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Abstract

In models defined by unconditional moment restrictions, specification tests are
possible and estimators can be ranked in terms of efficiency whenever the number of
moment restrictions exceeds the number of parameters. We show that a similar re-
lationship between potential refutability of a model and semiparametric efficiency is
present in a much broader class of settings. Formally, we show a condition we name
local overidentification is required for both specification tests to have power against
local alternatives and for the existence of both efficient and inefficient estimators of
regular parameters. Our results immediately imply semiparametric conditional mo-
ment restriction models are typically locally overidentified, and hence their proper
specification is locally testable. We further study nonparametric conditional mo-
ment restriction models and obtain a simple characterization of local overidentifi-
cation in that context. As a result, we are able to determine when nonparametric
conditional moment restriction models are locally testable, and when plug-in and

two stage estimators of regular parameters are semiparametrically efficient.
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nonparametric conditional moment restrictions.

*We thank Stephane Bonhomme, Phil Haile, Hide Ichimura, Yuichi Kitamura, Patrick Kline, Peter
Phillips, Jim Powell, Richard Smith, and other econometrics seminar participants at Yale for helpful
discussions. Any errors are the responsibility of the authors.

TResearch supported by Cowles Foundation for Research in Economics.
tResearch supported by NSF Grant SES-1426882.



1 Introduction

Early research on identification recognized the possibility that the distribution P of the
observed data might not belong to the set of distributions P implied by the posited
model (Fisher} 1922)). Specifications for which this prospect existed were named obser-
vationally restrictive or overidentified by Koopmans and Riersol| (1950)), who emphasized
such models could in principle be refuted by the data. As underscored by [Koopmans
and Riersol| (1950), however, being observationally restrictive is a necessary but not suf-
ficient condition for testability, with examples existing of models that are simultaneously
overidentified and untestable (Romano), [2004)).

Fortunately, the gap between overidentification and testability proved to be small in
the generalized method of moments (GMM) framework. In work originating with An-
derson and Rubin| (1949) and |Sargan| (1958]), and culminating in Hansen (1982), overi-
dentification in unconditional moment restriction models was equated with the number
of moment restrictions exceeding the dimension of the parameter of interest. Under mild
regularity conditions, such a surplus of restrictions was shown to enable the construction
of both specification tests and more efficient estimators. While perhaps intuitive, the
discovery that a simple common condition is instrumental for both specification testing
and the availability of more efficient estimators is upon introspection not obvious. Is this
close link between efficiency and potential refutability of the GMM model coincidental?

Or is it reflective of a deeper principle applicable to a broader class of models?

The need to elucidate the relationship between specification testing, semiparamet-
ric efficiency, and overidentification is saliently illustrated by the literature studying
nonparametric and semiparametric models. In the latter context, diverse definitions
of overidentification exist whose mutual consistency is unclear. [Florens et al.| (2007),
for instance, identifies overidentification with specification testing and states “... the
term overidentification is ill-chosen. If one defines it precisely, one actually obtains the
notion of a hypothesis ... This identity between overidentification and hypothesis ex-
plains why the term overidentification is associated with the idea of a test”. In contrast,
Powell| (1994)) defines just identification in terms more closely linked to estimation ..
i a nonparametric model, the parameters of interest can be said to be just-identified,
in that they are defined by a unique functional of the joint distribution of the data”.
Consistent with [Powell (1994), Newey and Powell (1999)) in turn relate overidentifica-
tion to efficiency considerations in two stage estimation problems by asserting “... the
efficient estimator for a given first step nonparametric estimator will often be fully ef-
ficient, attaining the semiparametric efficiency bound for the model ... Full efficiency
occurs because the first step is just identified ...”. While these different definitions of
overidentification are concordant in the context of GMM, their compatibility in non-

parametric and semiparametric models is to the best of our knowledge unknown. Are



these views of overidentification in fact implications of a common condition as in GMM?
If such a common condition is indeed available, is it then simple enough to assess when

nonparametric conditional moment restriction models are overidentified 1]

In this paper, we introduce a concept we name local overidentification and show
that it is in fact responsible for an inherent link between specification testing and semi-
parametric efficiency analysis that is present in models far beyond the scope of [Hansen
(1982). The notion of local overidentification arises naturally from the study of the
limiting experiment generated by parametric perturbations to a (data) distribution P
that belongs to the model P (LeCam, [1986). As is well understood in the literature
on limiting experiments, a fundamental role is played by the tangent set T'(P), which
consists of the scores corresponding to the parametric submodels of P that contain P
(Bickel et al., [1993). Heuristically, T'(P) represents the directions from which P may
be approached from within the model P. In particular, whenever the closure of T'(P)
in the mean squared norm equals the set of all possible scores, the model P is locally
consistent with any parametric specification and hence we say P is locally just identified
by P. In contrast, whenever there exist scores that do not belong to the closure of
T(P), the model P is locally inconsistent with some parametric specification and hence
we say P is locally overidentified by P. While these definitions can in principle be more
generally applied, we focus on models that are regular — in the sense that T'(P) is lineaIE|
— due to the necessity of this condition in semiparametric efficiency analysis (van der
Vaart, [1989). When specialized to unconditional moment restriction models, local overi-
dentification is equivalent to the standard GMM overidentification requirement that the

number of moment restrictions exceed the number of parameters.

Due to its fundamental role in the limiting experiment, local overidentification is
intrinsically related to the local asymptotic behavior of both regular estimators and
specification tests. We show, for example, that the local power function of any speci-
fication test is also the power function of a test of whether the score of the underlying
deviation belongs to the closure of the tangent set T(P). Since we define local just
identification as the closure of T'(P) equaling the set of all possible scores, it follows
that the local power of a specification test cannot exceed its local size whenever P is lo-
cally just identified by P —i.e. proper specification is locally untestable under local just
identification. Conversely, whenever P is locally overidentified by P there exist scores
that are uncorrelated with all the scores in T'(P), and we show how a specification test
whose local power exceeds its local size may be constructed by employing them. Hence,
in analogy to Sargan (1958) and Hansen| (1982) we conclude that, subject to the avail-
ability of a set of scores orthogonal to T'(P), proper specification is locally testable if

We thank Stephane Bonhomme for asking the question of whether the nonparametric instrumental
variables regression of Newey and Powell| (2003) is overidentified.

2We stress that a model P being regular does not imply that all the parameters underlying the model
are regular (or root-n estimable, where n is the sample size). In fact, the underlying parameters of a
regular model P may themselves not be identified or not be root-n estimable.



and only if P is locally overidentified by P. While the required set of orthogonal scores
is in principle unknown, we show how its estimation is implicitly done by the J-test
of [Hansen| (1982), and more generally devise a method for its estimation by following
Hausman| (1978).

The connection between local overidentification and the local asymptotic behavior
of regular estimators can be readily established by exploiting results from the semi-
parametric efficiency literature (Bickel et al., [1993). For instance, |[Newey| (1990) shows
asymptotically linear and regular estimators of a common Euclidean parameter must
share the same influence function whenever the closure of T'(P) equals the set of all
possible scores. Building on this result, we establish that asymptotically linear and reg-
ular estimators of any (possibly infinite dimensional) parameter must be asymptotically
equivalent whenever P is locally just identified by P. Conversely, we show that if P is
locally overidentified by P, then parameters that admit at least one asymptotically lin-
ear and regular estimator may in fact be estimated by multiple asymptotically distinct
estimators. Thus, alternative asymptotically linear and regular estimators of a common
parameter may only be asymptotically different if and only if P is locally overidentified.
It is worth emphasizing this conclusion pertains to any regular parameter and hence
applies to simple cases such as means or cumulative distribution functions, as well as to

more complex ones like average derivatives (whenever the parameter is regular).

We deduce from the described results that local overidentification is instrumental for
both the existence of locally nontrivial specification tests and the semiparametric effi-
ciency analysis of regular estimators. It follows that the equivalence between efficiency
and potential refutability of a model found in Hansen| (1982) is not coincidental, but
rather the reflection of a deeper principle applicable to all regular models. In partic-
ular, these results enable us to immediately conclude that semiparametric conditional
moment restriction models are typically locally overidentified because they allow for
both inefficient and efficient estimators (Ai and Chenl |2003; |Chen and Pouzo, [2009).
Thus, according to our specification testing results, a locally nontrivial specification test
of these models exists and may be constructed by comparing efficient and ineflicient

estimators of a common parameter as in [Hausman| (1978]).

In order to further illustrate the utility of our results, we characterize local overi-
dentification in nonparametric conditional moment restriction models (Chen and Pouzol,
2012)). Heuristically, we establish that local overidentification in such models is equiva-
lent to the existence of a nonconstant transformation of the conditioning variable that is
uncorrelated with the span of the derivative of the conditional expectation with respect
to the nonparametric parameter. In the leading example of nonparametric instrumental
variables regression, local overidentification demands the existence of a non-constant
function of the instrument that is uncorrelated with all possible transformations of the

endogenous regressor — formally, the joint distribution of the instrument and endogenous



regressor must not be complete with respect to the endogenous regressor. Hence, while
the nonparametric instrumental variables regression model may be locally overidenti-
fied, it follows that local overidentification cannot be determined by simply counting the
number of instruments as in [Hansen| (1982). Moreover, we further conclude from our
general results that regular plug-in functionals of a nonparametric instrumental variables
regression are not automatically efficient, while regular plug-in functionals of nonpara-
metric conditional means generally areﬁ Analogously, two stage estimation approaches
in which the first stage parameter is identified by a conditional moment restriction may
be inefficient when P is locally overidentified by the first stage conditional moment
restriction model — a situation that may arise when the first stage parameter is semi-
parametric or a function of endogenous variables. Whenever P is locally just identified
by the first stage conditional moment restriction model, however, two stage estimation
can indeed be semiparametrically efficient; see Newey and Powell| (1999) and |Ackerberg
et al.| (2014).

The remainder of the paper is organized as follows. Section 2 formally defines local
overidentification, while Sections 3 and 4 discuss the connections to testing and efficiency
respectively. Section 5 applies our results to characterize local overidentification in
nonparametric conditional moment restriction models and studies its implications. We

briefly conclude in Section 6. All proofs are contained in the Appendix.

2 Local Overidentification

In this section, we introduce basic notation and formally define local overidentification.

2.1 Basic Notation

Throughout, we assume the data consists of an i.i.d. sample {X;}? ; with each obser-
vation X; € R% distributed according to P € P. The set of probability measures P
represents the model under consideration and may be parametric, semiparametric, or

fully nonparametric depending on the maintained model assumptions.

Our analysis is local in nature and hence we need to introduce suitable perturbations
to the distribution P. Following the literature on limiting experiments (LeCam) [1986)),

we consider arbitrary smooth parametric likelihoods, which we formally define by:

Definition 2.1. A “path” t — P, 4 is a function defined on a neighborhood N C R of

30ur results in particular imply nonparametric conditional mean and conditional quantiles models
are locally just identified.



Figure 1: Model P and Tangent Space at P

zero such that Py 4 is a probability measure on R% for everyt € N, Py =P, and

lim [%(dptff —dpP'/?) — %gdPl/Q]Q =0. (1)

t—0

The function g : R% — R is referred to as the “score” of the path t — Py m

Thus, a path ¢ + P; , is simply a parametric model that passes through P and is
smooth in the sense of satisfying or, equivalently, of being differentiable in quadratic
meanﬁ In our asymptotic analysis, the only relevant characteristic of a path ¢ — P 4 is
its score g, which is why we emphasize its importance through the notation. It is evident
from Definition [2.1] that any score g must have mean zero and be square integrable with

respect to P. In other words, all scores must belong to the space L2 given b
g 08 y

I2={g: / gdP = 0 and |jgl| 2 < oo} g2, = / g2dP . (2)

The implication that g € L2, however, is solely the result of P 4 being restricted to be a
probability measure for all ¢ in a neighborhood of zero. If we in addition demand that

P, 4 belong to the model P, then the set of feasible scores reduces to
T(P)={gecL?: holds for some t — P, , € P} , (3)

which is often referred to as the tangent set at P. Its closure in L(Q) under the norm

| - |2 is in turn termed the tangent space and denoted by T'(P).

“The integral should be understood as [ ((%)1/2 — (;—5)1/2) — %g(f—i)l/Q]Qdut where p; is any

1
t
o-finite positive measure dominating (P; + P). The choice of p; does not affect the value of the integral.



Whenever T(P) is a vector subspace, it is useful to define its orthogonal complement
T(P)Yr={geL?: /gfdP =0foral f€T(P)}. (4)

Together, the tangent space T'(P) and its complement T'(P)* form a decomposition of
the space of all possible scores L3. Formally, every g € L3 satisfies the equality

g =1r(g9) + UpL(g) , (5)

where II7(g) and ;. (g) denote the metric projections under || - ||z2 onto T(P) and
T(P)* respectively. Intuitively, II7(g) corresponds to the component of a score g that
is in accord with the model P, while I1;. (g) represents the component orthogonal to

P; see Bickel et al. (1993). Figure 1 illustrates this standard construction.

As a final piece of notation, for an arbitrary set A we define the space *°(A) by
°(A)={f: A —> Rst. sup|f(a)] < oo}, (6)
acA

which is endowed with the norm || f|joc = sup,ea |f(a)| —ie. £>°(A) is simply the set of
bounded functions defined on A. In particular, setting [d] = {1,...,d} for any integer
d, it follows that £>°([d]) denotes the set of bounded sequences with d elements.

2.2 Main Definition

We formalize our discussion so far by imposing the following Assumption:

Assumption 2.1. (i) {X;}1, is an i.i.d. sequence with X; € R% distributed according
to P € P; (it) T(P) is linear — i.e. if g, f € T(P), a,b € R, then ag+bf € T(P).

While the i.i.d. requirement in Assumption [2.1{(i) is not strictly necessary, we im-
pose it in order to streamline exposition. An extension of our results to certain non i.i.d.
models can be accomplished by generalizing our setting to Gaussian shift experiments;
see [van der Vaart and Wellner| (1989). In turn, Assumption (ii) requires the model
P to be regular at P in the sense that its tangent set 7'(P) be linear. This requirement
is satisfied by numerous models in econometrics, and it is either implicitly or explicitly
imposed whenever semiparametric efficient estimators are justified through the convo-
lution theorem (van der Vaart, [1989). Nonetheless, Assumption [2.1fii) does rule out
certain partially identified settings such as missing data problems (Manski, 2003), mix-
ture models (van der Vaart, 1989), and instances in which a parameter is on a boundary
(Andrews, 1999). In the latter three cases, the tangent set 7'(P) is often not linear but
a convex cone instead — a setting that enables a partial extension of our results concern-
ing the local testability of the model; see Remark However, since linearity of T'(P)

7



plays an essential role in the theory of semiparametric efficiency, our results concerning

estimation are not directly generalizable to nonlinear tangent sets.

Given the introduced notation, we next formally define local overidentification.

Definition 2.2. If L2 = T(P), then we say P is locally just identified by the model P.
Conversely, if T(P) G L3, then we say P is locally overidentified by the model P. m

Intuitively, P is locally overidentified by a model P if P yields meaningful restrictions
on the scores that can be generated by parametric submodels. Conversely, P is locally
just identified by the model P when the sole imposed restriction is that the scores have
mean zero and a finite second moment — a quality common to the scores of all paths
regardless of whether they belong to the model P or not. Definition is inherently
local in that it concerns only the “shape” of P at the point P rather than P in its
entirety as would be appropriate for a global notion of overidentification (Koopmans and
Riersol, [1950)); see Remark It is also worth emphasizing that local overidentification
concerns solely a relationship between the distribution P and the model P. As a result, it
is possible for P to be locally overidentified despite underlying parameters of the model
being partially identified — an observation that simply reflects the fact that partially
identified models may still be refuted by the data (Manski, 2003} Arellano et al., [2012).

Remark 2.1. [Koopmans and Riersol (1950) refer to a model P as being overidentified
whenever there exists the possibility that P does not belong to P. This criterion leads
to a global definition of overidentification, whereby P is deemed overidentified if it is a
strict subset of the set of all probability measures (on R%). Regrettably, as emphasized
by Koopmans and Riersol (1950)), this global definition is too general to have strong
implications on statistical analysis; see for instance Romano (2004]) for examples of
models P that are both overidentified and untestable. In contrast, despite also being
a population concept, local overidentification is able to provide a stronger connection
to the testability of P and the performance of regular estimators albeit at the cost of

conducting a local rather than global analysis. m

In what follows, we demonstrate the utility of the proposed definition by study-
ing the fundamental role local overidentification plays in both specification testing and
semiparametric efficiency analysis. Before proceeding, however, we first illustrate the
introduced concepts in the generalized methods of moments framework. We will repeat-

edly return to this application in order to obtain further intuition for our results.

GMM Illustration. Let ©® C R% denote the parameter space and p : R% x R% —

R% be a known moment function with dg < d,. The model P then consists of the set

P={P: /p(-,ﬁ)dP = 0 for some 5 € O} ; (7)



i.e. the maintained assumption is that there exists a [ that zeroes the moment condi-
tions. Let 8(P) solve [ p(-, B(P))dP = 0 when P € P. Assuming p is differentiable in 3
for simplicity, define I'(P) = [ Vgp(-, B(P))dP, QP) = [ p(-, B(P))p(-, B(P)) dP, and

S(P) = [Ia, = T(P)(D(P)'Q(P)~'T(P))"'T(P)Q(P) ], (8)

where I, denotes a d, x d, identity matrix, and both I'(P) and (P) are assumed to

have full rank. By direct calculation it is then possible to show that

T(P)t={ge Li:g=NS(P)p(-,B(P)) for some A € R%}

T(P)={gcL?: /gfdP =0 for all f € T(P)*} . (9)

Thus, P is locally overidentified by the model P if and only if T'(P)* # {0}, or equiva-
lently if and only if S(P) # 0 which yields the usual condition d, > dgz. m

3 Testing

Under appropriate regularity conditions, the requirement that the number of moments
exceed the number of parameters can be shown to be equivalent to the existence of locally
nontrivial specification tests in models defined by unconditional moment restrictions. In
this section, we show that in regular models an analogous relationship exists between
the local overidentification of P and the local testability of the model P.

3.1 Testing Setup

A specification test for a model P is a test of the null hypothesis that P belongs to P

against the alternative that it does not — i.e. it is a test of the hypotheses

Hy:PcP H :P¢P. (10)

We denote an arbitrary (possibly randomized) test of by ¢n : {Xi}7-; — [0,1],
which recall is a function specifying for each realization of the data {X;}!' , a corre-
sponding probability of rejecting the null hypothesisﬁ Our interest is in examining the
local behavior of such tests along local perturbations to a distribution P € P. More
precisely, we aim to characterize the limiting local power functions of tests ¢, when at
sample size n each X; is distributed according to Py, /o for some path t — P; 4. To
this end, however, it is necessary to restrict attention to tests ¢, whose limiting local

power is well defined. Therefore, for any path t — P; , we set Pln/ Jig = R, P /g

®A non-randomized test is therefore one where ¢, only takes values 1 (reject) or 0 (fail to reject).



and define the limiting local power function 7 of a test ¢, to be given by
tim [ GudPl s, =(g) | (11)

where in we have implicitly assumed that ¢, is such that the limit indeed exists
for any path ¢t — P;,. The existence of a limiting local power function 7 is a mild
requirement which can be easily verified, for example, when tests are based on comparing
statistics to critical values; see Remark It is also worth noting that, as emphasized
in the notation, any limiting power function 7= must only depend on the score g and be

independent of any other characteristics of the path ¢ — Pt,gﬁ

Remark 3.1. Tests ¢,, are often constructed by comparing a statistic 7}, to an estimate

¢1_q of the 1 — a quantile of its asymptotic distribution. Such tests are of the form

on({Xitis1) = HTn > é1a} (12)

and can be shown to satisfy provided (i) (T, ﬁ >; 9(X;)) converges in distribution

under P" for any g € L3, and (ii) the limiting distribution of T}, is continuous. m

3.2 Limiting Experiment

Intuitively, the limiting local power function m of a level « test ¢, of that can
control size locally to P € P must not exceed a along submodels t — P, , € P (see
(11)). Since by definition the score g of any submodel ¢ — P, , € P belongs to the

tangent set T'(P), local size control is therefore tantamount to the requirement that
m(g9) <« for all g € T(P) (13)

or, equivalently, that 7(¢g) < o whenever II1. (g) = 0. In contrast, a path t — P, 4 that
approaches P € P from outside the model P should be such that its score g does not
belong to T'(P) or, equivalently, we should expect 111 (g) # 0 — see Figure 2. In short,

these heuristics suggest m may be viewed as the power function of a level « test for
Hy: 1l (g)=0 Hy:1lpi(9) #0. (14)

In this section, we formalize this discussion by establishing that the limiting local power
function 7 of any test ¢, of is also the power function of a test of .

The key step necessary to relate m to the hypothesis testing problem in is to
embed the latter in a concrete statistical experiment. To this end, let dr = dim{T(P)}

5This follows from the fact that the product measures of any two local paths that share the same
score must converge in the Total Variation metric; see Lemma in the Appendix.

10



Figure 2: The Score of a Path outside P

and dp. = dim{T(P)*} denote the dimensions of the tangent space T(P) and its
orthogonal complement T'(P)*, and note that dr and dp. may be infinite. Under
Assumption (ii) both T(P) and T(P)* are Hilbert spaces and there therefore exist
orthonormal bases {wg}zg and {ka}ZS for T(P) and T(P)* respectively. For each
ge L(Q) we then define a probability measure (), on R x Rt to be equal to the law
of (Y, Z) € R4 x R+ where Y = (Y1,...,Yy,) and Z = (Z4, ... ,Zq,, ) are such that

all {Yk}iil and {Zk}zg are mutually independent and distributed according to

YkNN(/g¢,ZdP,1) for 1 < k <dp

Zy ~ N(/ girdP,1) for 1 < k < dp. ; (15)
i.e. Y and Z are possibly infinite dimensional vectors with independent coordinates that
are normally distributed with unknown means depending on g and known unit variance.

The local behavior of specification tests can then be understood through the related
problem of testing based on a single observation (Y, Z) whose distribution is known
to belong to the family {Q, : g € L%}. Formally, Theorem establishes that if 7 is
the limiting local power function of a level « test ¢,, of , then there exists a level «
test ¢ of based on a single observation (Y, Z) whose power function is also .

Theorem 3.1. Let Assumption hold and suppose that ¢, satisfies and
nl;rgo ngnde/\/ﬁ’g <o« (16)

for any submodel t — P, , € P. Then there is a level o test ¢ : (Y, Z) — [0,1] of the

11



hypothesis in based on a single observation (Y, Z) such that for any path t — P, 4
w(g) = lim [ 0udPl) s, = [ 04Q, a7)

The principal utility of Theorem is that it enables us to understand the local
asymptotic behavior of specification tests by studying the simpler testing problem in
(14). For instance, if optimality results are available for the testing problem in , then
these can be combined with Theorem [3.1] to obtain local power bounds for specification
tests. To this end, it is convenient to note that since {wk } & Ll is an orthonormal basis for
T(P)*, the null hypothesis that 1. (g) = 0 is equivalent to Z having mean zero under
Qg. Corollary illustrates these points, by employing Theorem and maximin
power bounds for tests on the mean of Z to obtain maximin local power bounds for

specification tests when T(P)' is finite dimensional.

Corollary 3.1. Let X?(B) follow a noncentral chi-squared distribution with dy. degrees

of freedom and noncentrality parameter B, and let X%—a denote the 1 — a quantile of
X%(0). If Assumption holds, ¢, satisfies and , and dp1 < oo, then

. 2 2
lim sup inf ||L2>B}/¢nd N P(X*(B) > xi_a) - (18)

n—oo {geL} ”HTL(

Intuitively, Corollary establishes an upper bound on the minimum local power a
test may have along paths ¢t — P; ; which are in a local sense a distance B away from
the model Pm Thus, if a specification test is shown to attain the bound in , then its
local power function is maximin. We next return to the generalized methods of moment

model to illustrate our results and conclude the J-test is in fact locally maximin.

GMM Illustration (cont). For Q(P)~! a consistent estimator for Q(P)~1, it is cus-

tomary in GMM to conduct a specification test by comparing the J-statistic
Ip = 1nf f/ B)dP") f/ B)dP™) (19)

to the 1 — a quantile of a chi-squared distribution with (d, — dg) degrees of freedom
(denoted x?_). Under standard regularity conditions, the limiting local power function

of this specification test exists and for any score g € L3 it is equal to

m(g) = P(|(P)”2S(P)(Go + /p(-,B(P))QdP)II2 > Xi-a) » (20)

where Go ~ N(0,Q(P)) and S(P) is as defined in (8). Moreover, it can be shown
by direct calculation that S(P)'Q(P)~'S(P) = Q(P)_%M(P)Q(P)_% for a symmetric

"This follows by noting ||II71 (9|2 = infser(py |9 — f|l12 and interpreting local distance between
different paths t — P; 4 as the || - |2 distance of their respective scores.

12



idempotent matrix M (P) of rank d, — dg. Thus, letting {’Yk}zp: _ldﬁ denote the eigenvec-
tors of M (P) corresponding to nonzero eigenvalues, it then follows from that

1(P)ES(P)(Gy + / o, B(P))gdP)|?
dp—dg

= S (4P EGy + / (QUP) 3 (-, B(P)))gdP)? . (21)

k=1

However, {y,’CQ(P)_%p(',B(P))}Z:ldB forms an orthonormal basis for T(P)* (see (9))
while {’y,’CQ(P)*%Go}Z”: _ldﬂ are independent standard normal random variables. From
and we therefore obtain for Z € R%~9 distributed according to that

(g) = P(IZ]* > xi-a) - (22)

Hence, in accord to Theorem 3.1} the local power function of a J-test has a dual interpre-
tation as the power function of a Wald test for whether Z has mean zero. In particular,
it immediately follows that the J-test attains the optimality bound of Corollary [3.1]
Similarly, it is possible to employ Theorem to conclude the J-test is optimal among

specification tests whose local power functions is invariant in ||IIp1(g)| 2. ®

3.3 Specification Testing

Having characterized the limiting experiment in Theorem we can now develop the
connection between local overidentification and the local behavior of specification tests.
A first immediate conclusion of our analysis is that proper model specification is locally

untestable whenever P is locally just identified by the model P.

Corollary 3.2. Let Assumption hold and suppose ¢, satisfies and . If P
is locally just identified by the model P, then for any path t — P 4 it follows that

lim gi)ndPl"/\/ﬁ’g <a. (23)

n—o0

Corollary establishes that if P is locally just identified, then the local power
of a specification test that can locally control size (as in (16])) cannot exceed its level.
Intuitively, whenever P is locally just identified by P, the set of scores T'(P) which
correspond to paths ¢ — P, € P is dense in the set of all possible scores and as a

)

result every path is locally on the “boundary” of the null hypothesis; see also Romano
(2004)) for a nonlocal analogue. The result is straightforward to derive from Theorem
by noting that under local just identification T'(P) = L3 and T(P)* = {0}, which
implies IT;. (g) = 0 for all possible scores g € L3. Therefore, the null hypothesis in (14)

is satisfied for all paths ¢t — P ;, regardless of whether they belong to P or not, and thus
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by Theorem [3.1] the limiting local power of a test ¢, cannot exceed a.

In order to complete the analogy to the generalized methods of moments setting, it
remains to be shown that the converse to Corollary also holds — namely, that if P is
locally overidentified, then there exists a specification test with nontrivial local power.

We will establish the desired converse under the following high level assumption:

Assumption 3.1. There is a known F = {f,}I7, C T(P)* with ¢, [ f2dP < cc.

Assumption [3.1] is untenable because the availability of a subset F of the orthogonal
complement T'(P)* in principle requires knowledge of the tangent set 7'(P) and thus of P
itself. Nonetheless, under model specific regularity conditions, suitable estimators F for
appropriate subsets F of T'(P)* are often available; see the discussion of Hansen| (1982)
below and of Hausman| (1978)) in Section 4.3. At present, we therefore abstract from
the construction of such estimators F and directly impose Assumption S0 as to ease
exposition of the connection between specification testing and local overidentification.
We also note that in Assumption the dimension of F may be infinite (dp = o0). In
this case the condition Zgi J f2dP < oo implicitly requires the variance of fi(X;) to

decrease to zero sufficiently fast with k.

Given the presumed availability of the set F, we may define the vector of means

Gn

1 & 1 & ,
(% ;fl(Xi)a O n ;de(Xi)) (24)

which belong to R and is potentially infinite dimensional (dp = co). Assumption
however, ensures that even when dp is infinite the vector G,, belongs to the space
0>*([dr]) P"-almost-surely, where recall [dr] = {1,...,dr} and £*°([dF]) denotes the set
of bounded functions on [dp]ﬁ Moreover, since each f € F is such that E[f(X;)] =
0 when X; is distributed according to P, the vector G, is properly centered and it
can therefore be expected to converge to a centered Gaussian measure under P™. In
contrast, if {X;}"  is distributed according to PI"/ N for a path t — P, ; approaching
P from outside P, then G, should not be properly centered and instead converge to a
non-centered Gaussian measure. The following Lemma formalizes these heuristics and

provides the foundation for a specification test with nontrivial local power.

Lemma 3.1. Let Assumptions hold, for any path t — P4 let L, 4 denote the
law of {X;}iy under @;_y P/ /n g, and define Ay = {[ fkgdP}iil. Then, there is a
tight centered Gaussian process Go € £°([dr]) such that for any path t — P; 4:

Gn ™ Go+ A, . (25)

8The space £>°([dr]) may be identified with R*F when dr < oo and with £°°(N) (the space of bounded
sequences) when dp = co.
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Moreover, (i) Ay = 0 (in £>°([dr])) whenever t — P, 4 € P, and (it) If in addition
c{lin{F}} = T(P)*, then it also follows that Ay # 0 (in £>°([dF])) whenever
lim inf inf, 7 / [dQ'/? = dP!/%. 1?> 0. (26)
Lemmacorroborates the presence of a shift Ay = { [ fkgdP}ii , in the asymptotic
distribution of G,, whenever {X;}? ; is distributed according to Pln/ g in place of P".
The explicit formulation of A, as a vector of covariances between the functions f € F
and the score g of the path ¢ — P, ;4 is particularly important for testing purposes. On
the one hand, if the path t — P, ; approaches P from within the model P, then g € T'(P)
by definition and thus A, = 0 as a result of F C T(P)*. On the other hand, if a path
t — P, 4 does not approach P “too fast” from outside P (see ) and F is sufficiently
rich in the sense that the closure of its linear span (cl{lin{F}}) equals T(P)*, then
g must be correlated with some f € F implying A, # 0. Intuitively, the vector of

sample moments G,, can therefore be employed to detect whether a local perturbation

approaches P from within the model P or from outside of it.

By equating the null hypothesis in to G, having mean zero, Lemma sug-
gests a specification test with nontrivial asymptotic local power may be built by testing
whether G,, has mean zero. Following this intuition, we construct a locally nontrivial
specification test by utilizing a function ¥ : £*°([dr]) — R4 to reduce the vector of sam-
ple means G, to a scalar test statistic ¥(G,,) — for instance, we may set ¥(G,,) = ||G,, |00

when dr = co. In general, we require the function ¥ to satisfy the following condition:

Assumption 3.2. (i) U : (>°([dr]) - Ry is continuous, convez; (ii) ¥(0) =0, U(b) =
U (=b) for all b € £>([dF]); (iii) {b € £>°([dF]) : ¥(b) <t} is bounded for all t > 0.

Given Assumption the following Theorem shows that a specification test based

on rejecting whenever the statistic U(G,,) is large indeed has nontrivial local power.

Theorem 3.2. Let Assumptions hold, and for a € (0,1) let ¢1—o denote
the 1 — a quantile of U(Go). If ci—q > 0, then for any path t — Py 4, € P it follows that

lim Pl

n—o0 l/ﬁyg(qj(Gn) > 61_04) =a. (27)

Moreover, if in addition cl{lin{F}} = T(P)* and a path t — P, 4 satisfies (2€)), then

lim inf P

minf Py 7 (W(Gn) > e1-a) = P(¥(Co + Ag) > c1-a) > a . (28)

It follows from Lemma that the asymptotic distribution of ¥(G,,) equals ¥(Gy)
whenever {X;}" , is distributed according to PI"/ N for any path ¢ — P; , € P. There-
fore, letting ¢1—, denote the 1—a« quantile of W(Gy), it is straightforward to establish the
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first claim of Theorem that a test that rejects whenever W(G,,) is larger than ¢j_,
locally controls size (see ) Establishing that such a test also has nontrivial local
power (see (28)) is substantially more challenging and follows from a strengthening of
Anderson’s inequality due to Lewandowski et al.| (1995)). Finally, we note that while lin-
earity of T'(P) plays a crucial in the study of regular estimators (van der Vaart, |1989),
the present section’s results concerning local testability of P can in fact be partially
extended to settings in which T'(P) is not linear; see Remark

Remark 3.2. In an important class of irregular models, T'(P) is not a vector space but

a convex cone instead. In such a setting it is convenient to define the polar cone
T(P)"={felLi: /fgdP <0 forall geT(P)}, (29)

which equals T'(P)* when T'(P) is a vector space. Employing Moreau’s decomposition
(Moreaul, [1962) it is then possible to generalize Lemma provided the condition F C
T(P)* is replaced by F C T(P)~. In particular, result continues to hold, but with
Ay < 0 whenever t — P, € P, and Ay ﬁ 0 whenever the path ¢ — P 4 satisfies

and the convex cone generated by F in L3 equals T(P)~. This extension of Lemma
suggests an analogue to Theorem [3.2] can be established by employing test statistics
U(G,,) of the null hypothesis that the mean G,, is negative (instead of zero). However,
while given the availability of a suitable class F it is straightforward to construct a test
that locally controls size (as in (27))), the resulting test will have power greater than size
against some but not all local alternatives (as in ) The latter weaker result is due

to the nonexistence of nontrivial unbiased tests in these problems (Lehmann, [1952)). m

Together, Corollary and Theorem complete the analogy to the generalized
method of moments setting. Namely, they imply that there exists a locally nontrivial
specification test if and only if P is locally overidentified by the model P. The spec-
ification test in Theorem [3.2] is infeasible insofar as it requires knowledge of a set of
functions F satisfying Assumption [3.1] and whose linear span is dense in the orthogonal
complement T'(P)*. These requirement can be dispensed with under additional regu-
larity conditions, as we next illustrate by showing that the J-test of [Hansen| (1982) is
in fact asymptotically equivalent to the test developed in Theorem [3.2]

GMM Illustration (cont). For the J-statistic .J, and the matrix S(P) as defined in
and respectively, it is straightforward to show that

In = ||\/ﬁ/Q(P)_;S(P)p(nB(P))dP”H2 +op(1) . (30)

Hence, for e, € R% a vector whose k*" coordinate is one and all other coordinates are
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zero, and the set F = {e;@,Q(P)*%S(P)p(-, 5(P))}Z”:1, we obtain from that
I =¥(Gy) +0p(1) , (31)

where U(b) = ||b]|? for any b € £°°([d,]). Moreover, by (9) we can also conclude that
F c T(P)* and cl{lin{F}} = T(P)*. Thus, the J-test is asymptotically equivalent
to a version of the infeasible test developed in Theorem Intuitively, J, may be

interpreted as employing an estimate F of the unknown class F instead of F itself. m

4 Estimation

In Section 3 we argued that local overidentification plays a fundamental role in determin-
ing whether a model is locally testable. In what follows, we show that local overidentifi-
cation is also essential in determining whether regular parameters admit asymptotically
distinct linear and regular estimators. We therefore conclude that, subject to regular-
ity conditions, local overidentification is equivalent to both the local testability of the
model and the existence of efficient (and inefficient) estimators. Hence, in accord with
Hansen (1982), our results imply semiparametric efficiency considerations are only of

importance when the model is locally testable.

4.1 Estimation Setup

We represent a parameter as the value a known mapping 6 : P — B takes at the unknown
distribution P € P. In the construction of Hausman tests, it will be particularly useful
to allow for (P) to be infinite dimensional and we therefore only require B to be a

Banach space with norm || - ||g. The dual space of B is denoted by B* and defined as

B*={b*:B — R :b" is linear and [|b*||g~ < oo} |6%|B+ = sup [b*(b)]; (32)
[blls<1

i.e. the dual space B* is the set of continuous linear functionals operating on B.

An estimator 6, : {X;}?_, — B for the parameter §(P) is then simply a function
mapping the data into the space B where 6(P) belongs. It is evident that given a
consistent estimator 6,, of 0(P) it is always possible to construct an alternative consistent
estimator — for instance, by considering 0, + b/y/n for any b € B. Addressing the
question of whether §(P) admits a “unique” estimator therefore requires us to in some
manner constrain the class of estimators under consideration. We accomplish this goal
by focusing attention on estimators that are both regular and asymptotically linear. In

the present setting, regularity and asymptotic linearity are defined as follows:

17



Definition 4.1. 6, : {Xi}y — B is a regular estimator of 0(P) if there is a tight Z
such that /n{0, — 0P/ /ng)} s 7, foranyt— Py € P and Ly g = Qi P/ yng- ™

Definition 4.2. 6, : {Xi}, — B is an asymptotically linear estimator of 6(P) if
N 1 &
Vn{b, —0(P)} = NG ; v(X;) + op(1) (33)

under P = @, P for some v: R% — B satisfying b*(v) € L3 for any b* € B*. m

By restricting attention to regular estimators, as in Definition we focus on /n-
consistent estimators whose asymptotic distribution is invariant to local perturbations of
the data generating process. We note that the perturbations we consider are only under
paths within the model P since the parameter 0(P; / Ji,g) may not be defined when
Py g ¢ P; see the GMM discussion below. Asymptotic linearity, as in Definition
in turn imposes the existence of an influence function v for which holds in B.
The condition that b*(v) € L3 for any element b* € B* implies /n{b*(6,) — b*(8(P))}
converges to a centered normal distribution on R under P™. Thus, any estimator 0,,
satisfying that converges in distribution in B must do so to a centered Gaussian
measure. In particular, we note that this requirement implies that if 0, is asymptotically
linear and regular, then 6, + b/\/n for 0 # b € B cannot be.

We illustrate these concepts in the generalized methods of moments context.

GMM Illustration (cont). The canonical example for a parameter 0(P) in this setting
is B(P) — i.e. the element 3 € © solving [ p(-, 3(P))dP = 0. In this case B = R%
and 0(P) = B(P) is clearly defined for all P € P but not for P ¢ P. The generalized
methods of moments estimator of Hansen| (1982)) is then both regular and asymptotically
linear under standard conditions. For an example of an infinite dimensional parameter,
we may let B = />°(R%) and consider estimating the c.d.f. of P so that

O(P) =t P(X; <t). (34)

Regular and asymptotically linear estimators for this parameter include the empirical
c.d.f. and the empirical likelihood estimator studied in [Yuan et al|(2014)). m

4.2 Multiplicity of Estimators

Given the introduced notation, we next examine the relationship between local overi-
dentification of P and estimation of a parameter 6(P) that admits at least one asymp-

totically linear regular estimator. To formalize our discussion, we first impose:

Assumption 4.1. (i) 0 : P — B is a known map, and B a Banach space B with norm
-85 (i) There is an asymptotically linear regular estimator 6,, : {X;}7, — B of 8(P).
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Figure 3: The Projection of Influence Functions

While most commonly employed estimators are regular and asymptotically linear,
it is worth noting that their existence imposes restrictions on the map ¢ : P — B. In
particular, as shown by ivan der Vaart| (1991b)), the existence of an estimator 0, satisfy-
ing Assumption [4.1](ii) and the linearity of 7'(P) imposed in Assumption [2.1](ii) together
imply that the map 6 : P — B must be pathwise differentiable relative to T'(P). We em-
phasize, however, that the existence of a parameter §(P) and an estimator 0, satisfying
Assumption [4.1] imposes restrictions only on the map 6 : P — B but not directly on the
model P. Moreover, we also note that our results apply to any parameter 6(P) for which
Assumption holds. Thus, 6(P) should not be solely thought of as an intrinsic char-
acteristic of the model P, but rather as any “smooth” function of P € P. In particular,
we emphasize that under Assumption [2.1] one can always find a map 6 : P — B and an
estimator 6, for which Assumption hOldEﬂ — a point that is particularly useful in the
construction of Hausman tests and the analysis of nonparametric conditional moment
restriction models; see Sections and respectively.

Under Assumption the following theorem establishes the connection between es-
timation and local overidentification by showing asymptotically linear regular estimators

are up to first order unique if and only if P is locally just identified by P.

Theorem 4.1. Let Assumptions and [{.1] hold. It then follows that:

(i) If P is locally just identified by the model P and 6, : {Xi}, — B is an asymp-
totically linear regular estimator of (P), then \/n{f, — 0,} = 0,(1) in B.

9For example, the parameter §(P) = J fdP for a bounded function f always admits the sample mean
% >, f(X5) as an asymptotically linear and regular estimator
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(ii) If P is locally overidentified by the model P, then there exists an asymptotically
linear regular estimator 0, : {X;}7_, — B such that \/n{6, — 0,} LA # 0 in B.

The heuristics behind Theorem can most easily be understood in the special case
where §(P) is scalar valued. When B = R the influence functions v and # of alternative
asymptotically linear regular estimators 6,, and 6, are both elements of L3. As such,
both v and 7 may be projected onto the tangent space T'(P) and, crucially, by regularity
their projections must agree; see Figure 3@ Theorem (1) immediately follows from
this observation for if P is locally just identified, then T'(P) = L3 and thus the influence
functions of én and 9~n must in fact coincide implying the estimators are first order
equivalentm Analogously, if P is locally overidentified so that T'(P) & L2, then Theorem
u(ii) may be established by constructing a regular asymptotically linear estimator 0,,
whose influence function differs from that of 6, on the orthogonal complement T'(P)L.
The generalization of these heuristics to an infinite dimensional Banach space B can in
turn be accomplished by employing the dual space B* and exploiting the asymptotic

tightness of 0,, to reduce the analysis to the scalar case.

The proof of Theorem is closely related to standard arguments found in the
semiparametric efficiency literature (Bickel et al., [1993). In particular, when 0(P) is

scalar valued efficiency is also naturally studied through T'(P) and the decomposition
v=I1rw)+p(v), (35)

where II7(v) may be understood as the efficient component and Il (v) as a “noise” fac-
tor extraneous to the model P. Whenever P is locally just identified all asymptotically
linear regular estimators lack a noise factor (Ilp1 (v) = 0) and are thus not only equiv-
alent but also efficient. Intuitively, efficiency gains are only possible when P is locally
overidentified and there thus exists model information to be exploited in estimation. In
contrast, whenever P is locally overidentified asymptotically linear regular estimators
may differ and be inefficient by possessing a “noise” component (IIpi (v) # 0) — the es-
timator 6, in Theorem is in fact constructed precisely in this manner. This intrinsic
relationship between efficiency and local overidentification can be exploited to charac-
terize local overidentification in models P for which semiparametric efficiency results
are already available in the literature; see Remak

Remark 4.1. Whenever P is locally just identified, Theorem (1) implies that for any
function f € L? = {h: R% — R : ||h||;2 < oo}, the mean parameter 0;(P) = [ fdP

Formally, both Iz (v) and Il (#) must equal the Riesz representor of the pathwise derivative 6 :
T(P) — R. See, e.g., Proposition 3.3.1 in [Bickel et al.| (1993)) for a statement and proof.

"The fact that if T(P) = L then the influence functions must be unique had been previously noted
by [Newey| (1990) (p.106) for the case of B = R and [Newey| (1994) (Theorem 2.1) for the case of B = R?

for a fixed finite d < oo.
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can be efficiently estimated by its sample analogue:

bm= > F(X) (36)

=1

It is useful to note that the converse to this statement is also true. Namely, if éf,n is
an efficient estimator of 67(P) for all f € L?, then P must be locally just identified.
In fact, for P to be locally just identified it suffices that éﬂn be efficient for all f € D
for any dense subset D of L2E We will exploit this relationship in Section |5 to derive
necessary and sufficient conditions for P to be locally just identified in nonparametric

conditional moment restriction models. m

In the context of GMM, Theorem [4.1]is easily illustrated through well known results.

GMM Illustration (cont). Let W, be a sequence of d, x d, matrices converging in

probability under P" to a positive definite matrix W, and define the estimator
B € argmin (Vi [ (. 0P YWVt [ pleB)aP") (37)

which is both regular and asymptotically linear under standard conditions. Setting
9(P) = B(P) we then recover from Theorem [4.1[i) the well known result that the
asymptotic distribution of BZV does not depend on W when P is just identified (d, = dg).
Theorem [.1], however, further implies the conclusion is true for all parameters 6§ : P — B
satisfying Assumption — for example, for §(P) the c.d.f. of X; as in (34). m

4.3 Hausman Tests

Our results so far have established the equivalence of local overidentification and the
existence of both locally nontrivial specification tests and of asymptotically different es-
timators for a common regular parameter. The latter two concepts were also intrinsically
linked by the seminal work of Hausman (1978)), who proposed conducting specification
tests through the comparison of alternative estimators of a common parameter. In what
follows, we revisit Hausman| (1978) and show how the principles devised therein can be

employed to implement the infeasible specification test of Theorem [3.2

The construction of a Hausman test requires the existence of two asymptotically

linear regular estimators 6,, and 6, for a parameter 6(P) € B, and we therefore impose:

Assumption 4.2. (i) There are two asymptotically linear reqular estimators 6,, and 6,
of the parameter 6(P) € B with influence functions v and U respectively; (i) Under
P =@, P, (vu{b, — 6(P)},/n{l, — 6(P)}) converges in distribution on B x B.
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Figure 4: The Difference of Influence Functions

The connection between a Hausman test and the results on specification testing from
Section is most easily illustrated when the parameter §(P) is a scalar (B = R). In
such a setting, the influence functions v and U of 6,, and 6,, both belong to L% and
in addition their projections onto the tangent space T(P) coincide (II7(v) = Il (7));
recall Figure 3. The latter crucial property, however, is equivalent to the difference
of the influence functions (v — ©) belonging to the orthogonal complement T'(P)*; see

Figure 4. Moreover, by asymptotic linearity of 6,, and 6, it also follows that
R - 1 & ~
Vil — On} = 7 ;{V(Xi) — (Xi)} +o0p(1) (38)

under P, and hence \/ﬁ{én - 9~n} is asymptotically equivalent to the mean of a function
f = (v— D) in the orthogonal complement T'(P)* (compare to (24)). Intuitively, the
difference \/n{f, — 0, } therefore provides us with an estimator of the sample mean of
an element f € T(P)*, and a Hausman test can in turn be interpreted as a feasible

version of the test developed in Section (3.3

The above discussion can be generalized to allow for nonscalar §(P) (B # R) by
employing the dual space B*. In particular, note that for any b* € B*, b*(6(P)) is
a scalar valued parameter and b* (én) and b*(6,,) are both regular and asymptotically
linear estimators with influence functions b* o v and b* o ¥ respectively. Thus, by our

preceding discussion, (b* o v — b* o ) € T(P)* and in addition

Vb (0n) = b (0,)} = L i{b*(V(Xi)) — b (0(X5))} + 0p(1) (39)
NP

128ee Lemma in the Appendix for a formal statement.
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under P™. Heuristically, every b* € B* may therefore be employed to estimate the
sample mean of the function b* o (v — ) € T(P)* through the difference /n{b*(0,) —

b*(6,,)}. More generally, for any norm bounded subset U of B* we may collect all such
estimates implied by b* € U into a stochastic process Gy € (> (U) defined by

G (b") = Vi {b"(8a) —b*(0n)} - (40)

As the following Theorem shows, the stochastic process Gy € (@ (U) is asymptotically
equivalent to the empirical process generated by G = {b* o (v — ) : b* € U} and in this

manner mimics the role of the process G,, in Lemma

Theorem 4.2. Let Assumptions[2.1} [4.1)(i), and[4.9 hold, and U C B* be norm bounded.
For any path t — P, 4 let L,, 4 denote the law of {X;}_, under @, Py /mg» and define
Ay € 1°(U) pointwise by Ag(b*) = [b*o(v—1)gdP. Then, there exists a tight centered
Gaussian process Go € £>°(U) such that for any path t — P4 we have

Gn 8 Go + A, . (41)

Moreover, b* o (v—1i) € T(P)* for allb* € U and hence (i) Ay = 0 whenevert v Py, €
P, and (ii) If in addition cl{lin{{b* o (v — ) }pev}} = T(P)*, then Ay # 0 whenever

.. . 1/2 1/2 2
hnrggf éléfl;n/[dQ dPl/\/ﬁ,g] >0. (42)

In accord with Lemma the asymptotic distribution of G,, exhibits a drift A,y when
the data {X;}! ; is distributed according to Pl’"”/ N in place of P™. The functional form
of A, is one of covariances between the score g and the functions {b*o (v —7)}y+cy, which
as argued belong to T'(P)*. Hence, following the logic of Lemma we again conclude
that A, = 0 if the path t — P, ; approaches P from within the model P. In contrast,
if the path ¢t — P, , does not approach P “too fast” (see ), then the drift A, will
be nonzero provided the closure of the linear span of {b* o (v — ¥)}y-cy equals T(P)L.
Whenever T(P)* is infinite dimensional, this condition necessitates 6(P) to be itself

infinite dimensional, thus motivating our focus on Banach space valued parameters.

Remark 4.2. Theorem [£.2(ii) requires the closure of the linear span of {b*o (v —7)}y-cu
to equal T (P)l. More generally, however, such closure may be equal to a strict subspace
of T(P)* — for instance whenever the dimension of B is smaller than that of T(P)";
see the GMM discussion below. In such a case, the drift A, is nonzero if and only if the
projection of g onto cl{lin{{b* o (v — ) }p»cu}} is nonzero. Thus, if {b* o (v — D) }prcu
is not sufficiently rich, then there exists a path t — P; 4 satisfying and for which
Ay =01in ¢>°(U). As a result, a Hausman test based on Gy, will still provide local size

control but have power no larger than size against certain local alternatives. m
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Theorem [£.2] provides the foundation for constructing a specification test, much in
the same manner Lemma [3.1| was exploited to build an infeasible test based on the
untenable knowledge of a subset F of T (P)L. In particular, comparing a test statistic
\P(Gn) to its asymptotic 1 — a quantile yields a locally unbiased test for any continuous
subconvex function ¥ : (*°(U) — R. Corollaryillustrates this point by providing an
analogue to Theorem While we abstract from the problem of estimating asymptotic
critical values, we note that the use of the bootstrap is automatically justified whenever

it is valid for the asymptotic joint law of the original estimators 6,, and 6,, on B x B.

Corollary 4.1. Let Assumptions (z), hold, and for any o € (0,1) let

C1—q denote the 1 —a quantile of W(Gy). Further let U = {bZ}gil be norm bounded, and
suppose Ziil [(b; o (v —1))2dP < 0o. If c1—q > 0, then for any path t — P4 € P:

lim P!

Tim Py o (U(Gn) > c1oa) =a . (43)

If in addition cl{lin{{b} o (v — ﬁ)}gil}} =T(P)* and t — P, 4 satisfies [42)), then

lim inf P

e 1) ma(P(Gn) > c1-a) > P(¥(Go+ Ay) > c1-0) > . (44)

We conclude by illustrating the construction of Hausman tests in the GMM setting.

GMM Illustration (cont). Recall that for every P € P, B(P) € © is the parameter
solving [ p(-, B(P))dP = 0 and consider the construction of a Hausman test based on

alternative estimators of §(P) = B(P). In particular, for different d, x d, positive definite
matrices W7 and Ws, and 3};‘/ the estimator defined in , it follows that

V(W — gy = jﬁ S (Vins (P) = Viny (P)}o(Xi, B(P)) + 0p(1)  (45)
=1

under P", where Viy(P) = (I'(P)YWT(P))"'I'(P)W. Since in this case B = R%,
the dual space equals B* equals R% and as indicated by Theorem )\’5{VW1 (P) —
Viv, (P)}p(-, B(P)) indeed belongs to T(P)* for any \g € Rdﬂﬁ Letting e, € R%
denote the vector whose k" coordinate is one and all other coordinated are zero, we
may then set U = {ek}Zil and U : £°([dg]) — R to be given by W(b) = ||b||? to obtain

V(Gn) = VB = 8317 (46)

We note, however, that the linear span of {e} {Viy, (P) — VW2(P)}p(-,B(P))}Zil is at
most a dg-dimensional subspace of T(P)*. Thus, since in contrast the dimension of
T(P)*t is d, — dg (see (9)), it follows that a Hausman test based on will fail to
have power against certain local alternatives when d, > 2dg; see Remark Such a

'¥This follows by noting that for any As € R we may set A, = {Vir, (P)’ — Viw, (P)'}Ag_to obtain
No{Viwy (P) = Vivy (P)} = A,S(P), and hence N {Viv, (P) — Viv, (P)}p(-, B(P)) € T(P)* by ().
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problem can be easily addressed by either considering higher dimensional parameters,
such as the c.d.f. of P, or by comparing more than two estimators — e.g. by employing
(V{8 — W21 /n{ W — 3WsY) for different matrices Wi, Wa, and Ws. m

5 Nonparametric Conditional Moment Models

In order to demonstrate the utility of our general results, we next study a broad class

of nonparametric conditional moment restriction models.

5.1 General Setup

In what follows, we set X = (Y, Z, W) for an outcome variable Y € R%, a potentially
endogenous variable Z € R% and an exogenous instrument W € R% . For a known

function p : R% x R — R, the distribution P of X is then assumed to satisfy
Elp(Y,hp(2))W] =0 (47)

for some unknown function hp : R% — R. The model is nonparametric in that we only

require hp(Z) to have a second moment — i.e. we assume hp € L.

As previously noted by |(Chen and Pouzo| (2012)), model may be studied without
requiring differentiability of p : R% x R — R provided the conditional expectation is
appropriately “smooth”. To formalize this differentiability requirement, we let LQZ and

LIQ/V denote the functions in L? depending only on Z and W respectively, and define
m(W, h) = Elp(Y, h(Z))|W] . (48)

The following Assumption then imposes the required restrictions on the function p.

Assumption 5.1. (i) E[{p(Y,h(Z))}?] < oo for all h € L%; (ii) m(W,-) : L% — L%, is
pathwise differentiable at hp with derivative Vim(W, hp)[s] = a%m(VV, hp+7s)|r=0; (iii)
The map Ym(W, hp) : L%, — L2, is linear and continuous; (iv) There exist constants
n, M € R such that 0 <n < M < oo and P(n < Var{p(Y,hp(Z2))|W} < M) = 1.

Assumption (1) and Jensen’s inequality imply that m(W,h) € L%, for all h € L%,
and hence we may view m(W,) as a map from L% into L%,. Given the codomain space
of the map m(W, -), in Assumption (ii) we further require that m(W,-) : L% — L%, be
pathwise (Gateaux) differentiable at hp. In turn, Assumption [5.1fiii) imposes that the
pathwise derivative Vm(W, hp) : L% — L%, be linear and continuous in its direction — a
property that is not guaranteed by pathwise differentiability. Finally, Assumption (iv)
demands that the conditional variance of p(Y,hp(Z)) given W be bounded from above
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and away from zero almost surely. The conditions of Assumption are commonly
imposed in the analysis of efficient estimation in conditional moment restriction models.
We similarly require them because we will heavily rely on results from the efficiency
literature in our analysis; see (Chamberlain| (1992)); |Ai and Chen| (2003, 2012).

The range of the derivative Vm (W, hp) : LQZ — L%V plays a fundamental role in de-

riving a characterization of local overidentification. We therefore introduce the notation
R={fecLi :f=Vm(W, hp)s] for some s € L3} , (49)

and let R denote the closure of R in L‘Q,V —i.e. R denotes the subset of L%/V that can be
arbitrarily well approximated by functions of the form Vm(W, hp)[s] for some s € L%,
It is worth noting that when Z does not equal W, the presence of an ill-posed inverse
problem and the closed graph theorem imply R cannot equal LIQ/V. Nonetheless, the

closure R may still equal L%,V even when an ill-posed inverse problem is present.

We illustrate the introduced concepts through the nonparametric instrumental vari-
ables model (NPIV) of Newey and Powell (2003), Hall and Horowitz (2005)), and Darolles
et al.| (2011]), and the nonparametric quantile instrumental variables model (NPQIV) ex-
amined by Chernozhukov et al.[(2007), Horowitz and Lee| (2007), and |Chen et al.| (2014).

Example 5.1. (NPIV) The NPIV model corresponds to setting p(y,u) = y — u for all
y,u € R, in which case the restriction in reduces to

E[Y — hp(Z)[W] =0 . (50)

The map m(W, ) : L% — L%, is then given by m(W, h) = E[Y — h(Z)|W] which, since it
is linear, is trivially pathwise differentiable with derivative Vm(W, hp)[s] = —E|[s(Z)|W]
for any s € L%. In this context, the range R of Vm (W, hp) is therefore given by

R={fecL¥ : f(W)=E[s(Z)|W] for some s € L%} . (51)
We also observe that if Z = W, then reduces to the mean regression model. m
Example 5.2. (NPQIV) Setting p(y,u) = 1{y <u} — 7 for 7 € (0,1) in yields
PY <hp(Z)[W) =1, (52)

which corresponds to the NPQIV model. Thus, in this context m(W,-) : L%, — L%, is
given by m(W,h) = P(Y < h(Z)|W)—r for all h € L%. If Y is continuously distributed
conditional on (Z, W) with a density fy|zu that is both bounded and continuous, then
it is possible to show m(W,-) : L% — L%, is pathwise differentiable with

Vm(W, hp)ls] = Elfy|zw(hp(Z)|Z,W)s(Z)|W] (53)
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for any s € L%. Therefore, in this model the range R of Vm(W, hp) is equal to
R={f€ Ly : f(W) = Elfy|zw(hp(Z)|Z,W)s(Z)|W] for some s € L3} .  (54)

It is worth noting that when Z = W reduces to a nonparametric quantile regression
model and simplifies to Vm(Z, hp)[s] = s(Z) fy|z(hp(Z)|Z). =

5.2 Characterization

By relating local overidentification to estimation, Theorem enables us to leverage
existing results to analyze the nonparametric conditional moment restriction model in
. In particular, efficient estimation in these models is well understood with |Ai and
Chen (2012) notably deriving the efficiency bound for a general class of functions of P.
While their results cover intrinsically interesting parameters such as average derivatives,

for our purposes it is convenient to, for any f € L?, focus on the simpler parameter
6:(P) = / fdpP . (55)

As argued in Remark local just identification is equivalent to the sample mean
being an efficient estimator of 6¢(P) for all f in any dense subset D of L?. Thus, we may
characterize local just identification by obtaining necessary and sufficient conditions for
the efficiency bound for 6(P), denoted Q%, to equal the asymptotic variance of the sam-
ple mean, i.e. Var{f(X)}. The following proposition exploits the explicit formulation
for the efficiency bound 0} derived in |Ai and Chen| (2012) to accomplish this goal.

Proposition 5.1. Let Assumption hold. Then, there exists a dense subset D of L?
such that Var{f(X)} = Q3 for all f € D if and only if R = L% .

Proposition [5.1] establishes that sample means are efficient if and only if the closure
of the range of Vm(W, hp) : LQZ — L%/V is equal to L%,V. Hence, we conclude that
local just identification in a nonparametric conditional moment restriction model is
equivalent to the requirement R = L%V while local overidentification corresponds to the
case R ¢ LIQ/V. Heuristically, we may thus understand local overidentification as the
existence of transformations of the instrument (f € L?,) that cannot be mimicked by
a Z induced local change in the conditional expectation (Vm(W,hp)[s] for s € L%).
This characterization of local overidentification is analogous to the one obtained in the
GMM context, where L, corresponds to the codomain of the restrictions (R%) and R
corresponds to the range of the derivative of the moment restrictions (R%). Thus, local
overidentification (R & L) maps into the case R% ¢ R% .. dg < d,. In Remarks
and below, we discuss an alternative characterization of local overidentification,

as well as the implications of imposing additional restrictions on hp.
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Remark 5.1. Since LQZ and L%,V are both Hilbert spaces, the requirement that R be
equal to LIQ/V can also be expressed in terms of the adjoint to Vm(W, hp) : LZZ — L%V,
which we denote by Vm(W,hp)* : LI2/V — L%E In particular, R must equal the
orthogonal complement to the null space of Vm (W, hp)*, and thereforﬂ

R = L%, if and only if {0} = {s € L}, : Vi(W, hp)*[s] = 0} ; (56)

ie. R = L% if and only if Vm(W,hp)* is injective. Interestingly, the requirement
that the derivative Vm(W, hp) be injective is instrumental in ensuring local identifica-
tion (Chen et al., 2014). Thus, reflects a symmetry between local identification
(injectivity of Vm(W, hp)) and local just identification (injectivity of Vim(W, hy)*). m

Remark 5.2. Imposing restrictions on hp beyond it belonging to L2Z can reduce the
tangent space T'(P) and therefore affect the characterization of local overidentification.
For instance, if hp is instead assumed to belong to a vector subspace H of LQZ, then
Proposition continues to hold provided R is redefined as (compare to ):

R={fecLi :f=Vm(W, hp)s] for some s € H} . (57)

Hence, restricting the parameter space from L2Z to H potentially reduces R and yields
local just identification (R = L) less tenable. The conclusion that semiparametric
conditional moment restriction models are typically locally overidentified, for example,
follows from Theorem |4.1ii) and the availability of both efficient and inefficient estima-
tors for such models (Chamberlain) [1992; |Ai and Chen, 2003; |Chen and Pouzo, 2009)).
In fact, the sufficient conditions in Bonhomme| (2012)) and |Chen et al| (2014]) for local
identification of FEuclidean parameters directly imply the local overidentification of P

even in the presence of partially identified nuisance parametersm ]

Exploiting Proposition [5.1]and Remark we revisit Examples[5.1]and [5.2]to obtain

simple characterizations of local overidentification in the NPIV and NPQIV models.

Example (cont.): Recall that we showed the derivative Vm(W, hp) : L%, — L%,
satisfies Vm(W, hp)[s] = —E[s(Z)|W] for all s € L%. Hence, its adjoint is given by

Vm(W, hp)[s] = —E[s(W)|Z] (58)

for all s € L?,, and by Proposition and Remark we conclude local just identifi-

“The adjoint Vm(W,hp)* is the unique continuous linear map from L3, into L% satisfying
J{Vm(W, hp)[h|}sdP = [ h{Vm(W,hp)*[s]}dP for all h € L% and s € L3y .

5Gee for instance Theorem 6.6.3(2) in [Luenberger| (1969).

1Examples for identification of Euclidean parameter without identification of an unknown function of
endogenous variables include |Santos| (2011) (for NPIV), |[Florens et al.| (2012)) (for partially linear NPIV)
and |Chen et al.|(2014) (for single-index IV).
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cation is equivalent to the conditional expectation operator F[-|Z] being injective:
E[s(W)|Z] = 0 implies s(W) = 0 for all s € L, . (59)

The property in is known as the distribution of (Z, W) being L?-complete with
respect to Z (Andrews, [2011). The related requirement of L?-completeness with respect
to W is necessary for identification, and thus while identification needs W to be a “good”
instrument for Z, local overidentification requires Z to be a “poor” instrument for W.
Since examples of distributions exist for which L?-completeness fails (Santos, 2012), we

conclude P can be locally overidentified even if Z and W are of equal dimension. m

Example (cont): Given the formulation of the derivative Vm(W, hp) in (53), it
is straightforward to characterize its adjoint Vm(W, hp)* as satisfying for any s € L,

Vm(W, hy)*[s] = Elfy|zw (hp(Z)|2,W)s(W)|Z] . (60)

Since by Proposition [5.1] and Remark local just identification is equivalent to injec-

tivity of the adjoint Vm (W, hp)*, in this context we obtain the characterization
Elfy\zw (hp(Z)|Z,W)s(W)|Z] = 0 implies s(W) =0 forall s € Ly, . (61)

We note the similarity of the local just identification condition in the NPIV and NPQIV
models (compare and ), though in the latter the presence of the conditional
density fy|zw reflects the nonlinearity of the problem. m

5.3 Special Case: Exogeneity

In distilling local overidentification to the condition R ¢ L%,, Proposition and
our previous results fully characterize whether locally nontrivial specification tests exist
(Theorem and whether efficiency considerations should be of concern (Theorem 4.1]).
While intuitive, the local overidentification requirement R & L%,V is certainly harder to
verify than comparing the dimension of the parameter to the number of restrictions, and
may in fact be untestable without appropriate restrictions on P (Canay et al., 2013]).
Fortunately, as we next show, additional structure such as exogeneity of Z can help

further simplify the characterization of local overidentification.

In what follows, we refer to Z as exogenous if it is part of the conditioning variable

W —ie. W = (Z,V) for some possibly degenerate variable VE Thus, we impose:

Assumption 5.2. (i) W = (Z,V) and E]WW'] < co (ii) There exists a dy : R™ — R,
such that do(W) is bounded P-a.s. and Vm(W, hp)[s] = do(W)s(Z) for all s € L.

17We recognize this may not be a standard definition of “exogeneity”. However, we employ it due
to the definition reflecting the common practice of conditioning on exogenous variables and because
whether Z is part of W or not is of key importance from a mathematical perspective.
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While Assumption (1) formalizes the requirement of exogeneity, Assumption (ii)
strengthens Assumption (iii) by imposing an additional requirement on the specific
structure of the derivative Vm(W,hp) : L% — L%, — namely that it be of the form
Vm(W, hp)[s] = do(W)s(Z) for all s € L%. The latter specification is easily verified
whenever p : R% x R — R is partially differentiable in its final argument, in which case
Assumption [5.2(ii) holds under mild conditions with do(W) = E[0yp(Y, hp(Z))|W].
In the more general case where p : R% x R — R is not differentiable but the map
m(W,-) : L% — L%, is, Assumption (ii) can still be verified on a case by case basis.

Under the additional structure provided by Assumption the following Proposi-

tion simplifies the characterization of local just identification (R = L%,).

Proposition 5.2. If Assumptions (z)-(u), hold, then R = L%, if and only if

PEV|Z]=V)=1 and P(d(W)#0)=1. (62)

Heuristically, Proposition [5.2] characterizes local just identification in terms of two
key conditions. First, V must be a deterministic function of Z (E[V|Z] = V) thus
preventing W from possessing variation that is unexplained by Z. Second, the derivative
Vm(W,hp) : L%} — L%, must be injective (do(W) # 0), which is a condition often
associated with local identification (Chen et al., [2014)). In the present context, however,
local just identification is also intrinsically linked to the rank condition on the derivative
Vm(W, hp) due to the latter being self-adjoint when Z = W; see Remark

Remark 5.3. Whenever Z = W we have L% = L%, and the derivative Vim(W, hp) :
LI%V — L%,V satisfying Assumption (ii) implies it is self-adjoint. Since, as argued
in Remark local just identification is equivalent to the adjoint Vm (W, hp)* being
injective, it follows that under self-adjointness local just identification is tantamount to
injectivity of Vm(W,hp) — a requirement that reduces to P(do(W) # 0) = 1 under
Assumption [5.2{ii). It is worth noting that injectivity of Vm(W, hp) is a strictly weakly
requirement than its invertibility, which fails for instance if E[{do(W)}7%] = co. m

5.4 Discussion: Two Step Procedures

In conjunction with our previous results, Propositions and have strong impli-
cations for the estimation of regular parameters in nonparametric conditional moment

restrictions models with or without endogeneity.

For the special case in which the conditioning variable (W) equals the argument
of the nonparametric function (Z), an extensive literature has examined estimation of
functionals of hp such as the average derivative or consumer surplus (Powell et al.|

1989; Newey and Stoker, |1993). A common feature of these estimation problems is
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that “plug-in” estimators are efficient and moreover that their asymptotic distribution
is invariant to the choice of estimator for hp (Newey, 1994)). This classical result is in
fact immediately implied by Theorem (1) whenever P is locally just identified, since
we may always view regular functionals, such as the average derivatives of hp, as a
parameter § : P — R. In particular, by Proposition [5.2] we conclude regular plug-in
estimators must be efficient whenever condition is satisfied.

Our results, however, further imply that plug-in estimators of functionals of hp
need not be efficient when P is locally overidentified by P. For instance, even under
exogeneity of Z, Proposition and Theorem [4.1{(ii) imply plug-in estimators may fail
to be efficient whenever W contains variation unexplained by Z — i.e. condition
fails@ Analogously, we also conclude that plug-in estimators of regular parameters need
not be efficient when Z is endogenous since, as illustrated by Examples and P
may be locally overidentified in such problems; see also Remark We note, however,
that as shown in |Ai and Chen| (2012)) efficient estimators of functionals of hp may still
be available when P is locally overidentified and, as implied by Theorem [£.2] employed

to construct Hausman tests if desired.

Remark 5.4. Building on |[Newey and Powell (1999), |Ackerberg et al. (2014]) show
that with an “exactly identified” nonparametric conditional moment model first step,
semiparametric two step GMM estimation can be fully efficient. The key requirements
they refer to as “exact identification” are that Z = W in the conditional moment
restriction and that do(W) # 0 almost surely. Our analysis complements theirs,
since Proposition [5.2| establishes their “exact identification” requirement is equivalent
to P being locally just identified by the first stage nonparametric conditional moment
restriction. We also conclude from our results that semiparametric two step estimation
can be inefficient when (i) Z is exogenous but Z ¢ W, (ii) Further restrictions are
imposed on hp (Remark [5.2), or (iii) Z is endogenous as in NPIV. m

6 Conclusion

This paper reinterprets the common practice of counting the number of restrictions
and parameters in GMM to determine overidentification as an approach that implicitly
examines the tangent space T'(P) as a subset of L%. This abstraction naturally leads
to the notion of local overidentification, which we show is responsible for an intrinsic
link between the semiparametric efficient estimation of regular parameters and the local

testability of a model. When applied to nonparametric conditional moment restriction

18We emphasize this conclusion does not contradict the results of Newey| (1994), who in establishing
the first order equivalence of asymptotically linear and regular estimators imposes a condition that is
tantamount to P being locally just identified.

31



models, we obtain a simple condition that determines both whether the model is locally

testable and whether efficiency gains are available in estimating regular parameters.

This paper assumes that P is the distribution of a single observation from an i.i.d.
sample for the sake of simplicity. Most of the results carry over to weakly dependent
data. There is some work (such as |Ploberger and Phillips| (2012) and the references
therein) on applying limits of experiments to specific models with nonstationary, strongly
dependent data. We conjecture that many results in this paper could be extended to
general semi/nonparametric models with temporal or/and spatial dependent processes
by using limits of experiments theories for martingales and conditional scores. We leave

such extension for future work.
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APPENDIX A - Proof of Main Results

The following list includes notation and definitions that will be used in the appendix.

[d] For an integer d > 0, the set [d] = {1,2,--- ,d}.
(>°(A) Foraset A, (*(A)={f:A—=R:sup,c,|f(a)| < oo}

L2 The set L2 ={g: [gdP =0 and [ g?dP < oo}.
T(P) The closure of T(P) ={g € L} : holds for some ¢t — P; , € P}.
T(P)+ The complement T(P)* ={g € L: [gfdP =0 for all f € T(P)}.

PROOF OF THEOREM : First note that for any g € L(Q) it is possible to construct
a path t — P;, whose score is indeed g; see Example 3.2.1 in Bickel et al.| (1993) for
a concrete construction. Moreover, further observe that any two paths ¢ +— ]5,&79 and
t — P; 4 with the same score g satisfy by 0 < ¢, <1 and Lemma

lim | / ond P} o — / ondP]) | < lim / (AP} = dPT | =0 (A

For each g € L(Q) we may therefore select an arbitrary path ¢ — P; ; whose score is indeed

g, and for B the Borel o-algebra on R we consider the sequence of experiments

En= R B"™ R P/ ymy:9€Li) . (A.2)
=1

. d . .
Next note that since {1/1,{}221 U {¢j-},7 forms an orthonormal basis for L3, we obtain

from Lemma that &£, converges weakly to the experiment £ given by
£ = (R x RirL BT x Bt Q,: g€ L}), (A.3)

where we have exploited that for dp = dim{L2} we have R x Rér+ = R% and
B x Blrt = B, The existence of a test function ¢ : R x R+ — [0, 1] satisfying
then follows from Theorem 7.1 in van der Vaart| (1991a)).

To conclude the proof, it only remains to show that ¢ must controls size in (14]). To
this end, note that I1;.1(g) = 0 if and only if g € T(P). Fixing § > 0 then observe that
for any g € T(P) there exists a § € T(P) such that ||g — §|/z2 < §. Moreover, since
g € T(P), there exists a path t — P, 5 € P with score § and hence

/ $dQy = lim / PndPy) g
< | OndPY g o+ lim sup / 198y g = W1y ymg]

52
§a+2{1—exp{—z}}1/2, (A.4)
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where the first inequality employed that 0 < ¢, < 1 and the second inequality exploited

and Lemma Since § > 0 was arbitrary, we conclude from (A.4)) that [ ¢dQ, < «
whenever g € T(P) and the Theorem follows. m

PROOF OF COROLLARY (3.1} The proof proceeds by contradiction. First note that if
does not hold, then we may pass to a subsequence {n}3>,; such that

lim inf / b, AP > M, A5
k—oo0 {QGL%:”HTL (g)”L2 ZB} F 1/\/7Tk’g ( )

for some constant My > P(X?(B) > x3_,,). Further observe that by Theorem there
exists a level a test ¢ of such that for every path t — P; ; we have

; Nk _
lim / O AP o = / $dQ, . (A.6)
Moreover, by results (A.5)), (AL6), T(P)* C L2, and g = ;. (g) for all g € T(P)*,

My < inf / $dQ, < inf / $dQ, . (A7)

-~ {geL3 N, (9)ll2>B} ~ {geT(P)*:||gll .2>B}

Let ® denote the standard normal measure on R, and note that for any g € T'(P),
the measure @), is such that: (i) Y is independent of Z, (ii) ¥ ~ ®i21 o, and (iii)
Z ~ QT &(- — hy ) where hyy = [ gibdP. For each z € R% then define

¢(2) = E[p(Y, 2)] , (A.8)
where the expectation is taken with respect to Y ~ ®?§1 ®. We then obtain that

dr1

inf / 6dQ, = inf / ¢d{§ B(-— )} (A.9)

{9eT(P)*llgll 2> B} {heR‘TL:||n||>B}

by (A.§), the law of iterated expectations, and noting T'(P)* is isometrically isomorphic
d
to R+ via the map Y(g) = (hg1,-- ., hgd,, ) due to {¢#},7] being an orthonormal

basis of T(P)* and dy. < co. Finally, we observe that ¢ also satisfies

dpt
[é1@) = [ <a. (A.10)
k=1

by (A.§)), ¢ being a level « test of , and 0 trivially satisfying IIp; (0) = 0. In
particular, ¢ is a level o test based on a single observation of Z of the null hypothesis
Z ~ ®Z’f1 ® against the alternative hypothesis that Z ~ ZE ®(- — hy) for some

(h1,... ha,, )" = h# 0. By Problem 8.29 in Lehmann and Romano| (2005)), the maximin
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power for such a hypothesis testing problem is given by

i
[ -h) SP@HB) 2 ). (A
k=1

{heR"TL:||1n]|> B}

Results (A.7) and (A.9), however, contradict (A.11)) and the Corollary follows. m
PrROOF OF COROLLARY : By Theorem there exists a level a test ¢ of with

Tim [ gdPy g = / $dQ, . (A.12)

However, if P is just identified at P, then T(P) = L2, or equivalently T'(P)+ = {0}.
Therefore, the null hypothesis in holds for all g € Lg, which implies [ ¢dQ, < «
for all g € L2, and the claim of the Corollary then follows from (A.12)). m

PROOF OF LEMMA : First note that since {f;}¢7, is such that Y¢", [ f2dP < oo
by Assumption Theorem 2.13.1 in van der Vaart and Wellner| (1996)) implies F is
P-Donsker. Moreover, since F C T(P)* C L2, it also follows that [ fdP = 0 for all
f € F. Hence, Theorem 3.10.12 in jvan der Vaart and Wellner| (1996) lets us conclude
that for any path t — P, 4, we have (as a process in £>°([dr])) that

Gn 2 Go+ A, . (A.13)

The first claim of the Lemma then follows immediately since t — F;, € P implies
g € T(P) and hence [ gfdP =0 for all f € F due to F C T(P)*.

Next observe Lemma implies that if t — P; ; satisfies then we must have

g¢T(P). (A.14)

Moreover, since T(P) is a linear space by Assumption [2.1](ii), Theorem 3.4.1 in [Luen-
berger| (1969)) implies g = II7(g) + . (g). Thus, since g ¢ T(P) by (A.14) we obtain

/ o{I1;. (g)}dP = / (T (g) + T (9)} {1y (9)}dP = / (T (9)}2dP >0 . (A.15)

Furthermore, since II;. (g) € T(P)*, it follows that if cl{lin{F}} = T'(P)*, then there

exists an integer K < oo and a sequence of scalars {ak}szl such that

11T ()12

A.16
2 Tl (A.16)

K
Tps(g) = awfrllrz <
k=1
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Therefore, from (A.15) and (A.16), and the Cauchy-Schwarz inequality we obtain that

K
/g{z oy fi}dP
k=1 p 1
> /Q{HTJ—(Q)}dP_ | /Q{HTJ—(Q) =D _orfildP| > S| Hpi(g)[f> > 0. (A7)
k=1

We conclude from (A.17) that [ gfxdP # 0 for some f € F and the Lemma follows. m

PROOF OF THEOREM [3.2} For the first claim, note that Assumption Lemma [3.1
and the continuous mapping theorem imply that under any ¢t — P, € P

U(Gn) 8 W(Gy) . (A.18)

We further observe that Gg is tight in ¢>°([dr]|) by Lemma and Radon by Lemma
A.3.11 in Bogachev| (1998). Next note for any ¢t > 0, continuity of ¥, ¥(0) = 0, and
U(b) > 0 for all b € £>°([dr]) imply there is a neighborhood N; of 0 € ¢*°([dF]) such
that 0 < W(b) <t for all b € N;. Thus, we can conclude that

P(W(Go) < t) > P(Gye Ny) >0, (A.19)

where the final inequality follows from 0 € ¢*°([dr]) being in the support of Gg by
Theorem 3.6.1 in |Bogachev] (1998). We therefore obtain that

to =inf{t: P(¥(Go) <t) >0} =0, (A.20)

and from (A.20) and Theorem 11.1 in |Davydov et al.| (1998) that the cdf of ¥(Gy) is
continuous everywhere except possibly at tg = 0. Since ¢;_, > 0 by hypothesis, the cdf
of ¥(Gy) is in fact continuous at ¢;_,, and thus we can conclude from (A.18) that

lim P

n—o00 1/\/579(\1/(@”) > Cl_a) - P(\II(G0> > Cl—oc) = (A21)

For the second claim of the Lemma, recall A, = {Agk}zg € (°°([dF]) is defined by

Agr = /gfde . (A.22)

Lemma {b e >°([dr]) : U(b) > c1_q} being open by continuity of ¥, and Theorem
1.3.4 in van der Vaart and Wellner| (1996) then imply that

liminf P

minf Py & (¥(Gn) > c1-0) 2 P(¥(Go + Ag) > c1-a) - (A.23)

Moreover, note that since Gg is Radon, Lemma further implies that —A, is in the
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support of Go. Hence, arguing as in (A.19)) and (A.20]) it follows that
inf{t: P(U(Go+Ay) <t)>0}=0. (A.24)

Since ¥(- + Ay) : £>°([dr]) — Ry is convex, result (A.24) and a second application
of Theorem 11.1 in [Davydov et al.| (1998) implies the cdf of ¥(Gg + Ay) is continuous

everywhere except possible at 0. In particular, since c¢;_, > 0, we obtain that
P(Y(Go + Ag) >cC1_q)=1— PV (G + Ag) < Cl—q) - (A.25)

Finally, we note that since Gy is centered and Radon, Theorem 3.6.1 in Bogachev] (1998)
implies its support is a separable vector subspace of ¢*°([dr]), and hence a separable

Banach subspace under || - ||oo. Since Ay is in the support of Gy, we can finally conclude
P(¥(Go+ Ay) < ci—a) < P(¥(Gp) < Cl—a) =1—« (A.26)

by Lemma [B.4] and 0 # A, by Lemma The second claim of the Theorem then
follows from results (A.23)), (A.25) and (A.26). m

PROOF OF THEOREM [4.1} We first note that since 7'(P) is linear by Assumption [2.1f(ii),
and 0, is regular by Assumption (ii), Lemma and Theorem 5.2.3 in Bickel et al.
(1993) imply @ is pathwise differentiable at P —i.e. there exists a bounded linear operator
f : T(P) — B such that for any t — P, , € P it follows that

lim 10 P,) — 0(P)} — (o)l = 0. (A27)
Then note that for any b* € B*, b* 0§ : T(P) — R is a continuous linear functional.

Hence, since T(P) is a Hilbert space under || - ||;2, the Riesz representation theorem
implies there exists a 6y« € T(P) such that for all g € T(P) we have that

b (0(g)) = / Oy gdP . (A.28)

Moreover, since 0, is an asymptotically linear estimator of 8(P), it follows that b*(6,,) is

an asymptotically linear estimator of b*(0(P)) with influence function b*ov. Proposition
3.3.1 in Bickel et al| (1993)) then implies that for all g € T(P)

/{éb* —b*ov}gdP =0. (A.29)

Analogously, if 6, : {X;}!, — Bis an asymptotically linear regular estimator satisfying

ill, —0(P)} = — }n:ﬁ(Xi) + 0p(1) (A.30)
NG
=1
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for some 7 : R% — B, then it follows that also holds with o in place of v, yielding
/{b* ov—b*oblgdP =0 (A.31)

for all g € T(P). If P is just identified by P, however, then T'(P) = L3, which implies
P (v(X:)) = b"(r(X:))) =1, (A.32)

for all b* € B* by result (A.31)). Thus, since [|b]B = supjy«|,.=1 b*(b), see for example
Lemma 6.10 in [Aliprantis and Border| (2006|), we can conclude by (A.32)) that

P(|lv(Xs) —v(Xi)llB = 0) = P(”b*SHup:1 b (v(Xi) —v(Xy)) =0) =1. (A.33)

The first claim of the Theorem then follows from (A.30)), (A.33)), and Assumption [4.1(ii).

In order to establish the second claim of the Theorem, note that if P is overidentified
by P, then there exists a 0 # g+ € T(P)L. For an arbitrary 0 # b € B we then define

+bx{= Z g (A.34)
Since 6, is asymptotically linear by Assumption (ii) we then immediately conclude

V{6, — (P f Z{V )4 x gH(Xi)} 4 0p(1) . (A.35)
Setting 7(X;) = v(X;) 4+ b x g=(X;), we obtain for any b* € B* that b*(#) = {b*(v) +
b*(b) x g+} € L3 since b*(v) € L3 by Assumption (ii) and gt € T(P)t C L.

Hence, (A.35)) implies 6,, is indeed asymptotically linear and its influence function equals

v. Moreover, by Lemma (vn{0, — 0(P)}, ﬁzzn:l g+(X;)) converge jointly in
distribution in B x R under ();" ; P and hence by the continuous mapping theorem

Vn{b, —0(P)} = vn{, —0(P)} + b x {— Zg Y/ (A.36)
on B under )" ; P for some tight Borel random variable Z. In addition, we have
NS —9}_bx{—Zg D5 A (A.37)

by the central limit and continuous mapping theorems. Further note that since b #0,
we trivially have A # 0 in B because b*(A) ~ N(0, ||b* (l;)gLH%Q)

Thus, to conclude the proof it only remains to show that 0, is regular. To this end
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let t = P4 € P and set L,y = Qi P /m g By Lemma 25.14 in jvan der Vaart| (1998)

Zlog dPl/fg X;) \FZg /g dP + 0p(1) (A.38)

under @, P, and thus Example 3.10.6 in jvan der Vaart and Wellner| (1996) implies
Qi1 P and ;. Py /5 4 ave mutually contiguous Moreover, since 6, is asymptotically
linear, Lemma [B.6| implies (v/n{0, — 8(P)}, f >, g(X;)) converge jointly in B x R.
Thus, by (A.38) and Lemma A.8.6 in Bickel et al.| (1993) we obtain that

Valb, —6(P)} s Z, (A.39)

for some tight Borel Z, on B. Hence, combining results (A.27) and (A.39)) implies

- Ln .
VdOn —0(Py ) m )} = Zg+0(g) - (A.40)
Next note for any b* € B*, results (A.35]), (A.38) and the central limit theorem yield
V{b*(6n) = 0*(B(P))} \ & 0
( 0Py s )—>N([ e } ,z) (A.41)
> log(—54 (X)) —3 [ g*dP
under ®!_, P, where since [ gg-dP =0 due to g € T(P) and g+ € T(P)*, we have

[ S ) + b5 (b)gh)*dP [ b7 (v)gdP
2_[ }

A.42
[ b*(v)gdP [ g*dP (A.42)

Notice, however, that by results and (A.29) it follows that [ b*(v)gdP = b*(0(g)).
Therefore, results (A.41)), 1 , and Lemma A.9.3 in Bickel et al.|(1993]) together imply

VB (Bn) = B (0(Pyy )} 5 N (O, /(b*( ) +b*(b)g™)*dP) . (A.43)

Define G- (X;) = {b*(v(X;)) + b*(b)g~(X;)}, and for any finite collection {b}5 | c B*
let (Wpr,..., Wi ) denote a multivariate normal vector with E[W:] = 0 for all 1 <
k < K and E[szwb;] = E[Gy (Xi)CbJ*. (X;)] for any 1 < j < k < K. Letting Cp(RX)
denote the set of continuous and bounded functions on R, we then obtain from ,
, the Cramer-Wold device, and the continuous mapping theorem that

E[f(Vi(Zg +0(9)). - -, Ui (Zg + 6(9)))] = E[f (05(Way), ... bic (Wi )], (A4

for any f € Co(RX). Since G = {f o (b},...,b%) : f € Co(RF), {bf}E, c B*,1 <
K < oo} is a vector lattice that separates points in B, it follows from Lemma 1.3.12 in

van der Vaart and Wellner| (1996) that there is a unique tight Borel measure W on B
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satisfying (A.44). In particular, since the right hand side of (A.44]) does not depend on
g, we conclude the law of Z, + O(g) is constant in g, establishing the regularity of 0,.m

PROOF OF THEOREM [4.2} Let F : B — ¢>°(U) be given by F(b) = b* ~— b*(b) for any

b € B. Since U € B* is norm bounded, and in addition we have

[1F(b1) = F(b2)llcc = sup [b%(b1) — b"(b2)| < sup [|b*[|B~ x [|bx — ba[|B (A.45)
b*cU b*elU

it follows that F' is continuous, in fact Lipschitz. Hence, Assumption (ii) and the
continuous mapping theorem imply \/ﬁ{én - 9~n} converges in distribution in B, while

the continuity of I’ and a second application of the continuous mapping theorem yield
G = Go (A.46)
under @7, P on ¢>°(U) for some tight Go. Next, define a process G,, on £>°(U) by
Gu(t) == g b (v(X:) — (X)) (A7
and note that since 6,, and 6, are asymptotically linear by Assumption (1) we have
sup |G (b%) — G (7))

b*cU

* A N 1 - ~
< sup 16" l[B= > [[v/n{0n — 00} — 7 ;{V(Xz’) —(Xi)}lB = 0p(1) - (A48)

In particular, letting F = {f : R% — R: f = b*(v — ») for some b* € U}, we conclude
from and that G, = Go under ;- P, or equivalently, that F is P-
Donsker. Moreover, since @;_, P’ and @;_, Py, /» , are mutually contiguous by
and Corollary 12.3.1 in Lehmann and Romano (2005), it follows from that G,, =
G, + 0p(1) on £°(U) under @, P, /g s well. We therefore obtain that

G = G + 0p(1) 57 Go + A (A.49)

by Theorem 3.10.12 in [van der Vaart and Wellner| (1996, which verifies (41).

The claim that b*(v — ) € T(P)* has already been shown in the proof of Theorem
see result (A.31). Since g € T(P) whenever t — P, ;, € P it is then immediate that
Ay(b*) = [b*(v — v)gdP = 0 for all b* € B*, and hence Ay = 0 in ¢*°(U). On the
other hand, if ¢ — P, ; satisfies (2)), then Lemma implies g ¢ T'(P). The fact that
Ag(b*) # 0 for some b* € U can then be established using the same arguments as in
—, which establishes the second claim of the Theorem. m

PROOF OF COROLLARY : Let F = {bj o (v — ﬁ)}iil and note that by Theorem
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F C T(P)* while ZZL (b o (v — ))?dP < oo by hypothesis. Thus, F satisfies
Assumptionand moreover by (24)), (A.47), and (A.48) it follows that G = Gn+op(1).
The Corollary then follows by arguments identical to those in Theorem [ |

PROOF OF PROPOSITION [5.1} Throughout, we let L = {f : |f] is bounded P-.a.s.},
set Ly and LY to denote the subsets of L> depending only on W and Z respectively,
and recall L%V and L2Z are analogously defined. In addition, defining the set V by

V={felL®: f(X)={p(Y,hp(Z))v(W)+ C} P-as. for some v : R™ 5 R, C € R},

we then set the desired subset D with which we will work to be given by D = L\ V.
It is then immediate that D is a subset of L2 since D C L™ C L2. To establish that D
is dense in L? with respect to || - || z2, note that the fact that Var{p(Y,hp(Z))|W} > 0
almost surely implies p(Y, hp(Z)) is not a measurable function of W. Furthermore, also
note that for any functions g € Ljj; and f € L, and ¢, | 0 it follows that

Jim [[{gen + f} = fll2 =0, (A.50)

and moreover setting g = 0if f ¢ V and g € L{j nonconstant if f € V we conclude that
gén + f € L\ V since V is closed under addition and as argued nonconstant g € L%/V
do not belong to V. In particular, it follows from (A.50) that D is dense in L> with

respect to || - ||z and hence also in L? by denseness of L* in L?.

While we avoided stating an explicit formulation for Q} in the main text for ease
of exposition, it is now necessary to characterize it for all f € D. To this end, we let
Y5 = Var{f(X)}, and following Ai and Chen (2012)) for any f € D define

Z2(W) = E[{p(Y, hp(Z))}*|W] (A.51)
AW) = E[f(X)p(Y, hp(2))|W{S(W)} (A.52)
¥y = Var{f(X) = AW)p(Y, hp(2))} - (A.53)

Further notice that: (i) {Zo(W)}~1 € L™ since P(Z9(W) > 1) = 1 for some n > 0 by
hypothesis, (i) A(W) € L? due to f € D C L™, {S2(W)}~! € L, Assumption [5.1}(i),
and Jensen’s inequality, (iii) X; > 0 since f ¢ V, and (iv) by direct calculation:

Y1 =% — E{AW)}*Sy(W) . (A.54)
Hence, in our context the Fisher norm of a s € L% is (see eq. (4) in|Ai and Chen| (2012)):

Isl1% = ELVm(W, hp)[s]}* {S2 (W)} + {81} HEAW) V(W hp)[s]]}* . (A.55)

and note [|s]|2, < oo for any s € L% since {S2(W)}~! € L%, A(W) € L2, and
Vm(W, hp)[s] € L}, by Assumption (ii). Letting W denote the closure of L%, under
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|| - ||w, Theorem 2.1 in |Ai and Chen| (2012)) then establishes that

{077 = inf {{21} H1+ BIAW)Vm(W, hp)[s)]}

+ B{S2(W)}H{VmW, hp) (s} (A.56)

It is convenient for our purposes, however, to exploit the structure of our problem
to further simplify (A.56). To this end, note that by (A.55) and Cauchy-Schwarz

|E{So(W)}H{Vm(W, hp)[s1]}?] = E{S2(W)} {Vm(W, hp)[s2]}7]]
< {E[{Sa(W)} H{Vm(W, hp)[st + s2]}2]}2 x [[s1 — sollu . (A.57)

Similarly, by (A.52)), (A.55]), and the Cauchy Schwarz inequality we also obtain
|EIAW)Vm(W, hp)[si]] — EINW)Vm(W, hp)[s]]|
_ 1
< A{B[{S(W)} HE[F(X)p(Y, hp(2)[W]Y]}2 x ||s1 — s2]lw , (A.58)

where we note E[f(X)p(Y,hp(Z))|W] € L? due to Assumption (1) and f € L.
Thus, results (A.57) and (A.58)) imply that the objective in (A.56]) is continuous in

| - |- Therefore, since W is the completion of L% under || - |4, it then follows that
{7t = nf, {{21} H1+ BAW)Vm(W, hp)[s)]}

E[{Z(W)}{Tm(W, hp)[s]}} - (A59)

Next, recall R = {f € L%, : f(W) = Vm(W, hp)[s] for some s € L%}, R denotes its
closure in LW, and note R is a subspace of L2 by linearity of Vm(W, hp). By (A.59] -,

()71 = inf ({Z1} {1+ BAW)r(W)]}2 + B{Z2(0)}r(W) 1))
= min{{2} 741+ BAW)r (W)} + ELS00)) (0P}, (A60)

where attainment follows from R being a vector space, the criterion being convex and
diverging to infinity as ||7|| ;2 1 0o, and Proposition 38.15 in Zeidler| (1984)). In particular,
note that if 7 is the minimizer of (A.60]), then for any § € R we must have

EBW){ro(W){S2(W)} ™' + AW){E1} {1+ BAW)ro(W)[}}] =0.  (A61)

Next, we aim to solve the optimization problem in (A.60) under the hypothesis that
R = L?,. In that case, (A.61) must hold for all § € L%, which implies

ro(W) = —{Z1}7H1 + E[AW )ro(W)JA(W)S2(W) . (A.62)
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It is evident from (A.62)) that ro(W) = —A(W)X2(W)Cy for some Cy € R, and by
plugging into (|A.62]) we can solve for Cy and exploit (A.54) to obtain

ro(W) = —{Zs} TA(W)So(W) . (A.63)

Thus, combining (A.60) and (A.63]), and repeatedly exploiting ({A.54) we conclude

{Q3) 7" = {30711 = {S T E{AW) P S2(W)]}? + {2} 2 E{AW) 2 5a(W))]
= {3} 72+ S} P E{AW) (W) = {5} 71, (A64)

or equivalently, that 0} = X;. While (A.64) was derived under the supposition that
R = L%,, we note that since R C L?,, the minimum in (A.60)) is attained, and ro(W) =
—{Z;}LA(W) (W) is the unique minimizer on L%,, we obtain from (A.63) that

Q0 =Sy if and only if — {S;} TA(W)S(W) € R . (A.65)

Since result (A.65)) holds for all f € D and R is a vector space, (A.52)) yields
Q" =% VfeDifand only if E[f(X)p(Y,hp(Z))|W] € RVfED. (A.66)

Also note that if || f,— f|| 2 = o(1), then by the Cauchy-Schwarz and Jensen’s inequalities

T B{E[fu(X)p(Y; hp(Z)[W] — ELf(X)p(Y; he(2))[W]})

< lim E[{fu(X) — fCOPS(W)] =0, (A67)

n—oo

where the final equality follows from Yo(W) € L. Therefore, since as argued D is a
dense subset of L? and in addition R is closed under || - ||;2, (A.66) implies that in fact

O* =%, Vf € D if and only if E[f(X)p(Y,hp(Z))|W] € RVf € L. (A.68)

Moreover, for any go € L{5 we may set fo(X) = go(W)p(Y, hp(Z){S2(W)}~! which we
note satisfies fo € L? by {Z2(W)}~! € L* and Assumption (1) In addition,

E[fo(X)p(Y, hp(2))[W] = go(W){S2(W)} " E[{p(Y, hp(Z))}*|W] = go(W) , (A.69)

and hence since gy € L was arbitrary, it follows that if E[f(X)p(Y,hp(Z))|W] € R
for all f € L% then L3S C R. However, since R is closed under || - ||z2, we can also
conclude that if L% C R, then L%, = R and therefore from result (A.68) finally obtain

Q* =%, Vf € Difand only if L}, =R , (A.70)

which establishes the claim of the Proposition. m
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PROOF OF PROPOSITION [5.2} We first suppose that R = L%, and define fy € L%, by
fo(W) = Udo(W) = 0} . (A.71)
Next observe that since R = L%/V by hypothesis, it follows that fy € R and therefore

0= inf E{Vm(W,hp)ls] - foW)Y?] = E[{fo(W)}?] = P(do(W) =0) ,  (A.72)
sebz
where we exploited Assumption (ii) and the inequality applies to the infimum since
it applies for any s € L%, while the final equality follows from definition of fy. Hence,
we conclude that if R = L%, then P(do(W) # 0) = 1. Furthermore, notice that for an
arbitrary f € L%, we have dof € L%, by Assumption (ii), and hence

0= inf, E{(Vm(W,hp)ls] - do(W) ()} (A.73)
= min El{do(W)}{s(2) = S(W)}) (A.74)

where the first equality follows from R = L?,, while attainment in results from
the criterion being convex and diverging to infinity as ||s||z2 1 oo, and Proposition 38.15
in Zeidler| (1984). Thus, we conclude from and that for every f € L,
there exists and rf € L% such that P(ry(Z) = f(W)) = 1. In particular, writing
V =WVO . V)it follows from Assumption (1) that each coordinate V1) € L2,
and hence by that P(E[V(j)|Z] = V(j)) =1forany 1l < j <d,. We thus conclude
from results (A.72) and (A.74)) that if R = L?,, then condition must hold.

Next, suppose instead that condition holds. Then note that for any f € L%V
P(f((z,V)) = f((Z E[V|Z]))) =1 (A.75)

due to P(E[V|Z] = V) = 1, and thus we may identify L%, with L%. Hence, interpreting
the domain of Vm(W, hp) as L%, in place of L%, it follows from Assumption (ii)
that Vm(W,hp) : L%, — L% is self adjoint. Thus, Theorem 6.6.3 in [Luenberger
(1969) implies R = L%, if and only if Vm(W, hp) is injective. However, injectivity of
Vm(W, hp) : L%, — L%, is equivalent to P(do(W) # 0) = 1, and therefore R = L?,. m

APPENDIX B - Proof of Auxiliary Results

Lemma B.1. Ift — B 4 and t— P, 4, are arbitrary paths, then it follows that:

. . . 1
hmsup/ |dl’31/\/ﬁ’g1 - dP1/\/ﬁ,g2| <2{1- exp{—ZHgl — ggH%Q}}l/Z ) (B.1)

n—oo
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PROOF: First observe that since ¢ — P; 4, and t — P 4, satisfy , we must have

. 1/2 1/2 1
o [pl2 —apl2 = [10aPV? - guap PP = L - gl (B2

Moreover, by Theorem 13.1.2 in |[Lehmann and Romano (2005) we can also conclude

/‘d g~ AP gl < {1 — /{d 1/fgl}l/Q{az 1/\F92}1/2]2}1/2

1 _ 1/2 1/2 2n1/2 _ g1 _ 1/2 _ gpl/2 2n11/2
= [/dpl/fgldpl/ﬁ,gz]} ={-0- /[dpl/fg AP g T

(B.3)

where in the first equality we exploited P] / N and P Y Jigs Q1€ product measures,

while the second equality follows from direct calculation. Thus, by (B.2)) and (B.3)

. 1
hms‘lpg/w v~ Ll

n—00
) 1 1/2 1/2 2n1/2
Sh;n_)s;p{l—[l—Qn/ [dpl/fg dpl/fgz] ] }

1
={1- eXP{—legl — gl 17, (B.4)
which establishes the claim of the Lemma. m

Lemma B.2. Let {P,}, {Qn}, {Vn} be probability measures defined on a common space.
If {dQ,/dP,} is asymptotically tight under P, and [ |dP, — dV,| = o(1), then

| dp, dV,

dQn _ dQn Py (B.5)

ProOOF: Throughout let u, = P, + @, + V,, note p,, dominates P,, ., and V,,, and
set pn, = dP,/dpn, ¢ = dQy/diy, and v, = dV,,/du,. We then obtain

dP, Pn DPn Un,
— =1 n — — -1 nfly — — — —|UnQln
JA e T

< / [P — vnldn = / AP, — V| = o(1) , (B.6)

where the second to last equality follows by definition, and the final equality by assump-
tion. Hence, by and Markov’s inequality we obtain dP, /dV, Ve q. Moreover, since
[1dV;, — dP,| = o(1) implies {P,} and {V,,} are mutually contiguous, we conclude

dP, p,
— 31 B.
a. (B.7)
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Next observe that for any continuous and bounded function f: R — R we have that

7’L

Iy Dn dQn . dP,
= /pn>0 f(E(l - E))pndﬂn = /f(dpn( A ))dp — f(0), (B.8)

where the final result follows from , dQ,,/dP, being asymptotically tight under P,
and continuity and boundedness of f. Since holds for any continuous and bounded
f, we conclude d@,,/dP, — dQ,/dV,, converges in law (under P,,) to zero, and hence also
in P, probability, which establishes (B.5)). m

Lemma B.3. Let H C L2, assume that for each g € H there is a path t — P 4 such
that holds, and for B the Borel o-algebra on R define the experiments

&, = (R, BIn ®P1Mg geH) . (B.9)
=1

If0e H, {wk}zil is an orthonormal basis for L%, and ® denotes the standard normal

measure on R, then &, converges weakly to the dominated experiment &£
E= (R B¥ Q,:gc H), (B.10)
where for each g € H, Qq4(-) = Qo(-—T(g)) forT(g) = {fgi/}de} L and Qo = ®2i1 o.

PROOF: The conclusion of the Lemma is well known (see e.g. Subsection 8.2 in |van der
Vaart| (1991a)), but we were unable to find a concrete reference and hence we include
its proof for completeness. Since the Lemma is straightforward when the dimension of

L3 is finite (dp < oo) we focus on the case dp = co. To analyze &, let
o0
P ={a)i eR™: ) ¢ < oo}, (B.11)
k=1

and note that by Example 2.3.5 in Bogachev| (1998)), ¢? is the Cameron-Martin space of
QOE Hence, since for any g € L3 we have { [ gypdP}32, € ¢* due to {¢},}32, being an
orthonormal basis for L%, Theorem 2.4.5 in Bogachev| (1998) implies

Qg = Qo(- —T(9)) < Qo (B.12)

for all g € L%, and thus £ is dominated by Q. Denoting an element of R* by w =
{wi}2,, we then obtain from {[ gixdP}?2, € ¢* and the Martingale convergence

19See page 44 in [Bogachev| (1998) for a definition of a Cameron Martin space.
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theorem, see for example Theorem 12.1.1 in Williams| (1991)), that

Qo(w : JLHQOZwk/wkgdP exists) = 1 (B.13)
Tim kZHwk [ vnirraae) - (B.14)

Therefore, Example 2.3.5 and Corollary 2.4.3 in [Bogachevi (1998) yield for any g € L3

log (502 Zwk [owar— [ Zw [ ownirpaau)

1
= wk/g¢de -3 /g2dP , (B.15)
k=1
where the right hand side of the first equality is well defined Qo almost surely by (B.13] -,
while the second equality follows from and > 72, ([ gyrdP)? = [ g*dP due to
{9k}, being an orthonormal basis for Lg.

Next, select an arbltrary finite subset {g]} _1 =1 C H and vector (A1,...,A\y) =
A € R7. From result ( we then obtain Qg almost surely that

00 J J )
ZA log( ng (w)) :Zwk/(Z)\jgj)¢de—z>;/g?-dp. (B.16)
k=1 j=1 Jj=1

In particular, we can conclude from Example 2.10.2 and Proposition 2.10.3 in |Bogachev
(1998)) together with (B.14)) and E;-Izl Ajgj € L% that, under Qo, we have

J J
PRy log(j Z /g2dP /(Z \jgi)*dP) . (B.17)
j=1 j=1

Thus, for pr = ([ g1dP,..., [ ¢2dP) and X = [(g1,...,97) (g1, --.,97)dP, we have

dQg, dQg,
dQo dQo

under Qo due to (B.17)) holding for arbitrary A € R”.

(log(

;- log(

) ~ N(—pr,%r), (B.18)

To obtain an analogous result for the sequence of experiments &,, let P" = Q)" ;| P
and {X;}7,; ~ P". From Lemma 25.14 in |van der Vaart| (1998)) we obtain under P"

n

nodp,
;mg(%’“%(&)) = \}ﬁ;gj(xi) _ ;/g?dp+op(1) (B.19)
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for any 1 < j < J. Thus, defining Pf/\/ﬁg_ =i, ISYNG g;» We can conclude that
'93 ’

dP" dpPnr
1/v/n,g1 1/vn,g5\\+ L .
(og(—ymat)  tog( sy K N () (B.20)

under P" by (B.19)), the central limit theorem, and the definitions of y; and X;. Fur-
thermore, also note Lemma implies [ |[dP™ — Py, \/ﬁ,o‘ = 0(1) and hence

dPln/\/ﬁgl dPln/\/ﬁ,gJ r_ dPln/\/ﬁ,gl dPln/«/ﬁ,gJ / 1 B.21
apn T ) = gpn g ) o) (B-21)
/o 1o

under P by Lemma and result (B.20)). Thus, by (B.20)) and (B.21)) we obtain

d d

Pln/\/ﬁzgl Pln/\/ﬁng

L
(log(W), cee log(W))’ = N(=pr,%y) , (B.22)
1/y/n,0 1/v/n,0
under P", and since [ |dP™ — de/ \/50] = o(1) also under PI”/ 0" Hence, the Lemma

follows from (i) (B.18]), (ii) (B.22]), and (iii) {Pln/ \/ﬁ,g} and {Pln/ \/ﬁ,o} being mutually
contiguous for any ¢ € H by (B.19) and Corollary 12.3.1 in |Lehmann and Romano
(2005)), which together verify the conditions of Lemma 10.2.1 in LeCam| (1986)). m

Lemma B.4. Let Gy be a centered Gaussian measure on a separable Banach space B
and 0 # A € B belong to the support of Go. Further suppose ¥ : B — R is continuous,
convezx, and satisfies U(0) = 0, U(b) = ¥(=b) for allb € B, and {b € B : U(b) < t} is
bounded for any 0 < t < oo. For any t > 0 it then follows that

P(U(Go+A) <t) < P(Y(Gyp) <t).

PROOF: Let || - ||B denote the norm of B, fix an arbitrary ¢ > 0 and define a set C' by
C={beB:V(0) <t}. (B.23)
For B* the dual space of B let || - |g+ denote its norm, and v : B* — R be given by

ve(b*) = sup b*(b) (B.24)
beC

which constitutes the support functional of C'. Then note for any b* € B* we have

ve(—b*) = sup —b*(b) = sup b*(—b) = sup b*(b) = v (b*) , (B.25)
beC beC be—-C

due to C = —C since ¥(b) = ¥U(-b) for all b € B. Moreover, note that 0 € C since
U(0) =0 < t, and hence there exists a My > 0 such that {b € B : [|b||g < My} C C by
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continuity of W. Thus, by definition of || - ||g+ we obtain for any b* € B* that

vo(b*) =supb*(b) > sup b*(b) = Mo x sup [b*(b)| = Mo||b*|
beC lI6lls<Mo lolls=<1

B-.  (B.26)

Analogously, note that by assumption M; = supyc¢ [|b||B < 00, and thus for any b* € B*

ve(b") = supb™(b) < [[b%[|g~ x sup [|bllg = M:[[b*[|B~ . (B.27)
beC beC

We next aim to define a norm on B under which C' is the open unit sphere. To this

end, recall that the original norm || - ||g on B may be written as

bl = sup b*(b), (B.28)
1|+ =1

see for instance Lemma 6.10 in |Aliprantis and Border| (2006). Similarly, instead define

b (b)
[bllB,c = sup =
o[l =1 Y0 (0%)

(B.29)

and note that: (i) [|by + b2|lBc < ||b1llB,c + ||b2]|B,c for any bi,bo € B by direct

calculation, (ii) ||ab||B,c = |e|||b||B,c for any @ € R and b € B by (B.25)) and (B.29),
and (iii) results (B.26), (B.27), (B.28]), and (B.29)) imply that for any b € B we have

Mo|[b]

B,c < |[b]lB < Mi||b]BC » (B.30)

which establishes ||b||g,c = 0 if an only if b = 0, and hence we conclude || - ||, is indeed
a norm on B. In fact, (B.30) implies that the norms || - || and || - ||B,c are equivalent,
and hence B remains a separable Banach space and its Borel og-algebra unchanged when

endowed with || - ||B,c in place of || - ||B.

Next, note that the continuity of ¥ implies C is open, and thus for any by € C' there
is an € > 0 such that and {b: ||b — by||B < €} C C. We then obtain

vo(d*) > sup  b*(b) = sup {b*(bo) + €b*(b)} = b"(bo) + €||b*||B* » (B.31)
l[b—bollB <€ blls<1

where the final equality follows as in (B.26)). Thus, from (B.27)) and (B.31)) we conclude
1 —¢€/M; > b*(by)/ve(b*) for all b* with ||b*||g+ = 1, and hence we conclude

CC{beB:|blpc<1}. (B.32)
Suppose on the other hand that ||by||B,c < 1, and note (B.29) implies for some § > 0

b* (bo) < ve(b*)(1 - 6) (B.33)
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for all b* € B* with ||b*||g~ = 1. Setting n = My and arguing as in (B.31]) then yields

sup sup  {b7(b) —we (b)) = sup  {b%(bo) + nl|b*[|lB- — vo(0%)}
[6*lg= =1 [lb—bollB<7 [[6* [l =1

< sup {n—ve(*)0}= sup O(My—vc(*)) <0, (B.34)
[lo*][B*=1 o || g+ =1

where the first inequality follows from , the second equality by definition of n, and
the final inequality follows from . Since C is convex by hypothesis, and
Theorem 5.12.5 in [Luenberger| (1969) imply {b : ||b — bo|l8 < n} € C. We conclude by
is in the interior of C, and since C is convex and open, Lemma 5.28 in |Aliprantis and
Border| (2006)) yields that by € C'. Thus, we can conclude that

{beB:|bc<1}CC, (B.35)

which together with (B.32)) yields C = {b € B : ||b]lB,c < 1}. Therefore, B being
separable under || -||B,c, 0 # A being in the support of Gg by hypothesis, and Corollary
2 in |Lewandowski et al. (1995) finally enable us to derive

P(U(Gy+A) <t)=P(Gy+AeC)<PGyeC)=PU(Gy) <t),  (B.36)

which establishes the claim of the Lemma. m

Lemma B.5. Let Assumptions (2’), hold, and Gy = {Go,k};ﬁil be a Radon
centered Gaussian measure on (>°([dp]) satisfying E|GorGo;] = [ fiufjdP for any
1<k,j<dp. Ifge L} then Ay={[ fkgdP}zil belongs to the support of Gy.

PROOF: Let A,y = [ frgdP and note F C L3, g € L2, and the Cauchy-Schwarz
inequality imply |Ag x| < ||g|lp2|| frll 2. Moreover, since || f||;2 is uniformly bounded in
f € F by Assumption 3.1 we conclude A, € £°([dp]). Letting £'([dr]) = {{ex}i%, :
Zg; lek| < oo} and £°°([dp])* denote the dual space of £>°([dF]), we next aim to show

sup{b*(A,) : b* € £>°([dr])* and E[(b*(Go))?] < 1}
= sup{b*(A,) : b* € £*([dF]) and E[(b*(Gy))?] < 1}, (B.37)
where for each {b3}97, = b* € £1([dp]) and {bp}{E, = b € £°([dp)), b*(b) = 397 biby.
To this end, note that if dp < oo, then £>°([dr])* = ¢}([dr]) and (B.37) is immediate.

For the case dp = oo, let 0 = {b € £>°([dF]) : limg_,00 by, exists} and define

ta={b* € £°([dr])" : 3M € R such that b*(b) = M lim by ¥be £} . (B.38)
—00
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By Lemma 16.30 in Aliprantis and Border| (2006), £>°([dr])* = ¢*([dFr]) ® ¢4, and hence

sup{b*(A) : b* € £*([dr])* and E[(b*(Gy))?] < 1}
= sup{{b7 + b3}(A,) : b € £([dp]), b € €a and E[({b] +b3}(Go))’] <1} . (B.39)
However, note that the Cauchy-Schwarz inequality and Zii S f,?dP < 0o imply that

lim |Agl < llgllze x lim | fill =0 (B.40)
k—o00 k—o00

Similarly, by Markov’s inequality, F [G(Q),k] = [ f2dP if 1 <k < dp, and Assumption

=1

> PllGoil > 0 < 30 EIGE ] = 3 [fap<o.  @ay

€
k=1

Thus, by the Borel-Cantelli Lemma limg_,o, Ggj = 0 almost surely, which implies
b%5(Go) = 0 almost surely for any b} € £4. Since similarly b(Ay) = 0 for any b} € ¢4 by

result (B.40)), we can conclude from (B.39)) that (B.37)) holds when dp = oo as well.

Next, note that for any {b; iil = b* € (*([dF)), we obtain from A, € (°°(|dp]) that
dr
b (@) =132 [ afapl
k=1

dr dr 1
~| / (S b fi)gdP] < llgllze = { / (S Wi fo2dP}E | (BA2)
k=1 k=1

where the final result follows from the Cauchy-Schwarz inequality. Furthermore, since
[ fifjdP = E[GqGo,j] for any 1 < k,j < dp, we obtain that for any finite K < dp

=

K
/ (S b f)2dP = B[S biGon)?) - (B.43)
k=1 k=1

In particular, if dp < oo, then combining (B.42)) and (B.43)) implies for any b* € ¢! ([dF])
* * l
b*(Ag) < llgllr> x {EI(*(Go))*)}> - (B.44)

In order to obtain an analogous result when dgp = oo, we apply the dominated conver-
gence theorem with the dominating functions (ZZ; bi fi)? < ( iil b} ])? Zi’;l fZ and
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(0 biGog)? < (0 052 98 (Go )? together with (B43) to conclude

o) K
/(Z bk fi)?dP = Iggnw/(z bi fr)?dP
k=1 k=1

K
= lim E[)_biGox)’] = E[(b*(Go))?] . (B.45)
k=1

K—x

Thus, from (B.42)) and (B.45)) it follows that (B.44)) holds for any b* € ¢!(|dFr]) for both
finite and infinite dp. Hence, combining (B.37)) and (B.44)) we finally obtain that

sup{b* (&) : b* € ¢ ([dg])" and E[(0"(Go))] < 1} < [lglsz <00 . (B.d6)

Since Gg is centered, it follows that A, belongs to the Cameron-Martin space of Gy,
and hence we conclude from Theorem 3.6.1 in |Bogachev| (1998) and Gy being Radon by
hypothesis that A, belongs to the support of Go. ®

Lemma B.6. Let Assumptions (z) and (z) hold, and suppose 0, : {X;}7_, — B
is an asymptotically linear estimator for O(P) such that \/n{6, — 6(P)} L 7 under
R, P on B for some tight Borel Z. It then follows that for any function h € L2,
(v/n{b, — 6(P)}, ﬁ Yo h(X5)) converges in distribution under @;_, P on B x R.

PRrROOF: For notational simplicity, let n(P) = (8(P),0) € B x R and similarly define
Mn = (én,% ", h(X;)) € B x R. Further let (B x R)* denote the dual space of
B x R and note that for any d* € (B x R)* there are b}. € B* and r. € R such that
d*((b, 7)) = bl (b) + 1% (r) for all (b,7) € B x R. For i the influence function of ,, then
define (g- (X;) = {05 (7(X;)) + r (h(X5))} to obtain that under ;. ; P we have

4 (Vi {in — n(P)}) = ;ﬁ S G (X3) + 0p(1) (B.47)
=1

by asymptotic linearity of 6,. Thus, for any finite set {d;}E_ | C (B x R)*, we have

* ~ * A L
(i (Vi = n(P)}); - s dic(Vndiin —n(P)}) = (Wa, ..., Wz ) (B.48)
for (Wgs, ..., Wg: ) a multivariate normal random variable satisfying E[Wg| = 0 for all
1 < k < K and E[Wd;wdz] = E[Cd; (XZ)CC[Z(XZ)] for all 1 < j < k < K.

Next note that since \/n{6, —0(P)} is asymptotically measurable and asymptotically
tight by Lemma 1.3.8 in|van der Vaart and Wellner| (1996), it follows that /n{7,—n(P)}
is asymptotically measurable and asymptotically tight on B x R by Lemmas 1.4.3 and
1.4.4 in van der Vaart and Wellner (1996). Hence, we conclude by Theorem 1.3.9 in
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van der Vaart and Wellner| (1996) that any sequence {ny} has a subsequence {ny; } with
. L
Vg, g, —n(P)} 5 W (B.49)

under ®:L:kjl P for W some tight Borel Law on B x R. However, letting Cj,(R¥) denote
the set of continuous and bounded functions on R¥, we obtain from (B.48)), (B.49), and
the continuous mapping theorem that for any {d;}X, C (B x R)* and f € C,(RX)

E[f((di(W), ..., dxg(W)))] = E[f (Way, ..., Waz )] - (B.50)

In particular, since G = {f o (df,...,d}) : f € Co(RF), {d{}F, c (BxR)*,1 <K <
oo} is a vector lattice that separates points in B x R, Lemma 1.3.12 in van der Vaart
and Wellner| (1996)) implies there is a unique tight Borel measure W on B x R satisfying
(B.50). Thus, since the original sequence {ny} was arbitrary, we conclude all limit points
of the law of /n{n, —n(P)} coincide, and the Lemma follows. m

Lemma B.7. Let Assumptz'on hold, D be a dense subset of L?, and for any f € D
let Q} denote the semiparametric efficiency bound for estimating [ fdP. It then follows
that ¥ = Var{f(X)} for all f € D if and only if P is just identified.

PROOF: First note the parameter 07(P) = [ fdP is pathwise differentiable at 6;(P)
relative to T'(P) with derivative éf(g) = [Hyp(f)gdP. Therefore, by Theorem 5.2.1 in
Bickel et al.| (1993) its efficiency bound is given by Q% = ||[IIp(f)||3.. For any f € L? let
HLg(f) denote its projection onto L3 and note that HL% (f) ={f — [ fdP}, and hence
Var{f(X)} = T2 (f)]|r2- By orthogonality of T(P) and T(P)* we then obtain that

Var(£(X)} = [T (2 = [Tr(Ta(f) + T (g ()12
= |0 (Wpa ()72 + ITps Wz ()72 = @ + [y (F)llz2 . (B.51)
where in the final equality we exploited that HT(HLg (f)) =r(f) and ;. (HLg(f)) =
po (f) for any f € L? due to T(P) and T(P)* being subspaces of LZ. Thus, by (B.51))

Var{f(X)} = Q} for all f € D if and only if Il (f) = 0 for all f € D, which by
denseness of D is equivalent to T(P)* = {0}. m
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