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A bifurcation study of the three-dimensional thermohaline
ocean circulation: The double hemispheric case

by Wilbert Weijer1 and Henk A. Dijkstra1

ABSTRACT
Within a low-resolution primitive-equation model of the three-dimensional ocean circulation, a

bifurcationanalysis is performedof double-hemispheric basin � ows. Main focus is on the connection
between results for steady two-dimensional � ows in a nonrotating basin and those for three-
dimensional � ows in a rotatingbasin. With the use of continuationmethods, branchesof steady states
are followed in parameter space and their linear stability is monitored. There is a close qualitative
similarity between the bifurcation structure of steady-state solutions of the two- and three dimen-
sional � ows. In both cases, symmetry-breaking pitchfork bifurcations are central in generating a
multiple equilibria structure. The locations of these pitchfork bifurcations in parameter space can be
characterized through a zero of the tendency of a particular energy functional. Although balances
controlling the steady-state � ows are quantitatively very different, the zonally averaged patterns of
the perturbations associated with symmetry-breaking are remarkably similar for two-dimensional
and three-dimensional � ows, and the energetics of the symmetry-breaking mechanism is in essence
the same.

1. Introduction

Transitions between different ocean circulation patterns are one of the potential sources
of (past) climate changes (Broecker et al., 1985). As of now, there are many indications
that the ocean circulation in the North Atlantic was different in the past. For example,
during the Last Glacial Maximum the zonally-averaged northward � ow likely was weaker
than today, with a correspondingly smaller poleward heat transport (Bradley, 1999). It is,
therefore, important to understand the equilibria of the ocean circulation under given
forcing conditions and to determine their sensitivity to perturbations. This knowledge will
also provide clues on the likelihood of the occurrence of rapid transitions from the present
state (Tziperman, 2000).

For some time, it has been known that an ocean model forced by two agents controlling
the surface buoyancy � ux (heat and freshwater) allows for different circulation patterns
under the same forcing conditions (Stommel, 1961; Welander, 1986). In a representation of
a single-hemispheric ocean � ow, for example in a two-box model, forcing conditions can
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be found for which a � ow with sinking at the equator and one with sinking at the pole exist
simultaneously. Different restoring times for salt and heat at the ocean-atmosphere
interface—as imposed through the boundary conditions—are central to the occurrence of
these equilibria. The limit of prescribed temperature and freshwater � ux is referred to as
mixed boundary conditions, whereas the limit of both prescribed salinity and temperature
is referred to as restoring conditions.

The issue of multiple equilibria was addressed in a double-hemispheric set-up of the
Princeton General Circulation Model (GCM) by Bryan (1986). The solution of a single-
hemispheric version of the model (over the domain 0–90N), obtained under restoring
conditions with observed salinity, is re� ected through the equator to get a symmetric state
with sinking at both poles. The freshwater � ux is diagnosed from this solution, and mixed
boundary conditionsare applied over the whole domain. When a negative salinity anomaly
of 1 psu is (instantaneously)added poleward of 45S, an asymmetric state is reached within
50 years with sinking in the north. Adding a positive salinity anomaly of 2 psu in the same
region (poleward of 45S) leads to an asymmetric southern sinking state in about 200 years.

Over the last decade, many studies have tried to explain the results of Bryan (1986)
within a simpler model set-up. For a double-hemispheric basin, multiple � ow patterns
occur under equatorially symmetric mixed boundary conditions within a large class of
models. In box models (Welander, 1986) and two-dimensional Boussinesq models (Thual
and McWilliams, 1992; Quon and Ghil, 1992; Cessi and Young, 1992; Dijkstra and
Molemaker, 1997) these multiple equilibria arise through symmetry-breaking pitchfork
bifurcations. In addition to symmetric solutions with sinking at both poles (called TH
states) or solely at the equator (called SA states), also pole to pole solutions exist, the latter
having either southern (SPP states) or northern (NPP states) sinking. Note that in these
models, the effect of rotation is completely ignored and dominant momentum balances in
the � ow are between buoyancy forcing and friction. In zonally-averaged models, where the
effect of rotation is somehow parameterized, transitions between TH and NPP/SPP
equilibria were found as well (Wright and Stocker, 1991). Also in these cases, a pitchfork
bifurcation is at the origin of the multiple equilibria (Vellinga, 1996) and the bifurcation
diagram is qualitatively similar to that for the two-dimensional Boussinesq models.

In Klinger and Marotzke (1999), an attempt is made to determine bifurcation diagrams
of the three-dimensional double-hemispheric con� guration by calculating steady states
within a low-resolution GCM for many values of parameters. A clever way is found to
determine asymmetric states under equatorially symmetric conditions by independently
varying the temperature differences over the northern and southern part of the � ow domain.
Several equilibria are found in the symmetric double-hemispheric con� guration. For the
case when the equator-to-pole temperature difference is the same in both hemispheres, the
structure of equilibria appears to arise through a (subcritical) pitchfork bifurcation. A case
with a smaller temperature difference in the northern hemisphere leads to several different
asymmetric states and the bifurcation diagram is more complicated. Although precise
statements on the bifurcation structure and symmetry-breaking cannot be obtained through
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a number of time-dependent simulations (since the unstable steady states will always
remain hidden), the results suggest a good qualitative correspondence with those in
two-dimensional models.

It is only very recently that techniques of numerical bifurcation theory have reached the
stage to be able to handle three-dimensional thermohaline ocean � ows (Dijkstra et al.,
2001). We use these techniques here to study the relation between the equilibrium solutions
in two-dimensional and three-dimensional models. Starting at essentially two-dimensional
results as in Dijkstra and Molemaker (1997), the effect of rotation, wind forcing and
convective adjustment on the bifurcation diagram is studied systematically.Main contribu-
tions of the paper are (i) to demonstrate the qualitative similarity of the structure of steady
solutions in the two- and three-dimensional cases under mixed boundary conditions, and
(ii) to characterize the locations of the pitchfork bifurcation responsible for the multiple
equilibria energetically. Using this characterization we show that the physical mechanism
of symmetry-breaking is essentially the same in two- and three-dimensional cases,
although the balances controlling the steady � ow are substantially different.

2. The ocean model

a. Equations and forcing

Consider a sector � ow domain [lW, lE] 3 [fS, fN] representing an ocean basin on a
sphere with radius r0. The basin has constant depth D, and is rotating with angular velocity
V 5 hfV0, where V0 is the rotation rate of the earth and hf [ [0, 1] is a dimensionless
parameter controlling the rate of rotation. The ocean velocities in eastward and northward
directions are indicated by u and v, the vertical velocity is indicated by w, the pressure by p
and the temperature and salinity by T and S, respectively.Vertical and horizontal mixing of
momentum and of heat and salt is represented by eddy diffusivities, with horizontal and
vertical friction coef� cients AH and AV for momentum and horizontal and vertical
diffusivities KH and KV for heat. The mixing coef� cients of salt are taken equal to those of
heat. A linear equation of state is taken with expansion coef� cients aT and aS, reference
temperature T0, salinity S0 and density r0. The governing equations, using the shallow
layer approximation D/r0 ! 1, are

Du

dt
2

uv tan f

r0
2 2hfV0v sin f 5 2

1
r0r0 cos f

]p

]l
1 AV

]2u

]z2

1 AH X ¹H
2 u 2

u

r0
2 cos2 f

2
2 sin f

r0
2 cos2 f

]v

]lD
(1a)

Dv

dt
1

u2 tan f

r0
1 2hfV0u sin f 5 2

1
r0r0

]p

]f
1 AV

]2v

]z2

1 AH X ¹H
2 v 2

v

r0
2 cos2 f

1
2 sin f

r0
2 cos2 f

]u

]l D
(1b)
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]p

]z
5 2rg (1c)

0 5
]w

]z
1

1
r0 cos f X ]u

]l
1

]~v cos f!

]f D (1d)

DT

dt
5 ¹H z ~KH¹HT! 1

]

]z X KV

]T

]z D (1e)

DS

dt
5 ¹H z ~KH¹HS! 1

]

]z X KV

]S

]z D (1f)

r 5 r0~1 2 aT~T 2 T0! 1 aS~S 2 S0!! (1g)

with:

DF

dt
5

]F

]t
1

u

r0 cos f

]F

]l
1

v

r0

]F

]f
1 w

]F

]z

¹HF 5 X 1
r0 cos f

]F

]l
,

1
r0

]F

]fD
¹H z F 5

1
r0 cos f

]

]l
Fl 1

1
r0 cos f

]

]f
~Ff cos f!

where F and F 5 (Fl , Ff) are an arbitrary scalar and vector, respectively.
The ocean circulation is driven by a wind stress t (l, f) 5 t0(t

l, tf), where t0 is the
amplitude and tl(l, f) and tf(l, f) provide the spatial pattern. The thermohaline
component of the circulation is driven by heat and freshwater � uxes at the surface. The
downward heat � ux Qoa is assumed proportional to the temperature difference between the
ocean surface temperature and a prescribed atmospheric temperature TS(l, f); i.e., Qoa 5
BT(hTTS 2 T), with BT being an interfacial exchange coef� cient of heat (Haney, 1971)
and hT a dimensionless parameter controlling the amplitude of TS. The freshwater � ux is
converted to an equivalent salt � ux and is simply a prescribed (dimensionless) function
FS(l, f) with dimensional amplitude F0.

The transfer of heat, freshwater and momentum from the surface downward occurs in
thin boundary layers; for example in an Ekman layer, which cannot be resolved explicitly.
Hence, as in low-resolution GCMs, the surface forcing is distributed as a body forcing over
a certain depth of the upper ocean, using a vertical pro� le function g( z). More explicitly,
the right-hand side of the horizontal momentum (1a, 1b), temperature (1e) and salinity (1f)
equations are extended with the source terms

Qt
l 5 g~z!

t0

r0Hm
tl; Qt

f 5 g~z!
t0

r0Hm
tf (2a)
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QT 5 g~z!
hTTS 2 T

tT
; QS 5 g~z!

F0

Hm
FS (2b)

where Hm is a typical vertical scale of variation of the function g( z) and tT is a restoring
time scale to the atmospheric forcing. Using these source terms, the appropriate boundary
conditions for temperature, salinity and wind stress at the ocean-atmosphere boundary are
no-� ux conditions. This guarantees, for example, that the surface integral of the heat � ux is
zero for each steady solution (Weaver and Hughes, 1996).

A nondimensional temperature T̂, salinity Ŝ and pressure p̂ are introduced through T 5
T0 1 DTT̂, S 5 S0 1 DSŜ and p 5 2r0gz 1 2V0r0Ur0p̂. A characteristic horizontal
velocity is indicated by U, and the governing equations are further nondimensionalized
using scales r0, D, U, DU/r0 and r0/U for horizontal length, vertical length, horizontal
velocity, vertical velocity and time, respectively. They become

eRX Du

dt
2 uv tan fD 2 hfv sin f 5 2

1

cos f

]p

]l
1 EV

]2u

]z2 1 att
lg~z!

1 EH X ¹H
2 u 2

u

cos2 f
2

2 sin f

cos2 f

]v

]lD
(3a)

eRX Dv

dt
1 u2 tan f D 1 hfu sin f 5 2

]p

]f
1 EV

]2v

]z2 1 att
fg~z!

1 EH X ¹H
2 v 2

v

cos2 f
1

2 sin f

cos2 f

]u

]l D
(3b)

]p

]z
5 Ra~T 2 lS! (3c)

0 5
]w

]z
1

1

cos f X ]u

]l
1

]~v cos f!

]f D (3d)

DT

dt
5 ¹H z ~PH¹HT! 1

]

]z X PV

]T

]z D 1 B~hTTS 2 T!g~z! (3e)

DS

dt
5 ¹H z ~PH¹HS! 1

]

]z X PV

]S

]z D 1 gFSg~z! (3f)

where the hats are dropped for convenience. On the lateral walls, slip conditions are
prescribed to allow for two-dimensional solutions in particular cases, and the heat and salt
� uxes are zero. The bottom of the ocean z 5 21 is assumed to be � at, isolated and
impermeable to salt. The nondimensionalboundary conditions are hence formulated as

z 5 21, 0 :
]u

]z
5

]v

]z
5 w 5

]T

]z
5

]S

]z
5 0 (4a)
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l 5 lW, lE : u 5
]v

]l
5

]w

]l
5

]T

]l
5

]S

]l
5 0 (4b)

f 5 fS, fN :
]u

]f
5 v 5

]w

]f
5

]T

]f
5

]S

]f
5 0. (4c)

Note that the model formulated here does not guarantee stably strati� ed solutions. As in all
other large-scale ocean models the effect of convection, which occurs when the strati� ca-
tion is not statically stable must be explicitly parameterized. Such a parameterization is
usually referred to as ‘convective adjustment’ and its effects on the results is explicitly
considered in Section 3d.

The parameters in the set of equations (3) are the Rossby number eR, the Rayleigh
number Ra, the vertical and horizontal Ekman numbers EV and EH, the wind stress
coef� cient at, the buoyancy ration l, the vertical and horizontal inverse Péclet numbers PV

and PH, the Biot number B and the freshwater � ux strength g. Expressions for these
parameters are

eR 5
U

2V0r0
; EV 5

AV

2V0D
2 ; EH 5

AH

2V0r0
2 ; at 5

t0

2V0r0HmU
; l 5

aSDS

aTDT
;

PV 5
KVr0

UD2 ; PH 5
KH

Ur0
; B 5

r0

UtT
; g 5

F0r0

UDSHm
.

(5)

When rotation is present (hf 5 1), a geostrophic balance between the pressure gradient
and the Coriolis force is expected, and the Rayleigh number Ra can be cast in its
geostrophic form, Rag:

Ra 5 Rag 5
aTDTgD

2V0Ur0
. (6)

In absence of rotation, however, pressure forces are balanced by (horizontal) friction, and
the Rayleigh number effectively becomes Raf 5 Ra/EH 5 Rag/EH. This means that the
velocities increase characteristically by a factor 1/EH when the rotation rate is reduced to
zero. In order to facilitate comparison between the two-dimensional and three-dimensional
model, the Rayleigh number is expressed as:

Ra 5 @h f 1 ~1 2 hf!EH#Rag. (7)

For hf 5 0 the Rayleigh number is rescaled by a factor EH to compensate for the frictional
balance, whereas for hf 5 1 Ra attains its geostrophic value (6).

Apart from the parameters hT and hf, the system appears to contain 10 parameters.
However, only 8 of these are independent; when the salt � eld is rescaled by a factor l, the
product s 5 lg appears, which is an independent parameter. Moreover, the velocity scale
U can be chosen as a function of other parameters, reducing the number of parameters
again by one.
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The continuous steady equations are invariant with respect to re� ection around the
equator, which is represented by

u~l, 2f, z! 5 u~l, f, z!; v~l, 2f, z! 5 2v~l, f, z!; w~l, 2f, z! 5 w~l, f, z!

p~l, 2f, z! 5 p~l, f, z!; T~l, 2f, z! 5 T~l, f, z!; S~l, 2f, z! 5 S~l, f, z!.
(8)

The equations are discretized in space using a control volume discretization method on a
staggered (Marker and Cell or Arakawa C2) grid, that places the p, T and S points in the
center of a grid cell, and the u, v, and w points on its boundaries. This method is
second-order accurate, and preserves the re� ective symmetry of the system. The spatially
discretized model equations can be written in the form

M
du
dt

5 F~u! 5 L~u! 1 N~u, u! (9)

where the vector u contains the unknowns (u, v, w, p, T, S) at each grid point. The
operators M and L are linear and N represents the nonlinear terms in the equations. Steady
solutions of this system are calculated, and branches of steady states are followed through
parameter space using the technique of pseudo-arclength continuation. The stability of the
solutions is considered by performing a linear stability analysis; the Jacobi-Davidson
QZ-method is used to determine the eigenvectors and the associated eigenvalues § 5 §r 1
i§i (where §r and §i are the real and imaginary parts, respectively). Transitions that mark
qualitative changes, such as transitions to multiple equilibria (pitchfork or saddle node
bifurcations) or periodic behavior (Hopf bifurcations), can be detected. More details on the
continuation method and the linear stability analysis are given in Appendix A.

b. The double-hemispheric basin set-up

The domain chosen is comparable in size to the Atlantic: it is a sector of 64° wide (with
lW 5 2868 and lE 5 3508) and 120° long (with fS 5 2608 and fN 5 608), and has a
constant depth D 5 4000 m. A resolution of dl 3 df 3 dz 5 48 3 3.758 3 250 m is
chosen, which is accomplished by a grid of N 3 M 3 L 5 16 3 32 3 16 boxes. For a
similar parameter regime, a comparable resolution in a single-hemisphericbasin turned out
to be suf� cient to reproduce results obtained with higher resolution with reasonable
accuracy (Dijkstra et al., 2001).

The wind stress forcing considered is an idealized pro� le for the Atlantic mimicking a
double-gyre wind stress in each hemisphere, i.e. in dimensionless form

tl~f! 5 2cos 4p
f 2 fS

fN 2 fS
(10a)

tf 5 0. (10b)
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The surface temperature TS and surface freshwater � ux FS are prescribed, similar to
Klinger and Marotzke (1999), as

TS~f! 5 cos p
f

fN
(11a)

FS~f! 5
1

cos f
cos p

f

fN
. (11b)

The temperature pro� le, the zonal wind stress and the freshwater � ux are shown in Figure 1
and need no further discussion. Note that, because of the introductionof the parameter hT,
the dimensional equator-pole temperature difference over the sector is equal to 2hTDT.
The freshwater forcing is such that the integral over the surface is zero, which is a
necessary condition for the existence of steady-state solutions.

The function g( z), appearing in Eqs. (3), is chosen as

g~z! 5 *~z 2 zL21; eH! (12)

where zL21 is the bottom level of the uppermost grid cell, and * is a continuous
approximation to the Heaviside function. For the latter we use

*~x; eH! 5
1

2 X 1 1 tanh
x

eH
D (13)

where eH 5 102 6. In this way, the input of each quantity through the ocean-atmosphere
surface (zonal and meridional momentum, heat and salt) is distributed as a source term
over the uppermost level.

Figure 1. The forcing functions for wind stress tl, the atmospheric temperature TS and the
freshwater � ux FS .
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Most of the parameters are � xed at values as used in low-resolution GCMs, and these
values are listed in Table 1. For these parameter values, the Rossby number eR is small
(2(1024)) and is set to zero in our calculations. Note that in the standard case, the
horizontal friction coef� cient AH is rather large. The value of AH is bounded from below by
the boundary layers which develop near the continents. Near the western boundary, the
Munk frictional boundary layer thickness at latitude f0 scales with ( AH/b0)1/3, where
b0 5 2V0 cos f0/r0 monitors the variation of the Coriolis parameter. With a typical
horizontal resolution of 4°, this leads to a typical lower bound of AH 5 5.0 3 105 m2s21

at f0 5 45°. However, the thickness of the Ekman layers near the continental walls has a
typical width of ( AH/f0)1/2, where f0 5 2V0 sin f0, which restricts the value of AH to be
larger than 1.0 3 107 m2s21. In typical ocean models, values much smaller are taken, but it
has been shown that this leads to numerical waves near these boundaries (Winton, 1996;
Killworth, 1985) which show up as wiggles in the steady-state solutions (Dijkstra et al.,
2001).

3. Results

In the results below, steady states are computed as a function of the strength of the
freshwater � ux s. By plotting a norm of the solution versus this control parameter, for
every steady state computed, a so-called bifurcation diagram is obtained. As a norm, the
maximum of the meridional overturning streamfunction (CM) is chosen, which is
computed as follows. The nondimensionaloverturning streamfunction C is de� ned by

v# 5
]C

]z
; w# 5 2

]C

]f
(14)

where

Table 1. Standard values of parameters used in the numerical calculations.

2V0 5 1.46 z 1024 [s2 1] r0 5 6.4 z 106 [m]
t0 5 1.0 z 1021 [N m2 2] D 5 4.0 z 103 [m]
F0 5 1.0 z 1027 [psu m s21 ] U 5 1.0 z 102 1 [m s21]
r0 5 1.0 z 103 [kg m23 ] DT 5 1.0 [K]
aT 5 1.0 z 1024 [K21 ] tT 5 75 [days]
AH 5 16.0 z 106 [m2s21 ] AV 5 1.0 z 102 3 [m2s21 ]
KH 5 1.0 z 103 [m2s21 ] KV 5 1.0 z 102 4 [m2s21 ]
DS 5 1.0 [psu] aS 5 7.6 z 102 4 [psu21]

S0 5 35.0 [psu]
g 5 9.8 [m s22 ] T0 5 15.0 [K]

Hm 5 250 [m]

Ra 5 4.2 z 1022 EH 5 2.7 z 102 3

l 5 7.6 EV 5 4.3 z 102 7

g 5 2.6 z 102 2 PH 5 1.5 z 102 3

hT 5 10.0 PV
0 5 3.9 z 102 4

B 5 10.0 PV
c 5 1.0 z 109

eR 5 0 at 5 2.9 z 1022
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v# 5 E
lW

lE

v cos f dl; w# 5 E
lW

lE

w cos f dl. (15)

With the scaling used, the maximum dimensional volume transport CM 5 r0UD max C

and this is expressed in Sv, where 1 Sv 5 106 m3s21.
The presentation of the results in this section is as follows. First, the case in which

rotation and wind-forcing are absent is considered, allowing for fully 2-dimensional
solutions. Then explicitly, the transition to the rotating buoyancy-driven � ows is presented
and the robustness of the results with respect to the presence of wind forcing and
convective adjustment is discussed.

a. Two-dimensional solutions

As conditions on the eastern and western boundary are assumed free-slip, strictly
two-dimensional solutions exist in case rotation and wind forcing are absent (i.e. hf 5
at 5 0). To connect the results here to those in earlier two-dimensional studies, we � rst
study these two-dimensional solutions. The bifurcation diagram for hf 5 0, at 5 0 and
Ra 5 EHRag 5 1.2 z 1024 is shown in Figure 2. For small values of s a unique solution
exists (labeled TH) that is thermally driven and has equatorial symmetry (Fig. 3a–b). This
solution becomes unstable at s 5 0.13 through a super-critical pitchfork bifurcation P. At
P, equatorially asymmetric circulations arise, with major downwelling either on the

Figure 2. Bifurcation diagram for the two-dimensional nonrotating case h f 5 0, using s 5 gl as
control parameter. On the vertical axis, the maximum of the meridional overturning streamfunc-
tion is plotted (in Sv). Solid lines denote branches of stable solutions, while unstable branches are
dashed. For low values of s only thermally driven solutions (TH) are possible. At the pitchfork
bifurcationP this branch becomes unstable, and asymmetric pole-to-polesolutions (NPP and SPP)
branch off. The latter are symmetry-relatedand cannot be distinguished in this plot.
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southern hemisphere (southern sinking pole-to-pole, SPP; Fig. 3c–d) or on the northern
hemisphere (northern sinking pole-to-pole, NPP; Fig. 3e–f). Note that by plotting the
overturning strength CM as a norm in the bifurcation diagram, the two branches NPP and
SPP cannot be distinguished: since the forcing is symmetric around the equator, both

Figure 3. Overturning streamfunctionC and zonally averaged density r for the TH solution at s 5 0
(a–b), the SPP solution at s 5 0.13 (c–d), and the NPP solution at s 5 0.24 (e–f). The SPP state at
s 5 0.13 is close to the pitchfork bifurcation P in Figure 2, and displays only a slight degree of
asymmetry. The NPP state at s 5 0.24 shows a much stronger degree of asymmetry, and displays
a clear pole-to-pole circulation. The dimensional density can be computed from r* 2 r0 5
r0 DTaT r, as can be deduced from the scaling in Section 2.
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solutions are symmetry related through (8) and hence their overturning strength is the
same.

Clearly, the results for these two-dimensional solutions in a three-dimensionalmodel are
qualitatively very similar to the results for two-dimensional Boussinesq models in a
rectangular ocean basin (Dijkstra and Molemaker, 1997). A pitchfork bifurcation P gives
rise to equatorially asymmetric circulations, and is thus the origin of the multiple
equilibria. Hence, the effects of the spherical geometry do not alter the qualitative aspects
of the solution structure.

b. Effect of rotation

For the same values of parameters as in the previous section, the two-dimensional
solutions are followed into the rotating regime by varying the dimensionless Coriolis
parameter hf from zero to unity. Simultaneously, the Rayleigh number is rescaled
according to (7), and attains its original ‘geostrophic’ value for hf 5 1.

The response of the overturning strength of an SPP solution (at s 5 0.30) and a TH
solution (at s 5 0.0) is shown in Figure 4. It is in� uenced by two effects: the initial
increase in overturning strength of both circulation patterns re� ects the increase in the
Rayleigh number (and scales according to CM } Ra1/2 in both cases). The subsequent
decrease in overturning strength is caused by the Coriolis term taking over from friction in
balancing the pressure force, once hf is large enough. The dominant momentum balance
changes from frictionally controlled to geostrophically controlled, so that the meridional

Figure 4. The response of the overturningstrength upon introducingrotation for a TH solution (s 5
0) and an SPP solution (s 5 0.30). Rotation off (on) is represented by hf 5 0 (h f 5 1). Note that
the Rayleigh number is rescaled according to Ra 5 [hf 1 (1 2 h f) EH ]Rag , where Rag is the
original ‘geostrophic’ form of the Rayleigh number. The curves connect the TH and SPP branches
in the bifurcation diagrams of Figures 2 and 6.
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pressure gradient induced by the surface forcing now generates zonal, rather than
meridional, � ow. These zonal transports, in turn, generate a zonal pressure gradient that
ultimately drives a meridional overturning. This indirect forcing of the meridional
circulation by a meridional pressure gradient is less ef� cient and explains the decrease in
overturning strength of both the TH and SPP modes with increasing hf.

The change of the SPP solution from the nonrotating to the rotating case is shown
through the solutions at hf 5 0 and hf 5 1 in Figure 5. To represent the three-dimensional
� ows, the overturning streamfunctions and the velocity � elds at z 5 2125 m are plotted.
The zero-rotation solution (Fig. 5a–b) is the pure SPP solution at s 5 0.30. The surface
velocity plot shows that it is indeed perfectly two dimensional. The overturning is weak,
and the downwelling takes place in a broad region poleward of 20S. Under intermediate
rotation, the � ow becomes more and more zonal and the downwelling region is severely
narrowed. In the full rotating case (Fig. 5c–d), a strong zonal � ow has developed in the

Figure 5. The overturning streamfunction C and the surface velocity � eld (vector plot of the
horizontalvelocity and contour plot of the vertical velocity)of the SPP circulationpatterns at h f 5
0 (a–b) and h f 5 1 (c–d) in Figure 4.
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southern hemisphere. The main downwelling has been concentrated in a small area in the
southeastern corner of the model at about 45S. The bifurcation diagram for the case hf 5 1
is presented in Figure 6, again using s as a control parameter. The overturning strength of
the TH solution remains quite constant despite the increase of the freshwater � ux
amplitude. The solution in Fig. 5c–d is indeed on an SPP branch which arises through a
super-critical pitchfork bifurcation (P) at s 5 0.19 (not far from that in the two-
dimensional case). At limit point L1, the PP branches become unstable, but regain stability
through a second limit point L2. The overturning increases strongly with s on this branch.

Although patterns of the steady states change markedly in a rotating basin because of the
strong zonal � ow developing, the qualitative properties of the bifurcation diagram are
robust and in agreement with that of the two-dimensional solutions. There is even a fair
quantitativeagreement, once the proper rescaling of the Rayleigh number is made; with the
rescaling as above, the pitchfork bifurcations can be found at approximate values of s.

c. Most unstable mode

From the linear stability analysis, the pattern of the mode destabilizing the TH state at
the symmetry-breaking pitchfork bifurcation is determined from the eigenvector x in (A5)
corresponding to the eigenvalue §r 5 §i 5 0 at P in Figure 6. The steady state at P is
plotted in Figure 7. In addition to zonally averaged pro� les of T, S and r (panels a–c), the
overturning streamfunction (panel d) and the velocity � elds at 100 m and 3000 m depth
(panels e and f) are shown. All � elds are equatorially symmetric and the density � eld is
stably strati� ed except at high latitudes. Note that due to rotation the � ow is mainly zonal,

Figure 6. Bifurcation diagram in the control parameter s for the case of full rotation (h f 5 1) and
parameters similar to those of Figure 2. The PP branches lose their stability at the limit point L1 ,
but regain stability at L2 . The limit points close to s 5 0.25 re� ect minor rearrangements of the
steady state patterns.
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except in the western boundary layers. The main downwelling is con� ned to small areas in
the north- and southeastern corners of the domain. The same � elds for the most unstable
eigenvector at the pitchfork bifurcation are shown in Figure 8. Note that, if x is an

Figure 7. Steady state at the pitchfork bifurcation P in Figure 6. Shown are the zonally averaged
� elds of (a) temperature T, (b) salinity S, and (c) density, as well as (d) the overturning
streamfunction C, and the velocity � elds at (e) 100 m and (f) 3000 m depth. Dimensional
temperature and salinity can be computed from T* 2 T0 5 DTT and S* 2 S0 5 DSS.
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Figure 8. Most unstable eigenvector at the pitchfork bifurcation P in Figure 6, destabilizing the
steady TH state (Fig. 7). Same � elds as in Figure 7. Although the amplitude of the eigenvector is
undetermined, the amplitudes of the individual � elds are mutually consistent. The perturbation
shown will favor a transition to an SPP state, but note that also the sign-reversed version of this
perturbation is an eigenvector,and this will favor a transition to an NPP state.
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eigenvector, 2x is an eigenvector as well. The eigenvector plotted here will favor a
transition to an SPP state.

Despite the zonal structure that results from the presence of rotation, the zonally
averaged structures of the destabilizingperturbation are strikingly similar to those in purely
two-dimensional models (Dijkstra and Molemaker, 1997) or zonally averaged models
(Vellinga, 1996). Both the salinity and the temperature perturbations have a bi-polar
structure (panels a and b), which is positive on the southern hemisphere, and negative in the
north. This gives rise to an equatorially antisymmetric density perturbation (panel c). Its
mainly positive sign in the southern hemisphere shows that it is dominated by salinity,
although the thermal perturbation wins at mid-depth between 40S and 40N. This bi-
polarity of the anomalous density � eld sets up an interhemispheric pressure difference at
depth. This generates deep cross-equatorial � ow that is con� ned to the viscous western
boundary layer (panel f). A return � ow at shallower levels is established for reasons of
continuity (panel e). From this, the perturbation overturning streamfunction can be
understood (panel d). Furthermore, the density at the surface and at depth increases
southward and, through the thermal wind balance, this sets up a zonal � ow. In the southern
hemisphere, this � ow is eastward at the surface and westward at depth, in the north it is the
other way around (panels e and f).

The overturning perturbation advects heat and salt from (sub)tropical regions south-
ward, and enhances the thermal and saline anomalies on that hemisphere. When the
meridional salinity gradient is strong enough, the density anomaly is controlled by salinity,
and the density perturbation, that initially generated the overturning anomaly, is ampli� ed.
The surface salt � ux amplitude s must, therefore, exceed a critical value for the TH
circulation to become unstable.

d. Robustness: wind stress and convective adjustment

Before we explore the physics of the symmetry-breaking bifurcation in more detail, we
will � rst have to convince ourselves that the pitchfork bifurcation is a robust feature of the
three-dimensional � ow. We have to show that it does not disappear when wind stress is
added, or when convective adjustment is used to obtain stably strati� ed solutions. The
bifurcation diagram for the model with full wind stress forcing (with at having the
standard value) is plotted in Figure 9. Comparison with Figure 6 shows that the position of
the limit point L2 has hardly changed, but that the limit point L1 and the pitchfork
bifurcation P have shifted dramatically to larger values of s. Consequently, a large
window has opened where more than two stable equilibria can be found. Between s(L2)
and s(P), three stable equilibria coexist, namely the symmetrical TH solution, and the two
pole-to-pole solutions. Between s(P) and s(L1) no less than four stable equilibria are
present, the strong pole-to-pole branches of the NPP and SPP solutions, and two weaker
varieties. It is clear that the TH circulation is stabilized considerably by the equatorially
symmetric wind stress. This is due to the fact that the wind-induced meridional transports
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modify the background density structure to such an extent that the destabilizing salt
advection feedback is severely hindered.

The broadening of the region of multiple equilibria is interesting from a paleoclimatic
point of view. It creates possibilities for explaining rapid transitions in the thermohaline
circulation regime by switches between equilibria other than just the SPP and NPP states
alone (e.g. Stocker, 2000). Admittedly, the effect of the wind-driven circulation is taken
into account in a rudimentary way because of the low resolution and high friction used. But
the present result shows that purely three-dimensional features that are not represented in
two-dimensional models, may impact considerably on the bifurcation structure.

Since convection, which occurs in the case of an unstable strati� cation, is not resolved
by the hydrostatic model, an explicit representation is needed to obtain stably strati� ed
solutions. One way to do this is to increase the vertical mixing coef� cients locally when the
density strati� cation is unstable, i.e.,

PV 5 PV
0 1 PV

c * X ]r

]z
; eHD (16)

where PV
0 is the background inverse Péclet number, PV

c is the convective inverse Péclet
number (which is much larger than PV

0) and * is a continuous approximation to the
Heaviside function (13) with eH 5 0.1. Unfortunately, the continuation to stably strati� ed
solutions may be very problematic. Upon increasing PV

c for the unstably strati� ed solutions
of, for instance, Figure 6, an endless series of limit points may be encountered that severely
hinders the progression to suf� ciently large values of PV

c (cf. Vellinga, 1998). Therefore,
an alternative algorithm was developed to construct a stably strati� ed solution ust from a

Figure 9. Bifurcation diagram for the rotational case with full wind stress. Note the shift of the
pitchfork bifurcation P to larger values of s, opening a large window where multiple equilibria
exist.
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solution u of system (A2), the Global Adjustment Procedure (GAP). We must note that the
‘irreversible’ nature of the algorithm makes it impossible to continuate in stably strati� ed
solutions, hence no bifurcation diagrams of stably strati� ed solutions can be constructed.
The procedure of the GAP is described in Appendix B. The Global Adjustment Procedure
was applied to the TH state at the pitchfork bifurcation P in Figure 6. In an iteration of
Na 5 12 steps, and with PV

c 5 109 (Table 1) we reached a stably strati� ed TH solution.
Figure 10a shows that the GAP has indeed removed the static instabilities of the original
solution (Fig. 7c). Moreover, the counter-rotating polar overturning cells in 7d have
disappeared (Fig. 10b). The overturning strength increased considerably, from 10.9 Sv to
17.2 Sv. Computation of the most unstable mode shows that the stably strati� ed solution is
unstable with respect to an asymmetric perturbation (Fig. 11) with the same bi-polar
structure as in the unstably strati� ed case (Fig. 8). Comparison of the spatial patterns of the
most unstable eigenvectors shows that the patterns are very much alike, although the
structure at high latitudes is clearly removed by convective mixing. This suggests that the
destabilizing mechanism of symmetry-breaking is presumably not affected by the convec-
tive adjustment procedure. In fact, for the class of stably strati� ed solutions the symmetry-
breaking pitchfork bifurcation is situated at lower values of s than for the unstable
solutions; the real part of the eigenvalue §r . 0 for the stably strati� ed eigenvector at
s 5 s(P), whereas §r 5 0 for its unstably strati� ed counterpart.

4. Energetics of the instability mechanism

As can be concluded from the results above, the symmetry-breaking pitchfork bifurca-
tion is central to the connection between results of the two- and three-dimensional
solutions. Zonally averaged patterns of the destabilizing perturbations are remarkably
similar, despite the large differences in the local momentum balance. To determine a more
detailed relation between the instability mechanisms in both cases, an energy analysis is
applied. As in all instabilities, a perturbation exchanges energy with the mean state by

Figure 10. (a) Zonally averaged density � eld and (b) overturningstreamfunctionof a stably strati� ed
solution, obtained from the steady TH state at the pitchfork bifurcationP in Figure 6.
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nonlinear interaction, and the sign of the energy � ow determines whether the perturbation
grows or not.

Let us denote the basic solution by (u# , T# , S# ) and the destabilizing perturbation at the
pitchfork P as (u9, T9, S9), with r# 5 lS# 2 T# and r9 5 lS9 2 T9. Volume integration will
be denoted by brackets, so that ^ z & 5 * z dV. We de� ne an energy functional through

Figure 11. Most unstable eigenvector corresponding to the stably strati� ed basic state in Figure 10.
Same � elds as in Figure 7.
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% 5 1
2

eR^u9 z u9& 1 1
2

Ra^~r9!2& (17)

which is the sum of the kinetic energy of the perturbation and the (squared) norm of the
anomalous density � eld. The latter term resembles the (linearized form of) Available
Potential Energy, as used by Bryan and Lewis (1979). The condition for linear instability
of the basic state is thus d%/dt . 0. Since inertia does not play a role in this system where
eR 5 0, the sources and sinks of kinetic energy instantaneously match, and the
perturbation cannot grow by extracting kinetic energy or momentum from the basic state.
The time-derivative of % can be determined using:

1

2

d

dt
^~r9!2& 5 K r9

]r9

]t
L 5 K r9 X l

]S9

]t
2

]T9

]t D L (18)

where the time-evolution equations for the salinity and temperature anomalies follow from
inserting T# 1 T9 and S# 1 S9 (and u# 1 u9) in Eqs. (3e) and (3f). After some manipulations,
and absorbing 1/Ra in %, the time-derivative of % can be shown to satisfy:

d%

dt
5 2^r9u9 z ¹r#& 1 B^r9T9g~z!& 2 ^PH~¹Hr9!2& 2 K PV X ]r9

]z D 2 L 5 PA 1 PB 1 DH 1 DV

(19)

According to this expression, the initial growth (or decay) of the anomalous density � eld r9

is governed by interaction between the velocity anomaly and the background density
distribution (PA), by interaction with the atmosphere (PB), and by mixing processes in the
ocean, which are parameterized as diffusion (DH and DV). The terms in Eq. (19) were
evaluated for the most unstable eigenvectors at the pitchfork bifurcations P in Figures 2
and 6. The term PA was evaluated for the interaction between each particular eigenvector
and the basic states at (s 5 s(P)) and surrounding (s 5 s(P) 6 Ds) the bifurcation.
Although the most unstable eigenvector at the pitchfork bifurcation may be suboptimal for
s 5 s(P) 6 Ds, the changes in the eigenvector will be small compared to changes in the
basic states, which respond directly to the changed forcing.

Figure 12 shows that the pitchfork bifurcations P in Figures 2 and 6 are indeed
associated with zero-crossings of d%/dt. The instability appears to be strongly promoted
by the surface boundary conditions, PB: the positive thermal anomaly on the southern
hemisphere (Fig. 8a) enhances the surface heat loss, and ampli� es the positive (salinity
dominated) density anomaly (Fig. 8c) on that hemisphere. Note that when restoring
conditions are applied on both T and S (say, with relaxation constant B), the term PB in
Eq. (19) becomes 2B^r9(lS9 2 T9) g( z)& 5 2B^(r9)2g( z)&, which is negative de� nite.
This analysis thus readily demonstrates why a TH circulation, which is stable under
restoring boundary conditions, may become unstable when a switch to mixed boundary
conditions is made (e.g. Bryan (1986)); the stabilizing in� uence of restoring conditions on
both T and S (PB , 0) at once becomes destabilizing (with PB . 0) when the restoring
condition on S is removed.
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Figure 12. The term d%/dt and its components (Eq. 19) for the most unstable eigenvector at the
pitchfork bifurcation P and the surrounding basic states; (a) for the rotationless case of Figure 2
and (b) for the rotational case of Figure 6. The plot shows that the pitchfork bifurcations are
associated with zero-crossingsof d%/dt. For d%/dt . 0 the most unstable perturbationwill grow,
rendering the basic TH state unstable. Note that the contributions of the boundary conditions
PB ((a): 66, (b): 4.6), horizontal diffusion DH ((a): 217, (b): 23.7) and vertical diffusion DV ((a):
219, (b): 22.0) are relatively large and summed up for convenience. Contrary to the advective
term PA , which also depends on the (changing) background state, these terms only depend on the
speci� c perturbationand are constant.Note that the plots cannot be compared quantitatively,since
the amplitudes of the eigenvectors are undetermined.
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The perturbation is damped by the horizontal and vertical diffusion terms (DH, DV ,

0), which represent turbulent mixing processes in the ocean. However, given the perturba-
tion, PB, DH and DV are � xed and cannot be held responsible for the zero-crossing of
d%/dt at the pitchfork bifurcation. It is up to the interaction between the perturbation
and the (changing) background strati� cation (PA) to determine whether the perturbation
will grow or not. This background strati� cation is determined by both the salinity and
temperature � elds. The term PA can therefore be split into a saline component, PA

S 5
2l^r9u9 z ¹S# & and a thermal contribution PA

T 5 ^r9u9 z ¹T# &. Each term furthermore
consists of zonal, meridional and vertical components, given by PA,x

S 5 2l^r9u9S# x&,
PA,y

S 5 2l^r9v9S# y&, PA,z
S 5 2l^r9w9S# z&, etc. Identifying the feedback that is responsible

for the increase in PA with s, and thus ultimately for the instability, is not straightforward.
Figure 13a shows the two feedbacks that contribute to PA in the rotationless case (Figs. 2
and 12a). The arrow labeled Ma points to the components of the meridional advective
feedback, (PA,y

T , PA,y
S ), whose total amplitude is given by PA,y 5 PA,y

T 1 PA,y
S . This

feedback is negative for heat and positive for salt, since the positive density anomaly in the
southern hemisphere is attenuated by (anomalous) southward advection of heat from the
tropical regions, whereas it is enhanced by advection of salt from the evaporative
(sub)tropics. The arrow indicated by Va indicates the (much weaker) vertical advective
feedback. This feedback is positive for temperature and negative for salt, and it is mainly
generated in the unstably strati� ed polar regions. Here, cold (fresh) surface water is
advected downward and enhances (attenuates) the positive density anomaly at depth.

Although the sum of the advective feedbacks (PA) is negative in this rotationless case
(see also Fig. 12a), and the perturbation is thus basically damped by the interactionwith the
background state (mainly due to the meridional temperature advection feedback), the
strength of this damping is reduced when s increases from slightly below to slightly above
the pitchfork bifurcation. Figure 13b shows that the tendency of PA at the pitchfork P is
indeed positive when s is increased. The direction and amplitude of the arrow labeled Ma

in Figure 13b indicates that the increase in the meridional salt advection feedback is mainly
responsible for the positive tendency of PA. The increase in the surface salt � ux amplitude
s enhances the meridional salt gradient at the surface, and strengthens the meridional salt
advection feedback. This tendency is weakly counteracted by a decrease in the (positive)
vertical advective feedback (Va). This decrease re� ects the cooling and freshening of the
polar surface waters, resulting from a reduced overturning and an increased freshwater
� ux. This energy analysis is consistent with the mechanistic view of earlier work
(Marotzke et al., 1988; Quon and Ghil, 1992; Vellinga, 1996; Dijkstra and Molemaker,
1997) that the meridional salt advection feedback is the main mechanism responsible for
the symmetry-breaking bifurcation of the two-dimensional TH state. The situation changes
when rotation is added. Figure 14a shows the interaction terms between the destabilizing
perturbation and the background state at the pitchfork bifurcation P in Figure 6. Clearly,
the importance of the meridional feedback is strongly reduced with respect to the vertical
feedback, despite the fact that the addition of rotation and the applied rescaling of Ra
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Figure 13. (a) The terms PA
S and PA

T that make up the advective feedback PA and (b) their tendencies
with changing s for the rotationless case. The saline contributions are set out against the thermal
contributions (solid arrows), and a subdivision is made into the meridional and vertical feedbacks
(dashed arrows denoted by Ma and Va , respectively). The arrows point at the scalar values of the
terms correspondingto the interactionbetween the basic state and its most unstable eigenvector at
the pitchfork bifurcationP in Figure 2. The total amplitude of a feedback (or its tendency) is given
by (]/]s) PA 5 (]/]s) PA

T 1 (]/]s) PA
S (NB: this is not proportional to the length of the

corresponding arrow). Points above the line y 5 2x have a positive contribution to (]/]s) PA ,
whereas points below this line have a negative contribution. For points in the regions where y ,
u x u the thermal contributionsdominate, whereas otherwise the saline components are dominant.
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Figure 14. Same as Figure 13 but now for the rotational case, i.e. for the basic state (Fig. 7) and
destabilizing eigenvector (Fig. 8) at the pitchfork bifurcation P in Figure 6. Rotation breaks the
zonal symmetry of the system and generateszonal structure in the eigenvectorand the basic states,
giving rise to a (weak) zonal advective feedback (denoted Za ). The meridional salt advection
feedback (Ma ) is reduced in strength with respect to the vertical advective feedback (Va ). The
destabilizingtendenciesof several feedbacks are responsible for the zero-crossingof d%/dt.
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increased the basic overturning considerably (Fig. 4). However, under in� uence of rotation
and the increased overturning, the main downwelling is forced to take place in narrow
boundary layers close to the southern boundary (Figs. 7d–f), rather than in the broad
downwelling areas that characterized the rotationless case (Fig. 3a). This enhances the
importance of the downwelling in the unstably strati� ed regions, and strengthens the
vertical advective feedback.

The tendency of PA with increasing s at the pitchfork is positive, as shown in Figure 14b
(and Fig. 12b). However, it is not dominated by an increase in the meridional salt advection
feedback, as was the case in the rotationless situation (Fig. 13b). Instead, it re� ects
destabilizing changes in all but one of the feedbacks; only the vertical salt advection
feedback strengthens its stabilizing in� uence. Thus, in the rotational case, the changes in
the background state across the pitchfork bifurcation are complex and result in several
destabilizing changes in the advective feedbacks. There is not one advective mechanism
responsible for generating the instability at P. The dominant role that is played by the
vertical advective feedback when rotation is included is remarkable. It clearly originates in
the unstably strati� ed polar regions, and it thus may be expected to lose its importance
when the static instabilities are removed. Therefore, we calculated the same terms as in
Figure 14, but now for the eigenvector corresponding to the stably strati� ed basic states
(Fig. 11). Figure 15a shows that the meridional feedback has re-established its role as a
dominant feedback mechanism. The vertical feedbacks have strongly decreased in strength,
and have reversed their sign. Now the stable (unstable) thermal (saline) strati� cation in the
extra-polar regions provide for a negative (positive) feedback.

Upon changing s, the increase of the meridional salt advection feedback is again to a
large extent responsible for the positive tendency of PA (Fig. 15b). This feedback has
bene� tted from the strengthening of the mean meridional salinity gradient by the enhanced
surface salt � ux. An increase in the mean meridional temperature gradient is responsible
for the negative tendency of PA,y

T . Nonetheless, the role of the vertical advective feedback
has not completely vanished. Its stabilizing in� uence has diminished by a decrease in the
negative heat advection feedback. Inspection of the thermal � elds shows that the increase
in s has increased the temperatures at depth in the extra-polar regions. The resulting
decrease in the background (positive) vertical temperature gradient means a reduction in
the negative feedback.

5. Discussion

The value of two-dimensional or zonally averaged models of the thermohaline circula-
tion has often been questioned.The main concern is the absence (or poor parameterization)
of Coriolis effects on these � ows. Indeed, a priori it would seem that by poorly modeling
(or not even representing at all) the dominant geostrophic balance, many correspondences
of the two-dimensional and three-dimensional � ows would disappear. On the other hand,
for the double-hemispheric con� guration, many results in low-resolution GCMs (Bryan,
1986; Klinger and Marotzke, 1999) are easily interpreted in terms of those of two-
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Figure 15. Same as Figure 14, but now for the associated stably strati� ed basic state (Fig. 10) and
eigenvector (Fig. 11). Note that the meridional advective feedbacks have re-established their
dominant role at the expense of the vertical advective feedbacks. Nonetheless, the decrease of the
(negative) vertical heat advection feedback does play a role in destabilizingthe basic state.
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dimensional models. In particular, the ‘guessed’ bifurcation diagram in Klinger and
Marotzke (1999) is qualitatively very similar to that in Dijkstra and Molemaker (1997).
Using the present results, a more de� nite statement can be made on the relation between
steady states in two- and three-dimensional models. Note that this correspondence is
restricted to the steady-state structure and not immediately to transient � ows; in three-
dimensional models, oscillatory instabilities are found (Chen and Ghil, 1995; Te Raa and
Dijkstra, 2001), which have no counterpart in two-dimensional models. Furthermore, other
purely three-dimensional features may in� uence the bifurcation structure considerably, as
has been shown here for the wind-driven circulation.

Bifurcation studies on two-dimensional equatorially symmetric models, whether in the
rotationless limit (Dijkstra and Molemaker, 1997; Quon and Ghil, 1995; Vellinga, 1996;
Weijer et al., 1999), or in zonally averaged formulation (Stocker and Wright, 1991;
Vellinga, 1996), all show that multiple equilibria arise through a pitchfork bifurcation
located on the TH branch (Dijkstra, 2000). A similar pitchfork bifurcation is found here in
the three-dimensionalmodel, and it turned out to be robust with respect to wind forcing and
convective adjustment. Whether the pitchfork bifurcation is sub- or super-critical depends
on the model con� guration and parameters. In two-dimensional models, both types of
bifurcations are found (Dijkstra and Molemaker, 1997), whereas in the three-dimensional
cases here, only super-critical pitchfork bifurcations are found. In Klinger and Marotzke
(1999), a subcritical pitchfork was suggested, but the bifurcation diagram in Figure 9
shows how one easily can get fooled by only computing stable steady states through
transient integration.By following the NPP/SPP branch for smaller values of s, a transition
to the TH state will occur below values corresponding to L2. Following the TH branch with
increasing s then leads to an estimate of the location of the pitchfork bifurcation P.
However, one would be very lucky to � nd a solution on the stable branch between P and L1

and one would tend to conclude (based on the relative location of L2 and P) that the
pitchfork is sub-critical, whereas detailed bifurcation analysis shows that it is super-
critical.

Whereas the type of pitchfork bifurcation may be considered a minor issue, the main
point of discussion is: are the physical processes responsible for this symmetry-breaking
the ‘same’ in all these models? In each case, instability sets in when a critical value of the
freshwater � ux strength s is exceeded. This means that ampli� cation of the perturbation
density occurs only when the basic state salinity gradient is suf� ciently strong. Moreover,
the zonally averaged patterns of the mode destabilizing the TH state (determined from the
eigenvector at the pitchfork bifurcation) correspond remarkably well. They are character-
ized by antisymmetric temperature and salinity perturbations. The salinity perturbation
dominates the density perturbation, which is equatorially antisymmetric as well.

At this point, differences between rotationless and rotational models arise. In two-
dimensional Boussinesq models such as antisymmetric density perturbation forces a direct
frictional-buoyancy-driven perturbation � ow. In the three-dimensional case, it sets up a
mainly zonal perturbation � ow; a meridional � ow is only generated indirectly through a
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perturbation east-west pressure gradient. The spatial patterns of the perturbation � ows thus
obviously differ between rotationless and rotational cases. Also, as the structure of the
basic states is quite different between these models, and the values of s(P) differ
quantitatively, the importance of the salt advection feedback in each case is not very clear;
it is dif� cult to assess whether the mechanisms are indeed the ‘same.’

This notion can be made more precise by characterization of the pitchfork bifurcation
through energy analysis, using the norm of the density perturbations % as energy
functional. Indeed, the location of the pitchfork bifurcations in parameter space is in both
two- and three-dimensional cases associated with a zero of d%/dt. This zero is determined
by the strength of the diffusive damping of the density perturbation, and by possible
ampli� cation mechanisms like energy exchange with the basic state (PA) or surface
forcing (PB). The present analysis indicates that the restoring condition on surface
temperature is an important factor destabilizing the TH state (PB . 0). It readily
demonstrates why a TH circulation, that is stable under restoring boundary conditions,may
become unstable when a switch to mixed boundary conditions is made (e.g. Bryan (1986)):
restoring conditions on both T and S make the term PB in Eq. (19) negative, and thus
strongly stabilize the circulation. Upon switching to mixed boundary conditions, PB

becomes positive, and the boundary conditions tend to destabilize the � ow.
The most relevant energy-producing terms are associated with spatial correlations

between the density anomalies that drive the perturbation � ow, and those which are
generated by this perturbation � ow, via anomalous advection of basic-state temperature
and salinity. The volume integrated values of these production terms, PA

T and PA
S, largely

determine the location of the critical value of s. The results for the two-dimensional case
show that the term PA,y

S , associated with the meridional salt advection feedback, is the
dominant destabilizing term. This feedback has been shown to play an important role in the
stably strati� ed three-dimensional case too. However, its identi� cation as the destabilizing
mechanism is not fully justi� ed here; the increase in s affects the basic-state temperature
and salinity � elds to such an extent, that other feedbacks display destabilizing tendencies as
well.

There are subtleties in the production of energy when an unstable strati� cation of the
basic state is present. Small regions of unstable strati� cation in the background � ow may
lead to an additional energy production, which in principle destabilizes the symmetric TH
� ow. This may explain the result found in Marotzke (1991), that the � ows using the
classical adjustment scheme in the MOM model are more unstable than those using a
scheme which guarantees stably strati� ed solutions. However, convective adjustment is
shown here to perform two tasks at the same time: by removing static instabilities these
‘arti� cial’ energy production terms are reduced to near zero, but by modifying the global
pressure distribution the overturning strength of the basic state increases, enhancing the
energy production term associated with meridional salt advection. In the model con� gura-
tion here, the net effect is a more destabilized TH state, but these effects may be quite
model-dependent.
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Although details of the instability mechanism determine the exact location of the
pitchfork bifurcation in parameter space and may be quite model-dependent, the meridi-
onal salt advection feedback may be regarded as the destabilizingmechanism that is central
in two- and three-dimensional models; it is the only feedback that directly depends on the
surface salt � ux amplitude s. We thus conclude that the physical mechanism of symmetry-
breaking is essentially the same in both two- and three-dimensional models. It indeed
appears that the details of the momentum balances are not central to this symmetry-
breaking mechanism as long as there is an overturning response to a meridional density
gradient.
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APPENDIX

A. Continuation of steady states and their stability

The spatially discretized model equations can be written in the form

M
du
dt

5 F~u! 5 L~u! 1 N~u, u! (A1)

where the vector u contains the unknowns (u, v, w, p, T, S) at each grid point and hence
has dimension d 5 6 3 N 3 M 3 L. The operators M and L are linear and N represents
the nonlinear terms in the equations. Steady state solutions lead to a set of nonlinear
algebraic equations of the form

F~u, p! 5 0 (A2)

where the parameter dependence of the equations is made explicit through the p-dimensional
vector of parameters p and hence F is a nonlinearmapping from Rd1p ® Rd. As can be readily
seen from the continuous form of the steady equations, the salinity is determined up to an
additive constant. Moreover, also the pressure is determined up to an additive constant. To
calculate a steady-state solution of the system of equations, the equations are regularized (such
that the Jacobianmatrix is nonsingular)by � xing the pressure at a particularpoint (in our case at
the point (N, M, L)). In addition, an integral condition for S is substituted for the last equation
from the salinity equation,such that salt is conserved exactly within the domain. Since the total
dimensional salt content is r0VS0, where V is the total volume of the basin, the scaling for
salinity provides the dimensionless form as

E
V

S cos f dl df dz 5 0 (A3)
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which is a constraint on the deviation of the salinity � eld from uniform conditions. To
determine branches of steady solutions of the equations (A2, A3) as one of the parameters,
say m, is varied, the pseudo-arclength method (Keller, 1977) is used. The branches (u(s),
m(s)) are parameterized by an ‘arclength’ parameter s. An additional equation is obtained
by ‘normalizing’ the tangent

u‚ 0
T~u 2 u0!

*
m0~m 2 m0! 2 Ds 5 0 (A4)

where (u0, m0) is an analytically known starting solution or a previously computed point
on a particular branch and Ds is the step-length.To solve the system of equations (A2–A4),
the Newton-Raphson method is used. The linear systems are solved with the BICGSTAB
method using the MRILU preconditioningtechnique (Dijkstra et al., 2001).

When a steady state is determined, the linear stability of the solution is considered and
transitions that mark qualitative changes, such as transitions to multiple equilibria
(pitchfork or saddle node bifurcations) or periodic behavior (Hopf bifurcations), can be
detected. The linear stability analysis amounts to solving a generalized eigenvalueproblem
of the form

a!x 5 b@x (A5)

where ! is the Jacobian matrix (the derivative Fu) and @ 5 2M, which are in general
nonsymmetric matrices. If @ is nonsingular, the problem reduces to an ordinary eigenvalue
problem for the matrix @21!. Because only real matrices are considered, there are d
eigenvalues which are either real or occur as complex conjugate pairs. However, if @ is
singular, the eigenvalue structure may be more complicated; the set of eigenvalues may be
� nite, empty or even the whole complex plane (Golub and Van Loan, 1983). In the
particular model here, @ is a singular diagonal matrix because time derivatives are absent
in the continuityequation and vertical momentum equation.The problem (A5) is solved by
the Jacobi-Davidson QZ-method (JDQZ). With this method, one can compute several, say
m , eigenvalues and optionally eigenvectors near a speci� ed target t. The details of the
method are described elsewhere (Sleijpen and Van der Vorst, 1996) and the implementa-
tion of JDQZ in an earlier version of our continuation code in Van Dorsselaer (1997). For
a Þ 0, we write §r 1 i§i 5 b/a for the real and imaginary parts of the eigenvalue.

B. The Global Adjustment Procedure

The Global Adjustment Procedure (GAP) starts off with u1 5 u, and a constant � eld of
vertical diffusivity PV

1(l, f, z) 5 PV
0 , with PV

0 the standard value of vertical diffusivity as
in Table 1. Within a step k of an iterative loop over Na steps, a stably strati� ed solution ust

k

is constructed from uk, using the convective adjustment procedure of Rahmstorf (1993). A
linear combination is taken:

ũk 5 ~1 2 vk!u
k 1 vkust

k k 5 1, Na (B1)
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where vk increases from zero to unity in Na steps (according to vk 5 1
2

(1 2 cos pk/Na)).
The vertical diffusivities are adjusted according to

PV
k11 5 PV

c tanh X G
PV

k

PV
c D ; G ;

]rk/]z

]r̃k/]z
(B2)

where PV
c is an upper bound on the vertical diffusivities. In regions that are stabilized by a

pass of the adjustment procedure, G . 1. For modest changes in the strati� cation (e.g.,
when vk is still small), this procedure guarantees that the vertical diffusive � uxes of
buoyancy associated with ũk and uk are the same. For large values of G (i.e., in well mixed
areas when vk ® 1), the vertical diffusivity is bounded by PV

c . A Newton step is
performed on ũk to obtain a new estimate uk1 1, which includes an update of the velocity
� eld. After Na steps, the procedure is repeated with vk 5 1 for k . Na until convergence
is reached. The resulting solution ust is stably strati� ed, has enhanced diffusivities in the
regions where convection took place, and has a velocity � eld that is consistent with the
density � eld.
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