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On the Choice of Test Statistic for Conditional Moment

Inequalities

Timothy B. Armstrong∗

Yale University

July 5, 2017

Abstract

This paper derives asymptotic approximations to the power of Cramer-von Mises

(CvM) style tests for inference on a finite dimensional parameter defined by conditional

moment inequalities in the case where the parameter is set identified. Combined with

power results for Kolmogorov-Smirnov (KS) tests, these results can be used to choose

the optimal test statistic, weighting function and, for tests based on kernel estimates,

kernel bandwidth. The results show that, in the setting considered here, KS tests

are preferred to CvM tests, and that a truncated variance weighting is preferred to

bounded weightings.

1 Introduction

This paper compares methods for inference on a parameter θ defined by the conditional

moment inequalities

E(m(Wi, θ)|Xi) ≥ 0 a.s.

where m : RdW+dθ → RdY is a known function of data Wi and a parameter θ ∈ Θ ⊆ Rdθ ,

and ≥ is defined elementwise. Here, Wi is a RdW valued random variable and Xi is a RdX

∗email: timothy.armstrong@yale.edu. Support from National Science Foundation Grant SES-1628939 is
gratefully acknowledged.
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valued random variable. We are given independent, identically distributed (iid) observations

{(X ′i,W ′
i )
′}ni=1. This defines the identified set

Θ0 ≡ {θ ∈ Θ|E(m(Wi, θ)|Xi) ≥ 0 a.s.}

where Θ ⊆ Rdθ is the parameter space. If Θ0 contains more than one element, the model is

said to be set identified.

Following Imbens and Manski (2004), we are interested in confidence regions Cn that

satisfy the converage criterion

for all θ0 ∈ Θ0, lim inf
n→∞

P (θ0 ∈ Cn) ≥ 1− α. (1)

We consider confidence regions constructed by inverting a family of tests φn(θ) = φn(θ, {Xi,Wi}ni=1),

where φn(θ) is a test of H0,θ : θ ∈ Θ0:

Cn = {θ|φn(θ) = 0}.

Subject to the coverage criterion (1), we would like the confidence region Cn not to contain

points that are far away from the identified set Θ0. In particular, if we take a parameter θ0

on the boundary of Θ0 and consider a sequence θn = θ0 + an where an → 0, we would like to

have θn /∈ Cn with high probability for an converging to zero as quickly as possible (so long

as θn approaches Θ0 from the outside, rather than from the interior). Note that

P (θn /∈ Cn) = P (φn(θn) = 1).

Thus, we can determine whether Cn contains points that are far away from Θ0 by examining

the behavior of P (φn(θn) = 1), which is the power of the test φn(θn) of H0,θn at the alternative

P .

This paper provides an asymptotic answer to this question by examining the asymptotic

behavior of P (φn(θn) = 1) as n → ∞. We refer to limit of P (φn(θn) = 1) as the local

asymptotic power of the sequence of tests φn(θn) (note that this terminology differs from

definitions often used in the literature, since the null hypothesis varies with n while the

alternative stays fixed). The local asymptotic power of this sequence of tests will depend on

the distribution P , the parameter θ0 on the boundary of Θ0 to which the sequence θn = θ0+an

converges, and the sequence an.

This paper considers Cramer-von Mises (CvM) style test statistics, which integrate or
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add some function of the negative part of an objective function. These can be compared

with existing results for Kolmogorov-Smirnov (KS) statistics, which take the minimum of an

objective function. The results show that the power P (φn(θn) = 1) will be greater asymp-

totically for KS statistics when the distribution P satisfies generic smoothness conditions of

the form used in the nonparametric statistics literature. In particular, the results imply that

KS statistics are preferred according to a “minimax within a smoothness class” criterion of

the form used to formulate nonparametric relative efficiency results in papers such as Stone

(1982).

As an example of the types of problems covered by this setup, consider the interval re-

gression model of Manski and Tamer (2002). We observe (Xi,W
L
i ,W

H
i ) where [WL

i ,W
H
i ]

is known to contain the latent variable W ∗
i , which follows the linear regression model

E(W ∗
i |Xi) = (1, X ′i)θ. This falls into the setup of this paper with Wi = (Xi,W

L
i ,W

H
i )

and m(Wi, θ) = (WH
i − (1, X ′i)θ, (1, X

′
i)θ −WL

i )′. The identified set is then given by

Θ0 = {θ|E(WL
i |Xi) ≤ (1, X ′i)θ ≤ E(WH

i |Xi) a.s.}.

Thus, a parameter θ0 in the identified set corresponds to a regression line (1, x′)θ0 that is

between the conditional means E(WL
i |Xi = x) and E(WH

i |Xi = x) for all x on the support

of Xi. If θ0 is on the boundary of the identified set, it will be equal to one of these regression

lines for some value of x. For θn = θ0 + an approaching the boundary of the identified

set from the outside, the regression line (1, x′)θn will be above E(WH
i |Xi = x) or below

E(WL
i |Xi = x) for some values of x, and we would like the test φn(θn) to detect this so

that θn /∈ Cn with high probability. We use primitive conditions to apply the general results

in this paper to this setting, thereby giving asymptotic approximations to this probability.

These conditions correspond to smoothness conditions used in the nonparametric statistics

literature and conditions on the shape of these conditional means near points where one of

them is equal to (1, x′)θ0 (see Section 3.4 and Appendix A.5).

The remainder of this paper is organized as follows. Section 1.1 defines the tests con-

sidered in this paper. Section 1.2 discusses related literature. Section 2 gives an intuitive

description of the power results in this paper and how they are derived. Section 3 states

formally the conditions used in this paper, and provides primitive conditions for the interval

regression model. Section 4 derives the power results. Section 5 reports the results of a

Monte Carlo study. Section 6 concludes. An appendix contains minimax power comparisons

as well as primitive conditions for the results in the main text in additional settings. A

supplementary appendix contains proofs and auxiliary results.
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1.1 Definition of Test Statistics

The test statistics considered in this paper are as follows. Given a set G of nonnegative

instruments, the null hypothesis H0,θ : θ ∈ Θ0 implies that E(m(Wi, θ)g(Xi)) ≥ 0 for all

g ∈ G. Thus, under H0,θ : θ ∈ Θ0, the sample analogue

En(m(Wi, θ)g(Xi)) ≡
1

n

n∑
i=1

m(Wi, θ)g(Xi) (2)

should not be too negative for any g ∈ G. The results in this paper use classes of functions

given by kernels with varying bandwidths and location, given by G = {x 7→ k((x− x̃)/h)|x̃ ∈
RdX , h ∈ R+} for some kernel function k. With this choice of G, H0,θ : θ ∈ Θ0 holds if and

only if E(m(Wi, θ)g(Xi)) ≥ 0 for all g ∈ G, so that (2) can be used to form a consistent test

(see Andrews and Shi, 2013, for a discussion of this and other choices of G).

Alternatively, one can test H0,θ : θ ∈ Θ0 by estimating E(m(Wi, θ)|Xi = x) directly using

the kernel estimate

ˆ̄mj(θ, x) =

∑n
i=1m(Wi, θ)k((Xi − x)/h)∑n

i=1 k((Xi − x)/h)
(3)

for some sequence h = hn → 0 and kernel function k. If H0,θ holds, (3) should not be too

negative for any x.

Thus, a test statistic of the null that θ ∈ Θ0 can be formed by taking any function that

is positive and large in magnitude when (2) is negative and large in magnitude for some

g ∈ G, or when (3) is negative and large in magnitude for some x. One possibility is to use a

CvM statistic that integrates the negative part of (2) over some measure µ on G. This CvM

statistic is given by

Tn,p,ω,µ(θ) =

[∫ dY∑
j=1

|Enmj(Wi, θ)g(Xi)ωj(θ, g)|p− dµ(g)

]1/p

(4)

for some p ≥ 1 and weighting ω, where |t|− = |min{t, 0}|. I refer to this as an instrument

based CvM (IV-CvM) statistic. The CvM statistic based on the kernel estimate integrates

the negative part of (3) against some weighting ω, and is given by

Tn,p,kern(θ) =

[∫ dY∑
j=1

∣∣ ˆ̄mj(θ, x)ωj(θ, x)
∣∣p
− dx

]1/p

(5)
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for some p ≥ 1. I refer to this as a kernel based CvM (kern-CvM) statistic.

For the instrument based CvM statistic, the scaling for the power function will depend

on ω. This paper considers both a bounded weighting which, without loss of generality, can

be taken to be constant (the measure µ can absorb any weighting that does not change with

the sample size)

ωj(θ, g) = 1 all θ, g, j (6)

as well as the truncated variance weighting used for KS statistics by Armstrong (2014b),

Armstrong and Chan (2016) and Chetverikov (2012), which is given by

ωj(θ, g) = (σ̂j(θ, g) ∨ σn)−1 (7)

where

σ̂j(θ, g) = {En[mj(Wi, θ)g(Xi)]
2 − [Enmj(Wi, θ)g(Xi)]

2}1/2

and σn is a sequence converging to zero and a∨b denotes the maximum of a and b for scalars

a and b.1

The results for CvM statistics derived in this paper can be compared to power results

for KS statistics derived in Armstrong (2015) and Armstrong (2014b). A KS statistic based

on (2) simply takes the most negative value of that expression over g ∈ G, and is given by

Tn,∞,ω(θ) = max
j

sup
g∈G
|Enmj(Wi, θ)g(Xi)ωj(θ, g)|−. (8)

I refer to this as an instrument based KS (IV-KS) statistic. A KS statistic based on (3)

simply takes the most negative value of that expression over x, and is given by

Tn,∞,kern(θ) = max
j

sup
θ

∣∣ ˆ̄mj(θ, x)ωj(θ, x)
∣∣
− . (9)

I refer to this as a kernel based KS (kern-KS) statistic. As with CvM statistics, the scaling

for the local power function for the instrument based KS test depends on whether a bounded

weighting or a truncated variance weighting is used.

1For the critical value of the test, the results covered in this paper cover any critical value that is of
the same order of magnitude asymptotically as a critical value based on the distribution where all moments
bind. See Section 3.1 for details.
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To complete the definition of these tests, we need to define a critical value. For tests that

use instrument based CvM statistics with bounded weights or inverse variance weights with

p <∞, the test φn,p,ω,µ(θ), which rejects when φn,p,ω,µ(θ) = 1, is defined as

φn,p,ω,µ(θ) =

{
1 if

√
nTn,p,ω,µ(θ) > ĉn,p,ω,µ(θ)

0 otherwise
(10)

for some critical value ĉn,p,ω,µ(θ). For kernel based CvM statistics, the test φn,p,kern(θ), which

rejects when φn,p,kern(θ) = 1, is defined as

φn,p,kern(θ) =

{
1 if (nhdX )1/2Tn,p,kern(θ) > ĉn,p,kern(θ)

0 otherwise
(11)

While all of the new results in this paper are for CvM statistics, I refer to analogous results

for KS statistics at some points for comparison. For KS tests with bounded weights, the

critical value is defined as in (10). For KS tests based on truncated variance weights, the

test φn,∞,(σ∨σn)−1(θ) is defined as

φn,∞,(σ∨σn)−1(θ) =

 1 if
√

n
logn

Tn,∞,(σ∨σn)−1(θ) > ĉn,∞,(σ∨σn)−1(θ)

0 otherwise
(12)

for some critical value ĉn,p,∞,(σ∨σn)−1(θ).

1.2 Related Literature

Tests based on instrument based CvM and KS statistics have been considered by Andrews

and Shi (2013), Kim (2008), Khan and Tamer (2009) and Armstrong (2015) for bounded

weights, and Armstrong (2014b), Armstrong and Chan (2016) and Chetverikov (2012) for KS

statistics with variance weights. The statistics based on instruments with bounded weights

use an approach to nonparametric testing problems that goes back at least to Bierens (1982).

Aradillas-Lopez et al. (2013) use a slightly different version of an instrument CvM approach.

Chernozhukov et al. (2013) consider kernel based KS statistics and Lee et al. (2013) and Lee

et al. (2015) consider kernel based CvM statistics. While some of these papers derive local

power results for CvM tests under conditions that appear to be common in point identified

models, these results do not apply in set identified models except for in very special cases.

Indeed, the results in the present paper show that, when one uses a minimax criterion
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requiring uniformly good power in classes of underlying distributions defined by smoothness

properties, the power of CvM tests is much worse (see Section A.5). The results in this

paper show that power comparisons in the set identified case considered here are much

different than settings that have been studied previously. Armstrong (2015), Armstrong

(2011), Armstrong (2014b), Armstrong and Chan (2016), and Chetverikov (2012) derive

power results for KS statistics under conditions similar to those used in this paper, but do

not consider CvM statistics.

The results in this paper are also related to the statistics literature on minimax testing

of hypotheses of the form H0,= : f(x) = 0 all x, H0,≥ : f(x) ≥ 0 all x, H0,↑ : f(x) ≥
f(x′) all x < x′, (and related hypotheses such as convexity of f), where the function f

is observed with noise. While much of this literature focuses on the Gaussian white noise

model or Gaussian sequence model, the results are closely related to the case where f(x) =

E(Yi|Xi = x), and iid observations of Xi, Yi are available (which falls into our setup if we take

Yi = m(Wi, θ0)). To formulate the minimax testing problem considered in this literature,

one specifies a smoothness class F for f and a functional ψ : F → [0,∞) such that ψ(f)

is 0 if f satisfies the null and strictly positive otherwise. For example, for H0,=, one can

take the Lp norm ψ(f) = [
∫
f(x)p dx]1/p and, for H0,≥, one can take the one-sided Lp norm

ψ(f) = [
∫
|f(x)|p−]. The minimax testing problem is to obtain tests that have good worst-

case power over alternatives f in the smoothness class F with ψ(f) ≥ an for an → 0 as

quickly as possible. Dumbgen and Spokoiny (2001) and Juditsky and Nemirovski (2002)

consider H0,≥ with ψ given by the one-sided L∞ norm ψ(f) = supx |f(x)|− and the one-

sided Lp norm with p <∞ respectively, as well as H0,↑ and the hypothesis of convexity with

related distance functions ψ. Lepski and Tsybakov (2000) consider H0,= with ψ(f) given by

the L∞ norm and by ψ(f) = |f(x0)| for a given point x0. See Ingster and Suslina (2003) for

further results and references to this literature.

In contrast to this literature, the results in this paper have implications for minimax rates

of CvM statistics for testing the null that a given value of θ is in the identified set against the

alternative that the distance between θ and any point in the identified set is at least an (see

Section A.5 in the appendix for a formal statement). Since the dimension of θ is finite and

fixed, the choice of distance (i.e. whether to use Euclidean distance or sup-norm distance

when defining distance of θ from points in the identified set) does not matter for the rate

at which an can approach zero with the test having good power. This contrasts with the

nonparametric testing literature described above, in which the choice of distance function ψ

has implications for relative efficiency of different test statistics, and is part of the reason
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that CvM and KS tests can be ranked in this setting. Interestingly, the problem of minimax

inference on θ in the settings considered here appears to be closely related to nonparametric

testing with ψ given by the L∞ norm. See Armstrong (2014a) for further discussion.

2 Intuition for the Results

To get some intuition for the results, consider the interval regression model defined in the

introduction, with a one-dimesional covariate Xi. Consider a sequence θn converging to a

parameter θ0 = (θ0,1, θ0,2)′ on the boundary of the identified set such that (1, x)θ0 = θ0,1+θ0,2x

is tangent to E(WH
i |Xi = x) at some point x0. This is illustrated in Figure 1 (the conditional

mean of WL
i can be considered to be below the range depicted in the figure). To keep the

derivations below simple, we assume that θn is formed by adding a sequence an,1 to the

constant term in θ0, so that θn = (θ0,1 + an,1, θ0,2)′ where θ0 = (θ0,1, θ0,2)′. However, our

general results cover parameter sequences where the intercept changes with n as well.

The test statistics Tn(θn) defined in Section 1.1 will take sample analogues of E((WH
i −

(1, x)θn)g(Xi)) for functions g of the form g(Xi) = k((Xi − x̃)/h) for some x̃ and h, and

integrate or take the minimum of those that are negative. In order for the test φn(θn) based

on a test statistic Tn(θn) to have high power, we would like the test to place as much weight

as possible on functions g(Xi) = k((Xi − x̃)/h) that are supported on values of Xi where

the inequality is violated (in the case of the parameter θn illustrated in the figure, this

corresponds to Xi between about .5 and .7). As θn approaches θ0, the portion of the support

of Xi where the inequality is violated will shrink towards a single point x0, so we will want

the test statistic to use functions g(Xi) = k((Xi− x̃)/h) where x̃ is near x0 and h is close to

zero.

If we knew a priori the point where the moment inequality was violated, we could use this

to choose the function g(Xi). The fact that this is unknown leads to the tests described in

Section 1.1, where test statistics are formed by combining these functions using integration

(for CvM statistics) or by taking the maximum (for KS statistics). This is the step that

leads to CvM and KS statistics having different power properties: taking the integral of the

moment functions tends to give power when the inequality is violated by a small amount at

many different points, while taking the maximum leads to more power when the inequality is

violated at a small number of points. Since the moment inequality is violated on a shrinking

set, KS statistics have better power in this setting than CvM statistics.2

2To see this in a simpler setting, consider testing a finite number of unconditional moment inequalities
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To see this in more detail, let us give a heuristic derivation of some of the results in

this setting. Consider the instrument based CvM statistic with bounded weights, where

the measure µ on the instruments g(x) = k((x − x̃)/h) has a density fµ(x̃, h) with re-

spect to the Lebesgue measure, and assume that Xi has a density fX(x). For simplic-

ity, suppose we only base the statistic on the inequality involving WH
i . The statistic is

Tn(θn) =
[∫ ∫

|En(WH
i − (1, Xi)θn)k((Xi − x̃)/h)|p−fµ(x̃, h) dx̃ dh

]1/p
, which is an integral

over a sample expectation. We expect that the test will have power when the integral over

the corresponding population expectation is large relative to the critical value, which, as

discussed below, will be of order n−1/2. Thus, to have power at θn = (θ0,1 + an,1, θ0,2)′, we

expect that[∫ ∫
|E(WH

i − (1, Xi)θn)k((Xi − x̃)/h)|p−fµ(x̃, h) dx̃ dh

]1/p

=

[∫ ∫ ∣∣∣∣∫ (E(WH
i |Xi = x)− (1, x)θn)k((x− x̃)/h)fX(x) dx

∣∣∣∣p
−
fµ(x̃, h) dx̃ dh

]1/p

(13)

will have to be large relative to n−1/2.

Since E(WH
i |Xi = x) is tangent to (1, x)θ0 = θ0,1 + θ0,2x at x0, a second order Taylor

approximation gives E(WH
i |Xi = x) − θ0,1 − θ0,2x ≈ (x − x0)2(V/2) where V is the second

derivative of E(WH
i |Xi = x) at x0. Since θn = (θ0,1 + an,1, θ0,2)′, this gives an approximation

to the integrand in the above display: E(WH
i |Xi = x)− (1, x)θn = E(WH

i |Xi = x)− θ0,1 −
θ0,2x− an,1 ≈ (x− x0)2(V/2)− an,1. Substituting this into the above display gives

[∫ ∫ ∣∣∣∣∫ ((x− x0)2(V/2)− an,1)k((x− x̃)/h)fX(x) dx

∣∣∣∣p
−
fµ(x̃, h) dx̃ dh

]1/p

.

As θn approaches θ0, only values of x̃ near x0 and values of h near zero will contribute to

the integrand, so that this approximation will hold with increasing accuracy. Furthermore,

assuming that fµ and fX are smooth, this means that we can also replace fX(x) with fX(x0)

and fµ(x̃, h) with fµ(x0, 0):

[∫ ∫ ∣∣∣∣∫ ((x− x0)2(V/2)− an,1)k((x− x̃)/h)fX(x0) dx

∣∣∣∣p
−
fµ(x0, 0) dx̃ dh

]1/p

.

H0 : EYi,1 ≥ 0, . . . , EYi,k ≥ 0. Tests based on the statistic
∑k

j=1 |
∑n

i=1 Yi,k|
2

− (which is analogous to a CvM
statistic) will have more power when each of the inequalities is violated by a small amount, while tests based
on the statistic maxk

j=1 |
∑n

i=1 Yi,j |− (which is analogous to a KS statistic) will have more power when a
single inequality is violated. See Armstrong (2014a) for details and further references.
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Using the change of variables u = (x − x0)/a
1/2
n,1 , v = (x̃ − x0)/a

1/2
n,1 , h̃ = h/a

1/2
n,1 , it can be

seen that the above display is equal to[∫ ∫ ∣∣∣∣∫ (an,1u
2(V/2)− an,1)k((u− v)/h̃)fX(x0)a

1/2
n,1 du

∣∣∣∣p
−
fµ(x0, 0)a

1/2
n,1 dṽa

1/2
n,1 dh̃

]1/p

= a
3/2+1/p
n,1

[∫ ∫ ∣∣∣∣∫ (u2(V/2)− 1)k((u− v)/h̃)fX(x0) du

∣∣∣∣p
−
fµ(x0, 0) dṽ dh̃

]1/p

.

Thus, we expect to get power when a
3/2+1/p
n,1 decreases at least as slowly as n−1/2, which

corresponds to an,1 decreasing at the rate n−1/(3+2/p). This is the rate derived formally for

this test in Section 4.1, specialized to this setting (the general results use a smoothness

parameter γ which, in this case, is equal to 2).

To understand how this differs from the corresponding KS test based on Tn(θn) =

supx̃,h |En(WH
i − (1, Xi)θn)k((Xi − x̃)/h)|−, note that similar derivations give the approxi-

mation

sup
x̃,h

∣∣∣∣∫ ((x− x0)2(V/2)− an,1)k((x− x̃)/h)fX(x0) dx

∣∣∣∣
−
.

Applying the same change of variables gives

sup
u,h̃

∣∣∣∣∫ (an,1u
2(V/2)− an,1)k((u− v)/h̃)fX(x0)a

1/2
n,1 du

∣∣∣∣
−

= a
3/2
n,1 sup

u,h̃

∣∣∣∣∫ (u2(V/2)− 1)k((u− v)/h̃)fX(x0) du

∣∣∣∣
−
,

and comparing this to n−1/2 (which is the order of the critical value in this case as well) shows

that we will have power when an,1 decreases at the rate n−1/3. This is shown formally in

Armstrong (2015). Note that the n−1/3 rate for the KS statistic is faster than the n−1/(3+2/p)

rate for the CvM statistic.

3 Assumptions

This section states the conditions used in this paper, and verifies them for the interval re-

gression model defined in the introduction. Section A in the appendix verifies the conditions

in other settings.

This paper considers the power P (φn(θn) = 1) of a sequence φn(θn) of tests of H0,θn :
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θn ∈ Θ0 under iid data from a fixed dgp P , where θn = θ0 +an is a sequence converging to θ0

on the boundary of Θ0 (where Θ0 is the identified set under the given dgp P ). Thus, we need

conditions on the tests φn(θn) (in particular, the critical values and weighting functions, etc.

used in forming the test statistics) and the dgp P and the sequence θn. Section 3.1 gives

the conditions on the tests φn(θn) and Section 3.2 gives the conditions on P and θn. Section

3.3 verifies these conditions for the interval regression model. Section 3.4 explains how the

conditions differ from those encountered in point identified settings.

3.1 Assumptions on Test Statistics and Critical Values

The properties of these tests will depend on the choice of critical value. The only condition

needed for upper bounds on power, stated in the following assumption, is that the criti-

cal value be of the same order of magnitude as a critical value based on a least favorable

asymptotic distribution where all of the moments bind (i.e. E(m(Wi, θ)|Xi) = 0 a.s.).

Assumption 3.1. For some η > 0, the critical value ĉn = ĉn(θn) defined in (10) or (11),

depending on the weighting and form of the test, satisfies ĉn(θn) > η with probability ap-

proaching one.

Assumption 3.1 holds for the kernel CvM based test of Lee et al. (2013), which uses the

least favorable null dgp, as well as the tests using instrument based CvM statistics with

bounded weights proposed in Andrews and Shi (2013). Instrument based CvM statistics

with variance weights have not been considered in the literature. In Section C of the supple-

mentary appendix, I consider critical values for this case and show that critical values based

on the least favorable null dgp will satisfy Assumption 3.1.

Assumption 3.1 only gives a lower bound for a critical value. This gives bounds on the

power, but to derive the exact local asymptotic power, we need the following condition, which

gives a limiting value for this critical value. Under mild conditions on the data generating

process and sequence of local alternatives, this assumption will also hold for the methods of

choosing critical values discussed above.

Assumption 3.2. For the critical value ĉn = ĉn(θn) defined in (10) or (12), depending on

the weighting and form of the test, and some constant c > 0, ĉn(θn)
p→ c.

The power properties of the test will also depend on the class of functions G used as

instruments. I derive power results for the case where G consists of kernel functions with

different bandwidths and locations, defined in the following assumption.

11



Assumption 3.3. For some bounded, nonnegative function k with finite support and
∫
k(u) du >

0, G = {x 7→ k((x − x̃)/h)|x̃ ∈ RdX , h ∈ R+}, and the covering number N(ε,G, L1(Q)) de-

fined in Pollard (1984) satisfies supQN(ε,G, L1(Q)) ≤ Aε−W , where the supremum is over

all probability measures.

The covering number assumption in Assumption 3.3 is a technical condition that allows

for uniform convergence of kernel estimates over x and h. A sufficient condition is that the

kernel k takes the form k(x) = r(‖x‖) where r is a monotone decreasing function on on

[0,∞) (see Pollard, 1984, chapter 2, problem 28).

For CvM statistics, I place the following condition on the measure µ over which the

sample means are integrated.

Assumption 3.4. The measure µ has bounded support, and has a density fµ(x̃, h) with

respect to the Lebesgue measure on RdX × [0,∞) that is bounded and continuous.

Relaxing this assumption would lead to different power properties, although the general

point that Lp statistics perform worse in these models than supremum statistics would go

through.

3.2 Conditions on Data Generating Process

This section presents the main assumptions on the model and dgp used in this paper. The

conditions are similar to those used in Armstrong (2015), Armstrong (2014b) and Armstrong

and Chan (2016). I first provide high level conditions, and then verify them for the interval

regression model in Section 3.3. Section 3.4 provides a discussion of the difference between

these conditions and other settings, such as point identified models. Section A in the ap-

pendix verifies the conditions in this section for additional settings. I assume throughout

that the data are iid.

I place the following conditions on the data generating process and the sequence θn =

θ0 + an. In these conditions, γ is a smoothness parameter that is generally given by the

minimum of the number of derivatives of the conditional mean and 2. The truncation of

the smoothness parameter at 2 comes from the fact that the test statistics here use positive

kernels or instruments.

Assumption 3.5. For each j, the conditional mean E(mj(Wi, θ0)|Xi = x) ≡ m̄j(θ0, x) takes

its minimum only on a finite set {x|E(mj(Wi, θ0)|Xi = x) = 0 some j} = X0 = {x1, . . . , x`}.
For each k from 1 to `, let J(k) be the set of indices j for which E(mj(Wi, θ0)|Xi = xk) =

12



0. Assume that there exist neighborhoods B(xk) of each xk ∈ X0 such that the following

assumptions hold.

i.) There exists η > 0 such that, for θ in a neighborhood of θ0, we have (a) m̄j(θ, x) > η

for j /∈ J(k) for x ∈ B(xk) and (b) m̄j(θ, x) > η for all j for x /∈ ∪`k=1B(xk).

ii.) For j ∈ J(k), m̄j(θ0, x) is continuous on the closure of B(xk) and satisfies

sup
‖x−xk‖≤δ

∥∥∥∥m̄j(θ0, x)− m̄j(θ0, xk)

‖x− xk‖γ(j,k)
− ψj,k

(
x− xk
‖x− xk‖

)∥∥∥∥ δ→0→ 0

for some γ(j, k) > 0 and some function ψj,k : {t ∈ RdX |‖t‖ = 1} → R with ψ ≥
ψj,k(t) ≥ ψ for some ψ <∞ and ψ > 0. For future reference, define γ = maxj,k γ(j, k)

and J̃(k) = {j ∈ J(k)|γ(j, k) = γ}.

iii.) Xi has a continuous density fX on B(xk).

iv.) For j ∈ J(k), s2
j(x, θ) ≡ var(mj(Wi, θ)|Xi = x) is strictly positive and continuous at

(xk, θ0).

v.) For x in the closure of B(xk) and θ in a neighborhood of θ0, m̄(θ, x) has a derivative

as a function of θ that is continuous as a function of (θ, x). Let m̄θ,j(θ, x) denote the

jth row of this derivative matrix (i.e. the derivative of m̄j(θ, x) with respect to θ).

Assumption 3.6. The data are iid and for some fixed Y <∞ and θ in a some neighborhood

of θ0, |m(Wi, θ)| ≤ Y with probability one.

The deterministic bound in Assumption 3.6 allows for the use of certain technical results

that are useful in the proofs. It may be possible to relax this assumption, although additional

technical arguments would be needed in some places.

The following assumption, which is used for kernel based statistics, ensures that the

kernel estimators do not encounter boundary problems (cf. Assumption 1(iii) in Lee et al.,

2013).

Assumption 3.7. Xi has a density fX that is bounded away from infinity, and the weighting

function ωj(θ, x) is continuous for all j and, for some ε > 0, is equal to zero whenever

fX(x̃) < ε for some x̃ with ‖x̃− x‖ < ε.

13



3.3 Discussion and Primitive Conditions for Interval Regression

In discussing these assumptions, it is useful to keep in mind the interval regression model

introduced in the introduction, in which Wi = (Xi,W
L
i ,W

H
i ) and m(Wi, θ) = (WH

i −
(1, X ′i)θ, (1, X

′
i)θ − WL

i )′. The following gives a general discussion of these assumptions,

with references to the interval regression model as an example. I then state primitive suffi-

cient conditions in the interval regression model that imply these assumptions with γ = 2.

Section A of the appendix gives primitive conditions in additional settings.

The assumptions used here are similar to the conditions used in Armstrong (2015) to

derive the asymptotic distribution and local power of a KS statistic with bounded weights.

In particular, Assumption 3.5 corresponds to the version of Assumption 3.1 in Armstrong

(2015) used in Section 5 of that paper, in which part (ii) is replaced by Assumption 5.1 in

Armstrong (2015). Part (i) strengthens the version used in Armstrong (2015) by extending

it to a neighborhood of θ0, and part (v) is an additional condition on the derivative with

respect to θ. These additional conditions are used to derive local power, and are similar to

Assumption 7.1 in Armstrong (2015).

Assumption 3.5 is the main substantive condition that gives rise to the local power

results derived in this paper. It states that the conditional mean of the moment conditions

is equal to zero only at a finite number of points. In the context of the interval regression

model, this holds for θ0 on the boundary of the identified set when the regression line x′θ0

is tangent to E(WH
i |Xi = x) or E(WH

i |Xi = x) at a finite number of points. In general,

a sufficient condition for this in the case where Xi has compact support is that m̄j(θ, x)

takes its minimum on the interior of the support of Xi and m̄j(θ, x) is twice continuously

differentiable with a positive definite second derivative matrix at any point where it takes a

minimum (see Section A.1 in the appendix).

The most natural case where this does not hold is where E(WH
i |Xi = x) or E(WL

i |Xi =

x) is linear and equal to (1, x′)θ on a nondegenerate interval (the other possibility is for

E(WH
i |Xi = x) − (1, x′)θ0 to be zero on a set with infinitely many elements, but with zero

probability, such as with the function sin(1/x)). This holds in the point identified case where

P (WH
i = WL

i |Xi) = 1 for Xi on a nondegenerate interval (and, in particular, in the special

case where WH
i = WL

i with probability one, leading to the usual linear regression model).

However, when θ is set identified, this is a knife-edge case: even if E(WH
i |Xi) = (1, X ′i)θ0

for Xi on a nondegenerate interval for a given θ0 on the boundary of the identified set, we

will typically have E(WH
i |Xi = x) = (1, x′)θ̃0 only on a finite set for θ̃0 close to θ0.

This is illustrated by Figures 2 and 3, which are taken directly from Section 2.2 of Arm-
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strong (2015). Each figure shows the conditional mean E(WH
i |Xi = x) for some dgp along

with regression lines corresponding to particular parameter values θ (the lower conditional

mean E(WL
i |Xi = x) can be taken to be below the area shown in each figure). In Figure 2,

the regression line (1, x′)θ = θ1 + θ2x is tangent to the conditional mean at a single point,

and Assumption 3.5 holds for the parameter θ. In Figure 3, the regression line θa,1 + θa,2x

corresponding to the parameter θa is equal to E(WH
i |Xi = x) on a nondegenerate interval,

so that Assumption 3.5 does not hold. However, at nearby parameter values such as θb, the

regression line is equal to E(WH
i |Xi = x) at a single point and Assumption 3.5 holds. See

Section 2.2 of Armstrong (2015) for further discussion.

In the case where m̄(θ0, x) is twice continuously differentiable in x, part (ii) of Assumption

3.5 follows from a second order Taylor expansion at xk, so long as the second derivative

matrix is positive definite. In this case, Assumption 3.5 holds with γ = 2 and ψj,k(u) =

u′Vj(xk)u/2, where Vj(xk) is the second derivative matrix of x 7→ m̄(θ0, x) at xk. In the

interval regression model, the second derivative of m1(θ0, x) is equal to the second derivative

of E(WH
i |Xi = x) (and similarly for m2(θ0, x) and −E(WL

i |Xi = x)), so this translates

directly to an assumption of a positive definite second derivative matrix of E(WH
i |Xi = x).

In the case where m̄(θ0, x) is Lipschitz continuous, part (ii) of Assumption 3.5 will hold with

γ = 1 if we place additional regularity conditions on the one-sided directional derivative of

m̄(θ0, x). The parameter θ in Figure 2 illustrates a case where Assumption 3.5 holds with

γ = 2, while the parameter θb in Figure 3 illustrates a case where Assumption 3.5 holds

with γ = 1. See Theorem A.1 in Section A.2 of the appendix for a formal statement in the

interval regression model.

The remaining assumptions are regularity conditions that translate easily to primitive

objects in the case of interval regression. For part (v), note that m̄θ,1(θ, x) = −(1, x′) and

m̄θ,2(θ, x) = (1, x′), which are clearly continuous, so this assumption holds without further

conditions on the dgp.

The following gives a formal statement of primitive conditions for the interval regression

model in the case where the conditional means are twice differentiable. The proof of this

result uses the ideas in the discussion above, and is given in Section A.2 of the appendix.

Theorem 3.1. Suppose that the following conditions hold.

i.) The conditional means E(WH
i |Xi = x) and E(WL

i |Xi = x) are twice differentiable with

continuous second derivatives, Xi has a continuous density and compact support, and

WH
i and WL

i are bounded from above and below by finite constants.
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ii.) For any point x̃ such that E(WH
i |Xi = x̃) = (1, x̃′)θ0, x̃ is in the interior of the

support of Xi, var(W
H
i |Xi = x) is positive and continuous at x̃ and E(WH

i |Xi = x)

has a positive definite second derivative matrix at x̃. The same holds for E(WL
i |Xi = x)

with “positive definite” replaced by “negative definite.”

Then Assumptions 3.5, and 3.6 hold, with γ = 2 in Assumption 3.5.

3.4 Comparison with Conditions Leading to Parametric Rates

Under Assumption 3.5, the conditional mean m̄j(θ0, x) = E(m(Wi, θ0)|Xi = x) is minimized

on a finite set, and behaves like ‖x − xk‖γ for xk in this set and nearby x. As shown in

Section 4 below, this leads to power against alternatives that approach the identified set at a

slower than
√
n rate. As suggested by the intuitive description of these results in Section 2,

this arises because, as θn approaches the identified set, the conditional moment inequalities

are violated on a set with vanishing probability. This is similar to the case of nonparametric

kernel estimation, in which bias-variance tradeoffs and the level of smoothness determine the

rate of convergence (see, e.g., Wasserman, 2007).

In contrast, Andrews and Shi (2013), Kim (2008) and Lee et al. (2013) consider the

case where m̄j(θ0, x) is minimized on a nondegenerate interval. In this case, the portion of

the support of Xi on which the inequality is violated does not vanish as θn approaches the

boundary of the identified set. This leads to nontrivial power at alternatives that approach

the null at a 1/
√
n rate. As discussed above, the latter case is typical under point identifi-

cation and holds by construction with moment equalities, but it corresponds to a knife-edge

case under set identification.

To understand these issues, it is helpful to make a comparison to the case of nonpara-

metric regression, where kernel estimators can converge at a faster rate if certain derivatives

are equal to zero. For example, local linear estimators converge at a n2/5 rate when the con-

ditional mean is twice differentiable with nonzero derivative and a bandwidth is used that

decreases like n−1/5, but a faster rate can be obtained when the second derivative is zero,

using a bandwidth sequence that converges more slowly. The typical approach to formaliz-

ing the notion that the optimal rate under a second derivative condition is n2/5 is to use a

minimax criterion, in which one requires good performance uniformly over all dgps with a

certain bound on the second derivative (see Fan, 1993, for a formulation of this approach for

local linear estimators). Minimax results of this form are often cited in econometrics when

making claims of optimality of nonparametric estimators (for example, Ichimura and Todd

2007 cite minimax bounds in Stone 1982).
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In the present setting, the results in this paper show that, even though
√
n local power

is possible in certain special cases, the minimax (worst-case) power is slower than
√
n when

one only places bounds on derivatives of certain objects. In particular, while a bound on the

second derivative of E(WH
i |Xi = x) and E(WL

i |Xi = x) does not imply Assumption 3.5 in

the interval regression model, one can construct a dgp such that Assumption 3.5 holds with

γ = 2 for any nonzero bound on the second derivative. Thus, the minimax rates of local power

for CvM statistics under a bound on the second derivative are at least as slow as the rates

derived in this paper, which are slower than
√
n. Since the results in Armstrong (2014b) show

that the corresponding KS statistics achieve a better rate for local alternatives uniformly

over dgps with a bound on the second derivative (and additional regularity conditions), this

means that the KS statistic is preferred to the CvM statistic under a minimax criterion in

this class. See Section A.5 in the appendix for formal statements.

4 Local Power Results

This section derives local power results for CvM test statistics under the conditions given in

Section 3.

4.1 Instrument Based CvM Statistics with Bounded Weights

To describe the power results, we need some additional notation. Define

λbdd(a, j, k, p) = λbdd(a, m̄θ,j(θ0, xk), ψj,k, fX(xk), fµ(xk, 0), p)

≡
∫ ∫ ∣∣∣∣∫ [‖x‖γψj,k ( x

‖x‖

)
+ m̄θ,j(θ0, xk)a

]
k((x− x̃)/h)fX(xk) dx

∣∣∣∣p
−
fµ(xk, 0) dx̃ dh.

Theorem 4.1. Let

an = an−γ/{2[dX+γ+(dX+1)/p]}

for some vector a. Under Assumptions 3.3, 3.4, 3.5, and 3.6,

n1/2Tn,p,1,µ(θ0 + an)
p→

 |X0|∑
k=1

∑
j∈J̃(k)

λbdd(a, j, k, p)

1/p

≡ rbdd(a)

where rbdd(a)→ 0 as a→ 0.
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Theorem 4.1 has immediate consequences for the power of tests based on CvM statistics

with bounded weightings.

Theorem 4.2. If, in addition to the conditions of Theorem 4.1, Assumption 3.1 holds, the

power

Eφn,p,1,µ(θ0 + an)

of the test φn,p,1,µ(θ0 + an) will converge to zero for rbdd(a) < c. If a is close enough to zero,

rbdd(a) will be less than c so that the power will converge to zero. If, in addition, Assumption

3.2 holds, the power will converge to 1 for rbdd(a) > c.

The n−γ/{2[dX+γ+(dX+1)/p]} rate for instrument based CvM statistics with bounded weights

is slower than the n−γ/{2[dX+γ]} rate derived for the corresponding KS test in Theorem 14 of

Armstrong (2015) (for γ = 2) and Theorem 5.1 of Armstrong (2014b) (α from that paper

plays the role of γ here). Note also that local power increases as p increases, and becomes

aribrarily close to the rate for the KS test as p increases.

4.2 Instrument Based CvM Statistics with Variance Weights

Define

λvar(a, j, k, p)

≡
∫ ∫ ∣∣∣∣∫ [‖x‖γψj,k ( x

‖x‖

)
+ m̄θ,j(θ0, xk)a

]
wj(xk)h

−dX/2k((x− x̃)/h)fX(xk) dx

∣∣∣∣p
−

fµ(xk, 0) dx̃ dh

where wj(xk) ≡ (s2
j(xk, θ0)fX(xk)

∫
k(u)2 du)−1/2.

Theorem 4.3. Let

an = an−γ/{2[dX/2+γ+(dX+1)/p]}.

Suppose that σn(n/ log n)1/2 →∞ and Assumptions 3.3, 3.4, 3.5, and 3.6 hold. Then

n1/2Tn,p,(σ̂∨σn)−1,µ(θ0 + an) ≤

 |X0|∑
k=1

∑
j∈J(k)

λvar(a, j, k, p)

1/p

+ op(1) ≡ rvar(a) + op(1)
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where rvar(a)→ 0 as a→ 0. If, in addition, σnn
dX/{4[dX/2+γ+(dX+1)/p]} → 0, the above display

will hold with the inequality replaced by equality.

The result has immediate consequences for the power of tests based on CvM statistics

with truncated variance weightings.

Theorem 4.4. Let an be defined as in Theorem 4.3 and suppose that the conditions of that

theorem and Assumption 3.1 hold. The power

Eφn,p,(σ∨σn)−1,µ(θ0 + an)

of the test φn,p,(σ∨σn)−1,µ(θ0+an) will converge to zero for rvar(a) < c. For a close enough to 0,

rvar(a) will be less than c so that the power will converge to zero. If, in addition, Assumption

3.2 holds and σnn
dX/{4[dX/2+γ+(dX+1)/p]} → 0, the power will converge to 1 for rvar(a) > c.

As with bounded weighting functions, the rate for detecting local alternatives with CvM

statistics with variance weights is slower than the rate for the corresponding KS test. The

n−γ/{2[dX/2+γ+(dX+1)/p]} rate for variance weighted CvM statistics derived above contrasts

with the (n/ log n)−γ/[2(dX/2+γ)] rate for the corresponding KS test derived in Armstrong

and Chan (2016) and Armstrong (2014b) (the results from the latter paper on rates of

convergence of confidence regions in the Hausdorff metric imply these local power results).

The rate for CvM statistics approaches the rate for KS statistics as p→∞.

4.3 Statistics Based on Kernel Estimates

To describe the results, define

λkern(a, h, j, k, p) ≡
∫ ∣∣∣∣∫ [‖x‖γψj,k ( x

‖x‖

)
+ m̄θ,j(θ0, xk)a

]
h−dXk((x− x̃)/h)ωj(θ0, xk) dx

∣∣∣∣p
−
dx̃.

and

λ̃kern(a, j, k, p) ≡
∫ ∣∣∣∣[[‖v‖γψj,k ( v

‖v‖

)
+ m̄θ,j(θ0, xk)a

]
ωj(θ0, xk)

∣∣∣∣p
−
dv.

Theorem 4.5. Suppose that Assumptions 3.4, 3.5, 3.6 and 3.7 hold, and that the kernel

function k satisfies Assumption 3.3. In addition, suppose that the bandwidth h satisfies

h/n−s → ch for some 0 < s < 1/dX and ch > 0, the kernel function k satisfies
∫
k(u) du = 1
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and that the functions ψj,k in Assumption 3.5 are continuous. Let an = an−q for some

a ∈ Rdθ where

q =

{
sγ if s < 1/[2(γ + dX/p+ dX/2)]

(1− sdX)/[2(1 + dX/(pγ))] if s ≥ 1/[2(γ + dX/p+ dX/2)]

and let θn = θ0 + an. If s > 1/[2(γ + dX/p+ dX/2)], then

(nhdX )1/2Tn,p,kern(θn)
p→ c

dX/2
h

 |X0|∑
k=1

∑
j∈J(k)

λ̃kern(a, j, k, p)

1/p

≡ r̃kern(a).

If s = 1/[2(γ + dX/p+ dX/2)], then

(nhdX )1/2Tn,p,kern(θn)
p→ c

dX/2
h

 |X0|∑
k=1

∑
j∈J(k)

λkern(a, ch, j, k, p)

1/p

≡ rkern(a, ch).

If s < 1/[2(γ + dX/p+ dX/2)], then

(nhdX )1/2Tn,p,kern(θn)

will converge in probability to 0 if |X0|∑
k=1

∑
j∈J(k)

λkern(a, ch, j, k, p)

1/p

is 0 in a neighborhood of (a, ch), and will converge to ∞ if this expression is strictly positive.

The result has immediate implications for the power of tests based on kernel CvM statis-

tics.

Theorem 4.6. Let an be defined as in Theorem 4.5 and suppose that the conditions of that

theorem and Assumption 3.1 hold. If s > 1/[2(γ + dX/p+ dX/2)], the power

Eφn,p,kern(θ0 + an)

of the test φn,p,kern(θ0 + an) will converge to zero for r̃kern(a) < c. If s = 1/[2(γ + dX/p +

dX/2)], the power given by the above display will converge to zero for r̃kern(a, ch) < c. If
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s < 1/[2(γ + dX/p + dX/2)], the power given by the above display will converge to zero if

r̃kern(a, ch) = 0 in a neighborhood of (a, ch). If, in addition, Assumption 3.2 holds, the power

given by the above display will converge to 1 if r̃kern(a) > c, rkern(a, ch) > c, or rkern(a, ch) > 0

in the cases where s is greater than, equal to, or less than 1/[2(γ+dX/p+dX/2)] respectively.

As with instrument based statistics, the rate for detecting local alternatives with the

kernel CvM test is slower than the rate for the corresponding KS statistic. The rate derived

in Theorem 4.5 can be written as max{(nhdX )−1/[2(1+dX/(pγ))], hγ}, which is slower than the

max
{

(nhdX/ log n)−1/2, hγ
}

rate for kernel based KS statistics derived in Armstrong (2014b).

As with the instrument based statistics, the CvM test is more powerful for p larger, and the

rate approaches the rate for the KS test as p goes to ∞.

Theorem 4.5 can be used to choose the optimal bandwidth in this setting. The rate

an = an−q is best when s = 1/[2(γ + dX/p+ dX/2)], which gives an exponent in the rate of

q =
γ

2(γ + dX/p+ dX/2)
=

1− sdX
2(1 + dX/(pγ))

= sγ.

Note that this rate is faster than the n−γ/[2(dX/2+γ+(dX+1)/p))] rate that can be obtained

with instrument based CvM tests with variance weights. Thus, restricting the class of

instruments using prior knowledge of the data generating process leads to a faster rate

with CvM statistics. In contrast, instrument based KS statistics with variance weights can

achieve the same rate as kernel KS statistics that use prior knowledge of the data generating

process to choose the bandwidth optimally (cf. Armstrong, 2014b; Armstrong and Chan,

2016; Chetverikov, 2012).

5 Monte Carlo

This section reports the results of a Monte Carlo study of the finite sample properties of the

statistics considered in this paper. I perform a Monte Carlo based on a median regression

model with potentially endogenously missing data. I use the same data generating processes

as for the Monte Carlo for variance weighted KS statistics in Armstrong and Chan (2016).

A description of the model and data generating processes is repeated here for convenience.

The latent variable W ∗
i follows a linear median regression model given the observed

covariate Xi: q1/2(W ∗
i |Xi) = θ1 + θ2Xi where q1/2(W ∗

i |Xi) is the conditional median of W ∗
i

given Xi. Define WH
i = W ∗

i when W ∗
i is observed and WH

i = ∞ otherwise. This gives the

conditional moment inequality E[I(θ1 + θ2Xi ≤ WH
i )−1/2|Xi] ≥ 0 a.s. (a similar inequality
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can be formed with the lower bound WL
i defined analogously, but with WL

i = −∞ when W ∗
i

is unobserved, which would give the interval quantile regression setup of Section A.3 of the

appendix; the Monte Carlo focuses on the inequality corresponding to WH
i for simplicity).

This model allows for arbitrary correlation between the “missingness” process and (W ∗
i , Xi),

so that the resulting bounds can be used to assess sensitivity to missingness at random

assumptions that would point identify the model.

Each design uses data from the true model W ∗
i = θ∗1 + θ∗2Xi + ui, where (θ∗1, θ

∗
2) = (0, 0)

and ui is independent of Xi with ui ∼ unif(−1, 1). The outcome variable W ∗
i is then set to be

missing independently of W ∗
i with probability p(Xi) (note that, while the data are generated

according to a missingness at random assumption and a particular parameter value, the tests

are robust to failure of this assumption, which leads to a lack of point identification), where

p(x) is varied in each of three designs:

Design 1: p(x) = .1

Design 2: p(x) = .02 + 2 · .98 · |x− .5|
Design 3: p(x) = .02 + 4 · .98 · (x− .5)2.

This leads to the identified set Θ0 = {(θ1, θ2)′|θ1 + θ2x ≤ q1/2(WH
i |Xi = x) all x ∈ [0, 1]}

where q1/2(WH
i |Xi = x) can be calculated for each design as q1/2(WH

i |Xi = x) = 1/(1 −
p(x))−1. For each design, the Monte Carlo power of φ(θ) for each test φ under the dgp in the

given design is reported for θ = (θ1 + a, 0) where θ1 = sup{θ1|(θ1, 0) ∈ Θ0} and a varies over

the set {.1, .2., .3, .4, .5}. This leads to local alternatives that satisfy the conditions of this

paper with γ = 1 for Design 2 and γ = 2 for Design 3. Design 1 leads to a flat conditional

mean for which asymptotic theory predicts the following rates (for the instrument functions

used here): n−1/2 for kernel and instrument based CvM and unweighted instrument based KS

statistics, (n/ log n)−1/2 for variance weighted instrument KS statistics and (nh/ log n)−1/2

for kernel KS statistics (see Andrews and Shi, 2013; Armstrong, 2014b; Chernozhukov et al.,

2013; Lee et al., 2013).

For the instrument based statistics, I use the class of functions {x 7→ I(s < x < s+t)|0 ≤
s ≤ s + t ≤ 1} and the the Lebesgue measure on {(s, t)|0 ≤ s ≤ s + t ≤ 1} for µ for the

instrument based CvM statistics. This corresponds to the multiscale kernel instruments in

Assumption 3.3 with the uniform kernel. For the kernel based statistics, the uniform kernel

is used, and the supremum or integral is taken over the set [h/2, 1−h/2], so that the support

of the kernel function is always contained in the support of Xi. For the CvM statistics, the

simulations use the test with Lp exponent p = 1. For each test statistic, the critical value
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is taken from the least favorable null distribution, calculated exactly (up to Monte Carlo

error) using the distribution under (θ1, 0) under Design 1. For the kernel estimators, the

bandwidths n−1/5, n−1/3 and n−1/2 are used, and, for the truncated variance weighted CvM

statistics, the values n−1/5/4, n−1/3/4 and n−1/2/4 are used for the truncation parameter σ2
n

(this corresponds to truncating the variance of functions I(s < x < s + t) with t less than

n−1/5, n−1/3 and n−1/2). For comparison, results for the variance weighted instrument KS

statistic, which corresponds to the multiscale statistic of Armstrong and Chan (2016), are

reported as well (taken directly from that paper).

Overall, the Monte Carlo results support the claim that, for the data generating processes

and classes of instrument functions considered in the theoretical results in this paper, KS

statistics perform better than CvM statistics. For Design 2 and Design 3, which follow

the conditions of this paper with γ = 1 and γ = 2 respectively, the instrument based KS

statistic has more power than the instrument based CvM statistic in basically all cases. For

the kernel statistics, the KS test performs better unless the bandwidth is chosen to be much

too small. For example, for Design 3, the optimal bandwidth for the kernel statistic is of

order n−1/5, and the kernel KS statistic performs better than the kernel CvM statistic with

this bandwidth. However, the kernel statistic performs worse for smaller bandwidths when

the sample size is not too large (although the KS statistic does almost as well or better with

1000 observations, suggesting that the asymptotics of Theorem 4.5 have started to kick in

at this point).

Note also that power in the Monte Carlo is very sensitive to the design, with greater

power for Design 3 than Design 2. This is to be expected given the asymptotic results.

Under Design 3, the assumptions of this paper hold with γ = 2, while, under Design 2,

the assumptions hold with γ = 1. The results of Section 4 show that asymptotic power is

increasing in γ (the rate at which local alternatives may approach the null with nontrivial

power is faster for larger γ) for each of the test statistics considered.

For Design 1, asymptotic results from elsewhere in the literature predict that the instru-

ment based statistics with the instruments used here perform about the same (in terms of

the rate for detecting local alternatives) for KS and CvM statistics, although the variance

weighted KS statistic performs slightly worse (by a log n factor). For kernel statistics, asymp-

totic theory predicts that KS statistics will perform worse than CvM statistics in this case

(the latter can achieve a n−1/2 rate, while the former cannot if the bandwidth goes to zero).

All of these predictions are borne out in the Monte Carlo: instrument based statistics all

perform well with the weighted KS statistics performing slightly worse, while CvM version
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is better for kernel statistics.

The Monte Carlo results also fit well with the prescription of the weighted instrument

KS or “multiscale” statistic of Armstrong (2011), Armstrong (2014b), Armstrong and Chan

(2016) and Chetverikov (2012) as the only test among the ones considered here that comes

close to having the best power among these test statistics for all three Monte Carlo designs

(according to asymptotic approximations, the weighted instrument KS test achieves the

best rate to at least within a log n factor in all three cases, while each of the other statistics

considered here performs worse by a polynomial factor in at least one case). While other

statistics perform slightly better in certain cases, they perform much worse in others (e.g.

the kernel KS statistic performs slightly better in Design 3 with the optimal bandwidth,

n−1/5, but performs much worse when other bandwidths are chosen, or with any bandwidth

choice in Design 1).

6 Conclusion

This paper derives local power results for tests for conditional moment inequality models

based on several forms of CvM statistics in the set identified case. The power comparisons

hold under conditions that arise naturally in the set identified case, and determine the

minimax rate. The results show that KS tests are preferred to CvM statistics and that

variance weightings are preferred to bounded weightings.

A Primitive Conditions and Minimax Bounds

This appendix gives primitive conditions for the assumptions used in this paper, and shows

how the (pointwise in the underlying distribution) results for local alternatives considered

in the paper can be used to bound the minimax power of CvM tests in classes of underlying

distributions where the conditional mean is constrained only by smoothness assumptions.

Since the corresponding KS statistic has a faster rate in these classes, this justifies the claim

that the CvM tests considered here perform worse in these models under a minimax criterion.

Section A.1 gives general primitive conditions for the assumption that the contact set X0

in Assumption 3.5 is finite. Sections A.2, A.3 and A.4 provide primitive conditions for the

assumptions used in this paper in various settings. Section A.5 uses the results in the body

of this paper to give conditions under which the CvM statistics considered in this paper

do not achieve the optimal rate minimax rate, and verifies these conditions for the interval
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regression model.

A.1 Primitive Conditions for Finite Contact Set

If we assume that the support of Xi is compact, and that the minimizing set {x|m̄j(θ, x) = 0}
is contained on the interior of the support of Xi, then the minimizing set will be finite so long

as m̄j(θ, x) is twice continuously differentiable with strictly positive definite second derivative

matrix at any minimum. This follows from the proof of Lemma B.1 in the supplementary

appendix of Armstrong (2015), and we state the result here for convenience. (Note that

the lemma in Armstrong (2015) assumes a third derivative, since a third derivative is used

for other results in that paper. However, a inspection of the proof shows that a continuous

second derivative suffices.)

Lemma A.1. Let h : X → R be twice continuously differentiable on the compact set X ⊆ Rk.

Suppose that, for any minimizer x̃ of h(x), x̃ is on the interior of X , and that the second

derivative matrix of h is strictly positive definite at x̃. Then the set of minimizers of h(x)

over X is finite.

Proof. The result follows from the proof of Lemma B.1 in the supplementary appendix of

Armstrong (2015).

A.2 Interval Regression

This section gives primitive conditions for the interval regression model described in the In-

troduction, which falls into the setup of this paper with Wi = (Xi,W
L
i ,W

H
i ) and m(Wi, θ) =

(WH
i − (1, X ′i)θ, (1, X

′
i)θ −WL

i )′. First, I prove Theorem 3.1. Then, I give conditions under

which the assumptions in the main text hold with γ = 1.

Proof of Theorem 3.1. First, note that the set of x such that m̄j(θ, x) = 0 for some j is finite

by Lemma A.1. Part (ii) of Assumption 3.5 follows from a second order Taylor expansion,

and part (i) follows by compactness of the support of Xi and continuity of the first two

derivatives of the conditional means. Part (iv) is immediate from part (ii) of the conditions

of the theorem and the fact that the conditional variance is constant in θ for this model. For

part (v), note that d
dθ
m̄1(θ, x) = − d

dθ
m̄2(θ, x) = (1, x′), which is clearly continuous in (θ, x).

Assumption 3.6 is immediate from the bounds on WH
i and WL

i .

For the Lipschitz case (γ = 1), we can replace the assumption of two derivatives with

a condition on the directional one-sided first derivatives. Here, we make the assumption of
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finiteness of the set where the conditional moments bind directly, since arguments involving

second derivatives do not apply. In the following, SdX−1 denotes the unit sphere {u ∈
RdX |‖u‖ = 1}.

Assumption A.1. i.) The conditional means E(WH
i |Xi = x) and E(WL

i |Xi = x) are

Lipschitz continuous, Xi has a continuous density and compact support, and WH
i and

WL
i are bounded from above and below by finite constants.

ii.) The set X0 ≡ {x|E(WH
i |Xi = x) = (1, x′)θ0} is finite, and, for any point x̃ ∈ X0, x̃ is in

the interior of the support of Xi, var(W
H
i |Xi = x) is positive and continuous at x̃ and

the one-sided directional derivative d
dt+

[E(WH
i |Xi = x̃+tu)−(1, (x̃+tu)′)θ0] is bounded

from below away from zero at t = 0 and is right continuous at t = 0 uniformly over

u ∈ SdX−1. The same holds for E(WL
i |Xi = x) with “positive” replaced by “negative”

in the last statement.

Theorem A.1. Under Assumption A.1, Assumptions 3.5 and 3.6 hold, with γ = 1 in

Assumption 3.5.

Proof. Part (ii) of Assumption 3.5 follows from a first order Taylor expansion, and part (i)

follows by compactness of the support of Xi and the continuity and lower bound on the

directional derivatives. The verification of the remaining conditions is the same as in the

twice differentiable case.

A.3 Interval Quantile Regression

For the interval quantile regression model, the latent variable W ∗
i follows a linear quan-

tile regression model qτ (W
∗
i |Xi) = (1, X ′i)θ, where τ is given and qτ (U |V ) denotes the τth

conditional quantile of U given V for random variables U and V . As with interval mean

regression, we observe (Xi,W
L
i ,W

H
i ) where [WL

i ,W
H
i ] is known to contain W ∗

i . This falls

into our setup with m(Wi, θ) = (τ − I(WH
i ≤ (1, X ′i)θ), I(WL

i ≤ (1, X ′i)θ)− τ)′.

For the interval quantile regression model, one can use essentially the same assumptions

as for the interval mean regression model considered above, but with conditional means

replaced by conditional quantiles. In the interest of space, we consider only the case where

the conditional quantile function has two derivatives (γ = 2).

Assumption A.2. i.) The conditional quantiles qτ (W
H
i |Xi = x) and qτ (W

L
i |Xi = x) are

twice differentiable with continuous second derivatives and Xi has a continuous density

and compact support.
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ii.) For any x̃ such that qτ (W
H
i |Xi = x̃) = (1, x̃′)θ0, x̃ is in the interior of the support of

Xi and qτ (W
H
i |Xi = x) has a positive definite second derivative matrix at x̃. The same

holds for qτ (W
L
i |Xi = x) with “positive definite” replaced by “negative definite.”

In addition, we will also require an assumption on the conditional densities of WH
i and

WL
i given Xi.

Assumption A.3. For some η > 0, WH
i |Xi and WL

i |Xi have conditional densities fWH
i |Xi(w|x)

and fWL
i |Xi(w|x) on {(x,w)|qτ,P (WH

i |Xi = x) − η ≤ w ≤ qτ,P (WH
i |Xi = x) + η} and

{(x,w)|qτ,P (WL
i |Xi = x) − η ≤ w ≤ qτ,P (WL

i |Xi = x) + η} respectively that are continuous

as a function of (x,w) and bounded away from zero on these sets.

Assumption A.3 is similar to Assumption B.3 in Armstrong (2014b). As discussed in

Armstrong (2014b), this type of condition will hold, for example, when (Xi,W
∗
i ) has a

smooth joint density, and W ∗
i is either missing (in which case WL

i = −∞ and WH
i = ∞)

or fully observed (in which case WL
i = WH

i = W ∗
i ), so long as the probability that W ∗

i is

missing conditional on (Xi,W
∗
i ) = (x,w) is smooth as a function of (x,w).

Theorem A.2. Suppose that Assumptions A.2 and A.3 hold. Then Assumptions 3.5 and

3.6 hold, with γ = 2 in Assumption 3.5.

Proof. Let θ0 ∈ Θ0 satisfy the conditions of the theorem and let x̃ be such that qτ (W
H
i |Xi =

x̃) = (1, x̃′)θ0. Let V (x) denote the second derivative matrix of x 7→ qτ (W
H
i |Xi = x). Then,

for δ small enough and ‖x− x̃‖ ≤ δ,

m̄1(θ, x) = τ − P (WH
i ≤ (1, X ′i)θ0|Xi = x) =

∫ qτ (WH
i |Xi=x)

(1,x′)θ0

fWH
i |Xi(w|x) dw

=

∫ (1,x′)θ0+(x−x̃)′V (x̃)(x−x̃)+r(x)

(1,x′)θ0

fWH
i |Xi(w|x) dw

where limx→x̃ r(x) = 0 and the last step follows from a second order Taylor expansion. This

expression is bounded from above by f(δ) · [(x− x̃)′V (x̃)(x− x̃) + r(δ)] and from below by

f(δ) · [(x− x̃)′V (x̃)(x− x̃) + r(δ)] where f(δ) and r(δ) are upper bounds for fWH
i |Xi(w|x) and

r(x) on {(x,w)|‖x − x̃‖ ≤ δ, (1, x′)θ0 ≤ w ≤ qτ (W
H
i |Xi = x)} and f(δ) and r(δ) are lower

bounds. As δ → 0, f(δ) and f(δ) converge to fWH
i |Xi((1, x̃

′)θ0|x̃) and r(δ) and r(δ) converge

to 0, so that

sup
‖x−x̃‖≤δ

∥∥∥∥τ − P (WH
i ≤ (1, X ′i)θ0|Xi = x)

‖x− x̃‖2
− (x− x̃)′

‖x− x̃‖
V (x̃)

(x− x̃)′

‖x− x̃‖
· fWH

i |Xi((1, x̃
′)θ0|x̃)

∥∥∥∥ δ→0→ 0.
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Applying this argument to the finite set of values x̃ such that τ − P (WH
i ≤ (1, X ′i)θ0|Xi =

x) = 0 and a symmetric argument for WL
i , it follows that part (ii) of Assumption 3.5 holds

with γ = 2.

To verify part (i) of Assumption 3.5 first note that the set X0 = {x|qτ (WH
i |Xi = x) =

(1, x′)θ} is finite by Lemma A.1. Using this and similar arguments to those used in the proof

of Theorem 3.1, there exists ε > 0 and δ > 0 such that qτ (W
H
i |Xi = x)− (1, x)′θ is bounded

away from zero for ‖θ− θ0‖ < ε and x such that, for all x̃ ∈ X0, ‖x− x̃‖ ≥ δ. It then follows

from Assumption A.3 that τ − P (WH
i ≤ (1, X ′i)θ0|Xi = x) is bounded away from zero on

such a set. Part (i) of Assumption 3.5 follows from this and a similar argument for WL
i .

For part (iv) of Assumption 3.5, note that the conditional variance of the moment function

corresponding to WH
i is P (WH

i ≤ (1, x′)θ|Xi = x)[1 − P (WH
i ≤ (1, x′)θ|Xi = x)], so it

suffices to show that P (WH
i ≤ (1, x′)θ|Xi = x) is in the set (0, 1) and is continuous in (θ, x)

at each (θ0, x̃) such that m̄1(θ, x) = P (WH
i ≤ (1, x̃′)θ0|Xi = x̃) = τ . This follows since, by

Assumption A.3, WH
i has a continuous conditional density in a neighborhood of (1, x̃′)θ0.

For part (v) of Assumption 3.5, note that, for (x, θ) such that WH
i has a conditional

density given Xi = x at (1, x′)θ,

m̄θ,1(θ, x) = − d

dθ′
P (WH

i ≤ (1, x′)θ|Xi = x) = −fWH
i |Xi=x((1, x

′)θ|x)(1, x′).

This is continuous in (θ, x) in a small enough neighborhood of any (θ0, x̃) with m̄θ,1(θ0, x̃) = 0,

since fWH
i |Xi=x(w|x) is continuous for w, x in a neighborhood of at x = x̃ and w = (1, x̃′)θ0

for any such θ0 and x̃ by Assumption A.3.

A.4 Selection Model

The interval regression model contains, as a special case, an approach to selection models

based on bounds suggested in Manski (1990). In particular, consider a selection model in

which we are interested in the mean of Y ∗i , which is not always observed. Suppose that Y ∗i

is known to take values in [Y , Y ] for some fixed Y and Y , and a variable Xi is available

such that E(Y ∗i |Xi) = E(Y ∗i ) (i.e. Y ∗i is mean independent of Xi), and such that Xi shifts

the conditional probability of observing Y ∗i . For example, we may be interested in the offer

wage Y ∗i , which is typically only observed when individual i actually works. In this case,

the variable Xi can be taken to be anything that shifts labor force participation through the

opportunity cost of working (such as income from other sources such as family or government
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benefits) while being independent of the distribution of offer wages.

Let Di denote an indicator variable that is 1 when Y ∗i is observed and 0 otherwise.

We observe (Xi, Yi, Di) where Yi = Di · Y ∗i . Following Manski (1990), note that, letting

WL
i = Yi · Di + Y · (1 − Di) and WL

i = Yi · Di + Y · (1 − Di), we have WL
i ≤ Y ∗i ≤ WH

i

with probability one. Letting θ = E(Y ∗i ) and using the fact that E(Y ∗i ) = E(Y ∗i |Xi) a.s.,

we obtain our setup with m(Wi, Xi, θ) = (WH
i − θ, θ −WL

i )′. This is a special case of the

interval regression model of Section A.2, with (θ, 01×dX ) playing the role of θ. That is, we

have the interval regression model with the slope parameter constrained to be zero. Thus,

if we consider a null value θ0 and a sequence of alternatives in the interval regression model

for which the slope parameter is zero, the results of Section A.2 apply immediately to give

primitive conditions for Assumption 3.5 (here Assumption 3.6 holds by construction and the

assumption that Y ∗i is bounded).

Note that E(WH
i |Xi = x) = E(Y ∗i Di|Xi = x) + Y · [1 − P (Di = 1|Xi = x)]. Thus,

a sufficient condition for E(WH
i |Xi = x) to be twice differentiable (or Lipschitz) is for

P (Di = 1|Xi = x) and E(Y ∗i Di|Xi = x) to be twice differentiable (or Lipschitz). It is

also worth noting that cases where E(WH
i |Xi = x) is minimized at the (possibly infinite)

boundary of the support of Xi are often of interest, and arise naturally in this setting (see,

e.g., Andrews and Schafgans 1998 and Heckman 1990). While Assumption 3.5 formally

precludes the possibility that the minimum of E(WH
i |Xi = x) is taken at the boundary of

the support of Xi, such cases can be handled for certain forms of instrument based statistics

by transforming the support of Xi (see Section B.3 of Armstrong 2014b for an example of

this type of argument applied to instrument based KS statistics). We leave this extension

for future research.

A.5 Minimax Rates

The power results in this paper hold under conditions that are arguably common in practice

in the set identified case. However, there are certainly cases (data generating processes,

points on the boundary of the identified set and directions for the local alternative) for

which other conditions will be appropriate. The purpose of this section is to show that, if

the underlying distribution is constrained only by smoothness conditions and other regular-

ity conditions, there will always exist a possible underlying distribution and sequence of local

alternatives that satisfy these properties, with γ governed by the smoothness conditions im-

posed. Thus, any test that achieves good uniform power in these classes against alternatives

that are closer than the pointwise rates derived here for CvM statistics will be preferred
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under a minimax criterion. By results in Armstrong (2014b), it follows that, for certain

classes of alternatives defined by smoothness conditions, the variance weighted KS statistic

of Armstrong (2014b), Armstrong and Chan (2016) and Chetverikov (2012) is preferred to

the CvM statistics considered in this paper under a minimax criterion.

To formalize these ideas, the rest of this section considers classes P of underlying distri-

butions and uses the notation EP and Θ0(P ) to denote expectations and the identified set

under a distribution P . In the results below, d(θ, θ̃) denotes the Euclidean distance ‖θ− θ̃‖.

Theorem A.3. Let φCvM(θ) be one of the CvM tests defined in (10) or (11) with the critical

value satisfying Assumption 3.1, the class G or kernel function k satisfying Assumption 3.3,

and the measure µ satisfying Assumption 3.4 for the instrument case and the weighting

satisfying Assumption 3.7 for the kernel case. Let P be any class of distributions such that,

for some P ∗ ∈ P and θ∗0 on the boundary of Θ0(P ∗), Assumptions 3.5 and 3.6 hold, and

either (a) θ∗0 is on the boundary of the convex hull of Θ0(P ∗) or (b) for some a ∈ Rdθ and

a constant K, d(θ∗0, θ
∗
0 + ar) ≤ K · d(θ0, θ

∗
0 + ar) for all θ0 ∈ Θ0(P ∗) and r small enough.

Then, for a small enough constant C∗ > 0,

lim sup
n→∞

inf
P∈P

inf
θ s.t. d(θ,θ0)≥C∗rn all θ0∈Θ0(P )

EPφCvM(θ) = 0,

where rn is the rate for the given test in Section 4 with γ given in Assumption 3.5.

Proof. Under condition (b), the result is immediate from the results in the main text, since

the quantity in the display in the theorem is less than lim supn→∞EP ∗φCvM(θ∗0+aC∗rnK/‖a‖)
for P ∗, θ∗0 and a given in the theorem. The result follows since condition (a) implies condition

(b) with K = 1. To see this, note that, by the supporting hyperplane theorem, there exists a

vector a with ‖a‖ = 1 such that a′θ̃0 ≤ a′θ∗0 for all θ̃0 in the convex hull of Θ0(P ∗). For this a

and any scalar r > 0 and θ̃0 ∈ Θ0(P ∗), d(θ∗0+ar, θ̃0)2−d(θ∗0+ar, θ0)2 = ‖θ∗0+ar−θ̃0‖2−r2a′a =

‖θ∗0 − θ̃0‖2 + 2ra′(θ∗0 − θ̃0) + r2a′a− r2a′a ≥ ‖θ∗0 − θ̃0‖2 ≥ 0.

A class P of underlying distributions will typically contain a P ∗ satisfying these conditions

so long as it is sufficiently unrestricted (e.g. if the only restrictions are smoothness conditions,

etc.). Theorems A.5 and A.6 below give primitive conditions for this in the interval regression

model.

Under additional regularity conditions on P , the inverse variance weighted KS statistic of

Armstrong (2014b), Armstrong and Chan (2016) and Chetverikov (2012) achieves a strictly

better minimax rate than the upper bounds for CvM statistics given in Theorem A.3. This
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is stated in the next theorem, which follows immediately from results in Armstrong (2014b)

(the results in Armstrong, 2014b consider a stronger notion of coverage and power).

For concreteness, let us consider a specific version of the inverse variance weighted

KS statistic considered in Armstrong (2014b). Let Tn,∞,(σ∨σn)−1(θ) be given by (8) with

G = {x 7→ I(‖x−x̃‖ ≤ h)|x̃ ∈ RdX , h ∈ [0,∞)} and ωj(θ, g) = {σ̂j(θ, g)∨[(log n)2/n]}−1. Let

φn,∞,(σ∨σn)−1(θ) be given by (12) with this definition of Tn,∞,(σ∨σn)−1(θ) and with ĉn,∞,(σ∨σn)−1

given by the constant K in Theorem 3.1 in Armstrong (2014b). In the interest of concrete-

ness, the above formulation uses certain conservative constants and tuning parameters in

defining the test φn,∞,(σ∨σn)−1(θ). Less conservative and data driven methods for choos-

ing these constants have been considered by Armstrong and Chan (2016) and Chetverikov

(2012).

Theorem A.4. Suppose that P satisfies Assumptions 4.1, 4.3, 4.4 and 4.5

in Armstrong (2014b), with γ taking the place of α in that paper. Then

lim supn→∞ supP∈P supθ0∈Θ0(P ) EPφn,∞,(σ∨σn)−1(θ0) = 0 and, for a large enough constant C∗,

lim inf
n→∞

inf
P∈P

inf
θ s.t. d(θ,θ0)≥C∗[(logn)/n]γ/(dX+2γ) all θ0∈Θ0(P )

EPφn,∞,(σ∨σn)−1(θ) = 1.

Proof. Since Assumptions 3.1-3.3 in Armstrong (2014b) follow by definition of the statis-

tic, the result follows from Theorem 4.2 in that paper, with Assumption 4.2(i) in Arm-

strong (2014b) following from Theorem 4.3 in that paper (since Assumption 4.6 and 4.2(ii)

in that paper hold by construction). For Cn the setwise confidence set constructed from

φn,∞,(σ∨σn)−1(θ) in Armstrong (2014b),

inf
P∈P

inf
θ s.t. d(θ,θ0)≥C∗[(logn)/n]γ/(dX+2γ) all θ0∈Θ0(P )

EPφn,∞,(σ∨σn)−1(θ)

= inf
P∈P

inf
θ s.t. d(θ,θ0)≥C∗[(logn)/n]γ/(dX+2γ) all θ0∈Θ0(P )

P (θ 6∈ Cn)

≥ inf
P∈P

P (θ 6∈ Cn all θ s.t. d(θ, θ0) ≥ C∗[(log n)/n]γ/(dX+2γ) all θ0 ∈ Θ0(P ))

≥ inf
P∈P

P (dH(Θ0(P ), Cn) < C∗[(log n)/n]γ/(dX+2γ))

where dH(A,B) = max{supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)} is the Hausdorff distance.

This converges to 1 for large enough C∗ by Theorem 4.2 in Armstrong (2014b).

The classes P used in Theorem A.4 impose smoothness conditions on the conditional

mean along with a condition on the derivative of the conditional mean with respect to θ
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(cases where the latter condition fails appear to favor KS statistics over CvM statistics as

well; see Section A.4 of Armstrong, 2014b). Note that the rate given above for the weighted

KS statistic φn,∞,(σ∨σn)−1 corresponds to the minimax L∞ rate for nonparametric testing

problems (Lepski and Tsybakov, 2000) and to the minimax rate for estimating a conditional

mean (Stone, 1982; see Menzel, 2010 for related results for estimating the identified set in a

setting similar to the one considered here). The results here show that the CvM statistics

considered here do not achieve this rate, and in fact have a minimax rate that is worse by

at least a polynomial amount.

I now turn to the interval regression model and consider primitive conditions. The next

two theorems show that certain classes of underlying distributions for the interval regression

model will always contain a distribution with a sequence of local alternatives that satisfy

the conditions of this paper. The conclusion of Theorem A.3 then follows immediately, since

the identified set is convex in the interval regression model. Theorem A.5 considers the case

where the constraints on the conditional mean embodied in P essentially only restrict the

conditional means of WH
i and WL

i to a Lipschitz smoothness class. Theorem A.6 considers

the smoother case where a bound is placed on the second derivative. For primitive conditions

for the conditions of Theorem A.4 in the interval regression model for the case where dX = 1

and γ = 1 or 2, see Armstrong (2014b), Section 6.2.

Theorem A.5. Let P be any class of underlying distributions for (Xi,W
H
i ,W

L
i ) in the

interval regression model such that, for all P ∈ P, WH
i and WL

i are bounded and Xi has

a continuous density on its support XP . Suppose that, for some set X ⊆ RdX and some

interval [a, b], the following holds: for any function f : X → [a, b] such that

|f(x)− f(x̃)| ≤ K‖x− x̃‖,

there exists a P ∈ P such that EP (WH
i |Xi) = f(Xi) and EP (WL

i |Xi) ≤ a almost surely,

and XP = X . Then there exists a P ∗ ∈ P and θ∗0 ∈ Θ0(P ∗) that satisfies the conditions of

Theorem A.3, with γ = 1 and ψj,k(u) = K in Assumption 3.5.

Proof. Under these assumptions, there exists a distribution P ∈ P such that EP (WH
i |Xi =

x) = b −K[(ε − ‖x − x0‖) ∨ 0] for some ε > 0 and x0 on the interior of the support of Xi,

and EP (WL
i |Xi = x) is bounded from above away from b − 2ε. For θ = (b − Kε, 0), this

satisfies the conditions of Theorem A.1.

Theorem A.6. Let P be any class of underlying distributions for (Xi,W
H
i ,W

L
i ) in the

interval regression model such that, for all P ∈ P, WH
i and WL

i are bounded and Xi has
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a continuous density on its support XP . Suppose that, for some set X ⊆ RdX and some

interval [a, b], for any function f : X → [a, b] such that∣∣∣∣ d2

dt2
f(x+ tu)

∣∣∣∣ ≤ K

for all u ∈ RdX with ‖u‖ = 1, there exists a P ∈ P such that EP (WH
i |Xi) = f(Xi) and

EP (WL
i |Xi) ≤ a almost surely, and XP = X . Then there exists a P ∗ ∈ P and θ∗0 ∈ Θ0(P ∗)

that satisfies the conditions of Theorem A.3, with γ = 2 and ψj,k(u) = K/2 in Assumption

3.5.

Proof. The result follows by similar arguments to Theorem A.5 since a function can be

constructed for EP (WH
i |Xi = x) that has a unique interior minimum with second derivative

matrix KI at its minimum and takes values between, say, (a+ b)/2 and b.
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Figure 1: Local Alternative for Interval Regression Model
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Figure 2: Case where Assumption 3.5 holds with γ = 2
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Figure 3: Case where Assumption 3.5 does not hold (θa) and case where Assumption 3.5
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θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.196 0.593 0.818
0.2 0.458 0.973 1
0.3 0.775 1 1
0.4 0.952 1 1
0.5 0.995 1 1

Table 1: Power for Unweighted Instrument CvM Test under Design 1

θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.166 0.644 0.835
0.2 0.442 0.989 1
0.3 0.781 1 1
0.4 0.957 1 1
0.5 0.994 1 1

Table 2: Power for Unweighted Instrument KS Test under Design 1

σ2
n θ1 − θ1 n = 100 n = 500 n = 1000

0.1 0.198 0.567 0.859
0.2 0.49 0.977 1

1
4
n−1/5 0.3 0.77 1 1

0.4 0.955 1 1
0.5 0.997 1 1
0.1 0.208 0.62 0.851
0.2 0.475 0.983 1

1
4
n−1/3 0.3 0.808 1 1

0.4 0.958 1 1
0.5 0.994 1 1
0.1 0.203 0.591 0.822
0.2 0.474 0.981 1

1
4
n−1/2 0.3 0.804 1 1

0.4 0.946 1 1
0.5 0.996 1 1

Table 3: Power for Weighted Instrument CvM Test under Design 1
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tn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.207 0.503 0.729
0.2 0.48 0.954 1

n−1/5 0.3 0.759 1 1
0.4 0.956 1 1
0.5 0.997 1 1
0.1 0.144 0.453 0.63
0.2 0.378 0.939 0.998

n−1/3 0.3 0.691 1 1
0.4 0.886 1 1
0.5 0.982 1 1
0.1 0.156 0.358 0.502
0.2 0.348 0.898 0.991

n−1/2 0.3 0.649 0.999 1
0.4 0.862 1 1
0.5 0.974 1 1

Table 4: Power for Weighted Instrument KS Test under Design 1 (from Armstrong and Chan
(2016))

hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.186 0.547 0.858
0.2 0.453 0.97 1

n−1/5 0.3 0.729 1 1
0.4 0.934 1 1
0.5 0.994 1 1
0.1 0.188 0.663 0.843
0.2 0.452 0.987 1

n−1/3 0.3 0.794 1 1
0.4 0.947 1 1
0.5 0.997 1 1
0.1 0.185 0.582 0.848
0.2 0.443 0.977 1

n−1/2 0.3 0.78 1 1
0.4 0.942 1 1
0.5 0.997 1 1

Table 5: Power for Kernel CvM Test under Design 1
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hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.16 0.439 0.625
0.2 0.343 0.92 0.997

n−1/5 0.3 0.62 0.999 1
0.4 0.883 1 1
0.5 0.975 1 1
0.1 0.095 0.266 0.481
0.2 0.201 0.715 0.929

n−1/3 0.3 0.382 0.976 1
0.4 0.606 0.999 1
0.5 0.809 1 1
0.1 0 0.094 0.138
0.2 0 0.255 0.404

n−1/2 0.3 0 0.508 0.773
0.4 0 0.812 0.982
0.5 0 0.976 1

Table 6: Power for Kernel KS Test under Design 1

θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0 0 0
0.2 0.001 0 0
0.3 0.005 0 0
0.4 0.008 0.001 0.004
0.5 0.023 0.054 0.119

Table 7: Power for Unweighted Instrument CvM Test under Design 2

θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0 0 0
0.2 0.003 0.002 0.001
0.3 0.007 0.022 0.037
0.4 0.01 0.145 0.412
0.5 0.039 0.596 0.884

Table 8: Power for Unweighted Instrument KS Test under Design 2
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σ2
n θ1 − θ1 n = 100 n = 500 n = 1000

0.1 0 0 0
0.2 0 0 0

1
4
n−1/5 0.3 0.003 0 0

0.4 0.007 0.006 0.013
0.5 0.04 0.118 0.294
0.1 0 0 0
0.2 0 0 0

1
4
n−1/3 0.3 0.001 0.001 0

0.4 0.011 0.009 0.016
0.5 0.032 0.139 0.371
0.1 0 0 0
0.2 0.001 0 0

1
4
n−1/2 0.3 0.003 0 0

0.4 0.009 0.003 0.014
0.5 0.034 0.114 0.288

Table 9: Power for Weighted Instrument CvM Test under Design 2

tn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0 0 0
0.2 0.006 0.016 0.032

n−1/5 0.3 0.026 0.138 0.295
0.4 0.064 0.449 0.831
0.5 0.175 0.848 0.995
0.1 0.007 0.012 0.005
0.2 0.016 0.062 0.1

n−1/3 0.3 0.041 0.215 0.456
0.4 0.119 0.604 0.876
0.5 0.21 0.902 0.996
0.1 0.006 0.014 0.01
0.2 0.023 0.057 0.086

n−1/2 0.3 0.038 0.229 0.389
0.4 0.119 0.532 0.791
0.5 0.203 0.85 0.982

Table 10: Power for Weighted Instrument KS Test under Design 2 (from Armstrong and
Chan (2016))
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hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0 0 0
0.2 0.001 0.002 0

n−1/5 0.3 0.008 0.007 0.024
0.4 0.012 0.108 0.369
0.5 0.074 0.484 0.923
0.1 0 0.001 0
0.2 0.001 0 0

n−1/3 0.3 0.003 0.009 0.011
0.4 0.023 0.126 0.273
0.5 0.062 0.519 0.848
0.1 0 0 0
0.2 0.001 0 0

n−1/2 0.3 0.001 0 0
0.4 0.005 0.007 0.023
0.5 0.023 0.089 0.308

Table 11: Power for Kernel CvM Test under Design 2

hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.001 0.001 0.001
0.2 0.009 0.029 0.049

n−1/5 0.3 0.044 0.185 0.386
0.4 0.082 0.524 0.867
0.5 0.18 0.879 0.997
0.1 0.007 0.015 0.014
0.2 0.015 0.067 0.129

n−1/3 0.3 0.029 0.18 0.454
0.4 0.087 0.525 0.856
0.5 0.167 0.825 0.98
0.1 0 0.014 0.006
0.2 0 0.025 0.032

n−1/2 0.3 0 0.057 0.123
0.4 0 0.163 0.286
0.5 0 0.321 0.604

Table 12: Power for Kernel KS Test under Design 2
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θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.005 0 0.001
0.2 0.031 0.046 0.058
0.3 0.131 0.454 0.743
0.4 0.359 0.914 0.997
0.5 0.619 0.999 1

Table 13: Power for Unweighted Instrument CvM Test under Design 3

θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.006 0.015 0.013
0.2 0.027 0.231 0.402
0.3 0.117 0.737 0.959
0.4 0.34 0.982 1
0.5 0.568 1 1

Table 14: Power for Unweighted Instrument KS Test under Design 3

σ2
n θ1 − θ1 n = 100 n = 500 n = 1000

0.1 0.006 0 0.001
0.2 0.037 0.079 0.136

1
4
n−1/5 0.3 0.133 0.515 0.837

0.4 0.341 0.941 1
0.5 0.636 1 1
0.1 0.006 0.003 0.001
0.2 0.029 0.065 0.173

1
4
n−1/3 0.3 0.143 0.514 0.872

0.4 0.375 0.961 1
0.5 0.642 1 1
0.1 0.006 0.003 0
0.2 0.043 0.059 0.101

1
4
n−1/2 0.3 0.161 0.52 0.845

0.4 0.335 0.935 0.999
0.5 0.63 0.999 1

Table 15: Power for Weighted Instrument CvM Test under Design 3
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tn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.034 0.064 0.12
0.2 0.093 0.466 0.704

n−1/5 0.3 0.272 0.869 0.99
0.4 0.501 0.994 1
0.5 0.767 1 1
0.1 0.039 0.104 0.116
0.2 0.112 0.429 0.64

n−1/3 0.3 0.257 0.838 0.979
0.4 0.463 0.994 1
0.5 0.717 1 1
0.1 0.03 0.083 0.087
0.2 0.121 0.325 0.523

n−1/2 0.3 0.24 0.762 0.967
0.4 0.397 0.984 1
0.5 0.669 1 1

Table 16: Power for Weighted Instrument KS Test under Design 3 (from Armstrong and
Chan (2016))

hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.013 0.017 0.018
0.2 0.05 0.229 0.446

n−1/5 0.3 0.187 0.757 0.965
0.4 0.411 0.98 1
0.5 0.698 1 1
0.1 0.007 0.012 0.01
0.2 0.044 0.167 0.323

n−1/3 0.3 0.173 0.676 0.932
0.4 0.377 0.986 1
0.5 0.657 1 1
0.1 0.002 0.001 0
0.2 0.029 0.03 0.049

n−1/2 0.3 0.082 0.326 0.654
0.4 0.21 0.866 0.991
0.5 0.47 0.996 1

Table 17: Power for Kernel CvM Test under Design 3
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hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.043 0.087 0.161
0.2 0.099 0.487 0.722

n−1/5 0.3 0.261 0.876 0.99
0.4 0.48 0.995 1
0.5 0.746 1 1
0.1 0.037 0.086 0.122
0.2 0.079 0.297 0.528

n−1/3 0.3 0.164 0.646 0.912
0.4 0.296 0.937 0.999
0.5 0.507 0.996 1
0.1 0 0.035 0.026
0.2 0 0.087 0.118

n−1/2 0.3 0 0.195 0.385
0.4 0 0.427 0.703
0.5 0 0.716 0.952

Table 18: Power for Kernel KS Test under Design 3
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