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Abstract

Limit theory is developed for the dynamic panel GMM estimator in the presence of
an autoregressive root near unity. In the unit root case, Anderson-Hsiao lagged variable
instruments satisfy orthogonality conditions but are well-known to be irrelevant. For a
fixed time series sample size (T') GMM is inconsistent and approaches a shifted Cauchy-
distributed random variate as the cross section sample size n — oo. But when T" — oo,
either for fixed n or as n — oo, GMM is v/T consistent and its limit distribution is a
ratio of random variables that converges to twice a standard Cauchy as n — oco. In this
case, the usual instruments are uncorrelated with the regressor but irrelevance does not
prevent consistent estimation. The same Cauchy limit theory holds sequentially and
jointly as (n,T) — oo with no restriction on the divergence rates of n and T. When the
common autoregressive root p = 1+ ¢/ VT the panel comprises a collection of mildly
integrated time series. In this case, the GMM estimator is y/n consistent for fixed
T and v/nT consistent with limit distribution N (0,4) when n,T — oo sequentially
or jointly. These results are robust for common roots of the form p = 1 + ¢/T7 for
all v € (0,1) and joint convergence holds. Limit normality holds but the variance
changes when v = 1. When ~ > 1 joint convergence fails and sequential limits differ
with different rates of convergence. These findings reveal the fragility of conventional

Gaussian GMM asymptotics to persistence in dynamic panel regressions.
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1 Introduction

The use of instrumental variables (IV) in dynamic panel estimation was suggested by
Anderson and Hsiao (1981, 1982) and has led to a substantial theoretical and applied lit-
erature on the use of IV and generalized method of moment (GMM) estimation techniques
in dynamic panels. The unit root case is well-known to present difficulties for IV/GMM
methods because lagged variable instruments satisfy the required orthogonality conditions
but fail the relevance condition. The problem was discussed in Blundell and Bond (1998)
and Moon and Phillips (2004). It is easy to dismiss the unit root case as unidentified by
IV/GMM formulations involving lagged level instruments. As a result there are few analy-
ses of GMM asymptotics in this apparently unidentified case. An important exception is
Kruiniger (2009) who considered dynamic panel estimation with persistent data when the
cross section sample size n — oo and the time series sample size (T) is fixed, showing
inconsistency of the GMM estimator of the autoregressive parameter.

The existence of other techniques that do deliver consistent estimation in the unit root
case has partly diverted attention from the GMM approach, although these alternative
methods also present difficulties such as bias and bias discontinuities in the case of level
maximum likelihood (Hahn and Kuersteiner, 2003), likelihood function anomalies in the
case of first difference maximum likelihood (Han and Phillips, 2013), and sensitivity to
departures from stationary errors under X-differencing (Han, Phillips, and Sul, 2014). In
view of these difficulties as well as the convenience of standard software implementation,
GMM and its many variants are still heavily used in empirical work with dynamic panels.
In such applications, conventional GMM Gaussian asymptotic theory is typically assumed
to apply when either or both the cross section sample size (n) and time series sample
size (T') tend to infinity. When the autoregressive root lies in the vicinity of unity, these
Gaussian asymptotics are inevitably fragile because of failing instrument relevance.

The present paper completes existing theory by providing an asymptotic analysis of
GMM in the unit root panel AR(1) model using large n, large T', and joint (n,T) asymp-
totics. For fixed T, we show that GMM is inconsistent and approaches a shifted and
scaled Cauchy distributed random limit variate as n — oo, which corresponds to the find-
ing in Kruiniger (2009). For fixed n, GMM is v/T consistent as T — oo and has a limit
distribution that involves a ratio of random variables which depends on the distribution
of the data, so no invariance principle applies. When T' — 0o as n — 00, GMM is /T

consistent and its limit distribution is two times a standard Cauchy. The same limit the-



ory holds both sequentially, irrespective of the order of divergence of (n,T’), and jointly as
(n,T) — oo, irrespective of the relative rates of divergence of n and T. Importantly, the
usual instruments are uncorrelated with the regressor in this case, but this irrelevance does
not prevent consistent estimation at least as T' — co. In nonstationary data models even
orthogonal instruments can be effective in delivering consistent estimation, as was pointed
out in early nonstationary time series work (Phillips and Hansen, 1990). Similar effects
arise with panel data in the unit root case even though the model is differenced to remove
fixed effects prior to regression. In this event, the differenced regressor is itself stationary
and so the relevance effect arises from a sample covariance between a stationary and unit
root process giving a random limit with zero mean and positive variance, thereby helping
to explain the well-known dispersion of the GMM estimator which applies here even in
the limit in the unit root case. The Cauchy form of the asymptotics (and uncertainty
reflected in the heavy tailed distribution) is reminiscent of (and related to) the limit theory
that applies in unidentified simultaneous equations models when estimated by instrumental
variables under conditions of apparent identification (Phillips, 1989).

The paper further investigates near unit root cases where the common autoregressive
coefficient lies in the vicinity of unity. We focus primarily on cases where p = 1 + ¢/V/T,
consonant with the /T convergence rate of GMM when p = 1. Results for large n, large
T, sequential, and joint asymptotics are provided. The limit theory leads to a correction
of the asymptotic variance reported in Anderson and Hsaio (1981). Extensions of these
results are given for common roots of the form p =1+ ¢/T7 for all v € (0,1), v =1, and
v > 1.

The remainder of the paper is organized as follows. Succeeding sections give the limit
theory for the panel unit root model under fixed n, fixed T, sequential (n,T), sequential
(T,n), and joint (n,T) — oo asymptotics. Later sections examine the impact of local to
unity parameterizations on the asymptotic theory. Extensions to the multiple instrument
and differenced instrument cases are considered in the penultimate section. Section 5
concludes with some further discussion. Proofs and derivations are given in the Appendix.

Throughout the paper, we use the notation (n,T). . — oo to signify T'— oo followed by

seq

n — oo; correspondingly, (7,n) . — oo signifies n — oo followed by 7' — oo; (n,T) — oo

seq

denotes joint asymptotics where there is no restriction on the passage of n and T to infinity;

and T = T — j for all integer j.



2 Model Preliminaries

In the dynamic panel regression model
yit = a; (1 —p) + pyir—1 +ui, i=1,...,nt=1..T (2.1)

the «o; are fixed effects for which 0'3 =lim, % Z:‘L:1 a? < 00, the errors u;; are iid (O, 0'2)
with finite fourth moment across all ¢ and over all ¢, and the initial conditions y;o = O, (1)
for all ¢ and are independent of the u;; for all ¢ and ¢. Heterogeneity over ¢ may be introduced
without disturbing some of the results given below provided large n limit theory applies
and uniformity conditions continue to hold for joint (n,T") asymptotics. In order to deliver
quick results we will maintain the iid assumption for u;; in what follows, while pointing out
some of the extensions that apply. We define u;s = 0 for all s < 0 and we often assume for
simplicity that y;0 = 0, a.s., although calculations are usually shown for the more general
case.

We start by studying the simple linear IV/GMM estimator (Anderson and Hsiao, 1981)

which uses instruments y;;—o in the differenced regression
Ayir = pAyi—1 + Auye, (2.2)

leading to the estimator pg,,,, = > i’ 2?22 Ayiryit—2/ > iy Z;‘LQ Ayir_1Yit—2. When the
true autoregressive coefficient in (2.1]) is p = 1 we have

S S Auiyieo

—1= ]
Z?:l ZtT:Q AYit—1Yit—2

Pgmm (2.3)
With p = 1 we have Ay;; = u;+ whose partial sum solution is y;; = Zizl Ujs + Yo up to

the initial condition y;p and since
E (uityit—2) = B (Auuyi—2) = 0, (2.4)

the instrument y;;_o satisfies the orthogonality condition in both (2.1)) and (2.2)). So in-
strument orthogonality to the regression error in (2.2)) holds. However, orthogonality is
generally insufficient for identification and consistent estimation, for which relevance of the

instrument (to use the terminology of Phillips, 1989) is typically needed. In the present



case, we have
E (Ayit—1Yit—2) = E (uit—1yit—2) = 0, for all ¢ and all 4 (2.5)

so the instrument y;;_s is actually orthogonal to the regressor Ay;; 1 in and relevance
fails. In this event, the moment conditions do not identify the unit root (Kruiniger,
2009)). Asis well-known, therefore, the GMM estimator is expected to perform poorly
in finite samples and to be inconsistent in the limit, as the instrument y;;_o is irrelevant
for the regressor Ay;;—1 in . Similar properties of orthogonality and irrelevance hold
for all instrumental variables that take the form of lagged variables {y;s : s = 1,2,...t — 2}.

3 Asymptotics when p =1

3.1 Large n Asymptotics

Start with the case where T is fixed and n — oo. Consider /n standardized forms of the
numerator and denominator of (2.3)), viz.,

n T
Npr = \/15 >3 Auayir-a, Dur = Ln DO Ayir v

i=1 t=2 =1 t=2

Observe that A (uiyit—2) = Auglit—2 + Uit—18Yir—2 = Auityit—2 + ig—1u;—2 under p = 1,

so by partial summation

T

T
D Auiyir-o = (Uiryir—2 — wiayio) — Y Uit—1Uit—2. (3.1)
t=3 t=3

Adding Ausy:0 = Uioyio — Ui1Yio to each side gives
T

T
> Aviyir—2 = (wiryir—2 — winyio) — Y Uir-1Uit—2. (3.2)
=2 =3

Then, N7 = ﬁ S (wiryir—2 — uilyio)—ﬁ Yo Ethg Uit 1Uit—2, and Dypp = ﬁ Yo Zfzg Uit —1Yit—25
for which we have the following limit behavior as n — oo when T is fixed.

Theorem 1 For fited T as n — oo



2 -1

)) (Nor, D7) = N (0,Vp), Vp = 0T
(i) (Nnz; Dpr) = N(0,Vr),Vr =0 2<_1 Ti/2

),whereTj:Tj;

1/2
(i3) Pgrmm — 1 = —T% + 2<T§1/2(C, where C is a standard Cauchy variate.

Thus, when 7' is fixed and n — 00, py,,, is inconsistent and converges weakly to a
Cauchy distribution centred on 1 — T%’ a result that was earlier obtained in Kruiniger
(2009, theorem 1(i)) for the random coefficient case with 7' = 3. The heavy tailed limit
distribution arises because the denominator D, has a random limit and its Gaussian
distribution is symmetrically distributed with a positive density at zero, which ensures
that no integer moments exist. The random limiting denominator reflects the presence of
random information in the GMM signal in the limit.

Next consider sequential asymptotics in which n — oo is followed by T" — oco. From

Theorem 1(ii) we deduce directly that

92 1 1/2
VT <pgmm —1+ ) = 2 (1 - T) C = 2C, (3.3)

Tl n—00 1 T—o00
giving
VT (pgmm —1) =  2C. (3.4)

(Tn)geq—00

Evidently, the GMM estimator pg,,,, is consistent as 7" — oo, even though the instrumental
variable y;;_o is irrelevant in the panel regression for all ¢. The rate of convergence is VT,
which is slower than the usual rate (7°) for (unit root) nonstationary data in time series
regression. The explanation for the large T' consistency of pg,,,, is that, although the
relevance condition fails for all ¢ and E (Ay;—1yi1—2) = 0, the sample covariance (moment

condition) does not have a zero limit as 7' — oo. Instead,

T T 1

1 1

T E Ayt 1Yit—2 = T E Uit—1Yit—2 :>/0 BidB; #0 a.s. (3.5)
t=2 t=2

where B; is Brownian motion with variance o2 for all i (Phillips, 1987a). On the other

hand, as n — oo with T fixed, the sample covariance

n T

% > (Z Ayit—l?/it—Z) —p 0, (3.6)

=1 \t=2



in view of . The nonzero limit ensures some relevance as T' — oo in the nonsta-
tionary instrument y;;—o in spite of the fact that E (Ay;—1yi—2) = 0. But since the limit
is random, there is inevitably high variability in the GMM estimate. The variability
is sustained in the Cauchy distribution limit for which there are heavy tails and no finite
sample integer moments, just as in the fixed 7" case.

The convergence rate is v/T because the IV regression signal is Zthz AYit—1Yit—2 =
O, (T), the order of a sample covariance between integrated and stationary processes.
This O (\/T ) rate is slower than the usual O (T') convergence rate for unit root and IV
unit root regressions where, with both instrument and regressor integrated, the signal is of
order O (T?) not O (T).

3.2 Large T' Asymptotics

Start with the case where n is fixed. As the following result shows, the limit theory for
T — oo does not obey an invariance principle and is dependent on the distribution of the
data. But when T' — oo is followed by n — oo, an invariance principle holds and we again

have a Cauchy distribution limit.
Theorem 2

(i) As T'— oo with n fized

SE (o~ ity {tieoBi (1) = Gi} 7
& k=2 Y13 {Bz' (1) - ‘72} v

where {B; (r)}, are a family of iid Brownian motions with variance o* that are inde-
pendent of the family of iid Gaussian variates {G;};_, each with zero mean and variance
o* and all independent of the variate uise which is an identically distributed copy of .

(ii) When T — oo followed by n — oo

VT (pgmm —1) = 2C. (3.8)

(n,T)Seq—wo

Hence, pgy,,, is consistent as T' — oo when the cross section sample size n is fixed. The

explanation is the same as that given above concerning the relevance of the nonstationary

instrument y;;—o. Observe that (3.7) is a ratio of two random variables each of which is



centred on the origin and the denominator has positive probability density at the origin,
which ensures that the ratio has no finite sample integer moments..

Importantly, as shown in the proof of the theorem, the limit involves only a partial
application of an invariance principle. The component u;s in the numerator of is
not the outcome of an invariance principle but is instead distribution dependent since
Ujoo =4 Wit for all ¢ in view of the identical distribution assumption concerning wu;;.

Evidently, when T" — oo is followed by n — oo the sequential limit distribution is
identical to the limit distribution with the reverse order of sequential limits (i.e., n — oo
followed by T' — o0) as given in .

3.3 Joint Limit Theory as (n,7T) — oo

The equivalence of the sequential limit results and suggests that the limit theory
is robust to the path of divergence of the respective cross section and time series sample
sizes or the relative rates at which (n,7) — oo. The limit theory under joint sample
size expansion (n,7") — oo is proved in the following result using the criteria for joint

convergence given in Phillips and Moon (1999).

Theorem 3 \/T( — 1) = 2C and joint convergence applies as (n,T) — oo

(n,T)—00
irrespective of the order and rates of expansion of the respective sample sizes.

Pgmm,

The heavy tailedness property of the GMM estimator p,,,,, manifested in the joint
limit theory to a Cauchy variate applies irrespective of the manner in which the cross
section and time series sample sizes diverge to infinity. The rate of convergence is VT, as
in both forms of sequential asymptotics, and is slower than the usual O (T') rate associated
with unit root time series because of the diminished signal from the ‘apparently irrelevant’

instrument y;;—2 used in the GMM regression.

4 Local Unit Root Asymptotics when p=1+¢/T7, ¢ <0

There are several local unit root (LUR) cases that may be considered. For large n fixed T
asymptotics it is possible to consider deviations from unity of the form p = 1 + ¢/n? for
~v € (0,1) as in Kruiniger (2009). This formulation is largely for mathematical convenience
in analyzing the effects of local departures from unity in large n asymptotics. Importantly,

the autoregressive parameter p measures time series dependence in the panel data y;. It



is therefore more difficult to justify modeling time series dependence through a parameter
whose value p = p,, = 1 4+ ¢/n” depends on the number of cross section observations. In
particular, the dependence p,, = 1 + ¢/n” implies that the AR coefficient of an individual
time series like y; in the panel will approach unity simply by increasing the number
of panel observations. Given cross section independence in the panel, it seems hard to
justify such dependence of p,, on n other than for the mathematical convenience of more
closely studying limit behavior in the vicinity of unity. One possible justification is that the
commonality of the AR parameter p across individual time series in the panel y;; provides
a linkage across the panel that rationalizes formulations such as p,, = 1 4 ¢/n”. Then,
raising the number of cross section observations n enables us to model phenomena with
common AR time dependence that is increasingly close to unity, even in spite of the cross
section independence in the panel. In this case, in view of the commonality of p across
section, more cross section information may reasonably be expected to enable us to model
phenomena with AR time dependence closer to persistence.

By contrast, time series sample size dependences of p on T, such as p = pp = 1+¢/T7,
are already commonplace in the time series literature. The classifications used in that
literature for measuring departures from unity apply in the same way for panels. Thus,
when v = 1 the departures are deemed to be local to unity (LUR) concordant with a Pitman
drift when the estimation convergence rate is O (T), as is typical in time series regression.
When v € (0,1), the departures are said to constitute a mild unit root (MUR) and lead to
mildly integrated time series in the sense of Phillips and Magdalinos (2007). In both cases,
as the time series sample size T increases, the triangular array model formulation allows
us to model time series phenomena with AR time dependence that approaches persistence
(p = 1) and differentiates the effects of such parameterizations on the limit theory, thereby
bridging part of the large T' limit theory gap between fixed stationary and unit root cases.

The justification for using such LUR and MUR formulations of p as T' — oo is now well
established in the time series literature. Accordingly, in view of the v/T' convergence rate
of the GMM estimator when p = 1, this section concentrates largely on MUR, asymptotic
theory for localizing sequences that are of the form p = 1+¢/v/T. As earlier, we will consider
large n and large T asymptotics, sequential limits, and joint convergence. We also look at
cases where p = 1+ ¢/T7 and develop large n, large T" asymptotics that cover the implied
wider and narrower vicinities of unity that occur for more general parameterizations with

v > 0.



4.1 Large n and Sequential (T,n)__ — oo Asymptotics

seq

It is natural to start with the case where p = 1 + ﬁ with fixed ¢ < 0 and fixed T
as n — oo. This localization seems appropriate given that /T asymptotics apply when
p = 1, but more general cases may be considered and these are discussed below. Fixing
the parameters (¢,T') implies a fixed |p| < 1 and Gaussian asymptotics apply. Anderson
and Hsaio (1981, AH) gave results for the fixed stationary case in a model with random
effects as n, T — oo, but their expression for the asymptotic variance is incorrectﬂ In the

fixed effects case, which is closely related, the limit theory is as follows.

Theorem 4 In model with p=1+ ﬁ for fized ¢ < 0, we have

(Z) \/ﬁ (pgmm - :0) n?oo N (07 w%) )
(i) VnT (Pgmm —p) = N(0,4),

( 7n)seq_)oo

2 2(1+p)

_ WNT __
where wi, = ok = 2g

1
and in the Appendizx. Parts (i) and (ii) continue to hold when p = 14 7% with
the same convergence rates \/n and vVnT and the same limit variances for all v € (0,1).

+ 0 (%) . Explicit expressions for (wnp,wpr) are given in

(iii) When v = 1, the Gaussian limit theory (i) still applies but the limit variance w3 has

the alternate form

and

VT (g —p) = N (0, (—8¢) (1_20_62)> . (4.2)

(T112)40q—00 (14 2¢ — e2¢)?

seq

(%) When 5> VAT (g =) |, = N (0,5).

(Tn)geq—00

In the stationary case with fixed ¢ < 0, fixed T', and the stationary initial condition

Yio = a; + Z?io ,07 u;,—j, we have y;; = o + Z?io p] u¢—; and the asymptotic variance when

"The Anderson-Hsaio (1981) formula given by equation (8.4) in their paper assumes, incorrectly, that
Awuiryit—2 is a martingale difference, so the formula omits cross product terms in the expression. The correct
limiting variance of v/nT' (pgmm — p) is given by 2(1+ p), as shown in theorem 4 and . This result
applies also in the stationary random effects case as discussed below.

10



n — oo then has the simpler explicit form

2 [ o2/o? p
2 _2(1+p)+2(1+p) {(1—p>2+1—p2}w2(1+p)
2 _

T T2 7 for large T (4.3)

The same limit theory applies in the stationary, random effects case where o; ~;q4 (0, ai) ,
which was studied in AH (1981). Expression corrects the formula given in AH (equa-
tion 8.4) for the limiting variance in the random effects model. See Phillips and Han (2014)
for further detailsP]

Different localization rates may be studied in the same way. Importantly, whatever rate

v € (0,1) is used for p = 1+ 7% to approach unity, the limit variance w2T continues to apply
for all fixed T and fixed c. Correspondingly, since w2 ~ 2(1T7J1rp) for large T, we still get

VT convergence and a normal limit theory for these localization coefficients, irrespective of
how close to unity 1+ =% is. Sequential asymptotics VnT (pgmm — p) o n):> e N (0,4)
then hold whenever n — oo followed by T' — oo. So, theorem 4 continile;eqto apply for
p=1+47% and all v € (0,1).

Moreover, as indicated in part (iii) of the theorem, when v = 1, sequential Gaussian
asymptotics hold but the variance of the limiting distribution changes to (—8¢) %

Observe that )

1-2c— e

(—80)((12062))2~§2—>oo asc—0 (4.4)
+ 2¢ — e*¢

so the Gaussian limit theory changes when closer approaches to the unit root occur. More-
over, as shown in the proof of Theorem 4(iv), when p = 1 + 7% with ¢ < 0 fixed and y > 1

the limit distribution is given by

VT3 (pgmm — P) = N (O 8 > , (4.5)

(T'n) e

where the variance corresponds with (4.4) and the rate of convergence depends on -+,
changes from vnT to VnT3-27, and reduces as 7 increases. Thus, when v — % the

rate of convergence approaches \/n and when ~ > % there is divergence because the limit

2 8Ty

variance when n — oo is wp = 2720 {1+ 0(1)} and the variance diverges as T — oo.
1

So sequential (T,n) . — oo asymptotics fail and the distribution diverges as T'— oo. In

seq

?The error in AH (1981, equation 8.4) was noted independently by Yinja (Jeff) Qiu in his take home
examination solution (2014) to Phillips (2013).

11



that case, the convergence rate is effectively slower than y/n and the limit theory is not

captured by sequential asymptotics where (T, n)_ . — oo. Instead, as shown below, unit

seq

— 00 because p =1+ %

root /T asymptotics apply when (n,T) T

seq is in close proximity

to p=1when v >1and T — oo first.

4.2 Large T and Sequential (n,T) . — oo Asymptotics

seq

We now consider limits in which 7" — co and p = 1+ ﬁ differs moderately from unity. In
a time series framework, this formulation is a special case of moderate integration in the
sense of Phillips and Magdalinos (2007). Again, more general cases where p = 1 4 7% are

considered below. The panel asymptotics are given in the following result.

Theorem 5 In model with p =1+ ﬁ for fized ¢ < 0, we have

(1) \/T (pgmm - p) T?»oo % Z?:l Ci7 where Cz ~iid N (07 1) )
(i) VT (pgmm —p) =  N(0,4).

( ’ seq

It follows that pg,,, is V1 consistent and \/T(
N (0,4/n) when T' — oo. In sequential limits as (n,T)

Pgmm — p) is asymptotically Gaussian

seq — OO the limit distribution is

Gaussian N (0,4) after rescaling, just as in Theorem 4 above when (T, n),, — co. Joint
convergence to N (0,4) then follows in the same manner as Theorem 3 and is given in the

following result.

— < i _
Theorem 6 When p = 1 + T with fived ¢ < 0, we have \/T(pgmm p) (n,T:)>—>oo

N (0,4) and joint convergence applies as (n,T) — oo irrespective of the order and

rates of expansion of the respective sample sizes.

Next consider the case where p =1 + 75 with fixed ¢ <0.
Theorem 7 Let p =1+ % with fized ¢ <0 and v > 0.

(1) When € (Oa 1) ) \/T (pgmm - p) = %Z?:l Civ where Cz ~iid N (07 1) , and

T—

VT (pgmm —p) =  N(0,4). (4.6)

(N,T)geq—00

12



. _ . Z?:l{(a'_luioo)Jci(l)_Ci} . _
(11) When Y= 17 \/T (pgmm P) T?oo Z?:l{cfol ch‘(r)2d7’+fol ch‘(T‘)dWi}7 where ch (T) =

I e“r=9)dW; (s), W; are standard Brownian motions, and the ; ~iyq N (0,1) and in-
dependent of W; for all i. Further when v = 1 and T — oo followed by n — oo, we

have

1—9¢c— 2c
vnT (,ogmm - p) = N (0, —8cce> . (4.7)

(1T oq 00 (€26 — 1 —2¢)?

seq

(iii) When v > 1, VT (pgmm - p) e % and then

VT (pgyim —p) =  2C (4.8)

(n7T)SeqHOO

The N (0,4) sequential limit theory given in mirrors Theorem 5(ii), showing that
this limit result is robust for all moderately integrated panels with mild integration para-
meter v € (0, 1) . Joint limit theory applies in this case, precisely as in the proof of Theorem
6, so the details are omitted here.

When v = 1, the large T limit theory under (ii) involves the standardized diffusion
processes J.;, as is usual in local to unity cases. The corresponding sequential (n,T)Seql
limit theory in (4.7)) retains the v/nT convergence rate and has a limit variance that depends
on the localizing coefficient ¢, again as may be expected in the LUR case. Moreover, this
— 00 sequential asymptotics given in of
Theorem 4 and both v/nT convergence and limiting normality continue to hold. Again,

limit theory is the same as the (T',n),
the limit theory is independent of the direction of the asymptotics and joint convergence
holds in the same way as Theorem 6. .

When v > 1, the sequential (n, T)Seq limit theory corresponds exactly to the panel
unit root limit Cauchy distribution since the panel autoregressive root p = 1+ 7 is closer
to unity than the local to unity coefficient p = 1 + 7 and T' — oo first. It is this close
proximity of p = 1+ 7% to unity as T — oo that ensures that the panel unit root limit theory
obtains when ~ > 1. Importantly, joint convergence no longer holds in this case. Instead,
directional asymptotics occur and the limit distribution depends on the nature of the sample
— 00 we have \/W(pgmm — p) . ):> i, N (07 C%)

size expansion. For when (7', n)
( ’ seq

seq

as obtained in 1) whereas when (n, T, — oo we have VT (pgmm - p) ( T): 2C
n, 00
as given in (4.8)). In effect, the non-Gaussian Cauchy limit theory cannot be captured

in (T, n)

—
seq

seq directional sequential asymptotics where the limit theory is Gaussian because

13



lp] <1 asn — oo.

5 Further Discussion

Anderson and Hsiao (1981) also suggested using the lagged differences Ay;;—o (rather than

the lagged levels y;;—2) as an instrumental variable. This estimator has the form

T T
Dic1 2 AYiAyiv—2 il D Uitlir—2 . when p = 1.

pgmm2 = n T n T
) Y

which is invariant to 7" after rescaling by v/71. It follows that pg,,,,,o = C, showing that
n—oo

Calculations similar to those given in Section 3 now lead to

1 n T T
4
7 E { E Uit Uit—2, E UitluitZ} = N (0,0' Ty
i—1 =2 =2

10
01

Pgmm2 18 inconsistent, miscentred around the origin, with a random variable limit that has
heavy tails like pg,,,, and is invariant to the time series sample size T. In consequence,

sequential asymptotics give the same limit, viz., pg,m0 ( ):> C. Similarly,
M) geq 00

5/~

T n n 10

ap . ) 4

5 {zz} S (o,a " [ L D

t=2 =1 =1

which is invariant to n after scaling by y/n. Then Pgmm2 T: C, leading directly to the
—00

sequential asymptotics pgp,m2 = C. Similar arguments to those given earlier show

N,T)geq—00

that this limit theory applies jointly as (n,T) — oo irrespective of the rates of divergence
of the sample sizes. Use of lagged differences Ay;;_o as instruments therefore leads to an
inconsistent estimator of p in the unit root case for fixed T', fixed n, and joint asymptotics.
In this case, both the regressors Ay;;_1 and the instruments Ay;;_o are stationary with co-
variance E (Ayit—1Ay;t—2) = 0. So the sample signal n=1 Y7 | 7! Zthz Ayt 1Ayi_o has
zero expectation and zero limit in probability, thereby providing no leverage for consistent
estimation. Mildly integrated cases with p = 1 4+ ¢/T” may also be examined using these
methods, as may GMM estimates with more instruments, but they are not considered in

the present work and will be reported elsewhere.
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6 Appendix

Proof of Theorem 1. Part (i) follows by the Lindeberg Lévy CLT

1 ¢ EtT—z AuipYit—2
N B = N (07 VT) ; (61)
Vn ,Zl ( Zthg Ayit1Yit—2

with

2
E (ZtTZQ Auityitd) E (Zthg Auityitf2) (ZZ;Q Ayitflyit72)

e E (Ethg Auityit—Q) (Zzzg Ayit—lyit—Q) E (Zfzz Ayit—lyit—2)2
(6.2)

To evaluate, note by partial summation as indicated in (3.1)) and (3.2)), we have

T T

> Avigyir—2 = wiryir—2 — winyio — »_ Uit 1AYi2 (6.3)
=2 =3

To compute Vi, note that

2

T 2 T
E (Z Auityit—2> =E {(UiTyiT2 — uingio) — Y uit—luit—2}
t=2 t=3
T T 2
= B (uiryir—2 — unvio) — 28 {(UiTyiT—2 — Ui1Yi0) <Z Uit—luit—2> } +E (Z uit—luit—2)
=3

t=3
T

2 9 2 2 2 9
= Bujpyir_o + Bujiyip + E B (uf;_quj_o)
=3

= o'y + 202Ey§0 + 0Ty = 204T2,

the final line following if the initial condition y;0 = 0, which will be assumed in the calcula-
tions below. The large n asymptotic results will continue to hold for y;0 = O, (1) even for

finite T" with some obvious minor adjustments to the variance matrix expressions involving

15



quantities of O (1) in 7" Next

T 2 T 2 T T
i (Z AyitlyitQ) = E (Z Uitl?/itZ) =0’ Z Ey?t—2 =o' Z (t—2)
t=2 =2 t=2

t=2
= 0’4T2T1/2,

and, with y;0 =0 (or up to O (1) in T if y;0 # 0)

T T T T
E (Z Auityit2> (Z Uitlyit2> =K { ((uiTyiT—2 — Ui1Yi0) — Z Uitluit2> (Z Uitlyit2> }
t=3 t=2

T
= <Z Uit —1 Wit— 2) (Zuit—lyit—2> — B (uinyio)®
=3 2

T T
= —EY (uiroawi-2) (i-1yi-2) Y (wir-1Uie—2) (Uis—1Yis—2)
t=3 8,t=3;57t
T
t=3 =3
Then
20T,  —o'T: 2 -1
Vi = J4 i 4 i =0Ty ;
—0*Ty o*1yT1/2 -1 Ty/2
as stated.
For Part (ii), simply write pg,,,, — 1 = gni, and note from (i) that (N7, Dpr) =
n n—
1/2 C .. 2 -1
o? (EN ¢p T) where (£N,T7£D,T) is bivariate IV | 0, T2 . Next, decom-
- 1

poseéyraséyr = §N.D,T+ﬁ§D,T where{n pr =N (0 2 - (T 1/)2 ) =N (07 2 (1 - T%))
is independent of {p 7, so that

<§N.D,T)EN<O7[2<1_%1> 0
Epr 0 T1/2

Combining these results, we have by joint weak convergence and continuous mapping that
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as n — oo with T fixed,

N Enpr— 7€
b =1 = L, ENT_SNDT T RCDT (64)
Dy n—oo &p p Epr
/
B _3+5ND,T 2 2(1_T1> (v
T &pr T /2 (p
L\ L2
_ 2, 0-1)
= -7 +2 T11/2 C, (6.5)
where ((,(p) = N (0,I3) and C is a standard Cauchy variate. Thus
) ( _ L) 1/2
T
pgmm -1 nj}oo _ﬁ + 2?«2 (66)

yielding the stated result. m
Proof of Theorem 2. From (2.3) and (3.1)) we have

Z?:l 22;2 Auiyit—2
Z?:l Z;[:z Ayit—1Yit—2
o {(uiTyiT—2 — uinyio) — Yoes uit—luit—Z}
2?21 Zthg Uit—1Yit—2

pgmm_l =

Y

and rescaling gives

S S (wiryir—2 — UinYio) — S ia Wit 12
VT (P — 1) = Xl i } (6.7)

Z?:l % Zthg Uit—1Yit—2

By partial summation

T T t—1 1 T 2o T
Z UitYit—1 = Z Uit (Z Ujs + yiO) =5 <Z uit) - Z ugy o+ Z WitYio-
t=1 t=1 s=1 t=1 t=1 t=1

Using the fact that B (uguisuis—1) = 0 for all (¢, s), we have by standard functional limit

17



theory for r € [0, 1]

(7]
—-1/2 Uit Bi(r)
e N

=1 | UWitUit—1 o \7

2
v (|7 ° ).
0 ot

where B; and G; are independent Brownian motions for all ¢. Then, since y;0 = Op (1) and

T-! Zthl uit = 0p (1), we deduce the joint weak convergence

T2 i Bi (1) Bi (1)
T ZtT:1 UitYit—1 | T 3 {Bi (1)* - 02} = fol B;dB; | - (6.8)
T Y20 wirie— Gi (1) G: (1)

Since wg is iid over ¢t and 4, it follows that w;p7 = ;e as T — 00, where the limit
variates {ujo} are independent over ¢ and have the same distribution as u;. Note that
u;r is independent of (T‘1/2 21 wip, T71 Zf;l WirYit—1, T 1 221 uituit_l) and, hence,

asymptotically independent of (T‘1/2 Zthl wip, T71 Zle Wit Yit—1, T Zthl uituit_1> It
follows that u;s is independent of the vector of limit variates . We therefore have the

combined weak convergence

T*1/2 Zle Uit Bz’ (1) Bi (1)
st | [sora) |||,
T*1/2 Zle Uit Uit —1 T—o0 G’L (1) Gz (1)
Wi Ujoco Ujoo
Setting G; = G; (1), the stated result (3.7)
- icoBi (1) — G
VT (pgmm — 1) = iz @) ) (6.10)

T s 3{B0) - 0%}

follows from and by continuous mapping.

For part (ii) we consider sequential asymptotics in which T' — oo is followed by n — oc.

Observe that u;sB; (1) — G; is iid over i with zero mean and variance

E {tiooBi (1) — Gi ()} = B (u2) B (Bi (1)2) +E <Gz~ (1)2) = 254,
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and is uncorrelated with B; (1)*. Since {Bi (1)* - 02} is iid with zero mean and variance

204, application of the Lindeberg Lévy CLT as n — oo gives

n-1/2 Yo {uiceBi (1) — Gy} (204)1/2 Cn
[ n 2 B ()2 - o2} | nTe | (0172) ¢, | (6.11)

where ((y,¢p) = N (0, I2) . Hence,
VT (pgmm —1) = 2C, (6.12)

(an)seqﬁoo

giving the required result. m

Proof of Theorem 3. We proceed by examining a set of sufficient conditions for joint
convergence limit theory developed in Phillips and Moon (1999). In particular, we consider
conditions that suffice to ensure that sequential convergence as (n, T')y,, — oo (i.e., T — oo
followed by n — oo) implies joint convergence (n,T) — oo where there is no restriction on
the diagonal path in which n and T pass to infinity.

We start by defining the vector of standardized components appearing in the numerator

and denominator of pg,,.,

n T n T !
_ 1 _ 1
Xnr = (n 12 Z ﬁ {(UiT?/iT2 — UiYio) — ZuitluitZ} XL V2 Z (T Z uitlyit2>> .
i=1 t=3 i=1 t=2
(6.13)
From and (6.11)) we have the sequential convergence

/
n n
D= (n12 i0oBi (1) — G; -1/2N" 20 B (1)2 — 52
Xor Ti>oo Xn (TL ; {quBZ (1) Gi (1)} )T ; 9 {Bz (1) o })

ol 1/2
= X :((204)1/2CN, <2> gD>, (6.14)

n—oo

which in turn implies the sequential limit /7 (pgmm — 1) = 2C given in (6.12). By

(n7T)seq_)OO

Lemma 6(b) of Phillips and Moon (1999), when X, e Xn = X sequentially, joint

n—oo
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weak convergence X, = X as (n,T) — oo holds if and only if

limsup |Ef (X,r) —Ef (X,)] =0 (6.15)
n,T—o0
for all bounded, continuous real functions f on R2.
Simple primitive conditions sufficient for to hold are available in the case where
the components of the random quantity X, r involve averages of iid random variables as
in the present case where we have X,,r = n=1/2 Z?:l Y,r with the Y;r independent over i.

Component-wise we have

n n
Xt = (X1nr, Xont) = (n_1/2 > Yir,n /2 ZYZiT> ;
i—1 i—1

where Yir = (Yir, Yoir)' with

T
1
Yir = Noy {(UiTyiT2 — Ui1Yi0) — ; UitluitQ} Tfoo Yii == uicoBi (1) — G5 (1),
1 & 1
Yoir = T ;UitlyitZ Tjoo Yo = 3 {Bi (1)* - 0’2} ,

for all :. The working probability space can be expanded as needed to ensure that the
(limit) random quantities Y; := (Y3;, Y2;)" are defined in the same space for all 4 so that
averages involving Y " ; Y; are meaningful. In this framework we can use a result on joint
convergence by Phillips and Moon (1999) — see lemma PM below — to verify condition
. In what follows we use the notation of lemma PM.

We proceed to verify these conditions for Y;r and Y;. First, Y;r is integrable since

1/2
E|uiryir—2| < <E luir)? B |yiT_2\2) < oo,
T
E Zuit—luit—2 < TE|uj—1uijp—2] < TE (uft) < 00,
th : ]
E Zuz’tflyit72 < ZE |wit—1Yit—2| < Z (Eu?t_lEygt_2)1/2 < 00.
t=2 t=2 —2

20



To show (i) holds, observe that
E|Yirl|® = EYiy +EYsy

1 d T (L i
= T {UiTyiT2 - Z UitluitQ} + (Z Uitlyit2>
t=3 =2

T

T 1
= 20! ot 22 (t —2) (6.16)
t=2

when y;0 = 0, with obviously valid extension to the case where y;o = O, (1) with finite

second moments. Then

1/2
lim sup - ZEmTu—h;nsupmmTu<h;nsup(E|mT\|) < o,

n,T—oo T

as required. To show (ii) holds, simply observe that EY;r = EY; = 0. To show (iii) holds,
note that

lim sup— ZE \Yir|| L{||Yir| > ne} = hmsupE |Yir|| 1{||Yir| > ne} =0, for all € > 0,
T—

n,T—oo T

since supr E ||Yir 2 < o by virtue of (16.16)). Finally, note that
Pr Yy Ys

: 1 ¢ .
limsup~ SB[V 1 (Y] > ne} = lim supk [¥i]| 1 {[¥]| > ne} = 0,
n—oo T i—1 n—00

since B||Y;||* < oo, proving (iv). Hence, condition (6.15) holds and we have joint weak

convergence

—1/2 = 4\1/2 ot 1/2
Xor=n"'2>"Vir = X:=|[(20")""(y, 5 ) <o)
=1

n,I'—o0

irrespective of the divergence rates of n and T to infinity. By continuous mapping, the
required result follows for the GMM estimator so that v/T' (pgmm — 1) T:> 2C jointly as
n,'—o0

(n,T') — oo irrespective of the order and rates of divergence of the respective sample sizes.

Lemma PM (Phillips and Moon, 1999, theorem 1) Suppose the m x 1 random vec-
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tors Yy are independent across i for all T and integrable. Assume that Y;r = Y; as
T — oo for all i. Then, condition holds if the following hold:
(i) imsup;; 327 B [|Yir|l < oo,

n,I'—o0
(i) limsupl 3" | |EY;r — BY;| < o0,
n,I'—o0
(iii) limsupZ 7" | E||Y;r|| 1{||Yir|l > ne} =0, for all € >0
n,T'— oo

(iv) limsup2 S | E||Y;]| 1{||Yi|| > ne} =0, for all € >0
n—oo

Proof of Theorem 4. In case (i) T is fixed as well as ¢ < 0, which implies that
p=1+ ﬁ is fixed. So large n asymptotics follow as in the (asymptotically) stationary

case. From 1) we have yir = ai (1 — p) + pyir—1 +uie = — 5 + (1 + f) Yit—1 + it and
Ayir = pAYir-1+Augy so that Ay = a; (1= p)+(p = 1) Yir—1 +uip = = 7+ F5Yie—1+ i
Then, as usual, E (uiyii—2) = B (Auyyi—2) = 0 and orthogonality holds. When ;0 = 0,

back substitution gives
yzt—az +ijuzt —j>

_ 2t _ 2t
and E (yit) = a; (1— ) Var (yi) = 0223 oP = 211,’223 and E(yft) = 0211,’;2 +

a? (1 — pt)2 . Instrument relevance is determined by the magnitude of the moment

E(Ayi—1yii—2) = E({ai (1 —p)+ (p— 1) yit—2 + wit—1} Yit—2)

B 1— 2(t—2) B

N 1— p2(t—2)

2 t—2\ t—2
== - - — y 1 - 1 - .1
(o} 1 a; ( p) ( P ) P (6 7)

which is non zero for ¢ < 0 and zero when ¢ = 0, corresponding to the unit root case
(p =1) considered earlier. Note that in the fully stationary case where initial conditions

are in the infinite past so that y;0 = a; + Z]o-io p7 u;,—; and ¥ = oy + Zﬁo pj ug—; we have

E(Ayi—1yi—2) = of (1—p)+(p—1E (y3) = o} (1—P)—(1—P){1i2 +O‘}
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which corresponds with the leading term of (6.17)) when ¢ — oo with |p| < 1.

Now consider the numerator and denominator of the centred and scaled GMM estimate

V1 (P gmm

—,0)2

T
T i Ly Dty

T =
% Z?:l thz AYit—1Yit—2

(6.18)

First, noting that Ay;;_1y;t—2 is quadratic in «;, and using T; = T—j and 03 = lim, % Z?zl a?,
the denominator of (6.18)) takes the following form as n — oo

1 1
n Z Z Ayit1Yit—2 —p HILIEIO n

i=1 t=

2

1 —
_pl=p
p

—1 =2

2 T 1 — o211

-7 In P
1+p 1—p?
2 T 27
1_ 1

I P
1+p| 1—p?
2 T 2T
1_ 1

B P Y
1+p | 1—p? |

2(t—2)

|+a2a-n|n-

+ak(1-p)|

—i—ai [l—pTl—

n T
S5 (z Ayy)
=1 t=2

ca?(mp) (1) [ (- p”)]}

1—ph

1—p
1_pT1 1_p2T1
1—p 1-—p2
1_p2T1

1+p }

|-ea-n|n-

|

1— T 1— 271
P + /02
1—p 1—p
(6.19)

which is again zero when ¢ = 0 (p = 1). Turning to the numerator, we have E (Au;y;—2) =

0 by orthogonality and by a standard CLT argument for fixed T" as n — oo

with

T

n T
1
NG g <E Auz‘tyz‘t—2> = N (0,vr)
i=1 \1=2

1 n T 2
or = i 23 (3 A
1= =

We evaluate the above variance as follows. Using (3.2)) and y;0 = 0, we have

T

> Atiyis—2 = wiryir—2 — winlio — Y Ui 1AYi—2 = wiryir—2 — Y w12, (6.20)

t=2

t=3
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with variance

T 2 T
E (UiTyiT—Z - Z Uit—lAyz‘t—2> = o’E (yiT—2)2 +0°E Z (Ayit—2>2

t=3 t=3
1-— 2 4
047/) + a o (1 — pT2) + U2EZ (Ayit_2)2.
L—p? t=3
. _ 52t
Using E(yi1) = o4 (l—pt), Var (y;r) = ZZ] 0P = 02117’;2, E(yft) = 021 p2 +

o? (1 - Pt)27 and Ayit = a; (1= p) + (p — 1) yit—1 + ut, the final term ZthgE (Ayzt—2>

7

above is

T
S {2 =p)? + (1= p)E (43 s) +0° — 203 (1-p)? (1- %) }
=3
2 2 (1-p" 2
= 0Ty — Thai (1 - p)* + 207 (1 - p) (1—,0> P> E(yis)
t—3
2

o 1-—

1— pT2 1_p2T2
2
S (1 — 15— 2
+a? (1 - p)? {2 =, + -
2 1-p] 20-=0") ., { 1—pl2 1 2D
= o’y |1+ — + 2a; (1 — 1-— +a 1-— -2 +
2027, o (1—p*" 1—
_ 2 o )4 f(1-p)
1+p (1+p) 1+p

Then

T 2 T
1-— 2
E (uiTyiT2 - ;UitlAyit2> = 0’4% +ajo” (1 - PTQ) +0’E ; (Ayit—2)2

1—p?" 2
- 4ﬁ+w (1-0")"+

204T, 2p (1 - p2T2) 2
T 1+4p +04(1—p2)(1+p) ralet (1=p) +aiet(1=p)
2T,
= 201 + ot 2 (1 P 2) + afo? (1 - PTz)
L+p (I=p)A+p)

204Ty, ot (1 — p?T2 1 — 212
2 ZUZr D) -
1+p (I+p) 1+p
(1= p"")
1+p
(1=p) (1+57)
I+p

1—pT2+

)
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and

=1 t=2

n T 2
WNT = 11151;0 % Z E (Z Auityz‘t—2>

20Ty | 4 20(1=p"") T 7, (1=p) (140"
= —+o +o,0°(1—p2)[1—p2+ 6.21
T T e ety L
From (6.19)) we have
o2 1— p2T1 1— p2T1 2
_ ) P 2l 7 6.22
o { 1+p[1 1—p2]+0“[ ’ 1+p]} (622

which leads to the asymptotic variance

2041y | 4 20(1=0"12) | 5 o T 7, (=) (1+p"2)
wng T T Ty T a0 (1) |10t g
w%—, = = 2
w 2 12T 12T
ot {_pr [TI— 1fpzl} +03 [1—PTI— lipl]}
_2(1+p) 1

giving the stated result for (i). The error magnitude as 7' — oo in the asymptotic expansion

6.23) is justified as follows. Since ¢ < 0 is fixed we have 1 — p? = —2# — % and
Rk oy
1—p*T 1_[1—’_7] 1— VT VT
= = - N_QL_ﬁN—Zc' (6.24)
T T Jvr T

Then, by direct calculation as T' — oo

4 2 T. cT: /\/T
20T, | 4 2p (ﬁ)Jraio_z (1760T2/\/T) [17€CT2/\/T701+6 2 }

wNT e (1+p) 2c VT (14p)
o T e n () () e i e )
= 2(1Tirp) +0 <T§/2> (6.25)

The sequential limit theory (ii) follows directly from (i) and the asymptotic expansion

1} of w%.
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If p =1+ 75 with v € (0,1), it is clear that the above fixed (T',c) limit theory as
n — oo continues to hold. Then, as T'— oo, we have in place of (6.24))

1-p _1-[+#]" 1-eT7
— 2

1- p2 —2% — T —2L c? _26

WNT 2 (1 + p) 1 4 1
= + 0 ~—40 (5=
wpT T T2 T T2

It follows that (ii) continues to hold with the same convergence rate vnT and same limit

leading to

variance 4 for all v € (0,1).
When 7 = 1, the sequential normal limit theory in (ii) still holds but the variance of

the limiting distribution changes. Observe that in this case

LT 1) T e)
b= 22— 2%-g %

Using (6.21)) we then have the following limit behavior as 7" — oo

WNT oiTy + U4TQ% +0(1) B i 14 (1:3?) o
wor - fem ) =]y o) T T o)’ ,
so that 8 (1 o 620)
Wi = }10 e (Lo
Hence

VT ( ) = N{o 8)(1_20_626) (6.26)

n — ,(—=8¢) —mFH |, .
Pgmm P (T7n)seq_’00 (1 + 2% — 620)2

so the v/nT Gaussian limit theory holds but with a different variance when p = 1+ 7£.

Observe that )

1—2¢c—e° 8

(—80)(—)2~—2—>oo as ¢ — 0,

(14 2¢c— e2) c

indicating that the variance in |) diverges and the v/nT convergence rate fails as the

unit root is approached via ¢ — 0.
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Next, examine the case where p = 1+ 7% with v > 1 and ¢ < 0, so that p is in
the immediate vicinity of unity, closer than the LUR case but still satisfying p < 1 for
fixed T In that case, we still have Gaussian limit theory as n — oo because |p| < 1. To
find the limit theory as (7 n)seq — 0o we consider the behavior of the numerator and

denominator of wp. First, note that log [1 + ]2T = T%ﬂ — Tzcj_l + O (T3£—1) so that

[1+%]2T:1+T~2ﬁ1 _T%il‘{'%(T'v 1) +O(T2'v 2) giving

1_p2T_1—[1+%]2T 1_|:1+T’Y1_T2"/—1+2(T'7_) +O(T3(v 1))]
2 2~ 2
1—0p —24 — &= 205 — 7

T2v Y T T2y

—2cT + 621 T 2+0(Tw1 ) 2 = { o < 1 )
= —{T+cTI* 7" +0(T"NN1+=— 40 ==
—2c{14+ 3% +0(7)} {Tte o)} o T\

— T+cT2‘7+O< ! )

Tv—1
. . . 9 . —p2T1 1—p2T1
Using this result, and letting wpr = vy with vpr = 1+p [Tl ]+o— [1 — - 5
we have
o’ [Tz‘”{1+ (1)}} + o2 e (Om-D (e o 1
v = — c ) o< — — —_
DT 1+p 1 e Tlfyfl 2 Tiy Tlg(y_l)

2 Ty(Ti—1)
_Til - =5 (ﬁv) + 0 <3<71)>

2 2 {1 o (1)

2c 1 2 ( 1 >
_ — — = — _|_O —
T17 1 2T12(’Y 1) T13(’Y 1)

c W(Th—1) (¢ 2 1 c -1
+{T171+ L@ (ﬂ) +O<W>}{1+T31{1+0<1)}}

T (140 (1)) + 03
= - o g
1+p 1 «

co? 2—7y 2
= _1-|—pT1 {1+o0(1)}+0Z

2 2
co 2_ c CO™ 12—
= {—1+pT1 V—caiTv_l}{Ho(l)}:—T {1 +o(1)},
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so that the denominator is wpr = #Tf_% {1+0(1)}. The numerator wyr is

(1-p) (1+57)
1+p

20Ty 4 QP(l_PQTQ) 2 2 T
1 2
T T e )

- a‘*TQ{l—T7 }{ +0()}+081:;{T+CTM ;T”/C—lJrO(T?g—”)}

1

275 (2T — 1) 2 T3
+0302{_2CT2_2(22);"7+0(1727>}
2

1—pT2+

2o [1+ et 2 (2Tp=1) <W> {l—i-o(l)}]

Cf n T2 (TQ 1) <T;Y> {1+0(1)}] _

T 2 2+ 25 {1+ 0(1)}

— {2U4T2 +2026% (=) T (T_;(:l) } [1+0(1)]=20"T[1+0(1)].

Combining these results we obtain

5  WNT 204Ty [1 +0(1)] 8T
Wy = = = g {l+o(1)}.
Toeer feppen oy g ey @B

It now follows that for p = 1 + 7% with ¢ < 0 fixed and v > 1

VaI3=2Y (pym — p) = N <O 8> :

(T'n) "2

seq

Hence when p is closer to unity than a local unit root, the vnT rate of convergence is

reduced to /n 7%%%. When v = § the rate of convergence is simply /n and for v > %

the large n Gaussian asymptotic dlstrlbutlon N (0 wT) diverges as T' — oo because w% =

8> {1+ o0(1)} diverges with T. In this event, sequential (T, n)

EyeicEn] — oo asymptotics
1

seq
fail. In effect, the convergence rate is slower than \/n and the non-Gaussian Cauchy limit

theory cannot be captured in these (7', n).. ., directional sequential asymptotics even though

seq
p =1+ 75 with v > 1 is closer proximity to a unit root than than the usual local unit

root case with vy =1. m

Proof of Theorem 5. In the mildly integrated case where p = 1 + \% we have

Yit = _\/T (1 + \F) Yit-1 + ui and Ay = pAyi—1 + Auy so that Ay = — 72 +
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_c_

=Yit—1 + Uit = (1 —=p)+ (p—1)yit—1 + ui. By partial summation, as shown above in
T T
(3.2), we have S°7_, Auwiyic—2 = wiryir—2 — UirYio — > 13 Wit—1AYis—2, so that

Sy S (w2 — wingio) — Yog_g Wit—1 | — 2 + “=yie—s + Uit
VT VT

Pgmm — P = n T Qe . (627)
D i1 Dot=2 {_ Jr T Y2t uz’t—l} Yit—2
Rescaling and using y;,0 = 0 gives
> o= {uiTyinQ — Ui [— 2+ i3+ Uit—z] }
VT (pym — p) = —— T vT VT . (6.28)

> i1 % Zthz {— ixﬁf + ﬁyit—z + uit—l} Yit—2

Since ﬁ 25:2 Ujp—1Ujp—2 = G = N (O, 04) , % ZZ;Q uit—1 = 0p (1), and % 23:2 Uit—1Yit—3 =
op (1) — see (6.30) below — the numerator is

i: ! Uiy ET:“ [ aic+ o Yit—3 + u }

— 1T YT —2 — w—1 | — = —F—=Yi1t—-3 it—2

i:lﬁ t=3 ﬁ ﬁ
n 1 T n

= — — Uit—1Ujt—2 + 0y (1) = — G;(1). 6.29
§ﬁ§ p (1) ;m (6.29)

Using Phillips and Magdalinos (2007, theorem 3.2) we find that

T 2 T 4 T
_ o _ o _
T3/ E yi2t —p _7207T 3/4 E Yit—1Uip = N (0, _2C>, and T3/2 E yit = op (1).
=2 t=2

t=2
(6.30)
The denominator of (6.28)) therefore satisfies
L o;c c “ o?
1
= — —=Yit— it— it— —_ . 6.31
;th:;{ \/T—Fﬁyn 2 + Ut l}yzt QHp;{0_2C} ( )

Hence, using (6.29) and (6.31) we havey/T (Pgmm — P) = n%z;;l Gi = 2%, ¢
where (; ~jiq N (0,1). Then

VT (pgm = P) = jﬁ ; ¢ = N(0,4), (6.32)
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which gives (i) and then leads directly to the sequential limit vnT (pynm — p) ( T):
n — 00

seq

N(@©0,4). m

Proof of Theorem 6. The proof follows the same lines as the proof of Theorem 3 above.

As before, we define the vector of standardized components appearing in the numerator
and denominator of vT' (pgmm — p) in )

n
Xor = (Xinr, Xonr)' = ( _1/225/1@, ZY%T) ’
i—1

where Y;‘T = (YiiT’ YQZ'T)/ with

Yiir =

-, 5l

t=3

T
a;C c
{uiTyz'T—Q - Z Uit—1 [—ﬁ + ﬁyitfii + uz’t2:| } Tfoo Yii = -G (1),

0.2

T
aic
Yair = TZ{ : \/Tyzt 2 + Uit — 1}%1& 2 = 5/'2@-—0_720

From ([6.29)) and (/6.31)) we have the sequential convergence

n /
=1

= X : = <a2g,—"22> , where ¢ = N (0,1), (6.33)

n—oo

which in turn implies the sequential limit v/nT (pgmm =) = N (0,4) given in

n—o00,T'—oco

6.12). Since X,7 = X, = X sequentially, joint weak convergence X,7r = X as

—>()o n—oo
n, 1) — oo holds in the same manner as Theorem 3 with only minor definitional changes.

First, Y;r is integrable just as before. To show Lemma A(i) holds, observe that

E HYZTH2 EYIQiT + EYQQ’iT

T

2
1 a;C c
= "Rl urur o — E N . .
T {uzTsz 2 — Ut —1 ( \/T + \/Tyzt 3+ Uit 2) }

T 2
1 a,C c
—I—ﬁE {;:2 <— \/% + ﬁyit—z + Uitl) yitQ}
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T 2
1 oyc c
= 7 Ele 9+ E {; Uit—1 <—\/% + ﬁyit—S + uit—2> }

T 2 9 9 T 2
c Qo
= 7 E%T 2t TE (Z Uit —1 Uit — 2) + g B (Z Uit—l) + fE (Z Uit —1Yit— 3)

t=3

2

T

T
_;O;;EE (;uitl ;31%52) _ 2041 E (Zuzt 123/15 3) T3/2 (Zuzt 1 Ujt— QZst 3)

ot VI 4T c?o? ) 1 1 1
S il N = = —
o O T+O<T>+ 3 ; y’t_3+0<ﬁ>+O<T>+O<\/T>

T
= 04%4-0(1),

since from (6.24) E (y2) = o2 11__’;)2; +a? (1- pt)2 = az_i;c {1+0(1)}. Then E ||Y;r|* < oo

and we deduce that

/2
lim sup— ZE |Yir|| = hmsupE |Yir| < hmsup (E | Yir|| ) < 00,
n,T—oo T i=1
as required. Condition (ii) holds, as we again have EY;7 = EY; = 0; and condition (iii)
and (iv) hold because supp B ||Yir[|? < oo and E||Y;||> < co. We then have joint weak

convergence

2
XT—n’1/2ZYT = Xi= <02g,"2>,

n,T—o00
=1

irrespective of the divergence rates of n and T to infinity. By continuous mapping, the
required result follows for the GMM estimator so that /T (pgmm —p) = N (0,4) holds
n,'—o0

jointly as (n,T) — oo irrespective of the order and rates of divergence. m

Proof of Theorem 7. We have p = 1 + 4% for some fixed ¢ < 0 and let " — oco. In

this case, yiy = —7 + (1 + Tv) Yit—1 + ui and Ay = pAyi1 + Auy so that Ay, =

_a4c
T

+ 75 Yit—1 + u. As before, we have

ﬁ Yoy {(UiTyiT—2 — Ui1Yi0) — Zt 3 Wit—1 [ T + T3 Vi3 + UiH}}

VT (pgmm — ) =
Py =) T i Zthz{_fv +

T Yit—2 + Uitfl} Yit—2
(6.34)
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We use the following results from Phillips and Magdalinos (2007) and Magdalinos and
Phillips (2009), which hold for all v € (0,1),

T 9 T 4 T
—1— g — o —1/2—
71 ”/nyt —p 7—20’T (147)/2 Z?ﬁt—luit -~ N <0’ _2C> . and T~1/2 Wzyz‘t =0,(1).
t=2 =2 =2 (6.35)

Then, since ﬁ ZtT:2 Uit_1Uit—2 = G = N (0, 04) , ﬁ 2?22 uit—1 = 0p (1), and ﬁ ZtTZQ Uit 1Yit—3 =
op (1) when v € (0,1), the numerator of (6.34)) is

Z UiTYiT— ZU 1[ Cy 3tu 2}
\/» YT -2 — it— T,Y it— it—
n

= —Z\/»Zuzt 1 U4t — 2+0p(1):>_ZGi(1>'

=1

Using (6.35)), we find that the denominator of (6.34)) satisfies

T n
1 a;c c o o°n
T Z {—ﬁ + T,yyzt 2+ Uit— 1} Yit—2 —p Zl {0_20} = DR

Hence, as T' — o

SN G o2
VT (Pgmm — P) = 2z i zf};l *, where (; ~iig N (0,1).
—gn

Then, as T" — oo is followed by n —, we have

n—oo

VT (pgmm = P) = IZ@ = N(0,4), for all v € (0,1).

Next consider the case v = 1. The numerator of (6.34]) is then

n T
1 o;C c
; ﬁ {UzTsz 2 — ; Uit—1 [ ;, + Tyitﬁ% + uitd} }
n 1 T n
= lz; 7T {uiTyiT2 - ;uitluitZ} +0,(1) o Ujoo K i (1) — ; G; (1),
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since by standard functional limit theory for near integrated processes (Phillips, 1987b) we

T 1
1 1
YiTs = Yit—1Ugt = (K (7’) 7/ K dB> )
<T1/2 ? T tz2 (3 Z) T 300 (612 0 (612 7

where B; (r) =: oW (r) are iid Brownian motions with common variance o2, and K; (r) =
I e“"=9)dB; (s) =: 0.J,; (r) is a linear diffusion. The denominator of 1) satisfies

T n 1 1
1 a;c c Z K
T Z {_ 71 + Tyit_2 + uit_l} Yit—2 Tfoo i=1 {c/o “ (T)2 drt /0 KCidBZ} '

have

\/T(pgmm_p) = Zz 1{“100 cz( ) Zz 1G} B E;ﬂ 1{(0'71?12‘00) cz( ) Cl}

oo S e fy K (P dr 4+ f) K () dBi} S0y {e fy Je ()2 dr + Jy Jad Wi
(6.36)
where the ¢; ~;;q N (0, 1) and are independent of the W; and u;q, for all ¢. This gives the first
part of (ii). Scaling the numerator and denominator of , noting that fo ci (1) dW;

has zero mean and finite variance, and using the independence of (;, Uino, and W;, we obtaln

Ly 1{<a i) T (1)~ €.
=
o %Zi:l{ fo ci dr"’fo ci dW}

N<O 1267256) _ <0 _8e — 2¢ — e*¢ >
—( )

=
oo o ( T ( dr) e — 1 - 2c)

\/TTT (pgmm - p)

since, using results in Phillips (1987b), we have E (fol Jei (r)? dr) = % and

1 — e B 1—2¢c—e2°
—2¢ —2c

E{(g—luioo) Jei (1) — Cz} (U uloo) EJ. (1 ) +E(12 =1+

Hence, when v = 1, we have

— 2¢ — e*¢
VT (pgmm —p) = N <0, (—8¢) 1_2_2> (6.37)
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From Lemma 2 of Phillips (1987b) we have

c—0

<(—20)/01 Jei ()2 dr, (—2¢)*/? /01 Jei (1) dWi> = (1,%Z), Zi~ia N(0,1,)

and %2—;%:2{1_’_0(1)} as ¢ — 0, so that

1—2c—e* —4
Sy (—8¢) _ (=49 _8 for small ¢ ~ 0 (6.38)

(=8¢) ————
2 1 _ 2 9 2 02

(6 1 QC) {% (2 C) }

which explodes as ¢ — 0, consonant with the unit root case where we only have /T

convergence. Observe that both (6.37) and (6.38)) correspond to earlier results with the

reverse order of sequential convergence (7, n)seq — 00.

Next suppose v > 1 so that p = 1+ % is closer to unity than the LUR case with v = 1.
In this case, the numerator and denominator of (6.34)) have the same limits as in the unit

root case, viz.,

T
1 o;C c
E Wia {UiTyiT—2 - E Ujt—1 [— TZW + ] Yit—3 + Uitﬂ} }

i=1 t=3
= X7 {“iT%’T? - Zuu—wn—z} +0,(1) = > {uinBi (1) = Gi}

i=1 t=3 i=1

and
L oc c n 1
(2

2T Z {_ﬁ + Ty Yit=2 + uit—l} Yit—2 Tfoo Z {/0 BidBl} .

i=1 t=2 i—1
Then

VT (b —-p) = Yoy {uiceBi (1) — Gy} _ ﬁ Yo {07 ioe) Wi (1) = (i}
gmm T—o0 Z?‘:l fol B;dB; ﬁ Z?:l fOl WidW; e

2C,

since (ﬁ S {0 i) Wi (1) = G = 0 WidWi> = N (o, [ 3 1(/)2 D .
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