in stability without sacrificing efficiency. This is intuitive: choosing

the serial order to reflect applicants’ average priority standing reduces justified envy while

maintaining the benefit of suppressing excessive competition. This result suggests how one

might construct a serial order in an environment in which applicants’ priorities are unlikely

to be iid.

Ultimately, DACB adds many new options to the designer’s arsenal of policy tools. Figures

2 and 3 depict the range of ways to resolve the tradeoff between efficiency and stability via

DACB for various combinations of (κ, j). As before, the agents’ serial orders used in DACBs

are chosen at random (this is referred to as Rule 0) in Figure 2, whereas they are determined

by the applicants’ average priorities (referred to as Rule 1) in Figure 3. In these figures,

efficiency (the vertical axis) is measured as the percentage of agents who cannot be made

better off using the Pareto-improving reallocation, while stability (the horizontal axis) is

priorities.
31Specifically, for each applicant, we compute his average priority (after the tie-breaking lottery is drawn)

among all schools that rank him. We then order the applicants in the order of their average ranks. Under

the current regime, in which an applicant receives a rank only from a program he applies to, this method

of determining a serial order creates an incentive for an applicant to boost his serial order by strategically

selecting the set of schools to which he applies. However, this problem does not arise if each program assesses

priorities for all students whether they applied to that program or not, and this is how we envision DACB

would be implemented.
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measured as the percentage of student and school pairs that do not form blocks.32
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Figure 2: Alternative ways to resolve the tradeoff between efficiency and stability (Rule 0).

Note: The shape of each coordinate corresponds to κ, while the associated integer refers to parameter j.

Not surprisingly, DA and TTC occupy the southeast and northwest extreme corners, re-

spectively, in each figure. In between the two, DACB with various (κ, j) values spans a rich

array of compromises between the objectives. The “frontier” is outside the linear segment

between DA and TTC, suggesting that the outcomes of DACB are superior to a simple con-

vexification of DA and TTC. These outcomes provide a rich set of new choices from which

a policy maker can choose. A careful study of data, as illustrated here, could help a policy

maker to tailor the design of DACB to fit his/her sense of the social weighting of the two

objectives.

32Specifically, efficiency is defined as 1− # of Pareto-improvable agents
# of total agents

where the # of Pareto-improvable

agents corresponds to the number of agents who are better off when running Shapley-Scarf TTC on top of

DA. As for stability, our percentage is defined by 1− # of blocking pairs
# of all pairs

where the # of all pairs corresponds

to the sum across all students of the number of acceptable schools minus 1.
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Figure 3: Alternative ways to resolve the tradeoff between efficiency and stability (Rule 1).

Note: The shape of each coordinate corresponds to κ, while the associated integer refers to parameter j.

7 Concluding Remarks

The current paper studied the tradeoff between efficiency and stability—two desiderata in

market design—in large markets. The two standard design alternatives, Gale and Shapley’s

deferred acceptance (DA) and top trading cycles (TTC), each satisfy one property but fail to

satisfy the other. Considering a plausible class of situations in which individual agents have

preferences drawn randomly according to common and idiosyncratic shocks and priorities

drawn in an iid fashion, we show that these failures—the inefficiency of DA and instability of

TTC—remain significant even in large markets.

We then propose a new mechanism, deferred acceptance with a circuit breaker (DACB),

which modifies DA to keep agents from competing excessively for over-demanded objects—a

root cause of DA’s significant efficiency loss in a large market. Specifically, the proposed

mechanism builds on McVitie and Wilson’s version of DA in which agents make offers one at

a time along a predetermined serial order. However, during the process, whenever an agent

makes a certain threshold number of offers for the first time, the process is stopped, and what

had been a tentative assignment up to that point is finalized; thereafter, a new stage of the

serialized process is begun with the remaining agents and objects; this process is repeated
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until all agents are processed. We show that DACB with suitably chosen parameters (κ, j)

achieves both efficiency and stability in an approximate sense as the economy grows large,

and it induces truth-telling in an ε-Bayes-Nash equilibrium.

Although our analytical model is not without restriction, our calibration work based on

the NYC school choice data shows that the inefficiencies of DA and instabilities of TTC

are significant and that DACB offers viable compromises on the tradeoff between efficiency

and stability. In addition, the numerous simulations we performed confirm that the main

results hold well beyond the setting we study and in particular for market sizes that are quite

moderate. In that respect, it is interesting to compare our results with those obtained by Lee

and Yariv (2014). They show that stable mechanisms are asymptotically efficient if the agents’

priorities have common shocks distributed continuously over an interval. By contrast, Ashlagi,

Kanoria, and Leshno (2013) and the current paper note that DA is likely to be asymptotically

inefficient when there is competition among agents for a desirable object—either because

of a scarcity of objects (when there is imbalance) or because of a positive correlation in

agents’ preferences. Indeed, our simulation in the Supplementary Material S.7 shows that the

inefficiency of DA vanishes very slowly even in the environment of Lee and Yariv (2014) and

that the magnitude of the difference between DACB and DA can be considerable for realistic

market sizes. Recall also our analysis of NYC school choice, which shows that DA entails a

significant efficiency loss compared with DACB.33 Finally, and potentially more important,

our result regarding the asymptotic efficiency and asymptotic stability of DACB is robust to

the introduction of market imbalances, which is not the case for DA.

Further, some of our results can be extended to work beyond the setting that we considered.

One assumption made in the paper is that agents’ priority scores with alternative objects are

uncorrelated. As illustrated in the calibration work, the serial order of agents in DACB can

be easily extended to possible correlation in the priorities accorded to agents. Specifically,

if priorities are drawn randomly from a class of distributions allowing for both common and

idiosyncratic components, and if the designer knows the tier structure, then one can choose

the serial order of agents under DACB such that it is consistent with the tier structure.34 The

asymptotic efficiency and stability of DACB would then be preserved. While the tier structure

may not always be easily identified, for a practical application of DACB, the serial order of

agents can be fine-tuned toward the detailed features of the market in question. For instance,

the serial order can be chosen to reflect the priorities of the schools that are demanded most.35

33See also Che and Tercieux (2015b) for a discussion of the inefficiencies of DA in the Lee and Yariv (2014)

environment, particularly compared with standard efficient mechanisms.
34That is, agents in tiers with higher common values would be ranked before agents in tiers with lower

common values.
35If the priorities of the schools are largely given by the standardized test scores, the test scores will form

a natural serial order. In the absence of such a universal priority criterion, one could average a student’s

priorities at alternative schools and use that average priority to determine a serial order.
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Our calibration from the field data reveals that such a method could appreciably improve the

performance of DACB.

Another important design parameter of DACB is the threshold number of offers that

triggers assignment. Here, again, it can be optimized relative to the detailed features of the

market in question. While theoretical results show that DACB achieves an asymptotically

efficient and stable outcome when the market grows arbitrarily large, for a finite market,

there will always remain some (potentially small) trade-off between the two objectives. Our

calibration work shows that DACB offers a range of possible compromises between efficiency

and stability depending on the specific value of the trigger chosen by the designer. Thus, the

serial order of agents and the condition (κ, j) that triggers the circuit breaker can be fine-

tuned toward the specifics of a given market. This point is further confirmed in the simulation

works provided in the Supplementary Material S.7.

Finally, note that our proposed mechanism shares several features of mechanisms that are

already in use. As discussed, the “staged” clearing of markets is observed in matching markets

such as college admissions in China. The truncation of the rank-ordered lists is another

common feature employed in many centralized matching procedures (see Haeringer and Klijn

(2009), Calsamiglia, Haeringer, and Klijn (2010) and Ashlagi, Nikzad, and Romm (2015)).

The current paper sheds some light on the roles that these features may play, particularly

in mitigating the harmful effect of excessive competition among participants, and suggests a

method for harnessing these features without jeopardizing participants’ incentives.
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A Preliminary Lemma

The following lemma will be used several times in what follows.

Lemma 3. Fix any ε > 0 and any k = 1, ..., K. There exists δ > 0 small enough such that,

with probability going to 1 as n → ∞, for each agent in I, (i) each of his top δ|Ok| favorite

objects in O≥k := ∪`≥kO` yields a payoff greater than U(uk, 1) − ε and (ii) every such object

belongs to Ok; moreover, for each object in O, (iii) each of its top δ|I| individuals in I have

priority scores of at least V (1)− ε.

For the proof, we first prove the following claim:

Claim: Fix any ε̃ > 0. Let Î and Ô be two sets such that both |Î| and |Ô| are in between

αn and n for some α > 0. For each i ∈ Î, let Xi be the number of objects in Ô for which

ξio ≥ 1− ε̃. Then, for any δ < ε̃, Pr{∃i with Xi ≤ δ |Ô|} → 0 as n→∞.

Proof. Xi follows a binomial distribution B(|Ô|, ε̃) (recall that ξio follows a uniform

distribution with support [0, 1]). Hence:

Pr{∃i with Xi ≤ δ|Ô|} ≤
∑

i∈Î Pr{Xi ≤ δ|Ô|}
= |Î|Pr{Xi ≤ δ|Ô|}

≤ |Î|1
2

exp
(
−2 (|Ô|ε̃−δ|Ô|)2

|Ô|

)
= |Î|

2 exp(2(ε̃−δ)2|Ô|)
→ 0,
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where the first inequality is by the union bound while the second inequality is by Hoeffding’s

inequality. �

Proof of Lemma 3. It should be clear that the third part of the statement can be

proven using the same argument used for the second part. In addition, for a ε > 0 sufficiently

small that for each k = 1, . . . , K − 1, U(uk, 1) − ε > U(uk+1, 1), objects in O≥k that yield a

payoff greater than U(uk, 1)− ε can only be in Ok. Hence, the first part of the Lemma implies

the second part. Thus, in the sequel, we only prove the first part of the statement.

Let us fix ε > 0. By the continuity of U(uk, ·), there exists ε̃ > 0 such that U(uk, 1− ε̃) >
U(uk, 1)− ε. By the above claim, with Î := I and Ô := Ok, there exists δ < ε̃ such that, with

high probability, all individuals in I have at least δ|Ok| objects os in Ok for which ξio > 1− ε̃.
By our choice of ε̃, the payoffs that individuals enjoy for these objects must be higher than

U(uk, 1)− ε. This implies that with probability going to 1, for every individual in I, his δ|Ok|
most favorite objects in O≥k yield a payoff greater than U(uk, 1)− ε, as claimed. �

B Proof of Theorem 2

To begin, define a random set:

Ô := {o ∈ O1|o is assigned in TTC via long cycles}.

Lemma 4. There exist γ > 0, δ > 0, N > 0 such that

Pr

{
|Ô|
n

> δ

}
> γ,

for all n > N .

Proof. See the Supplementary Material S.1. �

For the next result, define

I2 := {i ∈ I|TTC(i) ∈ O2}

to be the (random) set of agents who are assigned under TTC to objects in O2. We next

establish that any randomly selected (unmatched) pair from Ô and I2 forms an ε-block with

positive probability for sufficiently small ε > 0.

Lemma 5. There exist ε > 0, ζ > 0 such that, for any ε ∈ [0, ε):

Pr
[
ηjo ≥ ηTTC(o)o + ε

∣∣∣o ∈ Ô, j ∈ I2

]
> ζ.
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Proof. Note first that because there are large common value differences, if o ∈ Ô ⊂ O1

and j ∈ I2, it must be the case that o does not point to j in the cycle to which o belongs

under TTC (otherwise, if j is part of the cycle in which o is cleared, as o ∈ O1, this means

that j must be pointing to an object in O1 when she is cleared, which contradicts j ∈ I2).

Note also that j is still in the market when o is cleared.

Define E1 := {ηjo ≥ ηTTC(o)o} ∧ {o ∈ Ô} ∧ {j ∈ I2} and E2 := {ηjo ≤ ηTTC(o)o} ∧ {o ∈
Ô} ∧ {j ∈ I2}. We first show that PrE1 = PrE2.

Assume that given realizations ξ := (ξio)io and η := (ηio)io, event E1 is true. Define

η̂ := (η̂io)io, where η̂jo := ηTTC(o)o and η̂TTC(o)o := ηjo. η̂ and η coincide otherwise. It is easily

verified that under the realizations ξ and η̂, event E2 is true. Indeed, that {η̂jo ≤ η̂TTC(o)o}
holds true is trivial. Now, because, as we already claimed, under the realizations ξ and η, j

and TTC(o) are never pointed to by o, when j and TTC(o) are switched in o’s priorities, by

definition of TTC, o still belongs to the same cycle, and hence, TTC runs exactly in the same

way. This shows that {o ∈ Ô} ∧ {j ∈ I2} also holds true under the realizations ξ and η̂,

Since Pr(ξ,η) = Pr(ξ, η̂), we can easily conclude that PrE1 = PrE2.

Next, let Eε := {ηjo ≥ ηTTC(o)o + ε}. Note:

∪ε>0Eε = {ηjo > ηTTC(o)o} =: E.

Because the distribution Pr[·] of ηjo has no atom, Pr
[
·
∣∣∣o ∈ Ô, j ∈ I2

]
also has no atom

(Pr(ηjo = η) = 0⇒ Pr(ηjo = η
∣∣∣o ∈ Ô, j ∈ I2 ) = 0). Thus, we must have:

Pr
[
E
∣∣∣o ∈ Ô, j ∈ I2

]
= Pr

[
{ηjo ≥ ηTTC(o)o}

∣∣∣o ∈ Ô, j ∈ I2

]
=

1

2

where the last equality holds because PrE1 = PrE2.

As Eε increases when ε decreases, combining the above, we obtain:36

lim
ε→0

Pr
[
Eε

∣∣∣o ∈ Ô, j ∈ I2

]
= Pr

[
∪ε>0Eε

∣∣∣o ∈ Ô, j ∈ I2

]
= Pr

[
E
∣∣∣o ∈ Ô, j ∈ I2

]
=

1

2
.

Thus, one can fix ζ ∈ (0, 1/2) (which can be set arbitrarily close to 1/2) and find ε > 0 such

that for any ε ∈ (0, ε), Pr
[
Eε

∣∣∣o ∈ Ô, j ∈ I2

]
> ζ. �

Corollary 2. For any ε > 0 sufficiently small, there exist ζ > 0, N > 0 such that, for all

n > N :

E

[
|Îε2(o)|
n

∣∣∣o ∈ Ô] ≥ x2ζ

where Îε2(o) := {i ∈ I2|ηio > ηTTC(o)o + ε}.
36Recall the following property. Let {En}n be an increasing sequence of events. Let E := ∪nEn be the

limit of {En}n. Then Pr(E) = limn→∞ Pr(En).
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Proof. For any ε sufficiently small, we have ζ > 0 and N > 0 such that for all n > N :

E
[
|Îε2(o)|

∣∣∣o ∈ Ô] = E

[∑
i∈I2

1{ηio>ηTTC(o)o+ε}

∣∣∣o ∈ Ô]

= EI2

(
E

[∑
i∈I2

1{ηio>ηTTC(o)o+ε}

∣∣∣o ∈ Ô, I2

])

= EI2

(∑
i∈I2

E
[
1{ηio>ηTTC(o)o+ε}

∣∣∣o ∈ Ô, I2, i ∈ I2

])
= EI2

(
x2nE

[
1{ηio>ηTTC(o)o+ε}

∣∣∣o ∈ Ô, I2, i ∈ I2

])
= x2n

(
E
[
1{ηio>ηTTC(o)o+ε}

∣∣∣o ∈ Ô, i ∈ I2

])
= x2nPr(ηio > ηTTC(o)o + ε

∣∣∣o ∈ Ô, i ∈ I2 )

= x2nPr(ηio ≥ ηTTC(o)o + ε
∣∣∣o ∈ Ô, i ∈ I2 )

≥ x2ζn,

where the inequality follows from Lemma 5 . �

We are now ready to prove Theorem 2. The proof follows from Lemma 4 and Corollary

2. The former implies that as the economy grows, the expected number of objects in tier

1 assigned via long cycles remains significant. The latter implies that each of such objects

finds many agents assigned by TTC to O2 desirable for forming ε-blocks. Specifically, for any

sufficiently small ε ∈ (0, U(u0
1, 0)− U(u0

2, 1)), we obtain that, for any n > N :

E
[
|Jε(TTC)|
n(n− 1)

]
≥ E

∑
o∈Ô

|Îε2(o)|
n(n− 1)


≥ Pr{|Ô| ≥ δn}E

∑
o∈Ô

|Îε2(o)|
n(n− 1)

∣∣∣|Ô| ≥ δn

 ≥ γE

E

∑
o∈Ô

|Îε2(o)|
n(n− 1)

∣∣∣|Ô| ≥ δn, Ô


= γE

∑
o∈Ô

E

[
|Îε2(o)|
n(n− 1)

∣∣∣|Ô| ≥ δn, Ô, o ∈ Ô

] ≥ γδnE

[
|Îε2(o)|
n(n− 1)

∣∣∣o ∈ Ô]

≥ γδE

[
|Îε2(o)|
n

∣∣∣o ∈ Ô] ≥ γδζx2 > 0

where the first inequality follows from the observation that if i ∈ Îε2(o), then (i, o) ε-blocks

TTC, while the penultimate inequality follows from Corollary 2.
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C Proof of Theorem 4

Fix any κ(n) ≥ log2(n) and κ(n) = o(n). The following proposition is crucial for the proof.

Proposition 1. Fix any k ≥ 1. As n→∞, with probability approaching one, Stage k of the

DACB ends at Step |Ok| + 1 and the set of assigned objects at that stage is Ok. In addition,

for any ε > 0:
|{i ∈ Ik|Ui(DACB(i)) ≥ U(uk, 1)− ε}|

|Ik|
p−→ 1

where Ik := {i ∈ I|DACB(i) ∈ Ok}. Similarly:

|{o ∈ Ok|Vo(DACB(o)) ≥ V (1)− ε}|
|Ok|

p−→ 1.

Proof. We focus on k = 1; the other cases can be treated in exactly the same way.

First, consider the submarket that consists of the |O1| first agents (according to the ordering

given in the definition of DACB) and of all objects in O1. If we were to run standard DA

just for this submarket, then because preferences are drawn iid, by Lemma 2 with probability

approaching 1 as n→∞, all agents would have made fewer than log2(n) offers at the end of

(standard) DA.

Consider now the original market. For any δ > 0, as κ(n) = o(n), we must have κ(n) ≤
δ |O1| for any sufficiently large n. Hence, by Lemma 3-(ii), the event that all agents’ κ(n)

favorite objects are in O1 has probability approaching 1 as n→∞. Let us condition on this

event, labeled E . Given this conditioning event E , no object outside O1 would receive an offer

before someone reaches his κ(n)-th offer. Moreover, because not all of the first |O1|+ 1 agents

can receive objects in O1, given E , one of these agents must reach his κ(n)-th offer, having

made offers only to objects in O1. In sum, conditional on E , Stage 1 will end at Step |O1|+ 1

or before, and only objects in O1 will have been assigned by the end of Stage 1.

We now show that, conditional on E with probability approaching 1 as n→∞, all objects

in O1 are assigned by the end of Stage 1 and that Stage 1 indeed ends at Step |O1|+ 1. Note

that under our conditioning event E , the distribution of individuals’ preferences over objects

in O1 is the same as the unconditional one (and the same is true for the distribution of objects’

priorities over individuals). Given event E , provided that all agents have made fewer than

κ(n) offers, the |O1| first steps of DACB proceed exactly in the same way as in DA in the

submarket composed of the |O1| first agents (according to the ordering used in DACB) and

of all objects in O1 objects. Because κ(n) ≥ log2(n), by Lemma 2 with probability going to 1

as n→∞, we reach the end of Step |O1| of DACB before Stage 1 ends (i.e., before any agent

has applied to his log2(n) ≤ κ(n) most favorite object). Thus, with probability going to 1,

the outcome thus far coincides with that attained in DA in the submarket composed of the
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|O1| first agents and of all objects in O1. This implies that, conditional on E with probability

going to 1, all objects in O1 are assigned, and thus, Step |O1|+ 1 must be triggered. In fact,

because Pr(E) → 1 as n → ∞, Step |O1| + 1 will be triggered with probability going to 1.

This completes the proof of the first part of Proposition 1.

Now, we turn to the second part of the proof of Proposition 1. (Recall, we are still

considering k = 1.) We fix any ε and γ < 1 and wish to show that as n→∞:

Pr

{
|{i ∈ I1|Ui(DACB(i)) ≥ U(u1, 1)− ε}|

|I1|
> γ

}
−→1

and

Pr

{
|{o ∈ O1|Vo(DACB(o)) ≥ V (1)− ε}|

|O1|
> γ

}
−→1.

In the sequel, we condition on event E . First, by construction, every matched individual

obtains an object within his/her κ(n) most favorite objects which by Lemma 3-(i) implies

that, with probability going to 1, they all enjoy payoffs above U(u1, 1)− ε.37 This proves the

first statement.

We next prove the second statement again for k = 1. As we have shown, with high prob-

ability, the first |O1| Steps (i.e., Stage 1) of DACB proceed exactly the same way as in DA in

the submarket that consists of the |O1| first agents and of all objects in O1, where individu-

als’ preferences and objects’ priorities are drawn according to the unconditional distribution

(which in this submarket is uncorrelated). We prove that, by Lemma 2, under DA in this

submarket, with probability going to 1, the proportion of objects in O1 that achieve a rank

less than 2
1−γ |O1|/ log(|O1|) is larger than γ.

To prove this, suppose to the contrary that with probability bounded away from 0, as the

market grows, the proportion of objects enjoying ranks above 2
1−γ |O1|/ log(|O1|) is more than

1− γ. Then, with probability bounded away from 0, as the market grows,

1

|O1|
∑
o∈O1

RDA
o >

1

|O1|
(1− γ)|O1|

2

1− γ
(|O1|/ log(|O1|)) = 2|O1|/ log(|O1|),

which yields a contradiction of Lemma 2. Hence, we obtain that with probability going to 1,

the proportion of objects in O1 enjoying ranks less than 2
1−γ |O1|/ log(|O1|) (by the end of Step

|O1| of Stage 1 of DACB) is larger than γ. Given that for any δ > 0, for a sufficiently large n,

|O1|/ log(|O1|) ≤ δ |I|, by Lemma 3-(iii) we must also have that, with probability going to 1,

the proportion of objects o in O1 with V (DACB(o)) ≥ 1 − ε is above γ. Because objects in

O1 will have received even more offers at the end of Stage 1 of DACB than under the DA in

the corresponding subeconomy, it must still be the case that, at the end of that stage, with

37Note that this implies Pr [{i ∈ I1|Ui(DACB(i)) ≥ U(u1, 1)− ε} = I1]→ 1 as n→∞. Hence, part of the

statement of Proposition 1 can be strengthened.
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probability going to 1, the proportion of objects in O1 for which V (DACB(o)) ≥ 1 − ε is

above γ when n is large enough. Thus, for k = 1, the second statement in Proposition 1 is

proven provided that our conditioning event E holds. Because this event has probability going

to 1 as n → ∞, the result must hold even without the conditioning. Thus, we have proven

Proposition 1 for the case k = 1.

Consider next Stage k > 1. The objects remaining in Stage k have received no offers in

Stages j = 1, ..., k − 1 (otherwise, the objects would have been assigned during those stages).

Hence, by the principle of deferred decisions, we can assume that the individuals’ preferences

over those objects are yet to be drawn at the beginning of Stage k. Similarly, we can assume

that the priorities of those objects are also yet to be drawn. In other words, conditional on

Stage k − 1 being complete, we can assume without loss of generality that the distribution

of preferences and priorities is the same as the unconditional one. Thus, we can proceed

inductively to complete the proof. �

Given Proposition 1, Theorem 4 follows rather straightforwardly. The first statement

means that with high probability, all but a vanishing fraction of agents realize arbitrarily close

to the upper bound of their idiosyncratic payoffs. This implies that the proportion of the agents

who will benefit discretely from a Pareto-dominating reassignment of DACB must vanish in

probability. This observation, together with the second statement of Proposition 1, implies

that the proportion of agent-object pairs that would gain discretely from blocking the DACB

matching also vanishes in probability. The formal proof is available in the Supplementary

Material S.4.
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