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Pitfalls and Possibilities in Predictive Regression∗
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Abstract

Financial theory and econometric methodology both struggle in formulating models

that are logically sound in reconciling short run martingale behaviour for financial

assets with predictable long run behavior, leaving much of the research to be empirically

driven. The present paper overviews recent contributions to this subject, focussing on

the main pitfalls in conducting predictive regression and on some of the possibilities

offered by modern econometric methods. The latter options include indirect inference

and techniques of endogenous instrumentation that use convenient temporal transforms

of persistent regressors. Some additional suggestions are made for bias elimination,

quantile crossing amelioration, and control of predictive model misspecification.

Keywords: Bias, Endogenous instrumentation, Indirect inference, IVX estimation, Lo-

cal unit roots, Mild integration, Prediction, Quantile crossing, Unit roots, Zero coverage

probability.

JEL classification: C22, C23

“The records of 11 leading financial periodicals and services since 1927,

over periods varying from 10 to 1512 years, fail to disclose evidence of ability

to predict successfully the future course of the stock market.” Alfred Cowles

(1944).

∗Presented as the Halbert White Memorial Lecture at the SoFiE conference held in Singapore at Sin-
gapore Management University, June 2013. The author acknowledges support from the NSF under Grant
No. SES 12-58258 and thanks the Editor, a referee, and Ji Hyung Lee for helpful comments on the original
version of the paper.
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“There is no way to predict the price of stocks and bonds over the next few

days or weeks. But it is quite possible to foresee the broad course of these prices

over longer periods such as the next three to five years.” Press Release for the

Prize in Economic Sciences, Royal Swedish Academy of Sciences, October 2013.

1 Introduction

Prediction is a central activity of econometics. From a practical standpoint, it is one of

the more useful activities of the discipline, especially when it includes projections that

enable us to analyze the effects of policy changes or to take advantage of investment

opportunities. Prediction is also the most visible feature of econometrics to the public

at large and perhaps the most relevant to the standing of the economics profession. The

vulnerabilities of the profession in this dimension were thrown starkly into evidence when

in November 2008 Queen Elizabeth asked a public gathering of economists at the London

School of Economics why no one foresaw the financial crisis and global turmoil in financial

markets. This question summarized ongoing reflection about the crisis in the public arena

as well as debates that erupted within the economics and finance professions about the

relevance of much macroeconomic theory and financial modeling.

In a subsequent show of faith in the discipline and concomitant with the subsequent

recovery from the Great Recession that followed the financial crisis, in 2013 the Royal

Swedish Academy awarded the Nobel Prize in economics to the 2013 Laureates for their

work on the empirical analysis of asset pricing. The press release of the Academy cited

in the headnote focused on the “surprising and contraditory” findings on predictability:

financial asset prices are essentially unpredictable in the short run, but may be predictable

in the long run. How can that be possible? The standard answer is simple: short-run

volatility effectively masks long-term movements, which special econometric methods are

needed to detect. But how successful are these methods. And would Queen Elizabeth be

satisfied with such a response in the face of the substantial impact inflicted by the GFC on

investors, the financial industry, the solvency of nation states, and ultimately the taxpayer?

Econometric forecasting now commands a vast literature, with dedicated journals and

tentacles of empirical applications that stretch across the modern social and business sci-

ences, as well as highly specific literatures in some areas like macroeconomics and finance.

The extensive work on stock market forecasting formally began with the establishment
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by Alfred Cowles of the Cowles Commission in 1932 with the express purpose articulated

in its Articles of Incorporation “to advance the scientific study and development .... of

economic theory in its relation to mathematics and statistics” (Christ, 1952). Primary

initial functions, besides collecting data and the formulation of indexes, were to analyze

whether stock market forecasters could forecast successfully, and to provide a scientific

foundation for that activity. In early research on the first question, as the header to this

article attests, Cowles (1933, 1944) failed to find any evidence of ability to predict the stock

market successfully, a conclusion that appears to be at variance with the later view of the

Royal Swedish Academy. Financial markets, trading mechanisms, regulatory structures,

global communications, corporations, and the world economy underlying stocks and bonds

have undergone tectonic changes in size and complexity since Cowles (1933) initiated this

line of analysis. With all these developments combined with enormous growth in the mu-

tual fund industry, one may have expected markets to have become even more ‘effi cient’

in their operations and correspondingly less ‘predictable’ in the intervening period. But

econometric methodologies of detection have also changed substantially in the intervening

decades. Moreover, electronic monitoring of market transactions on a tick by tick basis

produces massive quantities of data that are now available for empirical work to analyze

market behavior and trends.

Modern research on stock market predictability often involves trawling through these

vast data sets hunting for predictive agents and extensive regression running with a mix of

stationary and nonstationary time series and nonlinear functions of the raw data such as

price/earnings and dividend/earnings ratios. The findings from such research has turned

out to be somewhat ambiguous and baffl ing, as recently argued in the work of Welch and

Goyal (2007). The quantities being estimated - commonly, the slope coeffi cients in the

regressions - are frequently small (consonant with the Academy’s statement concerning

near martingale behavior in the short run) and the explanatory power of the regressions

is generally low (consonant with Cowles’s failure to find any evidence that forecasters are

able to forecast financial markets successfully). Of course, big rare events - like the recent

financial crisis —are often regarded as unpredicable in terms of precise timing and their

specific form, but are now recognized as an inevitable feature of large complex systems. The

theory of self organized criticality of complex physical and social systems, originating in the

statistical physics work of Bak, Tang and Wiesenfeld (1987), provides strong arguments

for the natural occurrence of such phenomena that involve periodic accumulation and

collapse, just as in the metaphor of intermittent avalanches that occur naturally in a
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slowly accumulating sandpile.

Notwithstanding these qualifications, financial theory is remarkably silent on the issue

of reconciling short run martingale behaviour with predictable long run behavior, begging

questions of how long is necessary to achieve predictability, which are the key predictors

or relevant predictive factors, and whether the predictive models are logically sound in

terms of their time series properties. In consequence, much of the work in this field, as

acknowledged by the Royal Swedish Academy, is empirically driven econometric research.

That research has many pitfalls, as we will discuss. But it also offers many possibilities,

including the use of new methodologies for inference.

The aim of the present paper is to overview certain aspects of this rapidly growing field

of research. The paper studies some of the pitfalls in predictive regression while at the same

time exploring some of the options made possible by recent econometric methodology. In

part, therefore, the paper involves a review of existing methods combined with some recent

research that is opening up new possibilities for empirical work.

The remainder of the paper is organized as follows. Section 2 examines some of the

endemic pitfalls in predictive regression, covering new as well as commonly cited issues. We

discuss some of the possibilities now available for addressing or bypassing these pitfalls,

including some methods that are presented here for the first time. Section 3 explores

some recent developments that have opened up new options in linear, nonparametric and

quantile regression methods. Some concluding comments are given in Section 4.

2 Pitfalls and Possibilities

We examine a variety of problems encountered in the use of existing methods of predictive

regression. Past literature in the field has acknowledged the most common problems and

sought to find ways around these diffi culties, as discussed in Phillips and Lee (2013). We

start by briefly reviewing these issues, most of which stem from endogeneity problems and

the fact that many commonly used explanatory regressors involve time series with varying,

unknown degrees of persistence. Options for dealing with these diffi culties or attenuating

their impact on inference are discussed in each case.

For our discussion it is convenient to use the basic linear predictive model that is
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commonly formulated in triangular system format following Phillips (1991) as

yt = β′xt−1 + u0t, (2.1)

xt = ρxt−1 + uxt. (2.2)

where the focus of attention is on the prediction of some scalar time series yt given past

information embodied in a set of regressors xt−1. Since in much practical work like stock

market or foreign exchange return forecasting the scalar dependent variable yt has time

series behavior that is close to a martingale difference sequence (mds) it is conventional

to assume that the equation error u0t is an mds with E
(
u20t|Ft−1

)
= σ00 a.s., where Ft =

σ (ut, ut−1, ...) is the natural filtration associated with the driver innovations ut = (u0t, u
′
xt)
′.

This condition can readily be extended to allow for conditional heterogeneity, as will often

be relevant when the observed time series are asset returns, but such extensions are not

needed in explaining the primary pitfalls inherent in the predictive regression framework.

For the purpose of the following discussion, let (ut,Ft) be an mds with

E
(
utu
′
t|Ft−1

)
=

[
σ00 σ0x

σx0 Σxx

]
=: Σ,

which allows for xt to be a vector of potential regressors useful in forecasting yt and

accommodates contemporaneous correlation between the components of the model. Again,

it is easy to extend this structure to permit temporal dependence, intercepts and localized

drifts (for the latter see Phillips, Shi and Yu, 2014) but it is helpful to keep to this simple

framework to expound ideas.

2.1 Bias

Applying least squares to (2.1), assuming xt is scalar, and setting u0.xt = u0t − σ0xΣ−1xxuxt

the estimation error decomposes as

β̂ − β =

∑n
t=1 xt−1u0.xt∑n
t=1 x

2
t−1

+ σ0xΣ−1xx (ρ̂− ρ) , (2.3)

where ρ̂ =
(∑n

t=1 x
2
t−1
)−1∑n

t=1 xt−1xt. Taking expectations, we have

E
(
β̂ − β

)
= σ0xΣ−1xxE (ρ̂− ρ) = σ0xΣ−1xxBn (ρ) =: Cn (Σ, ρ)
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where the autoregressive bias function Bn (ρ) = E (ρ̂− ρ) depends only on ρ and n. An

exact formula for Bn (ρ) under Gaussianity is given in Phillips (2012) together with the

following complete set of asymptotic expansions that hold for large n

Bn (ρ) =


−2ρn +O

(
n−2

)
|ρ| < 1

−1.7814n +O
(
n−2

)
ρ = 1

−g(c)
n +O

(
n−2

)
ρ = 1 + c

n

O
(

1
|ρ|n
)

|ρ| > 1

, (2.4)

where g (c) is a continuous function of c whose analytic form is given in Phillips (2012).

While in all cases the bias is negative for ρ > 0, the formulae show the discontinuities that

occur in the bias expansions upon moving from a stationary regressor (|ρ| < 1) to a unit

root (UR) regressor (ρ = 1), and through to an explosive regressor (ρ > 1). The local unit

root (LUR) case with ρ = 1+ c
n involves a continuous function g (c) which has the property

that limc→0 g (c) = 1.7814, limc=o(n),c→−∞ g (c) = 2, and limc→∞ g (c) = 0, which partially

assists in bridging the stationary, unit root, and explosive cases.

Useful though the formulae given in (2.4) are, practical robust bias correction using

them is not possible because, when ρ is unknown, so too is the precise formula to implement.

Although the parameter ρ may be consistently estimated (again typically with bias), the

localizing coeffi cient c is not consistently estimable except in very special circumstances

(Moon and Phillips, 2000, 2004; Phillips, Moon and Xiao, 2001). Hence, the suggestion has

been made in several papers (Stambaugh, 1999; Kothari and Shanken, 1997; Amihud and

Hurvich, 2004) to correct bias using the particular version of (2.4) that holds for |ρ| < 1, in

which case the correction applies only under the assumed condition of stationarity. Similar

problems are encountered with higher order expansions. Such procedures inevitably err

and lead to further bias when the condition fails and the regressors display persistence, as

is commonly the case in practical work. Pre-test methods that use an estimate of ρ prior to

selecting the appropriate bias formula produce further diffi culties because of the presence

of pre-test bias.

These problems of parameter dependence and discontinuity continue to apply and are

typically more complex in the case of multiple regressors with more unknown parameters in

the dynamics for xt. Even in models where there are very large numbers of regressors and

there is a common autoregressive coeffi cient, the bias problems remain —just as they are

present in dynamic panel regressions under least squares estimation (Hahn and Kuersteiner,
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2002).

It is now known that indirect inference methods can successfully deal with bias in au-

toregressive estimation and are robust to stationary and nonstationary values of ρ (Phillips,

2012). These methods may be used in the present context even though the autoregressive

coeffi cient bias is only implicit in the estimation of β, as is apparent in the simple decom-

position formula (2.3). For instance, ρ may be estimated robustly and with virtually no

bias in finite samples by the indirect inference estimator ρ̆, as described in Phillips (2012).

Then the predictive regression coeffi cient β̂ may be bias corrected using the formula

β̆
(1)

= β̂ − Cn
(

Σ̂, ρ̆
)

= β̂ − σ̂0xΣ̂−1xxBn (ρ̆) , (2.5)

where Bn (ρ̆) plugs the indirect inference estimate ρ̆ into the exact bias formula Bn (ρ) =

E (ρ̂− ρ) obtained analytically as in Phillips (2014) under a Gaussian assumption or by

simulation. To complete the calculation in (2.5), Σ̂ is a consistent estimate of Σ based

on the residuals ŭt = (û0t, ŭxt)
′ from the predictive regression û0t = yt − β̂xt and ŭxt =

xt− ρ̆xt−1 from the autoregressive equation fitted by using the indirect inference estimator

ρ̆. The process involved in (2.5) may be iterated to convergence using the scheme β̆
j

=

β̂ − Cn

(
Σ̆j−1, ρ̆

)
with starting value Σ̆0 = Σ̂ and with Σ̆(j−1) based on the (j − 1)th

iteration residuals ŭ(j−1)0t = yt− β̆
(j−1)

xt. Iteration then achieves compatibility between the

resulting estimates, thereby delivering an indirect inference estimator β̆ of β that satisfies

the nonlinear equation

β̆ = β̂ − Cn
(

Σ̆, ρ̆
)

= β̂ − σ̆0xΣ̆−1xxBn (ρ̆) .

This procedure, which appears to be new, has the advantage that it directly accommodates

the exact autoregressive bias in a robust way for all possible values of ρ and for the given

sample size n. On the other hand, it applies rigorously only under Gaussianity and it does

not generalize easily to more complex predictive regressions with multiple regressors in

view of the additional diffi culties involved in the implementation of indirect inference.

2.2 Nonstandard Inference

Much of the recent literature on predictive regression has focused on the use of explanatory

variables in predictive regressions that have some degree of time series persistence such as

dividend yields, book-to-price ratios, interest rates, or yield spreads. A natural first choice
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in analyzing such regressions was to develop methodology for near integrated or LUR time

series that avoid insistence on the presence of a unit root in the data but allow for varying

degrees of persistence that seem suited to many series intended to capture fundamentals.

Accordingly, LUR asymptotics based on Chan and Wei (1987) and Phillips (1987) have

come to play a large role in this literature, so that if ρ = 1 + c
n , we have by standard

manipulations the following limit theory which uses the decomposition in Phillips (1989) -

see also Cavanagh et al (1995)

n
(
β̂ − β

)
=

1
n

∑n
t=1 xt−1u0t

1
n2
∑n

t=1 x
2
t−1

=⇒
∫ 1
0 J

c
x(s)dB0(s)∫ 1

0 J
c
x(s)2dr

(2.6)

=

∫ 1
0 J

c
x(s)dB0.x(s)∫ 1
0 J

c
x(s)2dr

+ σ0xΣ−1xx

∫ 1
0 J

c
x(s)dBx(s)∫ 1

0 J
c
x(s)2dr

(2.7)

=

[∫ 1

0
Jcx(s)2dr

]−1/2
ξ0.x + σ0xΣ−1xx

∫ 1
0 J

c
x(s)dBx(s)∫ 1

0 J
c
x(s)2dr

. (2.8)

Here Jcx(s) =
∫ s
0 e

c(s−p)dBx (p) is a linear diffusion, B = (B0, B
′
x)′ is vector Brownian

motion with variance matrix Σ, B0.x = B0 − σ0xΣ−1xxB0.x and

ξ0.x :=

∫ 1
0 J

c
x(s)dB0.x(s)(∫ 1

0 J
c
x(s)2dr

)1/2 = N (0,Σ00.x) , Σ00.x = σ00 − σ0xΣ−1xxσx0.

By construction, B0.x and ξ0.x are independent of Bx and therefore independent of the

second term in (2.8). The source of the nonstandard limit theory in (2.6) and (2.8) therefore

originates in endogeneity from non-zero correlation (σ0x 6= 0) between the limit processes

B0 and Bx. Thus, although the regressor-error product element xt−1u0t that appears in the

numerator of (2.6) behaves nicely as a martingale difference sequence, the sample covariance
1
n

∑n
t=1 xt−1u0t ⇒

∫ 1
0 J

c
x(s)dB0(s) is non-zero and random, embodying limiting endogeneity

effects from the correlation of the processes Jcx(s) and B0(s). More specifically, although

the orthogonality condition E (xt−1u0t) = 0 still holds, nonstationarity in the regressor xt−1
ensures that the limiting stochastic processes Jcx(s) and B0(s) are correlated when σ0x 6= 0,

which in turn leads to the endogeneity effect arising from the second term of (2.8). The

end result is nonstandard limit theory behavior that is very different from the stationary

ergodic case (|ρ| < 1) where the strong law 1
n

∑n
t=1 xt−1u0t →a.s E (xt−1u0t) = 0 holds and

a standard CLT 1√
n

∑n
t=1 xt−1u0t ⇒ N

(
0, σ00E

(
x2t
))
applies with no endogeneity effect.
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Indeed, when |ρ| < 1 (2.8) is replaced by
√
n
(
β̂ − β

)
⇒ N

(
0, σ00Σ

−1
xx

)
and classical

inferential tools of regression asymptotics apply. The discontinuity in the distributional

asymptotics around ρ = 1 mirrors the discontinuity (2.4) in the asymptotic form of the

bias function. And whilst the limit theory is classical when |ρ| < 1, there is inferential

distortion from finite sample bias and skewness in such cases.

The primary diffi culty empirical investigators face in conducting predictive inference

is that there is uncertainty about the degree of persistence in the regressor. Standard

methods fail in nonstationary cases and methods designed to treat LUR predictors often

fail in stationary and certain mildly integrated (MI) cases, as does the popular Campbell

and Yogo (2006) procedure (see Phillips, 2014). Moreover, multivariate regressors present

further technical complexities and numerical complications for many methods, meaning

that they are implementable in practice only in single predictor specifications. Differences

in the persistence properties of the predictors cause additional diffi culties and pre-test

evaluation of the predictors for persistence induces pre-test bias. A particular diffi culty

associated with (2.8) is that the limit theory depends intimately on the localizing coeffi cient

c, which is not consistently estimable, and therefore does not lead to a pivotal statistic for

testing the predictability hypothesis H0 : β = 0.

Over the last two decades the econometric literature has struggled to find a satisfactory,

practical way of dealing with these many complicating features of least squares predictive

regression. We consider first the following two methods of dealing with uncertainty about

the localizing coeffi cient c that grew out of the LUR limit theory.

(i) Bonferroni Methods

One mechanism for bypassing the dependence on c is to use Bonferroni bounds to find

a confidence interval for β that incorporates confidence limits for c and therefore does

not depend on a particular value of c. Given Σ (or a consistent estimator of Σ) such a

confidence interval can be found by inversion of a suitable unit root test statistic under the

LUR alternative ρ = 1+ c
n and taking upper and lower bounds over c, as suggested originally

in Cavanagh, Elliott and Stock (1995) using ideas from Stock (1991) and confidence belt

arguments from early statistical theory.

The approach was pursued systematically by Campbell and Yogo (2006; CY) in a

form for predictive regression that quickly became influential and proved convenient for

applied work. In brief, to construct a Bonferroni confidence interval (CI), the investigator
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constructs a 100 (1− α1) % CI for the localizing coeffi cient c, denoted as CIc(α1), by the

test inversion method of Stock (1991). Then, for each value of c in this confidence interval,

a 100 (1− α2) % CI for β is constructed based on that value of c, which is denoted by

CIβ|c (α2) . A CI that does not depend on c is then obtained as

CIβ (α) =
⋃

c∈CIc(α1)
CIβ|c (α2) ,

and by Bonferroni’s inequality, this CI has coverage probability of at least 100 (1− α1 − α2) %.

The approach appears by construction to be conservative and numerical size often turns

out to be much less than nominal size when ρ is close to unity but this is certainly not

the case for stationary values of ρ far from unity. The approach also results in a biased

test because there are local alternatives for which power is less than nominal size. The

approach is confined to the case of a scalar regressor and extensions to multiple regressors

are impractical because of the need to cope with multiple localizing coeffi cients.

With a regressor whose autoregressive root is very close to unity, the CY approach

does control size and has power for sizeable departures from the null. As a result, the

method has been frequently employed in the applied literature. However, the method

fails badly for values of ρ that approach the stationary region. The explanation for this

failure is that the confidence intervals for c that are used in the procedure turn out to

be invalid and are seriously biased asymptotically when the true value of ρ is stationary

(Phillips, 2014). This failure of uniformity in the approach leads to poor performance in

the CY predictive regression tests and CIs that are based on Bonferroni methods using

LUR asymptotics when |ρ| < 1. Figure 1 (from Phillips, 2014) shows that CY confidence

intervals have very poor coverage probabilities in the stationary case —in fact only a very

small range of values of ρ deliver confidence intervals with close to nominal coverage and

these values are clearly sensitive to the degree of endogeneity in the system as measured by

the error correlation r0x = σ0x
(σ00σxx)1/2

. As n→∞ when |ρ| < 1, the CIs have zero coverage

probability and false detection of predictability is therefore inevitable asymptotically under

the null when the regressor is stationary. These results suggest substantial caution needs to

be exercised in the use of these methods in practical work, where the degrees of persistence

and endogeneity of the explanatory regressor are unknown. By contrast, the simple use of

CIs based on stationary asymptotics leads —perhaps surprisingly —to a far greater degree

of uniformity in ρ, where the 90% level and coverage probability of the stationary CIs are
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barely distinguishable on the scale of Figure 1.

As discussed in Phillips (2014), the CY Q test can be modified by changing the con-

struction to employ a CI for ρ that is based on a centred test statistic for ρ such as the t

test

tρ̂,ρ =
ρ̂− ρ
σρ̂

=⇒
∫ 1
0 J

c
xdBx(∫ 1

0 J
c
x(s)2ds

)1/2 = λc, with σ2ρ̂ =
n−1

∑n
t=1 (xt − ρ̂xt−1)2∑n

t=1 x
2
t−1

,

rather than a unit root test (with ρ = 1). As Mikusheva (2007) shows, this construction

leads to a uniformly valid CI for ρ under some general conditions. Moreover, from Phillips

(1987, 2014), the limit variate of the centred statistic λc ∼ N (0, 1) + Op

(
|c|−1/2

)
as

c → −∞ and under these conditions the induced CI for ρ is approximately [ρL, ρU ] ={
ρ̂− zα1/2σρ̂, ρ̂+ zα1/2σρ̂

}
for a nominal level α1 test, which is asymptotically valid for

|ρ| < 1 matching the stationary asymptotics. The corresponding CI for β has coverage

probability that is at least 100 (1− α2 − α1) % by Bonferroni. Hence, use of the centred

test statistic tρ̂,ρ for ρ leads to a robust interval for which the Bonferroni bound holds and

this construction of the CI avoids the zero coverage probability in the stationary case of the

CY interval based on the Q test. Computation of this modified interval requires the use

of confidence belts for ρ based on the centred statistic tρ̂,ρ. While valid, this modification

of the method still encounters an impassable numerical obstacle for multivariate xt with

multiple nuisance parameters arising from the localizing coeffi cients associated with each

individual regressor.
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Fig.1 (from Phillips, 2014): Coverage probabilities of Campbell-Yogo and stationary

confidence intervals for the predictive regression coeffi cient β plotted against the

autoregressive coeffi cient ρ of xt, shown for various values of the endogeneity coeffi cient

r0x = σ0x
(σ00σxx)1/2

. The nominal asymptotic level is 90%, sample size is n = 200, and the

number of replications is 50, 000.

(ii) Test Statistic Conditioning

A second approach that is designed to avoid dependence on c involves test condition-

ing and was suggested by Jansson and Moreira (2006; JM). The idea uses the Gaussian

likelihood and its asymptotic form to produce a conditional likelihood test for β in terms

of suffi cient statistics. Jointly suffi cient statistics for (β, ρ) in (2.1) and (2.2) are used to

constructed a conditional likelihood whose distribution does not depend on the localizing

coeffi cient c and this likelihood is used to obtain test critical values. Tests based on this

conditional likelihood ratio approach attain optimality within a certain class of conditional,

similar tests.

In principle this method has attractive features. It is likelihood based and has associ-

ated optimality properties. Nonetheless, practical experience with the JM test has been

disappointing, as simulation evidence from many studies attest (e.g., Chen and Deo, 2009;

Kasparis et al, 2015; Kostakis et al, 2015). In part, this is due to algorithmic complications

arising from quadrature that is required for implementation, for which numerical diffi cul-
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ties have been encountered (e.g. Kasparis, et al, 2015). In part, also, simulation experience

reveals that finite sample performance of the JM test is erratic. Size and power are often

bettered by other tests which have no claimed optimality properties —such as Campbell

and Yogo (2006), Chen and Deo (2009), Kostakis et al (2015), Kasparis et al (2015), and

Phillips and Chen (2014).

To illustrate the arguments that underlie the effects of conditioning, it is convenient

to let the covariance matrix of the innovations ut = (u0t, uxt)
′ in the system be written

in standardized form as Σ = E (utu
′
t|Ft−1) with σ00 = Σxx = 1, and σ0x = r0x. Then,

the functional law n−1/2
∑bn·c

t=1 ut ⇒ W (·) = (W0 (·) ,Wx (·))′ holds, where W is vector

Brownian motion (BM) with variance matrix Σ and W0.x(r) = W0 (r) − r0xWx (r) ≡
BM

(
1− r20x

)
, which is independent of Wx. In what follows we will assume the correlation

r0x is known since consistent estimation of r0x (or the covariance matrix Σ) does not present

any diffi culties or disturb the arguments concerning the dependence of test statistics on c.

We assume for the moment that |r0x| < 1 and later examine the strong endogeneity case

where |r0x| = 1.

Set u0.xt = u0t − r0xuxt and rewrite the model as

yt =
(
β − r0x

c

n

)
xt−1 + r0x∆xt + u0.xt,

xt = ρnxt−1 + uxt, with ρn = 1 +
c

n
.

Let β = b/n, so that β is local to zero. Since Eu20.xt = 1− r20x, the Gaussian log likelihood
function up to a constant is

`n (b, c) = − 1

2
(
1− r20x

) n∑
t=1

{
yt − r0x∆xt −

b− r0xc
n

xt−1

}2
− 1

2

n∑
t=1

(
∆xt −

c

n
xt−1

)2
,

(2.9)

from which the log likelihood ratio Λn (b, c) := `n (b, c)− `n (0, 0) is

Λn (b, c) =
b(

1− r20x
)Sβ + cSγ −

1

2

{
b2 − 2r0xbc+ c2(

1− r20x
) }

Sγγ , (2.10)

where Sβ = 1
n

∑n
t=1 xt−1 (yt − r0x∆xt) , Sγγ = 1

n2
∑n

t=1 x
2
t−1, Sγ = 1

n

∑n
t=1 ∆xtxt−1−r0xSβ.
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Since yt − r0x∆xt = (b−r0xc)
n xt−1 + u0.xt, standard limit theory (Phillips, 1987a & b) gives

1

n

n∑
t=1

xt−1 (yt − r0x∆xt) ⇒
∫ 1

0
JcxdW0.x + (b− r0xc)

∫ 1

0
Jcx
2,

c

n

n∑
t=1

∆xtxt−1 ⇒
∫ 1

0
JcxdJ

c
x,

1

n2

n∑
t=1

x2t−1 ⇒
∫ 1

0
Jcx
2.

From these limits and (2.10) we deduce that

Λn (b, c)⇒ b

1− r20x
Rβ + cRγ −

1

2

{
(b− r0xc)2

1− r20x
+ c2

}
Rγγ =: L (b, c) (2.11)

where

Rβ (b, c) : =

∫ 1

0
JcxdW0.x + (b− r0xc)

∫ 1

0
Jcx
2,

Rγ (b, c) : =

∫ 1

0
JcxdJ

c
x −

r0x
1− r20x

Rβ, and Rγγ := Rγγ (c) :=

∫ 1

0
Jcx
2,

analogous to equation (17) in JM.1

Under the null hypothesis of no predictability (β = b = 0) the limiting log likelihood

ratio is L (0, c) = cRγ (0, c) − c2

2(1−r20x)
Rγγ , so that all information about c in the limit

is contained in the quantities (Rγ (0, c) ,Rγγ) . The JM test is based on the conditional

distribution of the statistic Rβ given (Rγ ,Rγγ) . Following in the same way as JM (2006,

Lemma 4), the joint density of R = (Rβ,Rγ ,Rγγ) at r = (rβ, rγ , rγγ) has the form

fR (r; b, c) = K (b, c) f0R (r) exp

[
b

1− r20x
rβ + crγ −

1

2

{
(b− r0xc)2

1− r20x
+ c2

}
rγγ

]
,

where f0R (r) is the joint density of R for (b, c) = (0, 0) and is therefore independent of c.

1The limiting log likelihood ratio L (b, c) in (2.11) is in the same form as JM’s equation (17) and relates

to it by: (i) rescaling b with
(
1− r20x

)1/2
, since JM parameterize β as β = b

(
1− r20x

)1/2
/n; and (ii) using

the alternative definition Rβ =
∫
JcxdW̄0.x where W̄0.x (r) =

(
1− r20x

)−1/2
W0.x(r) ≡ BM (1) . Moreover,

with the absence of an intercept in the predictive regression, JM’s component Rββ is identical to Rγγ , so
the minimal asymptotic suffi cient statistic for a = (b, c) is simply R = (Rβ ,Rγ ,Rγγ) .
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The conditional distribution of Rβ given (Rγ ,Rγγ) is

fR (rβ|rγ , rγγ ; b) =
f0R (rβ, rγ , rγγ) ebrβ∫
f0R (r) exp (brβ) drβ

, (2.12)

which is also independent of c. Hence the conditional distribution of Rβ given (Rγ ,Rγγ) ,

being independent of c, can be used to produce a similar test of H0 : β = b = 0. Note that

under the null we have

fR (rβ|rγ , rγγ ; b = 0) =
f0R (rβ, rγ , rγγ)∫

f0R (r) drβ
,

and so p-values for the observed R̂β are computed under H0 using∫∞
R̂β f

0
R (rβ, rγ , rγγ) drβ∫∞
−∞ f

0
R (r) drβ

.

It is of interest to determine the effects of conditioning directly on the variate Rβ.
Observe that

Rβ = Rβ (b, c) =

∫ 1

0
Jcx(r)dW0.x(r) + (b− r0xc)

∫ 1

0
Jcx(r)2dr

=

(∫ 1

0
Jcx(r)2dr

)1/2
ξ0.x + (b− r0xc)

∫ 1

0
Jcx(r)2dr,

where ξ0.x ∼d N
(
0, 1− r20x

)
is independent of

∫ 1
0 J

c
x(r)2dr,

∫ 1
0 J

c
x(r)dWx(r), and c. It follows

that Rβ (b, c) has the following conditional normal distribution, conditional on Rγγ (c) ,

Rβ (b, c) |Rγγ(c) ∼d N
(
(b− r0xc)Rγγ ,

(
1− r20x

)
Rγγ

)
,

which is not independent of c because the mean relies on (b− r0xc)Rγγ whose factor
(b− r0xc) depends on c, at least when r0x 6= 0. Next, observe that

Rγ =

∫ 1

0
Jcx(r)dJcx (r)− r0x

1− r20x
Rβ = c

∫ 1

0
Jcx(r)2dr +

∫ 1

0
Jcx(r)dWx (r)− r0x

1− r20x
Rβ,
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so that for r0x 6= 0

Rβ =
1− r20x
r0x

{
cRγγ +

∫ 1

0
Jcx(r)dWx (r)−Rγ

}
=

1− r20x
r0x

{
1

2

{
Jcx(1)2 − 1

}
−Rγ

}
,

since from Philllips (1987b)∫ 1

0
Jcx(r)dWx (r) =

1

2

{
Jcx(1)2 − 1

}
− c

∫ 1

0
Jcx(r)2dr =

1

2

{
Jcx(1)2 − 1

}
− cRγγ .

It follows that conditioning Rβ on Rγγ and Rγ we have when r0x 6= 0

Rβ|Rγγ ,Rγ =
1− r20x

2r0x

{
Jcx(1)2 − 1

}
|Rγγ(c),Rγ −Rγ . (2.13)

Now Jcx(1) =
∫ 1
0 e

c(1−s)dW (s) ∼d N
(

0,
∫ 1
0 e

2c(1−s)ds
)

= N
(

0, 1−e
2c

−2c

)
and Jcx(1)2 =

1−e2c
−2c ξ

2, with ξ ∼d N (0, 1) , has a scale factor 1−e2c
−2c that is dependent on c. So if the

conditional distribution of Rβ given (Rγγ (c) ,Rγ (c)) is independent of c according to

(2.12), then the conditional distribution of Jcx(1)2 given (Rγγ (c) ,Rγ (c)) must also be

independent on c, a result that the author has not been able to verify.

An interesting feature of the null case with β = b = 0 that has not been noticed in

the literature is that data on yt affect the limit distribution of the maximum likelihood

estimator, whereas this is not the case under the alternative. In particular, since the

limiting log likelihood ratio for b = 0 is L (0, c) = cRγ (0, c) − c2

2(1−r20x)
Rγγ (c) , it follows

that the limiting distribution of the restricted maximum likelihood estimator is simply

c̃ =
Rγ (0, c)

Rγγ (c)
= c+

∫ 1
0 Jc(r)dWx.0 (r)∫ 1

0 Jc(r)
2

. (2.14)

Under the alternative where b 6= 0, maximization of the limiting log likelihood jointly with

respect to (b, c) yields the usual decomposition for b̂ (c.f., (2.7) above)

b̂− b = r0x (ĉ− c) +

∫ 1
0 Jc(r)dW0.x(r)

Rγγ
,
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with the following limit for the unrestricted estimate of c

ĉ =

∫
Jc(r)dJc (r)

Rγγ
= c+

∫ 1
0 Jc(r)dWx (r)∫ 1

0 Jc(r)
2

, (2.15)

which differs from the restricted case (2.14). Importantly, the limit (2.15) corresponds

exactly to single equation autoregressive LUR limit theory. So, in this case, the information

set relevant to the estimation of c is the pair
(∫
Jc(r)dJc (r) ,Rγγ

)
as in single equation

autoregressive estimation, which does not involve any information from the prediction

equation. By contrast, in the restricted case the limit theory in the numerator of c̃ − c is
the stochastic integral

∫ 1
0 Jc(r)dWx.0 (r) taken with respect to the conditional Brownian

motion Wx.0 (r) = Wx (r) − r0xW0 (r) ≡ BM
(
1− r20x

)
whose variance is smaller than

Wx (r) for all r0x 6= 0, i.e., for all cases where the prediction equation error u0t is correlated

with the autoregressive equation error uxt.

The intuitive explanation for the reduction in variance under the null is simply that

in the restricted case where b = 0 the prediction equation is yt = u0t, so that information

on yt may be used to reduce variance in the estimation of c. To see this, note that the

autoregressive equation may in this case be written as

xt = ρnxt−1 + uxt = ρnxt−1 + r0xyt + ux.0t,

or equivalently xt − r0xyt = ρnxt−1 + ux.0t, showing that knowledge of yt can be used to

reduce the error variance in the autoregressive equation, thereby raising the signal to noise

ratio, much like the case of autoregressive equations that include covariate regressors in the

UR or LUR cases (c.f., Hansen, 1995). An extreme case occurs under strong endogeneity

where r0x = 1. Then u0t = uxt a.s. and ux.0t = 0 a.s., so that now xt = ρnxt−1 + yt a.s.

and c is known directly from the data.

2.3 Quantile Predictive Regressions and Crossing Problems

In place of linear mean predictive regressions of the form (2.1) and (2.2), attention has

recently been given to quantile regression formulations. These are useful, as in other

applications of quantile methods, when interest focuses on specific parts of the distribution

of the dependent variable yt and there is reason to expect that the response function

to driver variables may differ in different parts of the distribution. The approach seems
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particularly well suited to financial applications where the effects on asset returns may well

differ depending on whether the impact of a certain driver is positive or negative. Stylized

features such as heavy tails and asymmetric distributions suggest that predictability from

some driver variables may be greater at certain quantiles than at others, indicating the

possible advantages of a quantile structure in model formulation. Examples of work of this

type include Xiao (2009), Cenesizoglu and Timmerman (2008), Maynard et al (2011), and

Lee (2015).

The quantile regression predictive model follows the standard formulation

Qyt (τ |Ft−1) = β (τ)xt−1 + F−1u0 (τ) , (2.16)

xt = ρxt−1 + uxt

where u0t is assumed to be iid with cdf given by Fu0 so that F
−1
u0 (τ) is the unconditional τ -

quantile of u0t, and Qyt (τ |Ft−1) is the conditional τth quantile function of the distribution
of yt given the past information in Ft−1. The regressor in (2.16) follows (2.2) and the
model has error input ut = (u0t, uxt)

′ satisfying the same conditions as in (2.1) and (2.2).

In (2.16), the slope coeffi cient is allowed to vary according to the quantile τ and the

conditional quantile formulation (2.16) is assumed to hold almost surely.

More generally, as in Maynard et al (2012) and Lee (2015), we can model the conditional

quantile of the error term u0t in a general way such that the predictive quantile regression

model has the form

Qyt (τ |Ft−1) = α (τ) + β (τ)xt−1, (2.17)

which allows the intercept and influence of the regressor xt−1 to be heterogenous across

quantiles of yt. This model accommodates conditional heterogeneity. For instance, as

discussed in Maynard et al (2012), suppose the generating model for yt has the form

yt = α0 + β0xt−1 + (α1 + β1xt−1)u0t,

and suppose the conditional distribution of u0t is Fu0,t−1 (·) = P (u0t < ·|Ft−1) = Fu0 (·) .
Then (2.17) holds with

β (τ) = β0 + β1F
−1
u0 (τ) , and α (τ) = α0 + α1F

−1
u0 (τ) .

In the general case, we may define the predictive quantile function Qyt (τ |Ft−1) =
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α (τ) + β (τ)xt−1 and the implied innovation is

u0tτ = u0t − F−1u0,t−1 (τ) = yt − α (τ)− β (τ)xt−1,

so thatQu0tτ (τ |Ft−1) = 0 and ψτ (u0tτ ) = τ−1
{
u0tτ < F−1u0 (τ)

}
. Then E [ψτ (u0tτ ) |Ft−1] =

0 and the variance of the indicator random variable 1
{
u0tτ < F−1u0 (τ)

}
is τ (1− τ) .

Crossing Probabilities in Quantile Formulations

As is well known from conventional quantile theory, the regression formulation (2.16) fails

to be consistent across quantiles τ1 and τ2 when the natural quantile ordering (Qyt (τ2|Ft−1) >
Qyt (τ1|Ft−1) for τ2 > τ1) is reversed by virtue of the posited regression formulation. Such

reversals, or quantile crossings, occur whenever

{β (τ2)− β (τ1)}xt−1 +
{
F−1u0 (τ2)− F−1u0 (τ1)

}
< 0,

that is for

xt−1 <
F−1u0 (τ2)− F−1u0 (τ1)

β (τ2)− β (τ1)
, if β (τ2)− β (τ1) > 0. (2.18)

Reversals of this type signal misspecification in the quantile regression formulation, since

for the given parameterization the model cannot be valid almost surely when there is a

positive probability of a reversal such as (2.18). For a stationary time series predictor xt
with invariant measure Px (e.g., when xt ∼d N

(
0, σxx
1−ρ2

)
), the probability of such reversals

is

Px

(
F−1u0 (τ2)− F−1u0 (τ1)

β (τ2)− β (τ1)

)
for β (τ2) > β (τ1) . (2.19)

If ρ = 1 and the generating mechanism for xt is a unit root model, then there is no

invariant measure in view of the nonstationarity of xt. Instead, we can write the quantile

crossing frequency as

n−1
n∑
t=1

1

{
xt−1√
n
<

1√
n

F−1u0 (τ2)− F−1u0 (τ1)

β (τ2)− β (τ1)

}
.

By standard tools of limit theory for nonlinear functions of integrated processes (Park and
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Phillips, 1999, 2000, 2001) we find that the limiting form of this crossing frequency is

n−1
n∑
t=1

1

{
xt−1√
n
<

1√
n

F−1u0 (τ2)− F−1u0 (τ1)

β (τ2)− β (τ1)

}
⇒
∫ 1

0
1 {Bx (r) < 0} dr, (2.20)

which is the amount of time the Brownian motion Bx spends below the horizontal axis over

the interval [0, 1] . Importantly, since scale does not matter within the indicator function,

we have
∫ 1
0 1 {Bx (r) < 0} dr =

∫ 1
0 1 {W (r) < 0} dr, which is the soujourn time for r ∈

[0, 1] of a standard Brownian motion W on the half line (−∞, 0) . The distribution of the

limit variate (2.20) is well-known to be the arc-sine law with probability density 1

π
√
x(1−x)

over the support x ∈ (0, 1) , which is a Beta distribution with parameters
(
1
2 ,
1
2

)
. This

distribution is ∪ shaped over its support with asymptotes at the boundary points {0, 1}
of the domain of definition. Thus, depending on the realization of the time series {xt}n1 ,
there is a far greater probability of either many crossings or few crossings in the quantile

function.

Correspondingly, the probability of failure in the quantile regression formulation (2.16)

differs significantly between stationary and nonstationary cases. The failure probability

is fixed in the stationary case, is given explicitly by (2.19), and depends on the precise

parameter values (τ1, τ2, β (τ2)− β (τ1)) . In the unit root case, the failure frequency is not

fixed but instead depends on the actual trajectory of {xt} . In the limit, the failure frequency
depends on the trajectory of the limiting Brownian motion Bx associated with the limit

of the standardized process Xn (·) =
xt=bn·c√

n
. Importantly, in this nonstationary case, the

failure probability does not depend on the specific parameters (τ1, τ2, β (τ2)− β (τ1)) , at

least in the limit as n→∞. The form of the arc sine law limit theory for (2.20) shows that
there will always be a high probability of quantile crossings, whatever the parameter values

and functional dependence of the quantile slope coeffi cients β (τ) , provided β (τ2) 6= β (τ1) .

That is, provided the slope coeffi cient function β (τ) is non-constant, the quantile regression

model is inevitably misspecified with high probability for unit root nonstationary regressors.

Similar findings apply in the case of an LUR predictor xt with AR coeffi cient ρ = 1+ c
n .

In place of (2.20) we then have

n−1
n∑
t=1

1

{
xt−1√
n
<

1√
n

F−1u0 (τ2)− F−1u0 (τ1)

β (τ2)− β (τ1)

}
⇒
∫ 1

0
1 {Jcx (r) < 0} dr,

which is the soujourn time over r ∈ [0, 1] of a one dimensional standard diffusion Jc (r)
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on the half line (−∞, 0) . The distribution of the occupation time in this case and various

other limiting stochastic process extensions have been extensively studied in the literature

following Lamperti (1958).

Localized Validity of Quantile Formulations

These results suggest that (i) quantile predictive regressions require constant slope coef-

ficients to assure full (i.e., almost sure) validity in specification, and (ii) the failure of con-

sistency across quantiles is likely to be aggravated when persistent regressors are present

leading to a high probability of reversals for some data trajectories. The requirement of

constancy in the slope coeffi cient β (τ) across quantiles for the validity of quantile regres-

sion is highly restrictive and obviously defeats the primary purpose of quantile regression.

Fortunately, the requirement may be relaxed by allowing for certain local departures of

these coeffi cients from a constant value, as we now discuss.

Define the local to constant slope parameter β (τ) = β + b(τ)
dn

where dn is a sequence of

positive numbers satisfying dn → ∞ as n → ∞ and where b (τ) is a localizing coeffi cient

function that may vary across quantiles over a domain such that b (τ) ∈ [bL, bU ] for some

finite bL and bU. The local quantile predictive regression then has the (triangular array)

form

Qyt (τ |Ft−1) =

(
β +

b (τ)

dn

)
xt−1 + F−1u0 (τ) .

For this formulation, the condition for no reversals (no quantile crossing) is, for τ2 > τ1,{
b (τ2)− b (τ1)

dn

}
xt−1 +

{
F−1u0 (τ2)− F−1u0 (τ1)

}
> 0.

Then, in the stationary regressor case where |ρ| < 1, the condition holds with probability

approaching unity because xt
dn
→p 0 for all kn →∞. In the unit root case ρ = 1 we have

√
n

{
b (τ2)− b (τ1)

dn

}
xt−1√
n

+
{
F−1u0 (τ2)− F−1u0 (τ1)

}
> 0, (2.21)

and this condition then holds with probability approaching unity provided
√
n

dn
→ 0 as

n→∞. The same condition holds in the LUR case with ρ = 1 + c
n . Further, if xt is mildly

integrated in the sense that ρ = 1 + c
kn
with kn →∞ and c < 0 (see (3.1) and the discus-

sion in section 3.1 below), then the ‘no crossings’result continues to hold with probability
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approaching unity provided
√
kn
dn
→ 0 as n → ∞. Thus, in certain local neighborhoods of

the parameter space that shrink as n→∞ to a constant slope β fast enough relative to the

extent of the departure of ρ from unity, the probability of quantile reversals can be elimi-

nated asymptotically, under suitable conditions on the rate, for stationary, nonstationary,

and various local to unity and mildly integrated time series regressors.

Such cases allow validly for small local departures from constancy in the quantile re-

gression coeffi cients β (τ) with some prospect of estimating the coeffi cients that distinguish

the quantile slope coordinates. In particular, when ρ = 1, we may use fully modified

quantile regression (Xiao, 2009) to estimate the slope coeffi cients β (τ) . This approach

is explored in Xiao’s paper and applies fully modified methods from linear cointegrating

regression theory for unit root regressors (Phillips and Hansen, 1990) within the quantile

regression model to deliver an estimate β̂
+

(τ) which has the following mixed normal (MN)

asymptotic distribution

n
(
β̂
+

(τ)− β (τ)
)
⇒ MN (0, V ) , with V =

ωψψ.x

f (F−1 (τ))2
∫ 1
0 B

2
x (r) dr

, (2.22)

where f (·) is the density of u0t which is assumed to be continuous, and f
(
F−1 (τ)

)
is the

density evaluated at the τth quantile F−1 (τ) of that distribution. The quantity σψψ.x =

σψψ − σ2ψx/σxx is the conditional variance of ψtτ = ψτ (u0tτ ) = τ − 1
{
u0tτ < F−1u0 (τ)

}
,

where u0tτ = u0t − F−1u0,t−1 (τ) and

E
(
φtφ
′
t|Ft−1

)
=

[
σψψ σψx

σxψ Σxx

]
, with φ′t = (ψtτ , uxt) .

When β (τ) = β+ b(τ)
dn
, we correspondingly have the following limit theory for the quantile

FM estimated localizing coeffi cient b̂+ (τ)

n

dn

(
b̂+ (τ)− b (τ)

)
⇒ MN (0, V ) . (2.23)

When dn
n +

√
n

dn
→ 0 we then have specification validity in the sense that (2.21) holds

asymptotically and FM regression asymptotics take the form (2.23). It is apparent that

(2.22) can be used to construct pointwise confidence intervals for β (τ) for each value of

τ . These may then be compared with estimates of β based on the null hypothesis that

β (τ) = β is constant across quantiles.
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As in the case of simple linear predictive regression (or cointegration), these nice as-

ymptotics fail as soon as the time series xt is LUR, in which case there are bias and

nonstandard inference problems, just as in the linear predictive regression case. There are

now new methods for addressing these diffi culties which we discuss in the following section.

2.4 Misbalancing in Predictive Regressions

The linear predictive regression model (2.1) is a convenient formulation for practical work

and is extensively used in applications with a large range of possible predictors that are

often selected because of their plausibility as explanatory drivers of the dependent variable

yt. As such, the formulations used in practice are typically empirical with little attention

given to their time series properties, a fact that can lead to problems of balance in the

time series regression. For instance, if yt has short memory and some of the regressors

xt have long memory, then a linear regression equation is potentially unbalanced. Many

applications in finance are of this type. In the first place, these applications typically

concentrate on predicting financial asset returns, which approximate martingale differences

and are therefore hard to forecast, as attested in the two headers to the article. On the

other hand, many of the potential predictors like interest rates have long memory or near

unit root behavior which produce time series persistence characteristics in xt that are very

different from those of yt. How such differences in the time series characteristics of the

variables in a linear regression equation are reconciled is a major challenge in predictive

regression research.

To fix ideas, suppose the predictive model formulation follows (2.1) and (2.2) where

the regressor xt is an LUR process with ρ = 1 + c
n for some fixed c and u0t is a martingale

difference sequence (mds) with Et−1
(
u20t
)

= σ00 a.s. . Under the null, yt = u0t is also

an mds. But under the alternative hypothesis of predictability where HA : β = βA 6= 0,

both yt and βAxt−1 are Op
(√
t
)
. So the equation implies different time series properties

for yt under the null and the alternative, meaning that the maintained formulation of the

equation is unbalanced either under the null or the alternative, given a time series yt with

certain well defined characteristics. To illustrate, suppose yt is an I (0) series and xt is

I (1) with ρ = 1 in (2.2). Then, (2.1) is unbalanced under the alternative with βA 6= 0.

Nonetheless, the fitted least squares coeffi cient is

β̂ =
1

n

1
n

∑n
t=1 xt−1yt

1
n2
∑n

t=1 x
2
t−1

= Op

(
1

n

)
→p 0,
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and the limit behavior β̂ →p 0 conflicts with the (true) alternative hypothesis HA : β =

βA 6= 0 and confirms the (false) null hypothesis H0 : β = 0 that accords with the observed

I (0) property of yt. So, testing H0 against HA reveals an explicit built-in contradition

of the model because HA is always incompatible with the observed I (0) property of yt.

In forecasting stock returns, whose behavior is similar to an I (0) series, primary interest

lies usually in the alternative hypothesis HA, so that driver variables of returns can be
identified. However, in view of the incompatibility of HA with the observed I (0) property

of yt, to accept the alternative effectively amounts to acceptance of a misspecified model.

Balancing issues such as the example above commonly arise in applied econometric

work and sometimes originate in economic theory formulations or data identities. In the

Fisher equation, for example, real and nominal interest rates are related linearly to ex-

pected inflation. In practical work, this relation involves the two latent variables, expected

inflation and the (ex ante) real rate, which are frequently proxied by using the ex post

real rate computed using the realized contemporaneous inflation rate. However, when we

analyze the time series characteristics of these three observable variables (nominal rates,

ex post real rates, and realized inflation) we frequently find major differences in the mem-

ory characteristics of the time series, even though the series are, by construction, linearly

related. Such problems have been discussed in the literature - Phillips (2005) and Sun and

Phillips (2004) - and they have no immediate or easy solution. In this example where the

ex post real rate series is constructed directly from the nominal rate and realized inflation,

the properties of the latter series are imposed on the former. So the ex post real rate must

inherit, as a time series mixture of the other two series, at least some of their characteris-

tics in terms of memory and heterogeneity. Nonetheless, when the memory characteristics

of the individual series are estimated, there is no assurance (unless the requirement is

imposed) that these memory characteristics will be compatible.

Similar issues arise in the context of predictive regression. One way of addressing these

diffi culties is to use localizing coeffi cients that assist in bringing the series into balance as-

ymptotically. This asymptotic balancing can be achieved as follows. Suppose the predictive

model 2.1() is replaced by

yt = βnxt−1 + u0t, with βn =
b

nγ
for some γ > 0 (2.24)

xt = ρnxt−1 + uxt, with ρn = 1 +
c

n
for some finite c ∈ (−∞,∞) .
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Then the localizing coeffi cient b measures marginal departues from the null. In this case

we have the taxonomy

yt =


u0t + bn

1
2
−γJx

(
t
n

)
= Op

(
n
1
2
−γ
)

γ < 0.5

u0t + bJx
(
t
n

)
= Op (1) γ = 0.5

u0t = Op (1) γ > 0.5

. (2.25)

These time series characteristics show that local departures from the null hypothesis H0 :

β = 0 of the form HA : β = b
nγ are compatible with mds behavior of yt asymptotically as

long as the marginalizing rate coeffi cient γ > 0.5, or near mds behavior of yt if γ ≥ 0.5.

For such near localizations to the null H0, the model (2.24) balances the I (0) property of

yt with the I (1) property of the regressor xt.

Tests of H0 will then be consistent under the local alternative β = b
nγ provided γ ∈

[0.5, 1) because of the divergent behavior of the quantity

nβ̂n = n
(
β̂n − βn

)
+ nβn = Op (1) +Op

(
n1−γ

)
, (2.26)

where β̂n is the least squares estimate of βn in (2.24). On the other hand, local alternatives

β = b
nγ with γ > 1 will be undetectible and tests of HA will be inconsistent as they are too

close to the null hypothesis in this case2.

In sum, we find that under certain conditions marginal deviations from zero of the

slope coeffi cient βn in (2.24) are compatible with observed I (0) or mds character in the

dependent variable yt and yet may still be distinguishable from the null hypothesis βn = 0

in statistical testing. The key condition is that the marginal departures from the null must

be small enough
(
βn = b

nγ with γ ≥ 0.5
)
to retain the time series character of the observed

yt but not so small (γ < 1) that they are indistinguishable from the null.

2The usual least squares t ratio is, under HA : βn = b
nγ
,

tβ =
β̂n
sβ̂n

=
nβ̂n{

s2
(
n−2

∑n
t=1 x

2
t−1
)}1/2 ∼ nβ̂n{

σ00
(
n−2

∑n
t=1 x

2
t−1
)}1/2 = Op

(
n1−γ

)
,

in view of (2.26) and since

s2 = n−1
n∑
t=1

(
yt − β̂nxt−1

)2
= n−1

n∑
t=1

u20t − n
(
β̂n − βn

)2
n−2

n∑
t=1

x2t−1 →p σ00,

as β̂n − βn = Op
(
n−1

)
.
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3 Recent Developments

We start our discussion by continuing with the linear predictive regression model (2.1) -

(2.2). This framework is still the most popular in empirical work and is well suited to the

new methodology of prediction using IVX endogenous instrumentation that we will consider

first. The IVX approach applies to both short horizon and long horizon prediction, as well

as in cases with multiple predictors. The second development involves nonparametric

methods and is designed for a modeling framework that allows for more general functional

forms in the predictive component.

3.1 IVX Endogenous Instrumentation

As explained earlier, one of the critical diffi culties for inference and prediction in models

such as (2.1) - (2.2) is the uncertainty that prevails in practical work about the degree of

persistence in the predictor variables xt. This uncertainty is commonly captured through

the use of an LUR formulation and LUR asymptotics arising from an autoregressive co-

effi cient specification ρ = 1 + c
n with the unknown localizing coeffi cient c providing some

modeling flexibility concerning the properties of xt. Such a specification is convenient an-

alytically but leads to the nonstandard inference complications discussed earlier. These

become particularly troublesome in the multivariate predictor case which is important in

practical work.

The new method of endogenous instrumentation is designed to address these diffi culties

and was suggested in Phillips and Magdalinos (2009). The idea is to use the (endogenous)

regressors xt to self-generate instrumental variables (hence, the terminology IVX) with

properties that remove the parameter dependencies and distributional complexities of LUR

asymptotics. The intention is to bypass these diffi culties by creating instruments from xt

that have less persistence and, more especially, less persistence than regressors with a UR

or LUR form. The cost of reducing persistence in the case of UR and LUR predictors is

reduction in the convergence rate of the estimator from the usual O (n) rate. The IVX

instruments are simple to construct using an autoregressive recursion.

As before it is convenient to illustrate the workings with the scalar predictor case,

although the method applies equally well with no further computation in the multivariate

case. The self-generated instruments are obtained by differencing the predictor xt and
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using the following autoregressive filter to construct the (mildly integrated) instruments

z̃t =
t∑

j=1

ρt−jnz 4xj , with ρnz = 1 +
cz
nϕ
, ϕ ∈ (0, 1) , cz < 0. (3.1)

The autoregressive coeffi cient ρnz in this filter is selected to lie in the mildly integrated

zone (Phillips and Magdalinos, 2007), since cz < 0 and ϕ < 1, thereby ensuring that

the IVX instrument is mildly integrated and less persistent than a UR or LUR regressor.

In fact, the IVX instrument z̃t may be used whether xt has a unit root, local unit root,

or is itself mildly integrated or mildly explosive. In this sense, IVX instruments like z̃t
offer considerable robustness because the inferential procedure relies only on standard

asymptotics and completely avoids problems of nonstandard inference. In what follows, it

will be convenient to assume that xt is a LUR predictor. This case, as well as UR and

mildly integrated cases, are treated in full in Phillips and Magdalinos (2009) and Kostakis

et al (2015).

When xt is LUR, 4xt = c
nxt−1 + uxt and z̃t decomposes as

z̃t =

t∑
j=1

ρt−jnz uxt +
c

n

t∑
j=1

ρt−jnz xj−1 =: zt +
c

n
ψnt, (3.2)

from which it is apparent that zt = ρnzzt−1 + uxt plays the role of a mildly integrated

instrument that is approximated in practical implementation by z̃t. The approximation

holds because the remainder term c
nψnt in (3.2) turns out to be negligible in all cases other

than when xt is mildly explosive in which case the IVX instrument z̃t is still effective in

inference, as shown in recent work (Phillips and Lee, 2015b).

Using z̃t−1 as an instrument for xt−1 in (2.1) leads by means of the usual IV regression

formula to the estimate

β̂IV X =

∑n
t=1 z̃t−1yt∑n

t=1 z̃t−1xt−1
= β +

∑n
t=1 z̃t−1u0t∑n
t=1 z̃t−1xt−1

. (3.3)

The IVX estimator (3.3) is particularly simple in the present case because the equation er-

ror is an mds.3 The estimation error involves the sample covariance
∑n

t=1 z̃t−1u0t between

3Otherwise, a one-sided long run covariance correction term, just as in FM regression (Phillips and
Hansen, 1990), is introduced to deal with serial correlation induced by weakly dependent errors. For
details, see Phillips and Magdalinos (2009).
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the equation error u0t and the IVX instrument z̃t−1. The explanation for the simplicity of

IVX asymptotics is that the troublesome (nonstandard) second term of the usual LUR limit

theory (2.8) is eliminated. More specifically, with an LUR predictor and AR coeffi cient

ρ = 1+ c
n , the limiting sample covariance

1
n

∑n
t=1 xt−1u0t converges weakly to the stochastic

integral
∫ 1
0 J

c
x(s)dB0(s) whose correlated stochastic processes Jcx and B0 lead to the trou-

blesome nonstandard component in (2.8) when σ0x 6= 0. In contrast, after normalization

the sample IVX covariance
∑n

t=1 z̃t−1u0t satisfies a martingale central limit theorem and

is asymptotically independent of the IVX signal (relevance) quantity
∑n

t=1 z̃t−1xt. Using

this result, Phillips and Magdalinos (2009) show under some regularity conditions that

n(1+ϕ)/2
(
β̂IV X − β

)
⇒MN (0, σ00Ψ) , (3.4)

where the mixed normal (MN) limit distribution enables pivotal inference of the predictabil-

ity hypothesis H0 : β = 0 using standard t and Wald test statistics even when the limit

quantity Ψ involves random elements, as it does when ρ = 1 + c
n .

The mixed normal asymptotics of β̂IV X in (3.4) are correctly centred at β, so there is no

asymptotic bias. The convergence rate O
(
n
1+ϕ
2

)
of β̂IV X is less than O (n) and depends

on the localizing power parameter ϕ < 1 that is used in self-generating the instruments z̃t.

The (random) variance quantity Ψ in (3.4) is estimated via the IVX signal
∑n

t=1 z̃t−1xt and

σ00 is estimated from the regression residuals in the usual way. Testing is then conducted

by means of t ratios (or Wald tests in the multivariate case) with convenient standard

normal (or chi square) limit theory. In the present scalar case, we have, quite simply,

tβ̂IV X
=
β̂IV X − β
σ̂IV X

=⇒ ξ =d N (0, 1) , (3.5)

where σ̂IV X is the standard error of β̂IV X computed via the conventional formula σ̂
2
IV X =

σ̂2
(∑n

t=1 z̃
2
t−1
)

(
∑n

t=1 z̃t−1xt−1)
−2 , with σ̂2 = 1

n

∑n
t=1 û

2
0t based on the IVX residuals û0t =

yt− β̂IV Xxt.When the errors u0t are conditionally heteroskedastic, the usual correction to
σ̂2IV X can be employed to ensure the validity of (3.5), viz.,

σ̃2IV X =

(
1

n

n∑
t=1

z̃2t−1û
2
0t

)(
n∑
t=1

z̃t−1xt−1

)−2
.

Implementation of the IVX estimator (3.3) and the test (3.5) requires use of the filter
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(3.1), which in turn requires specification of the parameter ρnz and hence the localizing

exponent ϕ. The localizing coeffi cient cz in ρnz can be set to cz = −1, so that the degree

of mild integration is controlled entirely by ϕ. When xt is a UR or LUR process, the

limit theory (3.5) holds for all ϕ ∈ (0, 1) and the convergence rate of β̂IV X is O
(
n
1+ϕ
2

)
,

so selection of ϕ close to unity is preferable bringing the rate close to the optimal rate

O
(
n−1

)
. In finite samples, power tends to increase monotonically with ϕ and size is

very well controlled until ϕ is very close to unity. After extensive simulation experiments,

Kostakis et al (2015) recommend the choice ϕ = 0.95 to ensure size is well controlled and

power is close to maximal. Analytic methods for the optimal choice of ϕ and data-based

algorithms for its selection are desirable, but presently unavailable. New initiatives are

needed to find such rules of selection, as the usual methods of optimizing asymptotic mean

square error are known to fail in this case (Phillips and Lee, 2015b).

Simulations show that inference on predictability using (3.5) and its corresponding

Wald statistic extensions in the multivariate case all work well in practice with good size

and power properties for predictors in the UR, LUR, and mildly integrated range. Kostakis

et al (2015) and Phillips and Chen (2014) report some extensive Monte Carlo experiments

investigating the performance of IVX in comparison with other procedures. In particular,

comparisons with the Campbell and Yogo (2006) and Jansson and Moreira (2006) methods

that were discussed above indicate that IVX inference has better size, accommodates a

much wider range of possible predictors, extends easily to multivariate settings where those

methods are unavailable, and generally has superior power properties. The method is easily

implemented in the case where an intercept is fitted in (2.1) in which case a minor but

important modification to the test can be made to improve finite sample size performance

(Kostakis et al, 2015). Further recent work (Phillips and Lee, 2015b) shows the IVX tests

remain valid in cases where there are mixed orders of persistence in the predictors.

The IVX approach also extends readily to long horizon prediction, where interest centres

on predictions more than one period ahead and often on far horizon predictions K periods

ahead. Analytic work on the use of IVX methods in such cases has been done in Phillips and

Lee (2013) and Kostakis et al (2015) using slightly different approaches. Phillips and Lee

work, as in much of the literature on long horizon predictions, with a temporally aggregated

version of the model (2.1) as well as temporally aggregated IVX instruments. Kostakis et

al work with the temporally aggregated model but retain the usual IVX instruments. Both

methods produce standard asymptotics for inference, analogous to (3.5) for t tests and

chi-square for Wald tests of predictability. Importantly, these methods are also robust to
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far horizon cases modeled as K →∞ at a rate slower than n→∞.
IVX methods have been used with success in recent applied work, particularly in re-

search on stock market predictability where it is useful to be able to assess the statistical

importance of several posited predictors. As the headers to the paper emphasize, inves-

tigators are especially interested in knowing not only whether excess returns in the stock

market are predictable, but also which of the many financial indicators now available are

useful in delivering good predictions. The flexibility and ready implementability of IVX

methods make them attractive in such exercises. In their extensive empirical application

allowing for single and multiple potential predictors of US stock returns, Kostakis et al

(2015) interestingly find less evidence for long horizon than short horizon predictability,

concluding that

“our long-horizon tests document that, if anything, predictability becomes

weaker, not stronger, as the horizon increases”

This conclusion supports some of the early concerns about doubtful evidence of stock

market forecasting capability raised by Alfred Cowles in the primary header to this article,

concerns which were recently seconded in the study by Welch and Goyal (2007), and that

stands in contrast to the affi rmation of long run market predictability given in the second

header by the Royal Swedish Academy.

Closely related methods to IVX that use modifed variable addition (VA) regressions

have most recently been introduced by Breitung and Demetrescu (2015) where lagged

predictors are replaced by persistent time series using the Phillips-Magdalinos methodology

of self-generated variables and instrumentation. These VA methods, like IVX, help remove

non-pivotal inference problems when there are LUR predictors, and are similarly applicable

when there are multiple predictors.

3.2 Nonparametric Predictive Regression

All of the methods so far discussed are parametric and involve linear model specifications.

For predictive regression modeling, just as for other areas of applied econometric work, lin-

ear relationships may be convenient in practice but may only provide a first approximation

to a nonlinear behavioral response. In financial market prediction, we may well expect such

responses to entail nonlinearities, if only because of differences in response to positive and

negative financial indicators. Moreover, as noted earlier, linear model specifications are
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typically unbalanced in terms of the respective memory properties of the time series and

therefore require localization of the coeffi cients to restore long term balance. Such local-

izations may be regarded as a form of nonlinearity in which the coeffi cients take different

values according to the sample size to ensure plausible properties in the predictive equation.

In cases like these where nonlinearities in behavioral response do occur or are anticipated,

it seems appropriate to use methods that accommodate potential nonlinearities directly.

Further, test size based on linear predictive model fitting seems unlikely to be robust to

functional form misspecification and test power may be quite sensitive to functional form.

Some of these issues have been investigated in recent work by Kasparis, Andreou and

Phillips (2014; KAP), who propose a unifying framework for predictive inference that allows

for the possibility of nonlinear relationships of unknown form. The prediction tests sug-

gested in this work rely on nonparametric kernel estimation methods and offer robustness

to integration order, including fractional orders, as well as functional form. The methods

draw on and develop in certain respects other recent econometric work on nonparametric

kernel regression with nonstationary time series.

In place of (2.1) we consider the nonlinear predictive system

yt = g (xt−1) + u0t, (3.6)

xt =
(

1 +
c

n

)
xt−1 + uxt, (3.7)

where g (·) is some smooth unknown regression function that provides the systematic pre-
dictive response of yt to the past history of the predictor xt embodied in its past value xt−1,

and with initialization x0 = Op (1) . When xt is a stationary weakly dependent process,

rather than the LUR process given in (3.7) the limit theory of nonparametric regression

estimators for models such as (3.6) follows from standard theory and pivotal testing of non-

linear prediction follows directly in such cases. It is now known from Wang and Phillips

(2009, 2015) that, somewhat remarkably, this standard limit theory for kernel estimation

continues to apply in cases where the predictor follows a UR or LUR time series as in

(3.7) and is an endogenous regressor, although with reduced rates of convergence. KAP

use this theory and some extensions of it involving long memory and antipersistent inno-

vations in (3.7), to show that predictability tests can be mounted using kernel estimates

of (3.6). These tests have standard asymptotics, are robust across a variety of generating

mechanisms for the predictor variable, and are easily implemented in practical work.

An important advantage of the specification (3.6) is that certain nonlinear transforma-
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tions of nonstationary time series such as the LUR process (3.7) produce new trajectories

that have a character closer to a stationary series than an LUR time series, thereby attenu-

ating issues of balance in the specification of the predictive regression under the alternative.

For example, integrable transforms of a unit root process are known to substantial reduce

the persistence properties of the original series, producing a new series with memory pa-

rameter d ∼ 1
4 , which lies in the stationary zone (see, e.g., Marmer, 2007; Miller and Park,

2010; Kasparis, Phillips and Magdalinos, 2014). In such cases, the output series yt can be

stationary, even when the input series xt−1 has considerable time series persistence. To

illustrate, Figure 2 displays 500 observations of a standard Gaussian random walk time se-

ries xt, its integrable exponential transform g (xt) = exp
(
−12x

2
t

)
, and the same transform

with additive white noise u0t ∼iid N (0, 1). Apparently, the transformed series consider-

ably reduces the random wandering behavior of xt, attenuating its signal, and producing

a new series that is much closer to the origin with departures occuring primarily in those

regions where the random walk xt is in the vicinity of the origin. The transformed series

with additive noise appears like a stationary time series centred on the origin with some

tendency occasionally to drift away from the origin, much like that of a stationary long

memory series.
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Figure 2a: Simulated trajectories of

a random walk xt (blue) and its

exponential integrable transform

exp
(
−12x

2
t

)
(red).
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Figure 2b: Simulated trajectories of

a random walk xt (blue) and its

transform with additive noise

exp
(
−12x

2
t

)
+ u0t (green)

KAP consider a model of the form (3.6) - (3.7) in which the error uxt in (3.7) may be

a short-memory (SM) time series or a stationary ARFIMA(d) time series with memory
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parameter d ∈ (−1/2, 1/2), allowing for either long memory (LM) or anti-persistence (AP).

The regression function g in (3.6) is estimated by simple kernel regression giving

ĝ(x) =

∑n
t=1Kh (xt−1 − x) yt∑n
t=1Kh (xt−1 − x)

, (3.8)

where Kh(·) = 1
hK(·/h), K(·) is a suitable kernel function, and h is a bandwidth parameter

for which h = hn → 0 as n → ∞. Under conditions based on those of Wang and Phillips
(2009), KAP show that the nonparametric estimator ĝ(x) has the following self-normalized

limit theory as n→∞(
n∑
t=1

K

(
xt−1 − x
hn

))1/2
(ĝ(x)− g(x))

d→ N

(
0, σ00

∫ ∞
−∞

K(s)2ds

)
. (3.9)

Hence, in the predictive regression framework (3.6)-(3.7), ĝ(x) is consistent and has a

Gaussian limit distribution that is free of the nuisance parameter c in the LUR specification

(3.7). This limit theory is the same as when xt is a stationary weakly dependent process

such as a stable AR process. Thus, (3.9) offers wide generality in the predictive regression

context, allowing for many predictor processes xt that include LUR and LM time series,

which facilitates the development of a class of nonparametric predictability tests.

Under the null hypothesis of no predictability in (3.6) the regression function is a

constant, so that yt = µ+ u0t giving the null formulation H0 : g(x) = µ. Hence, in view of

(3.9), ĝ(x)→p µ, which suggests a test based on

t̂(x, µ) :=

∑n
t=1+ν K

(
xt−ν−x
hn

)
σ̂00

∫∞
−∞K(s)2ds

1/2 (ĝ(x)− µ) , (3.10)

where σ̂00 = n−1
∑n

t=1 (yt − µ̂)2 is a consistent estimator of σ00. The idea is to compare

the estimator ĝ(x) with a constant function and, although µ is generally unknown, it can

be consistently estimated at a
√
n rate under the null by the sample mean µ̂ = n−1

∑n
t=1 yt

which ensures that t̂(x, µ̂) = t̂(x, µ) +op(1) and leads to the following straightforward limit

theory

t̂(x, µ̂)
d→ N (0, 1) , (3.11)

which compares the nonparametric estimate ĝ(x) with the parametric estimate µ̂.

Predictive test statistics are based on making the comparison in (3.11) over some point
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set to assess constancy of the predictive function over this set. In particular, let Xs be a

set of isolated points Xs = {x̄1, ..., x̄s} in R for some fixed s ∈ N. The tests proposed in
KAP involve sum and sup functionals over this set, viz.,

F̂sum :=
∑
x∈Xs

F̂ (x, µ̂) and F̂max := max
x∈Xs

F̂ (x, µ̂), with F̂ (x, µ̂) := t̂(x, µ̂)2. (3.12)

In practical work the set Xs can be chosen using uniform draws over some region of par-

ticular interest in the state space. The null distributions of these test statistics follow from

(3.11)

F̂sum →d χ
2
s and F̂max →d Y,

where the random variable Y has c.d.f. FY (y) = P (X ≤ y)s with X ∼d χ21. Thus, the limit
distributions of the tests involve functionals of independent chi squared variates which are

readily computed. KAP show that this limit theory holds for a wide class of predictors xt
that includes LUR and LM time series, thereby allowing for an extensive range of persistent

regressors in (3.6).

This approach to predictive regression using nonparametric kernel regression and grid

testing for constancy in the regression has appeal in terms of its robustness to the gen-

erating mechanism of the predictor. The framework helps to unify predictive inference

in situations where both model functional form and the properties of the predictor are

unknown. Simulations reported in KAP show stable size performance for both tests and

good power in comparison with other procedures even against linear alternatives. The

nonparametric tests are decidedly superior against nonlinear predictive model alternatives,

as might be expected, and perform well for both long memory and LUR predictors. One

disadvantage of these tests is that they are mainly useful in cases where the predictor is a

scalar time series, like many of the procedures in current use. Interestingly, the nonpara-

metric approach which provides these tests with their generality over such a wide range

of predictor processes, also typically delimits applications to predictive regressions with a

single regressor or to additive nonlinear functionals because of the curse of dimensionality.

Nonparametric techniques deliver smooth predictor functions for arbitary x by virtue

of the kernel estimated form ĝ(x) =
∑n

t=1K
(
xt−1−x
hn

)
yt/
∑n

t=1K
(
xt−1−x
hn

)
, which has

the same smoothness properties as the kernel function K.When the alternative hypothesis

holds and there is predictability from g (x), we might expect the estimate ĝ(x) to be a

better predictor within, rather than outside, the sample space. But when xt is recurrent,
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the sample space is inevitably large and integrable nonlinear functions g attenuate the

effects of outlier realizations of xt. So the impact of outliers on g is controlled by functional

form, as required by the balancing of the regression function. This attentuation continues

to apply in prediction. Thus, in the case of financial asset return prediction by persistent

regressors, the predictive capability of g (xt) tends to increase when xt takes realizations

around the origin.

More detailed information about the bias characteristics of the predictor ĝ(x) can be

deduced from nonparametric regression asymptotics, as we now briefly discuss. Wang and

Phillips (2015) give the following bias corrected form of (3.9)(
n∑
s=1

K(
xs−1 − x

hn
)

)1/2 [
ĝ(x)− g (x)− h2ng

′′(x)µ2K
2

]
⇒ N

(
0, σ00

∫ ∞
−∞

K(2y)dy

)
,

where µ2K =
∫∞
−∞ y

2K(y)dy. The prediction bias of ŷn+1 = ĝ(xn) is therefore O
(
h2n
)
and

the prediction error variance, conditional on x = xn, is Op

((∑n
s=1K(xs−1−xnhn

)
)−1)

. To

find the order of magnitude of this prediction error variance, assume the process xt satisfies

the functional law n−1/2xbn·c ⇒ G (·) for some Gaussian stochastic process G whose local

time `G (t, a) at the spatial point a over the time interval [0, t] is given by (c.f. Revuz and

Yor, 1999)

`G (t, a) = lim
ε→0

1

2ε

∫ t

0
1[|G(s)− a| < ε]ds.

Then,
(
nh2n

)−1/2∑n
s=1K(xs−1−xnhn

) ⇒ Σ
−1/2
xx `G (1, G (1)) , where `G (1, G (1)) is the local

time that the Gaussian process G (s) has spent over the time interval [0, 1] at its final po-

sition G (1) —see Phillips (2009) and Wang and Phillips (2009, 2012). In this event, the pre-

diction error variance of ŷn+1 = ĝ(xn) has the order of magnitudeOp

((∑n
s=1K(xs−1−xnhn

)
)−1)

=

Op

((
nh2n

)−1/2)
, a rate which reflects the slow convergence rate of the nonparametric es-

timate ĝ.

4 Conclusion

“The plain truth is that facts are only facts; for predicting the effects of

economic changes they cannot take the place of relationships between economic

variables.” Johnson (1960)
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“General economics laws are unhelpful as a guide to understand the past or

predict the future because they ignore the political and economic institutions, as

well as the endogenous evolution of technology, in shaping the distribution of

resources in society”Acemoglu and Robinson (2015)

Whatever the pitfalls and diffi culties that have been discovered with predictive regres-

sions and analyzed herein, quantitative assessments of predictability using modern econo-

metric methods of bias reduction, endogenized instrumentation, and quantile regression

have, nonetheless, sound inferential underpinnings. This basis enhances confidence in the

use of the methods in practical work, if only about the uncertainty of the predictions. A

firm statistical foundation is especially useful in determining drivers of economic time series

such as asset price returns where the effects of fundamentals are so frequently obscured in

short run volatility and where there are so many potential determinants that vie for in-

clusion. In comparison, the alternative approach of relying completely on descriptive and

qualitative appraisals of significance is generally unhelpful in transfering knowledge and in

defining the region of uncertainty or ignorance about the phenomenon under study and

the predictions being made. As Johnson (1960) aptly described the matter more than half

a century ago in the headnote of this conclusion, relationships between economic variables

inevitably play the critical role in making scientific predictions. Data alone is insuffi cient,

even in the context of financial markets where its prodigal abundance has raised quite new

‘big data’and degrees of freedom (or so-called p > n) problems of statistical modeling and

inference.

Outside of financial applications, predictive regressions play a significant role in diverse

areas of applied econometric work. Many of the big questions being addressed at present

in the macroeconomic arena, for instance, involve trending economic variables, such as the

patterns, drivers and predictors of economic growth, issues of growth convergence, and

the relationship of growth to the evolving nature of inequality in both income and wealth

inequality. In this field, Acemoglu and Robinson (2015) describe the deep institutional

complexities that underly some of these economic issues in their essay on the rise and

decline of capitalism. They cite the diffi culties in predicting the future because of the

politico-economic-institutional complexity of modern society and inherent endogeneities

in the technology that underlies production and income generation. The upshot is this:

however much as econometricians we wish to follow Johnson’s dictum about utilizing rela-

tionships among economic variables in order to make predictions, the task is bedeviled by
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the complexities, interdependencies, and evolutionary nature of the data we have available

to use. In short, successful predictive regression, just like econometric model-building in

general, inevitably steers a harrowing course between, as Cragg (1968) aptly once described

it, “the Scylla of specification error and the Charybdis of underspecification”.

Throughout his career as an econometrician, Halbert White was absorbed with the

task of developing econometric methods of estimation and inference that are robust to

misspecification. Following the impetus of his work, this line of research blossomed and

has now infiltrated virtually every arena of econometric work, including forecasting. Indeed,

many of the techniques discussed in this paper were influenced by the same concerns that

motivated Halbert White’s research and John Cragg’s early warnings in the 1960s about

specification error and underspecification in empirical econometric work.
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