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Inference in Near Singular Regression∗

Peter C. B. Phillips
Yale University, University of Auckland,

Singapore Management University & University of Southampton

June 27, 2015

Abstract

This paper considers stationary regression models with near-collinear
regressors. Limit theory is developed for regression estimates and test
statistics in cases where the signal matrix is nearly singular in finite sam-
ples and is asymptotically degenerate. Examples include models that in-
volve evaporating trends in the regressors that arise in conditions such as
growth convergence. Structural equation models are also considered and
limit theory is derived for the corresponding instrumental variable esti-
mator, Wald test statistic, and overidentification test when the regressors
are endogenous.

Keywords: Endogeneity, Instrumental variable, Overidentification test,
Regression, Singular Signal Matrix, Structural equation.

JEL classification: C23

1 Introduction

Near-collinear regressors arise frequently in empirical work in both time series
and cross section data. The case of co-moving regressors is particularly well
known and and has been extensively studied (Park and Philllips, 1988, 1989;
Phillips, 1988, 1989; Sims, Stock and Watson, 1990; Toda and Phillips, 1993;
Phillips, 1995) in the context of time series regression with some unit roots
and possibly cointegrated regressors. Related problems of partial identification
and weak instrumentation in structural model estimation have also proved to
be relevant in applications and have been studied in a large literature following
initial research on the asymptotic theory of these models by Phillips (1989)
and Staiger and Stock (1997). Earlier important work by Sargan (1958, 1983)
also considered some aspects of the impact of nearly unidentified models on
estimation and inference. More recent work on common explosive roots has

∗This paper was written during a cross-Canada rail journey during June 2015. It originated
in a Yale Take Home Examination given in the Fall, 2014. The author acknowledges support
of the NSF under Grant SES 12-58258.
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shown that near collinearity can produce inconsistencies even in the presence of
extremely strong regressor signals (Phillips and Magdalinos, 2013).
While this research primarily involves parametric models and linear systems

of equations, nonlinear regressions are also affected by near collinearity in the
regressors, weak identification (Stock and Wright, 2000), and singularities in the
limit theory that can produce inconsistencies and differing rates of convergence
(Park and Phillips, 2000). It has recently been discovered that nonparametric
kernel regression, an area of econometrics to which Aman Ullah has made many
lasting contributions including a foundational text (Pagan and Ullah, 1999), is
also affected by singularities and differing convergence rates when the regressors
are nonstationary (Phillips et al, 2014; Li et al, 2015).
The present work considers analogous problems associated with near-collinear

regressors that arise in stationary regression. To illustrate, we study the case
of a near-singular signal matrix where there is degeneracy in the limit. Such
cases occur in practical econometric work when there are evaporating trends or
decay effects in the data that produce asymptotic co-movement, as in growth
convergence modeling (Phillips and Sul, 2007 and 2009), or when power law
time trends need to be estimated (Phillips, 2007; Robinson, 2012).
We develop stationary asymptotics for estimates and tests in regressions

where signal matrix singularities that arise in the limit produce inconsistencies
in estimation and failures in central limit theory. We also provide limit theory
for instrumental variable (IV) regression and the associated Wald test statistic
and overidentification test when the regressor is endogenous. The limit theory
is developed for stationary regressions with martingale difference errors.
The remainder of the paper is organized as follows. Section 2 examines a

prototypical stationary linear regression model with asymptotically collinear re-
gressors and develops limit theory for the coeffi cient estimates and block Wald
test. Although the coeffi cient estimates are generally inconsistent, some linear
functions as well as the equation error variance are shown to be consistently
estimable. Section 3 develops similar limit theory for instrumental variable
estimates and test statistics in the structural model case with endogenous re-
gressors. Section 4 concludes and discusses extensions. Proofs are given in the
Appendix.

2 Singular Regression Models and Limit Theory

2.1 A Prototypical Model

We study the linear model

yt = x′tβ + u0t, t = 1, ..., n (1)

where β is an unknown k×1 vector of parameters and the errors u0t are martin-
gale differences with respect to the filtration Ft = σ {u0t, u0t−1, ...;xt+1, xt, ...}
and with conditional variance E

{
u20t|Ft−1

}
= σ00 a.s.. The regressor xt in (1)

is assumed to have components with differing asymptotic characteristics that
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lead to a limiting singular system. In particular, upon transformation by some
(unknown) nonsingular matrix G′ = [Ga, Gb]

′
, we have the partitioned system

yt = x′tGG
−1β + u0t = w′atαa + w′btαb + u0t, (2)

with

wt =

[
wat
wbt

]
:= G′xt =

[
G′axt
G′bxt

]
, α :=

[
αa
αb

]
:=

[
Ga

′
β

Gb′β

]
=: G−1β,

involving a ka- vector of stationary, ergodic variates wat and a kb- vector wbt
which satifies

∑n
t=1 wbtw

′
bt →a.s. Σbb. Sample moments of the components

wat and vector wbt therefore have different orders of magnitude. Let X ′ =
[x1, ..., xn]

′
, W ′ = [w1, ..., wn]

′
, u0 = [u01, ..., u0n] , and y′ = [y1, ..., yn] . In

observation matrix form, (2) then takes the form

y = Xβ + u0 = Wα+ u0. (3)

Upon standardization with the matrix Dn = diag [
√
nIka , Ikb ] the sample mo-

ment matrix X ′X =
∑n
t=1 xtx

′
t satisfies, as shown in (9) below,

D−1n G′X ′XGD−1n →a.s. Σ =

[
Σaa 0

0 Σbb

]
> 0, (4)

leading to ∑n
t=1 watw

′
at∑n

t=1 u
2
0t

→a.s.
Σaa
σ00

, and

∑n
t=1 wbtw

′
bt∑n

t=1 u
2
0t

= Oa.s
(
n−1

)
.

So signal to noise ratios differ by an order of magnitude in the directions wat
and wbt.
To fix ideas, we henceforth assume that the regressors xt in (2) have the

partitioned form

xt =

[
xat
xbt

]
=

[
x0t

Πx0t + atvt

]
, (5)

where
(
x0′t , v

′
t

)′
is a ka + kb vector of stationary ergodic time series, Π is an

unknown constant matrix of dimension kb×ka, and at is a deterministic sequence
with at → 0 as t → ∞. The regressors xat and xbt may then be interpreted as
asymptotically co-moving stationary regressors. For instance, when at = 1/t,
we have xbt = Πxat +Oa.s

(
1
t

)
∼ Πxat as t→∞.

With this structure the system (1) has the partitioned form

yt = x′atβa + x′btβb + u0t, (6)

where β′ = (βa, βb) is a conformable partition of β. The block triangular trans-
form matrix

G =

[
I −Π′

0 I

]
, G−1 =

[
I Π′

0 I

]
=:

[
Ga

′

Gb′

]
(7)
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leads to the transformed parametric structure α = G−1β written in partitioned
form as [

αa
αb

]
=

[
Ga

′
β

Gb′β

]
=

[
βa + Π′βb

βb

]
and corresponding regressor structure

wt = G′xt =

[
wat
wbt

]
=

[
x0t
atvt

]
. (8)

Here, wbt = atvt involves a stationary component vt and an evaporating deter-
ministic trend factor, at = o (1) as t→∞, of the type that arises in the study of
growth convergence (Phillips and Sul, 2007, 2009). The regression components
(xat, xbt) in the untransformed model (6) are therefore asymptotically collinear
because wbt = atvt = oa.s. (1) as t→∞.
Let st =

(
x0′t , v

′
t

)′
and qt = stu0t = (q′xt, q

′
vt) , partitioned conformably

with st.We make the following conditions on these components to facilitate the
development of the limit theory.

Assumption A (i) u0t is a martingale difference sequence (mds) with respect
to the filtration Ft = σ {u0t, u0t−1, ...; st+1, st, ...} and with condi-
tional variance E

{
u20t|Ft−1

}
= σ00 a.s.

(ii) rt = (st, u0t)
′ is strictly stationary and ergodic with E

(
‖rt‖2+δ

)
<∞

for some δ > 0, and variance matrix Σrr = diag [Σss, σ00] > 0.

Assumption B at is a deterministic sequence for which either

(i)
∑∞
t=1 |at|

1+η
<∞ for some (possibly small) η ∈ (0, 1) , or

(ii)
∑∞
t=1 |at| <∞.

As shown in Lemma A in the Appendix, Assumptions A(i) and (ii) ensure
that a functional law applies to partial sums of the mds qt = (q′xt, q

′
vt) , so

that n−1/2
∑bn·c
t=1 qt ⇒ Bq (·) , with limiting Brownian motion vector Bq and

covariance matrix Ωqq = σ00Σss where Bq =
(
B′qx , B

′
qv

)′
and

Σss = E (sts
′
t) =

[
Σxx Σxv
Σvx Σvv

]
> 0

are conformably partitioned with qt. Assumption B requires absolute summa-
bility of the deterministic sequence {at} in B(ii) or the alternate (1 + η) ab-
solute summability in B(i). These conditions imply that at is an evaporating
sequence, so that at → 0, and they are suffi cient to ensure a.s. summability of
certain sums that appear in the limit theory such

∑∞
t=1 a

2
t vtv

′
t and

∑∞
t=1 atx

0
t v
′
t

in the following analysis. For example, at = t−1 satisfies B(i) for any η > 0, and
at = t−1 (log t)

−1−ε satisfies B(ii) for any ε > 0.
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Under Assumptions A and B we have the following explicit form for the limit
behavior of the standardized signal matrix in (4)

D−1n G′X ′XGD−1n →a.s. Σ =

[
Σaa = E

(
x0tx

0′
t

)
0

0 Σbb =
∑∞
t=1 a

2
t vtv

′
t

]
. (9)

Observe that the sum
∑∞
t=1 a

2
t vtv

′
t <∞ a.s. since

E

( ∞∑
t=1

a2t vtv
′
t

)
=

∞∑
t=1

a2tE (vtv
′
t) = Σvv

∞∑
t=1

a2t <∞,

under both B(i) and (ii). The off-diagonal block in (9) is a zero matrix because:
under B(ii), E

(∑∞
t=1

∥∥x0t v′t∥∥ |at|) = E
(∥∥x0t v′t∥∥)∑∞t=1 |at| < ∞, in which case∑∞

t=1 x
0
t v
′
tat converges almost surely and n

−1/2∑n
t=1 x

0
t vtat = Oa.s.

(
n−1/2

)
;

alternatively, under B(i), we have by Hölder’s inequality

1√
n
E

(
n∑
t=1

∥∥x0t v′t∥∥ |at|
)

= E
(∥∥x0t v′t∥∥) 1√

n

n∑
t=1

|at|

≤ E
(∥∥x0t v′t∥∥) n η

1+η

√
n

(
n∑
t=1

|at|1+η
) 1

1+η

= O

(
1

n
1
2−

η
1+η

)
= o (1) for all η ∈ (0, 1) ,

and then n−1/2
∑n
t=1 x

0
t vtat →L1 0.

The standardized signal matrix therefore has a random limit and no invari-
ance principle applies because

∑∞
t=1 a

2
t vtv

′
t depends on the distribution of vt.

Further,

D−1n W ′u0 =

[ 1√
n

∑n
t=1 watu0t∑n

t=1 wbtu0t

]
=

[ 1√
n

∑n
t=1 x

0
tu0t∑n

t=1 atvtu0t

]
⇒
[
Bqx (1)
Qv

]
, (10)

where Qv :=
∑∞
t=1 atvtu0t converges almost surely since

∑m
t=1 atvtu0t is an L2

martingale with
∑∞
t=1 a

2
tE
∥∥vtv′tu20t∥∥ = σ00E ‖vtv′t‖

∑∞
t=1 a

2
t <∞. So D−1n W ′u0

converges weakly but does not satisfy an invariance principle, the distribution
of the limit component Qv depending on the distribution of the component
variates (vt, u0t) .

2.2 Near-Singular Least Squares Regression

The parameter vector β in (1) is estimated by ordinary least squares regres-
sion and the null hypothesis H0 : β = 0 is tested using the Wald statistic

Wn = β̂
′
X ′Xβ̂/σ̂2, where σ̂2 = n−1y′

(
In −X (X ′X)

−1
X
)
y is the usual sam-

ple variance of the regression residuals. The limit behavior of the regression

components
{
β̂, σ̂2,Wn

}
is as follows.
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Theorem 1 Under Assumptions A and B

(i)
[
β̂a − βa
β̂b − βb

]
⇒
[
−Π′

Ikb

]
ξb, where ξb =

(∑∞
t=1 a

2
t vtv

′
t

)−1∑∞
t=1 atvtu0t,

(ii) σ̂2 →p σ00,

(iii) Wn ⇒ χ2ka+ζ ′bζb, where ζb := Σ
1/2
bb ξb/σ

1/2
00 = Σ

−1/2
bb

∑∞
t=1 atvtu0t/σ

1/2
00 .

It follows from (i) that both estimates β̂a and β̂b are inconsistent and con-
verge to random quantities dependent on ξb. No invariance principle applies be-
cause the distribution of ξb depends on the distribution of the data through the
inputs {vt, u0t}∞t=1. The limit theory also has degenerate dimension kb because
β̂a−βa is asymptotically proportional to β̂b−βb. Thus, the asymptotic singular-
ity in the signal matrix leads to inconsistency in the regression coeffi cients and
degeneracy in their limit distribution. As noted above, the weak signal is in the
direction wbt for which the sample excitation matrix

∑n
t=1 a

2
t vtv

′
t →

∑∞
t=1 a

2
t vtv

′
t

does not diverge as the sample size n → ∞, leading to the inconsistency and
a singular limit distribution that depends on the limit regression coeffi cient
ξb =

(∑∞
t=1 a

2
t vtv

′
t

)−1∑∞
t=1 atvtu0t in this direction.

Nonetheless, there are identifiable and estimable functions of the coeffi cients.
In particular, as shown in the proof of (i), the linear combination βa + Π′βb is
consistently estimated by β̂a+Π′β̂b at a

√
n rate, giving a consistently estimable

function of the original coordinates with the normal limit distribution

√
n
(
β̂a + Π′β̂b − βa −Π′βb

)
⇒ N

(
0, σ00Σ

−1
aa

)
. (11)

The matrix Π is generally unknown but it can be consistently estimated at an
O (n) rate. In particular, if the partition structure of xt = (x′at, x

′
bt)
′ is known,

least squares regression of xbt on xat gives Π̂ = (
∑n
t=1 xbtx

′
at) (

∑n
t=1 xatx

′
at)
−1

and simple manipulations reveal that n
(

Π̂−Π
)
→a.s.

(∑∞
t=1 atvtx

0′
t

)
Σ−1aa .

Then β̂a+Π̂′β̂b is consistent for βa+Π′βb with the same
√
n rate of convergence

and asymptotic distribution as (11).
Curiously, as shown in (ii), the least squares error variance estimate σ̂2 is

consistent even though the regression coeffi cients are inconsistent. The rea-
son is that asymptotic collinearity in the regressor vector xt does not prevent
consistency of the residual variance. In particular, the fitted residual is

û0t = yt − x′tβ̂ = u0t − x′t
(
β̂ − β

)
= u0t − w′t (α̂− α)

= u0t − x0′t (α̂a − αa)− atvt (α̂b − αb)
= u0t − w′tD−1n Dn (α̂− α)

6



and, since Dn (α̂− α) and D−1n W ′WD−1n are both Op (1) from (15) and (17) in
the proof of Theorem 1, we find that

σ̂2 =
1

n

n∑
t=1

û20t =
1

n

n∑
t=1

u20t −
1

n
(α̂− α)

′
Dn

(
D−1n W ′WD−1n

)
Dn (α̂− α)

=
1

n

n∑
t=1

u20t + op (1)→p σ00.

From (iii), Wn is a limiting mixture of a chi square variate and the squared
length of the vector variate ζb. No invariance principle holds because ζb de-
pends on the data distribution through {vt, u0t}∞t=1 . However, when (vt, u0t) is
Gaussian, then u0t ∼ iid N (0, σ00) is independent of {vt} because E (vtu0t) = 0
in view of Assumption A(ii). Then ζb =d N (0, Ikb) and ζ

′
bζb ∼d χ2kb , so that

Wn ⇒ χ2k. Thus, the usual limit theory for the test statistic Wn applies when
the input variates are Gaussian.

3 Singular Structural Model and IV Estimation

3.1 Model Formulation and Limit Theory

We now consider the structural equation case where the regressor xt in (1) is
endogenous. The asymptotic characteristics of xt are assumed to be the same
as those given earlier, so that (4) and (5) continue to hold but now E (xtu0t) =
Σx0 6= 0. Let zt be a K × 1 vector of instruments with K ≥ k + 1. The IV
estimator is βIV = (X ′PZX)

−1
(X ′PZy) and the estimation error has the form

βIV − β = (X ′PZX)
−1
X ′PZu0 =

(
G′−1W ′PZWG−1

)−1
G′−1W ′PZu0

= G (W ′PZW )
−1
W ′PZu0,

with G and W defined as in (7 & 8) and corresponding coeffi cient estimates
αIV = G−1βIV with estimation error

αIV − α = G−1 (βIV − β) = (W ′PZW )
−1

(W ′PZu0) .

We replace Assumption A with the following.

Assumption A′ (i) u0t is a martingale difference sequence (mds) with respect
to the filtration Ft = σ {u0t, u0t−1, ...; zt+1, zt, ...} and with condi-
tional variance E

{
u20t|Ft−1

}
= σ00 a.s.

(ii) rt =
(
x0t , vt, zt, u0t

)′
is strictly stationary and ergodic with E

(
‖rt‖2+δ

)
<

∞ for some δ > 0, and variance matrix

Σrr =


Σxx Σxv Σxz Σx0
Σvx Σvv Σvz Σv0
Σzx Σzv Σzz 0
Σ0x Σ0v 0 σ00

 > 0

7



with Σxz having full rank ka < K.

Assumption A′(i) ensures that the orthogonality condition E {ztu0t} = 0
holds, giving instrument validity to zt, and A′(ii) imposes the partial rele-
vance rank condition that rank (Σzx) = ka < K. The full relevance condition
rank [Σzx,Σzv] = k with respect to xt, or equivalently the pair

(
x0t , vt

)
, is not

required in what follows as the regressor singularity dominates the asymptotics.
The parameter vector β in (1) is estimated by instrumental variables regres-

sion using the instruments zt. The null hypothesis H0 : β = 0 is block tested
using the corresponding Wald statistic W̃n = β′IVX

′PZXβIV /σ̃
2, where σ̃2 =

n−1ũ′ũ is the usual sample variance of the regression residuals ũ = y −XβIV .
We also consider the Sargan overidentification test statistic for testing the va-
lidity of the instruments. Using the IV residuals

ũ = y −XβIV = u0 −X (X ′PZX)
−1
X ′PZu0

= u0 −W (W ′PZW )
−1
W ′PZu0,

we write the projection

PZ ũ =
{
Pz − PzX (X ′PZX)

−1
X ′PZ

}
u0 =

{
Pz − PzW (W ′PZW )

−1
W ′PZ

}
u0.

Then the Sargan test for overidentification has the form

Sn = ũ′PZ ũ/σ̃
2 = u′0

{
Pz − PzX (X ′PZX)

−1
X ′PZ

}
u0/σ̃

2

= u′0

{
Pz − PzW (W ′PZW )

−1
W ′PZ

}
u0/σ̃

2.

The limit behavior of the IV regression components
{
βIV , σ̃

2, W̃n, Sn

}
is

given in the following result where MN (0, V ) signifies a mixed normal distrib-
ution with zero mean and mixing variance matrix V.

Theorem 2 Under Assumptions A′ and B

(i) FnG−1 (βIV − β) ⇒ MN

(
0, σ00

[
ΣxzΣ

−1
zz Σzx ΣxzΣ

−1
zz Az

A′zΣ
−1
zz Σzx A′zΣ

−1
zz Az

]−1)
,

where Az =
∑∞
t=1 atztv

′
t, and in partitioned component form

1√
n

[
βa,IV − βa
βb,IV − βb

]
⇒
[
−Π′

Ikb

]
×MN

(
0, σ00H

−1) , (12)

where H = A′zΣ
−1
zz Az −A′zΣ−1zz Σzx

(
ΣxzΣ

−1
zz Σzx

)−1
ΣxzΣ

−1
zz Az.

(ii) σ̃2 →p σ00 {1 + ωzz} , where ωzz = ψ′bH
−1/2 (∑∞

t=1 a
2
t vtv

′
t

)
H−1/2ψb

and ψb ∼d N (0, Ikb) .

(iii) W̃n ⇒ χ2k/ {1 + ωzz} .
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(iv) Sn ⇒ χ2K−k/ {1 + ωzz}

The standardized and centred IV estimate FnG−1 (βIV − β) = Fn (αIV − α)
has a mixed normal limit, where the mixing variance matrix depends on the
matrix Az =

∑∞
t=1 atztv

′
t, which in turn depends on the distribution of (zt, vt)

and the deterministic sequence (at) . This random matrix Az is a measure of
the importance of the near-collinearity in the system between the component
regressors xat = x0t and xbt = Πx0t + atvt when the system is estimated using
instrumental variables zt. Importantly, the series

∑∞
t=1 atztv

′
t <∞ a.s., so that

Az is a well defined random matrix.
As is apparent from (12), the individual IV component vectors βa,IV and

βb,IV both have divergent behavior at the
√
n rate. Hence, the effects of the weak

signal arising from the near collinearity in the regressors that is evident in least
squares regression under exogeneity, is exacerbated by endogeneity, even when
the instruments are valid, satisfying both orthogonality and strong relevance
conditions. Thus, near-collinearity in the presence of endogeneity, even with
strong instruments in regression, leads to divergent behavior in the estimates.
On the other hand, as in the case of exogenous xt and as shown in the proof of

(i), there are some estimable components. In particular, the linear combination
βa + Π′βb is again consistently estimated, here by βa,IV + Π′βb,IV and at a

√
n

rate, giving a consistently estimable function of the original coordinates with
the mixed normal limit distribution

√
n
(
βa,IV + Π′βb,IV − βa −Π′βb

)
⇒MN

(
0, σ00H

−1
ββ

)
, (13)

where Hββ =
[
ΣxzΣ

−1
zz Σzx − ΣxzΣ

−1
zz Az

(
A′zΣ

−1
zz Az

)−1
A′zΣ

−1
zz Σzx

]
and with

the mixing matrix Az again influencing the asymptotics. The matrix Π is gener-
ally unknown but, as earlier in the regression model case, it can be consistently
estimated at an O (n) rate by least squares regression of xbt on xat. In the
same way, the estimate Π̂ = (

∑n
t=1 xbtx

′
at) (

∑n
t=1 xatx

′
at)
−1 →a.s Π with limit

distribution n
(

Π̂−Π
)
→a.s.

(∑∞
t=1 atvtx

0′
t

)
Σ−1aa . So, βa,IV + Π̂′βb,IV is again

consistent for βa + Π′βb with the same
√
n rate of convergence and asymptotic

distribution as (13).
Part (ii) shows that the usual error variance estimate is inconsistent and

asymptotically overestimates σ00 by the asymptotic bias expression σ00ωzz =
ψ′bH

−1/2 (∑∞
t=1 a

2
t vtv

′
t

)
H−1/2ψb. As shown in the proof, this asymptotic bias

arises in the residual variance estimate from the limit of the following component
involving a quadratic form in the estimation error (αIV − α)

(αIV − α)
′
Fn

(
1

n
F−1n W ′WF−1n

)
Fn (αIV − α)

=

{
1√
n

(αb,IV − αb)′
}( n∑

t=1

a2t vtv
′
t

){
1√
n

(αb,IV − αb)
}

+ op (1) .

9



Thus, in contrast to the linear regression case, the estimation error is not negli-
gible when estimating the error variance and produces error variance estimation
bias in the limit.
It follows from Part (iii) that the limit distribution of the Wald test of the

block hypothesis H0 : β = 0 is a mixed chi-square distribution with degrees of
freedom k and scale mixing coeffi cient {1 + ωzz}−1 < 1 a.s.. In particular, W̃n ⇒
χ2k/ {1 + ωzz} ≤ χ2k. Tail significance in the limit occurs when χ2k/ {1 + ωzz} >
cvα for the test critical value cvα and this inequality implies that χ2k > cvα so
that

P
[
W̃n > cvα

]
→ P

[
χ2k/ {1 + ωzz} > cvα

]
< P

[
χ2k > cvα

]
.

Test based on W̃n with the usual χ2k critical value are therefore conserva-
tive asymptotically. The reason is that the IV error variance estimate σ̃2 ⇒
σ00 {1 + ωzz} > σ00 so that σ̃2 overestimates σ00 and hence the Wald statistic
W̃n is biased downwards, thereby favoring the null and leading to a conservative
test.
This is a curious finding that implies size-controlled tests of β = 0 exist

even when the regression coeffi cient β cannot be consistently estimated. Lack
of asymptotic identifiability means that the equation error variance estimate is
larger than the error variance in the limit, which then biases the test in favor of
the null hypothesis, thereby reducing power. The impact on test power may be
further investigated by doing an asymptotic power analysis for local and distant
alternatives in various directions, a topic that is not pursued here.
The mixed normal limit distribution given in Part (i) of Theorem 2 presumes

the invertibility of the (conditional) covariance matrix[
ΣxzΣ

−1
zz Σzx ΣxzΣ

−1
zz Az

A′zΣ
−1
zz Σzx A′zΣ

−1
zz Az

]
=

[
Σxz
A′z

]
Σ−1zz

[
Σzx Az

]
. (14)

This matrix is nonsingular if the matrix [Σzx, Az] has full column rank. By
assumption A′(ii) Σzx has full column rank ka. The second component in the
partition, Az =

∑∞
t=1 atztv

′
t, is a random matrix. We take a leading case for

analysis. In particular, if (zt, vt) ∼d iid N (0,diag (Σzz,Σvv)) , then

Az =

∞∑
t=1

atztv
′
t ∼d MN

(
0,Σzz ⊗

∞∑
t=1

a2t vtv
′
t

)
,

which is a nondegenerate mixed normal distribution since
∑∞
t=1 a

2
t vtv

′
t > 0 a.s.,

and Σzz is positive definite, by assumption. Deficient rank of (14) means that
[Σzx, Az] g = Σzxga + Azgb = 0 a.s. for some g′ = (g′a, gb) 6= 0. That is,
Azgb = −Σzxga, a constant vector a.s. . Note that gb 6= 0, otherwise Σzxga = 0
which further implies ga = 0 because Σzx has full rank by assumption. Since
Az has a full rank mixed normal distribution, it follows that for gb 6= 0 we have
P (Azgb = −Σzxga) = 0. So the conditional covariance matrix (14) almost surely
has full rank.
The final part of Theorem 2 considers the behavior of the Sargan overiden-

tification test statistic for testing the validity of the instruments, showing that

10



the Sargan statistic Sn is distributed in the limit as χ2K−k/ {1 + ωzz}, which
is proportional to a chi-squared variate with degrees of freedom K − k corre-
sponding to the degree of overidentification. This limit theory involves the error
variance estimation bias through the presence of the scale factor {1 + ωzz}−1,
which leads to a mixed chi-square limit. Thus, even though the estimates of the
structural coeffi cients are inconsistent, the overidentification test is proportional
to chi-square with the usual degrees of freedom. In consequence, like the Wald
test, the overidentification test statistic is biased in favor of the null, leading to
a conservative test of instrument validity.

4 Conclusion and Extension

In order to explore the implications for inference of asymptotic singularity in
stationary regressors, it has been convenient to use the partitioned structure
xt = (x′at, x

′
bt)
′ given in (5). This structure leads to a triangular model in which

the components of xt are related according to the linear system xbt = Πxat+atvt.
In practical work, theory may sometimes suggest such a relationship in which
variables are asymptotically stationary and co-related. In general, however,
near-collinearity in stationary regressors may be suspected without knowledge
of a particular functional relation. In such cases, it will be of practical interest to
develop methods that enable inference about possible asymptotic singularities
when the form of the dependence between the components of xt is completely
unknown. This topic of investigation is now being explored.

5 Appendix

The following preliminary result is useful.

Lemma A

(a) Under Assumptions A(i), A(ii) and with st = (xt, vt) , partial sums of
qt = stu0t = (q′xt, q

′
vt) , partitioned conformably with st =

(
x0′t , v

′
t

)′
, satisfy

the functional law n−1/2
∑bn·c
t=1 qt ⇒ Bq (·) with limiting Brownian motion

vector Bq =
(
B′qx , B

′
qv

)′
, conformably partitioned with qt, and covariance

matrix

Ωqq = σ00Σss = σ00

[
Σxx Σxv
Σvx Σvv

]
> 0.

(b) Under Assumptions A′(i) and A′(ii), partial sums of ztu0t satisfy the func-
tional law n−1/2

∑bn·c
t=1 ztu0t ⇒ Bzu (·) with limiting Brownian motion Bzu

with covariance matrix σ00Σzz.

Proof

11



Part (a) The CLT follows from Assumptions A(i) and A(ii) since n−1/2
∑n
t=1 qt

satisfies the stability and Lindeberg conditions. In particular, the martin-
gale conditional variance matrix n−1

∑n
t=1 sts

′
tE
{
u20t|Ft−1

}
→a.s σ00Σss

as n→∞, ensuring stability. The Lindeberg condition

n−1
n∑
t=1

E
[
‖sts′t‖u20t1

{
‖sts′t‖

1/2 |u0t| >
√
nε
}
|Ft−1

]
→p 0, for all ε > 0

holds by standard manipulations since

1
{
‖sts′t‖

1/2 |u0t| >
√
nε
}
≤ 1

{
‖sts′t‖

1/2
> n1/4ε1/2

}
+1
{
|u0t| > n1/4ε1/2

}
,

and

n−1
n∑
t=1

E
[
‖sts′t‖u20t1

{
‖sts′t‖

1/2 |u0t| >
√
nε
}
|Ft−1

]
≤ n−1

n∑
t=1

‖sts′t‖ 1
{
‖sts′t‖

1/2
> n1/4ε1/2

}
E
{
u20t|Ft−1

}
+n−1

n∑
t=1

‖sts′t‖E
[
u20t1

{
|u0t| > n1/4ε1/2

}
|Ft−1

]
= σ00n

−1
n∑
t=1

‖sts′t‖ 1
{
‖sts′t‖

1/2
> n1/4ε1/2

}
+

(
n−1

n∑
t=1

‖sts′t‖
)
E
[
u2011

{
|u01| > n1/4ε1/2

}
|F0
]

→ L1 0.

The functional law n−1/2
∑bn·c
t=1 qt ⇒ Bq (·) then follows directly by Hall

and Heyde (1980, theorem 4.1).

Part (b) The CLT follows in the same way from Assumptions A′(i) and A′(ii):
n−1/2

∑n
t=1 ztu0t has martingale conditional variance matrix n

−1∑n
t=1 ztz

′
tE
{
u20t|Ft−1

}
→a.s

σ00Σzz as n→∞, and the Lindeberg condition

n−1
n∑
t=1

E
[
‖ztz′t‖u20t1

{
‖ztz′t‖

1/2 |u0t| >
√
nε
}
|Ft−1

]
→p 0, for all ε > 0

holds by the same argument given in part (a). The functional law again
follows.

Proof of Theorem 1

Part (i) We start by considering the transformed system (3) and corresponding
least squares estimate α̂ = (W ′W )

−1
W ′y. In view of (9) and (10) we have

D−1n W ′WD−1n →a.s.

[
Σaa = E

(
x0tx

0′
t

)
0

0 Σbb =
∑∞
t=1 a

2
t vtv

′
t

]
, (15)

12



and

D−1n W ′u0 =

[ 1√
n

∑n
t=1 watu0t∑n

t=1 wbtu0t

]
⇒
[

Bqx (1)
Qv :=

∑∞
t=1 atvtu0t

]
, (16)

so that

Dn (α̂− α) =
[
D−1n W ′WD−1n

]−1 [
D−1n W ′u0

]
⇒

[
Σ−1aaBqx (1)

Σ−1bb
∑∞
t=1 atvtu0t

]
=:

[
ξa
ξb

]
, (17)

where ξa ≡ N
(
0, σ00Σ

−1
aa

)
and ξb =

(∑∞
t=1 a

2
t vtv

′
t

)−1∑∞
t=1 atvtu0t. Next

note that β̂ − β = G (α̂− α) = GD−1n Dn (α̂− α) , so that(
GD−1n

)−1 (
β̂ − β

)
= Dn (α̂− α)⇒

(
ξ′a, ξ

′
b

)′
.

Now[
β̂a − βa
β̂b − βb

]
= GD−1n Dn

[
α̂a − αa
α̂b − αb

]
=

[ 1√
n
Ika −Π′

0 Ikb

]
Dn

[
α̂a − αa
α̂b − αb

]
,

so that

DnG
−1
[
β̂a − βa
β̂b − βb

]
= Dn

[
α̂a − αa
α̂b − αb

]
⇒
[
ξa
ξb

]
.

That is [ √
nIka

√
nΠ′

0 Ikb

] [
β̂a − βa
β̂b − βb

]
⇒
[
ξa
ξb

]
,

It follows that

β̂b − βb ⇒ ξb,
√
n
(
β̂a − βa

)
+
√
nΠ′

(
β̂b − βb

)
⇒ N

(
0, σ00Σ

−1
aa

)
,

which leads to[
β̂a − βa
β̂b − βb

]
=

[
−Π′

Ikb

](
β̂b − βb

)
+ op (1)⇒

[
−Π′

Ikb

]
ξb.

Hence, both β̂a and β̂b are inconsistent with limits that are random, depen-
dent on ξb =

(∑∞
t=1 a

2
t vtv

′
t

)−1∑∞
t=1 atvtu0t, and of degenerate dimension

kb because β̂a−βa is asymptotically proportional to β̂b−βb. No invariance
principle applies because the distribution of ξb depends on the distribution
of the data.

13



Part (ii) Note that

σ̂2 = n−1u′0

(
In −X (X ′X)

−1
X ′
)
u0 =

u′0u0
n
− 1

n
u′0XG (G′X ′XG)

−1
G′X ′u0

=
u′0u0
n
− 1

n
u′0W (W ′W )

−1
W ′u0 =

u′0u0
n
− 1

n
u′0WD−1n

(
D−1n W ′WD−1n

)−1
D−1n W ′u0

→ p E
(
u20t
)

= σ00,

since n−1u′0u0 →a.s E
(
u20t
)
by the ergodic theorem, D−1n W ′WD−1n →a.s.

diag {Σaa,Σbb} > 0 by (15), and D−1n W ′u0 = Op (1) by (16). Hence, σ̂2

is consistent for σ00.

Part (iii) Under the null H0 : β = 0, we have α = G−1β = 0 and

Wn = β̂
′
X ′Xβ̂/σ̂2 = β̂

′
G′−1G′X ′XGG−1β̂/σ̂2 = α̂′W ′Wα̂/σ̂2

= α̂′DnD
−1
n W ′WD−1n Dnα̂/σ̂

2

⇒
(
ξ′a, ξ

′
b

) [ Σaa 0
0 Σbb

] [
ξa
ξb

]
/σ00 =

{
ξ′aΣaaξa + ξ′bΣbbξb

}
/σ00

= ζ ′aζa + ζ ′bζb,

where

Dn (α̂− α)⇒
[
ξa
ξb

]
=

[
N
(
0, σ00Σ

−1
aa

)
Σ−1bb

∑∞
t=1 atvtu0t

]
,

using (17) and setting ζa := Σ
1/2
aa ξa/σ

1/2
00 =d N (0, Im) and ζb := Σ

1/2
bb ξb/σ

1/2
00 =

Σ
−1/2
bb

∑∞
t=1 atvtu0t/σ

1/2
00 . We deduce that Wn ⇒ χ2ka + ζ ′bζb, a mixture of

a chi square distribution and the squared length of the vector variate ζb.
No invariance principle holds because ζb depends on the data distribu-
tion through {vt, u0t}∞t=1 . However, note that when (vt, u0t) is Gaussian,
then u0t ∼ iid N (0, σ00) is independent of {vt} because E (vtu0t) = 0 in
view of Assumption A(ii). Then ζb =d N (0, Ikb) and ζ

′
bζb ∼d χ2kb so that

Wn ⇒ χ2k.

Proof of Theorem 2

Part (i) We start the analysis by considering the behavior of the sample mo-
ment matrix of wt and the instruments zt, viz.,

W ′Z =

[ ∑n
t=1 x

0
t z
′
t∑n

t=1 atvtz
′
t

]
.

Under Assumption A′(i), A′(ii), and B(ii)
∑n
t=1 atvtz

′
t →a.s

∑∞
t=1 atvtz

′
t,

which is convergent a.s. because
∑∞
t=1 |at|E ‖vtz′t‖ < ∞. It follows that
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n−1/2
∑n
t=1 atvtz

′
t →a.s 0 and then

D−1n W ′PZWD−1n =

[ 1√
n

∑n
t=1 x

0
t z
′
t∑n

t=1 atvtz
′
t

]( n∑
t=1

ztz
′
t

)−1 [
1√
n

n∑
t=1

ztx
0′
t ,

n∑
t=1

atvtz
′
t

]

=

[ 1
n

∑n
t=1 x

0
t z
′
t

1√
n

∑n
t=1 atvtz

′
t

](∑n
t=1 ztz

′
t

n

)−1 [
1

n

n∑
t=1

ztx
0′
t ,

1√
n

n∑
t=1

atvtz
′
t

]

→ a.s

[
ΣxzΣ

−1
zz Σzx 0
0 0

]
,

which is singular. Applying the martingale CLT (see Lemma A) we have
n−1/2

∑n
t=1 ztu0t ⇒ N (0, σ00Σzz) , and by ergodicity n−1

[∑n
t=1 ztx

0′
t ,
∑n
t=1 ztv

′
t,
∑n
t=1 ztz

′
t

]
→a.s.[

Σzx Σzv Σzz
]
, which leads to

D−1n W ′PZu0 =

[ 1
n

∑n
t=1 x

0
t z
′
t

1√
n

∑n
t=1 atvtz

′
t

](∑n
t=1 ztz

′
t

n

)−1 [
1√
n

n∑
t=1

ztu0t

]

⇒
[

Σxz
0

]
Σ−1zz ×N (0, σ00Σzz) =

[
N
(
0, σ00ΣxzΣ

−1
zz Σzx

)
0

]
.

Now define Fn = diag
(√

nIka ,
1√
n
Ikb

)
and note that

F−1n W ′PZWF−1n =

[
1
n

∑n
t=1 x

0
t z
′
t∑n

t=1 atvtz
′
t

](∑n
t=1 ztz

′
t

n

)−1 [
1

n

n∑
t=1

ztx
0′
t ,

n∑
t=1

atztv
′
t

]

→ a.s

[
ΣxzΣ

−1
zz Σzx ΣxzΣ

−1
zz (

∑∞
t=1 atztv

′
t)

(
∑∞
t=1 atvtz

′
t) Σ−1zz Σzx (

∑∞
t=1 atvtz

′
t) Σ−1zz (

∑∞
t=1 atztv

′
t)

]
= :

[
ΣxzΣ

−1
zz Σzx ΣxzΣ

−1
zz Az

A′zΣ
−1
zz Σzx A′zΣ

−1
zz Az

]
= M, (18)

whereAz =
∑∞
t=1 atztv

′
t, which is convergent almost surely because

∑∞
t=1 |at|E ‖ztv′t‖ <

∞ in view of B(ii) and A′(ii). Also

F−1n W ′PZu0 =

[
1
n

∑n
t=1 x

0
t z
′
t∑n

t=1 atvtz
′
t

](∑n
t=1 ztz

′
t

n

)−1 [
1√
n

n∑
t=1

ztu0t

]

⇒
[

Σxz
A′z

]
Σ−1zz ×N (0, σ00Σzz) = MN (0, σ00M) .

Note that the matrix variate Az =
∑∞
t=1 atztv

′
t is independent of the limit

of
(
1
n

∑n
t=1 ztz

′
t

)−1/2 1√
n

∑n
t=1 ztu0t ⇒ N (0, IK) , since this Gaussian limit

does not depend on {zt, vt}∞t=1 . Hence, we have the mixed normal (MN)
limit theory

Fn (αIV − α) =
(
F−1n W ′PZWF−1n

)−1 (
F−1n W ′PZu0

)
⇒ MN

(
0, σ00M

−1) . (19)
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In partitioned form, we have

Fn (αIV − α) =

{√
n (αa,IV − αa) ,

1√
n

(αb,IV − αb)
}

⇒ MN

(
0, σ00

[
ΣxzΣ

−1
zz Σzx ΣxzΣ

−1
zz Az

A′zΣ
−1
zz Σzx A′zΣ

−1
zz Az

]−1)
(20)

and so αa,IV →p αa but αb,IV diverges at a
√
n rate. Transforming to the

original coordinates, we have

βIV − β = G (αIV − α) =

[
Ika −Π′

0 Ikb

]
(αIV − α) , (21)

and then

βIV − β =

[
βa,IV − βa
βb,IV − βb

]
= G

[
αa,IV − αa
αb,IV − αb

]
= GF−1n Fn (αIV − α) ,

giving

FnG
−1 (βIV − β) = Fn (αIV − α)⇒MN

(
0, σ00M

−1) . (22)

Since G−1 =

[
Im Π′

0 1

]
and Fn = diag

(√
nIka ,

1√
n
Ikb

)
, we have the

partitioned asymptotics

FnG
−1 (βIV − β)

=

[ √
nIm

√
nΠ′

0 1/
√
n

] [
βa,IV − βa
βb,IV − βb

]
=

[ √
n
(
βa,IV − βa

)
+
√
nΠ′

(
βb,IV − βb

)
1√
n

(
βb,IV − βb

) ]
⇒ MN

(
0, σ00

[
ΣxzΣ

−1
zz Σzx ΣxzΣ

−1
zz Az

A′zΣ
−1
zz Σzx A′zΣ

−1
zz Az

]−1)
. (23)

Recall that α = G−1β =

[
βa + Π′βb

βb

]
=:

[
αa
αb

]
so that βa,IV +Π′βb,IV

is consistent for βa + Π′βb and
√
n
(
βa,IV − βa

)
+
√
nΠ′

(
βb,IV − βb

)
has

a limiting mixed normal distribution, whereas βb,IV − βb diverges at the
rate

√
n. More specifically, we have by partitioning the limit covariance

matrix in (23) that
√
n
(
βa,IV + Π′βb,IV − βa −Π′βb

)
⇒MN0, σ00H

−1
ββ ,

where Hββ =
[
ΣxzΣ

−1
zz Σzx − ΣxzΣ

−1
zz Az

(
A′zΣ

−1
zz Az

)−1
A′zΣ

−1
zz Σzx

]
.
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Part (ii) We next consider the IV error variance estimate σ̃2 = 1
n ũ
′ũ, where

ũ = y−XβIV = y−WαIV = u0−W (W ′PZW )
−1
W ′PZu0. The estimate

can be expanded as follows

σ̃2 =
1

n
u′0u0 −

2

n
u′0PZW (W ′PZW )

−1
W ′u0 +

1

n
u′0PZW (W ′PZW )

−1
W ′W (W ′PZW )

−1
W ′PZu0

=
1

n
u′0u0 −

2

n
u′0PZWF−1n

(
F−1n W ′PZWF−1n

)−1
F−1n W ′u0

+
1

n
u′0PZWF−1n

(
F−1n W ′PZWF−1n

)−1
F−1n W ′WF−1n

(
F−1n W ′PZWF−1n

)−1
F−1n W ′PZu0.

Observe that n−1u′0u0 →a.s. σ00, Fn (αIV − α)⇒ Zα := MN
(
0, σ00M

−1)
in view of (19), and

F−1n W ′u0 =

[ 1√
n

∑n
t=1 x

0
tu0t√

n
∑n
t=1 atvtu0t

]
,

so that

1

n
u′0PZW (W ′PZW )

−1
W ′u0 =

1

n
(αIV − α)

′
FnF

−1
n W ′u0

=
1√
n

(αIV − α)
′
Fn

[
1
n

∑n
t=1 x

0
tu0t∑n

t=1 atvtu0t

]
= Op

(
1√
n

)
.

Next, note that

1

n
F−1n W ′WF−1n =

1

n

[
1
n

∑n
t=1 x

0
tx
0′
t

∑n
t=1 atx

0
t v
′
t∑n

t=1 atvtx
0′
t n

∑n
t=1 a

2
t v
0
t v
′
t

]
=

[
1
n2

∑n
t=1 x

0
tx
0′
t

1
n

∑n
t=1 atx

0
t v
′
t

1
n

∑n
t=1 atvtx

0′
t

∑n
t=1 a

2
t v
0
t v
′
t

]
=

[
Op
(
n−1

)
Op
(
n−1

)
Op
(
n−1

) ∑n
t=1 atv

0
t v
′
t

]
, under A′ and B(ii).

Alternatively under A′ and B(i), we have[
1
n2

∑n
t=1 x

0
tx
0′
t

1
n

∑n
t=1 atx

0
t v
′
t

1
n

∑n
t=1 atvtx

0′
t

∑n
t=1 a

2
t v
0
t v
′
t

]
=

[
Op
(
n−1

)
Op
(
n−1+η

)
Op
(
n−1+η

) ∑n
t=1 a

2
t v
0
t v
′
t

]
,

for some small η > 0. Using these results we obtain

1

n
u′0PZWF−1n

(
F−1n W ′PZWF−1n

)−1
F−1n W ′WF−1n

(
F−1n W ′PZWF−1n

)−1
F−1n W ′PZu0

= (αIV − α)
′
Fn

{
1

n
F−1n W ′WF−1n

}
Fn (αIV − α)

= (αIV − α)
′
Fn

[
Op
(
n−1

)
Op
(
n−1+η

)
Op
(
n−1+η

) ∑n
t=1 atvtv

′
t

]
Fn (αIV − α)

=

{
1√
n

(αb,IV − αb)′
}( n∑

t=1

a2t vtv
′
t

){
1√
n

(αb,IV − αb)
}

+ op (1)

⇒ σ00ψ
′
bH
−1/2

( ∞∑
t=1

a2t vtv
′
t

)
H−1/2ψb
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where we use the fact that 1√
n

(αb,IV − αb) = 1√
n

(
βb,IV − βb

)
⇒MN

(
0, σ00H

−1) =

σ
1/2
00 H

−1/2ψb with ψb = N (0, Ikb) and

H =
[
A′zΣ

−1
zz Az −A′zΣ−1zz Σzx

(
ΣxzΣ

−1
zz Σzx

)−1
ΣxzΣ

−1
zz Az

]
.

It follows that
σ̃2 =

1

n
ũ′ũ→p σ00 {1 + ωzz}

where ωzz = ψ′bH
−1/2 (∑∞

t=1 a
2
t vtv

′
t

)
H−1/2ψb, as stated.

Part (iii) The block Wald test is

Wn = β′IVX
′PZXβIV /σ̃

2 = β′IVG
′−1G′X ′PZXGG

−1βIV /σ̃
2 = α′IVW

′PZWαIV /σ̃
2

= α′IV Fn
(
F−1n W ′PZWF−1n

)
FnαIV /σ̃

2.

Under the null hypothesisH0 : β = α = 0 we have from (22) that FnαIV ⇒
N
(
0, σ00M

−1) , and from (18) that F−1n W ′PZWF−1n ⇒M. It follows that{
F−1n W ′PZWF−1n

}1/2
FnαIV /σ

1/2
00 ⇒ Z ∼ N (0, Ik) ,

so that
Wn ⇒

1

{1 + ωzz}
Z ′Z = χ2k/ {1 + ωzz} ,

as stated.

Part (iv) The Sargan test for overidentification has the form

Sn = ũ′PZ ũ/σ̃
2 = u′0

{
Pz − PzX (X ′PZX)

−1
X ′PZ

}
u0/σ̃

2

= u′0

{
Pz − PzW (W ′PZW )

−1
W ′PZ

}
u0/σ̃

2

= ζ ′n

{
IK − (Z ′Z)

−1/2
Z ′W (W ′PZW )

−1
W ′Z (Z ′Z)

−1/2
}
ζn/σ̃

2,

where ζn =
(
n−1Z ′Z

)−1/2 (
n−1/2Z ′u0

)
⇒ ζ ≡MN (0, σ00IK) ≡ N (0, σ00IK)

by the MGCLT in Lemma A. Note that the limit distribution and random
vector ζ is independent of (zt). Use the earlier finding (18) that

F−1n W ′PZWF−1n →a.s

[
ΣxzΣ

−1
zz Σzx ΣxzΣ

−1
zz Az

A′zΣ
−1
zz Σzx A′zΣ

−1
zz Az

]
,

where Az =
∑∞
t=1 atztv

′
t, and Fn = diag

(√
nIm,

1√
n

)
. We further note

that

(Z ′Z)
−1/2

Z ′WF−1n =

(
Z ′Z

n

)−1/2
Z ′W√
n
F−1n

=

(
Z ′Z

n

)−1/2 [ ∑n
t=1 ztx

0
t

∑n
t=1 atztv

′
t

]
→a.s Σ−1/2zz [Σzx, Az] ,
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and, defining Q = Σ
−1/2
zz

[
Σzx Az

]
, observe that[

ΣxzΣ
−1
zz Σzx ΣxzΣ

−1
zz Az

A′zΣ
−1
zz Σzx A′zΣ

−1
zz Az

]
=

[
Σxz
A′z

]
Σ−1zz

[
Σzx Az

]
= Q′Q.

We dedice that

Sn = ζ ′n

{
IK − (Z ′Z)

−1/2
Z ′W (W ′PZW )

−1
W ′Z (Z ′Z)

−1/2
}
ζn/σ̃

2

= ζ ′n

{
IK −Q (Q′Q)

−1
Q′ + oa.s. (1)

}
ζn/ {σ00 [1 + ωzz] + oa.s. (1)}

⇒ χ2K−k/ {1 + ωzz} ,

since PQ = IK−Q (Q′Q)
−1
Q′ is symmetric and idempotent of rankK−k.

Hence, the Sargan overidentification test statistic is distributed in the limit
as χ2K−k/ {1 + ωzz} , as stated.
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