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Abstract

In the unconditional moment restriction model of Hansen (1982), specification tests and more

efficient estimators are both available whenever the number of moment restrictions exceeds the

number of parameters of interest. We show a similar relationship between potential refutabil-

ity of a model and existence of more efficient estimators is present in much broader settings.

Specifically, a condition we name local overidentification is shown to be equivalent to both the

existence of specification tests with nontrivial local power and the existence of more efficient esti-

mators of some “smooth” parameters in general semi/nonparametric models. Under our notion

of local overidentification, various locally nontrivial specification tests such as Hausman tests,

incremental Sargan tests (or optimally weighted quasi likelihood ratio tests) naturally extend to

general semi/nonparametric settings. We further obtain simple characterizations of local overi-

dentification for general models of nonparametric conditional moment restrictions with possibly

different conditioning sets. The results are applied to determining when semi/nonparametric

models with endogeneity are locally testable, and when nonparametric plug-in and semipara-

metric two-step GMM estimators are semiparametrically efficient. Examples of empirically

relevant semi/nonparametric structural models are presented.

Keywords: Overidentification, semiparametric efficiency, specification testing, nonparametric

conditional moment restrictions, semiparametric two step.
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1 Introduction

In work originating with Anderson and Rubin (1949) and Sargan (1958), and culminating in Hansen

(1982), overidentification in the generalized method of moments (GMM) framework was equated

with the number of unconditional moment restrictions exceeding the number of parameters of

interest. Under mild regularity conditions, such a surplus of moment restrictions was shown to

enable the construction of both more efficient estimators and model specification tests. It is

hard to overstate the importance of this result, which has granted practitioners with an intuitive

condition characterizing the existence of both efficiency gains and specification tests, and has thus

intrinsically linked both phenomena to the notion of overidentification.

Unfortunately, the existence of an analogous simple condition in general semi/non-parametric

models is to the best of our knowledge unknown. Yet, such a result stands to be particularly

valuable for these more flexible models, as their richer structure renders their potential refutability

harder to evaluate while simultaneously generating a broader set of parameters for which efficiency

considerations are of concern.

In this paper we show that, just as in GMM, efficiency and testability considerations are

linked by a single condition we name local overidentification. In order to be applicable to general

semi/non-parametric models, however, we must abstract from “counting” parameters and moment

restrictions as in GMM when defining local overidentification. Instead we employ the tangent set

T (P ) which, given a (data) distribution P and a candidate model P, consists of the set of scores

corresponding to all parametric submodels of P that contain P (Bickel et al., 1993). Heuristically,

T (P ) consists of all the paths from which P may be approached from within P. In particular,

whenever the closure of T (P ) in the mean squared norm equals the set of all possible scores, the

model P is locally consistent with any parametric specification and hence we say P is locally just

identified by P. In contrast, whenever there exist scores that do not belong to the closure of T (P ),

the model P is locally inconsistent with some parametric specification and hence we say P is locally

overidentified by P. While these definitions can be generally applied, we mainly focus on models

that are regular – in the sense that T (P ) is linear – due to the importance of this condition in

semiparametric efficiency analysis (van der Vaart, 1989).1 When specialized to GMM, our notion

of local overidentification is equivalent to the standard condition that the number of unconditional

moment restrictions exceed the number of parameters of interest.

Our definition of local overidentification arises naturally from embedding estimators of “smooth”

(i.e. regular or root-n estimable for n the sample size) parameters and specifications tests in a com-

mon limiting experiment of LeCam (1986). This enables us to establish several equivalent char-

acterizations of local overidentification. In particular, we show that if P is locally just identified

by P, then: (i) All asymptotically linear regular estimators of any common “smooth” parameter

must be first order equivalent; and (ii) The local asymptotic power of any local asymptotic level

α specification test cannot exceed α along all paths approaching P from outside P. Moreover,

we establish that the local overidentification of P by a regular model P is equivalent to both:

(i) The existence of asymptotically distinct linear regular estimators for any “smooth” parameter

1See Section 5 for a partial extension of our results for regular models to non-regular models in which T (P ) is a
convex cone.
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that admits one such estimator; and (ii) The existence of a locally unbiased asymptotic level α

specification test with non-trivial power against some path approaching P from outside P.

Our equivalent characterizations of local overidentification are very useful. They offer re-

searchers seemingly different yet equivalent ways to verify whether a data distribution P is locally

overidentified by a complicated semi/nonparametric regular model P. One obvious way is to di-

rectly verify the definition by first computing the closure of the tangent set T (P ) and then checking

whether it is a strict subset of the space of all possible scores. An equivalent but sometimes simpler

approach is to examine whether it is possible to obtain two asymptotically distinct regular esti-

mators of a common “smooth” function of P ∈ P,2 such as the cumulative distribution function

or a mean parameter
∫
fdP for a known bounded function f . Given some structure on P, it is

often easy to compute two root-n consistent asymptotically normal estimators of a simple common

“smooth” parameter, say as approximate optimizers of weighted criterion functions with different

weights, and then verify whether their asymptotic variances differ.

The local overidentification condition by itself, however, may not lead to feasible efficient esti-

mators of parameters of interest nor to feasible tests with nontrivial local power in general regular

models. Indeed, in parallel to GMM, additional regularity conditions are required to accomplish

the latter two objectives. In our general setting, these regularity conditions are imposed by as-

suming the existence of a score statistic (a stochastic process) Ĝn whose marginals are first order

equivalent to sample means of scores orthogonal to the tangent set T (P ). We show that such a

score statistic Ĝn can be constructed from two asymptotically distinct regular estimators of a com-

mon “smooth” parameter of P ∈ P 3 – a result that can be exploited to provide low level sufficient

conditions for the availability of Ĝn given additional structure on P. In addition, we show that

Ĝn can be used to obtain locally unbiased nontrivial specification tests. The constructed tests

encompass, among others, Hausman (1978) type test, and criterion-based tests such as the J test

of Sargan (1958) and Hansen (1982) as special cases. In particular, proceeding in analogy to an

incremental J test proposed in Eichenbaum et al. (1988) for GMM models, we demonstrate, for

general regular models P and M satisfying P ⊂M, how to build specification tests that aim their

power at deviations from P that satisfy the maintained larger model M.

We deduce from the described results that the equivalence between efficiency gains and non-

trivial specification tests found in Hansen (1982) is not coincidental, but rather the reflection of

a deeper principle applicable to all regular models. Our results on local overidentification in gen-

eral regular models should be widely applicable. For example, our equivalent characterizations

immediately imply that semi/nonparametric models of conditional moment restrictions (with a

common conditioning set) containing unknown functions of potentially endogenous variables are

locally overidentified because they allow for both inefficient and efficient estimators (Ai and Chen,

2003; Chen and Pouzo, 2009). Hence locally unbiased nontrivial specification tests of these models

exist. Our results further show that the optimally weighted sieve quasi likelihood ratio tests of

Chen and Pouzo (2009, 2015) direct the power at deviations of P that remain within a larger

model M. We also show that Hausman (1978) type tests that compare estimators efficient under

2We stress that a “smooth” parameter of P ∈ P always exists and does not need to be any structural parameter
associated with the model P; see Remark 3.1.

3We also establish a converse, that is, the availability of such a score statistic Ĝn yields asymptotically distinct
regular estimators of any common “smooth” parameter of P ∈ P.
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P to those efficient under a larger model M aim the power at violations of P that remain within

M. Therefore, both kinds of tests could be understood as generalized incremental J tests.

In this paper, we focus on a new application to nonparametric conditional moment restric-

tion models with possibly different conditioning sets and potential endogeneity. We derive simple

equivalent characterizations of local just identification for this very large class of models so that

other researchers do not need to compute the closure of the tangent set T (P ) case by case. When

specialized to nonparametric conditional moment restrictions with possibly different conditioning

sets but without endogeneity, such as nonparametric conditional mean or quantile regressions, our

characterization of P being locally just identified reduces to the condition of the nonparametric

functions being “exactly identified” in Ackerberg et al. (2014) for such models. When special-

ized to semi/nonparametric models using a control function approach for endogeneity (Heckman,

1990; Olley and Pakes, 1996; Newey et al., 1999; Blundell and Powell, 2003), our characteriza-

tion implies that P is typically locally overidentified by such models. When specialized to the

semi/nonparametric models of sequential moment restrictions containing unknown functions of

potentially endogenous variables, our characterization implies that P is typically locally overiden-

tified, which is consistent with the semiparametric efficiency bound calculation in Ai and Chen

(2012) for such models. In Section 4, our results are applied further to determining when non-

parametric plug-in and semiparametric two-step GMM estimators are semiparametrically efficient.

Empirically relevant examples of semi/nonparametric structural models are also presented.

The rest of the paper is organized as follows. Section 2 formally defines local overidentification

while Section 3 establishes its connections to efficient estimation and testing in regular models.

Section 4 applies the general theoretical results to characterize local overidentification in nonpara-

metric conditional moment restriction models with possibly different information sets and potential

endogeneity. Section 5 provides a partial extension of the main theoretical results in Section 3 for

regular models to non-regular models in which T (P ) is a convex cone. Section 6 briefly concludes.

Appendix A provides a short discussion of limiting experiments. Appendix B contains the proofs

for Sections 2 and 3 while Appendix C contains the proofs for Section 5. The Online Appendix

contains additional technical Lemmas, examples, and the proofs for Section 4.

2 Local Overidentification

2.1 Main Definition

We letM denote the collection of all probability measures on a measurable space (X,B). A model

P is a (not necessarily strict) subset ofM. Typically, a model P is indexed by (model) parameters

that consist of parameters of interest and perhaps additional nuisance parameters. We say a model

P is semiparametric if the parameters of interest are finite dimensional but the nuisance parameters

are infinite dimensional (such as the GMM model of Hansen (1982)); semi-nonparametric if the

parameters of interest contain both finite and infinite dimensional parts; nonparametric if all the

parameters are infinite dimensional. We call a model P fully unrestricted if P =M.

Throughout, the data {Xi}ni=1 is assumed to be an i.i.d. sample from a distribution P ∈ P of

X ∈ X. We call P the data distribution, which is always identified from the data, although its
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associated model parameters might not be. Our analysis is local in nature and hence we introduce

suitable perturbations to P . Following the literature on limiting experiments (LeCam, 1986), we

consider arbitrary smooth parametric likelihoods, which are defined by:

Definition 2.1. A “path” t 7→ Pt,g is a function defined on [0, 1) such that Pt,g is a probability

measure on (X,B) for every t ∈ [0, 1), P0,g = P , and

lim
t↓0

∫ [
1

t
(dP

1/2
t,g − dP 1/2)− 1

2
gdP 1/2

]2

= 0. (1)

The scalar measurable function g : X→ R is referred to as the “score” of the path t 7→ Pt,g.

For any σ-finite positive measure µt dominating (Pt + P ), the integral in (1) is understood as

∫ [
1

t

((
dPt,g
dµt

)1/2

−
(
dP

dµt

)1/2)
− 1

2
g

(
dP

dµt

)1/2]2

dµt

(the choice of µt does not affect the value of the integral). Heuristically, a path is a parametric

model that passes through P and is smooth in the sense of satisfying (1) or, equivalently, being

differentiable in quadratic mean. We note Definition 2.1 implies any score must have mean zero

and be square integrable with respect to P , and therefore belong to the space L2
0(P ) given by

L2
0(P ) ≡

{
g : X→ R,

∫
gdP = 0 and ‖g‖P,2 <∞

}
, ‖g‖2P,2 ≡

∫
g2dP. (2)

The restriction g ∈ L2
0(P ) is solely the result of Pt,g ∈M for all t in a neighborhood of zero. If we

in addition demand that Pt,g ∈ P, then the set of feasible scores reduces to

T (P ) ≡
{
g ∈ L2

0(P ) : (1) holds for some t 7→ Pt,g ∈ P
}
, (3)

which is called the tangent set at P . Finally, we let T̄ (P ) denote the closure of T (P ) under ‖ · ‖P,2.

By definition, T̄ (P ) is a (not necessarily strict) subset of L2
0(P ). For instance, if P = M, then

T̄ (P ) = T (P ) = L2
0(P ) for any P ∈ P.

Given the introduced notation, we can now formally define local overidentification.

Definition 2.2. If T̄ (P ) = L2
0(P ), then we say P is locally just identified by P. Conversely, if

T̄ (P ) 6= L2
0(P ), then we say P is locally overidentified by P.

Intuitively, P is locally overidentified by a model P if P yields meaningful restrictions on the

scores that can be generated by parametric submodels. Conversely, P is locally just identified by

P when the sole imposed restriction is that the scores have mean zero and a finite second moment

– a quality common to the scores of all paths regardless of whether they belong to P or not. It is

clear that Definition 2.2 is inherently local in that it concerns only the “shape” of P at the point

P rather than P in its entirety as would be appropriate for a global notion of overidentification.

Remark 2.1. Koopmans and Riersol (1950) refer to a model P as overidentified whenever there

is a possibility that P does not belong to P. Thus, P is deemed globally overidentified if P 6=M
(i.e. P is a strict subset of M), and globally just identified if P =M (i.e. P is fully unrestricted).
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Clearly, global just identification implies local just identification, while local overidentification

implies global overidentification. Although more demanding, local overidentification will provide

a stronger connection to both the testability of P and the performance of regular estimators.

It is worth emphasizing that local overidentification concerns solely a relationship between the

data distribution P and a model P. Hence, it is possible for P to be locally overidentified despite

underlying (structural) parameters of the model P being partially identified – an observation that

simply reflects the fact that partially identified models may still be refuted by the data. See, e.g.,

Koopmans and Riersol (1950); Hansen and Jagannathan (1997); Manski (2003); Haile and Tamer

(2003); Hansen (2014) and references therein.

2.2 Equivalent Definitions in Regular Models

In many applications, the following condition holds and simplifies our analysis.

Assumption 2.1. (i) {Xi}ni=1 is an i.i.d. sequence with Xi ∈ X distributed according to P ∈ P;

(ii) T (P ) is linear – i.e. if g, f ∈ T (P ), a, b ∈ R, then ag + bf ∈ T (P ).

The i.i.d. requirement in Assumption 2.1(i) may be relaxed but is imposed to streamline expo-

sition. Assumption 2.1(ii) requires the model P to be regular at P in the sense that its tangent

set be linear. This is satisfied by numerous models (such as the GMM model), and is either im-

plicitly or explicitly imposed whenever semiparametric efficiency bounds and efficient estimators

are considered (Hájek, 1970; Hansen, 1985; Chamberlain, 1986; Newey, 1990; Bickel et al., 1993;

Ai and Chen, 2003). We stress, however, that a model P being regular does not imply that all

the parameters underlying the model are regular (i.e., “smooth” or root-n estimable). In fact,

some parameters of a regular model P may only be slower-than root-n estimable or not even be

identified. Nonetheless, Assumption 2.1(ii) does rule out models in which the tangent set T (P ) is

not linear but a convex cone instead. See Section 5 for a partial extension of the main results for

regular models to non-regular models where T (P ) is a convex cone.

In the literature, the closed linear span of T (P ) under ‖ · ‖P,2 is called the tangent space at

P ∈ P (see, e.g., Definition 3.2.2 in Bickel et al. (1993)). Under Assumption 2.1(ii), T̄ (P ) becomes

the tangent space at P , and hence a vector subspace of L2
0(P ). We also define

T̄ (P )⊥ ≡
{
g ∈ L2

0(P ) :

∫
gfdP = 0 for all f ∈ T̄ (P )

}
, (4)

which is the orthogonal complement of T̄ (P ). The vector spaces T̄ (P ) and T̄ (P )⊥ then form an

orthogonal decomposition of L2
0(P ) (the space of all possible scores)

L2
0(P ) = T̄ (P )⊕ T̄ (P )⊥, (5)

and we let ΠT (·) and ΠT⊥(·) denote the orthogonal projections under ‖·‖P,2 onto T̄ (P ) and T̄ (P )⊥

respectively. Every g ∈ L2
0(P ) then satisfies g = ΠT (g) + ΠT⊥(g) and V ar(g) = V ar(ΠT (g)) +

V ar(ΠT⊥(g)). Intuitively, ΠT (g) ∈ T̄ (P ) is the component of g that is in accord with model P,

while ΠT⊥(g) ∈ T̄ (P )⊥ is the component orthogonal to P.
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The decomposition in (5) implies equivalent characterizations of local overidentification that

we summarize in the following simple yet useful Lemma.

Lemma 2.1. Under Assumption 2.1, the following are equivalent to Definition 2.2:

(i) P is locally just identified by P if and only if T̄ (P )⊥ = {0}, or equivalently, V ar (ΠT⊥(g)) = 0

for all g ∈ L2
0(P ).

(ii) P is locally overidentified by P if and only if T̄ (P )⊥ 6= {0}, or equivalently, V ar (ΠT⊥(g)) > 0

for some g ∈ L2
0(P ).

We next illustrate the introduced concepts in the GMM model.4

GMM Illustration. Let Γ ⊆ Rdγ with dγ <∞ be the parameter space and ρ : X×Rdγ → Rdρ

be a known moment function with dρ ≥ dγ . The GMM model P is

P ≡
{
P ∈M :

∫
ρ(·, γ)dP = 0 for some γ ∈ Γ

}
, (6)

and for any P ∈ P we let γ(P ) solve
∫
ρ(·, γ(P ))dP = 0. For simplicity, let ρ be differentiable in

γ, and set D(P ) ≡
∫
∇γρ(·, γ(P ))dP . For any path t 7→ Pt,g ∈ P, we then obtain

0 =
d

dt

∫
ρ(·, γ(Pt,g))dPt,g

∣∣∣
t=0

=

∫
ρ(·, γ(P ))gdP +D(P )γ̇(g), (7)

where γ̇(g) is the derivative of γ(Pt,g) at t = 0. If
∫
ρ(·, γ(P ))ρ(·, γ(P ))′dP is full rank, then the

linear functional g 7→
∫
ρ(·, γ(P ))gdP maps L2

0(P ) onto Rdρ . On the other hand, D(P ) maps Rdγ

onto a linear subspace of Rdρ whose dimension equals the rank of D(P ). Therefore, (7) imposes

restrictions on the possible set of scores g only when the rank of D(P ) is smaller than dρ. When

D(P ) is full rank, we thus obtain that P is locally just identified by P if and only if the “standard”

GMM just identification condition that dρ = dγ is satisfied.

Our definition of local overidentification extends that in GMM models to general infinite dimen-

sional models. This will be very useful for nonparametric conditional moment restriction models,

where both the number of parameters (of interest) and the number of (unconditional) moments are

infinite. Moreover, for general regular models, we will show Definition 2.2 retains the fundamental

link to the properties of regular estimators and specification tests present in Hansen (1982). For

instance, just as all regular estimators of γ(P ) in the GMM model are asymptotically equivalent

whenever dρ = dγ , Theorem 2.1 in Newey (1994) has shown that the asymptotic variance of root-

n consistent plug-in estimators is invariant to the choice of first-stage nonparametric estimators

whenever L2
0(P ) = T̄ (P ).

3 General Results for Regular Models

In this Section we show that, in general regular models, local overidentification is intrinsically

linked to the importance of efficiency considerations and the potential refutability of a model.

4We thank Lars Peter Hansen for sharing with us his notes on GMM and for helping us with the GMM example.
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3.1 The Setup

3.1.1 The Setup: Estimation

Since the data distribution P is always identified, many known functions of P are identified and con-

sistently estimable even if some underlying (structural) parameters of a model P are not identified.

For general regular models, we therefore represent an identifiable parameter as a known mapping

θ : P → B and the “true” parameter value as θ(P ) ∈ B, where B is a Banach space with norm

‖ · ‖B. We further denote the dual space of B by B∗ ≡ {b∗ : B → R : b∗ is linear, ‖b∗‖B∗ < ∞},
which is the space of continuous linear functionals with norm ‖b∗‖B∗ ≡ sup‖b‖B≤1 |b∗(b)|.

An estimator θ̂n : {Xi}ni=1 → B for θ(P ) ∈ B is a map from the data into the space B.

To address the question of whether θ(P ) admits asymptotically distinct estimators (i.e. efficiency

“matters”) we focus on asymptotically linear regular estimators. In what follows, for any path t 7→
Pt,g ∈ M we use the notation

Ln,g→ to represent convergence in law under Pn
1/
√
n,g
≡
⊗n

i=1 P1/
√
n,g,

and
L→ for convergence in law under Pn ≡

⊗n
i=1 P .

Definition 3.1. θ̂n : {Xi}ni=1 → B is a regular estimator of θ(P ) if there is a tight random variable

D such that
√
n{θ̂n − θ(P1/

√
n,g)}

Ln,g→ D for any path t 7→ Pt,g ∈ P.

Definition 3.2. θ̂n : {Xi}ni=1 → B is an asymptotically linear estimator of θ(P ) if

√
n{θ̂n − θ(P )} =

1√
n

n∑
i=1

ν(Xi) + op(1) under Pn, (8)

for some ν : X → B satisfying b∗(ν) ∈ L2
0(P ) for any b∗ ∈ B∗. Here ν is called the influence

function of the estimator θ̂n.

By restricting attention to regular estimators, we focus on root-n consistent estimators whose

asymptotic distribution is invariant to local perturbations to P within the model P. While most

commonly employed estimators are regular and asymptotically linear, their existence does impose

restrictions on the map θ : P → B. In fact, the existence of an asymptotically linear regular

estimator of θ(P ) in regular models implies θ : P → B must be “pathwise differentiable” (or

“smooth”) relative to T (P ) (van der Vaart, 1991b).

Remark 3.1. Regardless of a model P being regular or non-regular, there always exists a “smooth”

map θ : P → B and an asymptotically linear regular estimator θ̂n : {Xi}ni=1 → B of θ(P ) under

i.i.d. data. For example, for any bounded function f : X→ R, the sample mean, n−1
∑n

i=1 f(Xi),

is an asymptotically linear regular estimator of θ(P ) ≡
∫
fdP along any path t 7→ Pt,g ∈M. Thus,

we emphasize that θ(P ) should not be solely thought of as an intrinsic parameter of the model P,

but rather as any “smooth” map of P ∈ P.
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3.1.2 The Setup: Testing

A specification test for a general model P is a test of the null hypothesis that P belongs to P

against the alternative that it does not – i.e. it is a test of the hypotheses

H0 : P ∈ P vs H1 : P ∈M \P . (9)

We denote an arbitrary (possibly randomized) test of (9) by φn : {Xi}ni=1 → [0, 1], which is a

function specifying for each realization of the data a corresponding probability of rejecting the null

hypothesis. In our analysis, we restrict attention to specification tests φn that have local asymptotic

level α and possess an asymptotic local power function.

Definition 3.3. A specification test φn : {Xi}ni=1 → [0, 1] for a model P has local asymptotic level

α if for any path t 7→ Pt,g ∈ P it follows

lim sup
n→∞

∫
φndP

n
1/
√
n,g ≤ α. (10)

Definition 3.4. A specification test φn : {Xi}ni=1 → [0, 1] for a model P has a local asymptotic

power function π : L2
0(P )→ [0, 1] if for any path t 7→ Pt,g ∈M, it follows

lim
n→∞

∫
φndP

n
1/
√
n,g = π(g). (11)

Finally, a test φn for (9) with a local asymptotic power function π is said to be locally unbiased if

it satisfies: π(g) ≤ α for all t 7→ Pt,g ∈ P and π(g) ≥ α for all t 7→ Pt,g ∈M \P.

Note that a local asymptotic power function only depends on the score g ∈ L2
0(P ) and is

independent of any other characteristics of the path t 7→ Pt,g ∈ M. This is because the product

measures of any two local paths that share the same score must converge in the Total Variation

metric (see Lemma D.1 in the Online Appendix). Intuitively, a test possesses a local asymptotic

power function if the limiting rejection probability of the test is well defined along any local

perturbation to P . The existence of a local asymptotic power function is a mild requirement that

is typically satisfied; see Remark 3.2.

Remark 3.2. Tests φn are often constructed by comparing a test statistic T̂n to an estimate of the

(1−α) quantile of its asymptotic distribution. By LeCam’s 3rd Lemma and the Portmanteau Theo-

rem, such tests have a local asymptotic power function provided that: (i) (T̂n,
1√
n

∑n
i=1 g(Xi)) ∈ R2

converges jointly in distribution under Pn for any g ∈ L2
0(P ), and (ii) the limiting distribution of

T̂n under Pn is continuous. See Theorem 6.6 in van der Vaart (1998).

3.2 Equivalent Characterizations of Local Overidentification

In Hansen (1982)’s GMM framework, overidentifying restrictions are necessary for both the ex-

istence of efficiency gains in estimation and the testability of the model. We now extend this

conclusion to general regular models.

Theorem 3.1. Let Assumption 2.1 hold and P be locally just identified by P.

9



(i) Let θ̂n : {Xi}ni=1 → B and θ̃n : {Xi}ni=1 → B be any asymptotically linear regular estimators

of any parameter θ(P ) ∈ B. Then:
√
n{θ̂n − θ̃n} = op(1) in B.

(ii) Let φn be any specification test for (9) with local asymptotic level α and a local asymptotic

power function π. Then: π(g) ≤ α for all paths t 7→ Pt,g ∈M.

Theorem 3.1 establishes that the local overidentification of P is a necessary condition for

the existence of efficiency gains and nontrivial specification tests. Specifically, Theorem 3.1(i)

shows that if P is locally just identified, then all asymptotically linear regular estimators of any

“smooth” parameter θ(P ) must be first order equivalent. This conclusion is a generalization of

Newey (1990) who showed scalar (i.e. B = R) asymptotically linear and regular estimators are

first order equivalent when T̄ (P ) = L2
0(P ). Theorem 3.1(ii) establishes that if P is locally just

identified by P, then the local asymptotic power of any local asymptotic level α specification test

cannot exceed α along any path, including all paths approaching P from outside P. Heuristically,

under local just identification, the set of scores corresponding to paths t 7→ Pt,g ∈ P is dense in the

set of all possible scores and hence every path is locally on the “boundary” of the null hypothesis.

In order to discern how the local overidentification of P can facilitate the existence of efficiency

gains and the testability of the model, we consider the asymptotic behavior of sample means of

scores. For any 0 6= f̃ ∈ L2
0(P ), if Xi is distributed according to P1/

√
n,g for a path t 7→ Pt,g ∈ M,

then

Gn(f̃) ≡ 1√
n

n∑
i=1

f̃(Xi)
Ln,g→ N

(∫
f̃gdP,

∫
f̃2dP

)
(12)

by LeCam’s 3rd Lemma. Recall that for regular models local overidentification is equivalent to

the existence of at least one score 0 6= f̃ ∈ T̄ (P )⊥. For any such 0 6= f̃ ∈ T̄ (P )⊥ and all path

t 7→ Pt,g ∈ P, we have
∫
f̃gdP = 0 and hence Gn(f̃) converges to a centered Gaussian random

variable – i.e. Gn(f̃) behaves as “noise” that can alter the efficiency of estimators. On the other

hand, for any 0 6= f̃ ∈ T̄ (P )⊥, there is a path t 7→ Pt,g ∈ M \P such that
∫
f̃gdP 6= 0, and hence

Gn(f̃) can be employed to construct an asymptotically locally nontrivial specification test – i.e.

Gn(f̃) is a “signal” that enables the detection of violations of the model P. Our next result builds

on this intuition by using the score statistics Gn(f̃) to establish a converse to Theorem 3.1.

Theorem 3.2. Let Assumption 2.1 hold. Then the following statements are equivalent:

(i) P is locally overidentified by P.

(ii) If a parameter θ(P ) ∈ B admits an asymptotically linear regular estimator θ̂n, then: there

exists another asymptotically linear regular estimator θ̃n of θ(P ) such that
√
n{θ̂n − θ̃n}

L→
∆ 6= 0 in B.

(iii) There exists a locally unbiased asymptotic level α test φn for (9) with a local asymptotic

power function π such that: π(g) > α for some path t 7→ Pt,g ∈M \P.

Theorems 3.1 and 3.2 establish that the local overidentification of P is equivalent to the avail-

ability of efficiency gains and also to the existence of locally nontrivial specification tests. In

addition, Theorems 3.1(i) and 3.2(i)-(ii) imply the following equivalent characterization of local

just identification.
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Corollary 3.1. Let Assumption 2.1 hold and D be a set of bounded functions that is dense in

(L2(P ), ‖·‖P,2). For any f ∈ D let Ω∗f be the semiparametric efficient variance bound for estimating∫
fdP under P. Then: Ω∗f = Var{f(X)} for all f ∈ D if and only if P is locally just identified by

P.

This Corollary is very useful in assessing whether P is locally overidentified by a complicated

model P. For example, in Subsection 4.1.1 we employ Corollary 3.1 and the semiparametric

efficiency bound analysis in Ai and Chen (2012) to characterize local overidentification in nonpara-

metric models defined by sequential moment restrictions.

3.3 Feasible Estimators and Tests

The intuition for Theorem 3.2 suggests that any statistics asymptotically equivalent to the score

statistics Gn(f̃) with some 0 6= f̃ ∈ T̄ (P )⊥ (see (12)) may be employed to obtain distinct regular

estimators for arbitrary “smooth” parameters θ(P ) and specification tests with nontrivial local

power. To elaborate on this intuition, for any set A we let `∞(A) ≡ {f : A→ R s.t. ‖f‖∞ <∞}
where ‖f‖∞ = supa∈A |f(a)|, and impose the following condition:

Assumption 3.1. For some set T there is a statistic Ĝn : {Xi}ni=1 → `∞(T) satisfying:

(i) Ĝn(τ) = 1√
n

∑n
i=1 sτ (Xi) + op(1) uniformly in τ ∈ T, where 0 6= sτ ∈ T̄ (P )⊥ for all τ ∈ T;

(ii) for some tight nondegenerate centered Gaussian measure G0, Ĝn
L→ G0 in `∞(T).

Assumption 3.1 requires the availability of a statistic n−1/2Ĝn(τ) that is first order equivalent

to the sample mean of some score (or influence function) sτ ∈ T̄ (P )⊥. We further let

S(P ) ≡
{
sτ ∈ T̄ (P )⊥ : τ ∈ T

}
(13)

denote the collection of such scores, which will play an important role in our analysis. As we argue

below, statistics Ĝn satisfying Assumption 3.1 are implicitly constructed by various specification

tests, such as Hausman tests and criterion based tests; see Remark 3.5. In order to establish a

connection to Hausman tests in particular, we introduce the following Assumption:

Assumption 3.2. For some parameter θ(P ) ∈ B there are asymptotically linear regular estimators

θ̂n and θ̃n with influence functions ν and ν̃ such that
√
n{θ̂n − θ̃n}

L→ ∆ 6= 0.

Assumption 3.2 simply requires the existence of two distinct estimators of some “smooth”

function of P ∈ P, which needs not be structural parameter of the model P; see Remark 3.1.

Lemma 3.1. Let Assumption 2.1 hold.

(i) Let Assumption 3.1 hold. Then: For any parameter θ(P ) ∈ B that admits an asymptotically

linear regular estimator θ̂n, Assumption 3.2 is satisfied with θ̃n = θ̂n + b̃× n−1/2Ĝn(τ∗) and

∆ = −b̃×G0(τ∗) for some 0 6= b̃ ∈ B and some τ∗ ∈ T.

(ii) Let Assumption 3.2 hold. Then: Assumption 3.1 is satisfied with T = {b∗ ∈ B∗ : ‖b∗‖B∗ ≤
1}, and G0, Ĝn ∈ `∞(T) given by G0(b∗) = b∗(∆), Ĝn(b∗) = b∗(

√
n{θ̂n − θ̃n}) where sb∗ =

b∗(ν − ν̃).

11



Lemma 3.1 establishes that Assumptions 3.1 and 3.2 are equivalent to each other. In particular,

Lemma 3.1(ii) shows that the difference of any two asymptotically distinct linear regular estimators

of any common parameter θ(P ) may be employed to construct Ĝn – i.e. Assumption 3.2 implies

Assumption 3.1. As a result, given the specific structure of a regular model P, it is straightforward

to obtain lower level sufficient conditions for Assumption 3.1. Specifically, we need only ensure

the existence of two asymptotically distinct linear regular estimators of some “smooth” parameter,

which could be a simple identified reduced form parameter if the structural parameters are not

identified. In a large class of semiparametric and nonparametric models, asymptotically distinct

estimators may be found as the optimizers of weighted criterion functions with alternative choices

of weights. See, e.g., Shen (1997) for efficient estimation based on sieve or penalized maximum

likelihood in semi/nonparametric likelihood models, and Ai and Chen (2003) for efficient estimation

based on optimally weighted sieve minimum distance of semi/nonparametric conditional moment

restrictions models. In the Online Appendix we apply Lemma 3.1(ii) to verify Assumption 3.1 in

nonparametric conditional moment restriction models.

We next employ the fact that Ĝn behaves as a “signal” from a testing perspective (i.e. Theorem

3.2(iii)) to construct nontrivial local specification tests. Let S̄(P ) ≡ lin{S(P )} be the closed linear

span of S(P ) in L2
0(P ), and ΠS(g) be the metric projection of g ∈ L2

0(P ) onto S̄(P ). We note

Assumption 3.1(i) (or (12)) implies that Ĝn exhibits a non-zero asymptotic drift along a path

t 7→ Pt,g ∈ M if and only of ΠS(g) 6= 0. Intuitively S̄(P ) therefore represents the alternatives for

which specification tests based on Ĝn have nontrival local asymptotic power. To obtain such a

test, we employ a map Ψ : `∞(T)→ R+ to reduce Ĝn to a scalar test statistic T̂n = Ψ(Ĝn).

Assumption 3.3. (i) Ψ : `∞(T) → R+ is continuous, convex and nonconstant; (ii) Ψ(0) = 0,

Ψ(b) = Ψ(−b) for all b ∈ `∞(T); (iii) {b ∈ `∞(T) : Ψ(b) ≤ c} is bounded for all c > 0.

Finally, we let c1−α > 0 be the (1− α) quantile of Ψ(G0) and define the specification test

φn ≡ 1{Ψ(Ĝn) > c1−α}; (14)

i.e. we reject proper model specification for large values of Ψ(Ĝn). Multiple specification tests in

the literature are in fact asymptotically equivalent to (14) with different choices of Ψ; see Theorem

3.3 Part (ii) and Remark 3.5 below.

Theorem 3.3. Let Assumption 2.1 hold.

(i) Let Assumptions 3.1 and 3.3 hold. Then: φn defined in (14) with c1−α > 0 is a locally

unbiased asymptotic level α specification test for (9) with a local asymptotic power function

π. Moreover, for any path t 7→ Pt,g ∈M with ΠS(g) 6= 0 it follows

π(g) ≡ lim
n→∞

P1/
√
n,g

(
Ψ(Ĝn) > c1−α

)
> α. (15)

(ii) Let Assumption 3.2 hold. Then: Assumption 3.3 holds with Ψ = ‖ · ‖∞, and Part (i) holds

with Ψ(Ĝn) =
√
n‖θ̂n − θ̃n‖B, and S(P ) = {b∗(ν − ν̃) : b∗ ∈ B∗, ‖b∗‖B∗ ≤ 1}.

Theorems 3.1, 3.2, 3.3 and Lemma 3.1 link local overidentification to the existence of asymp-

totically distinct estimators and locally nontrivial specification tests. The latter two concepts were
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also intrinsically linked by the seminal work of Hausman (1978), who proposed comparing estima-

tors of a common parameter to perform specification tests. Theorem 3.3(ii) shows Hausman tests

are a special case of (14) in general regular models.

Remark 3.3. Whenever S̄(P ) = T̄ (P )⊥, result (15) holds for any path t 7→ Pt,g with

lim inf
n→∞

inf
Q∈P

n

∫ [
dQ1/2 − dP 1/2

1/
√
n,g

]2

> 0; (16)

i.e., the proposed test has nontrivial local power against any path that does not approach P “too

fast”. If condition (16) fails, then there is a sequence Qn ∈ P for which

lim sup
n→∞

∣∣∣∣∫ φn(dQnn − dPn1/√n,g)
∣∣∣∣ ≤ lim sup

n→∞
‖Qnn − Pn1/√n,g‖TV = 0 (17)

where ‖ · ‖TV denotes the total variation distance; see, e.g., Theorem 13.1.3 in Lehmann and

Romano (2005). Therefore, a violation of (16) implies P1/
√
n,g approaches P “too fast” in the

sense that it is not possible to discriminate the induced distribution on the data {Xi}ni=1 from a

distribution that is in accord with P.

Remark 3.4. Theorem 3.3(ii) states a Hausman test has nontrivial local power against any path

t 7→ Pt,g ∈ M whose score g is correlated with b∗(ν − ν̃) for some b∗ ∈ B∗. When θ̂n is a

semiparametric efficient estimator, it follows S̄(P ) = lin{ΠT⊥(b∗(ν̃)) : b∗ ∈ B∗} (see Proposition

3.3.1 in Bickel et al. (1993)). In particular, L2
0(P ) = lin{b∗(ν̃) : b∗ ∈ B∗} implies S̄(P ) = T̄ (P )⊥,

and hence the corresponding Hausman test has nontrivial power against all local alternatives.

Remark 3.5. In addition to Hausman tests, multiple specification tests for (9) are also asymptoti-

cally equivalent to test (14). For example, optimally weighed criterion based tests employ statistics

T̂n that have a chi-squared asymptotic distribution and satisfy

T̂n =
K∑
k=1

(
1√
n

n∑
i=1

fk(Xi)

)2

+ op(1) (18)

where K corresponds to the degrees of freedom and {fk}Kk=1 ⊂ L2
0(P ) are orthonormal. A test

with this property can only have nominal and asymptotical local level α if fk ∈ T̄ (P )⊥ for all k.

Otherwise, there is a path t 7→ Pt,g ∈ P such that
∫
g{ΠT (fk)}dP 6= 0 for at least one k, which by

(12) leads to a null rejection probability exceeding α. As a result, the structure in test (14) is also

present in the J test of Hansen (1982), the semiparametric LR statistic of Murphy and van der

Vaart (1997), the sieve QLR statistic in Chen and Pouzo (2009), and the generalized emipirical

likelihood test in Parente and Smith (2011) among many others.

3.4 Incremental J Tests

In applications, specification tests are often informed by a concern with a particular violation

of the model. For instance, in GMM we may question the validity of a subset of the moment

conditions but have confidence in the remaining ones; see, e.g., Eichenbaum et al. (1988). In such

circumstances, a J test, which entertains the possibility of any moment being violated, can be
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less revealing than the so-called incremental J (Sargan-Hansen) test, which focuses on the specific

moments that are of concern (Arellano, 2003).

The tests in Theorem 3.3 can similarly direct their power at specific violations of the model.

To this end, we introduce a set M satisfying P ⊆M ⊆M, which represents the characteristics of

the model we believe P satisfies even when P /∈ P, and consider

H0 : P ∈ P vs H1 : P ∈M \P. (19)

The “maintained” model M generates its own tangent set, which we denote by

M(P ) ≡
{
g ∈ L2

0(P ) : (1) holds for some t 7→ Pt,g ∈M
}
, (20)

with M̄(P ) being the closure of M(P ) in (L2
0(P ), ‖ · ‖P,2). If M(P ) is linear, then M̄(P ) =

T̄ (P )⊕ {T̄ (P )⊥ ∩ M̄(P )} and the space L2
0(P ) of all possible scores satisfies

L2
0(P ) = M̄(P )⊕ M̄(P )⊥ = T̄ (P )⊕ {T̄ (P )⊥ ∩ M̄(P )} ⊕ M̄(P )⊥; (21)

i.e. any score consists of a component that agrees with P (in T̄ (P )), a component that disagrees

with P but still agrees with M (in T̄ (P )⊥ ∩ M̄(P )), and a component that disagrees with M

(in M̄(P )⊥). Intuitively, when testing for the validity of P while remaining confident on the

correct specification of M we should employ tests that direct their power towards the subspace

T̄ (P )⊥ ∩ M̄(P ) rather than all of T̄ (P )⊥.

In the following, recall that ΠT⊥(·) denotes the orthogonal projection under ‖·‖P,2 onto T̄ (P )⊥.

Lemma 3.2. Let Assumption 2.1 hold, P ⊆M, and M(P ) be linear.

(i) Let Assumptions 3.1 and 3.3 hold with S(P ) ⊆ T̄ (P )⊥ ∩ M̄(P ). Then: Theorem 3.3(i)

remains valid for testing (19) for any path t 7→ Pt,g ∈M with ΠS(g) 6= 0.

(ii) Let Assumption 3.1 hold with T = {1, . . . , d}, d < ∞, and {sτ}dτ=1 be an orthonormal basis

for S̄(P ) = T̄ (P )⊥ ∩ M̄(P ). Then: For any asymptotic level α specification test φn for (19)

with an asymptotic local power function, it follows

inf
g∈G(κ)

lim
n→∞

∫
φndP

n
1/
√
n,g ≤ inf

g∈G(κ)
lim
n→∞

P1/
√
n,g

(
‖Ĝn‖2 > c1−α

)
, (22)

where G(κ) ≡ {g ∈ M̄(P ) : ‖ΠT⊥(g)‖P,2 ≥ κ}, and c1−α is the (1−α) quantile of a chi-square

distribution with d degrees of freedom.

(iii) Let Assumption 3.2 hold with θ̂n and θ̃n being efficient estimators of θ(P ) ∈ B under P

and M respectively. Then: Theorem 3.3(ii) remains valid for testing (19) with b∗(ν − ν̃) ∈
T̄ (P )⊥ ∩ M̄(P ) for all b∗ ∈ B∗.

Lemma 3.2(i) revisits the tests examined in Theorem 3.3(i) under the additional requirement

that the test focus its power on detecting deviation from P that remain within M (i.e. S̄(P ) ⊆
T̄ (P )⊥ ∩ M̄(P )) rather than arbitrary deviations from P (i.e. S̄(P ) ⊆ T̄ (P )⊥). In order for the

resulting test to be able to detect any local deviation of P that remains within M, Ĝn must be
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chosen so that S̄(P ) = T̄ (P )⊥ ∩ M̄(P ). When T̄ (P )⊥ ∩ M̄(P ) is finite dimensional, Lemma 3.2(ii)

additionally provides a characterization of the optimal specification test in the sense of maximizing

local minimum power against alternatives in M \P that are a “local distance” of κ away from P.

Specifically, the optimal test corresponds to a quadratic form in Ĝn where Ĝn must be chosen so

that it weights every possible local deviation in M \P “equally” – i.e. S(P ) = {sτ : τ ∈ T} should

be an orthonormal basis for T̄ (P )⊥ ∩ M̄(P ).

In parallel to our results in Section 3.3, multiple tests for (19) implicitly possess the structure

of the tests described in Lemma 3.2(i)-(ii); see our GMM discussion below. Lemma 3.2(iii), for

example, shows that a process Ĝn satisfying the conditions of Lemma 3.2(i) may be obtained by

comparing an estimator θ̂n that is efficient under P to an estimator θ̃n that is efficient under

the larger model M. It is again helpful to note that θ̂n and θ̃n can be regular estimators of any

“smooth” function of P ∈ P and need not be of any structural parameter of the model P. The

resulting Hausman type test then satisfies the optimality claim in Lemma 3.2(ii) provided the

influence function of
√
n{θ̂n − θ̃n} spans T̄ (P )⊥ ∩ M̄(P ); see Remark 3.4. Finally, we emphasize,

as in Remark 3.5, that many alternatives to a Hausman type test also satisfy the conditions of

Lemmas 3.2(i)-(ii). In fact, the sieve likelihood ratio test of Shen and Shi (2005) and Chen and Liao

(2014) for semi/nonparametric likelihood models, and the sieve optimally weighed quasi likelihood

ratio test of Chen and Pouzo (2009, 2015) for semi/nonparametric conditional moment restriction

models can be regarded as versions of incremental J tests for (19). These incremental J tests

are also applicable to testing hypotheses on structural parameters of a model M, in which case P

corresponds to the subset of distributions in M that satisfy the conjectured null hypothesis on the

structural parameters.

GMM Illustration (cont.) For P as defined in (6), we now let ρ(x, γ) = (ρ1(x, γ)′, ρ2(x, γ)′)′

where ρj : X×Rdγ → Rdρj with dρ1 ≥ dγ , and let

M ≡
{
P ∈M :

∫
ρ1(·, γ)dP = 0 for some γ ∈ Γ

}
. (23)

Eichenbaum et al. (1988) propose testing P with M as a maintained hypothesis by employing

an incremental J statistic Jn(ρ) − Jn(ρ1), where Jn(ρ) and Jn(ρ1) are the J statistics based on

the moments ρ (for P) and ρ1 (for M) respectively. As in Remark 3.5, it can be shown that for

{pk}
dρ−dγ
k=1 and {mk}

dρ1−dγ
k=1 orthonormal bases for T̄ (P )⊥ and M̄(P )⊥ we have

Jn(ρ)− Jn(ρ1) =

dρ−dγ∑
k=1

(
1√
n

n∑
i=1

pk(Xi)

)2

−
dρ1−dγ∑
k=1

(
1√
n

n∑
i=1

mk(Xi)

)2

+ op(1)

=

dρ2∑
k=1

(
1√
n

n∑
i=1

fk(Xi)

)2

+ op(1) (24)

where the second equality holds for {fk}
dρ2
k=1 an orthonormal basis for T̄ (P )⊥∩M̄(P ) since M̄(P )⊥ ⊆

T̄ (P )⊥. Therefore, an incremental J test corresponds to a special case of the test discussed in

Lemma 3.2(i) for which S̄(P ) = T̄ (P )⊥ ∩ M̄(P ). Moreover, by Lemma 3.2(ii), the resulting test is

locally maximin optimal. Instead of the statistic Jn(ρ)− Jn(ρ1), an alternative approach employs

the ρ1 moments for efficient estimation of γ(P ) (under M) and the remaining ρ2 moments for
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testing; see, e.g., Christiano and Eichenbaum (1992), Hansen and Heckman (1996), and Hansen

(2010). Such a test corresponds to the Hausman type test in Lemma 3.2(iii). Specifically, θ̂n = 0

is an efficient estimator of θ(P ) =
∫
ρ2(·, γ(P ))dP under P, while an efficient estimator θ̃n of θ(P )

under M equals

1

n

n∑
i=1

{ρ2(Xi, γ̂n)− B̂′nρ1(Xi, γ̂n)} (25)

for γ̂n an efficient estimator of γ(P ) using ρ1 moments (under M), and B̂n the OLS coefficients from

regressing {ρ2(Xi, γ̂n)}ni=1 on {ρ1(Xi, γ̂n)}ni=1. By Lemma 3.2(ii), an (orthogonalized) quadratic

form in (25) leads to a locally maximin optimal test that is asymptotically equivalent to (24).

4 General Nonparametric Conditional Moment Models

In this section we apply our previous results to a rich class of models defined by nonparametric

conditional moment restrictions with possibly different conditioning sets and potential endogeneity.

4.1 Models and Characterizations

The data distribution P of X = (Z,W ) ∈ X is assumed to satisfy the following nonparametric

conditional moment restrictions

E[ρj(Z, hP )|Wj ] = 0 for all 1 ≤ j ≤ J for some hP ∈ H, (26)

for some known measurable mappings ρj : Z × H → R, where H is some Banach space (with

norm ‖ · ‖H) of measurable functions of X = (Z,W ). Here Z ∈ Z denotes potentially endogenous

random variables, and W ∈W denotes the union of distinct random elements of the conditioning

variables (or instruments) (W1, . . . ,WJ). Note that there are no restrictions imposed on how the

conditioning variables relate – e.g. Wj and Wj′ may have all, some, or no elements in common,

and some of the Wj could be constants (indicating unconditional moment restrictions).

Model (26) encompasses a very wide array of semiparametric and nonparametric models. It

was first studied in Ai and Chen (2007) for root-n consistent estimation of a particular “smooth”

linear functional of hP when the generalized residual functions ρj are pointwise differentiable (in

hP ) for all j = 1, ..., J . Since Ai and Chen (2007) focused on possibly globally misspecified models,

in that P may fail to satisfy (26), they did not characterize the tangent space.

In this section we characterize the tangent space for model (26) without assuming the differ-

entiability of ρj(Z, ·) : H→ L2(P ) for all j. We assume instead that

mj(Wj , h) ≡ E[ρj(Z, h)|Wj ] (27)

is “smooth” (at hP ) when viewed as a map from H into L2(Wj), where L2(Wj) is the subset of

functions f ∈ L2(P ) depending only on Wj . Specifically, we require Fréchet differentiability of

each mj(Wj , ·) : H → L2(Wj) (at hP ) and denote its derivative by ∇mj(Wj , hP ), which could
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be computed as ∇mj(Wj , hP )[h] ≡ ∂
∂τmj(Wj , hP + τh)|τ=0 for any h ∈ H. Employing these

derivatives, we may then define the linear map ∇m(W,hP ) : H→
⊗J

j=1 L
2(Wj) to be given by

∇m(W,hP )[h] ≡
(
∇m1(W1, hP )[h], . . . ,∇mJ(WJ , hP )[h]

)′
. (28)

Note that
⊗J

j=1 L
2(Wj) is itself a Hilbert space when endowed with an inner product (and induced

norm) equal to 〈f, f̃〉 ≡
∑J

j=1E[fj(Wj)f̃j(Wj)] for any f = (f1, . . . , fJ) and f̃ = (f̃1, . . . , f̃J). The

range space R of the linear map ∇m(W,hP ) is then defined as

R ≡
{
f ∈

J⊗
j=1

L2(Wj) : f = ∇m(W,hP )[h] for some h ∈ H

}
, (29)

and we let R̄ be its closure (in
⊗J

j=1 L
2(Wj)), which is a vector space and plays an important role

in this section. Finally, we set R̄⊥ to be the orthocomplement of R̄ (in
⊗J

j=1 L
2(Wj)).

In order to be explicit about the local perturbations we consider, we next introduce a set of

conditions on the paths t 7→ Pt,g employed to construct the tangent set T (P ).

Condition A. (i) Under X ∼ Pt,g, E[ρj(Z, ht)|Wj ] = 0 for some ht ∈ H and all 1 ≤ j ≤ J ; (ii)

‖t−1(ht − hP ) −∆‖H = o(1) as t ↓ 0 for some ∆ ∈ H; (iii) |ρj(z, ht)| ≤ F (z) for all 1 ≤ j ≤ J

and F ∈ L2(P ) satisfying
∫
F 2dPt,g = O(1) as t ↓ 0.

Thus, a path t 7→ Pt,g satisfies Condition A if whenever X is distributed according to Pt,g, the

conditional moment restrictions in (26) hold for some ht ∈ H and the map t 7→ ht is “smooth”

in t. These requirements are satisfied, for instance, by the paths considered in semiparametric

efficiency calculations, in which distributions are parametrized by ht and a complementary infinite

dimensional parameter describing aspects of the distribution not characterized by ht; see, e.g.,

Begun et al. (1983), Hansen (1985), Chamberlain (1986, 1992), Newey (1990), and Ai and Chen

(2012). We also introduce a vector space V given by

V ≡
{
g =

J∑
j=1

ρj(Z, hP )ψj(Wj) : (ψ1, . . . , ψJ) ∈
J⊗
j=1

L2(Wj)

}
, (30)

which is a subset of L2
0(P ) provided P satisfies (26) and E[{ρj(Z, hP )}2|Wj ] is bounded P -a.s. for

1 ≤ j ≤ J . Let V̄ be the closure of V, and V̄⊥ be the orthocomplement of V̄ (in L2
0(P )).

Finally, we impose the following regularity conditions on the distribution P .

Assumption 4.1. (i) P satisfies model (26); (ii) mj(Wj , ·) : H→ L2(Wj) is Fréchet differentiable

at hP for 1 ≤ j ≤ J ; (iii) ρj(Z, ·) : H→ L2(P ) is continuous at hP for 1 ≤ j ≤ J ; (iv) There is a

D ⊆ H such that lin{D} = H and for every h ∈ D there is a t 7→ Pt,g satisfying Condition A with

∆ = h; (v) V⊥ has a dense subset of bounded functions.

Assumption 4.2. (i)
∑J

j=1E[ρ2
j (Z, hP )|Wj ] is bounded P -a.s.; (ii) There is C0 < ∞ such that∑J

j=1 ‖ψj‖P,2 ≤ C0‖
∑J

j=1 ρj(·, hP )ψj‖P,2 for all (ψ1, . . . , ψJ) ∈
⊗J

j=1 L
2(Wj).

Assumptions 4.1(i)(ii)(iii) and 4.2(i) are standard. Assumptions 4.1(iv)(v) and 4.2(ii) are suf-

ficient conditions for the simple characterization of the tangent space obtained in Theorem 4.1
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below. Assumption 4.1(iv) assumes that H is the local parameter space for hP , while Assumption

4.1(v) assumes that any function g ∈ V⊥ can be approximated by sequences of bounded functions

in V⊥ – low level sufficient conditions for this requirement are often readily available in specific

applications. Assumption 4.2(ii) imposes a linear independence restriction on {ρj(Z, hP )}Jj=1.

Our next result provides a simple characterization for local overidentification.

Theorem 4.1. Let P satisfy Assumptions 4.1 and 4.2. Then: T̄ (P )⊥ satisfies

T̄ (P )⊥ =

{
g ∈ L2

0(P ) : g =
J∑
j=1

ρj(Z, hP )ψj(Wj) for some (ψ1, . . . , ψJ) ∈ R̄⊥
}
,

and moreover T̄ (P )⊥ = {0} if and only if R̄ =
⊗J

j=1 L
2(Wj).

In view of Lemma 2.1, Theorem 4.1 implies that P is locally just identified by a regular model

(26) if and only if R̄ =
⊗J

j=1 L
2(Wj). Theorem 4.1 also has a useful dual representation.

Lemma 4.1. Let Assumption 4.1(ii) hold. Let H∗ be the dual space of a Banach space H, and

∇mj(Wj , hP )∗ : L2(Wj) → H∗ be the adjoint of ∇mj(Wj , hP ) : H → L2(Wj) for j = 1, ..., J .

Then: R̄ =
⊗J

j=1 L
2(Wj) if and only if

{
f = (f1, . . . , fJ) ∈

J⊗
j=1

L2(Wj) :
J∑
j=1

∇mj(Wj , hP )∗[fj ] = 0

}
=
{

0
}
.

Theorem 4.1 and Lemma 4.1 together imply that P is locally just identified by model (26)

if and only if the adjoint operator ∇m(W,hP )∗ :
⊗J

j=1 L
2(Wj) → H∗ is injective. Interestingly,

this resembles a necessary condition, the injectivity of ∇m(W,hP ) : H →
⊗J

j=1 L
2(Wj), for local

identification of the unknown function hP by model (26) in Chen et al. (2014) – when (26) is linear

in hP this condition is also sufficient (Newey and Powell, 2003).

4.1.1 Sequential moment restrictions

While the proof of Theorem 4.1 directly computes T̄ (P )⊥, we note that in special cases of model

(26) for which semiparametric efficiency bounds are known, one could also employ Corollary 3.1 to

characterize local just identification. We next follow such an approach by employing the efficiency

bound results in Ai and Chen (2012) to characterize the local just identification of P by models

defined by sequential moment restrictions.

The data distribution P of X = (Z,W ) ∈ X is now assumed to satisfy the following nonpara-

metric sequential moment restrictions

model (26) holds with σ({Wj}) ⊆ σ({Wj′}) for all 1 ≤ j ≤ j′ ≤ J, (31)

where σ({Wj}) denotes the σ-field generated by Wj for j = 1, ..., J . Note now W = WJ , which is

assumed to be a non-degenerate random variable.
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We will restrict attention to distributions P for which the conditional moments in (31) are

suitably linearly independent. To this end, we define

s2
j (WJ) ≡ inf

{ak}Jk=j+1

E[{ρj(Z, hP )−
J∑

k=j+1

akρk(Z, hP )}2|WJ ] for j = 1, ..., J − 1, (32)

and s2
J(WJ) ≡ E[{ρJ(Z, hP )}2|WJ ]. Since WJ is the most informative conditioning variable, we

may interpret s2
j (WJ) as the residual variance obtained by projecting ρj(Z, hP ) on {ρj′(Z, hP )}j′>j

conditionally on all instruments.

The following assumption imposes the basic condition on the distribution P .

Assumption 4.3. (i) P satisfies (31); (ii) Assumption 4.1(ii) holds; (iii) maxj E[{ρj(Z, h)}2] <

∞ for any h ∈ H (a Banach space); (iv) P (η ≤ E[s2
j (WJ)|Wj ]) = 1 for some η > 0 and all

1 ≤ j ≤ J ; (v) P (|E[ρk(Z, hP )ρj(Z, hP )|Wj ]| ≤ M) = 1 for some M <∞ and all 1 ≤ k ≤ j ≤ J ;

(vi) L2(WJ) is infinite dimensional.

Assumptions 4.3(i)(ii)(iii) are standard. Assumption 4.3(iv) restricts the conditional depen-

dence across moments, while Assumption 4.3(v) imposes an almost sure upper bound in the condi-

tional covariance across residuals. When the same instrument is used in all conditioning equations,

so that Wj = WJ for all j, Assumptions 4.3(iv)(v) are equivalent to the covariance matrix of

the residuals conditional on WJ being nonsingular and finite uniformly in the support of WJ .

Finally, Assumption 4.3(vi) ensures that model (31) implies an infinite number of unconditional

moment restrictions. If L2(WJ) is finite dimensional, then model (31) consists of a finite number

of unconditional moment restrictions thus reducing to the well understood GMM setting.

Theorem 4.2. Let Assumption 4.3 hold. Then: P is locally just identified by model (31) if and

only if R̄ =
⊗J

j=1 L
2(Wj).

It is interesting that the characterization of local just identification in nonparametric sequential

moment restrictions (31) coincides with that for the more general model (26) derived in Theorem

4.1. Nevertheless, the additional structure afforded by sequential moment restrictions does allow

for the semiparametric efficiency bound calculation in Ai and Chen (2012) and enables us to obtain

the local just identification characterization under lower level conditions.

4.1.2 Models with triangular structures

Numerous nonparametric structural models possess a triangular structure in which the (condi-

tional) moment restrictions depend on a non-decreasing subset of the parameters; see examples in

Subsection 4.2. Lemma 4.2 below focuses on such a setting by assuming the parameter space takes

the form H =
⊗J

j=1 Hj and imposing that the moment conditions can be ordered in a manner such

that the k-th moment condition depends only on the subset
⊗k

j=1 Hj of the parameter space. In the

Lemma we let ∇mj,j(Wj , hP )∗ : L2(Wj) → H∗j be the adjoint of ∇mj,j(Wj , hP ) : Hj → L2(Wj),

and R̄j be the closure of Rj (in L2(Wj)), where Rj is given by

Rj ≡
{
f ∈ L2(Wj) : f = ∇mj,j(Wj , hP )[hj ] for hj ∈ Hj

}
.
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Lemma 4.2. Let Assumption 4.1(ii) hold, and H =
⊗J

j=1 Hj with Hj being Banach spaces for

all j. Suppose there are linear maps ∇mj,k(Wj , hP ) : Hk → L2(Wj) such that

∇mj(Wj , hP )[h] =

J∑
k=1

∇mj,k(Wj , hP )[hk] for any h = (h1, . . . , hJ) ∈
J⊗
j=1

Hj , (33)

where ∇mj,k(Wj , hP )[hk] = 0 for all k > j, and there is 0 ≤ C <∞ such that

‖∇mj,k(·, hP )[hk]‖P,2 ≤ C‖∇mk,k(·, hP )[hk]‖P,2 for all k ≤ j. (34)

Then: R̄ =
⊗J

j=1 L
2(Wj) if and only if R̄j = L2(Wj) for all j, which also holds if and only if{

f ∈ L2(Wj) : ∇mj,j(Wj , hP )∗[f ] = 0
}

=
{

0
}

for all j.

Lemma 4.2 implies that, under the stated requirements on the partial derivative maps, one

may assess whether P is locally overidentified by examining each (conditional) moment restriction

separately. This lemma simplifies the verification of local just identification in many nonparametric

models. For example, it is directly applicable to the following class of models

E[ρj(Z, hP,j)|Wj ] = 0 for some hP,j ∈ Hj for all 1 ≤ j ≤ J (35)

where hP = (hP,1, . . . , hP,J) ∈ H =
⊗J

j=1 Hj , and the unknown functions hP,j ∈ Hj could depend

on the endogenous variables Z. Our final result applies Lemma 4.2 to special cases of model (35)

in which Hj contains functions of conditioning variables Wj only; i.e.,

E[ρj(Z, hP,j(Wj))|Wj ] = 0 for some hP,j ∈ Hj ⊆ L2(Wj) for all 1 ≤ j ≤ J. (36)

Corollary 4.1. Let P satisfy model (36) with hP = (hP,1, . . . , hP,J) ∈ H =
⊗J

j=1 Hj and As-

sumption 4.1(ii) hold. Suppose for each 1 ≤ j ≤ J , there is dj ∈ L2(Wj) that is bounded P -a.s.

and ∇mj(Wj , hP )[h] = dj(Wj)hj(Wj) for any h = (h1, . . . , hJ) ∈ H. Then: R̄ =
⊗J

j=1 L
2(Wj) if

and only if for all 1 ≤ j ≤ J , Hj is dense in L2(Wj) and P (dj(Wj) 6= 0) = 1.

Corollary 4.1 reduces assessing local just identification of P by model (36) to examining two

simple conditions for all j = 1, ..., J : (i) Hj must be sufficiently “rich” (Hj is dense in L2(Wj)),

and (ii) The derivative of the moment restrictions must be injective (dj(Wj) 6= 0 P -a.s.). It

immediately implies, for example, that nonparametric conditional mean and quantile regression

models are locally just identified,5 and that restricting the parameter space to the space of bounded

or differentiable functions is not sufficient for yielding local overidentification as Hj remains dense in

L2(Wj). On the other hand, Corollary 4.1 does imply that P will be locally overidentified by model

(36) as soon as there is one j such that Hj is not a dense subset of (L2(Wj), ‖ · ‖P,2). Examples in

which Hj is not dense include, among others, the partially linear or additively separable conditional

mean specifications of Robinson (1988) and Stone (1985).

Remark 4.1. Semiparametric two-step GMM models are widely used in applied work. Building

on the insights of Newey (1994) and Newey and Powell (1999), Ackerberg et al. (2014) show that

5For Z = (Y,W ) with Y ∈ R note that a mean regression model corresponds to ρ1(Z, h) = Y − h(W ) so
that d1(W ) = −1. Instead, in a quantile regression model ρ1(Z, h) = τ − 1{Y ≤ h(W )}, in which case d1(W ) =
−gY |W (hP (W )|W ) for gY |W (y|w) the conditional density of Y given W .
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when the unknown function hP = (hP,1, . . . , hP,J) is “exactly identified” by model (36) in the

first stage, the second stage optimally weighted GMM estimator of γP identified by unconditional

moment restriction E[g(X, γP , hP )] = 0 is semiparametrically efficient. Our Corollary 4.1 shows

that their requirement of nonparametric “exact identification” of hP is equivalent to our P being

locally just identified by model (36) in the first stage. Our Theorem 4.1, Lemmas 4.1 and 4.2 fur-

ther imply, however, that the second stage optimally weighted GMM estimator may be inefficient

when P is locally overidentified by model (26) in the first stage, such as in the various semipara-

metric conditional moment restriction models of Ai and Chen (2003, 2012). See Subsection 4.2 for

examples of P being locally overidentified by nonparametric models.

4.2 Illustrative Examples

This section presents three empirically relevant examples to illustrate the implications of our results;

see the Online Appendix for additional results and discussion.

Example 4.1. (Differentiated Products Markets) An extensive literature has studied identi-

fication of demand and cost functions in differentiated product markets, including the seminal work

of Berry et al. (1995). Here, we follow Berry and Haile (2014) who derive multiple identification

results by relying on moment restrictions of the form

E[Yij − hj,P (Vi)|Wij ] = 0 for 1 ≤ j ≤ J (37)

where 1 ≤ i ≤ n denotes a market and 1 ≤ j ≤ J a good. For instance, in their analysis of demand,

hj,P corresponds to the inverse demand function for good j, Vi denotes market shares and prices in

market i, Yij is a “demand shifter”, and Wij is a vector of price instruments and product/market

characteristics for good j. Letting hj,P ∈ Hj ⊆ L2(V ) for all j, and hP = (h1,P , . . . , hJ,P ) ∈ H =⊗J
j=1 Hj , we then note that this model is a special case of model (35). We may therefore apply

Lemma 4.2, and to this end we observe that for any h = (h1, . . . , hJ) ∈ H we have

∇mj(W,hP )[h] = −E[hj(V )|Wj ], (38)

let H̄j be the closure of Hj under ‖ · ‖P,2, and for any f ∈ L2(Wj) we define

ΠH̄j
f ≡ arg min

hj∈H̄j

‖(−f)− hj‖P,2. (39)

The map ΠH̄j
: L2(Wj)→ H̄j is the adjoint of (38), and Lemma 4.2 implies that P is locally just

identified if and only if

{f ∈ L2(Wj) : ΠH̄j
f = 0} = {0} for all 1 ≤ j ≤ J. (40)

For instance, if H̄j = L2(V ), then (40) is equivalent to the distribution of (V,Wj) being L2-

complete with respect to V for all j (Newey and Powell, 2003), which is an untestable condition

under endogeneity (Andrews, 2017; Canay et al., 2013).6 Hence, plug-in estimation of average

6Since there are examples of distributions for which L2-completeness fails (Santos, 2012), the model may be locally
overidentified even when V and Wj are of equal dimension.
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derivatives may not be efficient when L2-completeness fails (Ai and Chen, 2012). Finally, we note

that the structure in model (37) is also present in a large literature on consumer demand; see, for

example, Blundell et al. (1998, 2003, 2007). Semiparametric restrictions that are consistent with

agents’ optimization behaviors, however, can render P locally overidentified (Blundell et al., 2007;

Chen and Pouzo, 2009).

Example 4.2. (Nonparametric Selection) This example concerns nonparametric versions of

the canonical selection model of Heckman (1979) as studied in, e.g., Heckman (1990). Suppose

that for each individual i, there are latent variables (Y ∗0,i, Y
∗

1,i) satisfying

Y ∗d,i = gd,P (Vi) + Ud,i (41)

where d ∈ {0, 1}, Vi is a set of regressors, and gd,P are unknown functions. Instead of (Y ∗0,i, Y
∗

1,i),

we observe Yi = Y ∗0,i +Di(Y
∗

1,i− Y ∗0,i) where Di ∈ {0, 1} indicates selection into “treatment”. As in

Heckman and Vytlacil (2005), we assume there exists a variable Ri excluded from gd,P and impose

the index sufficiency requirement

E[Ud,i|Vi, Ri, Di = d] = λd,P (P (Di = 1|Vi, Ri)) (42)

for unknown functions λd,P . Assuming E[Ud,i|Vi] = 0 for d ∈ {0, 1}, we can then employ equations

(41) and (42) to obtain the system of conditional moment restrictions

E[Di − sP (Vi, Ri)|Vi, Ri] = 0 (43)

E[Yi − gd,P (Vi)− λd,P (sP (Vi, Ri))|Vi, Ri, Di = d] = 0, (44)

which can be used to identify the conditional average treatment effect g1,P (Vi) − g0,P (Vi); see

also Newey et al. (1999) and Das et al. (2003) for related models. Hence, in this context J = 2,

hP = (g0,P , g1,P , λ0,P , λ1,P , sP ), Wi1 = (Vi, Ri), and Wi2 = (Vi, Ri, Di).

We examine a general nonparametric version of this model by only requiring gd,P ∈ L2(V ) and

λd,P be continuously differentiable for d ∈ {0, 1}. For any (g0, g1, λ0, λ1, s) ∈ H, restrictions (43)

and (44) then possess a sequential moment structure which simplifies applying Theorems 4.1 or

4.2. In particular, Lemma 4.2 implies P is locally just identified if and only if

Sd ≡ {f ∈ L2((V,R)) : f(V,R) = gd(V ) + λd(sP (V,R)) for some gd, λd} (45)

is dense in L2(V,R) for d ∈ {0, 1}. However, identification of the functions gd,P and λd,P requires

P (Var{sP (V,R)|V } > 0) > 0, (46)

i.e. the instrument R must be relevant. When (46) holds, Sd is not dense in L2(V,R). Thus,

the conditions for the identification of (gd,P , λd,P ) imply that P is locally overidentified by the

model. Hence, the model is testable and efficiency considerations matter when estimating smooth

parameters such as the average treatment effects.

Example 4.3. (Nonparametric Production) This example closely follows the firm’s produc-

tion structural models proposed by Olley and Pakes (1996), Ackerberg et al. (2015) and others.
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Econometricians observe a random sample {Xi}ni=1 of a panel of firms i = 1, ..., n from the distri-

bution of X = {Yt,Kt, Lt, It}Tt=1 for a fixed finite T ≥ 2, where Yt,Kt, Lt, It respectively denotes a

firm’s log output, capital, labor, and investment levels at time t. Suppose that

Yit = gP (Kit, Lit) + ωit + Uit E[Uit|Kit, Lit, Iit] = 0, (47)

where gP is an unknown function, and ωit is a productivity factor observed by the firm but not

the econometrician. Olley and Pakes (1996) provides conditions under which the firm’s dynamic

optimization problem implies, for some unknown function λP , that

ωit = λP (Kit, Iit). (48)

Let W = (K1, L1, I1), and for simplicity let T = 2 and ωit follow an AR(1) process. The literature

has employed (47) and (48) to derive the semiparametric conditional moment restrictions

E[Y1 − gP (K1, L1)− λP (K1, I1)|W ] = 0 (49)

E[Y2 − gP (K2, L2)− πPλP (K1, I1)|W ] = 0 (50)

where πP is the coefficient in the AR(1) process for ωit. This model contains multiple overiden-

tifying restrictions that are easily characterized through Theorem 4.1. Specifically, note hP =

(gP , λP , πP ) and for any h = (g, λ, π) we have

∇m1(W,hP )[h] = −g(K1, L1)− λ(K1, I1) (51)

∇m2(W,hP )[h] = −E[g(K2, L2)|W ]− πPλ(K1, I1)− πλP (K1, I1). (52)

By Theorem 4.1 a necessary condition for local just identification is for the closure of the range of

(51) to equal L2(W ). However, this requirement fails since (51) cannot approximate nonseparable

functions f ∈ L2((L1, I1)) – a failure reflecting the assumption that labor is not a dynamic variable.

Consequently, sequential estimation of average output elasticities, as in Olley and Pakes (1996),

can be inefficient. Similarly, we note

∇m2(W,hP )[h]− πP∇m1(W,hP )[h] = πP g(K1, L1)− E[g(K2, L2)|W ]− πλP (K1, I1), (53)

and local just identification requires the closure of the range of (53) to equal L2(W ). However,

such a condition can fail reflecting the empirical content of assuming constancy of gP through time

and additive separability of ωit. As in Section 3.4, the power of specification tests can be directed

at violations of these assumptions.

4.3 Numerical Illustration

We provide a brief numerical illustration based on Example 4.3. As a design, we let gP be a

Cobb-Douglas production function and for simplicity suppose

Kit+1 = 0.9Kit + Iit Iit = exp{−0.1× log(Kit) + ωit}, (54)
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where ωit follows an AR(1) process with coefficient πP = 0.5 and normally distributed innovations

with variance (0.3)2. The variables Uit in (47) are drawn from a normal distribution with mean zero

and variance (0.1)2, and we assume the firm sets Lit to maximize expected (over Uit) profits when

facing wages Vit with log(Vit) ∼ N(0, (0.3)2). Our sample is generated by selecting two observations

after a “burn in” period of a thousand time periods for each firm. The results reported below are

based on one thousand replications of samples of five thousand observations each.

Since we impose a Cobb-Douglas specification, the moment restrictions become

E[Yi1 − αP log(Ki1)− βP log(Li1)− λP (Ki1, Ii1)|Wi] = 0 (55)

E[Yi2 − αP log(Ki2)− βP log(Li2)− πPλP (Ki1, Ii1)|Wi] = 0 (56)

and we let P denote the set of distributions for which (55) and (56) hold for some (αP , βP , πP , λP ).

Following Section 3.4, we conduct a specification test that aims its power at deviations from P for

which labor is a dynamic variable and thus affects investment decisions. While it is possible to

construct tests against any such deviations, for illustrative purposes it is convenient to focus on

deviations satisfying for some unknown γP ∈ R and unknown function ΦP : R2 7→ R,

Iit = ΦP (ωit − γP log(Lit),Kit), (57)

and we let M denote such set of distributions. Importantly, we note the tangent spaces of P

relative to P and M differ by one dimension (i.e., T̄ (P )⊥ ∩ M̄(P ) has dimension one).

Table 1: Performance of Estimators

Mean N×Variance
Parameter Value P-Efficient M-Efficient P-Efficient M-Efficient

π 0.5 0.500 0.499 0.854 0.887
α 0.7 0.698 0.698 0.094 0.177
β 0.3 0.307 0.306 0.071 2.115

We estimate (αP , βP , πP ) efficiently under P and M employing the estimator in Ai and Chen

(2003).7 Table 1 reports the performance of such estimators and we see, in accord with the theory,

that local overidentification of P makes efficiency considerations relevant. Since T̄ (P )⊥∩M̄(P ) has

dimension one, Lemma 3.2(ii) implies the influence function of the difference between estimators

that are efficient under P and estimators that are efficient under M does not depend (up to scale) on

the parameter being estimated. Indeed, letting (α̂P, β̂P) and (α̂M, β̂M) denote efficient estimators

under P and M, we find the correlation between {β̂P − β̂M} and {α̂P − α̂M} to be −0.998.

The fact that the dimension of T̄ (P )⊥ ∩ M̄(P ) equals one, further implies that all specification

tests that direct power at this subspace possess the same local power function. In order to examine

this prediction, we consider alternatives for which (57) holds with ΦP (a, b) = exp{a− 0.1 log(b)}.
Table 2 reports the power curves for Hausman tests based on estimates of α and of β that direct

7In the implementation, we employ a sieve for λP consisting of five terms and built using BSplines of order two.
The conditional expectations are estimated via series using nine terms consisting of BSplines of order two and the
cross products log(Li1) log(Ki1) and log(Li1) log(II1).
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Table 2: Power Functions of Specification Tests

Value of Deviation γ
Test -0.12 -0.09 -0.06 -0.03 0.000 0.03 0.06 0.09 0.12

HT α 0.999 0.994 0.830 0.256 0.042 0.270 0.734 0.955 0.999
HT β 1.000 0.994 0.832 0.262 0.044 0.285 0.738 0.956 0.999
QLR 1.000 0.987 0.752 0.190 0.045 0.306 0.755 0.961 0.998

their power at T̄ (P )⊥ ∩ M̄(P ). We also employ the sieve quasi likelihood ratio test in Chen and

Pouzo (2015) to test whether γ = 0 in (57), which also directs its power at T̄ (P )⊥ ∩ M̄(P ). We

find similar power curves, with the different Hausman tests having virtually identical power.

5 Extension to T (P ) Being a Convex Cone

Our main theoretical results in Section 3 rely on the requirement that the tangent set T (P ) be

linear. In this Section, we examine to what extent our main conclusions apply to models in which

T (P ) is a convex cone – a setting that can arise, for example, in mixture models (van der Vaart,

1989) and models where a parameter is on a boundary (Andrews, 1999). To this end, we replace

Assumption 2.1 with the following weaker condition:

Assumption 5.1. (i) Assumption 2.1(i) holds; (ii) The tangent set T (P ) is a convex cone – i.e.

if g, f ∈ T (P ), a, b ∈ R with a ≥ 0 and b ≥ 0, then ag + bf ∈ T (P ).

We let T̄ (P ) still denote the closure of T (P ) under ‖·‖P,2 and maintain Definition 2.2. Crucially,

Assumption 5.1(ii) implies T̄ (P ) is a closed convex cone but not necessarily a closed linear subspace

of L2
0(P ) as in regular models. Thus, the alternative characterization of local overidentification in

terms of the orthogonal complement of T̄ (P ) is no longer valid (see Lemma 2.1). However, for any

closed convex cone T̄ (P ) in L2
0(P ), we may define its polar cone, denoted T̄ (P )−, which is given

by

T̄ (P )− ≡
{
g ∈ L2

0(P ) :

∫
gfdP ≤ 0 for all f ∈ T̄ (P )

}
. (58)

Let ΠT (g) and ΠT−(g) denote the metric projections of a g ∈ L2
0(P ) onto T̄ (P ) and T̄ (P )−

respectively. For any g ∈ L2
0(P ), the so called “Moreau decomposition” (Moreau, 1962) implies

g = ΠT (g) + ΠT−(g),

∫
{ΠT (g)}{ΠT−(g)}dP = 0. (59)

Unlike the setting in which T̄ (P ) is a linear subspace, however, there may in fact exist f ∈ T̄ (P )

and g ∈ T̄ (P )− such that
∫
fgdP < 0. Nevertheless, the decomposition in (59) immediately implies

the following direct generalization of Lemma 2.1.

Lemma 5.1. Under Assumption 5.1, the following are equivalent to Definition 2.2:

(i) P is locally just identified by P if and only if T̄ (P )− = {0}.

(ii) P is locally overidentified by P if and only if T̄ (P )− 6= {0}.
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By definition it is clear that Theorem 3.1 remains valid for the case that P is locally just

identified by P (i.e.,T̄ (P ) = L2
0(P )). Given Lemma 5.1, it should also be possible to establish results

similar to Theorem 3.2 for the locally overidentified case. That is, if P is locally overidentified by

P, then the model should be locally testable and “efficiency” should “matter” even when T (P )

is a convex cone. To gain some intuition, we can again rely on the sample means of scores 0 6=
f̃ ∈ L2

0(P ). Recall that if Xi ∼ P1/
√
n,g for any path t 7→ Pt,g ∈ M, then Gn(f̃) ≡ 1√

n

∑n
i=1 f̃(Xi)

is asymptotically normally distributed with mean
∫
f̃gdP (see equation (12)). By Lemma 5.1, P

being locally overidentified by P is equivalent to the existence of a 0 6= f̃ ∈ T̄ (P )−. For any such

f̃ , it follows that
∫
f̃gdP ≤ 0 for all g ∈ T̄ (P ). Thus, for the purposes of specification testing,

observing a large and positive value for Gn(f̃) may be viewed as a “signal” that the distribution of

Xi ∼ P1/
√
n,g is approaching P from outside the model P. On the other hand, from an estimation

perspective, we should be able to employ the knowledge that
∫
f̃gdP ≤ 0 for all g ∈ T̄ (P ) to

improve on “inefficient” estimators.

The potential lack of orthogonality between T̄ (P ) and T̄ (P )−, however, presents some impor-

tant complications. For instance, it is no longer natural to restrict attention to regular estimators.

We instead focus on a broader class of estimators for parameter θ(P ) ∈ B satisfying

√
n{θ̂n − θ(P1/

√
n,g)}

Ln,g→ Zg (60)

for some tight random variable Zg ∈ B along any path t 7→ Pt,g ∈ P. Note that in contrast to

regular estimators, the limit Zg may depend on g. Focusing on estimators satisfying (60) enables

us to easily characterize the local asymptotic risk along any path t 7→ Pt,g ∈ P. Concretely, for a

loss function Ψ : B→ R+, the local asymptotic risk of θ̂n is given by

lim sup
n→∞

EP1/
√
n,g

[
Ψ
(√
n{θ̂n − θ(P1/

√
n,g)}

)]
, (61)

which represents the expected loss of employing θ̂n to estimate θ(P ) when the data generating

process is locally perturbed within P. For simplicity we consider Ψ− loss functions, defined as

Definition 5.1. Ψ-loss is a map from B to R+ such that: (i) {b ∈ B : Ψ(b) ≤ t} is convex for all

t ∈ R; (ii) Ψ(0) = 0 and Ψ(b) = Ψ(−b); (iii) Ψ is bounded, continuous, and nonconstant.

A minimal requirement on an estimator is that its local asymptotic risk not be dominated

by that of an alternative estimator – i.e. a sensible estimator should be “asymptotically locally

admissible”.

Definition 5.2. θ̂n : {Xi}ni=1 → B is “asymptotically locally admissible” for θ(P ) under Ψ-loss if

it satisfies (60) and there is no estimator θ̃n : {Xi}ni=1 → B satisfying (60) and

lim sup
n→∞

EP1/
√
n,g

[
Ψ
(√
n{θ̃n − θ(P1/

√
n,g)}

)]
≤ lim sup

n→∞
EP1/

√
n,g

[
Ψ
(√
n{θ̂n − θ(P1/

√
n,g)}

)]
for all paths t 7→ Pt,g ∈ P, and with the inequality holding strictly for some path t 7→ Pt,g ∈ P.

Given the introduced concepts, we can document an equivalence result between the local overi-

dentification of P , the importance of “efficiency” in estimation, and the potential refutability of a

model.
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Theorem 5.1. Let Assumption 5.1 hold. Then the following statements are equivalent:

(i) P is locally overidentified by P.

(ii) There exists a bounded function f : X→ R such that
∑n

i=1 f(Xi)/n is not an asymptotically

locally admissible estimator for θ(P ) =
∫
fdP under any Ψ-loss.

(iii) There exists a local asymptotic level α test φn for (9) with a local asymptotic power function

π satisfying π(g) > α for some path t 7→ Pt,g ∈M \P.

Theorem 3.2 and Theorem 5.1 reflect both the similarities and the differences between regular

and non-regular models. With regards to estimation, for example, Theorems 3.2(i)(ii) and 5.1(i)(ii)

both show that local overidentification of P is equivalent to the availability of “efficiency” gains in

estimation. However, since in non-regular models we need to consider a broader class of estimators

than just regular estimators, Theorem 5.1(i)(ii) links the availability of “efficiency” gains to the

local overidentification of P through the estimation of simple “smooth” maps θ(P ) =
∫
fdP

(population means) for bounded functions f . In particular, while sample means are always locally

admissible when P is locally just identified (see Lemma C.1 in Appendix C), Theorem 5.1(ii) shows

this fails to be the case when P is locally overidentified.

With regards to specification testing, Theorem 3.2(i)(iii) and Theorem 5.1(i)(iii) both show

that local overidentification of P is equivalent to the potential refutability of the model. However,

important differences also exist in the properties of local specification tests for regular and non-

regular models. Notably, our next result shows that for any non-regular model whose convex cone

T̄ (P ) contains at least two linearly independent elements, any asymptotically locally unbiased

specification test for (9) will have local power no larger than its level against any alternative.

Theorem 5.2. Let Assumption 5.1 hold and there be linearly independent f1, f2 ∈ T̄ (P )− with

λf1, λf2 ∈ T̄ (P ) for any λ ≤ 0. Let φn be any specification test for (9) with a local asymptotic

power function π such that π(g) ≤ α for all g ∈ T̄ (P ) and π(g) ≥ α for all g /∈ T̄ (P ). Then:

π(g) = α for any path t 7→ Pt,g ∈M \P with λΠT−(g) ∈ T̄ (P ) for any λ ≤ 0.

Given Theorem 5.1(iii), Theorem 5.2 does not preclude the existence of asymptotically nontriv-

ial specification tests, but rather implies such tests can necessarily be asymptotically locally biased

for non-regular models. We next examine in more detail the construction of both such specification

tests and of “better” estimators than the sample mean. To this end, we impose the following:

Assumption 5.2. For some set T there is a statistic Ĝn : {Xi}ni=1 → `∞(T) satisfying:

(i) Ĝn(τ) = 1√
n

∑n
i=1 sτ (Xi) + op(1) uniformly in τ ∈ T, where 0 6= sτ ∈ T̄ (P )− for all τ ∈ T;

(ii) Assumption 3.1(ii) holds.

Assumption 5.2(i) is identical to Assumption 3.1(i) except that sτ is required to belong to

T̄ (P )− instead of T̄ (P )⊥. As in Theorem 3.3(i), Ĝn can be employed to construct a specification

test for (9). For any 0 ≤ ω ∈ `∞(T), we define Ĝω
n(τ) ≡ ω(τ)× Ĝn(τ) and Gω

0 (τ) ≡ ω(τ)×G0(τ)

for τ ∈ T. Let cω1−α be the 1− α quantile of ‖max{Gω
0 , 0}‖∞. We then define the test

φωn ≡ 1{‖max{Ĝω
n , 0}‖∞ > cω1−α}. (62)
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Intuitively, 0 ≤ ω ∈ `∞(T) is a weight function that determines the local alternatives against which

φωn has nontrivial power. In parallel to Theorem 3.3(i), the power properties of φωn also depend

on the set C(P ) ≡ {sτ ∈ T̄ (P )− : τ ∈ T} being sufficiently “rich”. Let C̄(P ) denote the closed

convex cone generated by C(P ) (in L2
0(P )) – i.e. C̄(P ) parallels S̄(P ) in Theorem 3.3(i). For any

g ∈ L2
0(P ) we let ΠC(g) denote the metric projection of g onto C̄(P ).

Our next result shows that for any path t 7→ Pt,g ∈M with ΠC(g) 6= 0 it is possible to select an

ω? ∈ `∞(T) such that the corresponding specification test φω
?

n has nontrivial local power against

that alternative. Given Theorem 5.2, φω
?

n can be asymptotically locally biased, however.

Theorem 5.3. Let Assumptions 5.1, 5.2 hold, and 0 ≤ ω ∈ `∞(T) satisfy cω1−α > 0. Then: φωn is

a local asymptotic level α test for (9) with a local asymptotic power function. Moreover, for any

t 7→ Pt,g ∈M with ΠC(g) 6= 0 there is 0 ≤ ω? ∈ `∞(T) with cω
?

1−α > 0 for α ∈ (0, 1
2), and

lim
n→∞

P1/
√
n,g

(
‖max{Ĝω?

n , 0}‖∞ > cω
?

1−α
)
> α. (63)

Turning to estimation, we note that when restricting attention to paths t 7→ Pt,g ∈ P, knowledge

that
∫
sτgdP ≤ 0 should be useful. Specifically, for any bounded function f : X→ R, we define

µ̂n(f, τ) ≡ 1

n

n∑
i=1

f(Xi)− β(f, τ)× n−1/2 max{Ĝn(τ), 0} (64)

for β(f, τ) ≡ max{
∫
fsτdP, 0}/‖sτ‖2P,2. The function β(f, τ)sτ is the projection of f onto the cone

generated by sτ ∈ T̄ (P )− in L2
0(P ). Our final Theorem shows that when P is locally overidentified,

µ̂n(f, τ) can be viewed as a more “efficient” estimator for θ(P ) =
∫
fdP than the sample mean. It

is analogous to Lemma 3.1(i).

Theorem 5.4. Let Assumptions 5.1 and 5.2 hold. Then: for any bounded f : X → R satisfying∫
fsτ?dP > 0 for some τ? ∈ T, we have: µ̂n(f, τ?) defined in (64) satisfies (60) and

lim sup
n→∞

EP1/
√
n,g

[
Ψ
(√
n{µ̂n(f, τ?)−

∫
fdP1/

√
n,g}

)]
< lim sup

n→∞
EP1/

√
n,g

[
Ψ
( 1√

n

n∑
i=1

{f(Xi)−
∫
fdP1/

√
n,g}

)]
(65)

for any path t 7→ Pt,g ∈ P and any Ψ-loss.

Thus, when P is locally overidentified, there is information in the model that can be employed

to both render the model testable (Theorem 5.3) and to obtain “efficiency” gains (Theorem 5.4). As

a result, the local testability of a model and “efficiency” considerations remain intrinsically linked

to P being locally overidentified when T̄ (P ) is a convex cone. We emphasize that many important

issues, such as optimality in estimation and specification testing, and analog of incremental J test

for (19), remain open when T̄ (P ) is a convex cone. We leave these questions for future research.
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6 Conclusion

This paper reinterprets the common practice of counting the numbers of restrictions and parame-

ters of interest in GMM to determine overidentification as an approach that examines whether the

tangent space is a strict subset of L2
0(P ). This abstraction naturally leads to a notion of local overi-

dentification, which we show is responsible for an intrinsic link between efficiency considerations

in estimation and the local testability of a model. While we have relied on an i.i.d. assumption

for simplicity, there are ample works deriving efficiency bounds in time series settings (Hansen,

1985, 1993) and characterizing limit experiments under nonstationary, strongly dependent data

(Ploberger and Phillips, 2012). We conjecture the results in this paper could similarly be extended

to allow for dependence, but leave such extensions for future work.
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Appendix A - Limiting Experiment

In this Appendix we embed specification tests and regular estimators in a common statistical

experiment that highlights their connection to each other and to the local overidentification of P .

The main result in this Appendix, Theorem A.1 below, plays an important role in the proofs of our

main results in Section 3, and is therefore presented here for completeness. The proof of Theorem

A.1 can be found in the Online Appendix.

Heuristically, in an asymptotic framework that is local to P , our parameter uncertainty is over

what “direction” P is being approached from. We may intuitively interpret such a direction as the

score g of P1/
√
n,g and represent our parameter uncertainty as possessing only a “noisy” measure

of g. Let dT ≡ dim{T̄ (P )} and dT⊥ ≡ dim{T̄ (P )⊥} denote the (possibly infinite) dimensions of

the tangent space and its orthogonal complement. Both T̄ (P ) and T̄ (P )⊥ are Hilbert spaces with

norm ‖ ·‖P,2 and hence there exist orthonormal bases {ψTk }
dT
k=1 and {ψT⊥k }

d
T⊥
k=1 for T̄ (P ) and T̄ (P )⊥

respectively. We then consider a random variable (YT ,YT⊥) ∈ RdT × Rd
T⊥ whose law is such

that the vectors YT ≡ (YT1 , . . . ,YTdT )′ and YT⊥ ≡ (YT⊥1 , . . . ,YT⊥d
T⊥

)′ have mutually independent

coordinates and satisfy for some (unknown) g0 ∈ L2
0(P ) the relation

YTk ∼ N
(∫

g0ψ
T
k dP, 1

)
for 1 ≤ k ≤ dT

YT
⊥

k ∼ N
(∫

g0ψ
T⊥
k dP, 1

)
for 1 ≤ k ≤ dT⊥ . (A.1)

Here, if dT⊥ = 0, then we interpret YT⊥ as being equal to zero with probability one. Finally, we

let Qg denote the distribution of (YT ,YT⊥) ∈ RdT ×Rd
T⊥ when (A.1) holds with g0 = g ∈ L2

0(P ).
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Figure 1: The Tangent Space, Specification Tests, and Regular Estimators
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Crucial for our purposes, is the observation that YT⊥ plays fundamental yet distinct roles in

the asymptotic behavior of both specification tests and regular estimators. From a specification

testing perspective, YT⊥ is a partially sufficient statistic for ΠT⊥(g) and is needed to construct any

nontrivial test of (A.2). In contrast, from a regular estimation perspective, YT⊥ is an ancillary

statistic that can only contribute “noise” to estimators.9 Thus, the limit experiment requires

P to be locally overidentified (T̄ (P )⊥ 6= {0}) in order to allow for both nontrivial tests and

asymptotically distinct estimators.

Appendix B - Proofs for Sections 2 and 3

In this Appendix we present proofs of the theoretical results in Sections 2 and 3. All of the

additional technical lemmas used in this Appendix can be found in the Online Appendix.

Proof of Lemma 2.1: Since T (P ) is linear by Assumption 2.1(ii), T̄ (P ) is a vector subspace of

L2
0(P ), and therefore L2

0(P ) = T̄ (P )⊕ T̄ (P )⊥; see, e.g., Theorem 3.4.1 in Luenberger (1969). The

claims of the Lemma then immediately follow from T̄ (P ) = L2
0(P ) if and only if T̄ (P )⊥ = {0}.

Proof of Theorem 3.1: To establish part (i) of the Theorem we let ν and ν̃ denote the influence

functions of θ̂n and θ̃n respectively. Then note for any b∗ ∈ B∗ and λ ∈ R

√
n{b∗(λθ̂n + (1− λ)θ̃n)− b∗(θ(P ))}

=
1√
n

n∑
i=1

{λb∗(ν(Xi)) + (1− λ)b∗(ν̃(Xi))}+ op(1)
L→ N(0, σ2

λ) (B.1)

for σ2
λ = ‖b∗(λν + (1 − λ)ν̃)‖2P,2 by asymptotic linearity and the central limit theorem. Further

note that if P is locally just identified, then Theorem A.1(ii) implies σ2
λ does not depend on λ.

However, since ‖b∗(λν + (1 − λ)ν̃)‖2P,2 being constant in λ implies that ‖b∗(ν − ν̃)‖P,2 = 0, and

9In regular estimation, only paths within the model are considered; see Definition 3.1. The resulting limiting

experiment is then indexed by {Qg : g ∈ T̄ (P )}, in which YT
⊥

is ancillary.
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b∗ ∈ B∗ was arbitrary, we can conclude that

b∗(
√
n{θ̂n − θ̃n}) =

1√
n

n∑
i=1

b∗(ν(Xi)− ν̃(Xi)) + op(1) = op(1) (B.2)

for any b∗ ∈ B∗. Since
√
n{θ̂n − θ̃n} is asymptotically tight and measurable by Lemmas 1.4.3 and

1.4.4 in van der Vaart and Wellner (1996), result (B.2) and Lemma E.1 (in the Online Appendix)

imply
√
n{θ̂n − θ̃n} = op(1) in B, which establishes part (i) of the Theorem.

To establish part (ii) of the Theorem, we note that by Theorem A.1(i), there exists a level α

test φ of (A.2) such that for any g ∈ L2
0(P ) and path t 7→ Pt,g

lim
n→∞

∫
φndP

n
1/
√
n,g =

∫
φdQg. (B.3)

However, if P is locally just identified by P, then T̄ (P ) = L2
0(P ), or equivalently T̄ (P )⊥ = {0}.

Therefore, the null hypothesis in (A.2) holds for all g ∈ L2
0(P ), which implies

∫
φdQg ≤ α for all

g ∈ L2
0(P ), and part (ii) of the Theorem holds by (B.3).

Proof of Theorem 3.2: First, by Theorem 3.1, it follows that (ii) implies (i) and that (iii) implies

(i). Therefore, it suffices to show that (i) (i.e., P being locally overidentified by P) implies both

(ii) and (iii) hold. To this end, we observe that if P is locally overidentified by P, then Lemma

2.1 implies there exists a 0 6= f̃ ∈ T̄ (P )⊥, which without loss of generality we assume satisfies

‖f̃‖P,2 = 1. We next aim to employ such a f̃ to verify that (ii) and (iii) indeed hold.

To establish that (i) implies (ii), we note that Gn(f̃) ≡
∑n

i=1 f̃(Xi)/
√
n trivially satisfies

Assumption 3.1(i) and Assumption 3.1(ii) with G0 ∼ N(0, 1) since ‖f̃‖P,2 = 1 and f̃ ∈ L2
0(P ).

Thus, part (i) implying part (ii) is a special case of Lemma 3.1(i).

To establish that (i) implies (iii), we let Z ∼ N(0, 1) and note that Theorem 3.10.12 in van der

Vaart and Wellner (1996) implies that for any path t 7→ Pt,g ∈M

Gn(f̃)
Ln,g→ Z +

∫
f̃gdP (B.4)

since ‖f̃‖P,2 = 1. For z1−α/2 the (1 − α/2) quantile of a standard normal distribution, we define

the test φn ≡ 1{|Gn(f̃)| > z1−α/2}. Then (B.4) and the Portmanteau Theorem imply that

π(g) ≡ lim
n→∞

∫
φndP1/

√
n,g = P

(∣∣∣∣Z +

∫
f̃gdP

∣∣∣∣ > z1−α/2

)
(B.5)

for any path t 7→ Pt,g ∈M. Hence, (B.5) implies φn indeed has a local asymptotic power function.

Moreover, since f̃ ∈ T̄ (P )⊥, result (B.5) implies π(g) = α whenever g ∈ T̄ (P ), which establishes

φn is a local asymptotic level α specification test. In addition, for any g ∈ T̄ (P )⊥ we have either∫
f̃gdP = 0 (and hence π(g) = α by (B.5)), or

∫
f̃gdP 6= 0 (and hence π(f̃) > α by (B.5)). Thus

this test is locally unbiased. Finally, there exists a path t 7→ Pt,f̃ ∈ M with score f̃ ∈ T̄ (P )⊥, in

which case (B.5) implies π(f̃) > α and hence (i) implies (iii).

Proof of Corollary 3.1: First note that since every f ∈ D is bounded, θf (P ) ≡
∫
fdP is pathwise

differentiable at P relative to T (P ) with derivative θ̇f (g) ≡
∫

ΠT (f)gdP ; see Lemma F.1 (in the

35



Online Appendix). Therefore, by Theorem 5.2.1 in Bickel et al. (1993) its efficiency bound is given

by Ω∗f = ‖ΠT (f)‖2P,2. For any f ∈ L2(P ) let ΠL2
0(P )(f) denote its projection onto L2

0(P ) and note

that ΠL2
0(P )(f) = {f −

∫
fdP}, and hence Var{f(X)} = ‖ΠL2

0(P )(f)‖2P,2. By orthogonality of T̄ (P )

and T̄ (P )⊥, then

Var{f(X)} = ‖ΠL2
0(P )(f)‖2P,2 = ‖ΠT (ΠL2

0(P )(f)) + ΠT⊥(ΠL2
0(P )(f))‖2P,2

= ‖ΠT (ΠL2
0(P )(f))‖2P,2 + ‖ΠT⊥(ΠL2

0(P )(f))‖2P,2 = Ω∗f + ‖ΠT⊥(f)‖2P,2, (B.6)

where in the final equality we used ΠT (ΠL2
0(P )(f)) = ΠT (f) and ΠT⊥(ΠL2

0(P )(f)) = ΠT⊥(f) for any

f ∈ L2(P ) due to T̄ (P ) and T̄ (P )⊥ being subspaces of L2
0(P ). Thus, by (B.6) Var{f(X)} = Ω∗f

for all f ∈ D if and only if ΠT⊥(f) = 0 for all f ∈ D, which by denseness of D is equivalent to

T̄ (P )⊥ = {0}.

Proof of Lemma 3.1: For part (i) of the Lemma, note that since G0 is nondegenerate, Assumption

3.1(i) implies sτ∗ 6= 0 for some τ∗ ∈ T, and for a 0 6= b̃ ∈ B we set

θ̃n ≡ θ̂n + b̃× n−1/2Ĝn(τ∗). (B.7)

Notice θ̂n is asymptotically linear by hypothesis and denote its influence function by ν. Assumption

3.1(i), definition (B.7), and the continuous mapping theorem then yield

√
n{θ̃n − θ(P )} =

1√
n

n∑
i=1

{ν(Xi) + b̃× sτ∗(Xi)}+ op(1). (B.8)

Setting ν̃(Xi) ≡ ν(Xi)+ b̃×sτ∗(Xi), we obtain for any b∗ ∈ B∗ that b∗(ν̃) = {b∗(ν)+b∗(b̃)×sτ∗} ∈
L2

0(P ) since b∗(ν) ∈ L2
0(P ) due to θ̂n being asymptotically linear and sτ∗ ∈ T̄ (P )⊥ ⊆ L2

0(P ) by

Assumption 3.1(i). Hence, (B.8) implies θ̃n is indeed asymptotically linear and its influence function

equals ν̃. Moreover, by Lemma D.4 (in the Online Appendix), (
√
n{θ̂n − θ(P )}, 1√

n

∑n
i=1 sτ∗(Xi))

converge jointly in distribution in B ×R under Pn, and hence the continuous mapping theorem

implies
√
n{θ̃n − θ(P )} =

√
n{θ̂n − θ(P )}+ b̃× { 1√

n

n∑
i=1

sτ∗(Xi)}
L→ Z (B.9)

on B under Pn for some tight Borel random variable Z. In addition, we have that

√
n{θ̂n − θ̃n} = −b̃× { 1√

n

n∑
i=1

sτ∗(Xi)}
L→ ∆ (B.10)

by the central limit and continuous mapping theorems. Further note that since b̃ 6= 0, we trivially

have ∆ 6= 0 in B because b∗(∆) ∼ N
(
0, ‖b∗(b̃)sτ∗‖2P,2

)
and ‖b∗(b̃)sτ∗‖P,2 > 0 for some b∗ ∈ B∗

since b̃ 6= 0. Thus, to conclude the proof of part (i) it only remains to show that θ̃n is regular. To

this end let t 7→ Pt,g ∈ P, and note Lemma 25.14 in van der Vaart (1998) yields

n∑
i=1

log

(
dP1/

√
n,g

dP
(Xi)

)
=

1√
n

n∑
i=1

g(Xi)−
1

2

∫
g2dP + op(1) (B.11)

under Pn, and thus Example 3.10.6 in van der Vaart and Wellner (1996) implies Pn and Pn
1/
√
n,g

are
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mutually contiguous. Since θ̃n is asymptotically linear,
(√
n{θ̃n− θ(P )}, 1√

n

∑n
i=1 g(Xi)

)
converge

jointly in B ×R by Lemma D.4. Hence, by (B.11) and Lemma A.8.6 in Bickel et al. (1993) we

obtain that
√
n{θ̃n − θ(P )} Ln,g→ Zg (B.12)

for some tight Borel Zg on B. Furthermore, since T (P ) is linear by Assumption 2.1(ii), and θ̂n

is regular by hypothesis, Lemma D.4 and Theorem 5.2.3 in Bickel et al. (1993) imply there is a

bounded linear map θ̇ : T̄ (P )→ B such that for any t 7→ Pt,g ∈ P

lim
t↓0
‖t−1{θ(Pt,g)− θ(P )} − θ̇(g)‖B = 0. (B.13)

Therefore, combining (B.12) and (B.13) and the continuous mapping theorem yields

√
n{θ̃n − θ(P1/

√
n,g)}

Ln,g→ Zg + θ̇(g). (B.14)

Next we note that for any b∗ ∈ B∗, (B.9), (B.11), and the central limit theorem imply

( √n{b∗(θ̃n)− b∗(θ(P ))}∑n
i=1 log(

dP1/
√
n,g

dP (Xi))

)
L→ N

([ 0

−1
2

∫
g2dP

]
,Σ
)

(B.15)

under Pn, where since
∫
gsτ∗dP = 0 due to g ∈ T (P ) and sτ∗ ∈ T̄ (P )⊥, we have

Σ =
[ ∫ (b∗(ν) + b∗(b̃)sτ∗)

2dP
∫
b∗(ν)gdP∫

b∗(ν)gdP
∫
g2dP

]
. (B.16)

In addition, since b∗(θ̂n) is an asymptotically linear regular estimator of b∗(θ(P )), Proposition

3.3.1 in Bickel et al. (1993) and g ∈ T̄ (P ) imply
∫
b∗(ν)gdP = b∗(θ̇(g)). Hence, results (B.15) and

(B.16), and Lemma A.9.3 in Bickel et al. (1993) establish

√
n{b∗(θ̃n)− b∗(θ(P1/

√
n,g))}

Ln,g→ N

(
0,

∫
(b∗(ν) + b∗(b̃)sτ∗)

2dP

)
. (B.17)

Define ζb∗(Xi) ≡ {b∗(ν(Xi)) + b∗(b̃)sτ∗(Xi)}, and for any finite collection {b∗k}Kk=1 ⊂ B∗ let

(Wb∗1
, . . . ,Wb∗K

) denote a multivariate normal vector with E[Wb∗k
] = 0 for all 1 ≤ k ≤ K and

E[Wb∗k
Wb∗j

] = E[ζb∗k(Xi)ζb∗j (Xi)] for any 1 ≤ j ≤ k ≤ K. Letting Cb(R
K) denote the set of contin-

uous and bounded functions on RK , we then obtain from (B.14), (B.17), the Cramer-Wold device,

and the continuous mapping theorem that

E
[
f
(
b∗1(Zg + θ̇(g)), . . . , b∗K(Zg + θ̇(g))

)]
= E

[
f
(
b∗1(Wb∗1

), . . . , b∗K(Wb∗K
)
)]
, (B.18)

for any f ∈ Cb(RK). Since G ≡ {f ◦ (b∗1, . . . , b
∗
K) : f ∈ Cb(RK), {b∗k}Kk=1 ⊂ B∗, 1 ≤ K < ∞} is

a vector lattice that separates points in B, it follows from Lemma 1.3.12 in van der Vaart and

Wellner (1996) that there is a unique tight Borel measure W on B satisfying (B.18). In particular,

since the right hand side of (B.18) does not depend on g, we conclude the law of Zg + θ̇(g) is

constant in g, establishing the regularity of θ̃n.

For part (ii) of the Lemma, we let ν and ν̃ denote the influence functions of θ̂n and θ̃n respec-
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tively, and note that since ‖b∗‖B∗ ≤ 1 for all b∗ ∈ T it follows that

sup
b∗∈T

∣∣Ĝn(b∗)− 1√
n

n∑
i=1

b∗(ν(Xi)− ν̃(Xi))
∣∣

≤ sup
b∗∈B∗

‖b∗‖B∗ ×
∥∥√n{θ̂n − θ̃n} − 1√

n

n∑
i=1

{ν(Xi)− ν̃(Xi)}
∥∥
B

= op(1). (B.19)

Moreover, note that since b∗(θ̂n) and b∗(θ̃n) are both asymptotically linear regular estimators of

the parameter b∗(θ(P )) ∈ R, Proposition 3.3.1 in Bickel et al. (1993) implies

ΠT (b∗(ν)) = ΠT (b∗(ν̃)). (B.20)

In particular, since b∗(ν) ∈ L2
0(P ), we may decompose b∗(ν) = ΠT (b∗(ν)) + ΠT⊥(b∗(ν)), and

therefore applying an identical argument to b∗(ν̃) we can conclude that

b∗(ν − ν̃) = ΠT⊥(b∗(ν))−ΠT⊥(b∗(ν̃)) (B.21)

by result (B.20). It follows b∗(ν − ν̃) ∈ T̄ (P )⊥ for any b∗ ∈ T, which together with (B.19) verifies

Assumption 3.1(i) holds. Next, define F : B → `∞(T) to be given by F (b)(b∗) = b(b∗) for any

b ∈ B, and note F is linear and in addition

‖F (b)‖∞ = sup
‖b∗‖B∗≤1

|b(b∗)| = ‖b‖B, (B.22)

due to the definition of T and Lemma 6.10 in Aliprantis and Border (2006). In particular, (B.22)

implies F is continuous, and by the continuous mapping theorem we obtain

Ĝn = F (
√
n{θ̂n − θ̃n})

L→ F (∆) in `∞(T). (B.23)

Let G0 ≡ F (∆) and note Gaussianity of G0 follows by (B.19). Moreover, we note there must exist

a b∗ ∈ B∗ such that ‖b∗(ν − ν̃)‖P,2 > 0, for otherwise Lemma E.1 (in the Online Appendix) would

imply ∆ = 0 contradicting Assumption 3.2. Hence, G0 is in addition non-degenerate, which verifies

Assumption 3.1(ii).

Proof of Theorem 3.3: For part (i) of the Theorem, we note that Lemma E.2 (in the Online

Appendix), Assumption 3.3(i) and the continuous mapping theorem imply that for any path t 7→
Pt,g ∈M,

Ψ(Ĝn)
Ln,g→ Ψ(G0 + ∆g), (B.24)

where ∆g : T → R satisfies ∆g(τ) =
∫
sτgdP for any τ ∈ T. Further note that by direct

calculation ∆−g = −∆g, and hence Lemma E.3 (in the Online Appendix) implies −∆g belongs to

the support of G0 for any g ∈ L2
0(P ). In particular, since Ψ(0) = 0 and Ψ(b) ≥ 0 for all b ∈ `∞(T),

it follows that for any c > 0 there exists an open neighborhood Nc of −∆g ∈ `∞(T) such that

0 ≤ Ψ(b+ ∆g) ≤ c for all b ∈ Nc. Thus, we can conclude for any c > 0 that

P (Ψ(G0 + ∆g) ≤ c) ≥ P (G0 ∈ Nc) > 0, (B.25)
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where the final inequality follows from −∆g belonging to the support of G0. Next, note that

Theorem 7.1.7 in Bogachev (2007) implies G0 is a regular measure, and hence since it is tight by

Assumption 3.1(ii) it follows that it is also a Radon measure. Together with the convexity of the

map Ψ(·+ ∆g) : `∞(T)→ R, G0 being Radon allows us to apply Theorem 11.1 in Davydov et al.

(1998) to conclude that the point

c0 ≡ inf{c : P (Ψ(G0 + ∆g) ≤ c) > 0} (B.26)

is the only possible discontinuity point of the c.d.f. of Ψ(G0 + ∆g). However, since Ψ(b) ≥ 0 for

all b ∈ `∞(T), result (B.25) holding for any c > 0 implies that c0 = 0. In particular, c1−α > 0 by

hypothesis implies that c1−α is a continuity point of the c.d.f. of Ψ(G0 + ∆g) for any g ∈ L2
0(P ).

Therefore, result (B.24) allows us to conclude: for any path t 7→ Pt,g ∈M,

π(g) ≡ lim
n→∞

P1/
√
n,g(Ψ(Ĝn) > c1−α) = P (Ψ(G0 + ∆g) > c1−α), (B.27)

which establishes that the test φn indeed has an asymptotic local power function. Moreover, if

t 7→ Pt,g ∈ P, then Lemma E.2 (in the Online Appendix) implies ∆g = 0 and hence result (B.27)

yields

lim
n→∞

P1/
√
n,g(Ψ(Ĝn) > c1−α) = P (Ψ(G0) > c1−α) = α, (B.28)

where we exploited that c1−α is the 1−α quantile of Ψ(G0) and that the c.d.f. of Ψ(G0) is continuous

at c1−α. Thus, we conclude from (B.28) that φn is also an asymptotic level α specification test.

On the other hand, we note that ∆g 6= 0 whenever ΠS(g) 6= 0 since ∆g(τ) =
∫
sτgdP and

S̄(P ) = lin{sτ : τ ∈ T}. In addition, Theorem 3.6.1 in Bogachev (1998) implies the support of G0

is a separable vector subspace of `∞(T), and hence ∆g 6= 0 belonging to the support of G0 and

Lemma E.5 (in the Online Appendix) establish

P (Ψ(G0 + ∆g) < c1−α) < P (Ψ(G0) < c1−α) = 1− α. (B.29)

We can now exploit that c1−α > 0 is a continuity point of the c.d.f. of Ψ(G0 + ∆g) together with

results (B.27) and (B.29) to conclude that for any path t 7→ Pt,g ∈M with ΠS(g) 6= 0,

lim
n→∞

P1/
√
n,g(Ψ(Ĝn) > c1−α) = 1− P (Ψ(G0 + ∆g) ≤ c1−α) > α, (B.30)

which satisfies (15). Finally, for any path t 7→ Pt,g ∈ M with ΠS(g) = 0, we have ∆g = 0 and

hence π(g) = α by equations (B.27) and (B.28). Thus the test φn is also locally unbiased, and we

establish part (i) of the Theorem.

For part (ii) of the Theorem, we proceed as in Lemma 3.1(ii) and set T = {b∗ ∈ B∗ : ‖b∗‖B∗ ≤ 1}
and Ĝn(b∗) =

√
nb∗(θ̂n− θ̃n) for any b∗ ∈ B∗. Since sb∗ = b∗(ν− ν̃) by Lemma 3.1(ii), we obtain by

definition that S̄(P ) = lin{b∗(ν − ν̃) : b∗ ∈ T} = lin{b∗(ν − ν̃) : b∗ ∈ B∗}. Moreover, if Ψ = ‖ · ‖∞,

then

Ψ(Ĝn) = sup
‖b∗‖B∗≤1

|b∗(
√
n{θ̂n − θ̃n})| =

√
n‖θ̂n − θ̃n‖B, (B.31)

where the final equality follows by Lemma 6.10 in Aliprantis and Border (2006). Since Ψ = ‖ · ‖∞
satisfies Assumption 3.3, the second claim of the Theorem follows.
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Proof of Lemma 3.2: Part (i) of the Lemma is immediate since T̄ (P )⊥ ∩ M̄(P ) ⊆ T̄ (P )⊥.

For part (ii) of the Lemma, we will exploit Theorem A.1(i) and its notation. Note that Theorem

A.1(i) implies there exists a level α test φ : (YT ,YT⊥)→ [0, 1] of the hypothesis in (A.2), and such

that for any path t 7→ Pt,g ∈M

lim
n→∞

∫
φndP

n
1/
√
n,g =

∫
φdQg, (B.32)

where Qg denotes the (unknown) distribution of (YT ,YT⊥) as defined in (A.1). Recall {sτ}dτ=1

with d < ∞ is an orthonormal basis for T̄ (P )⊥ ∩ M̄(P ), we let dr denote the (possibly infinite)

dimension of M̄(P )⊥ and {rk}drk=1 be an orthonormal basis for M̄(P )⊥. By (21), {sτ}dτ=1∪{rk}
dr
k=1

is then an orthonormal basis for T̄ (P )⊥. Thus, in Theorem A.1(i) we may set {ψT⊥k }
d
T⊥
k=1 =

{sτ}dτ=1 ∪ {rk}
dr
k=1, which implies we may write YT⊥ = (M,R) ∈ Rd × Rdr , where the vectors

M ≡ (M1, . . . ,Md)
′ and R = (R1, . . . ,Rdr)′ have mutually independent coordinates, and whenever

(YT ,YT⊥) are distributed according to Qg, the induced distribution on (M,R) is

Mτ ∼ N
(∫

gsτdP, 1
)

for 1 ≤ τ ≤ d

Rk ∼ N
(∫

grkdP, 1
)

for 1 ≤ k ≤ dr. (B.33)

Let Φ denote the standard normal measure on R. Note that Q0 =
⊗dT

k=1 Φ×
⊗d

k=1 Φ×
⊗dr

k=1 Φ,

we can define a test φ̄ : M→ [0, 1] to be given by

φ̄(M) ≡ EQ0 [φ(YT ,M,R)|M], (B.34)

where the expectation is taken over (YT ,YT⊥) ∼ Q0. Since {g ∈ T̄ (P )⊥ ∩ M̄(P ) : ‖g‖P,2 ≥ κ} ⊆
G(κ), we can conclude from result (B.32) that

inf
g∈G(κ)

lim
n→∞

∫
φndP

n
1/
√
n,g ≤ inf

g∈T̄ (P )⊥∩M̄(P ):‖g‖P,2≥κ

∫
φdQg

= inf
g∈T̄ (P )⊥∩M̄(P ):‖g‖P,2≥κ

∫
φ̄d
{ d⊗
τ=1

Φ(· −
∫
gsτdP )

}
, (B.35)

where in the equality we exploited (B.34), the independence of (YT ,R) and M, and that for any

g ∈ T̄ (P )⊥ ∩ M̄(P ) it follows that (YT ,R) ∼
⊗dT

k=1 Φ ×
⊗dr

k=1 Φ under Qg as a result of g being

orthogonal to {ψTk }
dT
k=1 ∪ {rk}

dr
k=1. Finally, note that

inf
g∈T̄ (P )⊥∩M̄(P ):‖g‖P,2≥κ

∫
φ̄d
{ d⊗
τ=1

Φ(· −
∫
gsτdP )

}
= inf

h∈Rd:‖h‖≥κ

∫
φ̄d
{ d⊗
τ=1

Φ(· − hk)
}

(B.36)

by Parseval’s equality and where h = (h1, . . . , hd). Let χ2
d(κ) denote a chi-squared random variable

with d degrees of freedom and noncentrality parameter κ. It then follows from
∫
φ̄d{

⊗d
τ=1 Φ} ≤ α

due to (B.34) and φ being a level α test of (A.2), results (B.35) and (B.36) and Problem 8.29 in
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Lehmann and Romano (2005) that

inf
g∈G(κ)

lim
n→∞

∫
φndP

n
1/
√
n,g ≤ P

(
χ2
d(κ) > qd,1−α

)
(B.37)

where qd,1−α denotes the (1 − α) quantile of a chi-squared random variable with d degrees of

freedom. However, note that since {sτ}dτ=1 is orthonormal by hypothesis, Assumption 3.1(i) implies

‖Ĝn‖2
L→ χ2

d(0) under Pn and therefore c1−α = qd,1−α. Furthermore, Lemma E.2 (in the Online

Appendix) implies that for G0 ∼ N(0, Id) with Id the d× d identity matrix and ∆g ∈ Rd given by

∆g = (
∫
gs1dP, . . . ,

∫
gsddP )′ we must have for any path t 7→ Pt,g ∈M

Ĝn
Ln,g→ G0 + ∆g. (B.38)

In particular, since ‖∆g‖ = ‖ΠT⊥(g)‖P,2 for any g ∈ M̄(P ), we obtain from (B.38) that

inf
g∈G(κ)

lim
n→∞

P1/
√
n,g(‖Ĝn‖2 > c1−α)

= inf
g∈G(κ)

P (‖G0 + ∆g‖2 > qd,1−α) = P (χ2
d(κ) > qd,1−α). (B.39)

Therefore, part (ii) of the Lemma follows from (B.37) and (B.39).

For part (iii) of the Lemma, it suffices to verify that b∗(ν− ν̃) ∈ T̄ (P )⊥∩ M̄(P ) for all b∗ ∈ B∗.

To this end, we note that b∗(θ̂n) and b∗(θ̃n) are both asymptotically linear regular (with respect to

P) estimators of b∗(θ(P )) with influence functions b∗(ν) and b∗(ν̃) respectively. We also have that

b∗(ν̃)− b∗(ν) = ΠT⊥(b∗(ν̃)) (B.40)

since by Proposition 3.3.1 in Bickel et al. (1993), b∗(ν) ∈ T̄ (P ) due to b∗(θ̂n) being efficient (with

respect to P), and ΠT (b∗(ν̃)) = b∗(ν) due to b∗(θ̃n) being regular (with respect to M and P).

However, b∗(ν̃) being efficient with respect to M and Proposition 3.3.1 in Bickel et al. (1993)

imply b∗(ν̃) ∈ M̄(P ). Since M̄(P ) is a vector subspace and b∗(ν) ∈ T̄ (P ) ⊆ M̄(P ), result (B.40)

additionally implies ΠT⊥(b∗(ν̃)) ∈ M̄(P ), and thus b∗(ν − ν̃) ∈ T̄ (P )⊥ ∩ M̄(P ) as claimed.

Appendix C - Proofs for T (P ) a Convex Cone

Proof of Lemma 5.1: Since T̄ (P ) is a convex cone by Assumption 5.1, Proposition 46.5.4 in

Zeidler (1984) implies L2
0(P ) = T̄ (P )⊕ T̄ (P )−. The Lemma then follows since T̄ (P )− = {0} if and

only if T̄ (P ) = L2
0(P ).

Lemma C.1. Let Assumption 5.1 hold and P be locally just identified by P. Then: for all bounded

function f : X → R, the sample mean, n−1
∑n

i=1 f(Xi), is an asymptotically locally admissible

estimator of
∫
fdP under any Ψ-loss.

Proof of Lemma C.1: We aim to show that if P is locally just identified by P, then n−1
∑n

i=1 f(Xi)

is an asymptotically locally admissible estimator of
∫
fdP . To this end, we note that for any
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bounded f : X → R, Theorem 3.10.12 in van der Vaart and Wellner (1996) implies that for any

path t 7→ Pt,g ∈M,

1√
n

n∑
i=1

{f(Xi)−
∫
fdP1/

√
n,g}

Ln,g→ G0 (C.1)

where G0 ∼ N(0,Var{f(Xi)}). Therefore, since Ψ is bounded and continuous we obtain from

(C.1) that for any path t 7→ Pt,g ∈ P

lim sup
n→∞

EP1/
√
n,g

[
Ψ

(
1√
n

n∑
i=1

{f(Xi)−
∫
fdP1/

√
n,g}

)]
= E[Ψ(G0)]. (C.2)

By way of contradiction, next suppose that 1
n

∑n
i=1 f(Xi) is not an asymptotically locally admissible

estimator of
∫
fdP under Ψ-loss. It then follows that there must exist another estimator θ̂n :

{Xi}ni=1 → R of
∫
fdP satisfying for any path t 7→ Pt,g ∈ P and some tight law Zg

√
n{θ̂n −

∫
fdP1/

√
n,g}

Ln,g→ Zg, (C.3)

and moreover, by result (C.2), for any t 7→ Pt,g ∈ P, θ̂n must additionally be such that

lim sup
n→∞

EP1/
√
n,g

[
Ψ

(√
n{θ̂n −

∫
fdP1/

√
n,g}

)]
≤ E[Ψ(G0)] (C.4)

with strict inequality holding for some t 7→ Pt,g ∈ P. In particular, since Ψ is bounded and

continuous, results (C.3) and (C.4) imply that

E[Ψ(G0)] ≥ sup
g∈T (P )

E[Ψ(Zg)] = sup
g∈T̄ (P )

E[Ψ(Zg)] (C.5)

where the equality follows from Lemma E.6 (in the Online Appendix), which establishes both that

Zg is well defined for g ∈ T̄ (P ) and that the supremums over T (P ) and T̄ (P ) must be equal. Since

P is just identified by P, however, we have T̄ (P ) = L2
0(P ), which implies f −

∫
fdP ∈ T̄ (P ).

Therefore, result (C.5), Theorem 2.6 in van der Vaart (1989), and Proposition 8.6 in van der Vaart

(1998) together establish that under
⊗n

i=1 P we must have

√
n{θ̂n −

∫
fdP} =

1√
n

n∑
i=1

(
f(Xi)−

∫
fdP

)
+ op(1). (C.6)

Equivalently,
√
n{θ̂n − 1

n

∑n
i=1 f(Xi)} = op(1) under

⊗n
i=1 P and, by contiguity, also under⊗n

i=1 P1/
√
n,g for any path t 7→ Pt,g. However, by results (C.1) and (C.3) we can then conclude

that Zg must equal G0 in distribution, thus establishing the desired contradiction since as a result

(C.4) cannot hold strictly for any path t 7→ Pt,g ∈ P.

Proof of Theorem 5.1: We note that if P is locally just identified, then by Lemma C.1 it follows

that (ii) implies (i). Similarly, we also note that by Theorem 3.1(ii) it follows that (iii) implies (i).

Thus, to conclude the proof we need only show that (i) implies (ii) and (iii). To this end, note

that if P is locally overidentified by P, then Lemma 5.1 implies there exists a 0 6= f̃ ∈ T̄ (P )−,

which without loss of generality we assume satisfies ‖f̃‖P,2 = 1. The fact that (i) implies (ii) then
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follows by applying Theorem 5.4 with sτ? = f̃ and f defined by f(x) = f̃(x)1{|f̃(x)| ≤M}, which

satisfies
∫
f̃fdP > 0 for M large enough. Finally, to establish (i) implies (iii) we note that by

Theorem 3.10.12 in van der Vaart and Wellner (1996)

Gn(f̃)
Ln,g→ Z +

∫
f̃gdP for any path t 7→ Pt,g ∈M (C.7)

where Z ∼ N(0, 1). We define the test φn ≡ 1{Gn(f̃) > z1−α} for z1−α the 1 − α quantile of Z.

Then equation (C.7) implies that

π(g) ≡ lim
n→∞

∫
φndP1/

√
n,g = P

(
Z +

∫
f̃gdP > z1−α

)
(C.8)

for any path t 7→ Pt,g ∈ M. Thus, whenever the path t 7→ Pt,g ∈ P, it follows from g ∈ T̄ (P ) and

f̃ ∈ T̄ (P )− that
∫
gf̃dP ≤ 0 and hence by (C.8) that π(g) ≤ α – i.e. φn has asymptotic local level

α. On the other hand, there exists a path t 7→ Pt,f̃ ∈ M with score f̃ ∈ T̄ (P )−. This and (C.8)

together imply π(f̃) > α, hence we conclude (i) implies (iii).

Proof of Theorem 5.2: Fix a path t 7→ Pt,g such that its score g ∈ L2
0(P ) satisfies λΠT−(g) ∈

T̄ (P ) for any λ ≤ 0, and note that by Proposition 46.5.4 in Zeidler (1984)

g = ΠT (g) + ΠT−(g). (C.9)

Moreover, we note that if ΠT−(g) = 0 then g ∈ T̄ (P ) and thus π(g) ≤ α since π(g) ≤ α for all

g ∈ T̄ (P ) by hypothesis. We therefore assume without loss of generality that ΠT−(g) 6= 0 and

observe that by the hypotheses of the Theorem there exist a f? ∈ {f1, f2} such that f? ∈ T̄ (P )−,

f? is linearly independent of ΠT−(g), and f? satisfies λf? ∈ T̄ (P ) for all λ ≤ 0. Defining

H ≡
{
h ∈ L2

0(P ) : h = ΠT (g) + γ1ΠT−(g) + γ2f
? for some (γ1, γ2) ∈ R2

}
, (C.10)

we may then construct for any h ∈ H a path t 7→ P̄t,h whose score is h and such that P̄t,h � P �
P̄t,h; see, e.g., Example 3.2.1 in Bickel et al. (1993). Recall B is the σ-algebra on X, and consider

the sequence of experiments En given by

En ≡
(
Xn,Bn,

n⊗
i=1

P̄1/
√
n,h : h ∈ H

)
. (C.11)

Setting h0 ≡ ΠT (g), then observe that Lemma 25.14 in van der Vaart (1998) implies

n∑
i=1

log

(
dP̄1/

√
n,h

dP̄1/
√
n,h0

(Xi)

)
=

1√
n

n∑
i=1

(
h(Xi)− h0(Xi)

)
− 1

2

∫
(h2 − h2

0)dP + op(1) (C.12)

under Pn ≡
⊗n

i=1 P , and where we exploited that P̄t,h � P � P̄t,h0 . Since similarly

n∑
i=1

log

(
dP̄1/

√
n,h0

dP
(Xi)

)
=

1√
n

n∑
i=1

h0(Xi)−
1

2

∫
h2

0dP + op(1) (C.13)

under Pn by Lemma 25.14 in van der Vaart (1998), it follows by LeCam’s 3rd Lemma (see, e.g.,
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Lemma A.8.6 in Bickel et al. (1993)) that for an arbitrary finite subset {hj}Jj=1 ≡ I ⊆ H and Ln,h0

denoting the law under
⊗n

i=1 P̄1/
√
n,h0

we have

( n∑
i=1

log

(
dP̄1/

√
n,h1

dP̄1/
√
n,h0

(Xi)

)
, . . . ,

n∑
i=1

log

(
dP̄1/

√
n,hJ

dP̄1/
√
n,h0

(Xi)

))′
Ln,h0→ N(−µI ,ΣI) (C.14)

where ΣI ≡
∫

(h1 − h0, . . . , hJ − h0)(h1 − h0, . . . , hJ − h0)′dP and the mean is given by µI ≡
1
2

(∫
(h1 − h0)2dP, . . . ,

∫
(hJ − h0)2dP

)′
. Next, define vh ∈ R2 and Ω ∈ R2×2 by

vh ≡
( ∫ {ΠT−(g)}hdP∫

f?hdP

)
Ω ≡

( ∫
{ΠT−(g)}2dP

∫
{ΠT−(g)}f?dP∫

{ΠT−(g)}f?dP
∫
{f?}2dP

)
(C.15)

and note that the linear independence of f? and ΠT−(g) in L2
0(P ) imply Ω is invertible. For any

h ∈ H, then let Qh be the bivariate normal law on R2 satisfying

Qh
L
= N(Ω−1{vh − 2vh0},Ω−1). (C.16)

Further observe that for any h ∈ H and U ∈ R2 we can obtain by direct calculation

log(
dQh
dQh0

(U)) = U ′(vh − vh0) +
1

2
{v′h0

Ω−1vh0 − (vh − 2vh0)′Ω−1(vh − 2vh0)} (C.17)

and therefore exploiting (C.17) and (vhi − vh0)′Ω−1(vhk − vh0) =
∫

(hi − h0)(hk − h0)dP for any

hi, hk ∈ H implies that for any finite subset {hj}Jj=1 ≡ I ⊆ H we have(
log(

dQh1

dQh0

), . . . , log(
dQhJ
dQh0

)

)
∼ N(−µI ,ΣI) (C.18)

under Qh0 . Since (C.14) and Corollary 12.3.1 in Lehmann and Romano (2005) imply {P1/
√
n,h}

and {P1/
√
n,h0
} are mutually contiguous for any h ∈ H, results (C.14) and (C.18) together with

Lemma 10.2.1 in LeCam (1986) establish En converges weakly to

E ≡
(
R2,A2, Qh : h ∈ H

)
, (C.19)

where A denotes the Borel σ-algebra on R.

By the asymptotic representation theorem, see for example Theorem 7.1 in van der Vaart

(1991a), it then follows from φn having a local asymptotic power function π that there exists a

test φ based on a single observation of U ∼ Qh such that for all h ∈ H

π(h) ≡ lim
n→∞

∫
φndP̄

n
1/
√
n,h =

∫
φdQh. (C.20)

Further note that any h ∈ H can be written as h = ΠT (g) + γ1(h)ΠT−(g) + γ2(h)f? for some

γ(h) = (γ1(h), γ2(h))′ ∈ R2 and that moreover γ(h) = Ω−1{vh− vh0}. In addition we observe that

λf?, λΠT−(g) ∈ T̄ (P )− whenever λ ≥ 0 and λf?, λΠT−(g) ∈ T̄ (P ) whenever λ ≤ 0 together with

the linear independence of ΠT−(g) imply that h ∈ T̄ (P ) if and only if γ1(h) ≤ 0 and γ2(h) ≤ 0.
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Thus, the hypothesis on π and result (C.20) yield∫
φdQh ≤ α if γ1(h) ≤ 0 and γ2(h) ≤ 0∫
φdQh ≥ α if γ1(h) > 0 or γ2(h) > 0

. (C.21)

However, (C.21), h 7→ γ(h) being bijective between H and R2, and Lehmann (1952) p. 542 imply

that
∫
φdQh = α for all h ∈ H. In particular, since g ∈ H, the claim of the Theorem finally follows

from
∫
φdQg = α, result (C.20) and Lemma D.1 (in the Online Appendix).

Proof of Theorem 5.3: For any path t 7→ Pt,g ∈ M we first note that applying Lemma E.2 (in

the Online Appendix) with Assumption 5.2 in place of Assumption 3.1 implies

Ĝn
Ln,g→ G0 + ∆g, (C.22)

for ∆g ∈ `∞(T) given by ∆g(τ) ≡
∫
sτgdP . Let x ∨ y ≡ max{x, y}. Define ∆ω

g ∈ `∞(T) to be

∆ω
g (τ) ≡ ω(τ)×∆g(τ), we then obtain from (C.22) and the continuous mapping theorem

‖Ĝω
n ∨ 0‖∞

Ln,g→ ‖(Gω
0 + ∆ω

g ) ∨ 0‖∞. (C.23)

Moreover, note that Gω
0 is a regular measure by Theorem 7.1.7 in Bogachev (2007), and hence

since Gω
0 is also tight due to ω ∈ `∞(T) and G0 being tight by Assumption 5.2(ii), we conclude Gω

0

is Radon. Together with the convexity of the map ‖ · ∨0‖∞ : `∞(T)→ R, Gω
0 being Radon allows

us to apply Theorem 11.1 in Davydov et al. (1998) to obtain

c0 ≡ inf{c : P (‖(Gω
0 + ∆ω

g ) ∨ 0‖∞ ≤ c) > 0} (C.24)

is the only possible discontinuity point of the c.d.f. of ‖(Gω
0 + ∆ω

g )∨0‖∞. However, note that since

cω1−α > 0 by hypothesis, we must have ‖ω‖∞ > 0, and therefore for any c > 0

P (‖(Gω
0 + ∆ω

g ) ∨ 0‖∞ ≤ c) ≥ P (‖G0 + ∆g‖∞ ≤
c

‖ω‖∞
) > 0 (C.25)

where we exploited that ω ≥ 0, and the final inequality follows from Proposition 12.1 in Davydov

et al. (1998) and −∆g = ∆−g belonging to the support of G0 by Lemma E.3 (in the Online

Appendix).10 Since cω1−α > 0 by hypothesis, it follows from (C.24) and (C.25) that cω1−α is a

continuity point of the c.d.f. of ‖(Gω
0 + ∆ω

g ) ∨ 0‖∞. Therefore, we obtain from (C.22) that

lim
n→∞

P1/
√
n,g(‖Ĝω

n ∨ 0‖∞ > cω1−α) = P (‖(Gω
0 + ∆ω

g ) ∨ 0‖∞ > cω1−α), (C.26)

which verifies that φωn indeed has an asymptotic local power function. Moreover, note that if

t 7→ Pt,g ∈ P, then g ∈ T̄ (P ) by definition and hence
∫
sτgdP ≤ 0 for all τ ∈ T since sτ ∈ T̄ (P )−.

Thus, ω ≥ 0 implies ∆ω
g ≤ 0, and therefore (C.26) yields

lim
n→∞

P1/
√
n,g(‖Ĝω

n ∨ 0‖∞ > cω1−α) ≤ P (‖Gω
0 ∨ 0‖∞ > cω1−α) = α, (C.27)

10Lemma E.3 requires Assumption 3.1 in place of Assumption 5.2, but the proof of Lemma E.3 also holds under
the latter assumption with no modifications.
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where we exploited that cω1−α is the 1 − α quantile of ‖Gω
0 ∨ 0‖∞ and the c.d.f. of ‖Gω

0 ∨ 0‖∞ is

continuous at cω1−α. Since (C.27) holds for any path t 7→ Pt,g ∈ P, we conclude φωn is indeed an

asymptotic level α specification test.

To establish (63), note C̄(P ) ⊆ L2
0(P ) is a closed convex cone by definition, and let C̄(P )− ≡

{g ∈ L2
0(P ) :

∫
gfdP ≤ 0 for all f ∈ C̄(P )}. For any g ∈ L2

0(P ), Proposition 46.5.4 in Zeidler

(1984) implies g = ΠC(g) + ΠC−(g) and
∫
{ΠC(g)}{ΠC−(g)}dP = 0. In particular, if a path

t 7→ Pt,g ∈M is such that ΠC(g) 6= 0, then∫
g{ΠC(g)}dP =

∫
{ΠC(g) + ΠC−(g)}{ΠC(g)}dP =

∫
{ΠC(g)}2dP > 0. (C.28)

Since ΠC(g) ∈ C̄(P ) and C̄(P ) is the closed convex cone generated by {sτ}τ∈T, there exists an

integer K <∞, positive scalars {αk}Kk=1, and {τk}Kk=1 ⊆ T such that

∥∥∥∥ΠC(g)−
K∑
k=1

αksτk

∥∥∥∥
P,2

<
1

2

‖ΠC(g)‖2P,2
‖g‖P,2

. (C.29)

Therefore, results (C.28) and (C.29) together with the Cauchy-Schwarz inequality yield

∫
g{

K∑
k=1

αksτk}dP ≥
∫
g{ΠC(g)}dP −

∣∣∣∣∫ g
{

ΠC(g)−
K∑
k=1

αksτk
}
dP

∣∣∣∣ ≥ 1

2
‖ΠC(g)‖2P,2 > 0. (C.30)

Since αk ≥ 0 for all 1 ≤ k ≤ K, result (C.30) implies that
∫
gsτ?dP > 0 for some τ? ∈ T. To

conclude, we then let ω?(τ) ≡ 1{τ = τ?} and note Gω?
0 (τ?) ∼ N(0,

∫
s2
τ?dP ). Furthermore, since∫

s2
τ?dP > 0 because

∫
gsτ?dP > 0, and ‖Gω?

0 ∨ 0‖∞ = max{G0(τ?), 0} almost surely, it follows

that cω
?

1−α > 0 provided α ∈ (0, 1
2). We may then exploit result (C.26) since cω

?

1−α > 0, and employ∫
gsτ?dP > 0 to obtain

lim
n→∞

P1/
√
n,g

(
‖Ĝω?

n ∨ 0‖∞ > cω
?

1−α
)

= P
(
G0(τ?) +

∫
gsτ?dP > cω

?

1−α
)
> α, (C.31)

which establishes the second claim of the Theorem.

Proof of Theorem 5.4: Let R(τ?) ≡ {λsτ? : λ ≥ 0} which is a closed convex cone and set R(τ?)−

to be the polar cone of R(τ?), which satisfies

R(τ?)− =

{
g ∈ L2

0(P ) :

∫
gsτ?dP ≤ 0

}
. (C.32)

In addition, for any g ∈ L2
0(P ) we let ΠR(g) and ΠR−(g) denote the metric projections of g onto

R(τ?) and R(τ?)− respectively, and we note by direct calculation that

ΠR

(
f −

∫
fdP

)
= β(f, τ?)× sτ? (C.33)

for any f ∈ L2(P ). Moreover, by Proposition 46.5.4 in Zeidler (1984) it also follows that

1√
n

n∑
i=1

{f(Xi)−
∫
fdP} =

1√
n

n∑
i=1

{
{ΠR−(f −

∫
fdP )}(Xi) + β(f, τ?)sτ?(Xi)

}
, (C.34)
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where
∫

ΠR−(f −
∫
fdP )β(f, τ?)sτ?dP = 0. Let ∆g ≡

∫
ΠR(f −

∫
fdP )gdP . Then we obtain from

results (C.33) and (C.34), Assumption 5.2(i) and Theorem 3.10.12 in van der Vaart and Wellner

(1996) that for any path t 7→ Pt,g ∈M we have(
1√
n

n∑
i=1

{f(Xi)−
∫
fdP}, β(f, τ?)Ĝn(τ?)

)
Ln,g→

(
GR + GR− +

∫
fgdP, GR + ∆g

)
(C.35)

where (GR,GR−) are independent normals with Var{GR + GR−} = Var{f(Xi)} and Var{GR} =

‖β(f, τ?)sτ?‖2P,2. Moreover, for any bounded f : X → R, Lemma F.1 (in the Online Appendix)

implies ∣∣∣∣√n ∫ f(dP1/
√
n,g − dP )−

∫
fgdP

∣∣∣∣ = o(1). (C.36)

for any path t 7→ Pt,g ∈ M. Therefore, results (C.35) and (C.36), the definition of µ̂n(f, τ?), and

the continuous mapping theorem allow us to conclude

√
n

{
µ̂n(f, τ?)−

∫
fdP1/

√
n,g

}
Ln,g→ GR− + min{GR,−∆g} ≡ Zg, (C.37)

which implies µ̂n(f, τ?) indeed satisfies (60). We next aim to show that (65) holds for any path

t 7→ Pt,g ∈ P provided
∫
fsτ?dP > 0, which implies β(f, τ?) > 0. We thus assume β(f, τ?) 6= 0,

and note this implies Var{GR} > 0. Hence, since G0 = GR + GR− by results (C.1) and (C.35), we

can exploit the definition of Zg in (C.37) to obtain for any t > 0 that

P (|Zg| ≤ t) = P (|G0| ≤ t,GR ≤ −∆g) + P (|GR− −∆g| ≤ t, GR > −∆g)

= P (|G0| ≤ t) + P (|GR− −∆g| ≤ t, GR > −∆g)− P (|G0| ≤ t, GR > −∆g). (C.38)

Let σ2
R− ≡ Var{GR−}. Note that if σ2

R− = 0, then (C.38) implies P (|Zg| ≤ t) < P (|G0| ≤ t)

whenever t > |∆g| due to Var{GR} > 0. If σ2
R− > 0, then for Φ the c.d.f. of a standard normal

random variable we can conclude from G0 = GR+GR− and the independence of GR and GR− that

P
(
|GR− −∆g| ≤ t | GR + ∆g > 0

)
= Φ

( t+ ∆g

σR−

)
− Φ

(−t+ ∆g

σR−

)
P (|G0| ≤ t | GR + ∆g > 0) = E

[
Φ(
t−GR

σR−
)− Φ(

−t−GR

σR−
) | GR > −∆g

]
. (C.39)

We note that the function Ft(a) ≡ Φ((t− a)/σR−)− Φ((−t− a)/σR−) is decreasing in a ∈ [0,∞)

whenever t ≥ 0. Since sτ? ∈ T̄ (P )−, we have ∆g ≡
∫
{ΠR(f−

∫
fdP )}gdP ≤ 0 whenever g ∈ T̄ (P ).

It follows from (C.39) that for any g ∈ T̄ (P ) we have

P (|Zg| ≤ t) > P (|G0| ≤ t) for all t > 0 . (C.40)

Thus, since Ψ(b) = Ψ(|b|), Ψ(b) ≥ Ψ(b′) whenever |b| ≥ |b′|, and Ψ is nonconstant, result (C.40)

implies

E[Ψ(Zg)] < E[Ψ(G0)]. (C.41)
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Since (C.41) holds for any g ∈ T̄ (P ), we then obtain from (C.37) and Definition 5.1(iii)

lim sup
n→∞

EP1/
√
n,g

[
Ψ

(√
n{µ̂n(f, τ?)−

∫
fdP1/

√
n,g}

)]
= E[Ψ(Zg)] < E[Ψ(G0)] (C.42)

for any path t 7→ Pt,g ∈ P, which together with (C.2) establishes (65).
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This Online Supplementary Appendix contains additional results and proofs to support the

main text. Appendix D contains the proof of the limiting experiment results in Appendix A and

additional lemmas. Appendix E presents the technical lemmas and their proofs that are used

in the proofs of Appendix B and Appendix C. Appendix F contains the proofs of the results in

Section 4. Appendix G provides sufficient conditions for verifying Assumption 3.1 in the general

nonparametric conditional moment restriction models studied in Section 4. Appendix H provides

additional discussion of the Examples in Section 4 as well as a final example.

Appendix D - Proofs for Appendix A and Additional Lemmas

In this Appendix we provide the proofs of Theorem A.1 and additional technical lemmas.

Proof of Theorem A.1: To establish part (i), we first note that for any g ∈ L2
0(P ) it is possible

to construct a path t 7→ Pt,g whose score is g; see Example 3.2.1 in Bickel et al. (1993) for a concrete

construction. Further, any two paths t 7→ P̃t,g and t 7→ Pt,g with the same score g ∈ L2
0(P ) satisfy

lim
n→∞

∣∣∫ φndP̃
n
1/
√
n,g −

∫
φndP

n
1/
√
n,g

∣∣ ≤ lim
n→∞

∫ ∣∣dPn1/√n,g − dP̃n1/√n,g∣∣ = 0 (D.1)

for any 0 ≤ φn ≤ 1 by Lemma D.1 (below). Thus, for each g ∈ L2
0(P ) we may select an arbitrary

path t 7→ Pt,g whose score is indeed g, and for B the σ-algebra on X we consider the sequence of

experiments

En ≡
(
Xn,Bn, Pn1/√n,g : g ∈ L2

0(P )
)
. (D.2)

Next, since {ψTk }
dT
k=1 ∪ {ψ

T⊥
k }

d
T⊥
k=1 forms an orthonormal basis for L2

0(P ), we obtain from Lemma

D.3 (below) that En converges weakly to the experiment E given by

E ≡
(
RdT ×Rd

T⊥ ,AdT ×AdT⊥ , Qg : g ∈ L2
0(P )

)
, (D.3)

where A denotes the Borel σ-algebra on R and we exploited that for dP ≡ dim{L2
0(P )} we have

RdT ×Rd
T⊥ = RdP and AdT ×AdT⊥ = AdP . The existence of a test function φ : (YT ,YT⊥)→ [0, 1]

satisfying π(g0) =
∫
φdQg0 for all g0 ∈ L2

0(P ) then follows from Theorem 7.1 in van der Vaart

(1991). To establish part (i) of the Theorem, it thus only remains to show that φ must control

size in (A.2). To this end, note that ΠT⊥(g0) = 0 if and only if g0 ∈ T̄ (P ). Fixing δ > 0 then

observe that for any g0 ∈ T̄ (P ) there exists a g̃ ∈ T (P ) such that ‖g0 − g̃‖P,2 < δ. Moreover, since

1



g̃ ∈ T (P ), there exists a path t 7→ P̃t,g̃ ∈ P with score g̃ and hence we can conclude that∫
φdQg0 = lim

n→∞

∫
φndP

n
1/
√
n,g0

≤ lim
n→∞

∫
φndP̃

n
1/
√
n,g̃ + lim sup

n→∞

∫ ∣∣dPn1/√n,g0
− dP̃n1/√n,g̃

∣∣
≤ α+ 2{1− exp{−δ

2

4
}}1/2, (D.4)

where the first inequality employed 0 ≤ φn ≤ 1, and the second inequality exploited Lemma D.1

and that φn is a local asymptotic level α test. Since δ > 0 is arbitrary, we conclude from (11) and

(D.4) that π(g0) =
∫
φdQg0 ≤ α whenever g0 ∈ T̄ (P ), and hence part (i) of the Theorem follows.

For part (ii) of the Theorem, we first note that since T (P ) is linear by Assumption 2.1(ii), and

θ̂n is regular by hypothesis, Lemma D.4 (below) and Theorem 5.2.3 in Bickel et al. (1993) imply

θ is pathwise differentiable at P – i.e. there exists a bounded linear operator θ̇ : T̄ (P ) → B such

that for any submodel t 7→ Pt,g ∈ P it follows

lim
t↓0
‖t−1{θ(Pt,g)− θ(P )} − θ̇(g)‖B = 0. (D.5)

Then note that for any b∗ ∈ B∗, b∗ ◦ θ̇ : T̄ (P ) → R is a continuous linear functional. Hence,

since T̄ (P ) is a Hilbert space under ‖ · ‖P,2, the Riesz representation theorem implies there exists

a θ̇b∗ ∈ T̄ (P ) such that for all g ∈ T̄ (P ) we have

b∗(θ̇(g)) =

∫
θ̇b∗gdP. (D.6)

Moreover, since θ̂n is an asymptotically linear regular estimator of θ(P ), it follows that b∗(θ̂n) is

an asymptotically linear regular estimator of b∗(θ(P )) with influence function b∗ ◦ ν. Proposition

3.3.1 in Bickel et al. (1993) then implies that for all g ∈ T̄ (P )∫
(θ̇b∗ − b∗ ◦ ν)gdP = 0. (D.7)

In particular, (D.7) implies that θ̇b∗ = ΠT (b∗ ◦ ν), and therefore by asymptotic linearity

√
n{b∗(θ̂n)− b∗(θ(P ))} L→ N

(
0, ‖θ̇b∗‖2P,2 + ‖ΠT⊥(b∗ ◦ ν)‖2P,2

)
(D.8)

where we have exploited the central limit theorem and b∗ ◦ ν = ΠT (b∗ ◦ ν) + ΠT⊥(b∗ ◦ ν). To

conclude, we next define the maps F T (YT ) and F T
⊥

(YT⊥) to be given by

F T (YT ) =

dT∑
k=1

YTk
∫
{θ̇b∗}ψTk dP

F T
⊥

(YT
⊥

) =

d
T⊥∑
k=1

YT
⊥

k

∫
{ΠT⊥(b∗ ◦ ν)}ψT⊥k dP. (D.9)

We aim to show that if (YT ,YT⊥) ∼ Qg0 with g0 = 0, then F T (YT ) ∼ N(0, ‖θ̇b∗‖2P,2) which is

2



immediate if dT <∞, and thus we assume dT =∞. Defining the partial sums

VK ≡
K∑
k=1

YTk
∫
{θ̇b∗}ψTk dP (D.10)

we then observe VK ∼ N(0, σ2
K) where σ2

K ≡
∑K

k=1

∫
{
∫
θ̇b∗ψ

T
k }2dP and σ2

K ↑ ‖θ̇b∗‖2P,2 by Parseval’s

identity. By the martingale convergence theorem, see, e.g., Theorem 12.1.1 in Williams (1991),

it follows VK converges almost surely and thus that F T (YT ) is well defined. Moreover, for any

continuous bounded function f : R→ R it follows

E[f(F T (YT ))] = lim
K→∞

E[f(VK)] = lim
K→∞

1√
2πσK

∫
f(z) exp{− z2

2σ2
K

}dz

=
1√

2π‖θ̇b∗‖P,2

∫
f(z) exp{− z2

2‖θ̇b∗‖2P,2
}dz (D.11)

due to σ2
K ↑ ‖θ̇b∗‖2P,2. We conclude from (D.11) that F T (YT ) ∼ N(0, ‖θ̇b∗‖2P,2) when (YT ,YT⊥) ∼

Qg0 with g0 = 0. Identical arguments imply F T
⊥

(YT⊥) ∼ N(0, ‖ΠT⊥(b∗ ◦ ν)‖2P,2). Thus part (ii)

of the Theorem follows from (D.8) and independence of YT and YT⊥ .

Lemma D.1. If t 7→ Pt,g1 and t 7→ Pt,g2 are arbitrary paths, then it follows that:

lim sup
n→∞

∫ ∣∣dPn1/√n,g1
− dPn1/√n,g2

∣∣ ≤ 2
{

1− exp{−1

4
‖g1 − g2‖2P,2}

}1/2
. (D.12)

Proof of Lemma D.1: Since t 7→ Pt,g1 and t 7→ Pt,g2 satisfy (1), we must have

lim
n→∞

n

∫ [
dP

1/2

1/
√
n,g1
− dP 1/2

1/
√
n,g2

]2
=

1

4

∫ [
g1dP

1/2 − g2dP
1/2
]2

=
1

4
‖g1 − g2‖2P,2. (D.13)

Moreover, by Theorem 13.1.2 in Lehmann and Romano (2005) we can also conclude

1

2

∫ ∣∣dPn1/√n,g1
− dPn1/√n,g2

∣∣ ≤ {1−
[∫
{dPn1/√n,g1

}1/2{dPn1/√n,g2
}1/2

]2}1/2

=
{

1−
[∫

dP
1/2

1/
√
n,g1

dP
1/2

1/
√
n,g2

]2n}1/2
=
{

1−
[
1− 1

2

∫
[dP

1/2

1/
√
n,g1
− dP 1/2

1/
√
n,g2

]2
]2n}1/2

(D.14)

where in the first equality we exploited Pn
1/
√
n,g1

and Pn
1/
√
n,g2

are product measures, while the

second equality follows from direct calculation. Thus, by (D.13) and (D.14)

lim sup
n→∞

1

2

∫ ∣∣dPn1/√n,g1
− dPn1/√n,g2

∣∣
≤ lim sup

n→∞

{
1−

[
1− 1

2n

∫
n[dP

1/2

1/
√
n,g1
− dP 1/2

1/
√
n,g2

]2
]2n}1/2

= {1− exp{−1

4
‖g1 − g2‖2P,2}}1/2 (D.15)

which establishes the claim of the Lemma.

Lemma D.2. Let {Pn}, {Qn}, {Vn} be probability measures defined on a common space. If

3



{dQn/dPn} is asymptotically tight under Pn and
∫
|dPn − dVn| = o(1), then

∣∣dQn
dPn

− dQn
dVn

∣∣ Pn→ 0. (D.16)

Proof of Lemma D.2: Throughout let µn = Pn +Qn + Vn, note µn dominates Pn, Qn, and Vn,

and set pn ≡ dPn/dµn, qn ≡ dQn/dµn, and vn ≡ dVn/dµn. We then obtain∫
|dPn
dVn
− 1|dVn =

∫
|pn
vn
− 1|vndµn =

∫
vn>0

|pn
vn
− vn
vn
|vndµn

≤
∫
|pn − vn|dµn =

∫
|dPn − dVn| = o(1), (D.17)

where the second to last equality follows by definition, and the final equality by assumption. Hence,

by (D.17) and Markov’s inequality we obtain dPn/dVn
Vn→ 1. Moreover, since

∫
|dVn − dPn| = o(1)

implies {Pn} and {Vn} are mutually contiguous, we conclude

dPn
dVn

Pn→ 1. (D.18)

Next observe that for any continuous and bounded function f : R→ R we have that∫
f(
dQn
dPn

− dQn
dVn

)dPn =

∫
f(
qn
pn
− qn
vn

)pndµn

=

∫
pn>0

f(
qn
pn

(1− pn
vn

))pndµn =

∫
f(
dQn
dPn

(1− dPn
dVn

))dPn → f(0), (D.19)

where the final result follows from (D.18), dQn/dPn being asymptotically tight under Pn and

continuity and boundedness of f . Since (D.19) holds for any continuous and bounded f , we

conclude dQn/dPn−dQn/dVn converges in law (under Pn) to zero, and hence also in Pn probability,

which establishes (D.16).

Lemma D.3. Let H ⊆ L2
0(P ), assume for each g ∈ H there is a path t 7→ Pt,g with score g, recall

B is the σ-algebra on X, let A be the Borel σ-algebra on R, and set

En ≡
(
Xn,Bn, Pn1/√n,g : g ∈ H

)
. (D.20)

If 0 ∈ H, {ψk}dPk=1 is an orthonormal basis for L2
0(P ), and Φ denotes the standard normal measure

on R, then En converges weakly to the dominated experiment E

E ≡
(
RdP ,AdP , Qg : g ∈ H

)
, (D.21)

where for each g ∈ H, Qg(·) = Q0(· − T (g)) for T (g) ≡ {
∫
gψkdP}dPk=1 and Q0 =

⊗dP
k=1 Φ.

Proof of Lemma D.3: The conclusion of the Lemma is well known (see e.g. Subsection 8.2 in

van der Vaart (1991)), but we were unable to find a concrete reference and hence we include its

proof for completeness. Since the Lemma is straightforward when the dimension of L2
0(P ) is finite

4



(dP <∞) we focus on the case dP =∞. To analyze E , let

`2 ≡ {{ck}∞k=1 ∈ R∞ :
∞∑
k=1

c2
k <∞}, (D.22)

and note that by Example 2.3.5 in Bogachev (1998), `2 is the Cameron-Martin space of Q0.1 Hence,

since for any g ∈ L2
0(P ) we have {

∫
gψkdP}∞k=1 ∈ `2 due to {ψk}∞k=1 being an orthonormal basis

for L2
0(P ), Theorem 2.4.5 in Bogachev (1998) implies

Qg ≡ Q0(· − T (g))� Q0 (D.23)

for all g ∈ L2
0(P ), and thus E is dominated by Q0. Denoting an element of R∞ by ω = {ωk}∞k=1,

we then obtain from {
∫
gψkdP}∞k=1 ∈ `2 and the Martingale convergence theorem, see for example

Theorem 12.1.1 in Williams (1991), that

Q0(ω : lim
n→∞

n∑
k=1

ωk

∫
ψkgdP exists) = 1 (D.24)

lim
n→∞

∫
(
∞∑

k=n+1

ωk

∫
gψkdP )2dQ0(ω) = 0. (D.25)

Therefore, Example 2.3.5 and Corollary 2.4.3 in Bogachev (1998) yield for any g ∈ L2
0(P )

log(
dQg
dQ0

(ω)) =

∞∑
k=1

ωk

∫
gψkdP −

1

2

∫
(

∞∑
k=1

ωk

∫
gψkdP )2dQ0(ω)

=

∞∑
k=1

ωk

∫
gψkdP −

1

2

∫
g2dP, (D.26)

where the right hand side of the first equality is well defined Q0 almost surely by (D.24), while

the second equality follows from (D.25) and
∑∞

k=1(
∫
gψkdP )2 =

∫
g2dP due to {ψk}∞k=1 being an

orthonormal basis for L2
0(P ).

Next, select an arbitrary finite subset {gj}Jj=1 ≡ I ⊆ H and vector (λ1, . . . , λJ)′ ≡ λ ∈ RJ .

From result (D.26) we then obtain Q0 almost surely that

J∑
j=1

λj log(
dQgj
dQ0

(ω)) =
∞∑
k=1

ωk

∫
(
J∑
j=1

λjgj)ψkdP −
J∑
j=1

λj
2

∫
g2
jdP. (D.27)

In particular, we can conclude from Example 2.10.2 and Proposition 2.10.3 in Bogachev (1998)

together with (D.25) and
∑J

j=1 λjgj ∈ L2
0(P ) that, under Q0, we have

J∑
j=1

λj log(
dQj
dQ0

) ∼ N
(
−

J∑
j=1

λj
2

∫
g2
jdP,

∫
(
J∑
j=1

λjgj)
2dP

)
. (D.28)

1See page 44 in Bogachev (1998) for a definition of a Cameron Martin space.
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Thus, for µI ≡ 1
2(
∫
g2

1dP, . . . ,
∫
g2
JdP )′ and ΣI ≡

∫
(g1, . . . , gJ)′(g1, . . . , gJ)dP , we have(

log(
dQg1

dQ0
), . . . , log(

dQgJ
dQ0

)

)′
∼ N(−µI ,ΣI), (D.29)

under Q0 due to (D.28) holding for arbitrary λ ∈ RJ .

To obtain an analogous result for the sequence of experiments En, let {Xi}ni=1 ∼ Pn. From

Lemma 25.14 in van der Vaart (1998) we obtain under Pn

n∑
i=1

log

(
dP1/

√
n,gj

dP
(Xi)

)
=

1√
n

n∑
i=1

gj(Xi)−
1

2

∫
g2
jdP + op(1) (D.30)

for any 1 ≤ j ≤ J . Thus, defining Pn
1/
√
n,gj
≡
⊗n

i=1 P1/
√
n,gj , we can conclude that

(
log(

dPn
1/
√
n,g1

dPn
), . . . , log(

dPn
1/
√
n,gJ

dPn
)

)′
L→ N(−µI ,ΣI), (D.31)

under Pn by (D.30), the central limit theorem, and the definitions of µI and ΣI . Furthermore,

also note Lemma D.1 implies
∫
|dPn − dPn

1/
√
n,0
| = o(1) and hence

(dPn
1/
√
n,g1

dPn
, . . . ,

dPn
1/
√
n,gJ

dPn

)′
=

(dPn
1/
√
n,g1

dPn
1/
√
n,0

, . . . ,
dPn

1/
√
n,gJ

dPn
1/
√
n,0

)′
+ op(1) (D.32)

under Pn by Lemma D.2 and result (D.31). Thus, by (D.31) and (D.32) we obtain(
log(

dPn
1/
√
n,g1

dPn
1/
√
n,0

), . . . , log(
dPn

1/
√
n,gJ

dPn
1/
√
n,0

)

)′
L→ N(−µI ,ΣI), (D.33)

under Pn, and since
∫
|dPn − dPn

1/
√
n,0
| = o(1) also under Pn

1/
√
n,0

. Hence, the Lemma follows

from (i) (D.29), (ii) (D.33), and (iii) {Pn
1/
√
n,g
} and {Pn

1/
√
n,0
} being mutually contiguous for any

g ∈ H by (D.30) and Corollary 12.3.1 in Lehmann and Romano (2005), which together verify the

conditions of Lemma 10.2.1 in LeCam (1986).

Lemma D.4. Let Assumption 2.1(i) hold, B be a Banach space, and θ̂n be an asymptotically

linear estimator for θ(P ) ∈ B such that
√
n{θ̂n − θ(P )} L→ D under Pn on B for some tight Borel

D. Then: for any function h ∈ L2
0(P ),

(√
n{θ̂n − θ(P )}, 1√

n

∑n
i=1 h(Xi)

)
converges in distribution

under Pn on B×R.

Proof of Lemma D.4: For notational simplicity, let η(P ) ≡ (θ(P ), 0) ∈ B × R and define

η̂n ≡ (θ̂n,
1
n

∑n
i=1 h(Xi)) ∈ B×R. Further let (B×R)∗ denote the dual space of B×R and note

that for any d∗ ∈ (B×R)∗ there are b∗d∗ ∈ B∗ and r∗d∗ ∈ R such that d∗((b, r)) = b∗d∗(b)+r∗d∗(r) for

all (b, r) ∈ B×R. For ν the influence function of θ̂n then define ζd∗(Xi) ≡ {b∗d∗(ν(Xi))+r∗d∗(h(Xi))}
to obtain that under

⊗n
i=1 P we have

d∗(
√
n{η̂n − η(P )}) =

1√
n

n∑
i=1

ζd∗(Xi) + op(1) (D.34)
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by asymptotic linearity of θ̂n. Thus, for any finite set {d∗k}Kk=1 ⊂ (B×R)∗, we have

(d∗1(
√
n{η̂n − η(P )}), . . . , d∗K(

√
n{η̂n − η(P )})) L→ (Wd∗1

, . . . ,Wd∗K
) (D.35)

for (Wd∗1
, . . . ,Wd∗K

) a multivariate normal random variable satisfying E[Wd∗k
] = 0 for all 1 ≤ k ≤ K

and E[Wd∗j
Wd∗k

] = E[ζd∗j (Xi)ζd∗k(Xi)] for all 1 ≤ j ≤ k ≤ K.

Next note that since
√
n{θ̂n− θ(P )} is asymptotically measurable and asymptotically tight by

Lemma 1.3.8 in van der Vaart and Wellner (1996), it follows that
√
n{η̂n−η(P )} is asymptotically

measurable and asymptotically tight on B ×R by Lemmas 1.4.3 and 1.4.4 in van der Vaart and

Wellner (1996). Hence, we conclude by Theorem 1.3.9 in van der Vaart and Wellner (1996) that

any sequence {nk} has a subsequence {nkj} with

√
nkj{η̂nkj − η(P )} L→W (D.36)

under
⊗nkj

i=1 P for W some tight Borel Law on B × R. However, letting Cb(R
K) denote the set

of continuous and bounded functions on RK , we obtain from (D.35), (D.36), and the continuous

mapping theorem that for any {d∗k}Kk=1 ⊂ (B×R)∗ and f ∈ Cb(RK)

E[f((d∗1(W), . . . , d∗K(W)))] = E[f((Wd∗1
, . . . ,Wd∗K

))]. (D.37)

Since G ≡ {f ◦ (d∗1, . . . , d
∗
K) : f ∈ Cb(RK), {d∗k}Kk=1 ⊂ (B ×R)∗, 1 ≤ K < ∞} is a vector lattice

that separates points in B×R, Lemma 1.3.12 in van der Vaart and Wellner (1996) implies there

is a unique tight Borel measure W on B×R satisfying (D.37). Thus, since the original sequence

{nk} was arbitrary, we conclude all limit points of the law of
√
n{η̂n − η(P )} coincide, and the

Lemma follows.

Appendix E - Technical Lemmas Used in Appendix B and Appendix C

In this Appendix we present technical lemmas that are used in Appendix B and Appendix C.

Lemma E.1. If Zn ∈ B is asymptotically tight and asymptotically measurable and satisfies

b∗(Zn)
p→ 0 for any b∗ ∈ B∗, then it follows Zn = op(1) in B.

Proof of Lemma E.1: For an arbitrary subsequence {nj}∞j=1, Theorem 1.3.9(ii) in van der Vaart

and Wellner (1996) implies there exists a further subsequence {njk}∞k=1 along which Znjk converges

in distribution to a tight limit Z. Moreover, note that by the continuous mapping theorem b∗(Z) = 0

for all b∗ ∈ B∗. Therefore, letting Cb(R
K) denote the set of bounded and continuous functions on

RK and defining G ≡ {f ◦ (b∗1, . . . , b
∗
K) : f ∈ Cb(RK), {b∗k}Kk=1 ⊂ B∗, 1 ≤ K < ∞} we then obtain

for any g ∈ G
E[g(Z)] = g(0). (E.1)

In particular, since G is a vector lattice that contains the constant functions and separates points

in B, Lemma 1.3.12 in van der Vaart and Wellner (1996) implies Z = 0 almost surely. We conclude

that Znjk converges in probability to zero along {njk}∞k=1. Thus, since the original subsequence

{nj}∞j=1 was arbitrary, it follows that Zn = op(1).
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Lemma E.2. Let Assumptions 2.1(i) and 3.1 hold, and for any g ∈ L2
0(P ) define ∆g : T→ R to

be given by ∆g(τ) ≡
∫
sτgdP . It then follows that for any path t 7→ Pt,g ∈M,

Ĝn
Ln,g→ G0 + ∆g in `∞(T). (E.2)

Further under Assumption 2.1(ii), ∆g = 0 whenever ΠS(g) = 0 where S(P ) = {sτ ∈ T̄ (P )⊥ : τ ∈
T}.

Proof of Lemma E.2: We first note Lemma 25.14 in van der Vaart (1998) implies

n∑
i=1

log

(
dP1/

√
n,g

dP
(Xi)

)
=

1√
n

n∑
i=1

g(Xi)−
1

2

∫
g2dP + op(1) (E.3)

under Pn for any path t 7→ Pt,g ∈ M. Thus, by Example 3.10.6 in van der Vaart and Wellner

(1996), Pn and Pn
1/
√
n,g

are mutually contiguous, and hence applying Lemma D.4 and Lemma A.8.6

in Bickel et al. (1993) yields that for any path t 7→ Pt,g ∈M

Ĝn
Ln,g→ G0 + ∆g in `∞(T), (E.4)

which establishes (E.2). Moreover, if t 7→ Pt,g ∈ P, then by definition g ∈ T (P ) and hence∫
gsτdP = 0 for all τ ∈ T due to sτ ∈ T̄ (P )⊥ by Assumption 3.1(i). More generally, ∆g = 0 for

any path t 7→ Pt,g ∈M with ΠS(g) = 0.

Lemma E.3. Let Assumptions 2.1(i) and 3.1 hold, and for any g ∈ L2
0(P ) define ∆g : T→ R by

∆g(τ) ≡
∫
sτgdP . It then follows that ∆g is in the support of G0.

Proof of Lemma E.3: Define S ≡ S(P ) = {sτ : τ ∈ T} and let the map B : T→ S be given by

B(τ) = sτ for any τ ∈ T. In addition, for any s ∈ S we define a selection E : S → T that assigns

to each s ∈ S a unique element E(s) ∈ B−1(s). Our first goal is to show

P

(
sup
s∈S

sup
τ∈B−1(s)

|G0(τ)−G0(E(s))| = 0

)
= 1, (E.5)

and to this end we fix ε, η > 0, and note that since G0 is tight by Assumption 3.1(ii) we obtain

by Lemma 1.3.8 in van der Vaart and Wellner (1996) that Ĝn is asymptotically tight. Thus, since

G0 is Gaussian, Theorem 1.5.7 in van der Vaart and Wellner (1996) implies that for any ε, η > 0

there exists a δ(ε, η) > 0 such that

lim sup
n→∞

P

(
sup

τ1,τ2:‖sτ1−sτ2‖P,2>δ(ε,η)
|Ĝn(τ1)− Ĝn(τ2)| > ε

)
< η. (E.6)

Moreover, since ‖sE(s) − sτ‖P,2 = 0 for any τ ∈ B−1(s), by the Portmanteau Theorem, see e.g.
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Theorem 1.3.4(ii) in van der Vaart and Wellner (1996), we obtain

P

(
sup
s∈S

sup
τ∈B−1(s)

|G0(τ)−G0(E(s))| > ε

)
≤ P

(
sup

τ1,τ2:‖sτ1−sτ2‖P,2>δ(ε,η)
|G0(τ1)−G0(τ2)| > ε

)
< η. (E.7)

In particular, since ε, η > 0 were arbitrary, we conclude that (E.5) holds by result (E.7) and the

monotone convergence theorem.

Next, define a map Υ : `∞(T)→ `∞(S) to be given by Υ(f)(s) = f(E(s)) for any f ∈ `∞(T),

and note that Υ is linear and continuous. Thus, setting S0 = Υ(G0), we note S0 is a tight Gaussian

process on `∞(S), which by Assumption 3.1(i) satisfies

E[S0(s1)S0(s2)] =

∫
s1s2dP (E.8)

for any s1, s2 ∈ S. Similarly, let Sg ∈ `∞(S) be given by Sg ≡ Υ(∆g) and note that

Sg(s) = ∆g(E(s)) =

∫
gsE(s)dP =

∫
gsdP (E.9)

for any s ∈ S. Further note that by Lemma 1.5.9 in van der Vaart and Wellner (1996) and

Gaussianity of G0, T is totally bounded under the semimetric d(τ1, τ2) ≡ ‖sτ1 − sτ2‖P,2 and the

sample paths of G0 are almost surely uniformly continuous with respect to d(·, ·). It follows that

S0 is almost surely uniformly continuous on S with respect to ‖ · ‖P,2, which implies its sample

paths almost surely admit a unique extension to S̄ for S̄ the closure of S under ‖ · ‖P,2, and thus

we may view S0 as an element of the space

C(S̄) ≡ {S : S̄ → R that are continuous under ‖ · ‖P,2}. (E.10)

Moreover, since T being totally bounded under d(·, ·) implies S is totally bounded under ‖ · ‖P,2, it

follows that S̄ is compact under ‖ · ‖P,2. Since S0 is Radon by Theorem A.3.11 in Bogachev (1998),

we can conclude from (E.8) and (E.9), and Lemma E.4 (below) that Sg belongs to the support of

S0. In particular, we conclude for any ε > 0 that

0 < P (‖Sg − S0‖∞ > ε) = P (‖Υ(∆g)−Υ(G0)‖∞ > ε) = P (‖∆g −G0‖∞ > ε) (E.11)

where the first equality follows by definition of Υ : `∞(T) → `∞(S), and the second equality is

implied by (E.7) and ∆g(τ) = Υ(∆g)(s) for any τ ∈ B−1(s). Thus, since ε > 0 was arbitrary, we

conclude from (E.11) that ∆g is in the support of G0.

Lemma E.4. Let Assumption 2.1(i) hold, S ⊂ L2
0(P ) be compact under ‖ ·‖P,2, for any g ∈ L2

0(P )

let Sg : S → R be given by Sg(s) =
∫
sgdP , and define

C(S) ≡ {S : S → R is continuous under ‖ · ‖P,2}, (E.12)

which is endowed with the norm ‖S‖∞ = sups∈S |S(s)|. If S0 is a centered Radon Gaussian measure

on C(S) satisfying E[S0(s1)S0(s2)] =
∫
s1s2dP for any s1, s2 ∈ S, then it follows that Sg belongs
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to the support of S0 for any g ∈ L2
0(P ).

Proof of Lemma E.4: Fix g ∈ L2
0(P ) and note the Cauchy-Schwarz inequality yields

|Sg(s1)− Sg(s2)| ≤
∫
|g||s1 − s2|dP ≤ ‖g‖P,2‖s1 − s2‖P,2 (E.13)

for any s1, s2 ∈ S, and therefore Sg ∈ C(S). Let V̄ denote the closure of the linear span of S
in L2

0(P ) and set ΠV̄ (g) to equal the metric projection of g onto V̄ . For any s ∈ S, then define

SΠV̄ (g) : S → R by SΠV̄ (g)(s) =
∫
{ΠV̄ (g)}sdP and note that

Sg(s) =

∫
gsdP =

∫
{ΠV̄ (g)}sdP = SΠV̄ (g)(s). (E.14)

Moreover, since ΠV̄ (g) ∈ V̄ , it follows there is a sequence sequence {gk}∞k=1 such that

lim
k→∞

‖gk −ΠV̄ (g)‖P,2 = 0, (E.15)

where each gk satisfies for some {αj,k, sj,k}kj=1 with (αj,k, sj,k) ∈ R× S the relation

gk =

k∑
j=1

αj,ksj,k. (E.16)

Defining Sgk : S → R by Sgk(s) =
∫
gksdP , we then conclude from results (E.14) and (E.15)

together with the Cauchy-Schwarz inequality that

lim
k→∞

‖Sgk − Sg‖∞ = lim
k→∞

‖Sgk − SΠV̄ (g)‖∞ ≤ lim
k→∞

sup
s∈S

∫
|s||gk −ΠV̄ (g)|dP

≤ sup
s∈S
‖s‖P,2 × lim

k→∞
‖gk −ΠV̄ (g)‖P,2 = 0, (E.17)

where in the final equality we exploited that sups∈S ‖s‖P,2 < ∞ since S is compact under ‖ · ‖P,2
by hypothesis. In particular, since the topological support of S0 is a closed subset of C(S), result

(E.17) implies that to establish the Lemma it suffices to show Sgk belongs to the support of S0 for

all k. To this end, we let ca(S) denote the set of finite signed Borel (w.r.t. ‖ · ‖P,2) measures on S,

and note that by Theorem 14.15 in Aliprantis and Border (2006), it follows ca(S) is the dual space

of C(S). Next, for any k we define a measure νk ∈ ca(S) by setting for each Borel set A ⊆ C(S)

νk(A) =
k∑
j=1

αj,k1{sj,k ∈ A}. (E.18)

Following the notation in Bogachev (1998), for any k we additionally introduce the linear map

R(νk) : ca(S)→ R which for any µ ∈ ca(S) is given by

R(νk)(µ) = E[{
∫

S0(s)νk(ds)}{
∫

S0(s)µ(ds)}]. (E.19)

By results (E.18) and (E.19), Fubini’s theorem, see e.g. Corollary 3.4.2 in Bogachev (2007), and
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E[S0(s1)S0(s2)] =
∫
s1s2dP for any s1, s2 ∈ S we then obtain

R(νk)(µ) = E[{
k∑
j=1

αj,kS0(sj,k)}{
∫

S0(s)µ(ds)}]

=

∫
E[{

k∑
j=1

αj,kS0(sj,k)}S0(s)]µ(ds) =

∫
Sgk(s)µ(ds), (E.20)

where the last equality follows from (E.16). Result (E.20) implies we may identify the linear map

R(νk) : ca(S)→ R with Sgk , and therefore Theorem 3.2.3 in Bogachev (1998) implies Sgk is in the

Cameron-Martin space of S0. However, by Theorem 3.6.1 in Bogachev (1998) the Cameron-Martin

space of S0 is a subset of its support, and hence we conclude Sgk is in the support of S0. The

Lemma then follows from (E.17).

Lemma E.5. Let G0 be a centered Gaussian measure on a separable Banach space B and 0 6=
∆ ∈ B belong to the support of G0. Further suppose Ψ : B → R+ is continuous, convex and

nonconstant, and satisfies Ψ(0) = 0, Ψ(b) = Ψ(−b) for all b ∈ B, and {b ∈ B : Ψ(b) ≤ t} is

bounded for any 0 < t <∞. For any t > 0 it then follows that

P (Ψ(G0 + ∆) < t) < P (Ψ(G0) < t).

Proof of Lemma E.5: Let ‖ · ‖B denote the norm of B, fix t > 0, and define

C ≡ {b ∈ B : Ψ(b) < t}. (E.21)

For B∗ the dual space of B let ‖ · ‖B∗ denote its norm, and νC : B∗ → R be given by

νC(b∗) = sup
b∈C

b∗(b), (E.22)

which constitutes the support functional of C. Then note for any b∗ ∈ B∗ we have

νC(−b∗) = sup
b∈C
−b∗(b) = sup

b∈C
b∗(−b) = sup

b∈−C
b∗(b) = νC(b∗), (E.23)

due to C = −C since Ψ(b) = Ψ(−b) for all b ∈ B. Moreover, note that 0 ∈ C since Ψ(0) = 0 < t,

and hence there exists a M0 > 0 such that {b ∈ B : ‖b‖B ≤ M0} ⊆ C by continuity of Ψ. Thus,

by definition of ‖ · ‖B∗ we obtain for any b∗ ∈ B∗ that

νC(b∗) = sup
b∈C

b∗(b) ≥ sup
‖b‖B≤M0

b∗(b) = M0 × sup
‖b‖B≤1

|b∗(b)| = M0‖b∗‖B∗ . (E.24)

Analogously, note that by assumption M1 ≡ supb∈C ‖b‖B <∞, and thus for any b∗ ∈ B∗

νC(b∗) = sup
b∈C

b∗(b) ≤ ‖b∗‖B∗ × sup
b∈C
‖b‖B = M1‖b∗‖B∗ . (E.25)

We next aim to define a norm on B under which C is the open unit sphere. To this end, recall
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that the original norm ‖ · ‖B on B may be written as

‖b‖B = sup
‖b∗‖B∗=1

b∗(b), (E.26)

see for instance Lemma 6.10 in Aliprantis and Border (2006). Similarly, instead define

‖b‖B,C ≡ sup
‖b∗‖B∗=1

b∗(b)

νC(b∗)
, (E.27)

and note that: (i) ‖b1 + b2‖B,C ≤ ‖b1‖B,C + ‖b2‖B,C for any b1, b2 ∈ B by direct calculation, (ii)

‖αb‖B,C = |α|‖b‖B,C for any α ∈ R and b ∈ B by (E.23) and (E.27), and (iii) results (E.24),

(E.25), (E.26), and (E.27) imply that for any b ∈ B

M0‖b‖B,C ≤ ‖b‖B ≤M1‖b‖B,C (E.28)

which establishes ‖b‖B,C = 0 if an only if b = 0, and hence we conclude ‖ ·‖B,C is indeed a norm on

B. In fact, (E.28) implies that the norms ‖ · ‖B and ‖ · ‖B,C are equivalent, and hence B remains

a separable Banach space and its Borel σ-algebra unchanged when endowed with ‖ · ‖B,C in place

of ‖ · ‖B.

Next, note that the continuity of Ψ implies C is open, and thus for any b0 ∈ C there is an ε > 0

such that and {b ∈ B : ‖b− b0‖B ≤ ε} ⊂ C. We then obtain

νC(b∗) ≥ sup
‖b−b0‖B≤ε

b∗(b) = sup
‖b‖B≤1

{b∗(b0) + εb∗(b)} = b∗(b0) + ε‖b∗‖B∗ , (E.29)

where the final equality follows as in (E.24). Thus, from (E.25) and (E.29) we conclude 1−ε/M1 ≥
b∗(b0)/νC(b∗) for all b∗ with ‖b∗‖B∗ = 1, and hence we conclude

C ⊆ {b ∈ B : ‖b‖B,C < 1}. (E.30)

Suppose on the other hand that ‖b0‖B,C < 1, and note (E.27) implies for some δ > 0

b∗(b0) < νC(b∗)(1− δ) (E.31)

for all b∗ ∈ B∗ with ‖b∗‖B∗ = 1. Setting η ≡ δM0 and arguing as in (E.29) then yields

sup
‖b∗‖B∗=1

sup
‖b−b0‖B≤η

{b∗(b)− νC(b∗)} = sup
‖b∗‖B∗=1

{b∗(b0) + η‖b∗‖B∗ − νC(b∗)}

< sup
‖b∗‖B∗=1

{η − νC(b∗)δ} = sup
‖b∗‖B∗=1

δ(M0 − νC(b∗)) ≤ 0, (E.32)

where the first inequality follows from (E.31), the second equality by definition of η, and the final

inequality follows from (E.24). Since C is convex by hypothesis, (E.32) and Theorem 5.12.5 in

Luenberger (1969) imply {b ∈ B : ‖b − b0‖B ≤ η} ⊆ C̄. We conclude b0 is in the interior of C̄,

and since C is convex and open, Lemma 5.28 in Aliprantis and Border (2006) yields that b0 ∈ C.

Thus, we can conclude that

{b ∈ B : ‖b‖B,C < 1} ⊆ C, (E.33)
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which together with (E.30) yields C = {b ∈ B : ‖b‖B,C < 1}. Therefore, B being separable under

‖ · ‖B,C , 0 6= ∆ being in the support of G0 by hypothesis, and Corollary 2 in Lewandowski et al.

(1995) finally enable us to derive

P (Ψ(G0 + ∆) < t) = P (G0 + ∆ ∈ C) < P (G0 ∈ C) = P (Ψ(G0) < t), (E.34)

which establishes the claim of the Lemma.

Lemma E.6. Suppose Assumption 5.1 holds, f : X→ R is bounded, and let θ̂n : {Xi}ni=1 → R be

an estimator of
∫
fdP . If θ̂n is such that for any path t 7→ Pt,g ∈ P

√
n{θ̂n −

∫
fdP1/

√
n,g}

Ln,g→ Zg (E.35)

for some tight law Zg, then (E.35) holds for any path t 7→ Pt,g ∈ M with g ∈ T̄ (P ). Moreover, if

a sequence {gj}∞j=1 ⊆ T (P ) satisfies ‖gj − g0‖P,2 = o(1) for some g0 ∈ T̄ (P ), then it follows that

Zgj → Zg0 in the weak topology.

Proof of Lemma E.6: Fix a score g0 ∈ T̄ (P ), select a sequence {gj}∞j=1 ⊆ T (P ) with ‖gj −
g0‖P,2 = o(1), and set ∆j to equal

∆j ≡ 2{1− exp{−1

4
‖g0 − gj‖P,2}}1/2 (E.36)

and note ∆j = o(1). We further observe that since f : X→ R is bounded, we obtain

|
√
n{
∫
fdP1/

√
n,g −

∫
fdP} −

∫
fgdP | ≤ ‖f‖∞

∫
|g
2
dP 1/2(dP

1/2

1/
√
n,g
− dP 1/2)|

+ ‖f‖∞
∫
|
√
n{dP 1/2

1/
√
n,g
− dP 1/2} − g

2
dP 1/2|(dP 1/2

1/
√
n,g

+ dP 1/2) (E.37)

for any path t 7→ Pt,g. In particular, result (E.37) and the Cauchy-Schwarz inequality implies

t 7→
∫
fdPt,g has pathwise derivative

∫
fgdP at t = 0. Hence, since gj ∈ T (P ) implies there exists

a path t 7→ Pt,gj ∈ P such that (E.35) holds, we obtain

√
n{θ̂n −

∫
fdP1/

√
n,g0
}
Ln,gj→ Zgj +

∫
f(gj − g0)dP (E.38)

for any j by the pathwise differentiability of t 7→
∫
fdPt,g and the continuous mapping theorem.

For any continuous and bounded map F : R→ R, we then note

lim sup
n→∞

∫
F (
√
n{θ̂n −

∫
fdP1/

√
n,g0
})dP1/

√
n,g0

≤ lim sup
n→∞

∫
F (
√
n{θ̂n −

∫
fdP1/

√
n,g0
})dP1/

√
n,gj + ‖F‖∞∆j

= lim inf
n→∞

∫
F (
√
n{θ̂n −

∫
fdP1/

√
n,g0
})dP1/

√
n,gj + ‖F‖∞∆j

≤ lim inf
n→∞

∫
F (
√
n{θ̂n −

∫
fdP1/

√
n,g0
})dP1/

√
n,g0

+ 2‖F‖∞∆j (E.39)

where the inequalities follow from (E.36) and Lemma D.1, and the equality from the limit existing
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by (E.38) and F : R → R being continuous and bounded. Since ∆j = o(1), (E.39) implies the

following limit exists for any continuous and bounded F : R→ R

L(F ) ≡ lim
n→∞

∫
F (
√
n{θ̂n −

∫
fdP1/

√
n,g0
})dP1/

√
n,g0

. (E.40)

In addition, for any ε > 0 there exists a j(ε) such that ∆j(ε) < ε/2 and, since Zgj(ε) is tight,

a compact set Kε such that P (Zgj(ε) +
∫
f(gj(ε) − g0)dP ∈ Kε) ≥ 1 − ε/2. For any δ > 0 let

Kδ
ε ≡ {a ∈ R : infb∈Kε ‖a − b‖ < δ}, and note Portmanteu’s Theorem, see Theorem 1.3.4(ii) in

van der Vaart and Wellner (1996), (E.38), and Lemma D.1 yield

lim inf
n→∞

P1/
√
n,g0

(
√
n{θ̂n −

∫
fdP1/

√
n,g0
} ∈ Kδ

ε )

≥ lim inf
n→∞

P1/
√
n,gj(ε)

(
√
n{θ̂n −

∫
fdP1/

√
n,g0
} ∈ Kδ

ε )−∆j(ε)

≥ P (Zgj(ε) +

∫
(gj(ε) − g0)dP ∈ Kε)−∆j(ε)

≥ 1− ε. (E.41)

Since ε was arbitrary, result (E.41) implies that the law of
√
n{θ̂n −

∫
fdP1/

√
n,g0
} under Pn

1/
√
n,g0

is asymptotically tight. Prohorov’s theorem, see e.g. Theorem 1.3.9 in van der Vaart and Wellner

(1996), then yields that every subsequence of
√
n{θ̂n −

∫
fdP1/

√
n,g0
} has a further subsequence

that converges in distribution under Pn
1/
√
n,g0

. However, in combination with result (E.40), these

observations imply that
√
n{θ̂n−

∫
fdP1/

√
n,g0
} must itself converge in distribution under Pn

1/
√
n,g0

,

and we denote the limit law by Zg0 :

√
n{θ̂n −

∫
fdP1/

√
n,g0
}
Ln,g0→ Zg0 . (E.42)

Moreover, for any continuous and bounded F : R→ R, (E.38), (E.39), (E.42) imply

E[F (Zg0)]− ‖F‖∞∆j ≤ E[F (Zgj +

∫
f(gj − g0)dP )] ≤ E[F (Zg0)] + ‖F‖∞∆j . (E.43)

Since ∆j = o(1), it therefore follows from (E.43) that Zgj +
∫
f(gj − g0)dP → Zg0 in the weak

topology. However, by the Cauchy-Schwarz inequality and ‖gj − g0‖P,2 = o(1) we can further

conclude that
∫
f(gj − g0)dP = o(1), and thus by the continuous mapping theorem we obtain that

Zgj → Zg0 in the weak topology.

Appendix F - Proofs of Main Results in Section 4

In this Appendix we first provide the proofs for Theorem 4.1, Lemma 4.1, Lemma 4.2, and

Corollary 4.1. We then establish a theorem (Theorem F.1) that includes Theorem 4.2 as a special

case for models defined by sequential moment restrictions.

Lemma F.1. Let F ⊂ L2
0(P ) be such that |f | ≤ F for all f ∈ F and some F ∈ L2(P ). Then, for
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any path t 7→ Pt,g ∈M satisfying
∫
F 2dPt,g = O(1) it follows that

lim
t↓0

sup
f∈F
|
∫
f

t
{dPt,g − dP} −

∫
fgdP | = 0.

Proof of Lemma F.1: Since t 7→ Pt,g is a path, the Cauchy-Schwarz inequality implies

lim
t↓0

sup
f∈F

∣∣∫ f
[1
t
{dP 1/2

t,g − dP 1/2} − g

2
dP 1/2

](
dP

1/2
t,g + dP 1/2

)∣∣ = 0, (F.1)

where we exploited that F ∈ L2(P ) and
∫
F 2dPt,g = O(1) by hypothesis. Next, for any M < ∞

we obtain by the Cauchy-Schwarz and triangle inequalities that

sup
f∈F
|
∫
fgdP 1/2(dP

1/2
t,g − dP 1/2)| ≤M{

∫
g2dP}1/2{

∫
(dP

1/2
t,g − dP )1/2)2}1/2

+ {
∫
|F |>M

g2dP}1/2{
∫
F 2(dP

1/2
t,g − dP 1/2)2}1/2. (F.2)

Therefore, result (F.2), t 7→ Pt,g being a path,
∫
F 2dPt,g = O(1) by hypothesis, g ∈ L2

0(P ), and

P (|F (X)| > M) converging to zero as M diverges to infinity, yields

lim
t↓0

sup
f∈F
|
∫
fgdP 1/2(dP

1/2
t,g − dP 1/2)|

≤ lim
M↑∞
{
∫
|F |>M

g2dP}1/2 × lim
t↓0
{
∫
F 2(dP

1/2
t,g − dP 1/2)2}1/2 = 0. (F.3)

Hence, results (F.1) and (F.3) and the triangle inequality together establish

lim
t↓0

sup
f∈F
|1
t

∫
f(dPt,g − dP )−

∫
fgdP | ≤ lim

t↓0
sup
f∈F
|1
2

∫
fgdP 1/2(dP

1/2
t,g − dP 1/2)|

+ lim
t↓0

sup
f∈F
|
∫
f{1

t
(dP

1/2
t,g − dP 1/2)− 1

2
gdP 1/2}(dP 1/2

t,g + dP 1/2)| = 0, (F.4)

and therefore the claim of the Lemma follows.

Proof of Theorem 4.1: Consider any path t 7→ Pt,g satisfying Condition A, and an arbitrary

bounded function ψj ∈ L2(Wj) for any 1 ≤ j ≤ J . Then from P satisfying (26) by Assumption

4.1(i) and t 7→ Pt,g satisfying Condition A(i) we obtain

0 =
1

t
{
∫
ρj(·, ht)ψjdPt,g −

∫
ρj(·, hP )ψjdP}

=
1

t
{
∫
ρj(·, ht)ψj(dPt,g − dP ) +

∫
(ρj(·, ht)− ρj(·, hP ))ψjdP}. (F.5)

Furthermore, since the path t 7→ Pt,g satisfies Condition A(iii) we obtain by Lemma F.1

lim
t↓0

1

t

∫
ρj(·, ht)ψj(dPt,g − dP ) = lim

t↓0

∫
ρj(·, ht)ψjgdP =

∫
ρj(·, hP )ψjgdP (F.6)

where the final equality follows by Assumption 4.1(iii), the Cauchy-Schwarz inequality, ψj being
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bounded, and ‖ht − hP ‖H = o(1) by Condition A(ii). On the other hand, since mj(Wj , ·) : H →
L2(Wj) is Fréchet differentiable and ‖t−1(ht − h) − ∆‖H = o(1) as t ↓ 0 by Condition A(ii) for

some ∆ ∈ H, we can in addition conclude that

lim
t↓0

1

t
E[ψj(Wj){mj(Wj , ht)−mj(Wj , hP )}] = E[ψj(Wj)∇mj(Wj , hP )[∆]]. (F.7)

Therefore, combining results (F.5), (F.6), and (F.7) we can obtain that any path t 7→ Pt,g satisfying

Condition A must have a score g ∈ L2
0(P ) satisfying the restriction

E[{
J∑
j=1

ψj(Wj)ρj(Z, hP )}g(X)] = −E[{
J∑
j=1

ψj(Wj)∇mj(Wj , hP )[∆]}], (F.8)

for any collection (ψ1, . . . , ψJ) ∈
⊗J

j=1 L
2(Wj) of bounded functions. However, since the set of

bounded functions of Wj is dense in L2(Wj) for any 1 ≤ j ≤ J , the Cauchy Schwarz inequality and

E[ρ2
j (Z, hP )|Wj ] being bounded almost surely by Assumption 4.2(i) imply that (F.8) actually holds

for all (ψ1, . . . , ψJ) ∈
⊗J

j=1 L
2(Wj). In particular, we note that if we select (ψ1, . . . , ψJ) ∈ R̄⊥,

then the right hand side of (F.8) is equal to zero, and therefore, result (F.8) implies the set inclusion

{f ∈ L2
0(P ) : f =

J∑
j=1

ρj(Z, hP )ψj(Wj) for some (ψ1, . . . , ψJ) ∈ R̄⊥} ⊆ T̄ (P )⊥. (F.9)

In order to establish the Theorem we therefore only need to show the reverse inclusion in (F.9).

As a preliminary result towards this goal, we first aim to establish that

{f ∈ L2
0(P ) : f =

J∑
j=1

ρj(Z, hP )ψj(Wj) for some (ψ1, . . . , ψJ) ∈ R̄⊥} = V̄ ∩ T̄ (P )⊥. (F.10)

To this end, note that by result (F.9) and the definition of V̄ we obtain the set inclusion

{f ∈ L2
0(P ) : f =

J∑
j=1

ρj(Z, hP )ψj(Wj) for some (ψ1, . . . , ψJ) ∈ R̄⊥} ⊆ V̄ ∩ T̄ (P )⊥. (F.11)

Next, we note that since R̄ is a closed linear subspace of
⊗J

j=1 L
2(Wj), Theorem 3.4.1 in Luenberger

(1969) implies we may decompose
⊗J

j=1 L
2(Wj) = R̄ ⊕ R̄⊥. For any (f1, . . . , fJ) ∈

⊗J
j=1 L

2(Wj)

we in turn denote its projection onto R̄ and R̄⊥ as (ΠRf1, . . . ,ΠRfJ) and (ΠR⊥f1, . . . ,ΠR⊥fJ)

respectively. Selecting an arbitrary f ∈ V ∩ T̄ (P )⊥, which by definition of V must be of the form

f =
∑J

j=1 ρj(·, hP )ψfj for some (ψf1 , . . . , ψ
f
J) ∈

⊗J
j=1 L

2(Wj), we then observe that result (F.8)

implies that for any path t 7→ Pt,g satisfying Condition A we must have the equality

E[{
J∑
j=1

ψfj (Wj)ρj(Z, hP )}g(X)] = −E[

J∑
j=1

{ΠRψfj (Wj)}∇mj(Wj , hP )[∆]]. (F.12)

However, by Assumption 4.1(iv), if (ΠRψ
f
1 , . . . ,ΠRψ

f
J) 6= 0 (in

⊗J
j=1 L

2(Wj)), then there is a path
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t 7→ Pt,g satisfying Condition A with ‖t−1(ht − hP )−∆‖H = 0 and

E[

J∑
j=1

{ΠRψfj (Wj)}∇mj(W,hP )[∆]] 6= 0. (F.13)

Therefore, if f ∈ V is such that (ΠRψ
f
1 , . . . ,ΠRψ

f
J) 6= 0, then results (F.12) and (F.13) establish

that there exists a path t 7→ Pt,g satisfying Condition A and for which

E[{
J∑
j=1

ψfj (Wj)ρj(Z, hP )}g(X)] = −E[
J∑
j=1

{ΠRψfj (Wj)}∇mj(W,hP )[∆]] 6= 0, (F.14)

thus violating that f ∈ V ∩ T̄ (P )⊥. In particular it follows that any f ∈ V ∩ T̄ (P )⊥ satisfies

(ΠRψ
f
1 , . . . ,ΠRψ

f
J) = 0, and hence from

⊗J
j=1 L

2(Wj) = R̄ ⊕ R̄⊥ we obtain

V ∩ T̄ (P )⊥ ⊆ {f ∈ L2
0(P ) : f =

J∑
j=1

ρj(Z, hP )ψj(Wj) for some (ψ1, . . . , ψJ) ∈ R̄⊥}. (F.15)

Next, let f̄ ∈ V̄ be arbitrary, and note that ‖f̄ −
∑J

j=1 ρj(·, hP )ψj‖P,2 diverges to infinity as∑J
j=1 ‖ψj‖P,2 diverges to infinity due to Assumption 4.2(ii). Thus, we obtain

0 = inf
(ψ1,...,ψJ )∈

⊗J
j=1 L

2(Wj)
‖f̄ −

J∑
j=1

ρj(·, hP )ψj‖P,2

= min
(ψ1,...,ψJ )∈

⊗J
j=1 L

2(Wj)
‖f̄ −

J∑
j=1

ρj(·, hP )ψj‖P,2, (F.16)

where the first equality holds because f̄ ∈ V̄, and attainment in the second equality is implied by

Proposition 38.14 in Zeidler (1984). However, attainment in (F.16) implies that f̄ ∈ V, and hence

since f̄ ∈ V̄ was arbitrary we can conclude V̄ = V. The claim in (F.10) then holds by result (F.11)

and result (F.15).

In order to establish the Theorem we next aim to show Assumption 4.1 implies

V̄⊥ ⊆ T̄ (P ). (F.17)

Selecting an arbitrary g ∈ V̄⊥ ∩ L∞(P ), we define a path with density (w.r.t. P ) equal

dPt,g
dP

= 1 + tg, (F.18)

which we note implies Pt,g is indeed a probability measure for t small enough since g ∈ L∞(P ).

The score of such a path is equal to g by direct calculation. Moreover, for any ψj ∈ L2(Wj) and

1 ≤ j ≤ J we have that ρj(·, hP )ψj ∈ V implies∫
ρj(·, hP )ψjdPt,g = E[ρj(Z, hP )(1 + tg(X))ψj(Wj)] = 0 (F.19)

where we exploited that g ∈ V̄⊥ and E[ρj(Z, hP )|Wj ] = 0. Since ψj ∈ L2(Wj) was arbitrary,

17



(F.19) in fact implies the path t 7→ Pt,g satisfies Condition A(i) with ht = hP for all t, and hence

also Conditions A(ii)-(iii). We conclude that t 7→ Pt,g satisfies Condition A, and as a result that

g ∈ T̄ (P ). Since g ∈ L∞(P ) ∩ V̄⊥ was arbitrary, it follows that L∞(P ) ∩ V̄⊥ ⊆ T̄ (P ) and by

Assumption 4.1(v) that (F.17) indeed holds. Thus, we further obtain from result (F.17) that

T̄ (P )⊥ ⊆ (V̄⊥)⊥ and since (V̄⊥)⊥ = V̄ by Theorem 3.4.1 in Luenberger (1969), we can conclude

that T̄ (P )⊥ ⊆ V̄. The theorem therefore follows from result (F.10).

Proof of Lemma 4.1: Recall that the map ∇m(W,hP ) : H→
⊗J

j=1 L
2(Wj) equals

∇m(W,hP )[h] ≡ (∇m1(W1, hP )[h], . . . ,∇mJ(WJ , hP )[h])′ (F.20)

which is linear and continuous by the stated assumption that mj(Wj , ·) : H → L2(Wj) is Fréchet

differentiable at hP for 1 ≤ j ≤ J . Since
⊗J

j=1 L
2(Wj) is its own dual, the adjoint ∇m(W,hP )∗ of

the map ∇m(W,hP ) has domain
⊗J

j=1 L
2(Wj). Moreover, because ∇mj(Wj , hP )∗ is the adjoint

of ∇mj(Wj , hP ), it follows that

∇m(W,hP )∗[f ] =
J∑
j=1

∇mj(Wj , hP )∗[fj ] (F.21)

for any f = (f1, . . . , fJ) ∈
⊗J

j=1 L
2(Wj). Letting N (∇m(W,hP )∗) denote the null space of

∇m(W,hP )∗ :
⊗J

j=1 L
2(Wj) → H∗, and noting that R (as defined in (29)) equals the range

of ∇m(W,hP ) : H →
⊗J

j=1 L
2(Wj), we obtain by Theorem 6.6.1 in Luenberger (1969) that for

[R]⊥ the orthocomplement of R in
⊗J

j=1 L
2(Wj) we have

[R]⊥ = N (∇m(W,hP )∗). (F.22)

Furthermore, since [R]⊥ = R̄⊥ by continuity, and R̄ =
⊗J

j=1 L
2(Wj) if and only if R̄⊥ = {0},

Equation (F.22) yields R̄ =
⊗J

j=1 L
2(Wj) if and only if N (∇m(W,hP )∗) = {0}, which together

with (F.21) establishes the Lemma.

Proof of Lemma 4.2: Since each ∇mj(Wj , hP ) : H → L2(Wj) is linear and H =
⊗J

j=1 Hj , for

each j there are linear maps ∇mj,k(Wj , hP ) : Hk → L2(Wj) such that

∇mj(Wj , hP )[h] =
J∑
k=1

∇mj,k(Wj , hP )[hk] (F.23)

for all (h1, . . . , hJ) = h ∈ H. Moreover, since ∇mj,k(Wj , hP )[hk] = 0 for any hk ∈ Hk whenever

k > j by hypothesis, the decomposition in (F.23) implies that

∇mj(Wj , hP )[h] =

j∑
k=1

∇mj,k(Wj , hP )[hk]. (F.24)

We first suppose that R̄j = L2(Wj) for all j and aim to show R̄ =
⊗J

j=1 L
2(Wj). To this end,

let (f1, . . . , fJ) ∈
⊗J

j=1 L
2(Wj) and ε > 0 be arbitrary. Then observe that

‖∇m1,1(W1, hP )[h∗1]− f1‖P,2 < ε (F.25)
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for some h∗1 ∈ H1 since R̄1 = L2(W1). For 2 ≤ j ≤ J we may then exploit that R̄j = L2(Wj) to

inductively select h∗j ∈ Hj to satisfy the inequality

‖∇mj,j(Wj , hP )[h∗j ]− (fj −
j−1∑
k=1

∇mj,k(Wj , hP )[h∗k])‖P,2 < ε. (F.26)

Therefore, setting (h∗1, . . . , h
∗
J) = h∗ ∈ H and employing (F.24) and (F.26) we obtain

J∑
j=1

‖∇mj(Wj , hP )[h∗]− fj‖P,2 < Jε (F.27)

which, since (f1, . . . , fJ) ∈
⊗J

j=1 L
2(Wj) and ε > 0 were arbitrary, implies that R̄ =

⊗J
j=1 L

2(Wj).

We next suppose R̄ =
⊗J

j=1 L
2(Wj) and aim to show R̄j = L2(Wj) for all j. First note that by

(F.24), it is immediate that R̄ =
⊗J

j=1 L
2(Wj) implies R̄1 = L2(W1). Thus, we focus on showing

R̄j = L2(Wj) for all j > 1. To this end, we select an arbitrary 1 < k∗ ≤ J and g∗ ∈ L2(Wk∗),

and define (f∗1 , . . . , f
∗
J ) to satisfy f∗j = g∗ if j = k∗ and f∗j = 0 if j 6= k∗. Next, note that since

R̄ =
⊗J

j=1 L
2(Wj) by hypothesis, there is a sequence (h1n, . . . , hJn) = hn ∈ H such that

lim
n→∞

J∑
j=1

‖∇mj(Wj , hP )[hn]− f∗j ‖P,2 = 0. (F.28)

In particular, since k∗ > 1, result (F.24) and hn satisfying (F.28) together yield that

lim
n→∞

‖∇m1,1(W1, hP )[h1n]‖P,2 = 0. (F.29)

Moreover, employing (F.24) and requirement (34) we obtain for any 2 ≤ j ≤ J that

‖∇mj,j(Wj , hP )[hjn]− f∗j ‖P,2

≤ ‖∇mj(Wj , hP )[hn]− f∗j ‖P,2 + C

j−1∑
k=1

‖∇mk,k(Wk, hP )[hkn]‖P,2. (F.30)

Evaluating (F.30) at any j < k∗ and proceeding inductively from (F.29) then implies

lim
n→∞

‖∇mj,j(Wj , hP )[hjn]‖P,2 = 0 (F.31)

since f∗j = 0 for all j < k∗. Finally evaluating (F.30) at j = k∗ and employing (F.31) implies

f∗k∗ = g∗ ∈ R̄k∗ . Since 1 < k∗ ≤ J and g∗ ∈ L2(Wk∗) were arbitrary, it follows that R̄j = L2(Wj)

for all j. Thus, we conclude R̄ =
⊗J

j=1 L
2(Wj) if and only if R̄j = L2(Wj) for all 1 ≤ j ≤ J .

Finally, let ∇mj,j(Wj , hP )∗ : L2(Wj) → H∗j denote the adjoint of ∇mj,j(Wj , hP ) : Hj → L2(Wj).

Theorem 6.6.1 in Luenberger (1969) then implies that R̄⊥j = {h ∈ L2(Wj) : ∇mj,j(Wj , hP )[h] = 0}.
Therefore, we further obtain that R̄j = L2(Wj) for all 1 ≤ j ≤ J if and only if {h ∈ L2(Wj) :

∇mj,j(Wj , hP )[h] = 0} = {0} for all 1 ≤ j ≤ J .

Proof of Corollary 4.1: Notice that the conditions of Lemma 4.2 are trivially satisfied. Therefore,

Lemma 4.2 implies that R̄ =
⊗J

j=1 L
2(Wj) if and only if R̄j = L2(Wj) for all 1 ≤ j ≤ J , where
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R̄j denotes the closure of Rj in L2(Wj), and Rj is given by

Rj = {f ∈ L2(Wj) : f = dj(Wj)hj(Wj) for some hj ∈ Hj}. (F.32)

Hence, the claim of the Corollary follows if for all 1 ≤ j ≤ J , R̄j = L2(Wj) if and only Hj is

dense in L2(Wj) and P (dj(Wj) 6= 0) = 1. The conditions of the Corollary are equivalent for all

1 ≤ j ≤ J , and therefore without loss of generality we focus on the case j = 1. To this end, we

first suppose R̄1 = L2(W1) and define f1 ∈ L2(W1) by

f1(W1) ≡ 1{d1(W1) = 0}. (F.33)

Next observe that since R̄1 = L2(W1) by hypothesis, it follows f1 ∈ R̄1 and therefore

0 = inf
h1∈H1

E[{d1(W1)h1(W1)− f1(W1)}2] ≥ E[{f1(W1)}2] = P (d1(W1) = 0), (F.34)

where in the first equality we exploited (F.32), the inequality follows from definition (F.33) implying

d1(W1)f1(W1) = 0 almost surely, and the final equality results from (F.33). Hence, we conclude

that if R̄1 = L2(W1), then P (d1(W1) 6= 0) = 1. Moreover, for any h1 ∈ H1 ⊆ L2(W1) we have

d1h1 ∈ L2(W1) since d1 is bounded, and thus

0 = inf
h1∈H1

E[{d1(W1)h1(W1)− d1(W1)f(W1)}2]

= min
h1∈H̄1

E[{d1(W1)}2{h1(W1)− f(W1)}2], (F.35)

for any f ∈ L2(W1), and where the first equality follows from R̄1 = L2(W1), while the final equality

holds for H̄1 the closure of H1 in L2(W1), and attainment of the infimum is guaranteed by the

criterion being convex and diverging to infinity as ‖h1‖P,2 ↑ ∞ and Proposition 38.15 in Zeidler

(1984). Thus we conclude from (F.34) and (F.35) that for any f ∈ L2(W1) there exists a h1 ∈ H̄1

such that P (f(W1) = h1(W1)) = 1. Since H1 ⊆ L2(W1) by hypothesis, we conclude that in fact

H̄1 = L2(W1).

We next suppose instead that H̄1 = L2(W1) and P (d1(W1) 6= 0) = 1 and aim to establish

that R̄1 = L2(W1). First, since ∇m1(W1, hP )[h] = d1h1 for any (h1, . . . , hJ) = h ∈ H and d1

is bounded, we may view ∇m1(W1, hP ) as a map from H̄1 into L2(W1) by, with some abuse of

notation, setting ∇m1(W1, hP )[h1] = d1h1 for any h1 ∈ H̄1 \ H1 as well. Furthermore, since

H̄1 = L2(W1) by hypothesis, direct calculation reveals that ∇m1(W1, hP ) : L2(W1) → L2(W1)

is self adjoint. Thus, Theorem 6.6.3 in Luenberger (1969) implies R̄1 = L2(W1) if and only if

∇m1(W1, hP ) : L2(W1) → L2(W1) is injective. However, injectivity of ∇m1(W1, hP ) : L2(W1) →
L2(W1) is equivalent to P (d1(W1) 6= 0) = 1, and therefore R̄1 = L2(W1).

Previously, Ai and Chen (2012) derived the semiparametric efficiency bound for a general class

of “smooth” functionals of P defined by nonparametric sequential moment restriction model (31).

The next Theorem, which is a restatement of Theorem 4.2, exploits their results and our Corollary

3.1 to obtain an alternative characterization of local just identification of P by model (31). In the

following we let Ω∗f denote the semiparametric efficient variance bound for estimating population

mean θf (P ) ≡
∫
fdP for f in any dense subset D of L2(P ).
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Theorem F.1. Let Assumption 4.3 hold. Then: There is a dense subset D of L2(P ) such that

Ω∗f = Var{f(X)} for all f ∈ D if and only if R̄ =
⊗J

j=1 L
2(Wj). Hence: P is locally just identified

by model (31) if and only if R̄ =
⊗J

j=1 L
2(Wj).

Proof of Theorem F.1: We let L∞(P ) ≡ {f : |f | is bounded P − a.s.}, L∞(Wj) and L∞(Z) be

the subsets of L∞(P ) depending only on Wj and Z respectively. We recall that L2(Wj) and L2(Z)

are analogously defined. In addition, we note that Assumption 4.3(i) implies that if j ≤ j′ then it

follows that

Wj = F (Wj′) (F.36)

for some measurable function F : R
dwj′ → Rdwj ; see, e.g., Theorem 20.1 in Billingsley (2008). We

define a subset Q ⊆ L2(P ) as

Q ≡
{
f : f(X) = {

J∑
j=1

ρj(Z, hP )qj(Wj) + C} a.s. for some qj ∈ L2(Wj), C ∈ R
}
, (F.37)

and Q̄ as the closure of Q under ‖ · ‖P,2. We set the desired subset D to equal D ≡ L∞(P ) \ Q̄ and

note D is a subset of L2(P ) since D ⊆ L∞(P ) ⊂ L2(P ). To establish that D is dense in L2(P ) we

let j∗ be the smallest j satisfying 1 ≤ j ≤ J and such that L2(Wj∗) is infinite dimensional – note

existence of j∗ is guaranteed by Assumption 4.3(vi). We next aim to show that

L2(Wj∗) ∩ Q̄ 6= L2(Wj∗) (F.38)

and to this end, we note that since L2(Wj∗) is infinite dimensional and L2(Wj) is finite dimensional

for all j < j∗ it follows that there exists a g ∈ L2(Wj∗) with ‖g‖P,2 > 0 and

E
[
g(Wj∗){

j∗−1∑
j=1

ρj(Z, hP )qj(Wj) + C}
]

= 0 (F.39)

for all C ∈ R and qj ∈ L2(Wj) – here if j∗ = 1 then (F.39) should be understood as just requiring

E[g(Wj∗)] = 0. On the other hand, Assumption 4.3(i) and the law of iterated expectations together

imply that for any qj ∈ L2(Wj) we have

E
[
g(Wj∗){

J∑
j=j∗

ρj(Z, hP )qj(Wj)}
]

= 0. (F.40)

Thus, (F.39) and (F.40) imply ‖f − g‖P,2 = ‖f‖P,2 + ‖g‖P,2 > 0 for any f ∈ Q̄, from which we

conclude (F.38) holds. Since L∞(Wj∗) is dense in L2(Wj∗), (F.38) further yields that there is a

g̃ ∈ L∞(Wj∗) \ Q̄ and for any f ∈ L∞(P ) and εn ↓ 0 we set

fn =

{
f if f /∈ Q̄

f + εng̃ if f ∈ Q̄
(F.41)

and note fn ∈ D ≡ L∞(P )\Q̄ and ‖fn−f‖P,2 = o(1). We conclude that D is dense in L∞(P ) with

respect to ‖ · ‖P,2 and hence also in L2(P ) since L∞(P ) is a dense subset of L2(P ) under ‖ · ‖P,2.

While we have so far avoided stating an explicit formulation for Ω∗f for ease of exposition, it
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is now necessary to characterize it for all f ∈ D. To this end, we follow Ai and Chen (2012) by

setting εJ(Z, h) ≡ ρJ(Z, h) and recursively defining

εs(Z, h) ≡ ρs(Z, h)−
J∑

j=s+1

Γs,j(Wj)εj(Z, h) (F.42)

for 1 ≤ j ≤ J − 1, and where for any 1 ≤ s < j ≤ J , the function Γs,j(Wj) is given by

Γs,j(Wj) ≡ E[ρs(Z, hP )εj(Z, hP )|Wj ]{Σj(Wj)}−1 (F.43)

Σj(Wj) ≡ E[{εj(Z, hP )}2|Wj ] (F.44)

and we note Assumptions 4.3(i)(iv)(v) and simple calculations together imply

P (η ≤ Σj(Wj) ≤M) = 1 (F.45)

for all 1 ≤ j ≤ J and some η,M ∈ (0,+∞). We further set Σf ≡ Var{f(X)} and define

Σ0 ≡ Var{f(X)−
J∑
j=1

Λj(Wj)εj(Z, hP )} (F.46)

Λj(Wj) ≡ E[f(X)εj(Z, hP )|Wj ]{Σj(Wj)}−1 (F.47)

and note: (i) Λj(Wj) ∈ L2(Wj) by (F.44), (F.45), f ∈ D ⊂ L∞(P ), and Jensen’s inequality; (ii)

Σ0 > 0 since f /∈ Q̄ and Q̄ is closed; and (iii) by direct calculation

Σ0 = Σf −
J∑
j=1

E[{Λj(Wj)}2Σj(Wj)]. (F.48)

Next, we define the maps aj(Wj , ·) : H→ L2(Wj) for any 1 ≤ j ≤ J to be given by

aj(Wj , h) ≡ E[εj(Z, h)|Wj ]. (F.49)

We further note that result (F.45) and Assumption Assumption 4.3(v) imply by arguing induc-

tively that Γs,j(Wj) ∈ L∞(Wj). Hence, it can be shown from definition (F.42) and Assumption

4.3(ii) that the maps aj(Wj , ·) are Fréchet differentiable at hP and we denote their derivatives by

∇aj(Wj , hP ) : H→ L2(Wj). Therefore, the Fisher norm of a s ∈ H is

‖s‖2w ≡
J∑
j=1

E[{Σj(Wj)}−1{∇aj(Wj , hP )[s]}2] + {Σ0}−1{E[
J∑
j=1

Λj(Wj)∇aj(Wj , hP )[s]]}2 (F.50)

(see eq. (4) in Ai and Chen (2012)), and we note ‖s‖w <∞ for any s ∈ H since ∇aj(Wj , hP )[s] ∈
L2(Wj), {Σj(Wj)}−1 ∈ L∞(Wj) by (F.45), and as argued Λj(Wj) ∈ L∞(Wj). Letting W denote
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the closure of H under ‖ · ‖w, we then obtain

{Ω∗f}−1 = inf
s∈W

{
{Σ0}−1{1 +

J∑
j=1

E[Λj(Wj)∇aj(Wj , hP )[s]]}2

+
J∑
j=1

E[{Σj(Wj)}−1{∇aj(Wj , hP )[s]}2]
}

(F.51)

by Theorem 2.1 in Ai and Chen (2012).

It is convenient for our purposes, however, to exploit the structure of our problem to further

simplify the characterization in (F.51). To this end, note that (F.50) and the Cauchy-Schwarz

inequality imply that the objective in (F.51) is continuous under ‖ · ‖w. Hence, since W is the

completion of H under ‖ · ‖w, it follows from (F.51) that

{Ω∗f}−1 = inf
s∈H

{
{Σ0}−1{1 +

J∑
j=1

E[Λj(Wj)∇aj(Wj , hP )[s]]}2

+
J∑
j=1

E[{Σj(Wj)}−1{∇aj(Wj , hP )[s]}2]
}
. (F.52)

Next, note that we may be view (∇a1(W1, hP ), . . . ,∇aJ(WJ , hP )) as a map from H onto the

product space
⊗J

j=1 L
2(Wj), and we denote the range of this map by

A ≡ {{rj}Jj=1 ∈
J⊗
j=1

L2(Wj) : for some s ∈ H, rj = ∇aj(Wj , hP )[s] for all 1 ≤ j ≤ J} (F.53)

and let Ā denote the closure of A in the product topology. Result (F.52) then implies

{Ω∗f}−1 = inf
{rj}∈Ā

{{Σ0}−1{1 +
J∑
j=1

E[Λj(Wj)rj(Wj)]}2 +
J∑
j=1

E[{Σj(Wj)}−1{rj(Wj)}2]}

= min
{rj}∈Ā

{{Σ0}−1{1 +

J∑
j=1

E[Λj(Wj)rj(Wj)]}2 +

J∑
j=1

E[{Σj(Wj)}−1{rj(Wj)}2]} (F.54)

where attainment follows from Ā being a vector space since (∇a1(W1, hP ), . . . ,∇aJ(WJ , hP )) is

linear and H is a vector space, the criterion in (F.54) being convex and diverges to infinity as∑
j ‖rj‖P,2 ↑ ∞, and Proposition 38.15 in Zeidler (1984). In particular, note that if {r∗j} ∈ Ā is

the minimizer of (F.54), then for any {δj} ∈ Ā

J∑
j=1

E[δj(Wj){{Σj(Wj)}−1r∗j (Wj) + Σ−1
0 Λj(Wj){1 +

J∑
s=1

E[Λs(Ws)r
∗
s(Ws)]}}] = 0. (F.55)

Next, we aim to solve the optimization in (F.55) under the hypothesis that Ā =
⊗J

j=1 L
2(Wj).
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In that case, (F.55) must hold for all {δj} ∈
⊗J

j=1 L
2(Wj) which implies

r∗j (Wj) = −Σ−1
0 {1 +

J∑
s=1

E[Λs(Ws)r
∗
s(Ws)]}Λj(Wj)Σj(Wj). (F.56)

It is evident from (F.56) that r∗j (Wj) = −Λj(Wj)Σj(Wj)C0 for some C0 ∈ R independent of j,

and plugging into (F.56) we solve for C0 and exploit (F.48) to find

r∗j (Wj) = −{Σf}−1Λj(Wj)Σj(Wj). (F.57)

Thus combining (F.54) and (F.57), and repeatedly exploiting (F.48) we conclude

{Ω∗f}−1 = Σ−1
0 {1− {Σf}−1

J∑
j=1

E[Λ2
j (Wj)Σj(Wj)]}2 + {Σf}−2

J∑
j=1

E[Λ2
j (Wj)Σj(Wj)]

= Σ−1
0 {1− {Σf}−1{Σf − Σ0}}2 + {Σf}−2{Σf − Σ0} = {Σf}−1, (F.58)

or equivalently Ω∗f = Σf . While (F.58) was derived while supposing Ā =
⊗J

j=1 L
2(Wj), we note

that since Ā ⊆
⊗J

j=1 L
2(Wj), the minimum in (F.54) is attained, and r∗j (Wj) = −{Σf}−1Λj(Wj)Σj(Wj)

is the unique minimizer on
⊗J

j=1 L
2(Wj), we must have

Ω∗f = Σf if and only if {−Σ−1
f Λj(Wj)Σj(Wj)}Jj=1 ∈ Ā. (F.59)

Since result (F.59) holds for all f ∈ D and Ā is a vector space, (F.47) implies

Ω∗f = Σf ∀f ∈ D if and only if {E[f(X)εj(Z, hP )|Wj ]}Jj=1 ∈ Ā ∀f ∈ D. (F.60)

Also note that if ‖fn − f‖P,2 = o(1), then by the Cauchy-Schwarz inequality we obtain

lim
n→∞

E[{E[fn(X)εj(Z, hP )|Wj ]− E[f(X)εj(Z, hP )|Wj ]}2]

≤ lim
n→∞

E[{fn(X)− f(X)}2Σj(Wj)] = 0 (F.61)

where the final equality follows from Σj(Wj) ∈ L∞(Wj) by result (F.45). Therefore, since as argued

D is a dense subset of L2(P ), in addition Ā is closed under the product topology in
⊗J

j=1 L
2(Wj),

and result (F.63) holds for all 1 ≤ j ≤ J , we conclude

Ω∗f = Σf ∀f ∈ D if and only if {E[f(X)εj(Z, hP )|Wj ]}Jj=1 ∈ Ā ∀f ∈ L2(P ). (F.62)

Next, fix an arbitrary {gj}Jj=1 ∈
⊗J

j=1 L
∞(Wj) and note that result (F.45) then yields

f0(X) ≡
J∑
j=1

gj(Wj)εj(Z, hP ){Σj(Wj)}−1 (F.63)

belongs to L2(P ) since gj ∈ L∞(Wj). Since E[{εj(Z, hP )}2|Wj ] = Σj(Wj), E[εj(Z, hP )εs(Z, hP )|Wj ] =
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0 whenever s < j, we obtain from result (F.36) that

E[f0(X)εj(Z, hP )|Wj ] = E[(

J∑
s=1

gs(Ws)εs(Z, hP ){Σs(Ws)}−1)εj(Z, hP )|Wj ]

=

J∑
s=1

E[gs(Ws){Σs(Ws)}−1E[εs(Z, hP )εj(Z, hP )|Ws∨j ]|Wj ] = gj(Wj). (F.64)

In particular, (F.64) holds for any 1 ≤ j ≤ J , and since {gj}Jj=1 ∈
⊗J

j=1 L
∞(Wj) was arbitrary, it

follows that if {E[f(X)εj(Z, hP )|Wj ]}Jj=1 ∈ Ā for all f ∈ L2(P ), then
⊗J

j=1 L
∞(Wj) ⊆ Ā. How-

ever, since Ā is closed in the product topology of
⊗J

j=1 L
2(Wj), we have that if

⊗J
j=1 L

∞(Wj) ⊆ Ā,

then
⊗J

j=1 L
2(Wj) = Ā, and hence (F.62) yields

Ω∗f = Σf ∀f ∈ D if and only if
J⊗
j=1

L2(Wj) = Ā. (F.65)

To conclude, we note that since, as previously argued, Γs,j(Wj) ∈ L∞(Wj) for all 1 ≤ s < j ≤ J ,

definitions (F.43) and (F.49) and an inductive calculation imply that

∇mj(Z, hP )[s] = ∇aj(Z, hP )[s] +

J∑
k=j+1

E[Γj,k(Wk)∇ak(Z, hP )[s]|Wj ] (F.66)

with ∇mJ(Z, hP )[s] = ∇aJ(Z, hP )[s]. Thus, from (F.66) we conclude Ā =
⊗J

j=1 L
2(Wj) if and

only if R̄ =
⊗J

j=1 L
2(Wj) and therefore the Theorem follows from (F.65).

Appendix G - Sufficient Conditions for Assumption 3.1

In this Appendix we illustrate how to construct a statistic Ĝn satisfying Assumption 3.1 in the

context of models defined by nonparametric conditional moment restrictions as studied in Section

4. Concretely, we let {Xi = (Zi,Wi)}ni=1 be a random sample from the distribution P satisfying

model (26), which is restated below for the purpose of easy reference.

E[ρj(Zi, hP )|Wij ] = 0 for all 1 ≤ j ≤ J for some hP ∈ H. (G.1)

The parameter hP can be estimated via the method of sieves by regularizing through either the

choice of sieve, employing a penalization, or a combination of both approaches (Chen and Pouzo,

2012). Here, we assume hP ∈ H ⊆ H, and consider a sequence of sieve spacesHk ⊆ Hk+1 ⊆ H, with

Hk growing suitably dense in H as k diverges to infinity. In turn, we estimate the unknown condi-

tional expectation by series regression. Specifically, for {pjl}∞l=1 a sequence of approximating func-

tions in L2(Wj), we let p
ljn
j (wj) ≡ (pj1(wj), . . . , pjljn(wj))

′, set Pjn ≡ (p
ljn
j (W1j), . . . , p

ljn
j (Wnj))

′,

and define

m̂j(wj , h) ≡ {
n∑
i=1

ρj(Zi, h)p
ljn
j (Wji)

′}(P ′jnPjn)−p
ljn
j (wj) (G.2)

where (P ′jnPjn)− denotes the Moore-Penrose pseudoinverse of P ′jnPjn. For a sequence kn diverging
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to infinity with the sample size, the estimator ĥn is then defined as

ĥn ∈ arg min
h∈Hkn

n∑
i=1

J∑
j=1

m̂2
j (Wij , h). (G.3)

See Chen and Pouzo (2012) and references therein for sufficient conditions for the convergence

rates of ĥn to hP .

For a set T and known function ψj : Wj×T→ R, we let ψ(w, τ) ≡ (ψ1(w1, τ), . . . , ψJ(wJ , τ))′

similarly define ρ(z, h) ≡ (ρ1(z, h), . . . , ρJ(z, h))′ and set

Ĝn(τ) ≡ 1√
n

n∑
i=1

{ψ(Wi, τ)}′ρ(Zi, ĥn). (G.4)

Note that the resulting process Ĝn may be viewed as an element of `∞(T) provided that the

functions ψj(Wij , ·) are bounded almost surely. To see why Ĝn might satisfy Assumption 3.1, we

observe that for any τ ∈ T, Ĝn(τ) is an estimator of the parameter

θP (τ) ≡ E[{ψ(W, τ)}′ρ(Z, hP )]. (G.5)

However, since hP satisfies (G.1) by hypothesis, the model in fact dictates that θP (τ) = 0, and

thus the efficient estimator for θP (τ) is simply zero. As a result, Ĝn(τ) is an inefficient estimator

of θP (τ), and by Lemma 3.1 it should satisfy Assumption 3.1 provided that it is regular and

asymptotically linear. Similarly, Ĝn could be constructed so that specification tests built on it aim

their power at particular violations of the model by setting Ĝn(τ) to be the efficient estimator of

θP (τ) under the maintained alternative model; see Lemma 3.2(ii) and related discussion.

Denote m(W,h) ≡ (m1(W1, h), . . . ,mJ(WJ , h))′. We assume that the maps mj(Wj , h) ≡
E[ρj(Z, h)|Wj ], j = 1, ..., J , are Fréchet differentiable at hP with derivative ∇mj(Wj , hP ) : H →
L2(Wj) (i.e., we impose Assumption 4.1(ii) as in Section 4). Recall that the linear map∇m(W,hP ) :

H→
⊗J

j=1 L
2(Wj) is given by

∇m(W,hP )[h] ≡
(
∇m1(W1, hP )[h], . . . ,∇mJ(WJ , hP )[h]

)′
, (G.6)

and its range space equals

R ≡
{
f ∈

J⊗
j=1

L2(Wj) : f = ∇m(W,hP )[h] for some h ∈ H

}
, (G.7)

which is closed under addition, and its norm closure (in
⊗J

j=1 L
2(Wj)), denoted R̄, is a vector

subspace of
⊗J

j=1 L
2(Wj). With some abuse of notation, for any (f1, . . . , fJ) = f ∈

⊗J
j=1 L

2(Wj)

we let ‖f‖2P,2 =
∑J

j=1

∫
f2
j dP and we observe

⊗J
j=1 L

2(Wj) is a Hilbert space under ‖ · ‖P,2 and its

corresponding inner product. Therefore, since R̄ is a closed subspace of
⊗J

j=1 L
2(Wj) we obtain

from Theorem 3.4.1 in Luenberger (1969) that

J⊗
j=1

L2(Wj) = R̄ ⊕ R̄⊥. (G.8)
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For any f ∈
⊗J

j=1 L
2(Wj) we let ΠRf and ΠR⊥f denote the projection of f under ‖ · ‖P,2 onto R̄

and R̄⊥ respectively. We emphasize that the projection of (f1, . . . , fJ) = f ∈
⊗J

j=1 L
2(Wj) onto

R̄ need not equal a coordinate by coordinate projection of f . Finally, recall that by Theorem 4.1,

P is locally just identified if and only if R̄ =
⊗J

j=1 L
2(Wj), or if and only if R̄⊥ = {0}.

We in addition impose the following assumptions to study the process Ĝn.

Assumption G.1. (i) F ≡ {f = {{ΠR⊥ψ(·, τ)}′ρ(·, h) : (τ, h) ∈ T × H} is P − Donsker; (ii)

‖ΠR⊥ψ(w, τ)‖ is bounded on
⊗J

j=1 Wj ×T; (iii) Hk ⊆ H for all k.

Assumption G.2. (i)
∑J

j=1 ‖ρj(·, ĥn) − ρj(·, hP )‖P,2 = op(1); (ii) E[‖m(Wi, ĥn) −m(Wi, hP ) −
∇m(Wi, hP )[ĥn − hP ]‖] = op(n

−1/2), (iii) 1
n

∑n
i=1{ΠRψ(Wi, τ)}′ρ(Zi, ĥn) = op(n

−1/2) uniformly

in τ ∈ T.

Assumption G.1(i) ensures that the empirical process indexed by f ∈ F converges in distribu-

tion in `∞(T), Assumption G.1(ii) demands that the weights in the linear combinations of moments

be bounded, and Assumption G.1(iii) implies that ĥn ∈ H with probability one. Assumption G.2

imposes high level conditions on ĥn that are transparent in their role played in the proof, though

they can be verified under lower level requirements on the sieve bases, the sieve approximation

errors, and the smoothness of the map m(W, ·) near hP . In particular, Assumption G.2(i) imposes

that ρ(·, ĥn) be consistent for ρ(·, hP ) in
⊗J

j=1 L
2(P ). Assumption G.2(ii) demands the rate of

convergence of ĥn to be sufficiently fast to enable us to obtain a suitable expansion of m(Wi, ĥn)

around hP . Both Assumption G.2(i) and G.2(ii) can be verified under lower level conditions by

employing the results in Chen and Pouzo (2012). Finally, Assumption G.2(iii) intuitively follows

from ĥn satisfying (G.3) and ∇m̂(Wi, ĥn) approximating ∇m(Wi, hP );2 see Ai and Chen (2003)

and Chen and Pouzo (2009) for related arguments.

We next establish the asymptotic behavior of Ĝn.

Lemma G.1. Let Assumptions 4.1(i)(ii), and G.1 and G.2 hold. Then:

Ĝn(τ) =
1√
n

n∑
i=1

{ΠR⊥ψ(Wi, τ)}′ρ(Zi, hP ) + op(1) (G.9)

uniformly in τ ∈ T, and Ĝn
L→ G0 in `∞(T) for some tight Gaussian measure G0.

Lemma G.1 establishes the asymptotic linearity of Ĝn as a process in `∞(T). Since the influence

function of Ĝn obeys a functional central limit theorem by Assumption G.1(i), the conclusion that

Ĝn converges to a tight Gaussian process is immediate from result (G.9). Therefore, given Lemma

G.1, the main requirement remaining in verifying Ĝn satisfies Assumption 3.1 is showing that the

influence function of Ĝn(τ) is orthogonal to the scores of the model for any τ ∈ T. However, the

latter claim is immediate from the characterization of T̄ (P )⊥ derived in Theorem 4.1.

Proof of Lemma G.1: We first note that Assumption G.2(iii) allows us to conclude

Ĝn(τ) =
1√
n

n∑
i=1

{ΠR⊥ψ(Wi, τ)}′ρ(Zi, ĥn) + op(1) (G.10)

2Recall ΠRψ(Wi, τ) = ∇m(Wi, hP )[vn] + o(1) for some sequence {vn}∞n=1 ∈ H, while ĥn solving (G.3) can be
exploited to show 1

n

∑n
i=1{∇m̂(Wi, ĥn)[vn]}′ρ(Zi, ĥn) = op(n

−1/2).
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uniformly in τ ∈ T since ψ(Wi, τ) = ΠRψ(Wi, τ) + ΠR⊥ψ(Wi, τ). Moreover, by the Cauchy

Schwarz inequality, and Assumptions G.1(ii) and G.2(i) we obtain that

E[(ΠR⊥ψ(Wi, τ)′{ρ(Zi, ĥn)− ρ(Zi, hP )})2]

≤ sup
(w,τ)
‖ψ(w, τ)‖2 × ‖ρ(·, ĥn)− ρ(·, hP )‖2P,2 = op(1). (G.11)

Thus, since F = {f(x) = {ΠR⊥ψ(w, τ)}′ρ(z, h) : (τ, h) ∈ T × H} is P -Donsker by Assumption

G.1(i) and ĥn ∈ H by Assumption G.1(iii), result (G.11) yields

1√
n

n∑
i=1

{ΠR⊥ψ(Wi, τ)}′ρ(Zi, ĥn)− 1√
n

n∑
i=1

{ΠR⊥ψ(Wi, τ)}′ρ(Zi, hP )

=
√
nE[{ΠR⊥ψ(Wi, τ)}′{ρ(Zi, ĥn)− ρ(Zi, hP )}] + op(1) (G.12)

uniformly in τ ∈ T. Furthermore, the law of iterated expectations, the Cauchy-Schwarz inequality,

and Assumptions G.1(ii) and G.2(ii) together yield uniformly in τ ∈ T that

√
nE[{ΠR⊥ψ(Wi, τ)}′{ρ(Zi, ĥn)− ρ(Zi, hP )}]

=
√
nE[{ΠR⊥ψ(Wi, τ)}′∇m(Wi, hP )[ĥn − hP ]] + op(1) = op(1) (G.13)

where in the final equality we exploited that by definition of R and R⊥ it follows that for any

h ∈ H we have E[{ΠR⊥ψ(Wi, τ)}′∇m(Wi, hP )[h]] = 0. Hence, the Lemma follows from results

(G.10), (G.12), and (G.13), and the class F = {f(x) = {ΠR⊥ψ(w, τ)}′ρ(z, h) : (τ, h) ∈ T × H}
being P -Donsker by Assumption G.1(i).

Appendix H - Examples for Section 4

In this appendix we provide additional discussions on Examples 4.1, 4.2 and 4.3 to illustrate

how to employ Theorem 4.1, Lemmas 4.1 and 4.2, and Corollary 4.1 to determine whether P is

locally overidentifed by the model P in specific applications. We also introduce a final example

based on DiNardo et al. (1996).

Example 4.1. In this application Z represents the distinct elements of (V, Y1, . . . , YJ) and there

are J moment restrictions. For any h = (h1, . . . , hJ) ∈ H =
⊗J

j=1 Hj , each ρj : Z×H→ R then

equals

ρj(Z, h) = Yj − hj(V ). (H.1)

Therefore, for any h = (h1, . . . , hJ) ∈ H, mj(Wj , h) = E[Yj − hj(V )|Wj ] which is affine and

continuous by Jensen’s inequality and Hj ⊆ L2(V ). Hence, mj(Wj , h) : H → L2(Wj) is Fréchet

differentiable with

∇mj(Wj , hP )[h] = −E[hj(V )|Wj ] (H.2)

for any h = (h1, . . . , hJ) ∈ H. In particular, note that the conditions of Lemma 4.2 are trivially

satisfied since ∇mj,k(Wj , hP )[hk] = 0 for all k 6= j and 1 ≤ j ≤ J . Hence, defining

Rj ≡ {f ∈ L2(Wj) : f = E[hj(V )|Wj ] for some hj ∈ Hj}, (H.3)

28



we conclude from Lemma 4.2 that P is locally just identified if and only if R̄j = L2(Wj) for

all 1 ≤ j ≤ J – i.e. we may study local overidentification by examining each moment condition

separately. We gain insight into the condition R̄j = L2(Wj) by considering two separate cases.

Case I: We first suppose Wj = V (i.e. V is exogenous in the j-th moment restriction). In this case,

we may view E[·|Wj ] : Hj → L2(Wj) as the identity mapping, and hence R̄j = L2(Wj) whenever

Hj = L2(V ). Notice in fact that by Corollary 4.1, R̄j continues to satisfy R̄j = L2(Wj) if we set Hj

to be any Banach space that is dense in L2(Wj), such as the set of bounded functions, continuous

functions, or differentiable functions. On the other hand, Corollary 4.1 implies R̄j 6= L2(Wj)

whenever Hj is a strict closed subspace of L2(V ), which occurs, for example, when we impose a

partially linear or an additively separable specification for hj (Robinson, 1988; Stone, 1985).

Case II: We next consider the case where Wj is an instrument, so that Wj 6= V . We let Hj = L2(V ),

the condition that the closure of the range of E[·|Wj ] : L2(V ) → L2(Wj) be equal to L2(Wj) is

most easily interpreted through Lemma 4.2. Note that the adjoint of E[·|Wj ] is E[·|V ] : L2(Wj)→
L2(V ). Thus, Lemma 4.2 implies that R̄j = L2(Wj) if and only if

{0} = {f ∈ L2(Wj) : E[f(Wj)|V ] = 0}. (H.4)

The requirement in (H.4) is known as the distribution of (V,Wj) being L2-complete with respect to

Wj , which is an untestable property of the distribution of the data (Andrews, 2017; Canay et al.,

2013). As in Case I, however, we may obtain R̄j 6= L2(Wj) by restricting the parameter space for

hj . Suppose, for example, that Hj is a closed subspace of L2(V ), such as in a partially linear or

an additive separable specification. For any f ∈ L2(Wj), then let

ΠHjf ≡ arg min
h∈Hj

‖f − h‖P,2 (H.5)

and note ΠHj : L2(Wj) → Hj is the adjoint of E[·|Wj ] : Hj → L2(Wj). Thus, applying Lemma

4.2 we obtain that R̄j = L2(Wj) if and only if

{0} = {f ∈ L2(Wj) : ΠHjf = 0}. (H.6)

Condition (H.6) may be viewed as a generalization of (H.4), and can be violated even when Hj is

infinite dimensional yet a strict subspace of L2(V ).

Example 4.2. We will study a general nonparametric specification for the parameter space and

aim to show P is nonetheless locally overidentified. To this end, let

C1([0, 1]) ≡ {f : [0, 1]→ R : f is continuously differentiable on [0, 1]}, (H.7)

which is a Banach space when endowed with the norm ‖f‖C1 ≡ ‖f‖∞+‖f ′‖∞ for f ′ the derivative

of f . We then set the parameter space H to be given by

H = L∞((V,R))× L2(V )× L2(V )× C1([0, 1])× C1([0, 1]), (H.8)

and assume (sP , g0,P , g1,P , λ0,P , λ1,P ) = hP ∈ H – i.e. we require the λd,P functions in (42) to be

continuously differentiable. For X = (Y,D, V,R) and W1 = (V,R), the moment restriction in (43)
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corresponds to for any (s, g0, g1, λ0, λ1) = h ∈ H setting

ρ1(Z, h) = D − s(V,R). (H.9)

In turn, for the moment restriction in (44) we let W2 = (V,R,D) and define

ρ2(Z, h) = D{Y − g1(V )− λ1(s(V,R))}+ (1−D){Y − g0(V )− λ0(s(V,R))} (H.10)

for any (s, g0, g1, λ0, λ1) = h ∈ H.3 We note that by (H.9), m1(W1, ·) : H → L2(W1) is affine and

continuous and therefore Fréchet differentiable with derivative

∇m1(W1, hP )[h] = −s(V,R) (H.11)

for any (s, g0, g1, λ0, λ1) = h ∈ H. The second restriction is Fréchet differentiable as well, and for

any (s, g0, g1, λ0, λ1) ∈ H, ∇m2(W2, hP ) : H→ L2(W2) is given by

∇m2(W2, hP )[h] = D{−g1(V )− λ1(sP (V,R))− λ′1,P (sP (V,R))s(V,R)}

+ (1−D){−g0(V )− λ0(sP (V,R))− λ′0,P (sP (V,R))s(V,R)}. (H.12)

To verify this claim, first note ∇m2(W2,, hP ) : H→ L2(W2) is continuous when H is endowed with

the product topology. Moreover, by the mean value theorem we have

{λd,P + λd}(sP (V,R) + s(V,R))− {λd,P + λd}(sP (V,R))− λ′d,P (sP (V,R))s(V,R)

= (λ′d,P (s̄(V,R))− λ′d,P (sP (V,R)))s(V,R) + λ′d(s̄(V,R))s(V,R) (H.13)

for some s̄(V,R) a convex combination of sP (V,R) and sP (V,R) + s(V,R). Exploiting (H.10),

(H.12), and (H.13) we can then obtain that

‖m2(W2, hP + h)−m2(W2, hP )−∇m2(W2, hP )[h]‖P,2 = o
(
‖s‖∞{1 +

2∑
d=1

‖λ′d‖∞}
)

(H.14)

since λ′d,P is uniformly continuous on [0, 1] and ‖sP − s̄‖∞ ≤ ‖s‖∞. Thus, from (H.14) we conclude

∇m2(W2, hP ) is indeed the Fréchet derivative of m2(W2, ·) : H → L2(W2). In order to show

that P is locally overidentified, we note that the moment restrictions (H.9) and (H.10) posses

a triangular structure. Hence we aim to apply Lemma 4.2 with sP ∈ H1 = L∞((V,R)) and

(g0,P , g1,P , λ0,P , λ1,P ) = hP,2 ∈ H2 = L2(V ) × L2(V ) × C1([0, 1]) × C1([0, 1]), for which (34) then

holds since ‖λ′d,P ‖∞ < ∞ for d ∈ {0, 1}. Moreover, Corollary 4.1 implies R̄1 = L2(W1) since

L∞(W1) is dense in L2(W1) under ‖ · ‖P,2. Therefore, letting S = sP (V,R) and h2 = (g0, g1, λ0, λ1)

for notational simplicity, we note (H.12) and Lemma 4.2 together imply that P is locally just

identified by P if and only if

R2 =
{
f ∈ L2(W2) : f(W2) = D{g1(V ) + λ1(S)}+ (1−D){g0(V ) + λ0(S)} for h2 ∈ H2

}
(H.15)

3Technically, λj(s(V,R)) may not be well defined if s(V,R) /∈ [0, 1] since λj ∈ C1([0, 1]). However, note sP (V,R) ∈
[0, 1] almost surely by (43) so for notational simplicity we ignore this issue.
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is dense in L2(W2). However, if S = sP (V,R) is not a measurable function of V (i.e. the instrument

R is relevant), then {f ∈ L2((V, S)) : f(V, S) = g(V ) + λ(S)} is not dense in L2((V, S)). Hence,

from (H.15) we conclude that R̄2 is not dense in L2(W2) and thus by Lemma 4.2 and Theorem 4.1

that P is locally overidentified.

Example 4.3. We study a more general version of the model introduced in the main text. In

particular, we still maintain that for some Uit mean independent of (Kit, Lit, Iit)

Yit = gP (Kit, Lit) + ωit + Uit. (H.16)

However, we now let Lit be a possibly dynamic variable, in which case (48) becomes

ωit = λP (Kit, Lit, Iit). (H.17)

Maintaining that ωit follows an AR(1) process with coefficient πP , and recalling that Wi =

(Ki1, Li1, Ii1) we then obtain the following two conditional moment restrictions

E[Y1 − νP (W )|W ] = 0 (H.18)

E[Y2 − gP (K2, L2)− πP (νP (W )− gP (K1, L1))|W ] = 0 (H.19)

where νP (W ) = gP (K1, L1) + λP (K1, L1, I1). Let L2((K1, L1)) = L2((K2, L2)), hP = (νP , gP , πP )

and the parameter space be H = L2(W ) × L2((K1, L1)) ×R. It is straightforward to verify that

in this model we have for any h = (ν, g, π) ∈ H,

∇m1(W,hP )[h] = −ν(W ), (H.20)

∇m2(W,hP )[h] = −E[g(K2, L2)|W ]− πλP (K1, L1, I1)− πP (ν(W )− g(K1, L1)). (H.21)

Since the model defined by (H.18) and (H.19) has a triangular structure, we next apply Lemma

4.2 to establish that it is locally overidentified. Let νP ∈ H1 = L2(W ) and (gP , πP ) ∈ H2 =

L2((K1, L1))×R. Since πP <∞, condition (34) of Lemma 4.2 is satisfied by (H.20), (H.21), and

direct calculation. Applying Corollary 4.1 to (H.20) and since H1 = L2(W ) we trivially obtain

that R̄1 = L2(W ). Therefore, by Theorem 4.1 and Lemma 4.2 we can conclude that P is locally

overidentified if and only if R̄2 6= L2(W ), where

R2 =
{
−E[g(K2, L2)|W ] + πP g(K1, L1)− πλP (K1, L1, I1) : (g, π) ∈ L2((K1, L1))×R

}
. (H.22)

Inspecting (H.22), a sufficient condition for P to be locally overidentified is therefore for the map

g 7→ E[g(K2, L2)|W ] to not be able to generate arbitrary functions of W = (K1, L1, I1). Formally,

defining the spaces

F̄ ≡ cl
{
E[g(K2, L2)|W ]− E[g(K2, L2)|K1, L1] : g ∈ L2((K1, L1))

}
L2((K1, L1))⊥ ≡

{
f ∈ L2(W ) :

∫
fgdP = 0 for all g ∈ L2((K1, L1))

}
(H.23)

we note F̄ ⊆ L2((K1, L1))⊥ by the law of iterated expectations, and therefore we may decompose

L2((K1, L1))⊥ = F̄ ⊕ F̄⊥. A sufficient condition for P to be locally overidentified is then that the
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dimension of F̄⊥ is at least two.

We conclude by discussing an additional example based on the nonparametric analysis of

changes in the wage distribution by DiNardo et al. (1996).

Example H.1. Suppose we observe {Hi, Di, Vi, Ti}ni=1 where for each individual i, Hi denotes

hourly wages, Di is a dummy variable for union membership, Vi is a vector of covariates, and

Ti ∈ {1, 2} indicates the time period individual i was measured in. The parameter of interest θP is

the counterfactual τ th quantile of wages that would have held in period two if unionization rates

had been constant between periods, which solves

E

[
τ − 1{H ≤ θP , D = 1}

λ1,P (V )

λ2,P (V )
− 1{H ≤ θP , D = 0}

1− λ1,P (V )

1− λ2,P (V )

∣∣∣∣T = 2

]
= 0 (H.24)

for λt,P (V ) the unionization rate conditional on V at time t.4 Since λt,P satisfies

E[D − λt,P (V )|V, T = t] = 0 for t ∈ {1, 2}, (H.25)

this setting fits model (26) with parameters (λ1,P , λ2,P , θP ). Specifically, we suppose that λt,P ∈
Lt ⊆ L∞(V ), let H = L1 × L2 ×R, set X = (Z,W ) = (H,D, V, T ) and define

ρ1(Z, h) = 1{T = 1}(D − λ1(V )) + 1{T = 2}(D − λ2(V ))

ρ2(Z, h) = 1{T = 2}
(
τ − 1{H ≤ θ,D = 1}λ1(V )

λ2(V )
− 1{H ≤ θ,D = 0}1− λ1(V )

1− λ2(V )

)
for any h = (λ1, λ2, θ) ∈ H, and where W1 = (V, T ) and since the second moment restriction is

unconditional we set W2 = {1}. It is straightforward to verify that in this model

∇m1(W1, hP )[h] = −1{T = 1}λ1(V )− 1{T = 2}λ2(V ) (H.26)

for any h = (λ1, λ2, θ) ∈ H. For notational simplicity we let R = (V, T,D) and GH|R(h|r) and

gH|R(h|r) respectively denote the cdf and density ofH conditional on R. Then, by direct calculation

it follows that for any h = (λ1, λ2, θ) ∈ H we have

m2(W2, h) = E

[
1{T = 2}

(
τ−GH|R(θ|R)1{D = 1}λ1(V )

λ2(V )
−GH|R(θ|R)1{D = 0}1− λ1(V )

1− λ2(V )

)]
,

and that sufficient conditions for m2(W2, ·) : H → R to be Fréchet differentiable are that: (i)

gH|R(H|R) be continuously differentiable in H with almost surely bounded level and derivative in

(H,R), and (ii) P (1 − ε ≥ λ2,P (V ) ≥ ε) = 1 for some ε > 0. In addition, notice that this model

possess the triangular structure required in Lemma 4.2 with H1 = L1 × L2 and H2 = R, while

requirement (34) holds under the additional assumption that P (P (T = t|V ) ≥ ε) = 1 for t ∈ {1, 2}
4I.e., as in DiNardo et al. (1996), we desire the τ th quantile of G(H|D,V, T = 2)G(D|V, T = 1)G(V |T = 2), where

for any (A,B), G(A|B) denotes the distribution of A conditional on B.
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and some ε > 0. Employing the notation of Lemma 4.2, we obtain by direct calculation that

R1 =

{
f ∈ L2(W1) : f(T, V ) =

2∑
t=1

1{T = t}λt(V ) for (λ1, λ2) ∈ L1 × L2

}
R2 =

{
θ × E

[
1{T = 2}gH|R(θP |R)

(
1{D = 1}

λ1,P (V )

λ2,P (V )
+ 1{D = 0}

1− λ1,P (V )

1− λ2,P (V )

)]
: θ ∈ R

}
.

Notice, however, that the expectation defining R2 is necessarily positive, and thus R2 = R – an

equality that simply reflects that assuming existence of θP offers no additional information. Thus,

Lemma 4.2 implies that P is locally just identified if and only if R̄1 = L2(W1). Equivalently, P is

locally just identified iff Lt is dense in L2(V ) for t ∈ {1, 2}. For example, P is locally overidentified

if we restrict λt,P through an additive separable specification. In that case, the choice of estimator

for λt,P can affect the asymptotic distribution of a plug-in estimator for θP .
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