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Edmond Malinvaud: A Tribute to his
Contributions in Econometrics

Peter C. B. Phillips
Yale University, University of Auckland,

University of Southampton, Singapore Management University

April 23, 2015

“Malinvaud stands as one of the enduring figures of 20th century
economics. His passing is a sad and permanent loss to the French
academy, to the profession at large, and to the world of econometrics
where he reinstated in our discipline the rigor of the Cowles Com-
mission researchers of the 1940s and delivered a unified thematic for
the field that echoed the genius of Ragnar Frisch.” 1

Within the economics profession for several decades in the mid twentieth
century the French economist Edmond Malinvaud stood virtually unchallenged
in his mastery of our discipline, raising the central chambers of the modern
edifice of quantitative economics to new heights of rigor and empirical rele-
vance. His mission as an educator and researcher drew its motive power from
the Ragnar Frisch mantra of unification that had established a new frontier for
the discipline where ideas from economic theory conjoined with mathematical
method and statistical methodology to advance our understanding of economic
activity and to illumine the implications of economic policy making.
While this mantra of unification remains deeply respected, field fragmenta-

tion and research specialization in all areas of economics over recent years has
considerably diminished its observance. But as a young scientist arriving at the
Cowles Commission as a Visiting Research Fellow in 1950, Edmond Malinvaud
was consumed with a passion for quantitative economic research in the widest
sense that married perfectly with the Frisch mantra. Over his career as a thinker
and writer, Malinvaud’s work became an exemplar of the strengths of unifica-
tion. In education as well as research, Malinvaud commanded the high ground,
leading the profession with the astonishing feat of a triple opus of advanced
textbooks that trained an entire generation of economists in advanced princi-
ples of microeconomic theory, macroeconomics, and the statistical methods of
econometrics.

1From the author’s (2015) obituary: “Memorial to Edmond Malinvaud.”

1



The treatise on econometrics was a masterpiece of brilliant exposition. It
brought together economic ideas, statistical method, inferential tools, and prob-
abilistic underpinnings in a multitude of stochastic models that demonstrated
their utility in what Malinvaud saw as the ultimate mission of all economet-
ric work — “the empirical determination of economic laws”. A mission that
contributes to society through data collection, modeling economic activity at
all levels, prediction in the wide sense that includes forecasting exercises and
modern treatment effect learning about the effectiveness of economic policy in-
terventions.
This tribute to Edmond Malinvaud briefly reviews what Malinvaud himself

saw as his main contributions to the field of econometrics, all of which are em-
bodied in his exceptional treatise. The Collège de France, where Malinvaud held
the Chaire d’Analyse Économique over the years 1987-1993, posts on its web-
site Malinvaud’s résumé, which classifies his contributions to economics under
the three central pillars of the discipline: Théorie Microéconomique, Macroé-
conomie, and Méthodes Économétriques. Succinct as ever, an entry of a single
ouvrage graces the econometric work in his Bibliographie: the original 1964
French edition of his econometric opus, Méthodes Statistiques de l’Économétrie
(with quiet mention of its 4’th edition in 1981 and its many foreign language
translations), which we henceforth reference as MSE or just Malinvaud.
Malinvaud’s novel contributions to econometrics in MSE lie in two areas, ar-

eas that embodied much of the extant theory of econometrics at the time MSE
first appeared in French in 1964 and in its English translation in 1966. Malin-
vaud identified these two contributions to econometrics in his interview2 with
Alan Krueger (2003) in the Journal of Economic Perspectives as the geometric
treatment of linear models and a rigorous treatment of nonlinear regression.
These contributions and some of their implications we will overview in what
follows.

Linear Estimation

"Algebraic proofs, which in any case are often very heavy, hardly
reveal the true nature of the properties.”Malinvaud (1966, Ch. 5)

Chapter 5 of Malinvaud provides his novel geometric exposition of the Gauss
Markov (or, more strictly, the Gauss Markov Aitken) theory of linear estimation.
The framework is that of a general linear space containing the observation vector
x ∈ Rn, its mean y = E (x) ∈ L, a p < n dimensional linear subspace, and the
error vector u = x−y with zero mean and positive semidefinite variance matrix
Ω ≥ 0, so that

x = y + u, with y ∈ L ⊂ Rn. (1)

When Ω is singular, the support of the random vector u is S = R (Ω) , the range
space of Ω, so that every u = Ωv a.s., for some v ∈ Rn. It is common, but not

2See Holly and Phillips (1988) for a further interview with Edmond Malinvaud that focused
on econometrics.
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necessary, to assume that L ⊂ R (Ω) , which simplifies the theory and assures
that x ∈ R (Ω) a.s. also.
The geometry underlying the Gauss Markov theory is based on the relation-

ship of the linear space L, which is known to contain the unknown y, to the
concentration ellipsoid E = {u = Ωv|u′Ω−u ≤ 1} of u, in which the quadratic
form u′Ω−u involves a generalized inverse3 , Ω−, of Ω. The ellipsoid E gives a
geometric representation of the variability of u (and hence x). The concept
appeared in Cramér’s (1946) classic treatise of mathematical statistics4 . Ma-
linvaud provided the first systematic treatment of linear estimation using the
concept in econometrics.
In simple regression problems where y = Zβ for some matrix Z of obser-

vations on a vector of regressors z, the linear space L is the range space of
Z, viz., L = R (Z) . When the covariance matrix Ω is nonsingular, we have a
conventional linear regression model in which least squares and Aitken (1934)
generalized least squares estimators take on their usual algebraic forms

ŷ = Z (Z ′Z)
−1
Z ′x, and ỹ = Z

(
Z ′Ω−1Z

)−1
Z ′Ω−1x,

with the respective orthogonal projector PZ = Z (Z ′Z)
−1
Z ′ and non-orthogonal

projector ΩPZ = Z
(
Z ′Ω−1Z

)−1
Z ′Ω−1.

In the general linear space framework, we have similar orthogonal and non-
orthogonal projections. Orthogonal projections are obtained via the decompo-
sition of Rn into the direct sum L⊕L⊥ of L and its orthogonal complement L⊥.
If the corresponding decomposition of x is x = a + b with a ∈ L and b ∈ L⊥,
then by standard projection geometry the orthogonal projection operator PL of
Rn into L maps x 7−→ PLx = a and so the least squares estimator of y is given
by ŷ = PLx = a. The projection residual û = x − ŷ = (I − PL)x = b is then
orthogonal to L. Since x, ŷ ∈ S, it follows that û ∈ S. So, when L ⊂ S, the
projection geometry occurs within the support S.

Non-orthogonal projections are obtained via the decomposition of S into the
direct sum L⊕K of L and its principal conjugate subspaceK in S with respect to
the ellipsoid E of x. The space K is defined as K = {v ∈ S|v′Ω−u = 0,∀u ∈ L} .
If KPL : S 7−→ L is the corresponding projection operator of S into L along
the subspace K that is E−conjugate to L and the corresponding decomposition
of x is x = c + d, with c ∈ L and d ∈ K, then the Gauss Markov (or, strictly

3The quadratic form u′Ω−u (and hence E) is invariant to the choice of generalized inverse
because u = Ωv ∈ R (Ω) a.s., for some vector v, where R (·) is the range space of the
argument matrix, so that u′Ω−u = v′ΩΩ−Ωv = v′Ωv and then E = {Ωv|v′Ωv ≤ 1, v ∈ Rn} .
In the second and subsequent editions of MSE, Malinvaud found it convenient to use the
nonsingular generalized inverse Ω− = (Ω +RR′)−1 where R is a matrix of full column rank r
that spans the null space N (Ω) of Ω where r = dim {N (Ω)} . In this case, E has the alternate

representation E =
{
u|u′R = 0, u′ (Ω +RR′)−1 u ≤ 1

}
.A fact of some interest, not noted in

Malinvaud, is that the Moore-Penrose inverse of Ω can be written in the convenient form
Ω+ = (Ω +RR′)−1 − R (R′R)−2R′. The definition of E given in the text was suggested in
Phillips (1979) and Philoche (1971). See also Drygas (1970) and Nordstrom (1991) for further
discussion of the coordinate free approach and concentration ellipsoids.

4The concept was independently introduced by Darmois (1945) around the same time.
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speaking, Aitken) estimator of y is given by ỹ = KPLx = c. The residual in this
event is ũ = x− ỹ = (I − KPL)x = d, which is conjugate to L with respect to
the ellipsoid E.
Linear mappings such as PL and KPL take the concentration ellipsoid E of x

into the corresponding concentration ellipsoids of PLx and KPLx. It is therefore
immediately apparent that the smallest possible concentration ellipsoid that can
be so obtained by projection is just E ∩ L. By immediate consequence of the
direction K of the projection KPL, this minimum E ∩ L is achieved by KPLx,
so that KPLxE = E ∩L is the concentration ellipsoid of KPLx, which gives the
minimum variance unbiased estimator of y ∈ L. This elegant argument neatly
and rigorously establishes the Gauss Markov theorem.
The geometry of the Gauss Markov theorem is illustrated in Figure 1 for

n = 2, p = 1, S = R2, Ω =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
> 0 for some |ρ| < 1, and the

linear manifold L = {λa|λ ∈ R} for some fixed vector a distinct from the minor
and major axes of the ellipsoid E =

{
u ∈ R2|u′Ω−1u ≤ 1

}
. The figure shows

the ellipsoid E, the linear manifold L, and the principal E−conjugate subspace
K. The space K is determined by the direction vector du of the tangent to
the ellipse u′Ω−1u = 1 at points u ∈ L on E where the manifold L intersects
the ellipse and so this vector satisfies the first order condition du′Ω−1u = 0 for
tangency.

E = áu 5 R2|u vI?1u ² 1â

x L

K = áv 5 R2|v vI?1u = 0,-u 5 Lâ

y* = KPLx

ŷ = PLx

0

Figure 1: Least squares geometry showing the ellipsoid E, the principal
conjugate subspace K of L, the corresponding projection KPLx, the least

squares projection PLx, and the ellipsoids of these two estimators.

Figure 1 shows how the minimum concentration ellipsoid E ∩ L (colored
green in the figure) of any estimator that projects the observation vector x
onto L is obtained by projecting x in the specific direction K which collapses
E parallel to the tangent spaces at the points where L intersects the ellipse
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u′Ω−1u = 1. By contrast the least squares estimator PLx is obtained by an
orthogonal projection and has concentration ellipsoid PLE (colored purple in the
figure) which is obtained by projecting E orthogonally onto L, which produces
a region that is always at least as great as the minimum E ∩ L.

This geometric representation of the least squares (LS) estimator, the gen-
eralized least squares (GLS, Aitken) estimator, and the minimum concentration
ellipsoid E ∩ L of linear unbiased estimation provides an elegant and rigorous
proof of the Gauss Markov Aitken theory.

E = áu 5 R2|uvI?1u ² 1â

x

L

0

K = áv 5 R2|v vI?1u = 0,-u 5 Lâ = Ló

Figure 2: Least squares geometry when L = Ω× L and LS=GLS.

Although Malinvaud did not do so, an extension of this geometric argu-
ment proves the Kruskal (1968) theorem that least squares and generalized
least squares are equivalent iff the space L is invariant under the mapping Ω.
It is convenient but not essential to assume that Ω > 0. Suffi ciency is then im-
mediate. If v ∈ K we have v′Ω−1u = 0 for all u ∈ L, and if L = Ω × L then
take u = Ωb for any b ∈ L, so that v′b = 0, giving K = L⊥. The condition
is necessary because equivalence of least squares and generalized least squares
implies the conjugate subspace K = L⊥. Hence, for all u ∈ E ∩ L, the tangent
vector du ∈ K = L⊥ to E that satisfies du′Ω−1u = 0 also satisfies du′u = 0, so
that du is orthogonal to u. It follows that u lies in the span of p of the principal
axes of the ellipsoid u′Ω−1u = 1, which are defined by the property that the
tangent to the ellipse at u is orthogonal to u, a property that holds when u is
an eigenvector of Ω. Let U = [u1, ..., up] be an orthonormal span of L. Then
Ω−1U = UM for some diagonal matrix M = diag

(
µ1, ..., µp

)
, from which it

follows that L = R (U) = R (ΩU) = Ω×L. In Figure 1, simply rotate L to align
with the major (or minor) axis of the ellipse and the result is immediate.
As indicated at the outset, it is not necessary to assume that L ⊂ R (Ω) . If

L 6⊂ R (Ω) we may decompose the space L into the direct sum L = L1⊕L2 where
L1 = L ∩ R (Ω) and L2 = L ∩ R (Ω)

⊥
. Now R (Ω)

⊥
= N (Ω) = R (R) where

ΩR = 0, as above, so we may project the model x = y+u ontoR (Ω) andR (Ω)
⊥
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using the transformations QR = I − R (R′R)
−1
R′ and PR = R (R′R)

−1
R′,

leading to the system

x1 = y1 + u, with x1 = QRx and y1 = QRy, (2)

x2 = y2, a.s., with x2 = PRx and y2 = PRy. (3)

The component y2 of y = y1 +y2 is known almost surely from the observation x
since the (known) projection x2 = PRx = y2, a.s. Hence, part (3) of the system
is a known equation relating y2 directly to the data. The primary part (2) of
this system falls into the framework analyzed above because y2 ∈ QR × L =
L ∩R (Ω) ⊂ S.

On the other hand, in a regression context where L = R (Z) for some matrix
of observations of regressors and y = Zβ for some p−vector of parameters β, the
component (3) leads to the linear restrictionR′x = R′Zβ, a.s., which will involve
a restriction on the parameters of β when R′Z 6= 0. The best linear unbiased
estimator of β then needs to take account of these restrictions. This case is
easily accommodated in practice by using a restricted version of generalized
least squares.
With this background of geometric theory, Malinvaud goes on to study es-

timable functions in unidentified cases, practical considerations of computation,
algebraic formulae, estimation under Gaussian assumptions, and a selection of
illustrative examples from econometrics. Hypothesis testing is also conducted
using a geometric approach by considering a linear hypothesis H0 : y ∈M ⊂ L
whereM is a linear subspace of L. Likelihood ratio tests are derived under Gaus-
sianity and for various cases depending on the extent of the a priori knowledge
concerning the covariance matrix Ω = ω2Ω0. The central and non-central chi-
square and F distribution theory is given under both null and fixed alternatives.
The chapter ends with a discussion of statistical decision theory, admissability,
and non-linear shrinkage estimation of the Stein-James type. Chapter 6 pro-
vides a very detailed implementation of this general theory of linear estimation
in the context of multivariate regression. Later chapters extend the analysis fur-
ther by considering linear multivariate models with cross equation parameter
restrictions that include seemingly unrelated regressions as a special case.
The scope of this treatment of linear estimation is at once innovative and

comprehensive. It covers substantial ground, is succint yet eminently well ex-
posited, and takes readers directly to the frontier of research in this field as it
stood at the end of the 1960s. As Malinvaud intimates in the header to this
section, the geometric approach helps to reveal the essence of least squares es-
timation at a level of generality that avoids much of the heavy lifting required
in a purely algebraic treatment.

6



Nonlinear Regression

Chapter 9 of Malinvaud is devoted to estimation and inference in multivariate
nonlinear regression models belonging to the reduced form variety

xt = g (zt; θ) + ut, ut ∼iid (0,Ω) , Ω > 0, t = 1, ..., T, (4)

where g (zt; θ) is a vector of n nonlinear functions gi ofm dimensional exogenous
or predetermined variables zt and a p dimensional parameter vector θ ∈ Θ ⊂ Rp.
Writing gt (θ) = g (zt; θ) and stacking the T observations we may write (4) in
the same form as the linear system (1), namely as x = y + u, but now the
mean vector y is restricted to lie in a nonlinear manifold Y determined by
the functional form of g (θ) = (g1 (θ) , ..., gT (θ)) . Figure 3 gives the geometric
configuration.
The system (4) includes a large number of important special cases, enough

to cover most of the remaining econometric models considered in MSE5 . A
particularly important member of this class is a multivariate system that is
linear in variables but nonlinear in parameters, notably the model

xt = A (θ) zt + ut, (5)

where A (θ) is a matrix whose elements aij (θ) depend on θ. The model (5) itself
includes the special class of structural systems of linear simultaneous equations
of the form B (θ)xt = C (θ) zt+ut, where the coeffi cient matrices (B (θ) , C (θ))
have structural elements that depend on a subset of parameters contained in θ.
In this case, the coeffi cient matrix A (θ) = B (θ)

−1
C (θ) , so that (5) is simply

the reduced form of the simultaneous equations system.

x

0

y

u

ŷ
y#

5 In the fourth edition, Malinvaud (1981) included a new chapter dealing with the added
complication of systems that are nonlinear in both the endogenous variables xt and the ex-
ogenous variables zt. This chapter embodied the research conducted in the 1970s on such
systems, which were important in practical work with macroeconometric models where such
nonlinearities frequently arise naturally from the presence of linear in levels identities coupled
with linear behavioral equations formulated in logarithms.
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Figure 3: The Geometry of Nonlinear Regression

Importantly, (5) is embedded in the linear class (1) whose mean vector y ∈
L = R (Z) with Z = [Z ′1, ..., Z

′
T ]
′ and Zt = (I ⊗ z′t) , since we may write the

model in the following form

xt = (I ⊗ z′t) a (θ) + ut = Zta (θ) + ut,

using row vectorization a (θ) = vec (A (θ)) of the coeffi cient matrix and stacking
columns so that x = y+ u with y = Za (θ) ∈ Y ⊂ L. The nonlinear manifold Y
then lies within the linear subspace L, as shown in Figure 3.
Malinvaud’s novel contributions to the theory of nonlinear regression were

to furnish a rigorous proof of the consistency of nonlinear regression under high
level conditions, to provide a set of primitive conditions that assured their va-
lidity, develop a rigorous limit distribution theory suitable for inference, and
provide a large number of examples relevant to econometric work. The first full
development of this subject broke new ground in mathematical statistics and
appeared in Malinvaud’s original French (1964) edition, which was followed by
a major article (1970) in the Annals of Mathematical Statistics that was largely
concerned with conditions for consistency. More complete treatments using the
1970 paper appeared in later editions of MSE.
Both minimum distance estimators and Gaussian maximum likelihood esti-

mators were considered. The minimum distance estimator of θ was viewed as
an extended version of least squares and solved the following extremum problem

θ̂ = arg min
θ∈Θ

T∑
t=1

(xt − gt (θ))
′
ST (xt − gt (θ)) (6)

where ST > 0 is a weight matrix for which ST →p S > 0 as T → ∞. Malin-
vaud’s proof of the consistency of θ̂T used a lemma that relied on two high level
conditions involving the quantities

QT (θ) =

T∑
t=1

(
gt (θ)− gt

(
θ0
))′

ST
(
gt (θ)− gt

(
θ0
))
,

UT (θ) =

∑T
t=1 u

′
tST

{
gt (θ)− gt

(
θ0
)}

QT (θ)
,

where θ0 denotes the true value of the parameter θ in (4). In view of the ex-
tremum property (6) and the fact that xt = gt

(
θ0
)
+ut, the following inequality

holds

T∑
t=1

u′tSTut ≥
T∑
t=1

(
xt − gt

(
θ̂
))′

ST

(
xt − gt

(
θ̂
))

=

T∑
t=1

u′tSTut+QT

(
θ̂
) [

1− 2UT

(
θ̂
)]
,

which implies that

QT

(
θ̂
) [

2UT

(
θ̂
)
− 1
]
≥ 0, (7)
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an inequality that in turn implies either QT
(
θ̂
)

= 0 or UT
(
θ̂
)
≥ 1

2 . If the

following two conditions hold as T →∞

(i) P
{

inf
θ∈ω

QT (θ) = 0

}
→ 0, and (ii) P

{
sup
θ∈ω

UT (θ) ≥ 1

2

}
→ 0 (8)

for any closed set ω ⊂ Θ ⊂ Rp that does not contain θ0, then θ̂ →p θ
0. The

reason is simply that either QT
(
θ̂
)

= 0 or UT
(
θ̂
)
≥ 1

2 must hold, so that the

event
{
θ̂ ∈ ω

}
implies either infθ∈ω QT (θ) = 0 or supθ∈ω UT (θ) ≥ 1

2 . It follows

that

P
{
θ̂ ∈ ω

}
≤ P

{
inf
θ∈ω

QT (θ) = 0

}
+ P

{
sup
θ∈ω

UT (θ) ≥ 1

2

}
→ 0

which ensures that θ̂ →p θ
0.

Modern proofs of consistency in nonlinear extremum estimation problems
rely on similar arguments but typically employ uniform strong law of large
number methods.6 For instance, we may replace QT (θ) by the standardized
quantity Q̄T (θ) and require that Q̄T (θ) →a.s. Q̄ (θ) , uniformly over θ ∈ Θ,
where the limit function Q̄ (θ) is continuous and satisfies the identification con-
dition that Q̄ (θ) > 0 for all θ 6= θ0. Then infθ∈ω Q̄T (θ) → infθ∈ω Q̄ (θ) > 0
and (i) holds. Similarly, by a uniform strong law, continuous mapping, and
infθ∈ω Q̄ (θ) > 0 we have, uniformly in θ ∈ ω,

UT (θ) =
1
T

∑T
t=1 u

′
tST

{
gt (θ)− gt

(
θ0
)}

Q̄T (θ)
→a.s. 0,

giving (ii).
An important strength of Malinvaud’s approach is that it does not directly

rely on uniform laws of large number arguments or use any particular normal-
ization. The conditions (i) and (ii) may therefore be used in the context of
observations where nonstationarity is present or trends occur in the time series.
Indeed, Malinvaud’s (1970) article and MSE give various examples, one involv-
ing an evaporating trend model for which the conditions fail and there is no
consistent estimator. Recent research in this field now includes nonstationary
regression models such as (4) in which the regressors are variables with unit
roots (Park and Phillips, 2001) and may even be nonparametric functions of
stochastic trends (Wang and Phillips, 2009).
With consistency in hand, Malinvaud provided a limit distribution theory for

nonlinear regression estimators such as θ̂ that gave a rigorous basis for inference.
Continuing the geometric approach, Malinvaud used a linear pseudo-model ap-
proximation to (4) which enabled an elegant derivation of the asymptotic theory
and provided links with the earlier work on linear estimation.

6This work began systematically with Jennrich (1969), which appeared around the same
time as Malinvaud’s (1970) article, and was taken further by Wu (1981) before substantial
additional work appeared in the econometric literature on extremum estimation.
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The approach is based on the idea that in an immediate neighborhood of
the true value θ0, the nonlinear variety Y is approximately a linear manifold
determined by the tangent space at θ0. The form of the tangent space is a p
dimensional hyperplane and its analytic form follows from the first order Taylor
expansion of the nonlinear function

g (zt; θ) ∼ g
(
zt; θ

0
)

+ Zt
(
θ − θ0

)
, with Zt =

∂g
(
zt; θ

0
)

∂θ
.

Setting x̆t = xt−g
(
zt; θ

0
)
+Ztθ

0, we have the approximate linear pseudo-model

x̆t = Ztθ + ut, (9)

which falls into the linear model class explored in Chapter 5. Then, stacking
the system, we have x̆ = Zθ + u and E (x̆) ∼ Zθ ∈ R (Z) = P, as shown in
Figure 3. Since θ̂ →p θ

0, the linear pseudo model representation is accurate
asymptotically with a small enough error to ensure that the limit distribution
of θ̂ follows directly from that of the corresponding (infeasible) linear estimator

θ̆ =

(
T∑
t=1

ZtSTZ
′
t

)−1( T∑
t=1

ZtST x̆t

)
= arg min

θ∈Θ

T∑
t=1

(x̆t − Ztθ)′ ST (x̆t − Ztθ)

of θ in (9). According to the linear estimation theory, the mean of x in the pseudo
model (9) lies in the hyperplance P in Figure 3, and its value is estimated by

the projection, y̆, of x on this hyperplane, giving y̆ = y + Z
(
θ̆ − θ0

)
. In the

nonlinear model (4), the mean of x is y = g
(
θ0
)
, which is estimated by the

projection, ŷ, of x onto the nonlinear variety Y. In large samples we can expect,
due to the consistency of θ̂ (and θ̆) that y̆ will be close to ŷ. The geometric
configuration is shown in Figure 3.
Under some regularity conditions, Malinvaud shows that
√
T
(
θ̆ − θ0

)
,
√
T
(
θ̂ − θ0

)
→d N

(
0,M (S)

−1
M (SΩS)M (S)

−1
)
,

where

M (S) = p lim
T→∞

1

T

T∑
t=1

ZtSTZ
′
t, M (SΩS) = p lim

T→∞

1

T

T∑
t=1

ZtSTΩSTZ
′
t,

involving what is now commonly called the sandwich formula. Well known argu-
ments then show that, under certain additional conditions, the asymptotically
effi cient estimator in this class involves a weight function for which ST →p Ω−1,

in which case the limit variance matrix is M
(
Ω−1

)−1
. Malinvaud shows that

the Gaussian maximum likelihood estimator achieves this bound, so that appro-
priately constructed minimum distance estimators7 are asymptotically effi cient
in the class of all regular consistent estimators.

7Such estimates may be constructed using a two step or iterated step procedure in which
ST is constructed from the moment matrix of residuals in an earlier step of the iteration that
ensures ST →p Ω−1.
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With consistency and asymptotic normality results in hand for general non-
linear regressions, Malinvaud systematically applies this theory to models that
arise commonly in econometric applications, such as model (5) where the non-
linearities occur via analytic constraints on the coeffi cients of a linear model.
The theory is used by Malinvaud in the later chapters of MSE to provide rigor-
ous proofs of consistency and asymptotic normality for simultaneous equations
estimators.
Chapter 9 also considers hypothesis testing, confidence interval construction

in the case of analytic constraints, numerical optimization methods, and, in its
final subsection, models with inequality constraints —a topic that has begun to
attract considerable attention over the last decade.
This highly original chapter contains fundamental theory that lays a rigorous

foundation for much subsequent theoretical work in statistics and econometrics.
By reworking the limit theory of structural equation estimation in terms of his
rigorous asymptotic development of nonlinear regression, Malinvaud anticipated
a new generation of extremum estimation limit theory in econometrics that
began to emerge in the 1980s and now dominates much econometric theory and
practice.

Conclusion

"A thorough reading of the book demands a good mathematical
background and a knowledge of general theories of probability calculus
and mathematical statistics. Some chapters are particularly diffi cult,
requiring sustained effort from the reader who seeks complete mastery
of the proofs”Malinvaud (1966, Preface)

Perhaps because of its advanced nature or its extensive use of geometric
rather than purely algebraic arguments, Malinvaud’s text had rather less pen-
etration than might be expected in North American graduate programs, even
in the top US schools. Instead, mechanical algebraic approaches to the de-
velopment of econometrics continued as the teaching norm well into the 1970s
and 1980s. Base courses in econometrics often emphasized a ‘mostly harmless’
approach largely to avoid intimidating students. Students emerged from these
courses thinking of econometrics in terms of X ′X matrices, simple models based
on conditional expectations, and a variety of specialized methods useful in han-
dling some of the challenges of panel data and simple dynamic models. Such
courses often lacked unifying principles of statistical inference and probabilistic
underpinnings, provided no hint of sophistication in asymptotic theory, and of-
fered little understanding of the subtleties of finite sample econometrics. These
inadequacies are amply demonstrated in other textbooks of econometrics that
competed with Malinvaud’s opus during this period.
By contrast, instructors and students who persevered with Malinvaud rapidly

recouped the investment made in mastering his work. By the mid 1980s new
textbooks in econometrics began to appear that followed Malinvaud’s example
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of using probabilistically sound arguments in developing asymptotic theory for
econometric estimators and test statistics. But none of these adopted the mantle
of Malinvaud’s geometric approach that so beautifully embodied all the key
results of the Gauss Markov theory, captured the essence of the asymptotic
properties of nonlinear estimation, and enabled an intuitive understanding of
least squares effi ciency. Malinvaud’s work remains distinctive in at least this
respect, as well as its rigor in developing the asymptotic theory of simultaneous
equations estimation and inference using principles of nonlinear regression.
Modern approaches to asymptotic statistical theory involve an ever widen-

ing array of tools, that include extremum estimation techniques, uniform laws
of large numbers, locally asymptotic normal likelihood ratio methods, martin-
gale convergence theorems, martingale central limit theory, functional limit the-
ory, and weak convergence to processes that involve stochastic integrals. These
methods, very largely derived from advances in probability calculus and statis-
tical theory over the past half century, have now largely displaced Malinvaud’s
path to asymptotic theory for econometricians. Yet his geometric ideas of lin-
ear pseudo-models and linear models with analytic constraints still have wide
applicability in empirical work. In the econometrician’s relentless search for
generality wherever possible in the development of limit theory, empirical ap-
plications in time series, microeconometrics, and panel econometrics are still
heavily dependent on basic models that are often little more than inspired ex-
tensions of linear systems, where the intuition provided by Malinvaud’s methods
remains as useful as ever.
Malinvaud was acutely aware of the diffi culties and subtleties of asymptot-

ics and the immense intellectual challenges presented by finite sample theory.
Indeed, in 1971 Malinvaud took the unusual step of writing to the Editor of
the International Economic Review drawing attention to the absence of rigor
in the asymptotic arguments that were commonly used in econometric arti-
cles and calling for higher standards in the execution of asymptotic methods in
econometrics.
Since the last edition of MSE in 1981, the subject of econometrics has moved

on not only in terms of basic theory but also in the vast range of its applications.
These cover every area of economics, including some higher levels of economic
theory, and extend well beyond the subject area of economics into the business,
financial, and social sciences, the medical sciences, and natural sciences. In
view of the subject’s enormous extent, it is no longer possible to attempt an
encompassing pedagogical work such as Malinvaud’s MSE. But it remains a
desirable, if somewhat elusive, goal to capture the essence of the subject of
econometrics and its intimate links and foundations within the discipline of
economics. Malinvaud’s book with its own uniquely broad perspective still
provides a useful entry point to this ever widening universe of research and
it offers readers a clear view of the goalpost of econometrics as the essential
vehicle for evidence-based economic analysis and policy formation.
Malinvaud did more than write a brilliant textbook with many original el-

ements. MSE brought the econometric universe together, married linear and
nonlinear estimation, system regression, panel modeling, time series, and simul-
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taneous equations estimation and inference in a unified rhetoric of econometrics
that remained faithful to the subject’s roots and its raison d’être in the discipline
of economics.

A Personal Tribute

The author learnt econometrics in the 1960s at the University of Auckland.8

Located, as we were, far from the major centres of learning in North America
and Europe, the primary knowledge source to guide us as students in the upper
reaches of a discipline came from reading advanced texts and journal articles.
In this regard, Malinvaud had no peer. It defined a new equivalence class for
textbooks in econometrics.
The book’s content and rhetoric reminded me in terms of its reach and its

exposition of Harald Cramér’s classicMathematical Methods of Statistics, whose
title Malinvaud adroitly massaged into the Statistical Methods of Econometrics,
and whose division into multiple component parts provided a natural skeletal
framework for the content of Malinvaud’s own treatise. With these advanced
texts on the desk and two extraordinary teachers forever at their sides, students
located far from the centres of learning in the Western hemisphere were excited
and privileged to feel advantaged, and never handicapped, by the separation.

The Final Word

The final word of this tribute must come from Malinvaud. The following two
paragraphs from Malinvaud’s Conclusion provide a clear directive to the econo-
metrics profession. Its value and relevance remain undiminished in the half
century since its composition.

“The art of the econometrician consists as much in defining a
good model as in finding a good statistical procedure. Indeed, this is
why he cannot be purely a statistician, but must have a solid ground-
ing in economics. Only if this is so, will he be aware of the mass of
accumulated knowledge which relates to the particular question under
study and must find expression in the model.
Finally, we must never forget that our progress in understanding

economic laws depends strictly on the quality and abundance of sta-
tistical data. Nothing can take the place of the painstaking work of
objective observation of the facts. All improvements in methodology
would be in vain if they had to applied to mediocre data.” Malinvaud
(1966)

8The interested reader may refer to the author’s (2014) account of these studies.
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