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Abstract

Limit theory is developed for the dynamic panel GMM estimator in the presence of

an autoregressive root near unity. In the unit root case, Anderson-Hsiao lagged variable

instruments satisfy orthogonality conditions but are well-known to be irrelevant. For a

fixed time series sample size (T ) GMM is inconsistent and approaches a shifted Cauchy-

distributed random variate as the cross section sample size n→∞. But when T →∞,
either for fixed n or as n → ∞, GMM is

√
T consistent and its limit distribution is a

ratio of random variables that converges to twice a standard Cauchy as n→∞. In this
case, the usual instruments are uncorrelated with the regressor but irrelevance does not

prevent consistent estimation. The same Cauchy limit theory holds sequentially and

jointly as (n, T )→∞ with no restriction on the divergence rates of n and T.When the

common autoregressive root ρ = 1 + c/
√
T the panel comprises a collection of mildly

integrated time series. In this case, the GMM estimator is
√
n consistent for fixed

T and
√
nT consistent with limit distribution N (0, 4) when n, T → ∞ sequentially

or jointly. These results are robust for common roots of the form ρ = 1 + c/T γ for

all γ ∈ (0, 1) and joint convergence holds. Limit normality holds but the variance

changes when γ = 1. When γ > 1 joint convergence fails and sequential limits differ

with different rates of convergence. These findings reveal the fragility of conventional

Gaussian GMM asymptotics to persistence in dynamic panel regressions.

Keywords: Cauchy limit theory, Dynamic panel, GMM estimation, Instrumental vari-

able, Irrelevant instruments, Panel unit roots, Persistence.

JEL classification: C230, C360

∗This paper originated in a Yale take home examination (Phillips, 2013). Some of the results were
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1 Introduction

The use of instrumental variables (IV) in dynamic panel estimation was suggested by

Anderson and Hsiao (1981, 1982) and has led to a substantial theoretical and applied lit-

erature on the use of IV and generalized method of moment (GMM) estimation techniques

in dynamic panels. The unit root case is well-known to present diffi culties for IV/GMM

methods because lagged variable instruments satisfy the required orthogonality conditions

but fail the relevance condition. The problem was discussed in Blundell and Bond (1998)

and Moon and Phillips (2004). It is easy to dismiss the unit root case as unidentified by

IV/GMM formulations involving lagged level instruments. As a result there are few analy-

ses of GMM asymptotics in this apparently unidentified case. An important exception is

Kruiniger (2009) who considered dynamic panel estimation with persistent data when the

cross section sample size n → ∞ and the time series sample size (T ) is fixed, showing

inconsistency of the GMM estimator of the autoregressive parameter.

The existence of other techniques that do deliver consistent estimation in the unit root

case has partly diverted attention from the GMM approach, although these alternative

methods also present diffi culties such as bias and bias discontinuities in the case of level

maximum likelihood (Hahn and Kuersteiner, 2003), likelihood function anomalies in the

case of first difference maximum likelihood (Han and Phillips, 2013), and sensitivity to

departures from stationary errors under X-differencing (Han, Phillips, and Sul, 2014). In

view of these diffi culties as well as the convenience of standard software implementation,

GMM and its many variants are still heavily used in empirical work with dynamic panels.

In such applications, conventional GMM Gaussian asymptotic theory is typically assumed

to apply when either or both the cross section sample size (n) and time series sample

size (T ) tend to infinity. When the autoregressive root lies in the vicinity of unity, these

Gaussian asymptotics are inevitably fragile because of failing instrument relevance.

The present paper completes existing theory by providing an asymptotic analysis of

GMM in the unit root panel AR(1) model using large n, large T , and joint (n, T ) asymp-

totics. For fixed T , we show that GMM is inconsistent and approaches a shifted and

scaled Cauchy distributed random limit variate as n→∞, which corresponds to the find-
ing in Kruiniger (2009). For fixed n, GMM is

√
T consistent as T → ∞ and has a limit

distribution that involves a ratio of random variables which depends on the distribution

of the data, so no invariance principle applies. When T → ∞ as n → ∞, GMM is
√
T

consistent and its limit distribution is two times a standard Cauchy. The same limit the-
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ory holds both sequentially, irrespective of the order of divergence of (n, T ), and jointly as

(n, T ) → ∞, irrespective of the relative rates of divergence of n and T . Importantly, the
usual instruments are uncorrelated with the regressor in this case, but this irrelevance does

not prevent consistent estimation at least as T → ∞. In nonstationary data models even
orthogonal instruments can be effective in delivering consistent estimation, as was pointed

out in early nonstationary time series work (Phillips and Hansen, 1990). Similar effects

arise with panel data in the unit root case even though the model is differenced to remove

fixed effects prior to regression. In this event, the differenced regressor is itself stationary

and so the relevance effect arises from a sample covariance between a stationary and unit

root process giving a random limit with zero mean and positive variance, thereby helping

to explain the well-known dispersion of the GMM estimator which applies here even in

the limit in the unit root case. The Cauchy form of the asymptotics (and uncertainty

reflected in the heavy tailed distribution) is reminiscent of (and related to) the limit theory

that applies in unidentified simultaneous equations models when estimated by instrumental

variables under conditions of apparent identification (Phillips, 1989).

The paper further investigates near unit root cases where the common autoregressive

coeffi cient lies in the vicinity of unity. We focus primarily on cases where ρ = 1 + c/
√
T ,

consonant with the
√
T convergence rate of GMM when ρ = 1. Results for large n, large

T, sequential, and joint asymptotics are provided. The limit theory leads to a correction

of the asymptotic variance reported in Anderson and Hsaio (1981). Extensions of these

results are given for common roots of the form ρ = 1 + c/T γ for all γ ∈ (0, 1) , γ = 1, and

γ > 1.

The remainder of the paper is organized as follows. Succeeding sections give the limit

theory for the panel unit root model under fixed n, fixed T, sequential (n, T ) , sequential

(T, n) , and joint (n, T ) → ∞ asymptotics. Later sections examine the impact of local to

unity parameterizations on the asymptotic theory. Extensions to the multiple instrument

and differenced instrument cases are considered in the penultimate section. Section 5

concludes with some further discussion. Proofs and derivations are given in the Appendix.

Throughout the paper, we use the notation (n, T )seq → ∞ to signify T → ∞ followed by

n→∞; correspondingly, (T, n)seq →∞ signifies n→∞ followed by T →∞; (n, T )→∞
denotes joint asymptotics where there is no restriction on the passage of n and T to infinity;

and Tj = T − j for all integer j.
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2 Model Preliminaries

In the dynamic panel regression model

yit = αi (1− ρ) + ρyit−1 + uit, i = 1, ..., n; t = 1, ...T (2.1)

the αi are fixed effects for which σ2α = limn→∞
1
n

∑n
i=1 α

2
i <∞, the errors uit are iid

(
0, σ2

)
with finite fourth moment across all i and over all t, and the initial conditions yi0 = Op (1)

for all i and are independent of the uit for all i and t. Heterogeneity over imay be introduced

without disturbing some of the results given below provided large n limit theory applies

and uniformity conditions continue to hold for joint (n, T ) asymptotics. In order to deliver

quick results we will maintain the iid assumption for uit in what follows, while pointing out

some of the extensions that apply. We define uis = 0 for all s ≤ 0 and we often assume for

simplicity that yi0 = 0, a.s., although calculations are usually shown for the more general

case.

We start by studying the simple linear IV/GMM estimator (Anderson and Hsiao, 1981)

which uses instruments yit−2 in the differenced regression

∆yit = ρ∆yit−1 + ∆uit, (2.2)

leading to the estimator ρgmm =
∑n

i=1

∑T
t=2 ∆yityit−2/

∑n
i=1

∑T
t=2 ∆yit−1yit−2. When the

true autoregressive coeffi cient in (2.1) is ρ = 1 we have

ρgmm − 1 =

∑n
i=1

∑T
t=2 ∆uityit−2∑n

i=1

∑T
t=2 ∆yit−1yit−2

. (2.3)

With ρ = 1 we have ∆yit = uit whose partial sum solution is yit =
∑t

s=1 uis + yi0 up to

the initial condition yi0 and since

E (uityit−2) = E (∆uityit−2) = 0, (2.4)

the instrument yit−2 satisfies the orthogonality condition in both (2.1) and (2.2). So in-

strument orthogonality to the regression error in (2.2) holds. However, orthogonality is

generally insuffi cient for identification and consistent estimation, for which relevance of the

instrument (to use the terminology of Phillips, 1989) is typically needed. In the present
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case, we have

E (∆yit−1yit−2) = E (uit−1yit−2) = 0, for all t and all i (2.5)

so the instrument yit−2 is actually orthogonal to the regressor ∆yit−1 in (2.2) and relevance

fails. In this event, the moment conditions (2.4) do not identify the unit root (Kruiniger,

2009)). As is well-known, therefore, the GMM estimator (2.3) is expected to perform poorly

in finite samples and to be inconsistent in the limit, as the instrument yit−2 is irrelevant

for the regressor ∆yit−1 in (2.2). Similar properties of orthogonality and irrelevance hold

for all instrumental variables that take the form of lagged variables {yis : s = 1, 2, ...t− 2} .

3 Asymptotics when ρ = 1

3.1 Large n Asymptotics

Start with the case where T is fixed and n → ∞. Consider
√
n standardized forms of the

numerator and denominator of (2.3), viz.,

NnT =
1√
n

n∑
i=1

T∑
t=2

∆uityit−2, DnT =
1√
n

n∑
i=1

T∑
t=2

∆yit−1yit−2.

Observe that ∆ (uityit−2) = ∆uityit−2 + uit−1∆yit−2 = ∆uityit−2 + uit−1uit−2 under ρ = 1,

so by partial summation

T∑
t=3

∆uityit−2 = (uiT yiT−2 − ui2yi0)−
T∑
t=3

uit−1uit−2. (3.1)

Adding ∆ui2yi0 = ui2yi0 − ui1yi0 to each side gives

T∑
t=2

∆uityit−2 = (uiT yiT−2 − ui1yi0)−
T∑
t=3

uit−1uit−2. (3.2)

Then, NnT = 1√
n

∑n
i=1 (uiT yiT−2 − ui1yi0)− 1√

n

∑n
i=1

∑T
t=3 uit−1uit−2, andDnT = 1√

n

∑n
i=1

∑T
t=2 uit−1yit−2,

for which we have the following limit behavior as n→∞ when T is fixed.

Theorem 1 For fixed T as n→∞
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(i) (NnT , DnT ) ⇒
n→∞

N (0, VT ) , VT = σ4T2

(
2 −1

−1 T1/2

)
, where Tj = T − j;

(ii) ρgmm − 1 ⇒
n→∞

− 2
T1

+ 2

(
1− 1

T1

)1/2
T
1/2
1

C, where C is a standard Cauchy variate.

Thus, when T is fixed and n → ∞, ρgmm is inconsistent and converges weakly to a

Cauchy distribution centred on 1 − 2
T1
, a result that was earlier obtained in Kruiniger

(2009, theorem 1(i)) for the random coeffi cient case with T = 3. The heavy tailed limit

distribution arises because the denominator DnT has a random limit and its Gaussian

distribution is symmetrically distributed with a positive density at zero, which ensures

that no integer moments exist. The random limiting denominator reflects the presence of

random information in the GMM signal in the limit.

Next consider sequential asymptotics in which n → ∞ is followed by T → ∞. From
Theorem 1(ii) we deduce directly that

√
T1

(
ρgmm − 1 +

2

T1

)
⇒

n→∞
2

(
1− 1

T1

)1/2
C ⇒
T→∞

2C, (3.3)

giving √
T
(
ρgmm − 1

)
⇒

(T,n)seq→∞
2C. (3.4)

Evidently, the GMM estimator ρgmm is consistent as T →∞, even though the instrumental
variable yit−2 is irrelevant in the panel regression for all t. The rate of convergence is

√
T ,

which is slower than the usual rate (T ) for (unit root) nonstationary data in time series

regression. The explanation for the large T consistency of ρgmm is that, although the

relevance condition fails for all t and E (∆yit−1yit−2) = 0, the sample covariance (moment

condition) does not have a zero limit as T →∞. Instead,

1

T

T∑
t=2

∆yit−1yit−2 =
1

T

T∑
t=2

uit−1yit−2 ⇒
∫ 1

0
BidBi 6= 0 a.s. (3.5)

where Bi is Brownian motion with variance σ2 for all i (Phillips, 1987a). On the other

hand, as n→∞ with T fixed, the sample covariance

1

n

n∑
i=1

(
T∑
t=2

∆yit−1yit−2

)
→p 0, (3.6)
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in view of (2.5). The nonzero limit (3.5) ensures some relevance as T →∞ in the nonsta-

tionary instrument yit−2 in spite of the fact that E (∆yit−1yit−2) = 0. But since the limit

(3.5) is random, there is inevitably high variability in the GMM estimate. The variability

is sustained in the Cauchy distribution limit for which there are heavy tails and no finite

sample integer moments, just as in the fixed T case.

The convergence rate is
√
T because the IV regression signal is

∑T
t=2 ∆yit−1yit−2 =

Op (T ) , the order of a sample covariance between integrated and stationary processes.

This O
(√

T
)
rate is slower than the usual O (T ) convergence rate for unit root and IV

unit root regressions where, with both instrument and regressor integrated, the signal is of

order O
(
T 2
)
not O (T ).

3.2 Large T Asymptotics

Start with the case where n is fixed. As the following result shows, the limit theory for

T →∞ does not obey an invariance principle and is dependent on the distribution of the

data. But when T →∞ is followed by n→∞, an invariance principle holds and we again
have a Cauchy distribution limit.

Theorem 2

(i) As T →∞ with n fixed

√
T
(
ρgmm − 1

)
⇒

T→∞

∑n
i=1 {ui∞Bi (1)−Gi}∑n
i=1

1
2

{
Bi (1)2 − σ2

} . (3.7)

where {Bi (r)}ni=1 are a family of iid Brownian motions with variance σ2 that are inde-
pendent of the family of iid Gaussian variates {Gi}ni=1 each with zero mean and variance
σ4 and all independent of the variate ui∞ which is an identically distributed copy of uit.

(ii) When T →∞ followed by n→∞

√
T
(
ρgmm − 1

)
⇒

(n,T )seq→∞
2C. (3.8)

Hence, ρgmm is consistent as T → ∞ when the cross section sample size n is fixed. The

explanation is the same as that given above concerning the relevance of the nonstationary

instrument yit−2. Observe that (3.7) is a ratio of two random variables each of which is
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centred on the origin and the denominator has positive probability density at the origin,

which ensures that the ratio (3.7) has no finite sample integer moments..

Importantly, as shown in the proof of the theorem, the limit (3.7) involves only a partial

application of an invariance principle. The component ui∞ in the numerator of (3.7) is

not the outcome of an invariance principle but is instead distribution dependent since

ui∞ =d uit for all t in view of the identical distribution assumption concerning uit.

Evidently, when T → ∞ is followed by n → ∞ the sequential limit distribution is

identical to the limit distribution with the reverse order of sequential limits (i.e., n → ∞
followed by T →∞) as given in (3.4).

3.3 Joint Limit Theory as (n, T )→∞

The equivalence of the sequential limit results (3.4) and (3.8) suggests that the limit theory

is robust to the path of divergence of the respective cross section and time series sample

sizes or the relative rates at which (n, T ) → ∞. The limit theory under joint sample
size expansion (n, T ) → ∞ is proved in the following result using the criteria for joint

convergence given in Phillips and Moon (1999).

Theorem 3
√
T
(
ρgmm − 1

)
⇒

(n,T )→∞
2C and joint convergence applies as (n, T ) → ∞

irrespective of the order and rates of expansion of the respective sample sizes.

The heavy tailedness property of the GMM estimator ρgmm manifested in the joint

limit theory to a Cauchy variate applies irrespective of the manner in which the cross

section and time series sample sizes diverge to infinity. The rate of convergence is
√
T , as

in both forms of sequential asymptotics, and is slower than the usual O (T ) rate associated

with unit root time series because of the diminished signal from the ‘apparently irrelevant’

instrument yit−2 used in the GMM regression.

4 Local Unit Root Asymptotics when ρ = 1 + c/T γ, c < 0

There are several local unit root (LUR) cases that may be considered. For large n fixed T

asymptotics it is possible to consider deviations from unity of the form ρ = 1 + c/nγ for

γ ∈ (0, 1) as in Kruiniger (2009). This formulation is largely for mathematical convenience

in analyzing the effects of local departures from unity in large n asymptotics. Importantly,

the autoregressive parameter ρ measures time series dependence in the panel data yit. It
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is therefore more diffi cult to justify modeling time series dependence through a parameter

whose value ρ = ρn = 1 + c/nγ depends on the number of cross section observations. In

particular, the dependence ρn = 1 + c/nγ implies that the AR coeffi cient of an individual

time series like y1t in the panel will approach unity simply by increasing the number

of panel observations. Given cross section independence in the panel, it seems hard to

justify such dependence of ρn on n other than for the mathematical convenience of more

closely studying limit behavior in the vicinity of unity. One possible justification is that the

commonality of the AR parameter ρ across individual time series in the panel yit provides

a linkage across the panel that rationalizes formulations such as ρn = 1 + c/nγ . Then,

raising the number of cross section observations n enables us to model phenomena with

common AR time dependence that is increasingly close to unity, even in spite of the cross

section independence in the panel. In this case, in view of the commonality of ρ across

section, more cross section information may reasonably be expected to enable us to model

phenomena with AR time dependence closer to persistence.

By contrast, time series sample size dependences of ρ on T, such as ρ = ρT = 1 + c/T γ ,

are already commonplace in the time series literature. The classifications used in that

literature for measuring departures from unity apply in the same way for panels. Thus,

when γ = 1 the departures are deemed to be local to unity (LUR) concordant with a Pitman

drift when the estimation convergence rate is O (T ) , as is typical in time series regression.

When γ ∈ (0, 1) , the departures are said to constitute a mild unit root (MUR) and lead to

mildly integrated time series in the sense of Phillips and Magdalinos (2007). In both cases,

as the time series sample size T increases, the triangular array model formulation allows

us to model time series phenomena with AR time dependence that approaches persistence

(ρ = 1) and differentiates the effects of such parameterizations on the limit theory, thereby

bridging part of the large T limit theory gap between fixed stationary and unit root cases.

The justification for using such LUR and MUR formulations of ρ as T →∞ is now well

established in the time series literature. Accordingly, in view of the
√
T convergence rate

of the GMM estimator when ρ = 1, this section concentrates largely on MUR asymptotic

theory for localizing sequences that are of the form ρ = 1+c/
√
T . As earlier, we will consider

large n and large T asymptotics, sequential limits, and joint convergence. We also look at

cases where ρ = 1 + c/T γ and develop large n, large T asymptotics that cover the implied

wider and narrower vicinities of unity that occur for more general parameterizations with

γ > 0.
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4.1 Large n and Sequential (T, n)seq →∞ Asymptotics

It is natural to start with the case where ρ = 1 + c√
T
with fixed c < 0 and fixed T

as n → ∞. This localization seems appropriate given that
√
T asymptotics apply when

ρ = 1, but more general cases may be considered and these are discussed below. Fixing

the parameters (c, T ) implies a fixed |ρ| < 1 and Gaussian asymptotics apply. Anderson

and Hsaio (1981, AH) gave results for the fixed stationary case in a model with random

effects as n, T →∞, but their expression for the asymptotic variance is incorrect.1 In the
fixed effects case, which is closely related, the limit theory is as follows.

Theorem 4 In model (2.1) with ρ = 1 + c√
T
for fixed c < 0, we have

(i)
√
n
(
ρgmm − ρ

)
⇒

n→∞
N
(
0, ω2T

)
,

(ii)
√
nT
(
ρgmm − ρ

)
⇒

(T,n)seq→∞
N (0, 4) ,

where ω2T = ωNT
ωDT

= 2(1+ρ)
T1

+ O
(
1
T 21

)
. Explicit expressions for (ωNT , ωDT ) are given in

(6.21) and (6.22) in the Appendix. Parts (i) and (ii) continue to hold when ρ = 1+ c
T γ with

the same convergence rates
√
n and

√
nT and the same limit variances for all γ ∈ (0, 1) .

(iii) When γ = 1, the Gaussian limit theory (i) still applies but the limit variance ω2T has

the alternate form

ω2T ∼ −
8c

T1

(
1− 2c− e2c

)
(1 + 2c− e2c)2

{1 + o (1)} , as T →∞ (4.1)

and
√
nT
(
ρgmm − ρ

)
⇒

(T,n)seq→∞
N

(
0, (−8c)

(
1− 2c− e2c

)
(1 + 2c− e2c)2

)
. (4.2)

(iv) When γ > 1,
√
nT 3−2γ

(
ρgmm − ρ

)
⇒

(T,n)seq→∞
N
(
0, 8

c2

)
.

In the stationary case with fixed c < 0, fixed T, and the stationary initial condition

yi0 = αi+
∑∞

j=0 ρ
jui,−j , we have yit = αi+

∑∞
j=0 ρ

jut−j and the asymptotic variance when

1The Anderson-Hsaio (1981) formula given by equation (8.4) in their paper assumes, incorrectly, that
∆uityit−2 is a martingale difference, so the formula omits cross product terms in the expression. The correct
limiting variance of

√
nT

(
ρgmm − ρ

)
is given by 2 (1 + ρ), as shown in theorem 4 and (4.3). This result

applies also in the stationary random effects case as discussed below.
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n→∞ then has the simpler explicit form

ω2T =
2 (1 + ρ)

T1
+ 2

(1 + ρ)2
{
σ2α/σ

2

(1−ρ)2 + ρ
1−ρ2

}
T 21

∼
2 (1 + ρ)

T1
for large T. (4.3)

The same limit theory applies in the stationary, random effects case where αi ∼iid
(
0, σ2α

)
,

which was studied in AH (1981). Expression (4.3) corrects the formula given in AH (equa-

tion 8.4) for the limiting variance in the random effects model. See Phillips and Han (2014)

for further details.2

Different localization rates may be studied in the same way. Importantly, whatever rate

γ ∈ (0, 1) is used for ρ = 1+ c
T γ to approach unity, the limit variance ω

2
T continues to apply

for all fixed T and fixed c. Correspondingly, since ω2T ∼
2(1+ρ)
T1

for large T, we still get√
T convergence and a normal limit theory for these localization coeffi cients, irrespective of

how close to unity 1 + c
T γ is. Sequential asymptotics

√
nT
(
ρgmm − ρ

)
⇒

(T,n)seq→∞
N (0, 4)

then hold whenever n → ∞ followed by T → ∞. So, theorem 4 continues to apply for

ρ = 1 + c
T γ and all γ ∈ (0, 1).

Moreover, as indicated in part (iii) of the theorem, when γ = 1, sequential Gaussian

asymptotics hold but the variance of the limiting distribution changes to (−8c)
(1−2c−e2c)
(1+2c−e2c)2 .

Observe that

(−8c)

(
1− 2c− e2c

)
(1 + 2c− e2c)2

∼ 8

c2
→∞ as c→ 0 (4.4)

so the Gaussian limit theory changes when closer approaches to the unit root occur. More-

over, as shown in the proof of Theorem 4(iv), when ρ = 1 + c
T γ with c < 0 fixed and γ > 1

the limit distribution is given by

√
nT 3−2γ

(
ρgmm − ρ

)
⇒

(T,n)seq→∞
N

(
0,

8

c2

)
, (4.5)

where the variance corresponds with (4.4) and the rate of convergence depends on γ,

changes from
√
nT to

√
nT 3−2γ , and reduces as γ increases. Thus, when γ → 3

2 the

rate of convergence approaches
√
n and when γ > 3

2 there is divergence because the limit

variance when n → ∞ is ω2T = 8T2

c2T
2(2−γ)
1

{1 + o (1)} and the variance diverges as T → ∞.
So sequential (T, n)seq → ∞ asymptotics fail and the distribution diverges as T → ∞. In

2The error in AH (1981, equation 8.4) was noted independently by Yinja (Jeff) Qiu in his take home
examination solution (2014) to Phillips (2013).
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that case, the convergence rate is effectively slower than
√
n and the limit theory is not

captured by sequential asymptotics where (T, n)seq → ∞. Instead, as shown below, unit
root

√
T asymptotics apply when (n, T )seq →∞ because ρ = 1 + c

T γ is in close proximity

to ρ = 1 when γ > 1 and T →∞ first.

4.2 Large T and Sequential (n, T )seq →∞ Asymptotics

We now consider limits in which T →∞ and ρ = 1 + c√
T
differs moderately from unity. In

a time series framework, this formulation is a special case of moderate integration in the

sense of Phillips and Magdalinos (2007). Again, more general cases where ρ = 1 + c
T γ are

considered below. The panel asymptotics are given in the following result.

Theorem 5 In model (2.1) with ρ = 1 + c√
T
for fixed c < 0, we have

(i)
√
T
(
ρgmm − ρ

)
⇒

T→∞
2
n

∑n
i=1 ζi, where ζi ∼iid N (0, 1) ,

(ii)
√
nT
(
ρgmm − ρ

)
⇒

(n,T )seq→∞
N (0, 4) .

It follows that ρgmm is
√
T consistent and

√
T
(
ρgmm − ρ

)
is asymptotically Gaussian

N (0, 4/n) when T → ∞. In sequential limits as (n, T )seq → ∞, the limit distribution is
Gaussian N (0, 4) after rescaling, just as in Theorem 4 above when (T, n)seq → ∞. Joint
convergence to N (0, 4) then follows in the same manner as Theorem 3 and is given in the

following result.

Theorem 6 When ρ = 1 + c√
T
with fixed c < 0, we have

√
T
(
ρgmm − ρ

)
⇒

(n,T )→∞
N (0, 4) and joint convergence applies as (n, T ) → ∞ irrespective of the order and

rates of expansion of the respective sample sizes.

Next consider the case where ρ = 1 + c
T γ with fixed c < 0.

Theorem 7 Let ρ = 1 + c
T γ with fixed c < 0 and γ > 0.

(i) When γ ∈ (0, 1) ,
√
T
(
ρgmm − ρ

)
⇒

T→∞
2
n

∑n
i=1 ζi, where ζi ∼iid N (0, 1) , and

√
nT
(
ρgmm − ρ

)
⇒

(n,T )seq→∞
N (0, 4) . (4.6)
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(ii) When γ = 1,
√
T
(
ρgmm − ρ

)
⇒

T→∞

∑n
i=1{(σ−1ui∞)Jci(1)−ζi}∑n

i=1{c
∫ 1
0 Jci(r)

2dr+
∫ 1
0 Jci(r)dWi} , where Jci (r) =∫ r

0 e
c(r−s)dWi (s) , Wi are standard Brownian motions, and the ζi ∼iid N (0, 1) and in-

dependent of Wi for all i. Further when γ = 1 and T → ∞ followed by n → ∞, we
have

√
nT
(
ρgmm − ρ

)
⇒

(n,T )seq→∞
N

(
0,−8c

1− 2c− e2c

(e2c − 1− 2c)2

)
. (4.7)

(iii) When γ > 1,
√
T
(
ρgmm − ρ

)
⇒

T→∞

∑n
i=1 ζi∑n

i=1

∫ 1
0 WidWi

and then

√
T
(
ρgmm − ρ

)
⇒

(n,T )seq→∞
2C (4.8)

The N (0, 4) sequential limit theory given in (4.6) mirrors Theorem 5(ii), showing that

this limit result is robust for all moderately integrated panels with mild integration para-

meter γ ∈ (0, 1) . Joint limit theory applies in this case, precisely as in the proof of Theorem

6, so the details are omitted here.

When γ = 1, the large T limit theory under (ii) involves the standardized diffusion

processes Jci, as is usual in local to unity cases. The corresponding sequential (n, T )seq
limit theory in (4.7) retains the

√
nT convergence rate and has a limit variance that depends

on the localizing coeffi cient c, again as may be expected in the LUR case. Moreover, this

limit theory is the same as the (T, n)seq → ∞ sequential asymptotics given in (4.2) of

Theorem 4 and both
√
nT convergence and limiting normality continue to hold. Again,

the limit theory is independent of the direction of the asymptotics and joint convergence

holds in the same way as Theorem 6. .

When γ > 1, the sequential (n, T )seq limit theory (4.8) corresponds exactly to the panel

unit root limit Cauchy distribution since the panel autoregressive root ρ = 1 + c
T γ is closer

to unity than the local to unity coeffi cient ρ = 1 + c
T and T → ∞ first. It is this close

proximity of ρ = 1+ c
T γ to unity as T →∞ that ensures that the panel unit root limit theory

obtains when γ > 1. Importantly, joint convergence no longer holds in this case. Instead,

directional asymptotics occur and the limit distribution depends on the nature of the sample

size expansion. For when (T, n)seq →∞ we have
√
nT 3−2γ

(
ρgmm − ρ

)
⇒

(T,n)seq→∞
N
(
0, 8

c2

)
as obtained in (4.5), whereas when (n, T )seq → ∞ we have

√
T
(
ρgmm − ρ

)
⇒

(n,T )seq→∞
2C

as given in (4.8). In effect, the non-Gaussian Cauchy limit theory cannot be captured

in (T, n)seq directional sequential asymptotics where the limit theory is Gaussian because
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|ρ| < 1 as n→∞.

5 Further Discussion

Anderson and Hsiao (1981) also suggested using the lagged differences ∆yit−2 (rather than

the lagged levels yit−2) as an instrumental variable. This estimator has the form

ρgmm2 =

∑n
i=1

∑T
t=2 ∆yit∆yit−2∑n

i=1

∑T
t=2 ∆yit−1∆yit−2

=

∑n
i=1

∑T
t=2 uituit−2∑n

i=1

∑T
t=2 uit−1uit−2

, when ρ = 1.

Calculations similar to those given in Section 3 now lead to

1√
n

n∑
i=1

{
T∑
t=2

uituit−2,
T∑
t=2

uit−1uit−2

}
⇒

n→∞
N

(
0, σ4T1

[
1 0

0 1

])
,

which is invariant to T after rescaling by
√
T1. It follows that ρgmm2 ⇒n→∞ C, showing that

ρgmm2 is inconsistent, miscentred around the origin, with a random variable limit that has

heavy tails like ρgmm and is invariant to the time series sample size T. In consequence,

sequential asymptotics give the same limit, viz., ρgmm2 ⇒
(T,n)seq→∞

C. Similarly,

1√
T

T∑
t=2

{
n∑
i=1

uituit−2,
n∑
i=1

uit−1uit−2

}
⇒

T→∞
N

(
0, σ4n

[
1 0

0 1

])

which is invariant to n after scaling by
√
n. Then ρgmm2 ⇒

T→∞
C, leading directly to the

sequential asymptotics ρgmm2 ⇒
(n,T )seq→∞

C. Similar arguments to those given earlier show

that this limit theory applies jointly as (n, T )→∞ irrespective of the rates of divergence

of the sample sizes. Use of lagged differences ∆yit−2 as instruments therefore leads to an

inconsistent estimator of ρ in the unit root case for fixed T, fixed n, and joint asymptotics.

In this case, both the regressors ∆yit−1 and the instruments ∆yit−2 are stationary with co-

variance E (∆yit−1∆yit−2) = 0. So the sample signal n−1
∑n

i=1 T
−1∑T

t=2 ∆yit−1∆yit−2 has

zero expectation and zero limit in probability, thereby providing no leverage for consistent

estimation. Mildly integrated cases with ρ = 1 + c/T γ may also be examined using these

methods, as may GMM estimates with more instruments, but they are not considered in

the present work and will be reported elsewhere.

14



6 Appendix

Proof of Theorem 1. Part (i) follows by the Lindeberg Lévy CLT

1√
n

n∑
i=1

( ∑T
t=2 ∆uityit−2∑T
t=2 ∆yit−1yit−2

)
⇒ N (0, VT ) , (6.1)

with

VT =

 E
(∑T

t=2 ∆uityit−2
)2

E
(∑T

t=2 ∆uityit−2
)(∑T

t=2 ∆yit−1yit−2
)

E
(∑T

t=2 ∆uityit−2
)(∑T

t=2 ∆yit−1yit−2
)

E
(∑T

t=2 ∆yit−1yit−2
)2

 .

(6.2)

To evaluate, note by partial summation as indicated in (3.1) and (3.2), we have

T∑
t=2

∆uityit−2 = uiT yiT−2 − ui1yi0 −
T∑
t=3

uit−1∆yit−2 (6.3)

To compute VT , note that

E

(
T∑
t=2

∆uityit−2

)2
= E

{
(uiT yiT−2 − ui1yi0)−

T∑
t=3

uit−1uit−2

}2

= E (uiT yiT−2 − ui1yi0)2 − 2E

{
(uiT yiT−2 − ui1yi0)

(
T∑
t=3

uit−1uit−2

)}
+ E

(
T∑
t=3

uit−1uit−2

)2

= Eu2iT y2iT−2 + Eu2i1y2i0 +
T∑
t=3

E
(
u2it−1u

2
it−2
)

= σ4T2 + 2σ2Ey2i0 + σ4T2 = 2σ4T2,

the final line following if the initial condition yi0 = 0, which will be assumed in the calcula-

tions below. The large n asymptotic results will continue to hold for yi0 = Op (1) even for

finite T with some obvious minor adjustments to the variance matrix expressions involving
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quantities of O (1) in T. Next

E

(
T∑
t=2

∆yit−1yit−2

)2
= E

(
T∑
t=2

uit−1yit−2

)2
= σ2

T∑
t=2

Ey2it−2 = σ4
T∑
t=2

(t− 2)

= σ4T2T1/2,

and, with yi0 = 0 (or up to O (1) in T if yi0 6= 0)

E

(
T∑
t=2

∆uityit−2

)(
T∑
t=2

uit−1yit−2

)
= E

{(
(uiT yiT−2 − ui1yi0)−

T∑
t=3

uit−1uit−2

)(
T∑
t=2

uit−1yit−2

)}

= −E
(

T∑
t=3

uit−1uit−2

)(
T∑
t=2

uit−1yit−2

)
− E (ui1yi0)

2

= −E


T∑
t=3

(uit−1uit−2) (uit−1yit−2) +

T∑
s,t=3;s 6=t

(uit−1uit−2) (uis−1yis−2)


= −

T∑
t=3

Eu2it−1u2it−2 = −σ4
T∑
t=3

1 = −σ4T2.

Then

VT =

(
2σ4T2 −σ4T2
−σ4T2 σ4T2T1/2

)
= σ4T2

(
2 −1

−1 T1/2

)
,

as stated.

For Part (ii), simply write ρgmm − 1 = NnT
DnT

, and note from (i) that (NnT , DnT ) ⇒
n→∞

σ2T
1/2
2

(
ξN,T , ξD,T

)
, where

(
ξN,T , ξD,T

)
is bivariate N

(
0,

[
2 −1

−1 T1/2

])
. Next, decom-

pose ξN,T as ξN,T = ξN.D,T+ −1
T1/2

ξD,T where ξN.D,T ≡ N
(

0, 2− (−1)2
T1/2

)
= N

(
0, 2

(
1− 1

T1

))
is independent of ξD,T , so that(

ξN.D,T

ξD,T

)
≡ N

(
0,

[
2
(

1− 1
T1

)
0

0 T1/2

])
.

Combining these results, we have by joint weak convergence and continuous mapping that
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as n→∞ with T fixed,

ρgmm − 1 =
NT

DT
⇒

n→∞

ξN,T
ξD,T

=
ξN.D,T − 2

T1
ξD,T

ξD,T
(6.4)

= − 2

T1
+
ξN.D,T
ξD,T

= − 2

T1
+

2
(

1− 1
T1

)1/2
T
1/2
1

ζN
ζD

≡ − 2

T1
+ 2

(
1− 1

T1

)1/2
T
1/2
1

C, (6.5)

where (ζN , ζD) ≡ N (0, I2) and C is a standard Cauchy variate. Thus

ρgmm − 1 ⇒
n→∞

− 2

T1
+ 2

(
1− 1

T1

)1/2
T
1/2
1

C, (6.6)

yielding the stated result.

Proof of Theorem 2. From (2.3) and (3.1) we have

ρgmm − 1 =

∑n
i=1

∑T
t=2 ∆uityit−2∑n

i=1

∑T
t=2 ∆yit−1yit−2

=

∑n
i=1

{
(uiT yiT−2 − ui1yi0)−

∑T
t=3 uit−1uit−2

}
∑n

i=1

∑T
t=2 uit−1yit−2

,

and rescaling gives

√
T
(
ρgmm − 1

)
=

∑n
i=1

1√
T

{
(uiT yiT−2 − ui1yi0)−

∑T
t=3 uit−1uit−2

}
∑n

i=1
1
T

∑T
t=2 uit−1yit−2

. (6.7)

By partial summation

T∑
t=1

uityit−1 =

T∑
t=1

uit

(
t−1∑
s=1

uis + yi0

)
=

1

2


(

T∑
t=1

uit

)2
−

T∑
t=1

u2it

+

T∑
t=1

uityi0.

Using the fact that E (uituisuis−1) = 0 for all (t, s), we have by standard functional limit
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theory for r ∈ [0, 1]

T−1/2
bTrc∑
t=1

[
uit

uituit−1

]
⇒
[
Bi (r)

Gi (r)

]
≡ BM

([
σ2 0

0 σ4

])
,

where Bi and Gi are independent Brownian motions for all i. Then, since yi0 = Op (1) and

T−1
∑T

t=1 uit = op (1) , we deduce the joint weak convergence

 T−1/2
∑T

t=1 uit

T−1
∑T

t=1 uityit−1

T−1
∑T

t=1 uituit−1

 ⇒
T→∞


Bi (1)

1
2

{
Bi (1)2 − σ2

}
Gi (1)

 =

 Bi (1)∫ 1
0 BidBi

Gi (1)

 . (6.8)

Since uit is iid over t and i, it follows that uiT ⇒ ui∞ as T → ∞, where the limit
variates {ui∞} are independent over i and have the same distribution as uit. Note that
uiT is independent of

(
T−1/2

∑T1
t=1 uit, T

−1∑T1
t=1 uityit−1, T

−1∑T1
t=1 uituit−1

)
and, hence,

asymptotically independent of
(
T−1/2

∑T
t=1 uit, T

−1∑T
t=1 uityit−1, T

−1∑T
t=1 uituit−1

)
. It

follows that ui∞ is independent of the vector of limit variates (6.8). We therefore have the

combined weak convergence
T−1/2

∑T
t=1 uit

T−1
∑T

t=1 uityit−1

T−1/2
∑T

t=1 uituit−1

uiT

 ⇒
T→∞


Bi (1)

1
2

{
Bi (1)2 − σ2

}
Gi (1)

ui∞

 =


Bi (1)∫ 1
0 BidBi

Gi (1)

ui∞

 . (6.9)

Setting Gi = Gi (1) , the stated result (3.7)

√
T
(
ρgmm − 1

)
⇒

T→∞

∑n
i=1 {ui∞Bi (1)−Gi}∑n
i=1

1
2

{
Bi (1)2 − σ2

} (6.10)

follows from (6.7) and (6.9) by continuous mapping.

For part (ii) we consider sequential asymptotics in which T →∞ is followed by n→∞.
Observe that ui∞Bi (1)−Gi is iid over i with zero mean and variance

E {ui∞Bi (1)−Gi (1)}2 = E
(
u2i∞

)
E
(
Bi (1)2

)
+ E

(
Gi (1)2

)
= 2σ4,
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and is uncorrelated with Bi (1)2 . Since
{
Bi (1)2 − σ2

}
is iid with zero mean and variance

2σ4, application of the Lindeberg Lévy CLT as n→∞ gives[
n−1/2

∑n
i=1 {ui∞Bi (1)−Gi}

n−1/2
∑n

i=1
1
2

{
Bi (1)2 − σ2

} ]
⇒

n→∞

[ (
2σ4
)1/2

ζN(
σ4/2

)1/2
ζD

]
, (6.11)

where (ζN , ζD) ≡ N (0, I2) . Hence,

√
T
(
ρgmm − 1

)
⇒

(n,T )seq→∞
2C, (6.12)

giving the required result.

Proof of Theorem 3. We proceed by examining a set of suffi cient conditions for joint

convergence limit theory developed in Phillips and Moon (1999). In particular, we consider

conditions that suffi ce to ensure that sequential convergence as (n, T )seq →∞ (i.e., T →∞
followed by n→∞) implies joint convergence (n, T )→∞ where there is no restriction on

the diagonal path in which n and T pass to infinity.

We start by defining the vector of standardized components appearing in the numerator

and denominator of ρgmm

XnT =

(
n−1/2

n∑
i=1

1√
T

{
(uiT yiT−2 − ui1yi0)−

T∑
t=3

uit−1uit−2

}
, n−1/2

n∑
i=1

(
1

T

T∑
t=2

uit−1yit−2

))′
.

(6.13)

From (6.9) and (6.11) we have the sequential convergence

XnT ⇒
T→∞

Xn : =

(
n−1/2

n∑
i=1

{ui∞Bi (1)−Gi (1)} , n−1/2
n∑
i=1

1

2

{
Bi (1)2 − σ2

})′

⇒
n→∞

X : =

((
2σ4
)1/2

ζN ,

(
σ4

2

)1/2
ζD

)
, (6.14)

which in turn implies the sequential limit
√
T
(
ρgmm − 1

)
⇒

(n,T )seq→∞
2C given in (6.12). By

Lemma 6(b) of Phillips and Moon (1999), when XnT ⇒
T→∞

Xn ⇒
n→∞

X sequentially, joint
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weak convergence XnT ⇒ X as (n, T )→∞ holds if and only if

lim sup
n,T→∞

|Ef (XnT )− Ef (Xn)| = 0 (6.15)

for all bounded, continuous real functions f on R2.
Simple primitive conditions suffi cient for (6.15) to hold are available in the case where

the components of the random quantity XnT involve averages of iid random variables as

in the present case where we have XnT = n−1/2
∑n

i=1 YiT with the YiT independent over i.

Component-wise we have

XnT = (X1nT , X2nT )′ :=

(
n−1/2

n∑
i=1

Y1iT , n
−1/2

n∑
i=1

Y2iT

)
,

where YiT = (Y1iT , Y2iT )′ with

Y1iT =
1√
T

{
(uiT yiT−2 − ui1yi0)−

T∑
t=3

uit−1uit−2

}
⇒

T→∞
Y1i := ui∞Bi (1)−Gi (1) ,

Y2iT =
1

T

T∑
t=2

uit−1yit−2 ⇒
T→∞

Y2i :=
1

2

{
Bi (1)2 − σ2

}
,

for all i. The working probability space can be expanded as needed to ensure that the

(limit) random quantities Yi := (Y1i, Y2i)
′ are defined in the same space for all i so that

averages involving
∑n

i=1 Yi are meaningful. In this framework we can use a result on joint

convergence by Phillips and Moon (1999) — see lemma PM below — to verify condition

(6.15). In what follows we use the notation of lemma PM.

We proceed to verify these conditions for YiT and Yi. First, YiT is integrable since

E |uiT yiT−2| ≤
(
E |uiT |2 E |yiT−2|2

)1/2
<∞,

E

∣∣∣∣∣
T∑
t=2

uit−1uit−2

∣∣∣∣∣ ≤ TE |uit−1uit−2| ≤ TE
(
u2it
)
<∞,

E

∣∣∣∣∣
T∑
t=2

uit−1yit−2

∣∣∣∣∣ ≤
T∑
t=2

E |uit−1yit−2| ≤
T∑
t=2

(
Eu2it−1Ey2it−2

)1/2
<∞.
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To show (i) holds, observe that

E ‖YiT ‖2 = EY 21iT + EY 22iT

=
1

T
E

{
uiT yiT−2 −

T∑
t=3

uit−1uit−2

}2
+

1

T 2
E

(
T∑
t=2

uit−1yit−2

)2

= 2σ4
T − 2

T
+ σ4

1

T 2

T∑
t=2

(t− 2) <∞, (6.16)

when yi0 = 0, with obviously valid extension to the case where yi0 = Op (1) with finite

second moments. Then

lim sup
n,T→∞

1

n

n∑
i=1

E ‖YiT ‖ = lim sup
T→∞

E ‖YiT ‖ ≤ lim sup
T→∞

(
E ‖YiT ‖2

)1/2
<∞,

as required. To show (ii) holds, simply observe that EYiT = EYi = 0. To show (iii) holds,

note that

lim sup
n,T→∞

1

n

n∑
i=1

E ‖YiT ‖1 {‖YiT ‖ > nε} = lim sup
T→∞

E ‖YiT ‖1 {‖YiT ‖ > nε} = 0, for all ε > 0,

since supT E ‖YiT ‖2 <∞ by virtue of (6.16). Finally, note that

lim sup
n→∞

1

n

n∑
i=1

E ‖Yi‖1 {‖Yi‖ > nε} = lim sup
n→∞

E ‖Yi‖1 {‖Yi‖ > nε} = 0,

since E ‖Yi‖2 < ∞, proving (iv). Hence, condition (6.15) holds and we have joint weak
convergence

XnT = n−1/2
n∑
i=1

YiT ⇒
n,T→∞

X :=

((
2σ4
)1/2

ζN ,

(
σ4

2

)1/2
ζD

)
,

irrespective of the divergence rates of n and T to infinity. By continuous mapping, the

required result follows for the GMM estimator so that
√
T
(
ρgmm − 1

)
⇒

n,T→∞
2C jointly as

(n, T )→∞ irrespective of the order and rates of divergence of the respective sample sizes.

Lemma PM (Phillips and Moon, 1999, theorem 1) Suppose the m×1 random vec-
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tors YiT are independent across i for all T and integrable. Assume that YiT ⇒ Yi as

T →∞ for all i. Then, condition (6.15) holds if the following hold:

(i) lim sup
n,T→∞

1
n

∑n
i=1E ‖YiT ‖ <∞,

(ii) lim sup
n,T→∞

1
n

∑n
i=1 ‖EYiT − EYi‖ <∞,

(iii) lim sup
n,T→∞

1
n

∑n
i=1E ‖YiT ‖ 1 {‖YiT ‖ > nε} = 0, for all ε > 0

(iv) lim sup
n→∞

1
n

∑n
i=1E ‖Yi‖ 1 {‖Yi‖ > nε} = 0, for all ε > 0

Proof of Theorem 4. In case (i) T is fixed as well as c < 0, which implies that

ρ = 1 + c√
T
is fixed. So large n asymptotics follow as in the (asymptotically) stationary

case. From (2.1) we have yit = αi (1− ρ) + ρyit−1 + uit = − αic√
T

+
(

1 + c√
T

)
yit−1 + uit and

∆yit = ρ∆yit−1+∆uit so that ∆yit = αi (1− ρ)+(ρ− 1) yit−1+uit = − αic√
T

+ c√
T
yit−1+uit.

Then, as usual, E (uityit−2) = E (∆uityit−2) = 0 and orthogonality holds. When yi0 = 0,

back substitution gives

yit = αi
(
1− ρt

)
+

t−1∑
j=0

ρjuit−j ,

and E (yit) = αi
(
1− ρt

)
, Var (yit) = σ2

∑t−1
j=0 ρ

2j = σ2 1−ρ
2t

1−ρ2 , and E
(
y2it
)

= σ2 1−ρ
2t

1−ρ2 +

α2i
(
1− ρt

)2
. Instrument relevance is determined by the magnitude of the moment

E (∆yit−1yit−2) = E ({αi (1− ρ) + (ρ− 1) yit−2 + uit−1} yit−2)

= α2i (1− ρ)
(
1− ρt−2

)
+ (ρ− 1)

{
σ2

1− ρ2(t−2)
1− ρ2 + α2i

(
1− ρt−2

)2}

= −σ2 1− ρ2(t−2)
1 + ρ

− α2i (1− ρ)
(
1− ρt−2

)
ρt−2 (6.17)

which is non zero for c < 0 and zero when c = 0, corresponding to the unit root case

(ρ = 1) considered earlier. Note that in the fully stationary case where initial conditions

are in the infinite past so that yi0 = αi +
∑∞

j=0 ρ
jui,−j and yit = αi +

∑∞
j=0 ρ

jut−j we have

E (∆yit−1yit−2) = α2i (1− ρ) + (ρ− 1)E
(
y2it
)

= α2i (1− ρ)− (1− ρ)

{
σ2

1− ρ2 + α2i

}
= − σ2

1 + ρ
,
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which corresponds with the leading term of (6.17) when t→∞ with |ρ| < 1.

Now consider the numerator and denominator of the centred and scaled GMM estimate

√
n
(
ρgmm − ρ

)
=

1√
n

∑n
i=1

∑T
t=2 ∆uityit−2

1
n

∑n
i=1

∑T
t=2 ∆yit−1yit−2

=:
NnT

DnT
. (6.18)

First, noting that∆yit−1yit−2 is quadratic in αi, and using Tj = T−j and σ2α = limn→∞
1
n

∑n
i=1 α

2
i ,

the denominator of (6.18) takes the following form as n→∞

1

n

n∑
i=1

T∑
t=2

∆yit−1yit−2 →p lim
n→∞

1

n

n∑
i=1

E

(
T∑
t=2

∆yityit−2

)

= lim
n→∞

1

n

n∑
i=1

T∑
t=2

{
−σ2 1− ρ2(t−2)

1 + ρ
+ α2i (1− ρ)

(
1− ρt−2

) [
1−

(
1− ρt−2

)]}

= − σ2

1 + ρ

[
T1 −

1− ρ2T1
1− ρ2

]
+ σ2α (1− ρ)

[
T1 −

1− ρT1
1− ρ

]
− σ2α (1− ρ)

[
T1 − 2

1− ρT1
1− ρ +

1− ρ2T1
1− ρ2

]
= − σ2

1 + ρ

[
T1 −

1− ρ2T1
1− ρ2

]
+ σ2α (1− ρ)

[
1− ρT1
1− ρ −

1− ρ2T1
1− ρ2

]
= − σ2

1 + ρ

[
T1 −

1− ρ2T1
1− ρ2

]
+ σ2α

[
1− ρT1 − 1− ρ2T1

1 + ρ

]
, (6.19)

which is again zero when c = 0 (ρ = 1). Turning to the numerator, we have E (∆uityit−2) =

0 by orthogonality and by a standard CLT argument for fixed T as n→∞

1√
n

n∑
i=1

(
T∑
t=2

∆uityit−2

)
⇒ N (0, vT )

with

vT = lim
n→∞

1

n

n∑
i=1

E

(
T∑
t=2

∆uityit−2

)2
We evaluate the above variance as follows. Using (3.2) and yi0 = 0, we have

T∑
t=2

∆uityit−2 = uiT yiT−2 − ui1yi0 −
T∑
t=3

uit−1∆yit−2 = uiT yiT−2 −
T∑
t=3

uit−1∆yit−2, (6.20)
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with variance

E

(
uiT yiT−2 −

T∑
t=3

uit−1∆yit−2

)2
= σ2E (yiT−2)

2 + σ2E
T∑
t=3

(∆yit−2)
2

= σ4
1− ρ2T2
1− ρ2 + α2iσ

2
(
1− ρT2

)2
+ σ2E

T∑
t=3

(∆yit−2)
2 .

Using E (yit) = αi
(
1− ρt

)
, Var (yit) = σ2

∑t−1
j=0 ρ

2j = σ2 1−ρ
2t

1−ρ2 , E
(
y2it
)

= σ2 1−ρ
2t

1−ρ2 +

α2i
(
1− ρt

)2
, and ∆yit = αi (1− ρ) + (ρ− 1) yit−1 + uit, the final term

∑T
t=3 E (∆yit−2)

2

above is

T∑
t=3

{
α2i (1− ρ)2 + (1− ρ)2 E

(
y2it−3

)
+ σ2 − 2α2i (1− ρ)2

(
1− ρt−3

)}
= σ2T2 − T2α2i (1− ρ)2 + 2α2i (1− ρ)2

(
1− ρT2
1− ρ

)
+ (1− ρ)2

T∑
t=3

E
(
y2it−3

)
= σ2T2 − T2α2i (1− ρ)2 + 2α2i (1− ρ)

(
1− ρT2

)
+ (1− ρ)2

σ2

1− ρ2

[
T2 −

1− ρ2T2
1− ρ2

]
+α2i (1− ρ)2

[
T2 − 2

1− ρT2
1− ρ +

1− ρ2T2
1− ρ2

]
= σ2T2

[
1 +

(1− ρ)

1 + ρ

]
−
σ2
(
1− ρ2T2

)
(1 + ρ)2

+ 2α2i (1− ρ)
(
1− ρT2

)
+ α2i (1− ρ)2

[
−2

1− ρT2
1− ρ +

1− ρ2T2
1− ρ2

]
=

2σ2T2
1 + ρ

−
σ2
(
1− ρ2T2

)
(1 + ρ)2

+ α2i (1− ρ)
1− ρ2T2

1 + ρ
.

Then

E

(
uiT yiT−2 −

T∑
t=3

uit−1∆yit−2

)2
= σ4

1− ρ2T2
1− ρ2 + α2iσ

2
(
1− ρT2

)2
+ σ2E

T∑
t=3

(∆yit−2)
2

= σ4
1− ρ2T2
1− ρ2 + α2iσ

2
(
1− ρT2

)2
+

2σ4T2
1 + ρ

−
σ4
(
1− ρ2T2

)
(1 + ρ)2

+ α2iσ
2 (1− ρ)

1− ρ2T2
1 + ρ

=
2σ4T2
1 + ρ

+ σ4
2ρ
(
1− ρ2T2

)
(1− ρ2) (1 + ρ)

+ α2iσ
2
(
1− ρT2

)2
+ α2iσ

2 (1− ρ)

(
1− ρ2T2

)
1 + ρ

=
2σ4T2
1 + ρ

+ σ4
2ρ
(
1− ρ2T2

)
(1− ρ2) (1 + ρ)

+ α2iσ
2
(
1− ρT2

) [
1− ρT2 +

(1− ρ)
(
1 + ρT2

)
1 + ρ

]
,
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and

ωNT = lim
n→∞

1

n

n∑
i=1

E

(
T∑
t=2

∆uityit−2

)2

=
2σ4T2
1 + ρ

+ σ4
2ρ
(
1− ρ2T2

)
(1− ρ2) (1 + ρ)

+ σ2ασ
2
(
1− ρT2

) [
1− ρT2 +

(1− ρ)
(
1 + ρT2

)
1 + ρ

]
.(6.21)

From (6.19) we have

ωDT =

{
− σ2

1 + ρ

[
T1 −

1− ρ2T1
1− ρ2

]
+ σ2α

[
1− ρT1 − 1− ρ2T1

1 + ρ

]}2
(6.22)

which leads to the asymptotic variance

ω2T =
ωNT
ωDT

=

2σ4T2
1+ρ + σ4

2ρ(1−ρ2T2)
(1−ρ2)(1+ρ) + σ2ασ

2
(
1− ρT2

) [
1− ρT2 +

(1−ρ)(1+ρT2)
1+ρ

]
{
− σ2

1+ρ

[
T1 − 1−ρ2T1

1−ρ2
]

+ σ2α

[
1− ρT1 − 1−ρ2T1

1+ρ

]}2
=

2 (1 + ρ)

T1
+O

(
1

T
3/2
1

)
, (6.23)

giving the stated result for (i). The error magnitude as T →∞ in the asymptotic expansion

(6.23) is justified as follows. Since c < 0 is fixed we have 1− ρ2 = −2 c√
T
− c2

T and

1− ρ2T
1− ρ2 =

1−
[
1 + c√

T

]2T
−2 c√

T
− c2

T

∼
1− ec

2T√
T

−2 c√
T
− c2

T

∼
√
T

−2c
. (6.24)

Then, by direct calculation as T →∞

ωNT
ωDT

=

2σ4T2
1+ρ + σ4 2ρ

(1+ρ)

(√
T2
−2c

)
+ σ2ασ

2
(

1− ecT2/
√
T
) [

1− ecT2/
√
T − c1+ecT2/

√
T

√
T (1+ρ)

]
{
− σ2

1+ρ

[
T1 −

(√
T
−2c

)(
1− ecT1/

√
T
)]

+ σ2α

[
1− ecT1/

√
T − 1−e2cT1/

√
T

1+ρ

]}2
=

2 (1 + ρ)

T1
+O

(
1

T
3/2
1

)
(6.25)

The sequential limit theory (ii) follows directly from (i) and the asymptotic expansion

(6.23) of ω2T .
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If ρ = 1 + c
T γ with γ ∈ (0, 1) , it is clear that the above fixed (T, c) limit theory as

n→∞ continues to hold. Then, as T →∞, we have in place of (6.24)

1− ρ2T
1− ρ2 =

1−
[
1 + c

T γ

]2T
−2 c

T γ −
c2

T γ

∼
1− e2cT 1−γ

−2 c
T γ −

c2

T γ

∼
T γ

−2c

leading to
ωNT
ωDT

=
2 (1 + ρ)

T1
+O

(
1

T 2−γ1

)
∼

4

T1
+O

(
1

T 2−γ1

)

It follows that (ii) continues to hold with the same convergence rate
√
nT and same limit

variance 4 for all γ ∈ (0, 1) .

When γ = 1, the sequential normal limit theory in (ii) still holds but the variance of

the limiting distribution changes. Observe that in this case

1− ρ2T
1− ρ2 =

1−
[
1 + c

T

]2T
−2 c

T −
c2

T

∼
1− e2c

−2 c
T −

c2

T

∼
T
(
1− e2c

)
−2c

.

Using (6.21) we then have the following limit behavior as T →∞

ωNT
ωDT

∼
σ4T2 + σ4T2

(1−e2c)
−2c +O (1){

−σ2T1
2

[
1− (1−e2c)

−2c

]
+O (1)

}2 =
4

T1

1 +
(1−e2c)
−2c[

1− (1−e2c)
−2c

]2 {1 + o (1)} ,

so that

ω2T =
−8c

T1

(
1− 2c− e2c

)
(1 + 2c− e2c)2

{1 + o (1)} .

Hence
√
nT
(
ρgmm − ρ

)
⇒

(T,n)seq→∞
N

(
0, (−8c)

(
1− 2c− e2c

)
(1 + 2c− e2c)2

)
, (6.26)

so the
√
nT Gaussian limit theory holds but with a different variance when ρ = 1 + c

T .

Observe that

(−8c)

(
1− 2c− e2c

)
(1 + 2c− e2c)2

∼ 8

c2
→∞ as c→ 0,

indicating that the variance in (6.26) diverges and the
√
nT convergence rate fails as the

unit root is approached via c→ 0.
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Next, examine the case where ρ = 1 + c
T γ with γ > 1 and c < 0, so that ρ is in

the immediate vicinity of unity, closer than the LUR case but still satisfying ρ < 1 for

fixed T. In that case, we still have Gaussian limit theory as n → ∞ because |ρ| < 1. To

find the limit theory as (T, n)seq → ∞ we consider the behavior of the numerator and

denominator of ωT . First, note that log
[
1 + c

T γ

]2T
= 2c

T γ−1 −
c2

T 2γ−1 + O
(

1
T 3γ−1

)
so that[

1 + c
T γ

]2T
= 1 + 2c

T γ−1 −
c2

T 2γ−1 + 1
2

(
2c

T γ−1

)2
+O

(
1

T 2γ−2

)
giving

1− ρ2T
1− ρ2 =

1−
[
1 + c

T γ

]2T
−2 c

T γ −
c2

T 2γ

=
1−

[
1 + 2c

T γ−1 −
c2

T 2γ−1 + 1
2

(
2c

T γ−1

)2
+O

(
1

T 3(γ−1)

)]
−2 c

T γ −
c2

T 2γ

=
−2cT + c2

T γ−1 −
2c2

T γ−2 + o
(

1
T γ−2

)
−2c

{
1 + 1

2
c
T γ +O

(
1
T 2γ

)} =
{
T + cT 2−γ +O

(
T 1−γ

)}{
1 +

1

2

c

T γ
+O

(
1

T 2γ

)}−1
= T + cT 2−γ +O

(
1

T γ−1

)
.

Using this result, and letting ωDT = v2DT with vDT = − σ2

1+ρ

[
T1 − 1−ρ2T1

1−ρ2
]
+σ2α

[
1− ρT1 − 1−ρ2T1

1+ρ

]
,

we have

vDT = − σ2

1 + ρ

[
cT 2−γ1 {1 + o (1)}

]
+ σ2α

{
−
[

c

T γ−11

+
T1 (T1 − 1)

2

(
c

T γ1

)2
+O

(
1

T
3(γ−1)
1

)]

−
− 2c

T γ−11

− T1(T1−1)
2

(
c
T γ1

)2
+O

(
1

T
3(γ−1)
1

)
2 + 2c

T γ−11

{1 + o (1)}


= − cσ2

1 + ρ
T 2−γ1 {1 + o (1)}+ σ2α

[
− 2c

T γ−11

− 1

2

c2

T
2(γ−1)
1

+O

(
1

T
3(γ−1)
1

)

+

{
c

T γ−11

+
T1 (T1 − 1)

4

(
c

T γ1

)2
+O

(
1

T
3(γ−1)
1

)}{
1 +

c

T γ−11

{1 + o (1)}
}−1

= − cσ2

1 + ρ
T 2−γ1 {1 + o (1)}+ σ2α

[
− c

T γ−11

− 1

4

c2

T
2(γ−1)
1

+O

(
1

T
3(γ−1)
1

)]
{1 + o (1)}

=

{
− cσ2

1 + ρ
T 2−γ1 − cσ2α

c

T γ−11

}
{1 + o (1)} = −cσ

2

2
T 2−γ1 {1 + o (1)} ,
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so that the denominator is ωDT = c2σ4

4 T 4−2γ1 {1 + o (1)} . The numerator ωNT is

2σ4T2
1 + ρ

+ σ4
2ρ
(
1− ρ2T2

)
(1− ρ2) (1 + ρ)

+ σ2ασ
2
(
1− ρT2

) [
1− ρT2 +

(1− ρ)
(
1 + ρT2

)
1 + ρ

]

= σ4T2

{
1− c

T γ−11

}
{1 + o (1)}+ σ4

(
2 + 2c

T γ

)(
2 + c

T γ

) {T + cT 2−γ − 1

2

c

T γ−1
+O

(
T

T 2(γ−1)

)}
+σ2ασ

2

{
−2cT2 −

2T2 (2T2 − 1)

2

c2

T γ2
+O

(
T 3

T 2γ

)}

×

−
[

c

T γ−12

+
T2 (T2 − 1)

2

(
c

T γ2

)2
{1 + o (1)}

]
−

2c
T γ−1

[
1 + 2c

T γ−12

+ 2T2(2T2−1)
2

(
c
T γ2

)2
{1 + o (1)}

]
2 + 2c

T γ−1 {1 + o (1)}


=

{
2σ4T2 + 2σ2ασ

2 (−c)T
(
−2c

T γ−12

)}
[1 + o (1)] = 2σ4T2 [1 + o (1)] .

Combining these results we obtain

ω2T =
ωNT
ωDT

=
2σ4T2 [1 + o (1)]{

c2σ4

2 T 4−2γ1 {1 + o (1)}
}2
{1 + o (1)}

=
8T2

c2T
2(2−γ)
1

{1 + o (1)} .

It now follows that for ρ = 1 + c
T γ with c < 0 fixed and γ > 1

√
nT 3−2γ

(
ρgmm − ρ

)
⇒

(T,n)seq→∞
N

(
0,

8

c2

)
.

Hence when ρ is closer to unity than a local unit root, the
√
nT rate of convergence is

reduced to
√
nT

3−2γ
2 . When γ = 3

2 the rate of convergence is simply
√
n and for γ > 3

2

the large n Gaussian asymptotic distribution N
(
0, ω2T

)
diverges as T →∞ because ω2T =

8T2

c2T
2(2−γ)
1

{1 + o (1)} diverges with T. In this event, sequential (T, n)seq → ∞ asymptotics

fail. In effect, the convergence rate is slower than
√
n and the non-Gaussian Cauchy limit

theory cannot be captured in these (T, n)seq directional sequential asymptotics even though

ρ = 1 + c
T γ with γ > 1 is closer proximity to a unit root than than the usual local unit

root case with γ = 1.

Proof of Theorem 5. In the mildly integrated case where ρ = 1 + c√
T
we have

yit = − αic√
T

+
(

1 + c√
T

)
yit−1 + uit and ∆yit = ρ∆yit−1 + ∆uit so that ∆yit = − αic√

T
+
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c√
T
yit−1 + uit = αi (1− ρ) + (ρ− 1) yit−1 + uit. By partial summation, as shown above in

(3.2), we have
∑T

t=2 ∆uityit−2 = uiT yiT−2 − ui1yi0 −
∑T

t=3 uit−1∆yit−2, so that

ρgmm − ρ =

∑n
i=1

{
(uiT yiT−2 − ui1yi0)−

∑T
t=3 uit−1

[
− αic√

T
+ c√

T
yit−3 + uit−2

]}
∑n

i=1

∑T
t=2

{
− αic√

T
+ c√

T
yit−2 + uit−1

}
yit−2

. (6.27)

Rescaling and using yi0 = 0 gives

√
T
(
ρgmm − ρ

)
=

∑n
i=1

1√
T

{
uiT yiT−2 −

∑T
t=3 uit−1

[
− αic√

T
+ c√

T
yit−3 + uit−2

]}
∑n

i=1
1
T

∑T
t=2

{
− αic√

T
+ c√

T
yit−2 + uit−1

}
yit−2

. (6.28)

Since 1√
T

∑T
t=2 uit−1uit−2 ⇒ Gi ≡ N

(
0, σ4

)
, 1T
∑T

t=2 uit−1 = op (1) , and 1
T

∑T
t=2 uit−1yit−3 =

op (1) —see (6.30) below —the numerator is

n∑
i=1

1√
T

{
uiT yiT−2 −

T∑
t=3

uit−1

[
− αic√

T
+

c√
T
yit−3 + uit−2

]}

= −
n∑
i=1

1√
T

T∑
t=3

uit−1uit−2 + op (1)⇒ −
n∑
i=1

Gi (1) . (6.29)

Using Phillips and Magdalinos (2007, theorem 3.2) we find that

T−3/2
T∑
t=2

y2it →p
σ2

−2c
, T−3/4

T∑
t=2

yit−1uit ⇒ N

(
0,

σ4

−2c

)
, and T−3/2

T∑
t=2

yit = op (1) .

(6.30)

The denominator of (6.28) therefore satisfies

n∑
i=1

1

T

T∑
t=2

{
− αic√

T
+

c√
T
yit−2 + uit−1

}
yit−2 →p

n∑
i=1

{
c
σ2

−2c

}
. (6.31)

Hence, using (6.29) and (6.31) we have
√
T
(
ρgmm − ρ

)
⇒

T→∞
2
nσ2

∑n
i=1Gi = 2

n

∑n
i=1 ζi

where ζi ∼iid N (0, 1) . Then

√
nT
(
ρgmm − ρ

)
⇒

T→∞

2√
n

n∑
i=1

ζi ⇒n→∞ N (0, 4) , (6.32)
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which gives (i) and then leads directly to the sequential limit
√
nT
(
ρgmm − ρ

)
⇒

(n,T )seq→∞
N (0, 4) .

Proof of Theorem 6. The proof follows the same lines as the proof of Theorem 3 above.

As before, we define the vector of standardized components appearing in the numerator

and denominator of
√
T
(
ρgmm − ρ

)
in (6.28)

XnT = (X1nT , X2nT )′ :=

(
n−1/2

n∑
i=1

Y1iT , n
−1

n∑
i=1

Y2iT

)
,

where YiT = (Y1iT , Y2iT )′ with

Y1iT =
1√
T

{
uiT yiT−2 −

T∑
t=3

uit−1

[
− αic√

T
+

c√
T
yit−3 + uit−2

]}
⇒

T→∞
Y1i := −Gi (1) ,

Y2iT =
1

T

T∑
t=2

{
− αic√

T
+

c√
T
yit−2 + uit−1

}
yit−2 ⇒

T→∞
Y2i := c

σ2

−2c
.

From (6.29) and (6.31) we have the sequential convergence

XnT ⇒
T→∞

Xn : =

(
−n−1/2

n∑
i=1

Gi (1) , n−1
n∑
i=1

{
c
σ2

−2c

})′
⇒

n→∞
X : =

(
σ2ζ,−σ

2

2

)
, where ζ = N (0, 1) , (6.33)

which in turn implies the sequential limit
√
nT
(
ρgmm − ρ

)
⇒

n→∞,T→∞
N (0, 4) given in

(6.12). Since XnT ⇒
T→∞

Xn ⇒
n→∞

X sequentially, joint weak convergence XnT ⇒ X as

(n, T )→∞ holds in the same manner as Theorem 3 with only minor definitional changes.

First, YiT is integrable just as before. To show Lemma A(i) holds, observe that

E ‖YiT ‖2 = EY 21iT + EY 22iT

=
1

T
E

{
uiT yiT−2 −

T∑
t=3

uit−1

(
− αic√

T
+

c√
T
yit−3 + uit−2

)}2

+
1

T 2
E

{
T∑
t=2

(
− αic√

T
+

c√
T
yit−2 + uit−1

)
yit−2

}2
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=
σ2

T
Ey2iT−2 +

1

T
E

{
T∑
t=3

uit−1

(
− αic√

T
+

c√
T
yit−3 + uit−2

)}2

=
σ2

T
Ey2iT−2 +

1

T
E

(
T∑
t=3

uit−1uit−2

)2
+
c2α2i
T 2

E

(
T∑
t=3

uit−1

)2
+
c2

T 2
E

(
T∑
t=3

uit−1yit−3

)2

−2αic

T 3/2
E

(
T∑
t=3

uit−1

T∑
s=3

uis−2

)
− 2αic

2

T 2
E

(
T∑
t=3

uit−1

T∑
s=3

yis−3

)
+

2c

T 3/2
E

(
T∑
t=3

uit−1uit−2

T∑
s=3

yis−3

)

=
σ4

−2c

√
T2
T

+ σ4
T2
T

+O

(
1

T

)
+
c2σ2

T 2

T∑
t=3

Ey2it−3 +O

(
1√
T

)
+O

(
1

T

)
+O

(
1√
T

)
= σ4

T2
T

+ o (1) ,

since from (6.24) E
(
y2it
)

= σ2 1−ρ
2t

1−ρ2 +α2i
(
1− ρt

)2
= σ2

√
t

−2c {1 + o (1)} . Then E ‖YiT ‖2 <∞
and we deduce that

lim sup
n,T→∞

1

n

n∑
i=1

E ‖YiT ‖ = lim sup
T→∞

E ‖YiT ‖ ≤ lim sup
T→∞

(
E ‖YiT ‖2

)1/2
<∞,

as required. Condition (ii) holds, as we again have EYiT = EYi = 0; and condition (iii)

and (iv) hold because supT E ‖YiT ‖2 < ∞ and E ‖Yi‖2 < ∞. We then have joint weak
convergence

XnT = n−1/2
n∑
i=1

YiT ⇒
n,T→∞

X :=

(
σ2ζ,

σ2

2

)
,

irrespective of the divergence rates of n and T to infinity. By continuous mapping, the

required result follows for the GMM estimator so that
√
T
(
ρgmm − ρ

)
⇒

n,T→∞
N (0, 4) holds

jointly as (n, T )→∞ irrespective of the order and rates of divergence.

Proof of Theorem 7. We have ρ = 1 + c
T γ for some fixed c < 0 and let T → ∞. In

this case, yit = −αic
T γ +

(
1 + c

T γ

)
yit−1 + uit and ∆yit = ρ∆yit−1 + ∆uit so that ∆yit =

−αic
T γ + c

T γ yit−1 + uit. As before, we have

√
T
(
ρgmm − ρ

)
=

1√
T

∑n
i=1

{
(uiT yiT−2 − ui1yi0)−

∑T
t=3 uit−1

[
−αic
T γ + c

T γ yit−3 + uit−2
]}

1
T

∑n
i=1

∑T
t=2

{
−αic
T γ + c

T γ yit−2 + uit−1
}
yit−2

.

(6.34)
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We use the following results from Phillips and Magdalinos (2007) and Magdalinos and

Phillips (2009), which hold for all γ ∈ (0, 1) ,

T−1−γ
T∑
t=2

y2it →p
σ2

−2c
, T−(1+γ)/2

T∑
t=2

yit−1uit ⇒ N

(
0,

σ4

−2c

)
, and T−1/2−γ

T∑
t=2

yit = Op (1) .

(6.35)

Then, since 1√
T

∑T
t=2 uit−1uit−2 ⇒ Gi ≡ N

(
0, σ4

)
, 1
T 1/2+γ

∑T
t=2 uit−1 = op (1) , and 1

T 1/2+γ

∑T
t=2 uit−1yit−3 =

op (1) when γ ∈ (0, 1) , the numerator of (6.34) is

n∑
i=1

1√
T

{
uiT yiT−2 −

T∑
t=3

uit−1
[
−αic
T γ

+
c

T γ
yit−3 + uit−2

]}

= −
n∑
i=1

1√
T

T∑
t=3

uit−1uit−2 + op (1)⇒ −
n∑
i=1

Gi (1) .

Using (6.35), we find that the denominator of (6.34) satisfies

n∑
i=1

1

T

T∑
t=2

{
−αic
T γ

+
c

T γ
yit−2 + uit−1

}
yit−2 →p

n∑
i=1

{
c
σ2

−2c

}
= −σ

2n

2
.

Hence, as T →∞

√
T
(
ρgmm − ρ

)
⇒

T→∞

−
∑n

i=1Gi

−σ2

2 n
=
σ2
∑n

i=1 ζi

−σ2

2 n
, where ζi ∼iid N (0, 1) .

Then, as T →∞ is followed by n→, we have

√
nT
(
ρgmm − ρ

)
⇒

T→∞

2√
n

n∑
i=1

ζi ⇒n→∞ N (0, 4) , for all γ ∈ (0, 1) .

Next consider the case γ = 1. The numerator of (6.34) is then

n∑
i=1

1√
T

{
uiT yiT−2 −

T∑
t=3

uit−1
[
−αic
T

+
c

T
yit−3 + uit−2

]}

=

n∑
i=1

1√
T

{
uiT yiT−2 −

T∑
t=3

uit−1uit−2

}
+ op (1) ⇒

T→∞
ui∞Kci (1)−

n∑
i=1

Gi (1) ,

32



since by standard functional limit theory for near integrated processes (Phillips, 1987b) we

have (
1

T 1/2
yiT ,

1

T

T∑
t=2

yit−1uit

)
⇒

T→∞

(
Kci (r) ,

∫ 1

0
KcidBi

)
,

where Bi (r) =: σWi (r) are iid Brownian motions with common variance σ2, and Kci (r) =∫ r
0 e

c(r−s)dBi (s) =: σJci (r) is a linear diffusion. The denominator of (6.34) satisfies

n∑
i=1

1

T

T∑
t=2

{
−αic
T

+
c

T
yit−2 + uit−1

}
yit−2 ⇒

T→∞

n∑
i=1

{
c

∫ 1

0
Kci (r)2 dr +

∫ 1

0
KcidBi

}
.

Hence

√
T
(
ρgmm − ρ

)
⇒

T→∞

∑n
i=1 {ui∞Kci (1)−

∑n
i=1Gi}∑n

i=1

{
c
∫ 1
0 Kci (r)2 dr +

∫ 1
0 Kci (r) dBi

} =

∑n
i=1

{(
σ−1ui∞

)
Jci (1)− ζi

}∑n
i=1

{
c
∫ 1
0 Jci (r)2 dr +

∫ 1
0 JcidWi

} ,
(6.36)

where the ζi ∼iid N (0, 1) and are independent of theWi and ui∞ for all i. This gives the first

part of (ii). Scaling the numerator and denominator of (6.36), noting that
∫ 1
0 Jci (r) dWi

has zero mean and finite variance, and using the independence of ζi, ui∞, andWi, we obtain

√
nT
(
ρgmm − ρ

)
⇒

T→∞

1√
n

∑n
i=1

{(
σ−1ui∞

)
Jci (1)− ζi

}
1
n

∑n
i=1

{
c
∫ 1
0 Jci (r)2 dr +

∫ 1
0 Jci (r) dWi

}
⇒

n→∞

N
(

0, 1−2c−e
2c

−2c

)
cE
(∫ 1
0 Jci (r)2 dr

) = N

(
0,−8c

1− 2c− e2c

(e2c − 1− 2c)2

)
,

since, using results in Phillips (1987b), we have E
(∫ 1
0 Jci (r)2 dr

)
= e2c−1−2c

(2c)2
and

E
{(
σ−1ui∞

)
Jci (1)− ζi

}2
= E

(
σ−1ui∞

)2 EJci (1)2 + Eζ2i = 1 +
1− e2c
−2c

=
1− 2c− e2c
−2c

.

Hence, when γ = 1, we have

√
nT
(
ρgmm − ρ

)
⇒

(n,T )→∞
N

(
0, (−8c)

1− 2c− e2c

(e2c − 1− 2c)2

)
(6.37)
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From Lemma 2 of Phillips (1987b) we have(
(−2c)

∫ 1

0
Jci (r)2 dr, (−2c)1/2

∫ 1

0
Jci (r) dWi

)
⇒
c→0

(1, Zi) , Zi ∼iid N (0, 1, )

and 1−2c−e2c
−2c = 2 {1 + o (1)} as c→ 0, so that

(−8c)
1− 2c− e2c

(e2c − 1− 2c)2
∼ (−8c)

(−4c){
1
2 (2c)2

}2 =
8

c2
for small c ∼ 0 (6.38)

which explodes as c → 0, consonant with the unit root case where we only have
√
T

convergence. Observe that both (6.37) and (6.38) correspond to earlier results with the

reverse order of sequential convergence (T, n)seq →∞.
Next suppose γ > 1 so that ρ = 1+ c

T γ is closer to unity than the LUR case with γ = 1.

In this case, the numerator and denominator of (6.34) have the same limits as in the unit

root case, viz.,

n∑
i=1

1√
T

{
uiT yiT−2 −

T∑
t=3

uit−1
[
−αic
T γ

+
c

T γ
yit−3 + uit−2

]}

=
n∑
i=1

1√
T

{
uiT yiT−2 −

T∑
t=3

uit−1uit−2

}
+ op (1) ⇒

T→∞

n∑
i=1

{ui∞Bi (1)−Gi} ,

and
n∑
i=1

1

T

T∑
t=2

{
−αic
T γ

+
c

T γ
yit−2 + uit−1

}
yit−2 ⇒

T→∞

n∑
i=1

{∫ 1

0
BidBi

}
.

Then

√
T
(
ρgmm − ρ

)
⇒

T→∞

∑n
i=1 {ui∞Bi (1)−Gi}∑n

i=1

∫ 1
0 BidBi

=

1√
n

∑n
i=1

{(
σ−1ui∞

)
Wi (1)− ζi

}
1√
n

∑n
i=1

∫ 1
0 WidWi

⇒
n→∞

2C,

since
(
1√
n

∑n
i=1

{(
σ−1ui∞

)
Wi (1)− ζi

}
, 1√

n

∑n
i=1

∫ 1
0 WidWi

)
⇒

n→∞
N

(
0,

[
2 0

0 1/2

])
.
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