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Abstract. We study a discrete-time model of repeated moral hazard without commitment.

In every period, a principal finances a project, choosing the scale of the project and a con-

tingent payment plan for an agent, who has the opportunity to appropriate the returns of a

successful project unbeknownst the principal. The absence of commitment is reflected both

in the solution concept (perfect Bayesian equilibrium) and in the ability of the principal to

freely revise the project’s scale from one period to the next. We show that removing com-

mitment from the equilibrium concept is relatively innocuous—if the players are sufficiently

patient, there are equilibria with payoffs low enough to effectively endow the players with

the requisite commitment, within the confines of perfect Bayesian equilibrium. In contrast,

the frictionless choice of scale has a significant effect on the project’s dynamics. Starting

from the principal’s favorite equilibrium, the optimal contract eventually converges to the

repetition of the stage-game Nash equilibrium, operating the project at maximum scale and

compensating the agent (only) via immediate payments.

∗We thank Bruno Biais and Thomas Mariotti for helpful conversations and comments

and we thank Yi Chen for valuable research assistance. We thank the National Science

Foundation (SES-1153893, Samuelson) for financial support.
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1 Introduction

1.1 Dynamic Moral Hazard and Commitment

The objective of this paper is to understand the role of commitment in dynamic moral

hazard problems. A growing literature (discussed in Section 1.2) has developed a theory

of firm dynamics under financial constraints and asymmetric information. This literature

typically assumes that imperfections in financial markets force the agent to rely on external

financing from a principal to achieve the requisite liquidity to operate a profitable project,

but the ability of the principal and the agent to commit to a long-term contract suffers

no such imperfection. This might be a reasonable approximation for financial contracts

enforceable by courts, but we believe that this commitment is problematic in a number

of applications. These include lending between sovereign nations, where there may be no

applicable courts, as well as cases in which contracts cannot be written so precisely as to

admit legal enforcement.

Commitment is usually embedded in dynamic moral hazard models in two ways. The

first is the solution concept. Rather than solving for the best (perfect Bayesian or subgame-

perfect) equilibrium, the literature typically models the problem as solving for the best

dynamic mechanism from the principal’s point of view, assuming that the principal will

adhere to the resulting contract after all contingencies, regardless of whether it will be

in her best interest to do so. Instead of giving the principal such unlimited commitment

power, we explicitly model the long-term relationship as a two-player repeated extensive-

form game, with no commitment power on either side. The second source of commitment is

the extensive-form stage game itself. By assuming that it is costly to adjust the relationship’s

size, existing models endow the principal with some commitment, as (for instance) scaling

down the project cannot be easily reversed in the future. In particular, Biais, Mariotti,

Rochet and Villeneuve [3] assume that this adjustment is asymmetric: while downsizing is

unconstrained, the pace of expansion is limited. Instead, we assume that the project’s size

can be costlessly revised (up or down) from one period to the next.

Our goal is twofold. First, we characterize the the behavior underlying equilibria giving

payoffs on the frontier of equilibrium payoffs. Second, we characterize the long-run dynamics

of the project. We show that (the lack of) commitment has important implications. As

is usual in this class of models, the principal has three instruments with which to create
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incentives for the agent. In each period, the principal chooses the scale of the project,

makes contingent payments to the agent, and makes promises of continuation utility to the

agent. The latter reflects promises involving the scale of the project and payments in future

periods, and is of course constrained by equilibrium considerations. We show that equilibria

giving frontier payoffs combine these instruments in one of three ways, depending upon

the agent’s equilibrium payoff. If the agent’s payoff is sufficiently small, then no payments

are made and incentives for the agent arise entirely out of promised continuation utilities.

Depending on the performance of the agent, this continuation utility increases or decreases.

The scale of the project dynamically adjusts accordingly, increasing or decreasing as does the

agent’s promised utility. Nonetheless, both the scale and the promised utility drift upward

on average. This process lasts a random length of time but with probability one the agent’s

payoff eventually climbs into a region in which again no payments are made, but the project

is always operated at maximum scale. Incentives are created by promises of continuation

utility that increase or decrease in response to the agent’s performance. This process again

lasts a random amount of time, and may result in the agent’s payoff slipping back into the

region in which the scale of the contract varies, but with probability one the agent’s payoff

eventually climbs to a third and absorbing level. Here, the project is operated at maximum

scale and continuation utilities are constant, with incentives created entirely via immediate

payments.

This contrasts with the dynamics found in the literature. When adjustment costs are

positive, there is a positive probability that the scale of the project declines to zero and the

project is abandoned. While an extraordinary string of bad luck may push our project to

an arbitrarily small size, we show that on average it grows, and it eventually (almost surely)

reaches a plateau on which it is thereafter operated at maximum scale.1

Our first step toward this characterization of behavior is to show that of the two ways

we relax the standard commitment assumptions, it is relatively innocuous to model examine

perfect Bayesian equilibria. We show that for sufficiently high discount factors, equilibria

exist that are arbitrarily severe for the principal, yielding a zero payoff. Using these equilibria

as threats in case the principal deviates from equilibrium behavior, we construct equilibria

in which the principal effectively commits to future courses of action. It is of course a

familiar result that patient players can achieve outcomes in repeated games that cannot

be implemented under high discounting. However, our results are not limiting results for

arbitrarily patient players, but are built on the (less obvious) demonstration that the set

1Another difference with the literature is that we do not need to assume that the principal and agent

have different discount factors.
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of commitment outcomes is realized for a fixed discount rate. In contrast, the frictionless

adjustment in the size plays an important role, and is in particular critical in showing that

the project is never abandoned.

1.2 Related Literature

Our paper is related to two bodies of literature. The first is concerned with financial con-

tracting. The paper in this area most directly related to ours, and the motivation for this

paper, is Biais, Mariotti, Rochet and Villeneuve [3]. Biais, Mariotti, Rochet and Villeneuve

[3] consider a quite similar problem, but solve for the optimal contract for the principal under

the assumption that the principal commits to her future course of action. We do not allow

the principal the luxury of commitment to future contract terms, but as we have noted,

sufficient patience allows us to construct equilibria in which both players receive zero payoff.

This in turn can be used to punish the principal for deviations from a putative equilibrium

path, effectively recovering the ability to commit. More importantly, however, Biais, Mar-

iotti, Rochet and Villeneuve [3] work with a model in which the principal can at any time

implement a downward jump in the scale of the project, but cannot choose upward jumps.

Instead, the principal can expand the scale of the project only gradually, by choosing the rate

at which the project grows, with the set of possible rates constrained to a bounded interval.

This forcibly commits the principal to not let the project grow too rapidly. By allowing the

principal to choose any project scale, we work without this commitment possibility.

Related papers include Clementi and Hopenhayn [4], DeMarzo and Fishman [5, 6] and

Quadrini [10]. Just as we do, DeMarzo and Fishman [5] work in a discrete-time framework,

but with a finite horizon which allows them to solve their model by backward induction. In

contrast, our environment is stationary, and the infinite horizon allows us to investigate the

long-run properties of the model. In related models in which the moral hazard problem is

one in which the firm’s manager privately observes the firm’s cash flow and can divert it

to himself, as in ours, but which differ from our analysis in assuming that size adjustments

are costly, Quadrini [10] and DeMarzo and Fishman [6] contrast the commitment solution

to the renegotiation-proof contract. We discuss the relationship between our notion of no-

commitment with renegotiation-proofness in Section 4.1.

An early contribution to the study of repeated principal-agent problems which developed

many of the technical and conceptual ideas in this literature is Thomas and Worrall [16].

They show that the marginal payoff of the principal is a martingale, a property that plays

a key role in our analysis as well, and they investigate conditions under which the agent’s
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utility converges to zero in the long-run (“immiseration”), a property that does not arise in

our model.

The second strand of related literature considers repeated games, disavowing commmit-

ment. Radner [11], Rubinstein [12] and Rubinstein and Yaari [13] show how review strategies

can be used to achieve efficient outcomes in repeated principal-agent problems when the play-

ers are sufficiently patient. In contrast, efficient outcomes can be achieved as equilibria of

the stage game in our setting, though the principal’s best payoff in the repeated game hinges

upon inefficiency. Wen [17] (see also Mailath and Samuelson [9, Section 9.6]) establishes

a folk theorem for repeated extensive form games that (unlike) ours involve no moves by

nature. In contrast to this literature, we are concerned not with characterizing the limit-

ing set of equilibrium payoffs as players become arbitrarily patient but with characterizing

equilibrium behavior and payoffs for fixed discount factors.

2 The Game

The horizon is discrete and infinite, with rounds indexed by n = 0, 1 . . .

2.1 The Stage Game

In each round n, the following three-stage game unfolds. There are two players, the principal

and the agent. First, the principal chooses a scale for the project, which is a scalar qn ∈ [0, 1],

as well as two (conditional) payments zn = (zFn , z
S
n ) ∈ R

2
+. This choice is publicly observed.

Second, Nature determines the outcome of a binary random variable ωn ∈ {s, f}, which takes

the value s (“success”) with probability p ∈ (0, 1), f (“failure”) occurring with complementary

probability. This outcome is drawn independently across rounds, and independently of all

choices of the players. It is privately observed by the agent. Finally, the agent then sends a

public message, mn ∈ {S, F}. However, the message set is a function of the realization of ωn:

in the event {ωn = f}, only the message F is available. In the event {ωn = s}, both messages

are available. Hence, the message S reveals that the state is s, but the message F does not

reveal the state. We interpret S as disclosure of as success, and F as non-disclosure.2

The principal has access to a public randomization device, on whose realization she

can condition her actions. As is customary, this randomization device is dropped from the

2Hence, messages aren’t “cheap.” Adding messages by the agent to this binary disclosure decision would

not affect the analysis: the agent would have to be indifferent over messages, and from the principal’s point

of view such messages wouldn’t achieve anything she cannot achieve with the public randomization device.
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Principal
(q, z) Nature

b

b

p

1− p

Success

Failure

report S

report F

Agent

(q(π − c)− zS, zS)

(−qc− zF , qkπ + zF )

(−qc− zF , zF )

Figure 1: Extensive form (with rewards).

notation.

Realized rewards in round n are as follows. If (ωn, mn) = (f, F ), the agent’s utility is

un(q, z, f, F ) = zF ; if (ωn, mn) = (s, F ), then un(q, z, s, F ) = qkπ+ zF , where k ∈ (0, 1). We

interpret k as the inefficiency in the agent’s appropriating the success of the project for his

own use, where π > 0 is the per-unit value of the project. If a success is reported, then the

state must be s, and the agent’s reward is un(q, z, s, S) = zS .

As for the principal, she must always pay a cost c > 0 (per unit) for the project. If it is a

success that is reported (and hence, a success actually obtained), her reward is vn(q, z, s, S) =

q(π − c) − zS; if a failure is reported, then vn(q, z, ω, F ) = −qc − zF , independently of the

state. Hence, q scales the project’s costs and returns.

Figure 1 illustrates the stage game.

2.2 The Repeated Game

Players discount rewards with the common factor δ ∈ [0, 1). Hence, the principal’s and

agent’s realized (average) payoffs are, respectively,

(1− δ)

∞
∑

n=0

δnvn, (1− δ)

∞
∑

n=0

δnun.

A history up to round N for the principal is a sequence hN
P := {(qn, zn, mn)}

N−1
n=0 , with

(qn, zn, mn) ∈ [0, 1] × R
2
+ × {S, F}. The set of such histories is denoted by HN

P (where

we set H0
P = {∅}, with singleton element h0

P ). A history up to round N for the agent is

a sequence hN
A := {(qn, zn, ωn, mn)}

N−1
n=0 and a triple (qN , zN , ωN), with (qn, zn, ωn, mn) ∈
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[0, 1]×R
2
+ × {s, f} × {S, F}, and the obvious restriction that ωn = f ⇒ mn = F . The set

of such histories is denoted by HN
A (where we set H0

A = [0, 1] × R
2
+ × {s, f}, with generic

element h0
A = (q0, z0, ω0)). Notice that realized rewards are not publicly observed, so that

if the agent reports a failure in period n, the principal never learns whether Nature drew a

success or failure in that period.

A (behavior) strategy σP for the principal is a sequence {σn
P}, where σn

P is a probability

transition from Hn
P into [0, 1] ×R

2
+.3 A (behavior) strategy σA for the agent is a sequence

{σn
A}, where σn

A is a probability transition from Hn
A into {S, F}, with the obvious restriction

on feasible messages.

A strategy profile σ = (σP , σA) defines a distribution over infinite histories in the usual

way, and players maximize their expected payoff. We write

W (σ) = (1− δ)Eσ

[

∞
∑

n=0

δnvn

]

, V (σ) = (1− δ)Eσ

[

∞
∑

n=0

δnun

]

,

although we often drop the argument σ when the strategy profile is understood. We are also

interested in the total surplus,

S = W + V.

The solution concept is perfect Bayesian equilibrium. Hence, no commitment is assumed

on either side, although within a round the principal commits to the payments z that she

announces.

We note that information is imperfect, but has a product structure, because the principal

does not observe the state, while the agent does. Hence, any perfect Bayesian equilibrium

in which the agent’s strategy in a given round n depends on private information acquired

during previous rounds, conditional on the public information, is outcome-equivalent to an

equilibrium in which it does not. Hence, without loss, we assume that σn
A only depends

on the public information hn
P up to the current round, as well as the triple (qn, zn, ωn)

relevant to the current round. This ensures that, given hn
P , continuation payoffs are common

knowledge (so that dynamic programming can be used), and with an abuse of notation, we

write W (hn
P ), V (hn

P ) for continuation. The principal has no private information, and even

if the agent makes an observable deviation, the serial independence of the process {ωn}
∞
n=0

makes it irrelevant for updating about future moves by Nature, and hence perfect Bayesian

equilibrium leaves no ambiguity about how to revise beliefs.

3That is, for each hn
P ∈ Hn

P , σn
P (h

n
P ) is a probability distribution over [0, 1] × R

2
+, and the probability

σn
P (·)[A] assigned to any Borel set A ⊂ [0, 1]×R

2
+ is a measurable function of hn

P , and similarly for σn
A.
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2.3 Stage-Game Equilibrium

We assume throughout that

pπ > c,

so that operating the project is efficient. In the absence of an agency problem, the efficient

outcome is thus to operate the project at scale q = 1. We refer to pπ − c as the efficient

surplus.

Here, we examine subgame-perfect equilibria of the extensive-form stage game (played

once), suppressing the time subscript.4 In the event of a success, the agent will report

S if zS > qkπ + zF ,

F if zS < qkπ + zF .

The agent is indifferent in the event that zS = qkπ + zF , but equilibrium will require that

this indifference be broken in favor of reporting a success.

The principal can induce the agent to report a success, given that Nature has drawn a

success, if (given that an indifferent agent reports a success) and only if the payoff differential

zS − zF is at least as large as the value the agent receives from appropriating the success,

i.e., if and only if zS − zF ≥ qkπ. It is then immediate that the principal will set zF = 0,

and the principal’s payoffs are then

−qc if zS < qkπ,

p(qπ − zS)− qc if zS ≥ qkπ.

The principal will operate the project on either the largest (q = 1) or smallest (q = 0) scale,

setting zS = qkπ in the first case and with zS arbitrary in the second, depending on whether

operating the project on a positive scale is profitable (p(1 − k)π − c > 0) or unprofitable

(p(1− k)π − c < 0). We can summarize with the following immediate result:

Proposition 1

[1.1] Suppose p(1− k)π− c > 0. Then in the unique equilibrium outcome of the one-shot

game the principal sets q = 1 and z = kπ. Payoffs to the principal and the agent are:

W ∗ = pkπ, (1)

V ∗ = p(1− k)π − c. (2)

4The stage game is a game of imperfect information, since the principal does not observe Nature’s draw,

but nonetheless subgame perfection implies sequential rationality, and hence a subgame-perfect equilibrium

is also (part of) a perfect Bayesian equilibrium.
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[1.2] Suppose p(1 − k)π − c < 0. Then in the unique equilibrium outcome the principal

sets q = 0 and payoffs are (0, 0).

In the first case (p(1 − k)π − c > 0), the stage game exhibits a unique subgame-perfect

equilibrium outcome (notice that the agent’s action is arbitrary in the out-of-equilibrium

event that q = 0 and ω = s) in which the total payoff equals the efficient surplus. In the

second case (p(1−k)π− c < 0), even though the total surplus is positive, inducing the agent

to reveal a success is too expensive for the principal to induce. There is again a unique

subgame-perfect equilibrium outcome, in which payoffs are (0, 0).

3 Equilibria in the Dynamic Moral Hazard Game

Our objective is to characterize the set of equilibrium payoff vectors (W,V ) ∈ R
2
+ in the

repeated game, which we denote by V. In particular, we characterize the boundary of this

set, and identify the equilibrium strategies that give rise to these boundary payoffs.

The set V of equilibrium payoffs in the repeated game is a subset of the set of feasible

and individually rational payoffs F := {(W,V ) ∈ R
2
+ : W + V ≤ pπ − c}. We continue to

maintain the assumption that pπ− c > 0, so that this set is not only nonempty but contains

some strictly positive payoffs. We say that an equilibrium with payoffs (W,V ) achieves the

efficient surplus if W + V = pπ − c.

Note that ours is a repeated extensive-form game, which as is well known raises some

subtleties regarding incentives and the lowest equilibrium payoffs that differ from those in

standard repeated games. Nonetheless, we will adopt standard terminology from repeated

games, such as self-generation (see Abreu, Pearce and Stacchetti [1]).

3.1 Constrained Efficient Equilibria

We say that an equilibrium is constrained efficient if it maximizes, over the set of equilibria,

the sum of the principal’s and the agent’s payoff. Section 5.1 proves the following lemma,

which characterizes the constrained efficient equilibria of the repeated game:

Lemma 1

[1.1] If p(1− k)π− c > 0, then in any constrained efficient equilibrium, we have q = 1 in

each period on path, with a sum of payoffs equal to W ∗ + V ∗ = pπ − c.

[1.2] If p(1 − k)π − c > 0, then in any constrained efficient equilibrium outcome, the

agent’s payoff satisfies W ≥ W ∗.

8



[1.3] If p(1− k)π− c < 0, then the repeated game has a unique equilibrium payoff, (0, 0).

The first result is straightforward. If p(1 − k)π − c > 0, then the stage game has a

subgame-perfect equilibrium that achieves the efficient surplus, and one can then also achieve

the efficient surplus in the repeated game by playing this stage-game equilibrium in every

period. The second result is achieved by showing that whenever the project is operated,

generating surplus pπ−c, at least pkπ of this surplus must go to the agent in order to satisfy

the agent’s incentive constraint. This is enough to ensure that the agent’s payoff is at least

W ∗. The final result follows from noting that if p(1−k)π− c < 0, then allocating payoff W ∗

to the agent relegates the principal to a negative payoff. The only equilibrium must then be

trivial, giving payoff (0, 0).

The inequality p(1 − k)π − c < 0 suffices to ensure that in the stage game, there is a

unique equilibrium payoff, namely (0, 0). It is a familiar result that repeated games allow

equilibrium payoffs that cannot be obtained in the stage game. Recalling that pπ− c > 0, so

that the efficient surplus is positive, one might have thought that the repeated game would

allow positive payoffs even if the stage game does not. However, the final part of this lemma

indicates that when p(1−k)π− c < 0, repeating the stage game allows no new opportunities

for positive payoffs.

If p(1 − k)π − c > 0, the repeated game has equilibria that achieve the efficient surplus.

There may be other equilibria that attain the efficient surplus, but all must give the agent

a higher payoff. If the repeated game is to bring the principal a higher payoff than does the

stage game, this must come at the cost of inefficiency.

In light of this result we restrict attention to the interesting case in which p(1−k)π−c > 0,

since both the stage game and the repeated game are trivial if this strict inequality is reversed.

3.2 A Self-Generating Set

Lemma 1 shows that, under our maintained assumption of p(1−k)π−c > 0, so that the game

is not trivial, the repeated game admits an equilibrium that achieves the efficient surplus,

with payoffs (W ∗, V ∗). But these payoffs are already available as the unique equilibrium

payoffs in the stage game. What does repeating the game add to the set of possible equilibria?

To ensure that the set of repeated-game equilibria is sufficiently rich, we impose a lower

bound on the discount factor by maintaining throughout the following assumption:

1− δ

δ
kπ < p(1− k)π − c <

pδ

1− δ
(pπ − c). (3)

9



We explain as we proceed where we use these conditions, and explore in Section 4.2 what

happens if this assumption fails. Notice that a necessary condition for the left inequality is

the familiar condition p(1− k)π − c > 0. Given this inequality, both inequalities in (3) will

hold as long as the players are sufficiently patient. Neither of the conditions in (3) implies

the other.

We then establish the following:

Lemma 2 There exists a self-generating set of equilibrium payoffs corresponding to two

equilibria with the following properties:

– The first equilibrium yields payoffs (0, 0). The principal sets q = 0 in each period.

Should the principal set q > 0 in any period, play immediately switches to that

specified by the second equilibrium, which specifies the agent’s response.

– The second equilibrium yields payoffs (pπ−c, 0). The principal sets q = 1, zF = 0,

and zS = π−c/p in every period, while the agent reports any successes. Should the

principal ever choose a different triple (q, zS, zF ) with the property that a reported

success would give the principal a positive payoff, play switches immediately to

that specified by the first equilibrium.

The second equilibrium in this self-generating pair achieves the efficient surplus, but

offers all of this surplus to the agent. The first equilibrium realizes none of the surplus.

Each equilibrium exhibits a stationary outcome path, with incentives created by the threat

of switching to the other equilibrium. The equilibrium with payoffs (0, 0) establishes that

the minmax values can be simultaneously achieved as equilibrium outcomes. We refer to

this as the minmax equilibrium.

The intuition behind this construction is that the principal’s payoffs are zero in either

equilibrium. Deviations on the part of the principal simply prompt a change to the other

equilibrium, ensuring the principal’s payoffs are zero after every history, and hence that the

principal’s behavior is optimal. Incentives for the agent are constructed by specifying that

prescribed behavior leads to the continuation payoff pπ− c, while proscribed behavior leads

to continuation payoff 0.

Proof. Consider the minmax equilibrium. If the principal sets q = 0, the agent’s actions

have no effect on payoffs, and hence any action is a best response. In response to any

(q, zS, zF ) with qkπ+zF ≥ zS , the agent conceals any success, and continuation play exhibits

payoffs (0, 0). This is a best response for the agent and is at least weakly suboptimal
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for the principal. Should the principal offer a triple (q, zS, zF ) with qkπ + zF < zS and

q(pπ − c) − pzS − (1 − p)zF ≤ 0, the agent accepts, and continuation payoffs are given

by (0, 0). Once again this is a best response for the agent and at least weakly suboptimal

for the principal. Should the principal offer a triple (q, zS, zF ) with qkπ + zF < zS and

q(pπ − c) − pzS − (1 − p)zF > 0, the agent rejects and continuation payoffs are given by

(pπ− c, 0). This is again weakly suboptimal for the principal, with the agent’s incentives to

be verified.

Consider the equilibrium with payoffs (pπ − c, 0). In equilibrium, the principal offers

q = 1, zF = 0, and zS = π − c/p in each period, while the agent reveals any successes.

The value of zS is calculated to push the principal’s payoff to zero. Suppose the principal

offers some other triple (q, zS, zF ). If this triple satisfies q(pπ − c) − pzS − (1 − p)zF ≤ 0,

then the agent reports a success if zS ≥ qkπ + zF and conceals it otherwise, with play in

either case continuing with the equilibrium giving payoffs (pπ − c, 0). The agent’s actions

in this case affect payoffs only in the current period, and are obviously optimal. Because

q(pπ − c) − pzS − (1 − p)zF ≤ 0, such a deviation cannot increase the principal’s payoffs,

and hence it is optimal for the principal to undertake no such deviation.

If the principal offers a triple (q, zS, zF ) with q(pπ − c) − pzS − (1 − p)zF > 0 and the

agent conceals a success, then continuation play proceeds with the equilibrium giving payoffs

(pπ − c, 0). If the principal offers a triple (q, zS, zF ) with q(pπ − c) − pzS − (1 − p)zF > 0

and the agent reveals a success, then continuation play proceeds with the equilibrium giving

payoffs (0, 0). There is clearly no gain to the principal from making an offer that induces

the agent to conceal a success. We must then establish that it is impossible to get the agent

to reveal a success when the strategies call for concealing the success, which is identical to

the missing incentive constraint for the agent in the minmax equilibrium. We need to show

that there is no triple (q, zS, zF ) satisfying

q(pπ − c)− pzS − (1− p)zF > 0,

(1− δ)zS > (1− δ)[qkπ + zF ] + δ(pπ − c).

It is immediate that the best case for making these inequalities hold is to set zF = 0. We

can then rearrange these inequalities as

pδ

1− δ
(pπ − c) < zS < q[p(1− k)π − c].

The right inequality in (3) ensures that there exists no (q, zS) solving these inequalities.
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We thus already have three equilibria, with payoffs

(0, 0)

(W ∗, V ∗)

(pπ − c, 0).

Moreover, we can support all of the payoffs on the line segment connecting (W ∗, V ∗) and

(pπ − c, 0) by equilibria featuring stationary outcome paths, with q = 1, zF = 0, and the

value of zS adjusting from kπ for payoff W ∗ to π − c
p

for payoff pπ − c. Deviations from

equilibrium play prompt a switch to the minmax equilibrium. The calculations confirming

that the proposed strategies are part of an equilibrium are immediate, since they involve the

same punishments but less profitable deviations than the self-generating pair {(0, 0), (pπ−c)}.

Feasibility ensures that there can be no equilibrium giving a sum of payoffs larger than

pπ−c. Lemma 1 shows that there are no equilibria that realize the efficient surplus, W+V =

pπ−c, and give W < W ∗. We thus have a complete characterization of payoffs and behavior,

on the boundary of the equilibrium payoffs, for values W > W ∗, as well as an indication that

equilibria with W < W ∗ are inefficient. The remaining task is then to characterize equilibria

for values of W < W ∗.

Remark 1 The equilibria described in Lemma 2 remain equilibria under complete informa-

tion, i.e., when both players can observe the outcome of Nature’s draw. This ensures that

under complete information, the set of efficient payoffs is given by {(W,V ) ∈ R
2
+ : W + V =

pπ− c}. There is thus an equilibrium that achieves the efficient surplus and splits it between

the two players, for any arbitrary such split. The outcome in this equilibrium is stationary,

with q = 1 and with the value of z chosen so as to achieve the appropriate division of the

surplus, and with any deviations prompting a switch to the minmax equilibrium. The key

in this construction is that under full information a deviation on the part of the agent to

conceal a success can be observed, undermining the argument leading to the lower bound

on the agent’s payoff (for equilibria that achieve the efficient surplus) that arises when the

principal does not observe Nature’s draw.

3.3 An Example

Lemma 1 ensures that equilibria for which W < W ∗ are necessarily inefficient. This section

presents an example showing that such equilibria may nonetheless give the principal a payoff

larger than V ∗, the largest principal payoff from the set of constrained efficient equilibria.
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The principal sets zF = 0 throughout. The principal initially offers a value q < 1 (to be

determined) and zS = 0. A failure causes this path of play to begin anew, while a success

prompts a switch to the subsequent repeated play of the stage-game Nash equilibrium. Once

the latter switch has been made, of course, we need no longer worry about incentives.

We first solve for the agent’s equilibrium payoff W and q. We will ensure that the agent’s

incentive constraint for revealing a success in the first period binds, so that the agent’s payoff

is given by the value of reporting a failure, or

W = δpW ∗ + δ(1− p)W

=
δp2kπ

1− δ(1− p)

< pkπ.

We ensure the incentive constraint binds by choosing the value of q to satisfy

(1− δ)qkπ + δW = δpkπ,

or

(1− δ)qkπ = δ

[

pkπ −
δp

1− δ(1− p)
pkπ

]

,

and hence

q =
δp

1− δ(1− p)
.

We then need confirm the incentives for the principal. We assume that any deviation on

the principal’s part prompts an immediate switch to the repetition of the stage-game Nash

equilibrium, with payoffs (W ∗, V ∗). Hence, the principal’s behavior will be optimal as long

as V ≥ V ∗. The equilibrium we are constructing features an initial sequence of identical

actions, followed by a switch to the perpetual play of the efficient stage-game equilibrium.

This will be an equilibrium if the principal’s payoff in these initial periods exceeds that of

the efficient equilibrium, or q(pπ − c) ≥ (p(1− k)π − c), for which it suffices that

p(1− k)π − c ≤
pδ

1− δ(1− p)
(pπ − c),

a slight strengthening of (3).

If it exists, this equilibrium gives the principal a payoff larger than V ∗. But this equilib-

rium does not maximize the principal’s payoff it turns out; it is not even best for the principal
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given the agent’s payoff. Indeed, all of the excess payoff for the principal comes in the first

period, and hence as δ gets large the payoffs from this equilibrium converge to (W ∗, V ∗).

Our attention now turns to characterizing the entire payoff frontier. We will confirm that

the equilibrium we have just constructed does not yield a payoff on the boundary of the

payoff set, and that no strengthening of (3) will be required to improve the principal’s payoff

above V ∗.

3.4 The Payoff Frontier

We characterize the payoff frontier and the attendant optimal strategies for values of W ≤

W ∗. We concentrate on the function S(W ), giving the maximum surplus as a function of

the agent’s payoff W , defined for W ∈ [0, pπ − c] by

S(W ) = max{(1− δ)q(pπ − c) + δpS(W S) + δ(1− p)S(W F )}

s.t. (1− δ)zS + δW S ≥ (1− δ)(qkπ + zF ) + δW F

W = (1− δ)[pzS + (1− p)zF ] + δpW S + δ(1− p)W F ,

and subject to q ∈ [0, 1], zS, zF ≥ 0, and that the continuation payoffs be equilibrium payoffs.

The first constraint above is the agent’s incentive (compatibility) constraint and the second

is the bookkeeping constraint that we provide the agent with the appropriate payoff. In the

sequel, these expressions refer to the two constraints above. Lemma 1 has established that

S(W ) = pπ − c for W ≥ W ∗.

3.4.1 Preliminaries

This section collects some intuitive results that are helpful in focussing the subsequent de-

velopment. We begin with some characteristics of the function S.

Lemma 3

[3.1] S(0) = 0 and S(W ) = pπ − c for W ∈ [W ∗, pπ − c].

[3.2] S(W ) is concave, and hence continuous.

[3.3] S(W ) is increasing.

Proof. [3.1] That S(0) = 0 follows from the observation that a positive payoff can be

generated only if the principal at some point sets q > 0, which the principal in turn will

do only if at some point the agent reports a success, which the agent can be induced to do
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only with the prospect of a positive payoff. As noted above, Lemma 1 has established that

S(W ) = pπ − c for W ≥ W ∗.

[3.2] To establish concavity, suppose that σ and σ′ are two equilibrium strategies, cor-

responding to payoffs (W,V ) and (W ′, V ′). Then consider the strategy σ′′ that, after any

history, sets q′′ = λq + (1 − λ)q′ and sets z′′ so that q′′z′′ = λqz + (1 − λ)q′z′. Then

this new strategy satisfies the incentive constraints and gives W ′′ = λW + (1 − λ)W ′ and

V ′′ = λV + (1− λ)V ′, giving concavity.

[3.3] To show that S is increasing, we suppose that W < W ∗, and then note that increas-

ing W relaxes the bookkeeping constraint, allowing a simultaneous increase in (q, zS, zF ,W S,W F )

that preserves the incentive constraint and that increases at least one of these variables in

addition to zS and zF , ensuring that the objective increases.

The function S(W ) thus begins at the origin, reaches V ∗ as W reaches W ∗, and is constant

above W ∗. The function is concave and increasing. Notice that its rate of increase must slow

down as W approaches W ∗. In particular, we know from Section 3.3 that we have V > V ∗

for some values of W < W ∗, so that V is decreasing in W for values of W close to W ∗, even

as S continues to increase.

We can immediately establish some characteristics of the behavior behind these payoffs:5

Lemma 4 Let W ≤ W ∗ and consider an equilibrium giving surplus S(W ). Then without

loss,

[4.1] zF = 0.

[4.2] W S ≥ W F .

[4.3] The incentive constraint binds.

[4.4] zS = 0.

Proof. [4.1] If zF > 0, reducing zF while increasing zS to preserve the bookkeeping con-

straint leaves the objective unaffected while relaxing the incentive constraint.

[4.2] The fact that W S ≥ W F is an implication of the concavity of S. If W S < W F ,

then an expected-value-preserving contraction in these values preserves the bookkeeping

constraint while relaxing the incentive constraint and increasing the objective.

[4.3] Suppose the incentive constraint does not bind. First, suppose also that W S 6= W F

(and hence W S > W F ). Then an expected-value-preserving reduction in W S and increase

in W F preserves the bookkeeping constraint and (at least weakly) increases the (concave)

5It is here that we use the left inequality in (3). If this inequality fails, we will sometimes have zS > 0.
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objective. Let this continue until either the incentive constraint binds (in which case we have

the desired result) or W S = W F .

Hence, we may assume the incentive constraint does not bind and W S = W F = W̃ . Then

the incentive and bookkeeping constraints are

zS > qkπ

W = (1− δ)pzS + δW̃ .

Then increase q, preserving the bookkeeping constraint and again increasing the objective,

until either the incentive constraint binds (in which case we again have the result) or q = 1.

In the latter case, we can then decrease zS and increase W̃ to preserve the bookkeeping

constraint and increase the objective, until either the incentive constraint binds (finishing

the argument) or W̃ = pπ− c with slack remaining in the incentive constraint. However, the

latter event yields

W ≥ (1− δ)pkπ + δ(pπ − c),

contradicting our assumption that W ≤ W ∗ = pkπ.

[4.4] Finally, notice that the variable zS does not appear in the objective. The variables

zS and W S enter the two constraints in identical proportions. Hence, one can increase the

objective by decreasing zS and increasing W S so as to preserve the constraints, until either

zS hits its lower bound of 0 or W S hits its upper bound of pπ − c. The first constraint to

bind will be zS = 0, and hence we will have zS = 0 for all W ≤ W ∗, if and only if we can

satisfy

W = δpW S + δ(1− p)W F , (4)

for values of W as large as pkπ = W ∗. From the incentive constraint, we have (1 − δ)kπ =

δ(W S −W F ). Using this to eliminate W F from (4) and inserting W ∗ = pkπ on the left, we

need

pkπ ≤ δpW S + (1− p)[pW S − (1− δ)kπ],

for some value of W S ≤ pπ − c. Hence, we need

pkπ ≤ δ(pπ − c)− (1− p)(1− δ)kπ,

which is implied by (and motivates) the left inequality in (3). It is expected that some lower

bound on the discount factor is needed for this result. If δ = 0, then future payoffs are

utterly ineffective in creating current incentives, and the agent can be induced to report a

success only if zS > 0.
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We now know a great deal about the principal’s behavior. The principal either uses

current payments or continuation values to create incentives, but never uses both. For values

W < W ∗, the agent is rewarded for reporting a success by receiving a higher continuation

payoff than if the agent reports a failure, but the agent receives no payment flow. Should

the agent’s continuation payoff reach W ∗, then this continuation payoff remains constant,

with subsequent incentives created entirely by the flow of payoffs.

We can characterize the dynamics of continuation values in the region W ∈ [0,W ∗]. We

can write the incentive and bookkeeping constraints as

W S −W F =
1− δ

δ
qkπ,

W

δ
= W F + p(W S −W F ),

which we can solve for

W F =
W

δ
− p

1− δ

δ
qkπ, (5)

W S =
W

δ
+ (1− p)

1− δ

δ
qkπ. (6)

To check that W remains constant once the agent’s payoff reaches W ∗, we need only verify

that W = pkπ and q = 1 imply W F = W . The latter equality is then

W =
W

δ
− p

1− δ

δ
kπ,

which is solved by W = pkπ.

Our task is then one of tracking the dynamics of the agent’s payoff W . Assuming that

we begin with some value in the interval (0,W ∗), then (as we establish below) the agent’s

continuation payoff increases after a success and decreases after a failure, with the agent

receiving no flow payoffs in the meantime. This process continues until either the agent’s

payoff is absorbed at 0, terminating the project (an event we show below does not occur)

or is absorbed at a level at least W ∗, at which point the payoff thereafter remains constant

and incentives are created by a flow of payoffs to the agent.

3.4.2 The Dynamics of Continuation Payoffs

To characterize the dynamics of continuation payoffs, it is helpful to rewrite the surplus

maximization problem in terms of the project scale q and the agent’s payoffs, giving, for
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W ∈ [0,W ∗]:

S(W ) =

max
q∈[0,1]

{

(1− δ)q(pπ − c) + δpS

(

W + (1− δ)(1− p)qkπ

δ

)

+ δ(1− p)S

(

W − (1− δ)pqkπ

δ

)}

,

where we used Lemma 4 to eliminate all other variables, and where we set S(W ) = pπ − c

for W ∈ [W ∗, pπ − c].

It is clear that W < W ∗ ⇒ S(W ) < pπ− c. If not, we note that S(W ) = pπ− c requires

q = 1 and S(W F ) = pπ − c while W < W ∗ and q = 1 implies W F < W , allowing us to

obtain a contradiction by considering the infimum over W for which S(W ) = pπ−c. We also

note that this immediately implies (alongside weak concavity) that S is strictly increasing

on [0,W ∗].

We next note from the definition of S that, provided it is differentiable, the process

{S ′(Wn)}
∞
n=0, viewed as a stochastic process with Wn+1 taking values W F and W S (given

Wn = W ), is a martingale (differentiating with respect to W , we immediately get S ′(Wn) =

E[S ′(Wn+1)]). We use this martingale property in many of the arguments.

Section 5.2 proves:

Lemma 5

[5.1] The function S is differentiable, with an infinite right derivative at W = 0 and a

zero derivative at W = W ∗.

[5.2] For any W ∈ (0,W ∗), we have S ′(W F ) 6= S ′(W S).

[5.3] For any W ∈ (0,W ∗), q > W/W ∗.

[5.4] The function S is strictly increasing and strictly concave on [0,W ∗].

[5.5] For any W ∈ (0,W ∗), W F < W < W S.

The fact that S has an infinite right derivative at W = 0 allows us to conclude that

the principal never lets the project lie idle, which is to say that q > 0 for all W ∈ (0,W ∗).

Suppose this is not the case, i.e., there exists W ∈ (0,W ∗) such that q(W ) = 0. Then

plugging in q in the functional equation, we obtain

S(W )

δ
= S

(

W

δ

)

,

which is inconsistent with weak concavity and the infinite right derivative of S(W ) at W = 0.

An implication of the differentiability of S is that W > 0 ⇒ W F > 0. Hence, the

principal will never choose a scale q for the project that causes a failure to terminate the
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relationship. To see this, we note that because S is differentiable, the optimal q must either

solve the first-order condition with equality (if interior, in which case W F > 0) or must

be positive (if constrained by W F = 0). But the fact that S ′(0) = ∞ precludes the latter

possibility.

The second statement in the lemma indicates that not only is W S > W F (as we have

seen), but also that for any W ∈ (0,W ∗), we have W S > W > W F as well as

S ′(W F ) 6= S ′(W S).

This in turn implies, because S ′(W ) = pS ′(W S)+(1−p)S ′(W F ), that S ′(W ) is distinct from

both S ′(W F ) and S ′(W S). This in turn serves as an important input into the demonstration

that s is strictly concave. It also allows us to show not only that the principal never lets

the project sit idle, but puts a lower bound, q > W/W ∗, on the scale at which the principal

operates the object.

3.4.3 Equilibrium Behavior

We can now characterize the limiting behavior of the relationship. The following is an

immediate combination of our preceding results.

Proposition 2 With probability 1, the agent’s continuation value reaches a value W ≥ W ∗.

Given any initial condition W0, the process {Wn : n ∈ N} defined by the “best”

equilibrium given W0 converges almost surely to the set {W ≥ W ∗}. This is because

{S ′(Wn) : n ∈ N} is a non-negative martingale, and hence converges. Given the strict

concavity of S, this implies that the process {Wn} must almost surely exit the interval

(0,W ∗) (since Wn+1 ∈ {W S
n ,W

F
n }). Given that limW↓0 S

′(W ) = +∞, it follows from the

martingale property that P[limn Wn = 0] = 0. Hence the result.

Section 5.3 proves (and further discusses):

Proposition 3 The optimal scale of the project q(W ) increases in W , with some Ŵ ∈

(0,W ∗) such that q = 1 if and only if W ≥ Ŵ .

3.5 Summary

These results give us a complete characterization of the set of equilibrium strategies and

equilibrium payoffs that we summarize here.
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Figure 2 shows the set of equilibrium payoffs. The payoff (W ∗, V ∗) features stationary

behavior, both on and off the equilibrium path, and is achieved by repeating the subgame-

perfect equilibrium of the stage game in each period. Continuation payoffs thus never move,

and incentives for the agent to report successes are created by offering the appropriate flow

payoffs for such reports. This equilibrium captures all of the possible surplus.

Equilibria on the segment connecting (W ∗, V ∗) with (pπ − c, 0) also capture all of the

available surplus, but allocate more of the surplus to the agent. The equilibrium path

is stationary, differing from the equilibrium giving (W ∗, V ∗) in that the agent receives a

higher payoff in the event of a success. These equilibria deter deviations by switching to

the continuation equilibrium exhibiting payoffs (0, 0). It is not immediately obvious that the

latter is an equilibrium payoff, but we have shown that the set {(0, 0), (pπ − c, 0)} is a self-

generating pair. Figure 2 also displays the equilibrium payoff of the example from Section

3.3, making it plain that this equilibrium is not constrained efficient, despite improving upon

V ∗ for the principal. This should come as no surprise, since any equilibrium achieving the

boundary payoff (for values W < W ∗) requires W F < W , and hence cannot be reconciled

with the construction of this equilibrium.

Equilibria achieving payoffs for the agent below W ∗ are necessarily inefficient. The prin-

cipal receives a higher payoff from these equilibria than from any of the efficient equilibria as

long as W is not too far below W ∗, with payoffs collapsing to (0, 0) as W approaches 0. The

strategies behind these equilibria have a simple structure. The principal sets the flow payoff

zF = 0 throughout, counting on continuation payoffs to create incentives. The principal sets

a scale q for the project that is increasing in W . A report of a success leads to a higher

continuation value and a report of a failure leads to a lower continuation value, with the

spread between these two values increasing in q. As W approaches 0, the attendant value

of q declines sufficiently rapidly as to ensure that the adverse continuation payoff W F never

hits 0, and hence the project is never forced to terminate. As W approaches W ∗, we enter

a region in which q = 1, but in which there are still no flow payoffs. Figure 3 illustrates the

policy function q(W ) for two values of the discount factor δ. The policy function appears to

be nearly linear (though it is not) for values of W ≤ Ŵ . Figure 4 illustrates the correspond-

ing surplus function. Eventually (with probability 1), the value of W hits W ∗. At this point,

continuation values cease to move, and the continuation equilibrium is stationary. Incentives

for the agent are then created entirely via flow payoffs.

As Figure 2 indicates, the equilibrium that maximizes the principal’s payoff does not

achieve the efficient surplus. This result is general. Example 3.3 ensures that there are

equilibria in which the principal earns more than V ∗, while Lemma 1 ensures that any
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such equilibrium fails to achieve the efficient surplus. Figures 2 and 3 suggest that in the

principal’s preferred equilibrium, the project starts a full scale, i.e., q = 1. This latter result

is also general. In particular, let W be the agent’s payoff in the equilibrium that maximizes

the principal’s payoff. Then we can use (5) to write the inequality q ≤ 1 as

W F −

(

W − (1− δ)pkπ

δ

)

≥ 0.

Given W , Let us add this as a constraint, with multiplier λ ≥ 0, to the surplus maximization

problem, and then use the substitutions q = (W − δW F )/(1 − δ)pkπ (from the incentive

constraint) and W S = W/(pδ)− (1− p)W F/p (from the bookkeeping constraint) to obtain

S(W ) = max
WF≥0

{

(W − δW F )
pπ − c

pkπ
+ δ

[

pS

(

W

pδ
−

1− p

p
W F

)

+ (1− p)S(W F )

]

+ λ

(

W F −
W − (1− δ)pkπ

δ

)}

.

Then the envelope theorem gives

S ′(W ) =
pπ − c

pkπ
+ S ′(W S)−

λ

δ
.

For the choice of W0 that corresponds to the equilibrium that maximizes the principal’s

payoff, we must have S ′(W ) = 1. However, since pπ−c
pkπ

> 1 and S ′(W S) ≥ 0, we can have

S ′(W ) = 1 only if λ > 0, which implies q = 1.

Remark 2 Consider an equilibrium whose value to the agent satisfies W < W ∗. Then the

equilibrium generates a sequence of values of W , as the agent’s continuation payoff moves

upward after a success and downward after a failure. Similarly, we have a sequence of values

of q, as the scale of the project moves upward after a success and downward after a failure.

Until the value of q first hits one, the set of values of q has a simple ladder structure, as it

turns out, containing a countable number of values with the property that a success moves

the equilibrium up to the next value, while a failure moves the equilibrium down one value.

Hence, given an initial value W 0 and given that the project has not yet been operated at

full scale, one need know only the total number of successes and failures along a history to

identify the continuation payoff and the optimal value of q.

3.6 The Comparative Statics of Patience

This section characterizes payoffs and behavior in the limit as the discount factor δ ap-

proaches one. Figure 4 suggests that payoffs are increasing in δ, and we confirm that in the
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Figure 2: Equilibrium Payoffs. The figure shows the function V (W ), identifying the largest

equilibrium payoff V for the principal for each equilibrium payoff W for the agent, for δ = 0.9

(solid line) and δ = 0.8 (dashed line). In each case, (W ∗, V ∗) = (1, 1/2). The dots identify

the payoffs for the equilibrium constructed in Section 3.3. Parameter values in Figures 2–4

are π = 4 and c = p = k = 1/2.
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Figure 3: Policy function, q(W ), for δ = .8 and δ = .9. The optimal scale of the project

q(W ) is less than one and strictly increasing for small values of W , and equals one for values

of W that are larger but still less than W ∗ = 1. The accompanying flow payoff zS is positive

only for values W ≥ W ∗.
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Figure 4: (Surplus) Value function, for δ = .8 and δ = .9. The function S(W ) is strictly

increasing on the interval [0,W ∗].

limit, any division of the efficient surplus can be approximately achieved as an equilibrium

payoff. Notice that we keep the other parameters fixed, most notably p, the probability of

a success within a given period, so this limit must be interpreted as a change in patience

rather than a shortening of the length of a period.

Section 5.5 proves:

Proposition 4

[4.1] As δ increases, the surplus function S(W ) increases, converging pointwise to pπ− c

in the limit as δ → 1.

[4.2] The function q(W ) converges pointwise to 1 in the limit as δ → 1.

As expected, the first result gives us a version of the folk theorem for our game—as the

players become arbitrarily patient, the frontier of equilibrium payoffs approaches the effi-

cient frontier, and the set of equilibrium payoffs approaches the set of feasible, individually-

rational payoffs. The second result is expected. The function q(W ) describes behavior in a

constrained efficient equilibrium. As the players become increasingly patient, this payoff ap-

proaches but never achieves the efficient surplus, which can be captured only by consistently

setting q = 1.
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4 Discussion

4.1 Renegotiation

Several of the papers concerned with dynamic moral hazard include an analysis of another

kind of limited commitment, namely renegotiation-proofness (see, e.g., Quadrini [10] and

DeMarzo and Fishman [6]). As is well known, there are several competing definitions for

renegotiation-proofness in infinite-horizon games, and we discuss here weak renegotiation-

proofness, as defined by Farrell and Maskin [7]. As the name suggests, this is a weak notion,

yet as we argue it is already more restrictive than what perfect Bayesian equilibrium implies.

Recall that an equilibrium is weakly renegotiation-proof if there do not exist two continuation

equilibria such that one would strictly Pareto-dominate the other.6

Plainly, the repetition of the stage-game Nash equilibrium yielding payoffs (W ∗, V ∗) is

renegotiation-proof. In fact, so are the payoff vectors (0, 0) and (pπ−c, 0), as neither strictly

Pareto-dominates the other (though stronger notions of renegotiation-proofness would elimi-

nate at least (0, 0)). Hence, we get again the entire line segment connecting (0, 0) to (W ∗, V ∗)

while maintaining weak renegotiation-proofness.

The more interesting question is whether the principal can obtain a payoff larger than

V ∗ in a renegotiation-proof equilibrium. We note that the equilibria achieving the upper

boundary payoffs (W,V ) for W ≤ W ∗ required W to decline after a reported failure, so

that, after a long enough string of such reports, the continuation payoff would necessarily

be Pareto-dominated by the initial equilibrium achieving (W,V )—a contradiction. Hence,

under renegotiation-proofness those boundary points (W,V ) for which W ∈ (0,W ∗) must

yield the principal a payoff strictly lower than those characterized in Section 3.4.

Nonetheless, whenever it exists, the equilibrium constructed in Section 3.3 is renegotiation-

proof.7 This equilibrium only involves two continuation strategies, corresponding to two pay-

off vectors, including (W ∗, V ∗) and the achieved equilibrium payoff (W,V ), with W < W ∗,

V > V ∗. This equilibrium has the property that the scale of the project is precisely cali-

brated so that the report of a failure leads to an unchanged continuation payoff vector, while

one success report takes us to (W ∗, V ∗).

While this equilibrium payoff tends to (W ∗, V ∗) as δ → 1, there is an entire class of payoffs

6While renegotiation-proofness has been introduced for games with complete information, and so refers

to subgame-perfect equilibrium, we note that the perfect Bayesian equilibria we consider are recursive as

well, given that the agent’s strategy does not depend on his past private information. Hence, continuation

equilibria are well-defined.
7Recall that it exists if we assume p(1− k)π − c ≤ δp

1−δ(1−p) (pπ − c).
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that can be obtained with equilibria of the same kind, with a very simple ladder structure:

one success moves the strategies up one step, as long as (W ∗, V ∗) is not yet reached, whereas

one failure leads to an unchanged continuation. This class is parameterized by the number of

successes required to get to the payoff (W ∗, V ∗), starting at the “bottom” of the ladder. With

the notation and normalization of Section 3.4.2, we require q = W/W ∗ (where W stands for

the agent’s payoff at a given step) so that a failure leads to (W − (1− δ)W ∗q)/δ = W , and

we get the functional equation (where, with abuse of notation, S(·) refers to the resulting

surplus)

S(W ) = (1− δ)(pπ − c)
W

pkπ
+ δpS

(

W + (1− δ)W (1− p)/p

δ

)

+ δ(1− p)S(W ),

with boundary condition S(W ∗) = pπ − c. The solution is

S(W )

pπ − c
=

W

W ∗
+

(1− δ)(W/W ∗) ln(W/W ∗)

(1− δ(1− p)) ln
(

1 + 1−δ
δp

) ,

the second term being the (normalized) payoff of the principal. The size of the ladder is

constrained by the requirement that each step upward (leading to an improvement in the

agent’s payoff) leads to a lower payoff to the principal. Ignoring integer issues, it suffices to

make sure that the second term be decreasing in W , which upon differentiation is equivalent

to W/W ∗ ≥ e−1. As δ → 1, this gives us a curve S(W ) = (W/W ∗)(1− ln(W/W ∗))(pπ − c),

for W ∈ [W ∗e−1,W ∗]. To be sure, this is a lower bound on the highest renegotiation-proof

equilibrium payoffs for a given W in this range—we suspect more sophisticated construc-

tions could further improve the principal’s payoff without running afoul the renegotiation

constraint.

The upshot of this discussion is that, within our model, renegotiation-proofness is strictly

more demanding than perfect Bayesian equilibrium. Nonetheless, the principal can do

strictly better than in the repetition of the stage-game Nash equilibrium, in equilibria that

bear some resemblance with those that achieve the extreme payoffs in the case of perfect

Bayesian equilibrium.

4.2 Less Patient Players

In this section we examine the case in which the second inequality in (3) fails, so that

p(1− k)π − c >
pδ

1− δ
(pπ − c),
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which will be the case if the players are not sufficiently patient. However, we maintain the

left inequality in (3).

We used the second inequality in (3) to ensure that there existed an equilibrium with

payoffs (0, 0). This equilibrium allows us to simultaneously achieve the minimum equilibrium

payoff for both players.

Our first goal is to characterize the minimum equilibrium payoffs. Let W and V be

(respectively) the lowest equilibrium payoffs for the agent and for the principal. A necessary

condition for the existence of an equilibrium delivering value V to the principal is that there

exist no (q, zS) satisfying

(1− δ)[q(pπ − c)− pzS] + δV S > V

(1− δ)zS + δW S > (1− δ)qkπ + δW F .

This is the statement that there is no offer the principal can make that will increase the

principal’s payoff if the agent reports a success, and that can also induce the agent to report

a success. To find the smallest candidate value for V , we make these inequalities most

difficult to satisfy by setting V S = V , W S = W and W F = pπ − c− V , where pπ − c− V is

the maximum possible equilibrium payoff for the agent. Hence, a necessary condition for V

to be the principal’s lowest equilibrium payoff is that there be no (q, z) satisfying

qkπ +
δ

1− δ
(pπ − c− V −W ) < zS <

q

p
(pπ − c)−

V

p
,

or equivalently, we need it to be the case that for all q,

pδ

1− δ
(pπ − c− V −W ) + V ≥ q[p(1− k)π − c].

Noting that this inequality is most difficult to satisfy for q = 1, the boundary on values

of (W,V ) satisfying our necessary condition for V to be the principal’s lowest equilibrium

payoff value is then given by

V =
p(1− k)π − c− pδ

1−δ
(pπ − c−W )

1− pδ
1−δ

≡ h(W ).

The point (W ∗, V ∗) always satisfies this equation. This equation defines a linear relationship

between V and W whose slope is nonnegative. When δ = 0, the slope is zero, giving

a horizontal line passing through (W ∗, V ∗). In this case we know the lowest equilibrium

payoffs (W,V ) = (W ∗, V ∗) are drawn from h. At the other extreme if δ is just large
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enough to satisfy the second inequality in (3) with equality, then the slope of h is given by

(p(1−k)π− c)/(pkπ), and then h passes through the origin. In this case, the minmax values

(0, 0) also lie on h. For intermediate values of δ, the function h continues to pass through

(W ∗, V ∗) but has a positive intersection with the vertical axis, indicating that V > 0. This

confirms that when the second inequality in (3) is violated, (0, 0) is no longer an equilibrium

payoff profile, and in particular V > 0.

Section 5.6 establishes the following:

– There exists an equilibrium that simultaneously achieves the lowest equilibrium

payoffs (W,V ), satisfying V = h(W ).

– There exists δ > 0 such that for all δ < δ, (W,V ) equals (W ∗, V ∗).

For sufficiently patient players, for which (3) is satisfied, the lowest equilibrium payoffs

payoffs are (0, 0). For sufficiently impatient players, the only equilibrium payoff in the

repeated game is (W ∗, V ∗). In between, there is a range of discount factors for which lowest

equilibrium payoffs lie between (0, 0) and (W ∗, V ∗), and are drawn from the graph of the

function h. See Section 5.6 for a discussion.

What is then the equilibrium payoff set? It is a (convex) set with lower boundary the

horizontal line segment [(W,h(W )), (pπ − c − h(W ), h(W ))]; the upper boundary consists

of a curve, for values of W ∈ (W,W ∗), along with an upper line segment [(W ∗, V ∗), (pπ −

c− h(W ), h(W ))] for W ≥ W ∗. The curve is the solution to a functional equation, as in the

patient case. Namely, in terms of surplus, consider the functional equation

S(W ) =

sup
q∈[0,1]

{

(1− δ)q(pπ − c) + δpS

(

W + (1− δ)(1− p)qkπ

δ

)

+ δ(1− p)S

(

W − (1− δ)pqkπ

δ

)}

,

subject to W F = (W − (1− δ)pqkπ)/δ ≥ inf{W : S(W ) ≥ h(W ) +W}.8,9

Note that this is the same equation as in Section 3.4.2, except that values of W (in

particular, the lower one that follows a failure) must exceed W , or equivalently correspond

to values for the principal above h(W ) –in terms of surplus, S(W ) ≥ h(W ) + W . Note

that this functional equation is actually defined for all W ≥ 0, and it is precisely the lowest

value for which S(W ) > −∞ (if it exists) that defines W . The curve that defines the upper

8Uniqueness of the solution of this equation follows from value iteration, since it is a contraction on the

domain of functions for which the constraint is satisfied.
9W = W ∗ if and only if the constraint cannot be satisfied for any W < W ∗.
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locus for W ≤ W ∗, then, is precisely S(W ) −W wherever this (principal’s) payoff is finite

(and hence above h(W )). By construction, V = S(W )−W is above h(W ), and so satisfies

the principal’s incentive constraint, and by construction also the continuation payoffs are

chosen so that the agent’s incentive constraint is satisfied. It is easy to see that (whenever

W < W ∗), this locus is differentiable at W = W ∗, as in the patient case.

The dynamics, then, are similar (though not identical) to the patient case: as in the

patient case, payoffs on this boundary (in particular, the one maximizing the principal’s

payoff) are implemented via continuation promises that go up or down according to whether

a success or failure is reported. The continuation payoff, however, bounces back from W

after a success, so that –as in the patient case– the agent’s payoff is eventually absorbed at

W ≥ W ∗ and the project is operated efficiently.

4.3 Conclusion

Dynamic moral hazard problems provide a convenient setting for examining repeated rela-

tionships with incomplete information. The literature has typically focussed on the case in

which the principal can commit to a mechanism. This yields a relatively tractable model

that may be appropriate in many circumstances. Our goal has been to ask what happens

when the players are constrained by sequential rationality.

We find a simple characterization of optimal contracts. These contracts share some

features of the commitment case (such as the fact that continuation payoffs are used to

create rewards when the agent’s payoff is relatively low, while current payoffs are used to

create incentives when the agent’s payoff is relatively high), but also some marked differences

(such as the fact that with probability one, the project in our case is never abandoned and

indeed grows to full size).

There is always an equilibrium that captures the efficient surplus, and which has the

simple form of repeating the subgame-perfect equilibrium of the stage game in every period.

Why is that not the end of the story? There are other equilibria that give the principal

a higher payoff, even though they do so at the cost of introducing inefficiency into the

relationship. These equilibria do not have stationary outcomes, and to examine them we

must characterize the boundary of the equilibrium payoff set, identifying the maximum payoff

available payoff to the principal for any agent payoff, no matter how small.

These equilibria have a simple structure. For small agent’s payoffs, the principal makes

no payments to the agent, creating incentives by scaling down the size of the project and

the agent’s payoff after every failure, and scaling them up after every success. Repeated
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failures may push the agent’s payoff arbitrarily close to zero, but this payoff (almost surely)

never hits this lower absorbing boundary. Instead, there is on average an upward drift in the

agent’s payoff, which with probability one eventually escapes into an region in which still no

payments are made, with incentives created by adjusting continuation payoffs, but with the

project operated at maximum scale. Too many failures will push the equilibrium back into

the first region, but again with probability one the equilibrium will enter a higher, absorbing

region in which continuation payoffs are constant and incentives are created solely through

making payments to the agent.

5 Appendix: Proofs

5.1 Proof of Lemma 1

[1.1] If p(1− k)π − c > 0, then the repeated game has an equilibrium, which repeats the

stage-game Nash equilibrium in each period, that achieves the efficient surplus (cf. Proposi-

tion 1.1). It is then immediate that every constrained efficient equilibrium gives this sum of

payoffs, which can only be achieved by setting q = 1 in every period.

[1.2] Let (q, zF , zS) identify the scale of the project and the payments to the agent (in

the event of a reported failure and success) in the first period. Let (W S, V S) and (W F , V F )

denote continuation payoffs in the event of a (reported) success and failure. A constrained

efficient equilibrium outcome solves the maximization problem

max
q,1S,zF ,zS ,WS ,V S ,WF ,V F

W + V such that (7)

W = (1− δ)(p1Sz
S + p(1− 1S)(z

F + qkπ) + (1− p)zF ) + δ(p1SW
S + (1− p1S)W

F ) (8)

V = (1− δ)(p1S(qπ − zS)− (1− p1S)z
F − qc) + δ(p(1SV

S + (1− p1S)V
F ) (9)

1S = 1 ⇐= (1− δ)zS + δW S > (1− δ)(zF + qkπ) + δW F (10)

1S = 0 ⇐= (1− δ)zS + δW S < (1− δ)(zF + qkπ) + δW F , (11)

subject to the constraints that W S, V S, W F , and V F are equilibrium payoffs and that W and

V are nonnegative, where 1S is an indicator for the event that the agent reports a success.

Because p(1 − k)π − c > 0, we know that this problem has a positive solution, with a

value equal to pπ− c. This value in turn can be generated only if q = 1 and 1S = 1, so that
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we can rewrite the problem solved by a constrained efficient equilibrium outcome as

max
zF ,zS ,WS ,V S ,WF ,V F

W + V

s.t. W = (1− δ)(pzS + (1− p)zF ) + δ(pW S + (1− p)W F )

V = (1− δ)(p(qπ − zS)− (1− p)zF − c) + δ(pV S + (1− p)V F )

(1− δ)zS + δW S ≥ (1− δ)(zF + qkπ) + δW F ,

subject to the constraints that W S, V S, W F , and V F are equilibrium payoffs and that W

and V are nonnegative. Now note that it has no effect on the objective, and preserves the

constraints, and hence sacrifices no generality, to assume that zF = 0. Hence, a constrained

efficient equilibrium outcome must solve the maximization problem

max
zS ,WS,V S ,WF ,V F

W + V

s.t. W = (1− δ)pzS + δ(pW S + (1− p)W F )

V = (1− δ)(pπ − c)− pzS + δ(pV S + (1− p)V F )

(1− δ)zS + δW S ≥ (1− δ)kπ + δW F ,

subject to the constraints that W S, V S, W F , and V F are equilibrium payoffs and that W

and V are nonnegative. We can rearrange the incentive constraint to give (1 − δ)pzS ≥

(1− δ)pkπ + δp(W F −W S), and inserting into the expression for W ,

W ≥ (1− δ)pkπ + δW F .

Now let W be the lowest constrained-efficient payoff for the agent. Then W F ≥ W , and

hence

W ≥ (1− δ)pkπ + δW

holds for every agent payoff consistent with a constrained-efficient equilibrium, including W ,

which gives W ≥ (1− δ)pkπ + δW and hence W ≥ pkπ.

[1.3] We again consider the maximization problem given by (7)–(11), subject to the

constraints that W F , V S, W F , and V F are equilibrium payoffs and that W and V are

nonnegative. Assume this problem has a positive solution, with value Ŝ.

First suppose q = 0. Then the sum of continuation payoffs is positive (since the problem

has a positive solution), and hence a higher sum of payoffs can be achieved by simply
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beginning in the first period with an equilibrium whose payoffs are the maximum of W F+V F

and W S + V S. We can thus assume q > 0.

Now suppose that q > 0 and 1S = 0. Then it has no effect on continuation payoffs

and preserves the constraints, and hence sacrifices no generality, to assume that W S = W F

(simply choose (W S, V S) and (W F , V F ) to both equal whichever of these pairs has the larger

sum) and zS = zF = 0. But then the sum of payoffs can be increased (by p(1 − k)π) while

preserving continuation values and increasing zS to qkπ and setting 1S = 1. Hence, we can

assume that 1S = 1. There is then no loss of generality in assuming that zS is set so that

the incentive constraint binds. This gives the problem

max
zS ,WS,V S ,WF ,V F

W + V

s.t. W = (1− δ)pzS + δ(pW S + (1− p)W F )

V = (1− δ)q(pπ − c) + δ(pW S + (1− p)W F )

(1− δ)zS + δW S = (1− δ)qkπ + δW F ,

subject to the constraint that W S, V S, W F , and V F are equilibrium payoffs and that W

and V are nonnegative. Solving the incentive constraint gives (1 − δ)pzS = (1 − δ)qpkπ +

δp(W F −W S), and inserting into the expressions for W and V , we have

max
WS ,V S ,WF ,V F

W + V

s.t. W = (1− δ)qpkπ + δ(pW S + (1− p)W F ) + δp(W F −W S)

= (1− δ)qpkπ + δW F

V = (1− δ)q(p(1− k)π − c) + δ(pV S + (1− p)V F )− δp(W F −W S)

= (1− δ)q(p(1− k)π − c) + δ(p(W S + V S) + (1− p)(W F + V F )−W F )

subject to the familiar constraints. Recalling that Ŝ is the solution to the surplus maximiza-

tion problem, we have

(p(W S + V S) + (1− p)(W F + V F )−W F ) ≤ Ŝ −W F ≤ Ŝ −W,

where W is the smallest equilibrium payoff for the agent. An upper bound on the principal’s

equilibrium payoff is then given by V , where

V ≤ (1− δ)q[p(1− k)π − c] + δV

for some q ∈ [0, 1]. Since p(1− k)π − c < 0, this gives V = 0, completing the proof.
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5.2 Proof of Lemma 5

To simplify the notation, let w := W/W ∗ and s(w) := S(W )/(pπ − c). Hence, we are

interested in the behavior of the function s(w) on w ∈ [0, 1] (corresponding to the behavior

of S(W ) on [0,W ∗]). The function s is the solution to the problem P: solve for s : R+ → R+,

given by

s(w) = max
q∈[0,min{w/(1−δ),1}]

{

(1− δ)q + δps

(

w + (1− δ)q(1− p)/p

δ

)

+ δ(1− p)s

(

w − (1− δ)q

δ

)}

,

with boundary conditions s(0) = 0, s(w) = 1 for w ≥ 1.10

[5.1] First, we show that s has an infinite right derivative at w = 0. To see that

limw↓0
s(w)
w

= +∞, consider the strategy that sets q so that wF = w as long as w ∈ (0, 1),

that is, the strategy that sets q = w (until w ≥ 1, if ever, in which case the optimal strategy

is followed, for a payoff of 1). This gives us a lower bound on the value, call it s̃. This lower

bound satisfies the recursion

s̃(w) =
1− δ

1− δ + δp
w +

δp

1− δ + δp
s̃

(

1 + (1− δ)1−p
p

δ
w

)

.

Fixing w, we can compute the number n of successive successes required to push the resulting

continuation payoff for the agent above 1, namely, the lowest integer such that

(

1 + (1− δ)1−p
p

δ

)n

w ≥ 1,

or

n = ⌊−
lnw

ln
(

1 + 1−δ
δp

)⌋.

Plugging back into the recursion for s̃, we obtain

s̃(w)

w
=

(1− δ)n+ δp

1− δ + δp
,

and it is readily verified that the right-hand tends to infinity as w → 0, yielding the result.

Next, we show that s(w) has a zero left derivative at w = 1. Since the function s is

constant to the right of w = 1, this ensures that s is differentiable at 1. To show that

10Note that we have already taken into account in the range of possible values of q (by requiring q ≤

w/(1− δ)) the constraint that wF ≥ 0.
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limw↑1
s(1)−s(w)

1−w
= 0, we proceed as for the previous claim, but use another strategy for this

end. Consider the strategy which, starting from w ∈
(

δ − (1− δ)1−p
p
, 1
)

, sets q = 1 as

long as the continuation payoff lies in this interval, and reverts to the optimal strategy as

soon as this interval is exited. Note that, by choice of this interval, a single success yields

wS ≥ 1 independently of w within this interval. We derive a lower bound s̃ for the value

by considering that the payoff is 0 if this interval is ever exited from below. Starting from a

given w within this interval, it takes n successive failures for this happen, where n is given

by

n = ⌊
ln p(1−w)

1−δ

ln δ
⌋.

We can solve the recursion that characterizes the lower bound and check that the loss (s(1)−

s̃(w))/(1− w) is given by
p(1− p)nδn

1− δ
→w→1 0,

as was to be shown.

We now argue that s is differentiable on (0, 1) (and hence also at w = 1). Fix w ∈ (0, 1),

and correspondingly wS, wF , and the equilibrium q at this value of w. Consider the following

strategy available to the principal. At the beginning of the period, the principal uses the

public randomization device to flip a coin. With probability ε2, where ε is a small number,

not necessarily positive, no funds are advanced (q = 0), no payment is made, and we move

to the next period with continuation promise wS. With probability

ε2
δwS − w

w − δwF
+ ε3,

no funds are advanced, no payment is made, and we move to the next period with the agent’s

payoff unchanged at w. We note that, because q > 0 and so δwS−w > 0, we have w−δwF >

0. Finally, with the remaining probability, play proceeds as in the equilibrium given w. First,

note that because the coin flip is publicly observable, the incentive compatibility condition

does not change: it only applies in the last of the three events, and conditional on this event,

everything remains unchanged. Given this policy, the utility of the agent, denoted by wε,

satisfies

wε = δε2wS + δ

(

ε2
δwS − w

w − δwF
+ ε3

)

w + δ

(

1− ε2 − ε2
δwS − w

w − δwF
− ε3

)

(pwS + (1− p)wF ),

and it is easily verified that wε ≶ w iff ε ≶ 0. Consider applying this strategy (parametrized

by ε) at wε in some neighborhood (w−ε̄, w+ε̄). We obtain a surplus s̃ that is (i) below s (since
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this cannot outperform the best strategy), (ii) continuously differentiable in ε, (iii) coincides

with s at w. Because s is weakly concave, it follows as in Benveniste and Scheinkman [2]

that s is continuously differentiable.

[5.2] We show that for any w ∈ (0, 1), we have s′(wF ) 6= s′(wS). There are two cases.

First, suppose that q < 1. Then the first-order condition must hold (recall that q > 0),

namely

1 + (1− p)(s′(wS)− s′(wF )) = 0,

from which it immediately follows that s′(wF ) 6= s′(wS). Suppose instead that q = 1, and

s′(wF ) = s′(wS) =: α. We note that, because q = 1 and w < 1, we must have wF < w < wS.

We also note that, given that q = 1, for any ŵ ∈ [wF , w], it holds that ŵS ≤ wS, and so

since ŵS ≥ ŵ, we have also s′(ŵ) = s′(ŵS) = α. From the envelope theorem, at ŵ, we have

s′(ŵ) = ps′(ŵS) + (1 − p)s′(ŵF ), and so it follows that also s′(ŵF ) = α. Hence, from the

first-order condition, q̂, the scale chosen at ŵ must also be equal to 1. Hence ŵF < wF . In

fact, because we can take ŵ = wF , it follows that s′((wF )F ) = α, with q(w) = 1, q(wF ) = 1,

and this argument can be repeated. Given that q(w) = q(wF ) = q((wF )F ) = · · · = 1, the

sequence (wF , (wF )F , . . .) eventually hits 0, and so the slope must be α at arbitrarily small

values of w, a contradiction to our finding that s′(0) = ∞.

[5.3] This in turn allows us to argue that q > w. Suppose that q ≤ w. Then wF ≥ w.

But then, by familiar reasoning, s′(wF ) = s′(wS) = s′(w), contradicting our finding that

these derivatives must be different.

[5.4] The function s is strictly concave on (0, 1). Suppose not, and consider an interval

[w1, w2] of maximal length w2 − w1 =: λ > 0 over which it is affine. Because of s′(wF ) 6=

s′(wS), we must have wF
1 ≤ w1, w

F
2 ≤ w1, and similarly wS

2 ≥ w2, w
S
1 ≥ w2. It is readily

verified from the formulas for wS
k , w

F
k that

max{|wF
1 − wF

2 |, |w
S
1 − wS

2 |} > λ.

Hence, by definition, s is not affine over one of the two intervals [min{wF
1 , w

F
2 },max{wF

1 , w
F
2 }],

[min{wS
1 , w

S
2 },max{wS

1 , w
S
2 }]. Consider now the strategy that at w = (w1+w2)/2, picks q =

(q1+ q2)/2 (where qk is the scale chosen at wk), and continuation payoffs wF = (wF
1 +wF

2 )/2,

wS = (wS
1 + wS

2 )/2, and reverts back to optimal play thereafter. Because the payoff in the

first period is an average of the payoffs starting at w1 and w2, and because the continuation

payoff is at least as much as the corresponding average (with one strict inequality, corre-

sponding to the outcome that takes the continuation payoff into the interval over which s

is not linear), this gives a payoff that is strictly higher than the average over the payoffs

starting at w1 and w2.
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[5.5] Finally, because s is strictly concave and differentiable on (0, 1), with s′(w) being

an average of s′(wF ) and s′(wS), and wF 6= wS, it follows that wF < w < wS for every

w ∈ (0, 1).

5.3 Proof of Proposition 3

We maintain the normalizations introduced in Section 5.2.

Because s′ is strictly decreasing, it is differentiable almost everywhere. In addition, s′

is continuous and {w : s′(w) = ∞} is a zero-measure set (namely {0}), and hence s′ is

absolutely continuous.11 If q ∈ (0, 1) is optimal at w, it must hold that

s′(wS(q))− s′(wF (q)) =

∫ wS(q)

wF (q)

s′′(w)dw = −
1− δ

1− p
,

(with the obvious notation wS(q), wF (q)), and we note that there can be at most one solution

to such an equation, since wF is decreasing and wS increasing in q. By the same reasoning,

if a solution q ∈ (0, 1) exists, it cannot be that q = 1 is also optimal, as this would require
∫ wS(q)

wF (q)
s′′(w)dw ≥ − 1−δ

1−p
=
∫ wS(1)

wF (1)
s′′(w)dw. Hence, the (upper hemicontinuous) correspon-

dence q : [0, 1] ⇒ [0, 1] mapping w into the set of maximizers of s is a continuous function.

Then we can decompose the interval [0, 1] into a partition of intervals {Ik}, {Jk}, with q < 1

on each Ik, and q = 1 on each Jk, and it follows from Santos [14], for instance, that q is

differentiable on the interior of each Ik.

We already know that there exists a > 1 − δ such that q ∈ (0, 1) for all w ∈ (0, a) (this

is because we must have wF > 0). Similarly, there exists b > 0 such that q = 1 for all

w ∈ [1 − b, 1]. Indeed, note that, with q = 1, the first-order condition for any w such that

wS ≥ 1 becomes 1 − δ − (1 − p)s′(wF ) ≥ 0, which is true for w close enough to 1, because

limw→1w
F = 1 and Lemma 5.1 (establishing the zero derivative at s = 1).

It remains to show that the partition Ik, Jk has a simple structure: q < 1 if and only

if w ≤ ŵ, for some ŵ ∈ (0, 1). This will be established by value iteration, making the

following induction hypothesis. Let there be given a function sn on (0, 1), with the following

properties: it is continuously differentiable, with s′n(w) > 0 for all w ∈ [0, 1], with s′n being

almost everywhere twice differentiable, with s′′n(w) < 0, and s′′′n (w) > −s′′n(w), sn(0) = 0,

sn(1) = 1, limw→0 s
′
n(w) = +∞, limw→1 s

′
n(w) = 0 (and we extend it to sn(w) = 1 for w ≥ 1).

We establish that these properties also hold for sn+1, the function resulting from maximizing

11See, e.g., Leoni [8, Exercise 3.20].
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over q the payoff from P, taking sn as the continuation payoff. Let qn+1 be the maximizing

correspondence (a function, by the same arguments as before).

We divide the analysis according to whether q = qn+1(w) = 1 or q < 1—that is, we

consider in turn open intervals of values of w for which q = 1 and then q < 1. That there is

such partition follows from arguments entirely analogous to the previous ones, and omitted

(as is the proof that s′n+1 is continuously differentiable, and that limw→0 s
′
n+1(w) = +∞,

limw→1 s
′
n+1(w) = 0).

First, suppose that q = 1 (which enters the definition of wS and wF ). Then we have from

the envelope theorem,

s′n+1(w) = (1− p)s′n(w
F ) + ps′n(w

S),

and, obviously, since q = 1 identically on such an (open) interval, we have more generally,

for k = 1, 2, 3,

δk−1s
(k)
n+1(w) = (1− p)s(k)n (wF ) + ps(k)n (wS),

where f (k) refers to the k-th derivative of f (and differentiability follows from the differen-

tiability of s
(k)
n ). So, in particular,

s
(3)
n+1(w) =

1

δ2
((1− p)s(3)n (wF ) + ps(3)n (wS))

≥ −
1

δ2
(−(1 − p)s(2)n (wF ) + ps(2)n (wS))

≥ −
1

δ
(−(1− p)s(2)n (wF ) + ps(2)n (wS)) = −s′′n+1(w).

Consider now an interval over which q < 1 (obviously, q need not be constant). The

necessary first-order condition with respect to q gives

1 + (1− p)(s′n(w
S)− s′n(w

F )) = 0,

and differentiating with respect to w (differentiability of q′n+1 follows from the implicit func-

tion theorem), we get

q′n+1(w) =
p

1− δ

s′′n(w
F )− s′′n(w

S)

ps′′n(w
F ) + (1− p)s′′n(w

S)
.

The envelope theorem gives

s′n+1(w) = (1− p)s′n(w
F ) + ps′n(w

S),

which implies s′n+1 > 0. This equation holding identically, we differentiate again with respect

to w (not forgetting to insert q′n+1(w)) to get

s′′n+1(w) =
1

δ

s′′n(w
F )s′′n(w

S)

ps′′n(w
F ) + (1− p)s′′n(w

S)
,
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yielding s′′n+1 < 0. We repeat this exercise once more, to get

s′′′n+1(w) =
1

δ2
(1− p)s′′n(w

S)3s′′′n (w
F ) + ps′′n(w

F )3s′′′n (w
S)

(ps′′n(w
F ) + (1− p)s′′n(w

S))3
.

It remains to show that

s′′′n+1(w) ≥ −s′′n+1(w),

which will follow if we show

(1− p)s′′n(w
S)3s′′′n (w

F ) + ps′′n(wF )
3s′′′n (w

S)

(ps′′n(w
F ) + (1− p)s′′n(w

S))3
≥ −

s′′n(w
F )s′′n(w

S)

ps′′n(w
F ) + (1− p)s′′n(w

S)
.

By the induction hypothesis,

(1− p)s′′n(w
S)3s′′′n (w

F ) + ps′′n(wF )
3s′′′n (w

S)

(ps′′n(w
F ) + (1− p)s′′n(w

S))3
≥ −s′′n(w

F )s′′n(w
S)

(1− p)s′′n(w
S)2 + ps′′n(w

F )2

(ps′′n(w
F ) + (1− p)s′′n(w

S))3
,

hence it suffices to show that

−
(1− p)s′′n(w

S)2 + ps′′n(w
F )2

(ps′′n(w
F ) + (1− p)s′′n(w

S))3
≥ −

1

ps′′n(w
F ) + (1− p)s′′n(w

S)
,

or

(1− p)s′′n(w
S)2 + ps′′n(w

F )2 ≥ (ps′′n(w
F ) + (1− p)s′′n(w

S))2,

which is equivalent to

p(1− p)(s′′n(w
S)2 + ps′′n(w

F )2) ≥ 2p(1− p)s′′n(w
F )s′′n(w

S),

or

p(1− p)(s′′n(w
S)− s′′n(w

F ))2 ≥ 0,

which holds trivially. Hence,

q′n+1(w) = −
p

1 − δ

∫ wS

wF s′′′n (w)dw

ps′′n(w
F ) + (1− p)s′′n(w

S)

≥
p

1− δ

∫ wS

wF s′′n(w)dw

ps′′n(w
F ) + (1− p)s′′n(w

S)
=

s′n(w
S)− s′n(w

F )

ps′′n(w
F ) + (1− p)s′′n(w

S)
≥ 0,

where we use concavity and the continuous differentiability of s′.12 It follows that qn+1 is

continuously increasing on some interval [0, ŵ], and equal to 1 on [ŵ, 1].

12Unlike s′n+1, s
′′

n+1 is not continuously differentiable. Hence,
∫ w′′

w′
s′′′n+1(w)dw 6= s′′n+1(w

′′)− s′′n+1(w
′) for

some values of w′, w′′, so that assuming s′′′n ≥ 0 as induction hypothesis is not enough for the proof.
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By value iteration then, we have that sn → s, and qn (which converges along some

subsequence, by Helly’s selection theorem, given that qn is monotone) converges to a policy

q that is optimal with an infinite horizon (see, e.g., Schäl [15]). In particular, it follows that

q is non-decreasing on some [0, ŵ], and equal to 1 on [ŵ, 1]. By our prior results, we know

that it must be continuous.

5.4 Calculations, Remark 2

Consider a continuation history beginning with value W , and with the next two periods

referred to as periods 1 and 2. Recalling that

W F =
W

δ
− p

1− δ

δ
qkπ

W S =
W

δ
+ (1− p)

1− δ

δ
qkπ,

we can write

W SS =
W

δ2
+ (1− p)

1− δ

δ2
q1kπ + (1− p)

1− δ

δ
q2kπ

W SF =
W

δ2
+ (1− p)

1− δ

δ2
q1kπ − p

1− δ

δ
q2kπ

W FS =
W

δ2
− p

1− δ

δ2
q1kπ + (1− p)

1− δ

δ
q
2
kπ

W FF =
W

δ2
− p

1− δ

δ2
q1kπ − p

1− δ

δ
q
2
kπ,

where q2 is the second period value of q following a success in period 1, and q
2

the value

following a failure, and where W SF (for example) is the continuation value following first a

success and then a failure. Now suppose we contemplate adjustments in the values of q1 and

q2 satisfying
dq

2

dq1
=

dq2
dq1

= −
1

δ
.

Then this adjustment preserves the principal’s expected payoff in periods 1 and 2, and also

preserves the values of W SS and W FF . The effect of this adjustment on S(W ) then arises

entirely out of its effect on W SF and W FS. Here, we have

dW SF

dq1
=

1− δ

δ
kπ

(

1− p

δ
+

p

δ

)

=
1− δ

δ2
kπ

dW FS

dq1
=

1− δ

δ
kπ

(

−p

δ
−

(1− p)

δ

)

= −
1 − δ

δ2
kπ.
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Hence, increasing q1 gives us an increase in W SF and a like-sized decrease in W FS, with a

decrease in q1 having the reverse effect. Because S(W ) is concave, and since a success followed

by failure and a failure followed by success are equiprobable, it is always advantageous to

adjust q1 (with the corresponding adjustments in q
2

and q2) so as to push W SF and W FS

closer together. Now notice the following string of equivalent statements:

W SF > W FS

(1− p)
q1
δ
− pq2 > −p

q1
δ
+ (1− p)q

2

p(q1 − δq2) > (1− p)(δq
2
− q1)

p(δq2 − q1) < (1− p)(q1 − δq
2
).

Hence, in the absence of any constraints, we must have

p(δq2 − q1) = (1− p)(q1 − δq
2
),

with

p(δq2 − q1) > (1− p)(q1 − δq
2
)

corresponding to pressure to increase q1 and

p(δq2 − q1) < (1− p)(q1 − δq
2
)

corresponding to pressure to decrease q1.

Now suppose q1 = 1. Then surely we must have

p(δq2 − q1) < (1− p)(q1 − δq
2
),

since the left side is necessarily negative and the right side positive. Then optimality calls

for a value of q1 < 1, a contradiction, in the absence of some constraint.

Hence, if q1, q2 and q2 are all interior, then

δq2 − q1 = q1 − δq
2
,

which gives W SF = W FS, which suffices for the result.

5.5 Proof of Proposition 4

We maintain the normalizations introduced in Section 5.2.
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First, we claim that δ′ > δ implies that sδ′ ≥ sδ. Let q = qδ(w) be the maximizer given

δ. Note that, given δ′, we can set q′ = 1−δ
1−δ′

q (a feasible policy, as we have wF
δ′(q

′) > 0 if and

only if wF
δ (q) > 0). Because the Bellman operator is monotone, consider applying q′ with

a continuation payoff s = sδ: we claim that the resulting payoff exceeds s(w), so that the

fixed point sδ′ lies above sδ, strictly for w ∈ (0, 1). Indeed, because s(0) = 0, and s is strictly

concave, we have that, for α > 1, w ∈ (0, 1),

αs
(w

α

)

> s(w),

hence, for w′ = w+ q(1−δ)(1−p)/p = w+ q′(1−δ′)(1−p)/p, as well as w′ = w−q(1−δ) =

w − q′(1− δ′),

δ′s

(

w′

δ′

)

= δ
δ′

δ
s

(

w′

δ δ′

δ

)

> δs

(

δ′

δ

w′

δ δ′

δ

)

= δs

(

w′

δ

)

,

and the result follows from

(1− δ)q′ + δ′ps

(

w + q′(1− δ′)(1− p)/p

δ′

)

+ δ′(1− p)s

(

w − q′(1− δ′)

δ′

)

≥ (1− δ)q + δps

(

w + q(1− δ)(1− p)/p

δ

)

+ δ(1− p)s

(

w − q(1− δ)

δ

)

.

Next, we show that limδ→1 sδ(w) = 1 for all w > 0. Consider the strategy that sets

q(w) = 1 for all w > 1− δ, and q(w) = w/(1− δ) otherwise. Note that, because the payoff

from this strategy is non-decreasing in w, we have that, for w > 1− δ,

s(w) = (1− δ) + δps

(

w + (1− δ)(1− p)/p

δ

)

+ δ(1− p)s

(

w − (1− δ)

δ

)

≥ (1− δ) + δps

(

w +
(1− δ)(1− p)/p

δ

)

+ δ(1− p)s

(

w −
(1− δ)

δ

)

,

and we note that the process that takes value w + (1−δ)(1−p)/p
δ

with probability p and takes

value w − (1−δ)
δ

with probability 1 − p is a martingale (for w > 1 − δ). Hence, by Azuma-

Hoeffding’s inequality, starting from w, the probability that the process hits {w : w ≤ 1− δ}

in exactly N steps is majorized by

exp

(

−w2

2N max{1, (1− p)/p} (1−δ)2

δ2

)

,

so that the loss from this policy (relative to 1) is majorized by

∞
∑

N=1

δN exp

(

−w2

2N max{1, (1− p)/p} (1−δ)2

δ2

)

,
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which tends to 0 as δ → 1.

Finally, we note that this also implies that the optimal policy converges pointwise to 1.

Given concavity and convergence of w to 1, it follows from the first-order condition

1 + (1− p)(s′(wS)− s′(wF )) > 0 ⇒ q(w) = 1,

that, fixing w′, and picking δ high enough so that necessarily s′(wS)− s′(wF ) > −1/(1− p)

for all w > w′, q(w) = 1.

5.6 Calculations, Section 4.2

We first argue that the lowest equilibrium payoffs (W,V ) can be jointly obtained and lie on

the function h. Suppose they are not jointly obtained. Then we have an equilibrium with

payoffs (W, Ṽ ) that achieves the lowest equilibrium payoff for the agent and for which Ṽ

is the minimum payoff for the principal consistent with the agent receiving W , but which

features Ṽ > V . Hence, there exist feasible continuation payoffs (W F , V F ) and (W S, V S)

such that the values (W, Ṽ ) satisfy

W = (1− δ)[p1Sz
S + p(1− 1S)qkπ + (1− p1S)z

F ] + δ[pW S + (1− p)W F ]

Ṽ = (1− δ)[p1S(qπ − zS)− (1− p1S)z
F − qc] + δ[pV S + (1− p)V F ]

1S = 1 ⇐= (1− δ)zS + δW S > (1− δ)(zF + qkπ) + δW F

1S = 0 ⇐= (1− δ)zS + δW S < (1− δ)(zF + qkπ) + δW F

Ṽ > h(W ).

Suppose 1S = 1. Then we can rewrite this as

W = (1− δ)[pzS + (1− p)zF ] + δ[pW S + (1− p)W F ]

Ṽ = (1− δ)[p(qπ − zS)− (1− p)zF − qc] + δ[pV S + (1− p)V F ]

(1− δ)zS + δW S ≥ (1− δ)(zF + qkπ) + δW F

Ṽ > h(W ).

We now make use of the fact that (by assumption) the final constraint does not bind. First,

we must have zF = 0, since reducing zF reduces W while preserving all of the constraints,

contradicting that W is the agent’s lowest equilibrium payoff. Next, W F = W . Otherwise,

we could replace (W F , V F ) with (λW + (1 − λ)W F , λṼ + (1 − λ)V F ), which preserves the

constraints and the feasibility of continuation payoffs, increasing λ and hence decreasing W F
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until either the final constraint binds or W F = W . Next, the agent’s incentive constraint

must bind, since otherwise we can reduce zS , possibly until it hits zero, and then replace

(W S, V S) by (λW+(1−λ)W S, λṼ +(1−λ)V S), again in the process preserving feasibility and

reducing W S and continuing until either the final constraint binds or the agent’s incentive

constraint binds. Hence, we have

W = (1− δ)pzS + δ[pW S + (1− p)W ]

Ṽ = (1− δ)[p(qπ − zS)− qc] + δ[pV S + (1− p)V F ]

(1− δ)zS + δW S = (1− δ)(qkπ) + δW

Ṽ > h(W ).

Now suppose W S > W . Then we can decrease W S, preserving feasibility by replacing

(W S, V S) with (λW+(1−λ)W S, λṼ +(1−λ)V S), and also increasing zS so as to preserve both

the incentive constraint and the agent’s payoff, continuing until either the final constraint

binds or W S = W . Our problem is then

W = (1− δ)pzS + δW

Ṽ = (1− δ)[p(qπ − zS)− qc] + δ[pV S + (1− p)V F ]

zS = qkπ

Ṽ > h(W ).

Now a reduction in q and a proportional reduction in zS gives us an equilibrium with a

smaller value for the agent, a contradiction to W being the lowest equilibrium payoff for the

agent, unless q = 0. But then we have W = 0, also a contradiction.

Suppose instead 1S = 0. Then we can rewrite this as

W = (1− δ)zF + δW F

Ṽ = (1− δ)[−zF − qc] + δV F

(1− δ)zS + δW S ≤ (1− δ)(zF + qkπ) + δW F

Ṽ > h(W ).

We can take zS = q = 0 and can let the continuation payoffs following a success equal

those following a failure, thereby setting W S equal to W F and hence eliminating the agent’s

incentive constraint, making this

W = δW F

Ṽ = (1− δ)[−zF ] + δV F

Ṽ > h(W ).
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But then either the final constraint binds or, by replacing (W F , V F ) with (λW + (1 −

λ)W F , λṼ + (1− λ)V F ), we can take W F = W , giving W = 0, a contradiction.

We thus know that there exists a payoff (W,V ), drawn from the function V = h(W ),

that is the lowest equilibrium payoff for each player. From our previous reasoning, we have

that we can take zF = 0, that the function V = h(W ) binds, and that the agent’s incentive

constraint binds. The outcome of an equilibrium with 1S = 0 can be duplicated by an

equilibrium with 1S = 1 and q = 0, and so (W,V ) solves

W = (1− δ)pzS + δ[pW S + (1− p)W F ]

V = (1− δ)[p(qπ − zS)− qc] + δ[pV S + (1− p)V F ]

(1− δ)zS + δW S > (1− δ)qkπ + δW F

V = h(W ).

The current-period expected payoff is given by (pzS , p(qkπ − zS)) =: Θ, and we have the

convex combination

(W,V ) = (1− δ)Θ + δ(1− p)(W,V ) + δp(W S,W F ). (12)

We now note that13

– If pqkπ > h(0), then we can adjust zS, with a corresponding adjustment in

(W S, V W ) to preserve (12), noting that this also necessarily preserves the incentive

constraint, until we have zS = h(pqkπ), i.e., until Θ lies on the function h.

– pqkπ ≤ h(0), then we can adjust zS, with a corresponding adjustment in (W S, V W )

to preserve (12), noting that this also necessarily preserves the incentive con-

straint, until we have zS = 0.

Hence, we can assume that Θ is drawn either from the function h or from the line segment

connecting the original to the vertical intercept of h. We can then note that if Θ is drawn

from the graph of the function h, it must be that zS = 0. If not, we can preserve the

continuation payoffs (W S,W F ) and replace Θ with the vertical intercept of h, with the

resulting solution to (12) allowing us to reduce the putative lowest equilibrium payoffs, a

contradiction. Hence, we can assume that Θ is drawn from the line segment connecting the

origin with the vertical intercept of h.

13One might in each of the following cases wonder whether these adjustments preserve the feasibility of

(WS , V S). In each case, the resulting values remain within the convex hull of four payoff vectors, namely

(W < V ), (V −W,W ), (W ∗, V ∗), and the original values of (WS , V S).
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For large values of δ, we can now derive an upper bound on the lowest equilibrium payoffs.

Suppose we set Θ equal to the vertical intercept of h. Then from (12), the agent’s incentive

constraint, and the equation for h, we have, respectively

W S =
δp

1− δ(1− p)
W

W S =
qkπ

δ
+W

pqkπ =
p(1− k)π − c− pδ

1−δ
(pπ − c)

1− pδ
1−δ

.

The third equation fixes the value of q. Given this, the first two equations joint determine

W and W S. The resulting solution for the value of W , with the accompanying value is an

upper bound on the value of the lowest equilibrium payoffs, since we have constructed this

value subject to the restriction that π be given by the vertical intercept of the function h.

As δ declines to zero, value of W S associated with this upper bound explodes. Hence,

there exists value δ at which the attendant value of W S hits pkπ. Above this value of δ our

current construction will yield an equilibrium, and hence the upper bound no longer applies.

We can show that if δ is sufficiently small but nonzero, then the lowest equilibrium payoffs

are (W ∗, V ∗). Substituting the agent’s incentive constraint into the expression for W , we

have W ≥ (1− δ)qpkπ + δW F , which implies that qpkπ ≤ W , and hence

q <
W

pkπ
.

Feasibility requires

W + h(W ) ≤ (1− δ)q(pπ − c) + δ(pπ − c)

≤ (1− δ)W
pπ − c

pkπ
+ δ(pπ − c).

Both sides of this weak inequality are linear and increasing in W . The relationship holds

with equality if W = pkπ. We are interested in its smallest solution. This smallest solution

will be pkπ if the slope of the left side falls short of that of the right, i.e., if

1 +
pδ
1−δ

1− pδ
1−δ

< (1− δ)
pπ − c

pkπ
,

which gives

δ(1 + p)(pπ − c) < p(1− k)π − c.
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This will clearly be satisfied, and hence (W,V ) = (W ∗, V ∗), for sufficiently small but positive

δ.

We thus have that for all

δ <
p(1− k)π − c

(1 + p)(pπ − c)
,

the lowest equilibrium payoffs are (W ∗, V ∗). This is a sufficient but not necessary condition

for lowest equilibrium payoffs to be (W ∗, V ∗), since our feasibility calculation assumed that

the continuation payoffs could achieve the efficient surplus, which is an overestimate.

Finally, when it is nontrivial, what determines the location of the (W,V ) on the function

h? It will be the solution to the program

min
q∈[0,1]

W

s.t. W S =
δp

1− δ(1− p)
W

W S =
qkπ

δ
+W

(W S, V S) feasible.
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