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On the Choice of Test Statistic for Conditional Moment

Inequalities

Timothy B. Armstrong∗

Yale University

December 2, 2016

Abstract

This paper derives asymptotic power functions for Cramer-von Mises (CvM) style

tests for inference on a finite dimensional parameter defined by conditional moment

inequalities in the case where the parameter is set identified. Combined with power

results for Kolmogorov-Smirnov (KS) tests, these results can be used to choose the

optimal test statistic, weighting function and, for tests based on kernel estimates,

kernel bandwidth. The results show that KS tests are preferred to CvM tests, and that

a truncated variance weighting is preferred to bounded weightings under a minimax

criterion, and for a class of alternatives that arises naturally in these models. The

results also provide insight into how moment selection and the choice of instruments

affect power. Such considerations have a large effect on power for instrument based

approaches when a CvM statistic or an unweighted KS statistic is used and relatively

little effect on power with optimally weighted KS tests.

1 Introduction

This paper derives power functions for tests for conditional moment inequality models. The

results show that, in a broad class of models, Kolmogorov-Smirnov (KS) style statistics,

which take the infimum of an objective function, are more powerful than Cramer-von Mises

(CvM) style statistics, which integrate or add some function of the negative part of an

∗email: timothy.armstrong@yale.edu. Support from National Science Foundation Grant SES-1628939 is
gratefully acknowledged.
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objective function, for detecting local alternatives under conditions that determine the min-

imax rate and arise naturally in set identified models. Thus, the results also show that KS

statistics are preferred to CvM statistics under a minimax criterion in these models.

Combined with results from Armstrong (2015) and Armstrong (2014b), the results in this

paper give clear prescriptions for the choice of test statistic in conditional moment inequality

models in the set identified case, and provide insights into the choice of critical value as well.

To the author’s knowledge, this paper is the first to provide a theoretical justification for the

choice of test statistic (CvM vs KS) based on power results, and for user defined procedures

such as moment selection procedures and bandwidths for CvM statistics in this setting.

The main points can be summarized as follows. In this setting, KS statistics are preferred

to CvM statistics in terms of asymptotic power, and a truncated variance weighting for

the objective function like the one proposed in Armstrong (2014b) is preferred to bounded

weighting functions. The power comparisons are for local alternatives that determine the

minimax rate, and can be argued to arise generically in set identified models (see Section A

of the appendix). If one prefers CvM statistics for other reasons, but wants them to perform

well in the generic set identified case considered here, the results in this paper can be used

to choose optimal weightings and, for the case where the CvM statistic is based on kernel

estimates, optimal bandwidths (which differ from optimal bandwidths in other settings). If

a KS statistic with the truncated variance weighting is used, alleviating nonsimilarity of the

test through choice of the critical value has little effect on power. If a bounded weighting

is used, alleviating nonsimilarity through the choice of the critical value can have a larger

effect on power.

Formally, this paper considers tests of a null hypothesis of the form

E(m(Wi, θ)|Xi) ≥ 0 a.s. (1)

where m : RdW+dθ → RdY is a known function of data Wi and a parameter θ ∈ Θ ⊆ Rdθ ,

and ≥ is defined elementwise. Here, Wi is a RdW valued random variable and Xi is a RdX

valued random variable. We are given independent, identically distributed (iid) observations

{(X ′i,W ′
i )
′}ni=1. This defines the identified set

Θ0 ≡ {θ ∈ Θ|E(m(Wi, θ)|Xi) ≥ 0 a.s.}

where Θ ⊆ Rdθ is the parameter space. If Θ0 contains more than one element, the model is

said to be set identified.
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The results in this paper are motivated by a setting where (1) is the only condition that is

given for the parameter θ, and the goal is to use this condition to obtain a confidence set for

θ. By inverting a family of tests of (1), one obtains a confidence region C that contains each

point θ0 ∈ Θ0 with a prespecified probability, as suggested by Imbens and Manski (2004).

This paper derives the asymptotic power of several tests for detecting alternatives of the

form θn = θ0 + an, where θ0 is on the boundary of Θ0. The local power results in this paper

then correspond to statements about the rate at which C shrinks towards Θ0.1

As an example of the types of problems covered by this setup, consider the interval re-

gression model of Manski and Tamer (2002). We observe (Xi,W
L
i ,W

H
i ) where [WL

i ,W
H
i ]

is known to contain the latent variable W ∗
i , which follows the linear regression model

E(W ∗
i |Xi) = (1, X ′i)θ. This falls into the setup of this paper with Wi = (Xi,W

L
i ,W

H
i )

and m(Wi, θ) = (WH
i − (1, X ′i)θ, (1, X

′
i)θ −WL

i )′. The identified set is then given by

Θ0 = {θ|E(WL
i |Xi) ≤ (1, X ′i)θ ≤ E(WH

i |Xi) a.s.}.

Thus, a parameter θ0 in the identified set corresponds to a regression line (1, x′)θ0 that is

between the conditional means E(WL
i |Xi = x) and E(WH

i |Xi = x) for all x on the support

of Xi. If θ0 is on the boundary of the identified set, it will be equal to one of these regression

lines for some value of x. To obtain a tight confidence set C for Θ0, we want to invert tests

that have good power at alternatives of the form θ0 + an, where θ0 is on the boundary of the

identified set.

This paper derives power results for local alternatives of this form under general condi-

tions on E(m(Wi, θ)|Xi = x) as a function of θ and x. In the case of interval regression, these

translate to conditions on E(WH
i |Xi = x) and E(WL

i |Xi = x), and this paper gives primitive

conditions for this case. These conditions correspond to smoothness conditions used in the

nonparametric statistics literature and conditions on the shape of these conditional means

near points where one of them is equal to (1, x′)θ0, and can be argued to hold generically.

A common concern, both when dealing with moment inequalities and when dealing with

nonparametric smoothness conditions, is that fixing the data generating process (dgp) and

then taking asymptotic approximations may not provide good approximations to finite sam-

ple quantities. For example, if one derives local power results in the interval regression model

1Formally, the sequence of tests and local alternatives in this paper fixes the data generating process P
and varies the null parameter value θn being tested. The null hypothesis is that the data generating process
is such that θn = θ0 + an is in the identified set, while the alternative is a fixed P such that θ0 is in the
identified set under P , but θn is not. This leads directly to statements about the rate at which the confidence
set C shrinks toward the identified set Θ0 under P .
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using smoothness considions on E(WH
i |Xi = x), these may not be relevant in finite samples

when E(WH
i |Xi = x) is “wiggly” relative to the sample size. In the econometrics litera-

ture, this is typically described as an issue of “uniformity in the underlying distribution,”

where “underlying distribution” refers to the data generating process. A solution to this

problem is to specify some class of underlying distributions (for example, fixing a constant

C and considering the class of all distributions such that the second derivative is bounded

by this constant C and additional regularity conditions hold), and to consider the worst-case

performance (in this case, power) over all possible drifting sequences of dgps in this class.

This worst-case power is then called the minimax power over the given class of distribu-

tions (in this case, the class of distributions with second derivative bounded by C). In the

nonparametric statistics literature, relative efficiency results and statements about optimal

rates and constants are typically formalized using this approach. This literature is often

cited in econometrics when making claims of optimality of nonparametric estimators (for

example, Ichimura and Todd 2007 cite minimax bounds in Stone 1982). See Andrews and

Guggenberger (2009) and Chapter 1.2.4 in Tsybakov (2009) for discussions of these issues in

the context of moment inequalities and nonparametric regression respectively.

While the power results in this paper for CvM statistics are pointwise in the dgp, they give

an upper bound for minimax power in certain smoothness classes (since the worst-case power

is no better than the power for a given distribution in the smoothness class). Comparing

these bounds to minimax rates derived in Armstrong (2014b) for the corresponding KS

statistics, it can be seen that the upper bound for power obtained in the present paper for

CvM statistics is worse than the minimax power achieved by the corresponding KS statistics.

Thus, the results in this paper show that CvM statistics are preferred for inference on θ in

a minimax sense. As discussed above, this notion of relative efficiency is the same one that

allows one to make formal statements about optimal rates for nonparametric estimators, as

in, e.g., Ichimura and Todd (2007) and references therein. See Section A.5 of the appendix

for a formal statement.

The result that CvM and KS statistics can be ranked for the local alternatives considered

in this paper contrasts with the more abstract setting where one is interested in a null

hypothesis of the form H0 : E(Yi|Xi) ≥ 0 almost surely or H0 : E(Yi|Xi) = 0 almost surely.

Indeed, without more structure on the problem and the alternatives are of interest, such

a ranking cannot be made (see Chapter 14 of Lehmann and Romano, 2005, and references

therein). This paper places additional structure on the problem by considering the case

where Yi = m(Wi, θ), and we are interested in alternatives of the form θ0 + an where θ0 is
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on the boundary of the identified set. This reflects the goal of inverting tests on θ to form

a confidence set. See Section 1.1 for further references and Armstrong (2014a) for further

discussion of this point in the context of a simple example.

The test statistics considered in this paper are as follows. Given a set G of nonnegative

instruments, the null hypothesis (1) implies that E(m(Wi, θ)g(Xi)) ≥ 0 for all g ∈ G. Thus,

under (1), the sample analogue

En(m(Wi, θ)g(Xi)) ≡
1

n

n∑
i=1

m(Wi, θ)g(Xi) (2)

should not be too negative for any g ∈ G. The results in this paper use classes of functions

given by kernels with varying bandwidths and location, given by G = {x 7→ k((x− x̃)/h)|x̃ ∈
RdX , h ∈ R+} for some kernel function k. With this choice of G, (1) holds if and only if

E(m(Wi, θ)g(Xi)) ≥ 0 for all g ∈ G, so that (2) can be used to form a consistent test (see

Andrews and Shi, 2013, for a discussion of this and other choices of G).

Alternatively, one can test (1) by estimating E(m(Wi, θ)|Xi = x) directly using the kernel

estimate

ˆ̄mj(θ, x) =

∑n
i=1m(Wi, θ)k((Xi − x)/h)∑n

i=1 k((Xi − x)/h)
(3)

for some sequence h = hn → 0 and kernel function k. If the null hypothesis holds for θ, (3)

should not be too negative for any x.

Thus, a test statistic of the null that θ ∈ Θ0 can be formed by taking any function that

is positive and large in magnitude when (2) is negative and large in magnitude for some

g ∈ G, or when (3) is negative and large in magnitude for some x. One possibility is to use a

CvM statistic that integrates the negative part of (2) over some measure µ on G. This CvM

statistic is given by

Tn,p,ω,µ(θ) =

[∫ dY∑
j=1

|Enmj(Wi, θ)g(Xi)ωj(θ, g)|p− dµ(g)

]1/p

(4)

for some p ≥ 1 and weighting ω, where |t|− = |min{t, 0}|. I refer to this as an instrument

based CvM (IV-CvM) statistic. The CvM statistic based on the kernel estimate integrates
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the negative part of (3) against some weighting ω, and is given by

Tn,p,kern(θ) =

[∫ dY∑
j=1

∣∣ ˆ̄mj(θ, x)ωj(θ, x)
∣∣p
− dx

]1/p

(5)

for some p ≥ 1. I refer to this as a kernel based CvM (kern-CvM) statistic.

For the instrument based CvM statistic, the scaling for the power function will depend

on ω. This paper considers both a bounded weighting which, without loss of generality, can

be taken to be constant (the measure µ can absorb any weighting that does not change with

the sample size)

ωj(θ, g) = 1 all θ, g, j (6)

as well as the truncated variance weighting used for KS statistics by Armstrong (2014b),

Armstrong and Chan (2016) and Chetverikov (2012), which is given by

ωj(θ, g) = (σ̂j(θ, g) ∨ σn)−1 (7)

where

σ̂j(θ, g) = {En[mj(Wi, θ)g(Xi)]
2 − [Enmj(Wi, θ)g(Xi)]

2}1/2

and σn is a sequence converging to zero and a∨b denotes the maximum of a and b for scalars

a and b.2

The results for CvM statistics derived in this paper can be compared to power results

for KS statistics derived in Armstrong (2015) and Armstrong (2014b). A KS statistic based

on (2) simply takes the most negative value of that expression over g ∈ G, and is given by

Tn,∞,ω(θ) = max
j

sup
g∈G
|Enmj(Wi, θ)g(Xi)ωj(θ, g)|−. (8)

I refer to this as an instrument based KS (IV-KS) statistic. A KS statistic based on (3)

2For the critical value of the test, the results covered in this paper cover any critical value that is of
the same order of magnitude asymptotically as a critical value based on the distribution where all moments
bind. See Section 3 for details.
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statistic weighting function rate

instrument based CvM bounded weights n−γ/{2[dX+γ+(dX+1)/p]}

instrument based CvM variance weights n−γ/{2[dX/2+γ+(dX+1)/p]}

kernel CvM - max{(nhdX )−1/[2(1+dX/(pγ))], hγ}

Table 1: Local Power for CvM Statistics

statistic weighting function rate

instrument based KS bounded weights n−γ/{2[dX+γ]}

instrument based KS variance weights (n/ log n)−γ/{2[dX/2+γ]}

kernel KS - max
{

(nhdX/ log n)−1/2, hγ
}

Table 2: Local Power for KS Statistics (Armstrong, 2015, 2014b)

simply takes the most negative value of that expression over x, and is given by

Tn,∞,kern(θ) = max
j

sup
θ

∣∣ ˆ̄mj(θ, x)ωj(θ, x)
∣∣
− . (9)

I refer to this as a kernel based KS (kern-KS) statistic. As with CvM statistics, the scaling

for the local power function for the instrument based KS test depends on whether a bounded

weighting or a truncated variance weighting is used.

The asymptotic power results derived in this paper for the CvM statistics (4) and (5)

are summarized in Table 1. For comparison, Table 2 summarizes the corresponding results

for KS statistics, which are contained in Armstrong (2015) and Armstrong (2014b). These

tables give the fastest rate at which an can approach 0 for each test to have power at θ0 +an

for θ0 on the boundary of the identified set. Here γ is a smoothness parameter that, roughly

speaking, corresponds to the number of derivatives, up to 2, of E(m(Wi, θ)|Xi = x) with

respect to x. The power results for the instrument based statistics depend on the set of

functions G, and are reported here only for the ones considered in this paper, but broader

implications of the results described here (such as KS statistics being more powerful than

CvM statistics in this setting) hold more generally.

These power results have several implications for how the choice of test statistic and

weighting affect power. First, tests based on KS statistics are more powerful than those

based on the corresponding CvM statistic in all of these cases. Second, variance weights lead

to more powerful tests than bounded weights both for CvM and KS statistics.

Third, the results can be used to choose the optimal bandwidth for kernel CvM statistics.

Some calculation shows that the rate in the third row of Table 1 is optimized when hn is

proportional to n−1/[2(γ+dX/p+dX/2)], which leads to a rate of n−γ/[2(γ+dX/p+dX/2)]. The optimal
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bandwidth is larger than the optimal bandwidth for estimating a conditional mean at a point,

or for the corresponding KS statistic.

Fourth, it is interesting to note how the choice of the class of instrument functions G
affects power for these statistics. The main point here is that choosing a larger class of

instruments by adding instruments that turn out to be irrelevant has less impact on power

for KS statistics than it does for CvM statistics. This can be seen by comparing the rates

for instrument based statistics to the corresponding rates for kernel based statistics with

the bandwidth chosen optimally. The rates reported in these tables for instrument based

statistics take G to be the class of functions given by x 7→ k((x − x̃)/h) for all (x̃, h). The

kernel version of this statistic essentially uses a subset of this class of functions with h = hn

restricted to a particular value for each n. For KS statistics, as long as variance weights are

used, considering this larger class of functions does not lead to a decrease in the rate for

local alternatives even if the optimal hn is known. The rate in the second row of Table 2

for variance weighted instrument based KS statistics is the same as the rate for kernel based

KS statistics in the third row if h is chosen optimally. In general, adding more instruments

to G will not lead to a slower rate in the power function for variance weighted KS statistics

as long as certain conditions on the complexity of G hold.

In contrast, considering a larger set of instruments G will generally decrease the rate for

local alternatives if a CvM statistic is used. If a kernel CvM statistic is used instead of an

instrument based CvM statistic (which corresponds to restricting G) and prior knowledge of

the data generating process is used to choose the bandwidth optimally, the kernel statistic

will achieve a n−γ/[2(γ+dX/p+dX/2)] rate, which is faster than the n−γ/[2(dX/2+γ+(dX+1)/p)] rate for

the instrument based CvM statistic with variance weights, where G includes all bandwidths.

It can also be shown, using arguments similar to those in this paper, that expanding G to

include dX-dimensional boxes with sides of different lengths leads to slower rates for power

functions with CvM statistics, but not for KS statistics. In general, CvM statistics are more

sensitive to adding functions to G than KS statistics.

These results provide general insight into the type of objective function, weighting, and

critical value one should use. However, the class of tests that are optimal for these models

(tests based on KS statistics with a truncated variance weighting) still depend on certain

user defined parameters. Choosing these user defined parameters for a particular sample size

and data set can be done using Monte Carlos and criteria such as maximizing power against

a particular sequence of alternatives.
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1.1 Related Literature

Tests based on instrument based CvM and KS statistics have been considered by Andrews

and Shi (2013), Kim (2008), Khan and Tamer (2009) and Armstrong (2015) for bounded

weights, and Armstrong (2014b), Armstrong and Chan (2016) and Chetverikov (2012) for KS

statistics with variance weights. The statistics based on instruments with bounded weights

use an approach to nonparametric testing problems that goes back at least to Bierens (1982).

Aradillas-Lopez et al. (2013) use a slightly different version of an instrument CvM approach.

Chernozhukov et al. (2013) consider kernel based KS statistics and Lee et al. (2013) and Lee

et al. (2015) consider kernel based CvM statistics. While some of these papers derive local

power results for CvM tests under conditions that appear to be common in point identified

models, these results do not apply in set identified models except for in very special cases.

Indeed, the results in the present paper show that, when one uses a minimax criterion

requiring uniformly good power in classes of underlying distributions defined by smoothness

properties, the power of CvM tests is much worse (see Section A.5). The results in this

paper show that power comparisons in the set identified case considered here are much

different than settings that have been studied previously. Armstrong (2015), Armstrong

(2011), Armstrong (2014b), Armstrong and Chan (2016), and Chetverikov (2012) derive

power results for KS statistics under conditions similar to those used in this paper, but do

not consider CvM statistics.

The results in this paper are also related to the statistics literature on minimax testing

of hypotheses of the form H0,= : f(x) = 0 all x, H0,≥ : f(x) ≥ 0 all x, H0,↑ : f(x) ≥
f(x′) all x < x′, (and related hypotheses such as convexity of f), where the function f

is observed with noise. While much of this literature focuses on the Gaussian white noise

model or Gaussian sequence model, the results are closely related to the case where f(x) =

E(Yi|Xi = x), and iid observations of Xi, Yi are available (which falls into our setup if we take

Yi = m(Wi, θ0)). To formulate the minimax testing problem considered in this literature,

one specifies a smoothness class F for f and a functional ψ : F → [0,∞) such that ψ(f)

is 0 if f satisfies the null and strictly positive otherwise. For example, for H0,=, one can

take the Lp norm ψ(f) = [
∫
f(x)p dx]1/p and, for H0,≥, one can take the one-sided Lp norm

ψ(f) = [
∫
|f(x)|p−]. The minimax testing problem is to obtain tests that have good worst-

case power over alternatives f in the smoothness class F with ψ(f) ≥ an for an → 0 as

quickly as possible. Dumbgen and Spokoiny (2001) and Juditsky and Nemirovski (2002)

consider H0,≥ with ψ given by the one-sided L∞ norm ψ(f) = supx |f(x)|− and the one-

sided Lp norm with p <∞ respectively, as well as H0,↑ and the hypothesis of convexity with
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related distance functions ψ. Lepski and Tsybakov (2000) consider H0,= with ψ(f) given by

the L∞ norm and by ψ(f) = |f(x0)| for a given point x0. See Ingster and Suslina (2003) for

further results and references to this literature.

In contrast to this literature, the results in this paper have implications for minimax

rates of CvM statistics for testing the null that a given value of θ is in the identified set

against the alternative that the distance between θ and any point in the identified set is at

least an (see Appendix A.5 for a formal statement). Since the dimension of θ is finite and

fixed, the choice of distance (i.e. whether to use Euclidean distance or sup-norm distance

when defining distance of θ from points in the identified set) does not matter for the rate

at which an can approach zero with the test having good power. This contrasts with the

nonparametric testing literature described above, in which the choice of distance function ψ

has implications for relative efficiency of different test statistics, and is part of the reason

that CvM and KS tests can be ranked in this setting. Interestingly, the problem of minimax

inference on θ in the settings considered here appears to be closely related to nonparametric

testing with ψ given by the L∞ norm. See Armstrong (2014a) for further discussion.

Inference on conditional moment inequalities can also be cast as a problem of inference

with many unconditional moment inequalities, as considered by Menzel (2010). The results

of the present paper can be extended to provide power results for this case by allowing G
to depend on n. This paper also relates to the broader literature on set identified models,

including models defined by unconditional moment inequalities. See Armstrong (2015) for

additional references to this literature.

This paper is organized as follows. Section 2 gives an intuitive description of the power

results in this paper and how they are derived. Section 3 defines the tests considered in

this paper. Section 4 states formal the conditions used in this paper, and provides primitive

conditions for the interval regression model. Section 5 derives the power results. Section 6

reports the results of a Monte Carlo study. Section 7 concludes. An appendix contains proofs

and auxiliary results, including minimax power comparisons as well as primitive conditions

for the results in the main text in additional settings.

2 Intuition for the Results

To get some intuition for the results, consider the case of instrument based CvM statistic

with bounded weights. This paper considers the case where the class of functions G is given

by the set of kernel functions with varying bandwidths and locations {x 7→ k((x− x̃)/h)|x̃ ∈

10



RdX , h ∈ R+} for some kernel function k, and the measure µ has a density fµ(x̃, h) with

respect to the Lebesgue measure. We also assume that Xi has a density fX(x). For simplicity,

consider the case where dY = 1.

The test statistic is given by an integral over a sample expectation. We expect that the

test will have power when the integral over the corresponding population expectation is large

relative to the critical value, which, as discussed below, will be of order n−1/2. Thus, to have

power at θn = θ0 + an, we expect that[∫ ∫
|Em(Wi, θn)k((Xi − x̃)/h)|p−fµ(x̃, h) dx̃ dh

]1/p

=

[∫ ∫ ∣∣∣∣∫ m̄(θn, x)k((x− x̃)/h)fX(x) dx

∣∣∣∣p
−
fµ(x̃, h) dx̃ dh

]1/p

(10)

will have to be large relative to n−1/2, where m̄(θn, x) = E(m(Wi, θn)|Xi = x).

This paper considers more general classes of data generating processes, but, for simplicity,

suppose that m̄(θ0, x) ≈ ‖x − x0‖γ near some x0 for some γ, and is bounded from below

away from zero elsewhere. This approximation and a first order approximation to m(θn, x)−
m(θ0, x) suggests that (10) will be approximated well by

{∫ ∫ ∣∣∣∣∫ [‖x− x0‖γ + m̄θ(θ0, x)an] k((x− x̃)/h)fX(x) dx

∣∣∣∣p
−
fµ(x̃, h) dx̃ dh

}1/p

where m̄θ(θ, x) denotes the derivative of m̄(θ, x) with respect to θ. Since the integrand will

be nonzero only for x and x̃ close to x0 and h close to zero, we can further approximate this

by {∫ ∫ ∣∣∣∣∫ [‖x− x0‖γ + m̄θ(θ0, x0)an] k((x− x̃)/h)fX(x0) dx

∣∣∣∣p
−
fµ(x0, 0) dx̃ dh

}1/p

.

Let an = arn for some sequence rn to be determined later. By the change of variables

u = (x− x0)/r
1/γ
n , v = (x̃− x0)/r

1/γ
n , h̃ = h/r

1/γ
n , the above display can be written as

{∫ ∫ ∣∣∣∣∫ [rn‖u‖γ + m̄θ(θ0, x0)arn] k((u− v)/h̃)fX(x0)rdX/γn du

∣∣∣∣p
−
fµ(x0, 0)rdX/γn dv r1/γ

n dh̃

}1/p

= r[(γ+dX)+(dX+1)/p]/γ
n

{∫ ∫ ∣∣∣∣∫ [‖u‖γ + m̄θ(θ0, x0)a] k((u− v)/h̃)fX(x0) du

∣∣∣∣p
−
fµ(x0, 0) dv dh̃

}1/p

.
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Thus, (10) is of order r
[(γ+dX)+(dX+1)/p]/γ
n , so we expect to get power when this is large enough

relative to n−1/2, and equating these gives

r[(γ+dX)+(dX+1)/p]/γ
n = n−1/2 ⇐⇒ rn = n−γ/{2[(γ+dX)+(dX+1)/p]}.

This is the rate reported in Table 1 and derived formally later in the paper.

A key insight here is that the integral in the CvM statistic has an additional effect on

the drift term, and that this effect can be captured through a change-of-variables argument.

This contrasts with the corresponding results for KS tests, and leads to a decrease in power

relative to these tests (see Section 2.1 of Armstrong, 2014b, for a sketch of the corresponding

results for KS tests).

3 Definitions of Tests

To complete the definition of these tests, we need to define a critical value. For tests that

use instrument based CvM statistics with bounded weights or inverse variance weights with

p <∞, the test φn,p,ω,µ, which rejects when φn,p,ω,µ = 1, is defined as

φn,p,ω,µ =

{
1 if

√
nTn,p,ω,µ > ĉn,p,ω,µ

0 otherwise
(11)

for some critical value ĉn,p,ω,µ. For kernel based CvM statistics, the test φn,p,kern, which rejects

when φn,p,kern = 1, is defined as

φn,p,kern =

{
1 if (nhdX )1/2Tn,p,kern > ĉn,p,kern

0 otherwise
(12)

While all of the new results in this paper are for CvM statistics, I refer to analogous results

for KS statistics at some points for comparison. For KS tests with bounded weights, the

critical value is defined as in (11). For KS tests based on truncated variance weights, the

test φn,∞,(σ∨σn)−1 is defined as

φn,∞,(σ∨σn)−1 =

 1 if
√

n
logn

Tn,∞,(σ∨σn)−1 > ĉn,∞,(σ∨σn)−1

0 otherwise
(13)

for some critical value ĉn,p,∞,(σ∨σn)−1 .
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The properties of these tests will depend on the choice of critical value. The only con-

dition needed for upper bounds on power, stated in the following assumption, is that the

critical value be of the same order of magnitude as a critical value based on a least favorable

asymptotic distribution where all of the moments bind (i.e. E(m(Wi, θ)|Xi) = 0 a.s.).

Assumption 3.1. For some η > 0, the critical value ĉ defined in (11) or (12), depending

on the weighting and form of the test, satisfies ĉ > η with probability approaching one.

Assumption 3.1 holds for the kernel CvM based test of Lee et al. (2013), which uses the

least favorable null dgp, as well as the tests using instrument based CvM statistics with

bounded weights proposed in Andrews and Shi (2013). Instrument based CvM statistics

with variance weights have not been considered in the literature. In Section B.2 of the

appendix, I consider critical values for this case and show that critical values based on the

least favorable null dgp will satisfy Assumption 3.1.

In the case of the test statistics considered by Andrews and Shi (2013), the normal-

ized test statistic
√
nTn,p,ω,µ has a nondegenerate limiting distribution in the case where

E(m(Wi, θ)|Xi) = 0 for Xi on a positive probability set. However, in the case where

E(m(Wi, θ)|Xi) = 0 only for Xi on a finite set (which, as discussed further below, will

be the case under the conditions considered here), the results of Andrews and Shi (2013)

do not give a nondegenerate asymptotic distribution for Tn,p,ω,µ. Rather, they reduce to a

statement that
√
nTn,p,ω,µ

p→ 0. To deal with these possibilities, Andrews and Shi (2013)

propose a critical value of the form ĉ = c̃ + η, where c̃ ≥ 0 is a conservative estimate of a

quantile of the asymptotic distribution, which is always positive but may converge to zero,

and η is a fixed value chosen by the researcher. Andrews and Shi (2013) call η the “infinites-

imal uniformity factor” and suggest setting η = .001. Assumption 3.1 holds for this critical

value by construction.

The use of the “infinitesimal uniformity factor” is not ideal, since, in certain cases, the

justification for controlling size amounts to a statement that
√
nTn,p,ω,µ

p→ 0, and that the

test rejects only when
√
nTn,p,ω,µ > η. An alternative approach, which Andrews and Shi

(2013) also consider, is to simply base the critical value on the least favorable distribution

(where E(m(Wi, θ)|Xi) = 0 almost surely). In the case where E(m(Wi, θ)|Xi) = 0 almost

surely, the asymptotic distribution of
√
nTn,p,ω,µ is nondegenerate, so these issues do not arise

(and Assumption 3.1 will hold for critical values based on this distribution). Alternatively,

it may be possible to find a sequence bn that increases more quickly than
√
n such that

bnTn,p,ω,µ has a nondegenerate limiting distribution, and base inference on this asymptotic

approximation (or some other nondegenerate approximation). This approach would lead to
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a critical value that does not satisfy Assumption 3.1, since comparing bnTn,p,ω,µ to a critical

value that converges to a constant is equivalent to comparing
√
nTn,p,ω,µ to a critical value

that behaves line
√
n/bn → 0. While critical values of this form have been considered by

Armstrong (2015), Chernozhukov et al. (2013) and Chetverikov (2012) for KS statistics of

various forms, such results are not available for instrument based CvM statistics.3 We leave

power calculations when Assumption 3.1 does not hold as a question for future research.

Assumption 3.1 only gives a lower bound for a critical value. This gives bounds on

the power function, but to derive the exact local asymptotic power function, we need the

following condition, which gives a limiting value for this critical value. Under mild conditions

on the data generating process and sequence of local alternatives, this assumption will also

hold for the methods of choosing critical values discussed above.

Assumption 3.2. For the critical value ĉ defined in (11) or (13), depending on the weighting

and form of the test, and some constant c > 0, ĉ
p→ c.

The power properties of the test will also depend on the class of functions G used as

instruments. I derive power functions for the case where G consists of kernel functions with

different bandwidths and locations, defined in the following assumption.

Assumption 3.3. For some bounded, nonnegative function k with finite support and
∫
k(u) du >

0, G = {x 7→ k((x − x̃)/h)|x̃ ∈ RdX , h ∈ R+}, and the covering number N(ε,G, L1(Q)) de-

fined in Pollard (1984) satisfies supQN(ε,G, L1(Q)) ≤ Aε−W , where the supremum is over

all probability measures.

The covering number assumption in Assumption 3.3 is a technical condition that allows

for uniform convergence of kernel estimates over x and h. A sufficient condition is that the

kernel k takes the form k(x) = r(‖x‖) where r is a monotone decreasing function on on

[0,∞) (see Pollard, 1984, chapter 2, problem 28).

For CvM statistics, I place the following condition on the measure µ over which the

sample means are integrated.

Assumption 3.4. The measure µ has bounded support, and has a density fµ(x̃, h) with

respect to the Lebesgue measure on RdX × [0,∞) that is bounded and continuous.

Relaxing this assumption would lead to different power properties, although the general

point that Lp statistics perform worse in these models than supremum statistics would go

through.

3In recent work, Lee et al. (2015), propose critical values for kernel based CvM statistics that do not
satisfy Assumption 3.1, although they are still based on degenerate asymptotic distributions in some cases.
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4 Conditions for Local Alternatives

This section presents the main assumptions on the model and dgp used in this paper. The

conditions are similar to those used in Armstrong (2015), Armstrong (2014b) and Armstrong

and Chan (2016). I first provide high level conditions, and then verify them for the interval

regression model in Section 4.1. Section 4.2 provides a discussion of the difference between

these conditions and other settings, such as point identified models. Section A in the ap-

pendix verifies the conditions in this section for additional settings. I assume throughout

that the data are iid.

I place the following conditions on the data generating process when m(Wi, θ) is evaluated

at θ0 and θn = θ0 + an. In these conditions, γ is a smoothness parameter that is generally

given by the minimum of the number of derivatives of the conditional mean and 2. The

truncation of the smoothness parameter at 2 comes from the fact that the test statistics here

use positive kernels or instruments.

Assumption 4.1. For each j, the conditional mean E(mj(Wi, θ0)|X = x) = m̄j(θ, x) takes

its minimum only on a finite set {x|E(mj(Wi, θ0)|X = x) = 0 some j} = X0 = {x1, . . . , x`}.
For each k from 1 to `, let J(k) be the set of indices j for which E(mj(Wi, θ0)|X = xk) =

0. Assume that there exist neighborhoods B(xk) of each xk ∈ X0 such that the following

assumptions hold.

i.) There exists η > 0 such that, for θ in a neighborhood of θ0, we have (a) m̄j(θ, x) > η

for j /∈ J(k) for x ∈ B(xk) and (b) m̄j(θ, x) > η for all j for x /∈ ∪`k=1B(xk).

ii.) For j ∈ J(k), m̄j(θ0, x) is continuous on the closure of B(xk) and satisfies

sup
‖x−xk‖≤δ

∥∥∥∥m̄j(θ0, x)− m̄j(θ0, xk)

‖x− xk‖γ(j,k)
− ψj,k

(
x− xk
‖x− xk‖

)∥∥∥∥ δ→0→ 0

for some γ(j, k) > 0 and some function ψj,k : {t ∈ RdX |‖t‖ = 1} → R with ψ ≥
ψj,k(t) ≥ ψ for some ψ <∞ and ψ > 0. For future reference, define γ = maxj,k γ(j, k)

and J̃(k) = {j ∈ J(k)|γ(j, k) = γ}.

iii.) X has a continuous density fX on B(xk).

iv.) For j ∈ J(k), s2
j(x, θ) ≡ var(mj(Wi, θ)|Xi = x) is strictly positive and continuous at

(xk, θ0).
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v.) For x in the closure of B(xk) and θ in a neighborhood of θ0, m̄(θ, x) has a derivative

as a function of θ that is continuous as a function of (θ, x). Let m̄θ,j(θ, x) denote the

jth row of this derivative matrix (i.e. the derivative of m̄j(θ, x) with respect to θ).

Assumption 4.2. The data are iid and for some fixed Y <∞ and θ in a some neighborhood

of θ0, |m(Wi, θ)| ≤ Y with probability one.

The deterministic bound in Assumption 4.2 allows for the use of certain technical results

that are useful in the proofs. It may be possible to relax this assumption, although additional

technical arguments would be needed in some places.

The following assumption, which is used for kernel based statistics, ensures that the

kernel estimators do not encounter boundary problems (cf. Assumption 1(iii) in Lee et al.,

2013).

Assumption 4.3. Xi has a density fX that is bounded away from infinity, and the weighting

function ωj(θ, x) is continuous for all j and, for some ε > 0, is equal to zero whenever

fX(x̃) < ε for some x̃ with ‖x̃− x‖ < ε.

4.1 Discussion and Primitive Conditions for Interval Regression

In discussing these assumptions, it is useful to keep in mind the interval regression model

introduced in the introduction, in which Wi = (Xi,W
L
i ,W

H
i ) and m(Wi, θ) = (WH

i −
(1, X ′i)θ, (1, X

′
i)θ − WL

i )′. The following gives a general discussion of these assumptions,

with references to the interval regression model as an example. I then state primitive suffi-

cient conditions in the interval regression model that imply these assumptions with γ = 2.

Section A of the appendix gives primitive conditions in additional settings.

The assumptions used here are similar to the conditions used in Armstrong (2015) to

derive the asymptotic distribution and local power function of a KS statistic with bounded

weights. In particular, Assumption 4.1 corresponds to the version of Assumption 3.1 in

Armstrong (2015) used in Section 5 of that paper, in which part (ii) is replaced by Assumption

5.1 in Armstrong (2015). Part (i) strengthens the version used in Armstrong (2015) by

extending it to a neighborhood of θ0, and part (v) is an additional condition on the derivative

with respect to θ. These additional conditions are used to derive local power, and are similar

to Assumption 7.1 in Armstrong (2015).

Assumption 4.1 is the main substantive condition that gives rise to the local power

results derived in this paper. It states that the conditional mean of the moment conditions
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is equal to zero only at a finite number of points. In the context of the interval regression

model, this holds for θ0 on the boundary of the identified set when the regression line x′θ0

is tangent to E(WH
i |Xi = x) or E(WH

i |Xi = x) at a finite number of points. In general,

a sufficient condition for this in the case where Xi has compact support is that m̄j(θ, x)

takes its minimum on the interior of the support of Xi and m̄j(θ, x) is twice continuously

differentiable with a positive definite second derivative matrix at any point where it takes a

minimum (see Section A.1 in the appendix).

The most natural case where this does not hold is where E(WH
i |Xi = x) or E(WL

i |Xi =

x) is linear and equal to (1, x′)θ on a nondegenerate interval (the other possibility is for

E(WH
i |Xi = x) − (1, x′)θ0 to be zero on a set with infinitely many elements, but with zero

probability, such as with the function sin(1/x)). This holds in the point identified case where

P (WH
i = WL

i |Xi) = 1 for Xi on a nondegenerate interval (and, in particular, in the special

case where WH
i = WL

i with probability one, leading to the usual linear regression model).

However, when θ is set identified, this is a knife-edge case: even if E(WH
i |Xi) = (1, X ′i)θ0

for Xi on a nondegenerate interval for a given θ0 on the boundary of the identified set, we

will typically have E(WH
i |Xi = x) = (1, x′)θ̃0 only on a finite set for θ̃0 close to θ0.

This is illustrated by Figures 1 and 2, which are taken directly from Section 2.2 of Arm-

strong (2015). Each figure shows the conditional mean E(WH
i |Xi = x) for some dgp along

with regression lines corresponding to particular parameter values θ (the lower conditional

mean E(WL
i |Xi = x) can be taken to be below the area shown in each figure). In Figure 1,

the regression line (1, x′)θ = θ1 + θ2x is tangent to the conditional mean at a single point,

and Assumption 4.1 holds for the parameter θ. In Figure 2, the regression line θa,2 + θa,2x

corresponding to the parameter θa is equal to E(WH
i |Xi = x) on a nondegenerate interval,

so that Assumption 4.1 does not hold. However, at nearby parameter values such as θb, the

regression line is equal to E(WH
i |Xi = x) at a single point and Assumption 4.1 holds. See

Section 2.2 of Armstrong (2015) for further discussion.

In the case where m̄(θ0, x) is twice continuously differentiable in x, part (ii) of Assumption

4.1 follows from a second order Taylor expansion at xk, so long as the second derivative

matrix is positive definite. In this case, Assumption 4.1 holds with γ = 2 and ψj,k(u) =

u′Vj(xk)u/2, where Vj(xk) is the second derivative matrix of x 7→ m̄(θ0, x) at xk. In the

interval regression model, the second derivative of m1(θ0, x) is equal to the second derivative

of E(WH
i |Xi = x) (and similarly for m2(θ0, x) and −E(WL

i |Xi = x)), so this translates

directly to an assumption of a positive definite second derivative matrix of E(WH
i |Xi = x).

In the case where m̄(θ0, x) is Lipschitz continuous, part (ii) of Assumption 4.1 will hold with
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γ = 1 if we place additional regularity conditions on the one-sided directional derivative of

m̄(θ0, x). The parameter θ in Figure 1 illustrates a case where Assumption 4.1 holds with

γ = 2, while the parameter θb in Figure 2 illustrates a case where Assumption 4.1 holds

with γ = 1. See Theorem A.1 in Section A.2 of the appendix for a formal statement in the

interval regression model.

The remaining assumptions are regularity conditions that translate easily to primitive

objects in the case of interval regression. For part (v), note that m̄θ,1(θ, x) = −(1, x′) and

m̄θ,2(θ, x) = (1, x′), which are clearly continuous, so this assumption holds without further

conditions on the dgp.

The following gives a formal statement of primitive conditions for the interval regression

model in the case where the conditional means are twice differentiable. The proof of this

result uses the ideas in the discussion above, and is given in Section A.2 of the appendix.

Theorem 4.1. Suppose that the following conditions hold.

i.) The conditional means E(WH
i |Xi = x) and E(WL

i |Xi = x) are twice differentiable with

continuous second derivatives, Xi has a continuous density and compact support, and

WH
i and WL

i are bounded from above and below by finite constants.

ii.) For any point x̃ such that E(WH
i |Xi = x̃) = (1, x̃′)θ0, x̃ is in the interior of the

support of Xi, var(W
H
i |Xi = x) is positive and continuous at x̃ and E(WH

i |Xi = x)

has a positive definite second derivative matrix at x̃. The same holds for E(WL
i |Xi = x)

with “positive definite” replaced by “negative definite.”

Then Assumptions 4.1, and 4.2 hold, with γ = 2 in Assumption 4.1.

4.2 Comparison with Conditions Leading to Parametric Rates

Under Assumption 4.1, the conditional mean m̄j(θ0, x) = E(m(Wi, θ0)|Xi = x) is minimized

on a finite set, and behaves like ‖x − xk‖γ for xk in this set and nearby x. As shown in

Section 5 below, this leads to power against alternatives that approach the identified set at a

slower than
√
n rate. As suggested by the intuitive description of these results in Section 2,

this arises because, as θn approaches the identified set, the conditional moment inequalities

are violated on a set with vanishing probability. This is similar to the case of nonparametric

kernel estimation, in which bias-variance tradeoffs and the level of smoothness determine the

rate of convergence (see, e.g., Wasserman, 2007).
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In contrast, Andrews and Shi (2013), Kim (2008) and Lee et al. (2013) consider the

case where m̄j(θ0, x) is minimized on a nondegenerate interval. In this case, the portion of

the support of Xi on which the inequality is violated does not vanish as θn approaches the

boundary of the identified set. This leads to nontrivial power at alternatives that approach

the null at a 1/
√
n rate. As discussed above, the latter case is typical under point identifi-

cation and holds by construction with moment equalities, but it corresponds to a knife-edge

case under set identification.

To understand these issues, it is helpful to make a comparison to the case of nonpara-

metric regression, where kernel estimators can converge at a faster rate if certain derivatives

are equal to zero. For example, local linear estimators converge at a n2/5 rate when the con-

ditional mean is twice differentiable with nonzero derivative and a bandwidth is used that

decreases like n−1/5, but a faster rate can be obtained when the second derivative is zero,

using a bandwidth sequence that converges more slowly. As discussed in the introduction,

such issues are related to the problem of “uniformity in the underlying distribution,” and

the typical approach to formalizing the notion that the optimal rate under a second deriva-

tive condition is n2/5 is to use a minimax criterion, in which one requires good performance

uniformly over all dgps with a certain bound on the second derivative (see Fan, 1993, for a

formulation of this approach for local linear estimators).

In the present setting, the results in this paper show that, even though
√
n local power

is possible in certain special cases, the minimax (worst-case) power is slower than
√
n when

one only places bounds on derivatives of certain objects. In particular, while a bound on the

second derivative of E(WH
i |Xi = x) and E(WL

i |Xi = x) does not imply Assumption 4.1 in

the interval regression model, one can construct a dgp such that Assumption 4.1 holds with

γ = 2 for any nonzero bound on the second derivative. Thus, the minimax rates of local power

for CvM statistics under a bound on the second derivative are at least as slow as the rates

derived in this paper, which are slower than
√
n. Since the results in Armstrong (2014b) show

that the corresponding KS statistics achieve a better rate for local alternatives uniformly

over dgps with a bound on the second derivative (and additional regularity conditions), this

means that the KS statistic is preferred to the CvM statistic under a minimax criterion in

this class. See Section A.5 in the appendix for formal statements.
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5 Local Power Results

In this section, I derive local power results for CvM test statistics under the conditions given

in Section 4. Sections 5.1, 5.2 and 5.3 give the power results. Section 5.4 provides an analysis

of the quantities that determine local asymptotic power.

5.1 Instrument Based CvM Statistics with Bounded Weights

To describe the power results, we need some additional notation. Define

λbdd(a, j, k, p) = λbdd(a, m̄θ,j(θ0, xk), ψj,k, fX(xk), fµ(xk, 0), p)

≡
∫ ∫ ∣∣∣∣∫ [‖x‖γψj,k ( x

‖x‖

)
+ m̄θ,j(θ0, xk)a

]
k((x− x̃)/h)fX(xk) dx

∣∣∣∣p
−
fµ(xk, 0) dx̃ dh.

Theorem 5.1. Let

an = an−γ/{2[dX+γ+(dX+1)/p]}

for some vector a. Under Assumptions 3.3, 3.4, 4.1, and 4.2,

n1/2Tn,p,1,µ(θ0 + an)
p→

 |X0|∑
k=1

∑
j∈J̃(k)

λbdd(a, j, k, p)

1/p

≡ rbdd(a)

where rbdd(a)→ 0 as a→ 0.

Theorem 5.1 has immediate consequences for the power of tests based on CvM statistics

with bounded weightings.

Theorem 5.2. If, in addition to the conditions of Theorem 5.1, Assumption 3.1 holds, the

power

Eφn,p,1,µ(θ0 + an)

of the CvM test with bounded weights will converge to zero for rbdd(a) < c. If a is close enough

to zero, rbdd(a) will be less than c so that the power will converge to zero under θ0 + an. If,

in addition, Assumption 3.2 holds, the power under θ0 + an given by the above display will

converge to 1 for rbdd(a) > c.
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The n−γ/{2[dX+γ+(dX+1)/p]} rate for instrument based CvM statistics with bounded weights

is slower than the n−γ/{2[dX+γ]} rate derived for the corresponding KS test in Theorem 14 of

Armstrong (2015) (for γ = 2) and Theorem 5.1 of Armstrong (2014b) (α from that paper

plays the role of γ here). Note also that local power increases as p increases, and becomes

aribrarily close to the rate for the KS test as p increases.

Theorem 5.2 shows that asymptotic power depends on the dgp through the quantity

λbdd defined above, which in turn depends on other quantities such as m̄θ,j(θ0, xk)a. As will

be seen in the sections below, the asymptotic power results for other statistics considered

here will depend on similar quantities. We provide a detailed analysis of the quantities that

determine asymptotic power in Section 5.4 below.

5.2 Instrument Based CvM Statistics with Variance Weights

Define

λvar(a, j, k, p)

≡
∫ ∫ ∣∣∣∣∫ [‖x‖γψj,k ( x

‖x‖

)
+ m̄θ,j(θ0, xk)a

]
wj(xk)h

−dX/2k((x− x̃)/h)fX(xk) dx

∣∣∣∣p
−

fµ(xk, 0) dx̃ dh

where wj(xk) ≡ (s2
j(xk, θ0)fX(xk)

∫
k(u)2 du)−1/2.

Theorem 5.3. Let

an = an−γ/{2[dX/2+γ+(dX+1)/p]}.

Suppose that σn(n/ log n)1/2 →∞ and Assumptions 3.3, 3.4, 4.1, and 4.2 hold. Then

n1/2Tn,p,(σ̂∨σn)−1,µ(θ0 + an) ≤

 |X0|∑
k=1

∑
j∈J(k)

λvar(a, j, k, p)

1/p

+ op(1) ≡ rvar(a) + op(1)

where rvar(a)→ 0 as a→ 0. If, in addition, σnn
dX/{4[dX/2+γ+(dX+1)/p]} → 0, the above display

will hold with the inequality replaced by equality.

The result has immediate consequences for the power of tests based on CvM statistics

with truncated variance weightings.
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Theorem 5.4. Let an be defined as in Theorem 5.3 and suppose that the conditions of that

theorem and Assumption 3.1 hold. The power of the test based on the CvM statistic with

truncated variance weights

Eφn,p,(σ∨σn)−1,µ(θ0 + an)

will converge to zero for rvar(a) < c. For a close enough to 0, rvar(a) will be less than c so

that the asymptotic power under θ0 + an will be 0. If, in addition, Assumption 3.2 holds and

σnn
dX/{4[dX/2+γ+(dX+1)/p]} → 0, the power function under θ0 + an given by the above display

will converge to 1 for rvar(a) > c.

As with bounded weighting functions, the rate for detecting local alternatives with CvM

statistics with variance weights is slower than the rate for the corresponding KS test. The

n−γ/{2[dX/2+γ+(dX+1)/p]} rate for variance weighted CvM statistics derived above contrasts

with the (n/ log n)−γ/[2(dX/2+γ)] rate for the corresponding KS test derived in Armstrong

and Chan (2016) and Armstrong (2014b) (the results from the latter paper on rates of

convergence of confidence regions in the Hausdorff metric imply these local power results).

The rate for CvM statistics approaches the rate for KS statistics as p→∞.

5.3 Statistics Based on Kernel Estimates

To describe the local asymptotic power functions, define

λkern(a, h, j, k, p) ≡
∫ ∣∣∣∣∫ [‖x‖γψj,k ( x

‖x‖

)
+ m̄θ,j(θ0, xk)a

]
h−dXk((x− x̃)/h)ωj(θ0, xk) dx

∣∣∣∣p
−
dx̃.

and

λ̃kern(a, j, k, p) ≡
∫ ∣∣∣∣[[‖v‖γψj,k ( v

‖v‖

)
+ m̄θ,j(θ0, xk)a

]
ωj(θ0, xk)

∣∣∣∣p
−
dv.

Theorem 5.5. Suppose that Assumptions 3.4, 4.1, 4.2 and 4.3 hold, and that the kernel

function k satisfies Assumption 3.3. In addition, suppose that the bandwidth h satisfies

h/n−s → ch for some 0 < s < 1/dX and ch > 0, the kernel function k satisfies
∫
k(u) du = 1

and that the functions ψj,k in Assumption 4.1 are continuous. Let an = an−q for some
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a ∈ Rdθ where

q =

{
sγ if s < 1/[2(γ + dX/p+ dX/2)]

(1− sdX)/[2(1 + dX/(pγ))] if s ≥ 1/[2(γ + dX/p+ dX/2)]

and let θn = θ0 + an. If s > 1/[2(γ + dX/p+ dX/2)], then

(nhdX )1/2Tn,p,kern(θn)
p→ c

dX/2
h

 |X0|∑
k=1

∑
j∈J(k)

λ̃kern(a, j, k, p)

1/p

≡ r̃kern(a).

If s = 1/[2(γ + dX/p+ dX/2)], then

(nhdX )1/2Tn,p,kern(θn)
p→ c

dX/2
h

 |X0|∑
k=1

∑
j∈J(k)

λkern(a, ch, j, k, p)

1/p

≡ rkern(a, ch).

If s < 1/[2(γ + dX/p+ dX/2)], then

(nhdX )1/2Tn,p,kern(θn)

will converge in probability to 0 if |X0|∑
k=1

∑
j∈J(k)

λkern(a, ch, j, k, p)

1/p

is 0 in a neighborhood of (a, ch), and will converge to ∞ if this expression is strictly positive.

The result has immediate implications for the power of tests based on kernel CvM statis-

tics.

Theorem 5.6. Let an be defined as in Theorem 5.5 and suppose that the conditions of that

theorem and Assumption 3.1 hold. If s > 1/[2(γ+dX/p+dX/2)], the power of the test based

on the kernel CvM statistic

Eφn,p,kern(θ0 + an)

will converge to zero for r̃kern(a) < c. If s = 1/[2(γ + dX/p+ dX/2)], the power given by the

above display will converge to zero for r̃kern(a, ch) < c. If s < 1/[2(γ + dX/p + dX/2)], the
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power given by the above display will converge to zero if r̃kern(a, ch) = 0 in a neighborhood

of (a, ch). If, in addition, Assumption 3.2 holds, the power given by the above display will

converge to 1 if r̃kern(a) > c, rkern(a, ch) > c, or rkern(a, ch) > 0 in the cases where s is greater

than, equal to, or less than 1/[2(γ + dX/p+ dX/2)] respectively.

As with instrument based statistics, the rate for detecting local alternatives with the

kernel CvM test is slower than the rate for the corresponding KS statistic. The rate derived

in Theorem 5.5 can be written as max{(nhdX )−1/[2(1+dX/(pγ))], hγ}, which is slower than the

max
{

(nhdX/ log n)−1/2, hγ
}

rate for kernel based KS statistics derived in Armstrong (2014b).

As with the instrument based statistics, the CvM test is more powerful for p larger, and the

rate approaches the rate for the KS test as p goes to ∞.

Theorem 5.5 can be used to choose the optimal bandwidth in this setting. The rate

an = an−q is best when s = 1/[2(γ + dX/p+ dX/2)], which gives an exponent in the rate of

q =
γ

2(γ + dX/p+ dX/2)
=

1− sdX
2(1 + dX/(pγ))

= sγ.

Note that this rate is faster than the n−γ/[2(dX/2+γ+(dX+1)/p))] rate that can be obtained

with instrument based CvM tests with variance weights. Thus, restricting the class of

instruments using prior knowledge of the data generating process leads to a faster rate

with CvM statistics. In contrast, instrument based KS statistics with variance weights can

achieve the same rate as kernel KS statistics that use prior knowledge of the data generating

process to choose the bandwidth optimally (cf. Armstrong, 2014b; Armstrong and Chan,

2016; Chetverikov, 2012).

5.4 Analysis of Asymptotic Power Functions

The asymptotic power results in this paper apply to a sequence θ0 + an where an = anρ for

some rate exponent ρ and vector a ∈ Rdθ . To understand how power varies with distance

from the identified set, let us consider local power for a vector a = t · ã, where ã ∈ Rdθ and

t > 0 is a scalar. That is, we fix a direction ã ∈ Rdθ and ask how power varies as we move

in this direction away from θ0 on the boundary of the identified set Θ0.

For the instrument based CvM test with bounded weights, power will converge to zero

if rbdd(t · a) < c, and will converge to one if rbdd(t · a) > c. Similar statements hold for the

other tests with rbdd replaced by rvar, r̃kern or rkern. Thus, if we plot asymptotic power as a

function of t, we obtain a step function where asymptotic power is either 0 or 1 depending
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on whether t is above a certain value. This arises from the fact that these test statistics are

degenerate under the null distributions considered here (see the discussion in Section 3).

The quantities rbdd, rvar, r̃kern and rkern which determine local power depend on the

quantities λbdd, λvar, λkern and λ̃kern. Note that λbdd(t · ã, j, k, p), λvar(t · ã, j, k, p) λkern(t ·
ã, j, k, p) and λ̃kern(t·ã, j, k, p) are all zero when m̄j,θ(θ0, xk)ã ≥ 0, and are (for t large enough)

strictly positive when m̄θ,j(θ0, xk)ã < 0. The condition m̄θ,j(θ0, xk)ã < 0 simply means that

moving in the direction ã away from θ0 moves the conditional mean m̄j(θ, x) downward at

a point xk where the inequality is binding (thereby ensuring that the null is indeed violated

at θ0 + t · ã · nρ), and that this shows up in the first derivative approximation. On the other

hand, if m̄j,θ(θ0, xk)ã > 0 at all points xk where the inequality binds, then moving in the

direction ã moves the conditional moments upward, so that the null still holds under θn.

To further analyze these quantities, note that, using similar arguments to the derivations

in Section 2,

λbdd(t · ã, j, k, p)

=

∫ ∫ ∣∣∣∣∫ [‖x‖γψj,k ( x

‖x‖

)
+ t · m̄θ,j(θ0, xk)ã

]
k((x− x̃)/h)fX(xk) dx

∣∣∣∣p
−
fµ(xk, 0) dx̃ dh

=

∫ ∫ ∣∣∣∣ ∫ [t‖u‖γψj,k ( u

‖u‖

)
+ t · m̄θ,j(θ0, xk)ã

]
· k((u− v)/h̃)fX(xk) t

dX/γdu

∣∣∣∣p
−
fµ(xk, 0) tdX/γdv t1/γdh̃

= t(1+dX/γ)p+dX/γ+1/γλbdd(ã, j, k, p)

where we use the change of variables u = x/t1/γ, v = x̃/t1/γ and h̃ = h/t1/γ. Thus,

rbdd(t · ã) =

 |X0|∑
k=1

∑
j∈J̃(k)

λbdd(t · ã, j, k, p)

1/p

=

t(1+dX/γ)p+dX/γ+1/γ

|X0|∑
k=1

∑
j∈J̃(k)

λbdd(ã, j, k, p)

1/p

= t(1+dX/γ)+(dX+1)/(γp)rbdd(ã).

Thus, when rbdd(ã) > 0 (which, as discussed above, will typically hold when the sequence of

local alternatives θn is outside of the identified set), we obtain asymptotic power one when

t(1+dX/γ)+(dX+1)/(γp)rbdd(ã) is greater than the asymptotic critical value c, and we obtain

asymptotic power zero when t(1+dX/γ)+(dX+1)/(γp)rbdd(ã) < c. A similar argument using the
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same change of variables shows that rvar(t · ã) = t1+dX/(2γ)+(dX+1)/(γp)rvar(ã), so that the same

analysis goes through for the variance weighted CvM statistic (with a different exponent for

t).

For kernel based CvM statistics, local asymptotic power depends on r̃kern or rkern de-

pending on how quickly the bandwidth converges to zero. For the case where the bandwidth

converges to zero quickly enough (s > 1/[2(γ + dX/p+ dX/2)]), local power power is deter-

mined by r̃kern. Note that

λ̃kern(t · ã, j, k, p) =

∫ ∣∣∣∣[[‖v‖γψj,k ( v

‖v‖

)
+ t · m̄θ,j(θ0, xk)ã

]
ωj(θ0, xk)

∣∣∣∣p
−
dv

=

∫ ∣∣∣∣[[t‖u‖γψj,k ( u

‖u‖

)
+ t · m̄θ,j(θ0, xk)ã

]
ωj(θ0, xk)

∣∣∣∣p
−
tdX/γdu

= tp+dX/γλ̃kern(ã, j, k, p)

where we use the change of variables u = v/t1/γ. Thus, r̃kern(t · ã) = t1+dX/(pγ)r̃kern(ã), and

we have power approaching one or zero depending on whether t is large enough so that

t1+dX/(pγ)r̃kern(ã) is greater than the limit c of the critical value.

For the case where the bandwidth decreases more slowly (s ≤ 1/[2(γ + dX/p + dX/2)]),

local power is determined by rkern(t · ã, ch). For t small enough, this will be equal to zero

so that power for θn will converge to 0. As t increases, rkern(t · ã, ch) will be positive once t

is large enough so long as m̄θ,j(θ0, xk)ã > 0 for some j, k, and increases without bound as

t increases in this case. However, unlike the other cases, rkern(t · ã, ch) does not appear to

have a simple form that is separable in t.

6 Monte Carlo

This section reports the results of a Monte Carlo study of the finite sample properties of the

statistics considered in this paper. I perform Monte Carlos based on a median regression

model with potentially endogenously missing data. I use the same data generating processes

as for the Monte Carlos for variance weighted KS statistics in Armstrong and Chan (2016).

A description of the model and data generating processes is repeated here for convenience.

The latent variable W ∗
i follows a linear median regression model given the observed

covariate Xi: q1/2(W ∗
i |Xi) = θ1 + θ2Xi where q1/2(W ∗

i |Xi) is the conditional median of W ∗
i

given Xi. Define WH
i = W ∗

i when W ∗
i is observed and WH

i = ∞ otherwise. This gives the

conditional moment inequality E[I(θ1 + θ2Xi ≤ WH
i )−1/2|Xi] ≥ 0 a.s. (a similar inequality
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can be formed with the lower bound WL
i defined analogously, but with WL

i = −∞ when W ∗
i

is unobserved, which would give the interval quantile regression setup of Section A.3 of the

appendix; the Monte Carlos focus on the inequality corresponding to WH
i for simplicity).

This model allows for arbitrary correlation between the “missingness” process and (W ∗
i , Xi),

so that the resulting bounds can be used to assess sensitivity to missingness at random

assumptions that would point identify the model.

Each design uses data from the true model W ∗
i = θ∗1 + θ∗2Xi + ui, where (θ∗1, θ

∗
2) = (0, 0)

and ui is independent of Xi with ui ∼ unif(−1, 1). The outcome variable W ∗
i is then set to be

missing independently of W ∗
i with probability p(Xi) (note that, while the data are generated

according to a missingness at random assumption and a particular parameter value, the tests

are robust to failure of this assumption, which leads to a lack of point identification), where

p(x) is varied in each of three designs:

Design 1: p(x) = .1

Design 2: p(x) = .02 + 2 · .98 · |x− .5|
Design 3: p(x) = .02 + 4 · .98 · (x− .5)2.

This leads to the identified set Θ0 = {(θ1, θ2)′|θ1 + θ2x ≤ q1/2(WH
i |Xi = x) all x ∈ [0, 1]}

where q1/2(WH
i |Xi = x) can be calculated for each design as q1/2(WH

i |Xi = x) = 1/(1 −
p(x))− 1. For each design, the Monte Carlo power of each test is reported for θ = (θ1 + a, 0)

where θ1 = sup{θ1|(θ1, 0) ∈ Θ0} and a varies over the set {.1, .2., .3, .4, .5}. This leads to

local alternatives that satisfy the conditions of this paper with γ = 1 for Design 2 and

γ = 2 for Design 3. Design 1 leads to a flat conditional mean for which asymptotic theory

predicts the following rates (for the instrument functions used here): n−1/2 for kernel and

instrument based CvM and unweighted instrument based KS statistics, (n/ log n)−1/2 for

variance weighted instrument KS statistics and (nh/ log n)−1/2 for kernel KS statistics (see

Andrews and Shi, 2013; Armstrong, 2014b; Chernozhukov et al., 2013; Lee et al., 2013).

For the instrument based statistics, I use the class of functions {x 7→ I(s < x < s+t)|0 ≤
s ≤ s + t ≤ 1} and the the Lebesgue measure on {(s, t)|0 ≤ s ≤ s + t ≤ 1} for µ for the

instrument based CvM statistics. This corresponds to the multiscale kernel instruments in

Assumption 3.3 with the uniform kernel. For the kernel based statistics, the uniform kernel

is used, and the supremum or integral is taken over the set [h/2, 1−h/2], so that the support

of the kernel function is always contained in the support of Xi. For the CvM statistics, the

simulations use the test with Lp exponent p = 1. For each test statistic, the critical value

is taken from the least favorable null distribution, calculated exactly (up to Monte Carlo
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error) using the distribution under (θ1, 0) under Design 1. For the kernel estimators, the

bandwidths n−1/5, n−1/3 and n−1/2 are used, and, for the truncated variance weighted CvM

statistics, the values n−1/5/4, n−1/3/4 and n−1/2/4 are used for the truncation parameter σ2
n

(this corresponds to truncating the variance of functions I(s < x < s + t) with t less than

n−1/5, n−1/3 and n−1/2). For comparison, results for the variance weighted instrument KS

statistic, which corresponds to the multiscale statistic of Armstrong and Chan (2016), are

reported as well (taken directly from that paper).

Overall, the Monte Carlo results support the claim that, for the data generating processes

and classes of instrument functions considered in the theoretical results in this paper, KS

statistics perform better than CvM statistics. For Design 2 and Design 3, which follow

the conditions of this paper with γ = 1 and γ = 2 respectively, the instrument based KS

statistic has more power than the instrument based CvM statistic in basically all cases. For

the kernel statistics, the KS test performs better unless the bandwidth is chosen to be much

too small. For example, for Design 3, the optimal bandwidth for the kernel statistic is of

order n−1/5, and the kernel KS statistic performs better than the kernel CvM statistic with

this bandwidth. However, the kernel statistic performs worse for smaller bandwidths when

the sample size is not too large (although the KS statistic does almost as well or better with

1000 observations, suggesting that the asymptotics of Theorem 5.5 have started to kick in

at this point).

Note also that power in the Monte Carlos is very sensitive to the design, with greater

power for Design 3 than Design 2. This is to be expected given the asymptotic results.

Under Design 3, the assumptions of this paper hold with γ = 2, while, under Design 2,

the assumptions hold with γ = 1. The results of Section 5 show that asymptotic power is

increasing in γ (the rate at which local alternatives may approach the null with nontrivial

power is faster for larger γ) for each of the test statistics considered.

For Design 1, asymptotic results from elsewhere in the literature predict that the instru-

ment based statistics with the instruments used here perform about the same (in terms of

the rate for detecting local alternatives) for KS and CvM statistics, although the variance

weighted KS statistic performs slightly worse (by a log n factor). For kernel statistics, asymp-

totic theory predicts that KS statistics will perform worse than CvM statistics in this case

(the latter can achieve a n−1/2 rate, while the former cannot if the bandwidth goes to zero).

All of these predictions are borne out in the Monte Carlos: instrument based statistics all

perform well with the weighted KS statistics performing slightly worse, while CvM version

is better for kernel statistics.
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The Monte Carlo results also fit well with the prescription of the weighted instrument

KS or “multiscale” statistic of Armstrong (2011), Armstrong (2014b), Armstrong and Chan

(2016) and Chetverikov (2012) as the only test among the ones considered here that comes

close to having the best power among these test statistics for all three Monte Carlo designs

(according to asymptotic approximations, the weighted instrument KS test achieves the

best rate to at least within a log n factor in all three cases, while each of the other statistics

considered here performs worse by a polynomial factor in at least one case). While other

statistics perform slightly better in certain cases, they perform much worse in others (e.g.

the kernel KS statistic performs slightly better in Design 3 with the optimal bandwidth,

n−1/5, but performs much worse when other bandwidths are chosen, or with any bandwidth

choice in Design 1).

7 Conclusion

This paper derives local power results for tests for conditional moment inequality models

based on several forms of CvM statistics in the set identified case. The power comparisons

hold under conditions that arise naturally in the set identified case, and determine the

minimax rate. Combined with results for KS statistics, these results can be used to decide

on the test statistic, weighting function, class of instruments and critical value to maximize

power in these models. The results show that KS tests are preferred to CvM statistics and

that variance weightings are preferred to bounded weightings, and allow the researcher to

choose the bandwidth optimally when a kernel based approach is used. In addition, these

results show that, while choosing the critical value based on moment selection procedures or

restricting the class of instrument functions has relatively little effect on power with variance

weighted KS statistics, these choices can have a large effect on power with CvM statistics or

unweighted KS statistics.

A Primitive Conditions and Minimax Bounds

This appendix gives primitive conditions for the assumptions used in this paper, and shows

how the (pointwise in the underlying distribution) results for local alternatives considered

in the paper can be used to bound the minimax power of CvM tests in classes of underlying

distributions where the conditional mean is constrained only by smoothness assumptions.

Since the corresponding KS statistic has a faster rate in these classes, this justifies the claim
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that the CvM tests considered here perform worse in these models under a minimax criterion.

Section A.1 gives general primitive conditions for the assumption that the contact set X0

in Assumption 4.1 is finite. Sections A.2, A.3 and A.4 provide primitive conditions for the

assumptions used in this paper in various settings. Section A.5 uses the results in the body

of this paper to give conditions under which the CvM statistics considered in this paper

do not achieve the optimal rate minimax rate, and verifies these conditions for the interval

regression model.

A.1 Primitive Conditions for Finite Contact Set

If we assume that the support of Xi is compact, and that the minimizing set {x|m̄j(θ, x) = 0}
is contained on the interior of the support of Xi, then the minimizing set will be finite so long

as m̄j(θ, x) is twice continuously differentiable with strictly positive definite second derivative

matrix at any minimum. This follows from the proof of Lemma B.1 in the supplementary

appendix of Armstrong (2015), and we state the result here for convenience. (Note that

the lemma in Armstrong (2015) assumes a third derivative, since a third derivative is used

for other results in that paper. However, a inspection of the proof shows that a continuous

second derivative suffices.)

Lemma A.1. Let h : X → R be twice continuously differentiable on the compact set X ⊆ Rk.

Suppose that, for any minimizer x̃ of h(x), x̃ is on the interior of X , and that the second

derivative matrix of h is strictly positive definite at x̃. Then the set of minimizers of h(x)

over X is finite.

Proof. The result follows from the proof of Lemma B.1 in the supplementary appendix of

Armstrong (2015).

A.2 Interval Regression

This section gives primitive conditions for the interval regression model described in the In-

troduction, which falls into the setup of this paper with Wi = (Xi,W
L
i ,W

H
i ) and m(Wi, θ) =

(WH
i − (1, X ′i)θ, (1, X

′
i)θ −WL

i )′. First, I prove Theorem 4.1. Then, I give conditions under

which the assumptions in the main text hold with γ = 1.

Proof of Theorem 4.1. First, note that the set of x such that m̄j(θ, x) = 0 for some j is finite

by Lemma A.1. Part (ii) of Assumption 4.1 follows from a second order Taylor expansion,

and part (i) follows by compactness of the support of Xi and continuity of the first two
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derivatives of the conditional means. Part (iv) is immediate from part (ii) of the conditions

of the theorem and the fact that the conditional variance is constant in θ for this model. For

part (v), note that d
dθ
m̄1(θ, x) = − d

dθ
m̄2(θ, x) = (1, x′), which is clearly continuous in (θ, x).

Assumption 4.2 is immediate from the bounds on WH
i and WL

i .

For the Lipschitz case (γ = 1), we can replace the assumption of two derivatives with

a condition on the directional one-sided first derivatives. Here, we make the assumption of

finiteness of the set where the conditional moments bind directly, since arguments involving

second derivatives do not apply. In the following, SdX−1 denotes the unit sphere {u ∈
RdX |‖u‖ = 1}.

Assumption A.1. i.) The conditional means E(WH
i |Xi = x) and E(WL

i |Xi = x) are

Lipschitz continuous, Xi has a continuous density and compact support, and WH
i and

WL
i are bounded from above and below by finite constants.

ii.) The set X0 ≡ {x|E(WH
i |Xi = x) = (1, x′)θ0} is finite, and, for any point x̃ ∈ X0, x̃ is in

the interior of the support of Xi, var(W
H
i |Xi = x) is positive and continuous at x̃ and

the one-sided directional derivative d
dt+

[E(WH
i |Xi = x̃+tu)−(1, (x̃+tu)′)θ0] is bounded

from below away from zero at t = 0 and is right continuous at t = 0 uniformly over

u ∈ SdX−1. The same holds for E(WL
i |Xi = x) with “positive” replaced by “negative”

in the last statement.

Theorem A.1. Under Assumption A.1, Assumptions 4.1 and 4.2 hold, with γ = 1 in

Assumption 4.1.

Proof. Part (ii) of Assumption 4.1 follows from a first order Taylor expansion, and part (i)

follows by compactness of the support of Xi and the continuity and lower bound on the

directional derivatives. The verification of the remaining conditions is the same as in the

twice differentiable case.

A.3 Interval Quantile Regression

For the interval quantile regression model, the latent variable W ∗
i follows a linear quan-

tile regression model qτ (W
∗
i |Xi) = (1, X ′i)θ, where τ is given and qτ (U |V ) denotes the τth

conditional quantile of U given V for random variables U and V . As with interval mean

regression, we observe (Xi,W
L
i ,W

H
i ) where [WL

i ,W
H
i ] is known to contain W ∗

i . This falls

into our setup with m(Wi, θ) = (τ − I(WH
i ≤ (1, X ′i)θ), I(WL

i ≤ (1, X ′i)θ)− τ)′.
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For the interval quantile regression model, one can use essentially the same assumptions

as for the interval mean regression model considered above, but with conditional means

replaced by conditional quantiles. In the interest of space, we consider only the case where

the conditional quantile function has two derivatives (γ = 2).

Assumption A.2. i.) The conditional quantiles qτ (W
H
i |Xi = x) and qτ (W

L
i |Xi = x) are

twice differentiable with continuous second derivatives and Xi has a continuous density

and compact support.

ii.) For any x̃ such that qτ (W
H
i |Xi = x̃) = (1, x̃′)θ0, x̃ is in the interior of the support of

Xi and qτ (W
H
i |Xi = x) has a positive definite second derivative matrix at x̃. The same

holds for qτ (W
L
i |Xi = x) with “positive definite” replaced by “negative definite.”

In addition, we will also require an assumption on the conditional densities of WH
i and

WL
i given Xi.

Assumption A.3. For some η > 0, WH
i |Xi and WL

i |Xi have conditional densities fWH
i |Xi(w|x)

and fWL
i |Xi(w|x) on {(x,w)|qτ,P (WH

i |Xi = x) − η ≤ w ≤ qτ,P (WH
i |Xi = x) + η} and

{(x,w)|qτ,P (WL
i |Xi = x) − η ≤ w ≤ qτ,P (WL

i |Xi = x) + η} respectively that are continuous

as a function of (x,w) and bounded away from zero on these sets.

Assumption A.3 is similar to Assumption B.3 in Armstrong (2014b). As discussed in

Armstrong (2014b), this type of condition will hold, for example, when (Xi,W
∗
i ) has a

smooth joint density, and W ∗
i is either missing (in which case WL

i = −∞ and WH
i = ∞)

or fully observed (in which case WL
i = WH

i = W ∗
i ), so long as the probability that W ∗

i is

missing conditional on (Xi,W
∗
i ) = (x,w) is smooth as a function of (x,w).

Theorem A.2. Suppose that Assumptions A.2 and A.3 hold. Then Assumptions 4.1 and

4.2 hold, with γ = 2 in Assumption 4.1.

Proof. Let θ0 ∈ Θ0 satisfy the conditions of the theorem and let x̃ be such that qτ (W
H
i |Xi =

x̃) = (1, x̃′)θ0. Let V (x) denote the second derivative matrix of x 7→ qτ (W
H
i |Xi = x). Then,

for δ small enough and ‖x− x̃‖ ≤ δ,

m̄1(θ, x) = τ − P (WH
i ≤ (1, X ′i)θ0|Xi = x) =

∫ qτ (WH
i |Xi=x)

(1,x′)θ0

fWH
i |Xi(w|x) dw

=

∫ (1,x′)θ0+(x−x̃)′V (x̃)(x−x̃)+r(x)

(1,x′)θ0

fWH
i |Xi(w|x) dw
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where limx→x̃ r(x) = 0 and the last step follows from a second order Taylor expansion. This

expression is bounded from above by f(δ) · [(x− x̃)′V (x̃)(x− x̃) + r(δ)] and from below by

f(δ) · [(x− x̃)′V (x̃)(x− x̃) + r(δ)] where f(δ) and r(δ) are upper bounds for fWH
i |Xi(w|x) and

r(x) on {(x,w)|‖x − x̃‖ ≤ δ, (1, x′)θ0 ≤ w ≤ qτ (W
H
i |Xi = x)} and f(δ) and r(δ) are lower

bounds. As δ → 0, f(δ) and f(δ) converge to fWH
i |Xi((1, x̃

′)θ0|x̃) and r(δ) and r(δ) converge

to 0, so that

sup
‖x−x̃‖≤δ

∥∥∥∥τ − P (WH
i ≤ (1, X ′i)θ0|Xi = x)

‖x− x̃‖2
− (x− x̃)′

‖x− x̃‖
V (x̃)

(x− x̃)′

‖x− x̃‖
· fWH

i |Xi((1, x̃
′)θ0|x̃)

∥∥∥∥ δ→0→ 0.

Applying this argument to the finite set of values x̃ such that τ − P (WH
i ≤ (1, X ′i)θ0|Xi =

x) = 0 and a symmetric argument for WL
i , it follows that part (ii) of Assumption 4.1 holds

with γ = 2.

To verify part (i) of Assumption 4.1 first note that the set X0 = {x|qτ (WH
i |Xi = x) =

(1, x′)θ} is finite by Lemma A.1. Using this and similar arguments to those used in the proof

of Theorem 4.1, there exists ε > 0 and δ > 0 such that qτ (W
H
i |Xi = x)− (1, x)′θ is bounded

away from zero for ‖θ− θ0‖ < ε and x such that, for all x̃ ∈ X0, ‖x− x̃‖ ≥ δ. It then follows

from Assumption A.3 that τ − P (WH
i ≤ (1, X ′i)θ0|Xi = x) is bounded away from zero on

such a set. Part (i) of Assumption 4.1 follows from this and a similar argument for WL
i .

For part (iv) of Assumption 4.1, note that the conditional variance of the moment function

corresponding to WH
i is P (WH

i ≤ (1, x′)θ|Xi = x)[1 − P (WH
i ≤ (1, x′)θ|Xi = x)], so it

suffices to show that P (WH
i ≤ (1, x′)θ|Xi = x) is in the set (0, 1) and is continuous in (θ, x)

at each (θ0, x̃) such that m̄1(θ, x) = P (WH
i ≤ (1, x̃′)θ0|Xi = x̃) = τ . This follows since, by

Assumption A.3, WH
i has a continuous conditional density in a neighborhood of (1, x̃′)θ0.

For part (v) of Assumption 4.1, note that, for (x, θ) such that WH
i has a conditional

density given Xi = x at (1, x′)θ,

m̄θ,1(θ, x) = − d

dθ′
P (WH

i ≤ (1, x′)θ|Xi = x) = −fWH
i |Xi=x((1, x

′)θ|x)(1, x′).

This is continuous in (θ, x) in a small enough neighborhood of any (θ0, x̃) with m̄θ,1(θ0, x̃) = 0,

since fWH
i |Xi=x(w|x) is continuous for w, x in a neighborhood of at x = x̃ and w = (1, x̃′)θ0

for any such θ0 and x̃ by Assumption A.3.
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A.4 Selection Model

The interval regression model contains, as a special case, an approach to selection models

based on bounds suggested in Manski (1990). In particular, consider a selection model in

which we are interested in the mean of Y ∗i , which is not always observed. Suppose that Y ∗i

is known to take values in [Y , Y ] for some fixed Y and Y , and a variable Xi is available

such that E(Y ∗i |Xi) = E(Y ∗i ) (i.e. Y ∗i is mean independent of Xi), and such that Xi shifts

the conditional probability of observing Y ∗i . For example, we may be interested in the offer

wage Y ∗i , which is typically only observed when individual i actually works. In this case,

the variable Xi can be taken to be anything that shifts labor force participation through the

opportunity cost of working (such as income from other sources such as family or government

benefits) while being independent of the distribution of offer wages.

Let Di denote an indicator variable that is 1 when Y ∗i is observed and 0 otherwise.

We observe (Xi, Yi, Di) where Yi = Di · Y ∗i . Following Manski (1990), note that, letting

WL
i = Yi · Di + Y · (1 − Di) and WL

i = Yi · Di + Y · (1 − Di), we have WL
i ≤ Y ∗i ≤ WH

i

with probability one. Letting θ = E(Y ∗i ) and using the fact that E(Y ∗i ) = E(Y ∗i |Xi) a.s.,

we obtain our setup with m(Wi, Xi, θ) = (WH
i − θ, θ −WL

i )′. This is a special case of the

interval regression model of Section A.2, with (θ, 01×dX ) playing the role of θ. That is, we

have the interval regression model with the slope parameter constrained to be zero. Thus,

if we consider a null value θ0 and a sequence of alternatives in the interval regression model

for which the slope parameter is zero, the results of Section A.2 apply immediately to give

primitive conditions for Assumption 4.1 (here Assumption 4.2 holds by construction and the

assumption that Y ∗i is bounded).

Note that E(WH
i |Xi = x) = E(Y ∗i Di|Xi = x) + Y · [1 − P (Di = 1|Xi = x)]. Thus,

a sufficient condition for E(WH
i |Xi = x) to be twice differentiable (or Lipschitz) is for

P (Di = 1|Xi = x) and E(Y ∗i Di|Xi = x) to be twice differentiable (or Lipschitz). It is

also worth noting that cases where E(WH
i |Xi = x) is minimized at the (possibly infinite)

boundary of the support of Xi are often of interest, and arise naturally in this setting (see,

e.g., Andrews and Schafgans 1998 and Heckman 1990). While Assumption 4.1 formally

precludes the possibility that the minimum of E(WH
i |Xi = x) is taken at the boundary of

the support of Xi, such cases can be handled for certain forms of instrument based statistics

by transforming the support of Xi (see Section B.3 of Armstrong 2014b for an example of

this type of argument applied to instrument based KS statistics). We leave this extension

for future research.
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A.5 Minimax Rates

The power results in this paper hold under conditions that are arguably common in practice

in the set identified case. However, there are certainly cases (data generating processes,

points on the boundary of the identified set and directions for the local alternative) for

which other conditions will be appropriate. The purpose of this section is to show that, if

the underlying distribution is constrained only by smoothness conditions and other regular-

ity conditions, there will always exist a possible underlying distribution and sequence of local

alternatives that satisfy these properties, with γ governed by the smoothness conditions im-

posed. Thus, any test that achieves good uniform power in these classes against alternatives

that are closer than the pointwise rates derived here for CvM statistics will be preferred

under a minimax criterion. By results in Armstrong (2014b), it follows that, for certain

classes of alternatives defined by smoothness conditions, the variance weighted KS statistic

of Armstrong (2014b), Armstrong and Chan (2016) and Chetverikov (2012) is preferred to

the CvM statistics considered in this paper under a minimax criterion.

To formalize these ideas, the rest of this section considers classes P of underlying distri-

butions and uses the notation EP and Θ0(P ) to denote expectations and the identified set

under a distribution P . In the results below, d(θ, θ̃) denotes the Euclidean distance ‖θ− θ̃‖.

Theorem A.3. Let φCvM(θ) be one of the CvM tests defined in (11) or (12) with the critical

value satisfying Assumption 3.1, the class G or kernel function k satisfying Assumption 3.3,

and the measure µ satisfying Assumption 3.4 for the instrument case and the weighting

satisfying Assumption 4.3 for the kernel case. Let P be any class of distributions such that,

for some P ∗ ∈ P and θ∗0 on the boundary of Θ0(P ∗), Assumptions 4.1 and 4.2 hold, and

either (a) θ∗0 is on the boundary of the convex hull of Θ0(P ∗) or (b) for some a ∈ Rdθ and

a constant K, d(θ∗0, θ
∗
0 + ar) ≤ K · d(θ0, θ

∗
0 + ar) for all θ0 ∈ Θ0(P ∗) and r small enough.

Then, for a small enough constant C∗ > 0,

lim sup
n→∞

inf
P∈P

inf
θ s.t. d(θ,θ0)≥C∗rn all θ0∈Θ0(P )

EPφCvM(θ) = 0,

where rn depends on the test and is given in Table 1 with γ given in Assumption 4.1.

Proof. Under condition (b), the result is immediate from the results in the main text, since

the quantity in the display in the theorem is less than lim supn→∞EP ∗φCvM(θ∗0+aC∗rnK/‖a‖)
for P ∗, θ∗0 and a given in the theorem. The result follows since condition (a) implies condition

(b) with K = 1. To see this, note that, by the supporting hyperplane theorem, there exists a
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vector a with ‖a‖ = 1 such that a′θ̃0 ≤ a′θ∗0 for all θ̃0 in the convex hull of Θ0(P ∗). For this a

and any scalar r > 0 and θ̃0 ∈ Θ0(P ∗), d(θ∗0+ar, θ̃0)2−d(θ∗0+ar, θ0)2 = ‖θ∗0+ar−θ̃0‖2−r2a′a =

‖θ∗0 − θ̃0‖2 + 2ra′(θ∗0 − θ̃0) + r2a′a− r2a′a ≥ ‖θ∗0 − θ̃0‖2 ≥ 0.

A class P of underlying distributions will typically contain a P ∗ satisfying these conditions

so long as it is sufficiently unrestricted (e.g. if the only restrictions are smoothness conditions,

etc.). Theorems A.5 and A.6 below give primitive conditions for this in the interval regression

model.

Under additional regularity conditions on P , the inverse variance weighted KS statistic of

Armstrong (2014b), Armstrong and Chan (2016) and Chetverikov (2012) achieves a strictly

better minimax rate than the upper bounds for CvM statistics given in Theorem A.3. This

is stated in the next theorem, which follows immediately from results in Armstrong (2014b)

(the results in Armstrong, 2014b consider a stronger notion of coverage and power).

For concreteness, let us consider a specific version of the inverse variance weighted

KS statistic considered in Armstrong (2014b). Let Tn,∞,(σ∨σn)−1(θ) be given by (8) with

G = {x 7→ I(‖x−x̃‖ ≤ h)|x̃ ∈ RdX , h ∈ [0,∞)} and ωj(θ, g) = {σ̂j(θ, g)∨[(log n)2/n]}−1. Let

φn,∞,(σ∨σn)−1(θ) be given by (13) with this definition of Tn,∞,(σ∨σn)−1(θ) and with ĉn,∞,(σ∨σn)−1

given by the constant K in Theorem 3.1 in Armstrong (2014b). In the interest of concrete-

ness, the above formulation uses certain conservative constants and tuning parameters in

defining the test φn,∞,(σ∨σn)−1(θ). Less conservative and data driven methods for choos-

ing these constants have been considered by Armstrong and Chan (2016) and Chetverikov

(2012).

Theorem A.4. Suppose that P satisfies Assumptions 4.1, 4.3, 4.4 and 4.5

in Armstrong (2014b), with γ taking the place of α in that paper. Then

lim supn→∞ supP∈P supθ0∈Θ0(P ) EPφn,∞,(σ∨σn)−1(θ0) = 0 and, for a large enough constant C∗,

lim inf
n→∞

inf
P∈P

inf
θ s.t. d(θ,θ0)≥C∗[(logn)/n]γ/(dX+2γ) all θ0∈Θ0(P )

EPφn,∞,(σ∨σn)−1(θ) = 1.

Proof. Since Assumptions 3.1-3.3 in Armstrong (2014b) follow by definition of the statis-

tic, the result follows from Theorem 4.2 in that paper, with Assumption 4.2(i) in Arm-

strong (2014b) following from Theorem 4.3 in that paper (since Assumption 4.6 and 4.2(ii)

in that paper hold by construction). For Cn the setwise confidence set constructed from
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φn,∞,(σ∨σn)−1(θ) in Armstrong (2014b),

inf
P∈P

inf
θ s.t. d(θ,θ0)≥C∗[(logn)/n]γ/(dX+2γ) all θ0∈Θ0(P )

EPφn,∞,(σ∨σn)−1(θ)

= inf
P∈P

inf
θ s.t. d(θ,θ0)≥C∗[(logn)/n]γ/(dX+2γ) all θ0∈Θ0(P )

P (θ 6∈ Cn)

≥ inf
P∈P

P (θ 6∈ Cn all θ s.t. d(θ, θ0) ≥ C∗[(log n)/n]γ/(dX+2γ) all θ0 ∈ Θ0(P ))

≥ inf
P∈P

P (dH(Θ0(P ), Cn) < C∗[(log n)/n]γ/(dX+2γ))

where dH(A,B) = max{supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)} is the Hausdorff distance.

This converges to 1 for large enough C∗ by Theorem 4.2 in Armstrong (2014b).

The classes P used in Theorem A.4 impose smoothness conditions on the conditional

mean along with a condition on the derivative of the conditional mean with respect to θ

(cases where the latter condition fails appear to favor KS statistics over CvM statistics as

well; see Section A.4 of Armstrong, 2014b). Note that the rate given above for the weighted

KS statistic φn,∞,(σ∨σn)−1 corresponds to the minimax L∞ rate for nonparametric testing

problems (Lepski and Tsybakov, 2000) and to the minimax rate for estimating a conditional

mean (Stone, 1982; see Menzel, 2010 for related results for estimating the identified set in a

setting similar to the one considered here). The results here show that the CvM statistics

considered here do not achieve this rate, and in fact have a minimax rate that is worse by

at least a polynomial amount.

I now turn to the interval regression model and consider primitive conditions. The next

two theorems show that certain classes of underlying distributions for the interval regression

model will always contain a distribution with a sequence of local alternatives that satisfy

the conditions of this paper. The conclusion of Theorem A.3 then follows immediately, since

the identified set is convex in the interval regression model. Theorem A.5 considers the case

where the constraints on the conditional mean embodied in P essentially only restrict the

conditional means of WH
i and WL

i to a Lipschitz smoothness class. Theorem A.6 considers

the smoother case where a bound is placed on the second derivative. For primitive conditions

for the conditions of Theorem A.4 in the interval regression model for the case where dX = 1

and γ = 1 or 2, see Armstrong (2014b), Section 6.2.

Theorem A.5. Let P be any class of underlying distributions for (Xi,W
H
i ,W

L
i ) in the

interval regression model such that, for all P ∈ P, WH
i and WL

i are bounded and Xi has

a continuous density on its support XP . Suppose that, for some set X ⊆ RdX and some
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interval [a, b], the following holds: for any function f : X → [a, b] such that

|f(x)− f(x̃)| ≤ K‖x− x̃‖,

there exists a P ∈ P such that EP (WH
i |Xi) = f(Xi) and EP (WL

i |Xi) ≤ a almost surely,

and XP = X . Then there exists a P ∗ ∈ P and θ∗0 ∈ Θ0(P ∗) that satisfies the conditions of

Theorem A.3, with γ = 1 and ψj,k(u) = K in Assumption 4.1.

Proof. Under these assumptions, there exists a distribution P ∈ P such that EP (WH
i |Xi =

x) = b −K[(ε − ‖x − x0‖) ∨ 0] for some ε > 0 and x0 on the interior of the support of Xi,

and EP (WL
i |Xi = x) is bounded from above away from b − 2ε. For θ = (b − Kε, 0), this

satisfies the conditions of Theorem A.1.

Theorem A.6. Let P be any class of underlying distributions for (Xi,W
H
i ,W

L
i ) in the

interval regression model such that, for all P ∈ P, WH
i and WL

i are bounded and Xi has

a continuous density on its support XP . Suppose that, for some set X ⊆ RdX and some

interval [a, b], for any function f : X → [a, b] such that∣∣∣∣ d2

dt2
f(x+ tu)

∣∣∣∣ ≤ K

for all u ∈ RdX with ‖u‖ = 1, there exists a P ∈ P such that EP (WH
i |Xi) = f(Xi) and

EP (WL
i |Xi) ≤ a almost surely, and XP = X . Then there exists a P ∗ ∈ P and θ∗0 ∈ Θ0(P ∗)

that satisfies the conditions of Theorem A.3, with γ = 2 and ψj,k(u) = K/2 in Assumption

4.1.

Proof. The result follows by similar arguments to Theorem A.5 since a function can be

constructed for EP (WH
i |Xi = x) that has a unique interior minimum with second derivative

matrix KI at its minimum and takes values between, say, (a+ b)/2 and b.

B Proofs and Auxiliary Results

Section B.1 contains auxiliary results used in the rest of this appendix. These results are

restatements or simple extensions of well known results on uniform convergence, and do not

constitute part of the main novel contribution of the paper. Section B.2 of this appendix

derives critical values for CvM statistics with variance weights. Section B.3 contains proofs

of the results in the body of the paper.
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B.1 Auxiliary Results

We state some results on uniform convergence that will be used in the proofs of the main

results. The results in this section are essentially restatements of results used in Armstrong

(2014b), which are in turn minor extensions of results in Pollard (1984). Throughout this

section, we consider iid observations Z1, . . . , Zn and a sequence of classes of functions Fn on

the sample space. Let σ(f)2 = Ef(Zi)
2− (Ef(Zi))

2 and let σ̂(f)2 = Enf(Zi)
2− (Enf(Zi))

2.

Lemma B.1. Suppose that |f(Zi)| ≤ f a.s. and that

sup
n∈N

sup
Q
N(ε,Fn, L1(Q)) ≤ Aε−W

for some A and W , where N is the covering number defined in Pollard (1984) and the

supremum over Q is over all probability measures. Let σn be a sequence of constants with

σn
√
n/ log n→∞. Then, for some constant C,

√
n√

log n
sup
f∈Fn

∣∣∣∣(En − E)f(Zi)

σ(f) ∨ σn

∣∣∣∣ ≤ C

with probability approaching one and

sup
f∈Fn

∣∣∣∣(En − E)f(Zi)

σ(f)2 ∨ σ2
n

∣∣∣∣ p→ 0.

Proof. The first display follows by applying Lemma A.1 in Armstrong (2014b) to the se-

quence of classes of functions {f − EPf(Zi)|f ∈ Fn}, which satisfies the conditions of that

lemma by Lemma A.5 in Armstrong (2014b). The second display follows from the first

display since

sup
f∈Fn

∣∣∣∣(En − E)f(Zi)

σ(f)2 ∨ σ2
n

∣∣∣∣ ≤ 1

σn
sup
f∈Fn

∣∣∣∣(En − E)f(Zi)

σ(f) ∨ σn

∣∣∣∣ =

√
log n

σn
√
n

√
n√

log n
sup
f∈Fn

∣∣∣∣(En − E)f(Zi)

σ(f) ∨ σn

∣∣∣∣
and
√

log n/(σn
√
n)→ 0.

Lemma B.2. Under the conditions of Lemma B.1,

sup
f∈Fn

∣∣∣∣ σ̂(f) ∨ σn
σ(f) ∨ σn

− 1

∣∣∣∣ p→ 0.

Proof. By continuity of t 7→
√
t at 1, it suffices to prove that supf∈Fn

∣∣∣ σ̂(f)2∨σ2
n

σ(f)2∨σ2
n
− 1
∣∣∣ p→ 0. We
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have

sup
f∈Fn

∣∣∣∣ σ̂(f)2 ∨ σ2
n

σ(f)2 ∨ σ2
n

− 1

∣∣∣∣ = sup
f∈Fn

∣∣∣∣ σ̂(f)2 ∨ σ2
n − σ(f)2 ∨ σ2

n

σ(f)2 ∨ σ2
n

∣∣∣∣ ≤ sup
f∈Fn

∣∣∣∣ σ̂(f)2 − σ(f)2

σ(f)2 ∨ σ2
n

∣∣∣∣ .
Note that

σ̂(f)2 − σ(f)2 = (En − E)[f(Zi)− Ef(Zi)]
2 − [(En − E)f(Zi)]

2. (14)

Since σ[(f − Ef(Zi))
2]2 ≤ E[f(Zi)− Ef(Zi)]

4 ≤ 4f
2
σ(f)2, we have

sup
f∈Fn

|(En − E)[f(Zi)− Ef(Zi)]
2|

σ(f)2 ∨ σ2
n

≤ sup
f∈Fn

|(En − E)[f(Zi)− Ef(Zi)]
2|

σ[(f − Ef(Zi))2]2 ∨ σ2
n

· (4f 2
) ∨ 1

which converges in probability to zero by Lemma B.1 (using Lemma A.5 in Armstrong,

2014b to verify that the sequence of classes of functions {[f −Ef(Zi)]
2|f ∈ Fn} satisfies the

conditions of the lemma). Since

[(En − E)f(Zi)]
2

σ(f)2 ∨ σ2
n

p→ 0

by Lemma B.1, the result now follows from this and the triangle inequality applied to

(14).

Lemma B.3. Suppose that |f(Zi)| ≤ f and that σn
√
n ≥ 1. Then

E

∣∣∣∣√n(En − E)f(Zi)

σ(f) ∨ σn

∣∣∣∣p ≤ Cp,f

for a constant Cp,f that depends only on p and f .

Proof. By Bernstein’s inequality,

P

(∣∣∣∣√n(En − E)f(Zi)

σ(f) ∨ σn

∣∣∣∣ > t

)
≤ exp

(
−1

2

n[σ(f) ∨ σn]2t2

nσ2(f) + 1
3
· 2f ·

√
n[σ(f) ∨ σn]t

)

≤ exp

(
−1

2

t2

1 + 1
3
· 2f · t√

n[σ(f)∨σn]

)
≤ exp

(
−1

2

t2

1 + 1
3
· 2f · t

)
≤ exp

(
−1

2

t2

1 + 1
3
· 2f · t

)
.
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For t ≥ 1, this is bounded by exp
(
− t

2+ 2
3
·2f

)
. Thus,

E

∣∣∣∣√n(En − E)f(Zi)

σ(f) ∨ σn

∣∣∣∣p =

∫ ∞
t=0

P

(∣∣∣∣√n(En − E)f(Zi)

σ(f) ∨ σn

∣∣∣∣p > t

)
dt

≤ 1 +

∫ ∞
t=1

exp

(
− t1/p

2 + 2
3
· 2f

)
dt

which is finite and depends only on p and f as claimed.

B.2 Critical Values for CvM Statistics with Variance Weights

For bounded choices of ω (which corresponds to σn bounded away from zero when a truncated

variance weighting is used), Kim (2008) and Andrews and Shi (2013) derive a
√
n rate of

convergence to an asymptotic distribution that may be degenerate. Armstrong (2014b)

shows that letting σn go to zero generally decreases the rate of convergence to
√
n/ log n

for the KS statistic Tn,∞,ω. In contrast to the KS case, CvM statistics do not behave much

differently if the variance is allowed to go to zero, although some additional arguments are

needed to show this.

To deal with the behavior of the CvM statistic for small variances, I place the following

condition on the measure over which the sample means are integrated.

Assumption B.1. µ({g|σj(θ, g) ≤ δ})→ 0 as δ → 0 for all j.

This condition will hold for the choices of G and µ used in the body of the paper, and

also allow for more general choices of G and µ. I also make the following assumption on the

complexity of the class of functions G, which is also satisfied by the class used in the paper.

Assumption B.2. For some constants A and ε, the covering number N(ε,G, L1(Q)) defined

in Pollard (1984) satisfies

sup
Q
N(ε,G, L1(Q)) ≤ Aε−W ,

whre the supremum is over all probability measures.

The following condition imposes a bounded distribution of the function m.

Assumption B.3. For some nonrandom constant Y , |mj(Wi, θ)| ≤ Y for each j with

probability one.
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Theorem B.1. Suppose that σn
√
n/ log n → ∞ and that Assumptions B.1, B.2 and B.3

hold. Then, for θ ∈ Θ0,

n1/2Tn,p,(σ̂∨σn)−1,µ(θ) ≤

[∫ dY∑
j=1

∣∣∣∣√n(En − E)mj(Wi, θ)g(Xi)

σ̂j(θ, g) ∨ σn

∣∣∣∣p
−
dµ(g)

]1/p

d→

[∫ dY∑
j=1

|Gj(g, θ)/σj(θ, g)|p− dµ(g)

]1/p

where G(g, θ) is a vector of Gaussian processes with covariance function

ρ(g, g̃) = E[m(Wi, θ)g(Xi)− Em(Wi, θ)g(Xi)][m(Wi, θ)g̃(Xi)− Em(Wi, θ)g̃(Xi)]
′.

Proof. The result with the integral truncated over {σj(θ, g) ≤ δ|all j} follows immediately

from standard arguments using functional central limit theorems. This, along with Lemma

B.4 below gives, letting Zn(δ) be the integral truncated at {σj(θ, g) ≤ δ|all j} and Z(δ) be

the limiting variable with this truncation,

P (Zn(δ)− ε ≤ t)− ε ≤ P (n1/2Tn,p,ω,µ(θ) ≤ t) ≤ P (Zn(δ) ≤ t)

for large enough n for any ε > 0. The lim inf of the left hand size is greater than P (Z(δ) ≤
t − 2ε) − 2ε, and the lim sup of the right hand side is less than P (Z(δ) ≤ t + ε) + ε. We

can bound P (Z(δ) ≤ t − 2ε) − 2ε from below by P (Z ≤ t − 2ε) − 2ε, and we can bound

P (Z(δ) ≤ t+ε)+ε from above by P (Z ≤ t+2ε)+2ε by making δ small enough by a version

of Lemma B.4 for the limiting process. Since ε was arbitrary, this gives the result.

The proof of the theorem above uses the following auxiliary lemma, which shows that

functions g with low enough variance have little effect on the integral asymptotically.

Lemma B.4. Fix j and suppose that Assumptions B.1, B.2 and B.3 hold, and that the null

hypothesis holds under θ. Then, for every ε > 0, there exists a δ > 0 such that

P

√n[∫
σj(θ,g)≤δ

|Enmj(Wi, θ)g(Xi)/(σ̂j(θ, g) ∨ σn)|p− dµ(g)

]1/p

> ε

 ≤ ε.
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Proof. We have

E

∫
σj(θ,g)≤δ

|
√
nEnmj(Wi, θ)g(Xi)/(σj(θ, g) ∨ σn)|p− dµ(g)

=

∫
σj(θ,g)≤δ

E|
√
nEnmj(Wi, θ)g(Xi)/(σj(θ, g) ∨ σn)|p− dµ(g)

≤
∫
σj(θ,g)≤δ

E|
√
n(En − E)mj(Wi, θ)g(Xi)/(σj(θ, g) ∨ σn)|p dµ(g) ≤ µ ({g|σj(θ, g) ≤ δ}) · Cp,Y

for Cp,Y given in Lemma B.3. Applying Markov’s inequality and using Assumption B.1, it

follows that, for any ε > 0, there exists a δ such that

P

√n[∫
σj(θ,g)≤δ

|Enmj(Wi, θ)g(Xi)/(σj(θ, g) ∨ σn)|p− dµ(g)

]1/p

> ε/2

 ≤ ε/2.

The result follows since

√
n

[∫
σj(θ,g)≤δ

|Enmj(Wi, θ)g(Xi)/(σ̂j(θ, g) ∨ σn)|p− dµ(g)

]1/p

≤
√
n

[∫
σj(θ,g)≤δ

|Enmj(Wi, θ)g(Xi)/(σj(θ, g) ∨ σn)|p− dµ(g)

]1/p

· sup
g

(σj(θ, g) ∨ σn)/(σ̂j(θ, g) ∨ σn)

and supg(σj(θ, g) ∨ σn)/(σ̂j(θ, g) ∨ σn) ≤ 2 with probability approaching one by Lemma

B.2.

B.3 Proofs

This section contains proofs of the results in the body of the paper. The proofs use a number

of auxiliary lemmas, which are stated and proved first. In the following, θn is always assumed

to be a sequence converging to θ0.

Lemma B.5. Under the assumptions of Theorem 5.5, there exists a constant C such that

sup
x∈RdX

√
n√

hdX log n
|(En − E)m(Wi, θn)k((Xi − x)/h)| ≤ C
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and

sup
x∈RdX

√
n√

hdX log n
|(En − E)k((Xi − x)/h)| ≤ C

with probability approaching one. In addition,

sup
{x|ωj(θn,x)>0 some j}

∣∣∣∣Enk((Xi − h)/h)

Ek((Xi − h)/h)
− 1

∣∣∣∣ p→ 0.

Proof. The first two displays follow from Lemma B.1 after noting that

var(m(Wi, θn)k((Xi − x)/h)) ≤ Y
2
k

2
fXB

dXhdX

where k and fX are bounds for k and fX , andB is such that k(u) = 0 whenever max1≤j≤dX |uj| >
B/2, and similarly for var(k((Xi − x)/h)), and that

√
hdX
√
n/
√

log n→∞ under these as-

sumptions.

For the last display, note that, for x such that ωj(θn, x) > 0 for some j, Ek((Xi−x)/h) ≥
f
X
hdX

∫
k(u) du for large enough n, where f

X
is a lower bound for the density of Xi (which

can be taken to be ε in Assumption 4.3). Thus,

sup
{x|ωj(θn,x)>0 some j}

∣∣∣∣Enk((Xi − h)/h)

Ek((Xi − h)/h)
− 1

∣∣∣∣ ≤ sup
x∈RdX

∣∣∣∣∣(En − E)k((Xi − h)/h)

f
X
hdX

∫
k(u) du

∣∣∣∣∣
= sup

x∈RdX

√
n√

hdX log n
|(En − E)k((Xi − h)/h)| ·

√
hdX log n√

nf
X
hdX

∫
k(u) du

.

The result then follows from the second display, since
√

logn√
nhdX

→ 0.

Let

T̃n,p,(σ̂∨σn)−1,µ(θ) =

[∫
h>0

∫
x

dY∑
j=1

∣∣∣∣Enm(Wi, θ)k((Xi − x)/h)

σj(θ, x, h) ∨ σn

∣∣∣∣p
−
fµ(x, h) dx dh

]1/p

and let

T̃n,p,kern(θ) =

[∫
x

dY∑
j=1

∣∣∣∣Enm(Wi, θ)k((Xi − x)/h)

Ek((Xi − x)/h)

∣∣∣∣p
−
ωj(θ, x) dx dh

]1/p

.
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The notation σj(θ, x̃, h) is used to denote σj(θ, g) where g(x) = k((x− x̃)/h).

Lemma B.6. Under Assumptions 3.3, 3.4, 4.1 and 4.2,

√
nTn,p,(σ̂∨σn)−1,µ(θn) =

√
nT̃n,p,(σ̂∨σn)−1,µ(θn)(1 + oP (1))

for any sequence θn → θ0. If Assumption 4.3 holds as well, then

(nhdX )1/2Tn,p,kern(θn) = (nhdX )1/2T̃n,p,kern(θn)(1 + oP (1))

for any sequence θn → θ0.

Proof. We have

|
√
nTn,p,(σ̂∨σn)−1,µ(θn)−

√
nT̃n,p,(σ̂∨σn)−1,µ(θn)| ≤

√
nT̃n,p,(σ̂∨σn)−1,µ(θ) · sup

x,j

∣∣∣∣σj(θn, x, h) ∨ σn
σ̂j(θn, x, h) ∨ σn

− 1

∣∣∣∣ .
Thus, the first display follows from Lemma B.2.

Similarly, for the second display,

|(nhdX )1/2Tn,p,kern(θn)− (nhdX )1/2T̃n,p,kern(θn)|

≤ (nhdX )1/2T̃n,p,kern(θn) · sup
{x|ωj(θ,x)>0 some j}

∣∣∣∣ Ek((Xi − x)/h)

Enk((Xi − x)/h)
− 1

∣∣∣∣ ,
and the result follows from Lemma B.5.

Let

˜̃Tn,p,(σ̂∨σn)−1,µ(θ) =

[∫
h>0

∫
x

dY∑
j=1

∣∣∣∣Em(Wi, θ)k((Xi − x)/h)

σj(θ, x, h) ∨ σn

∣∣∣∣p
−
fµ(x, h) dx dh

]1/p

and let

˜̃Tn,p,kern(θ) =

[∫
x

dY∑
j=1

∣∣∣∣Em(Wi, θ)k((Xi − x)/h)

Ek((Xi − x)/h)

∣∣∣∣p
−
ωj(θ, x) dx dh

]1/p

.
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Also define

˜̃Tn,p,1,µ(θ) =

[∫
h>0

∫
x

dY∑
j=1

|Em(Wi, θ)k((Xi − x)/h)|p− fµ(x, h) dx dh

]1/p

.

Lemma B.7. Under Assumptions 3.3, 3.4, 4.1 and 4.2,

√
nT̃n,p,(σ̂∨σn)−1,µ(θn) =

√
n ˜̃Tn,p,(σ̂∨σn)−1,µ(θn) + oP (1).

and

√
nTn,p,1,µ(θn) =

√
n ˜̃Tn,p,1,µ(θn) + oP (1).

Proof. Let σ̃n → 0 be such that σ̃n
√
n/ log n → ∞ and σ̃n/σn → 0 (i.e. σ̃n is chosen to be

much smaller than σn, but such that the assumptions still hold for σ̃n). Note that

√
n| ˜̃Tn,p,(σ̂∨σn)−1,µ(θn)− T̃n,p,(σ̂∨σn)−1,µ(θn)|

≤

[∫ ∫
(x,h)∈Ĝ

dY∑
j=1

∣∣∣∣√n(En − E)m(Wi, θn)k((Xi − x)/h)

σj(θ, x, h) ∨ σn

∣∣∣∣p fµ(x, h) dx dh

]1/p

where Ĝ = {(x, h)|Em(Wi, θn)k((Xi − x)/h) < 0 or En(Wi, θn)k((Xi − x)/h) < 0}.
For any ε > 0, there exists an η > 0 such that, for h > ε and large enough n,

Emj(Wi, θn)k((Xi − x)/h) ≥ ηEk((Xi − x)/h) ≥ η · var[mj(Wi, θn)k((Xi − x)/h)] · 1

kY
2

where the second inequality follows since

var[mj(Wi, θn)k((Xi − x)/h)] ≤ Y
2
E[k((Xi − x)/h)2] ≤ Y

2
kEk((Xi − x)/h).

Thus, for large enough n we will have

Enmj(Wi, θn)k((Xi − x)/h)

≥ (En − E)mj(Wi, θn)k((Xi − x)/h) + var[mj(Wi, θn)k((Xi − x)/h)] · η

kY
2 ,

and the last line is positive for all (x, h) with σj(θn, x, h) ≥ σ̃n with probability approaching

one by Lemma B.1.
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From this and the fact that Em(Wi, θn)k((Xi − x)/h) ≥ 0 for all h > ε for large enough

n, it follows that Ĝ ⊆ {(x, h)|h ≤ ε or σj(θn, x, h) < σ̃n} with probability approaching one.

Note that

E

∫ ∫
{(x,h)|h≤ε}

dY∑
j=1

∣∣∣∣√n(En − E)m(Wi, θn)k((Xi − x)/h)

σj(θ, x, h) ∨ σn

∣∣∣∣p fµ(x, h) dx dh

=

∫ ∫
{(x,h)|h≤ε}

dY∑
j=1

E

∣∣∣∣√n(En − E)m(Wi, θn)k((Xi − x)/h)

σj(θ, x, h) ∨ σn

∣∣∣∣p fµ(x, h) dx dh

by Fubini’s theorem, and this can be made arbitrarily small by making ε small by Lemma

B.3 and Assumption 3.4. Similarly,

E

∫ ∫
{(x,h)|σj(θn,x,h)<σ̃n some j}

dY∑
j=1

∣∣∣∣√n(En − E)m(Wi, θn)k((Xi − x)/h)

σj(θ, x, h) ∨ σn

∣∣∣∣p fµ(x, h) dx dh

≤ µ(RdX × [0,∞)) · sup
{(x,h,j)|σj(θn,x,h)<σ̃n}

E

∣∣∣∣√n(En − E)m(Wi, θn)k((Xi − x)/h)

σj(θ, x, h) ∨ σn

∣∣∣∣p
= µ(RdX × [0,∞)) · sup

{(x,h,j)|σj(θn,x,h)<σ̃n}
E

∣∣∣∣√n(En − E)m(Wi, θn)k((Xi − x)/h)

σj(θ, x, h) ∨ σ̃n

∣∣∣∣p σ̃nσn ,
which converges to zero by Lemma B.3. Using this and Markov’s inequality, it follows

that
√
n| ˜̃Tn,p,(σ̂∨σn)−1,µ(θ)− T̃n,p,(σ̂∨σn)−1,µ(θ)| can be made arbitrarily small with probability

approaching one by making ε small. This gives the first display of the lemma.

The second display follows by the same argument with σn set to the supremum of

σj(θ, x, h) over x, h on the support of µ, θ in a neighborhood of θ0 and all j.

Lemma B.8. Under Assumptions 3.3, 3.4, 4.1, 4.2 and 4.3,

(nhdX )1/2T̃n,p,kern(θn) = (nhdX )1/2 ˜̃Tn,p,kern(θn) + oP (1).

Proof. For any ε > 0, there is an η > 0 such that Emj(Wi, θn)k((Xi − x)/h) > ηEk((Xi −
x)/h) for all x ∈ X̄ (ε) where X̄ (ε) is the set of x with ‖x− xk‖ ≥ ε for all k = 1, . . . , ` and

ωj(θn, x) > 0 for some j. Thus, arguing as in Lemma B.7 and using Lemma B.5, it follows
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that, with probability approaching one,

(nhdX )1/2|T̃n,p,kern(θn)− ˜̃Tn,p,kern(θn)|

≤

[∫
x 6∈X̄ (ε)

dY∑
j=1

∣∣∣∣∣
√
nhdX (En − E)mj(Wi, θn)k((Xi − x)/h)

Ek((Xi − x)/h)

∣∣∣∣∣
p

ωj(θn, x) dx

]1/p

.

Using Markov’s inequality and Fubini’s theorem along with the fact that
∫
x 6∈X̄ (ε)

wj(θnx) dx

can be made arbitrarily small by making ε small, the result follows so long as

E

∣∣∣∣∣
√
nhdX (En − E)mj(Wi, θn)k((Xi − x)/h)

Ek((Xi − x)/h)

∣∣∣∣∣
p

can be bounded uniformly over x such that ωj(θn, x) > 0. But this follows from Lemma B.3,

since, by Assumptions 3.3 and 4.3, for some δ > 0, Ek((Xi − x)/h) ≥ δhdX for all x with

ωj(θn, x) > 0.

For the following lemma, recall that wj(xk) = (s2
j(xk, θ0)fX(xk)

∫
k(u)2 du)−1/2 and s2

j(x, θ) =

var(m(Wi, θ)|Xi = x).

Lemma B.9. Under Assumptions 3.3, 3.4, 4.1 and 4.2, for k = 1, . . . , `

sup
‖(x,h)−(xk,0)‖≤εn

∣∣h−dX/2σj(θn, x, h)− wj(xk)−1
∣∣→ 0.

for any sequences εn → 0 and θn → θ0.

Proof. By differentiability of the square root function at w−2
j (xk), it suffices to show that

sup‖(x,h)−(xk,0)‖≤εn

∣∣h−dXσ2
j (θn, x, h)− w−2

j (xk)
∣∣→ 0. Note that

h−dXσ2
j (θn, x, h) = h−dXE[m(Wi, θn)2k((Xi − x)/h)2]− h−dX{E[m(Wi, θn)k((Xi − x)/h)]}2

= h−dX
∫
s2
j(x̃, θn)k((x̃− x)/h)2fX(x̃) dx̃

+ h−dX
∫
E[m(Wi, θn)|Xi = x̃]2k((x̃− x)/h)2fX(x̃) dx̃

− h−dX
{∫

E[m(Wi, θn)|Xi = x̃]k((x̃− x)/h)fX(x̃) dx̃

}2

.

By Assumption 3.3 and part (iii) of Assumption 4.1, the second term is bounded by a constant

times sup‖(x,h)−(xk,0)‖≤εn E[m(Wi, θn)|Xi = x]2, which converges to zero by continuity of
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E[m(Wi, θ)|Xi = x] at (θ0, xk). By Assumptions 3.3 and 4.1, the third term is bounded by

a constant times h−dX · h2dX ≤ εdXn uniformly over (x, h) with ‖(x, h)− (xk, 0)‖ ≤ εn. Using

a change of variables, the first term can be written as
∫
s2
j(x + uh, θn)k(u)2fX(x + uh) du,

which converges to w−2
j (xk) uniformly over ‖(x, h) − (xk, 0)‖ ≤ εn by continuity of sj and

fX , and by Assumption 3.3.

Lemma B.10. Suppose that Assumptions 3.3, 3.4, 4.1, 4.2 and 4.3 hold, and that
∫
k(u) du =

1. Then

sup
‖x−xk‖≤ε

|h−dXEk((Xi − x)/h)− fX(xk)| → 0

as h→ 0 and ε→ 0 for k = 1, . . . , `.

Proof. We have

h−dXEk((Xi − x)/h) = h−dX
∫
k((x̃− x)/h)fX(x̃) dx̃ =

∫
k(u)fX(x+ uh) du,

and
∫
k(u) du = 1 and fX(x + uh) converges to fX(xk) uniformly over ‖x − xk‖ ≤ ε and u

in the support of k as ε→ 0 and h→ 0.

For notational convenience in the following lemmas, define, for (j, k) with j ∈ J(k),

ψ̃j,k(x− xk) =
m̄j(θ0, x)− m̄j(θ0, xk)

‖x− xk‖γ(j,k)

so that

sup
‖x−xk‖<δ

∣∣∣∣ψ̃j,k(x− xk)− ψj,k ( x− xk
‖x− xk‖

)∣∣∣∣→ 0

under Assumption 4.1.

Lemma B.11. Under Assumptions 3.3, 3.4, 4.1 and 4.2, for any a ∈ Rdθ ,

r−[dX+p(dX+γ)+1]/γ

∫ ∫ dY∑
j=1

|Emj(Wi, θ0 + ra)k((Xi − x̃)/h)|p−fµ(x̃, h) dx̃ dh

r→0→
X0∑
k=1

∑
j∈J̃(k)

λbdd(a, j, k, p).
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Proof. For simplicity, assume that γ(j, k) = γ for all j, k. The general result follows from

applying the same arguments to show that areas of (x, h) near (j, k) with γ(j, k) < γ do not

matter asymptotically.

For C large enough, the integrand will be zero unless max{‖x̃−xk‖, h} < Cr1/γ for some

k with j ∈ J(k). Thus, it suffices to prove the lemma for, fixing (j, k) with j ∈ J(k),∫ ∫
|Emj(Wi, θ0 + ra)k((Xi − x̃)/h)|p−fµ(x̃, h) dx̃ dh

=

∫ ∫ ∣∣∣∣∫ m̄j(θ0 + ra, x)k((x− x̃)/h)fX(x) dx

∣∣∣∣p
−
fµ(x̃, h) dx̃ dh

=

∫ ∫ ∣∣∣∣∫ [‖x− xk‖γψ̃j,k(x− xk) + m̄θ,j(θ
∗(r), x)ra]k((x− x̃)/h)fX(x) dx

∣∣∣∣p
−
fµ(x̃, h) dx̃ dh

where the integrals are taken over ‖x̃− xk‖ < Cr1/γ, h < Cr1/γ and θ∗(r) is between θ0 and

θ0 + ra (we suppress the dependence of θ∗(r) on x in the notation). Using the change of

variables u = (x− xk)/r1/γ, v = (x− xk)/r1/γ, h̃ = h/r1/γ, this is equal to∫ ∫ ∣∣∣∣∫ [‖r1/γu‖γψ̃j,k(r1/γu) + m̄θ,j(θ
∗(r), xk + r1/γu)ra]k((u− v)/h̃)fX(xk + r1/γu)rdX/γ du

∣∣∣∣p
−

fµ(xk + r1/γv, r1/γh̃)rdX/γ dvr1/γ dh̃

= r[dX+1+p(γ+dX)]/γ

∫ ∫ ∣∣∣∣∫ [‖u‖γψ̃j,k(r1/γu) + m̄θ,j(θ
∗(r), xk + r1/γu)a]k((u− v)/h̃)fX(xk + r1/γu) du

∣∣∣∣p
−

fµ(xk + r1/γv, r1/γh̃) dv dh̃

where the integrals are taken over ‖v‖ < C, h̃ < C. The result now follows from the

dominated convergence theorem (here, and in subsequent results involving sequences of the

form
∫
|
∫
gn(z, w) dµ(z)|p− dν(w), the dominated convergence theorem is applied to the inner

integral for each w, and again to the outer integral).

Lemma B.12. Under the conditions of Theorem 5.3, for any a ∈ Rdθ ,

r−[dX+p(dX/2+γ)+1]/γ

∫ ∫ dY∑
j=1

|Emj(Wi, θ0 + ra)k((Xi − x̃)/h)/(σj(θ0 + ra, x̃, h) ∨ σn)|p−fµ(x̃, h) dx̃ dh

≤
X0∑
k=1

∑
j∈J̃(k)

λvar(a, j, k, p) + o(1)
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for any r = rn → 0. If, in addition, σnr
−dX/(2γ)
n → 0, the above display will hold with the

inequality replaced by equality.

Proof. As in the previous lemma, the following argument assumes, for simplicity, that

γ(j, k) = γ for all (j, k) with j ∈ J(k). Let s̃j(r, x̃, h) = σj(θ0 + ra, x̃, h)/hdX/2. As be-

fore, for large enough C, the integrand will be zero unless max{‖x̃ − xk‖, h} < Cr1/γ for

some k with j ∈ J(k). Thus, it suffices to prove the result for, fixing (j, k) with j ∈ J(k),∫ ∫
|Emj(Wi, θ0 + ra)k((Xi − x̃)/h)(h−dX/2s̃−1

j (r, x̃, h) ∧ σ−1
n )|p−fµ(x̃, h) dx̃ dh

=

∫ ∫ ∣∣∣∣∫ [‖x− xk‖γψ̃j,k(x− xk) + m̄θ,j(θ
∗(r), x)ra]

k((x− x̃)/h)(h−dX/2s̃−1
j (r, x̃, h) ∧ σ−1

n )fX(x) dx
∣∣p
− fµ(x̃, h) dx̃ dh

where the integral is taken over ‖x̃ − xk‖ < Cr1/γ, h < Cr1/γ and θ∗(r) is between θ0 and

θ0 + ra. Using the change of variables u = (x− xk)/r1/γ, v = (x̃− xk)/r1/γ,h̃ = h/r1/γ, this

is equal to∫ ∫ ∣∣∣∣∫ r[‖u‖γψ̃j,k(r1/γu) + m̄θ,j(θ
∗(r), xk + ur1/γ)a]k((u− v)/h̃)

(((r1/γh̃)−dX/2s̃−1
j (r, xk + vr1/γ, r1/γh̃)) ∧ σ−1

n )fX(xk + ur1/γ)rdX/γ du

∣∣∣∣p
−

fµ(xk + vr1/γ, r1/γh̃)rdX/γ dvr1/γ dh̃

= r[p(γ+dX/2)+dX+1]/γ

∫ ∫ ∣∣∣∣∫ [‖u‖γψ̃j,k(r1/γu) + m̄θ,j(θ
∗(r), xk + ur1/γ)a]k((u− v)/h̃)

((h̃−dX/2s̃−1
j (r, xk + vr1/γ, r1/γh̃)) ∧ (rdX/(2γ)σ−1

n ))fX(xk + ur1/γ) du

∣∣∣∣p
−
fµ(xk + vr1/γ, r1/γh̃) dv dh̃.

where the integral is taken over ‖v‖ < C, h < C. By Lemma B.9 and the dominated

convergence theorem, this converges to λvar(a, j, k, p) if σnr
−dX/(2γ)
n → 0. If σnr

−dX/(2γ)
n does

not converge to zero, the above display is bounded from above by the same expression with

σ−1
n replaced by ∞.
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Lemma B.13. Under the conditions of Theorem 5.5, for any a ∈ Rdθ ,

r−(γp+dX)/γ

∫ dY∑
j=1

|[Emj(Wi, θ0 + ra)k((Xi − x)/h)/Ek((Xi − x)/h)]ωj(θ0 + ra, x)|p− dx

→
|X0|∑
k=1

∑
j∈J(k)

λkern(a, ch,r, j, k, p)

as r → 0 with h/r1/γ → ch,r for ch,r > 0. If the limit is zero for (a, ch,r) in a neighborhood

of the given values, the sequence will be exactly equal to zero for large enough r.

If h/r1/γ → 0, then, as r → 0,

r−(γp+dX)/γ

∫ dY∑
j=1

|[Emj(Wi, θ0 + ra)k((Xi − x)/h)/Ek((Xi − x)/h)]ωj(θ0 + ra, x)|p− dx

→
|X0|∑
k=1

∑
j∈J(k)

λ̃kern(a, j, k, p).

Proof. As before, this proof treats the case where J(k) = J̃(k) for ease of exposition. As

with the proofs of Lemmas B.11 and B.12, it suffices to prove the result for, fixing (j, k) with

j ∈ J(k),∫
|[Emj(Wi, θ0 + ra)k((Xi − x̃)/h)/Ek((Xi − x̃)/h)]ωj(θ0 + ra, x̃)|p− dx̃

=

∫ ∣∣∣∣∫ [‖x− xk‖γψ̃j,k(x− xk) + m̄θ,j(θ
∗(r), x)ra]k((x− x̃)/h)fX(x) dxh−dXb(x̃)ωj(θ0 + ra, x̃)

∣∣∣∣p
−
dx̃

where the integral is over ‖x̃ − xk‖ < Cr1/γ and b(x̃) ≡ hdX/Ek((Xi − x̃)/h) converges

to (fX(xk))
−1 uniformly over x̃ in any shrinking neighborhood of xk by Lemma B.10. Let

h̃ = h/r1/γ. By the change of variables u = (x − xk)/r
1/γ, v = (x̃ − xk)/r

1/γ, the above
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display is equal to∫ ∣∣∣∣∫ [‖ur1/γ‖γψ̃j,k(ur1/γ) + m̄θ,j(θ
∗(r), xk + ur1/γ)ra]k((u− v)/h̃)fX(xk + ur1/γ)rdX/γ du

(r1/γh̃)−dXb(xk + vr1/γ)ωj(θ0 + ra, xk + r1/γv)
∣∣∣p
−
rdX/γ dv

= rp+dX/γ
∫ ∣∣∣∣∫ [‖u‖γψ̃j,k(ur1/γ) + m̄θ,j(θ

∗(r), xk + ur1/γ)a]k((u− v)/h̃)fX(xk + ur1/γ) du

h̃−dXb(xk + vr1/γ)ωj(θ0 + ra, xk + r1/γv)
∣∣∣p
−
dv (15)

where the integral is over v < C. The first display of the lemma (the case where h/r1/γ → ch,r

for ch,r > 0) follows from this and the dominated convergence theorem.

To show that the sequence is exactly zero for small enough r when the limit is zero in

a neighborhood of (a, ch,r), note, that, if the limit is zero in a neighborhood of (a, ch,r), we

will have, for all (ã, c̃h,r) in this neighborhood and any v,∫ [
‖u‖γψj,k

(
u

‖u‖

)
+ m̄θ,j(θ0, xk)ã

]
k((u− v)/c̃h,r) du

=

∫ [
c̃γh,r‖ũ‖

γψj,k

(
u

‖u‖

)
+ m̄θ,j(θ0, xk)ã

]
k(ũ− ṽ) c̃dXh,rdũ ≥ 0.

Evaluating this at (c̃r,h, ã) such that c̃γh,r ≤ cγh,r(1− ε) and (for the case where m̄θ,j(θ0, xk)a

is negative) m̄θ,j(θ0, xk)ã ≤ (m̄θ,j(θ0, xk)a)(1 + ε) shows that∫ [
cγh,r‖ũ‖

γψj,k

(
u

‖u‖

)
· (1− ε) + (m̄θ,j(θ0, xk)a)(1 + ε)

]
k(ũ− ṽ) dũ ≥ 0

for all v for some ε > 0. The above display is, for small enough r, a lower bound for the

inner integral in (15) times a constant that does not depend on r, so that, for small enough

r, the inner integral in (15) will be nonnegative for all v and (15) will eventually be equal to

zero.

For the case where h̃ = h/r1/γ → 0, multiplying (15) by r−(p+dX/γ) gives, after the change

of variables ũ = (u− v)/h̃,∫ ∣∣∣∣∫ [‖h̃ũ+ v‖γψ̃j,k((h̃ũ+ v)r1/γ) + m̄θ,j(θ
∗(r), xk + (h̃ũ+ v)r1/γ)a]k(ũ)fX(xk + (ũh̃+ v)r1/γ) dũ

b(xk + vr1/γ)ωj(θ0 + ra, xk + r1/γv)
∣∣p
− dv
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which converges to ∫
|[‖v‖γψj,k(v/‖v‖) + m̄θ,j(θ0, xk)a]ωj(θ0, xk)|p− dv

by the dominated convergence theorem, as required.

We are now ready for the proofs of the main results.

proof of Theorem 5.1. The result follows immediately from Lemmas B.7 and B.11 since

(n−γ/{2[dX+γ+(dX+1)/p]})−[dX+p(dX+γ)+1]/(γp) = n1/2.

proof of Theorem 5.3. The result follows immediately from Lemmas B.6, B.7 and B.12 since

(n−γ/{2[dX/2+γ+(dX+1)/p]})−[dX+p(dX/2+γ)+1]/(γp) = n1/2.

proof of Theorem 5.5. The result follows from Lemmas B.6, B.8 and B.13. Note that (nhdX )p/2/(n1−dXs)p/2
p→

c
dXp/2
h , and that, for the case where s ≥ 1/[2(γ + dX/p+ dX/2),

(n−q)−(γp+dX)/(γp) = (n−(1−sdX)/[2(1+dX/(pγ))])−(γp+dX)/(γp) = n(1−sdX)/2.

For the case where s < 1/[2(γ + dX/p + dX/2)], it follows from Lemmas B.6, B.8 and B.13

that

nq(γp+dX)/(γp)Tn(θ0 + an)
p→

 |X0|∑
k=1

∑
j∈J(k)

λkern(a, ch, j, k, p)

1/p

so that (nhdX )1/2Tn(θ0 + an) will converge to ∞ in this case if the limit in the above display

is strictly positive. If the limit in the above display is zero in a neighborhood of (a, ch), it

follows from Lemmas B.6 and B.8 that (nhdX )1/2Tn(θ0 + an) is, up to op(1), equal to a term

that is zero for large enough n by Lemma B.13.
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Figure 1: Case where Assumption 4.1 holds with γ = 2
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Figure 2: Case where Assumption 4.1 does not hold (θa) and case where Assumption 4.1
holds with γ = 1 (θb)
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θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.196 0.593 0.818
0.2 0.458 0.973 1
0.3 0.775 1 1
0.4 0.952 1 1
0.5 0.995 1 1

Table 3: Power for Unweighted Instrument CvM Test under Design 1

θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.166 0.644 0.835
0.2 0.442 0.989 1
0.3 0.781 1 1
0.4 0.957 1 1
0.5 0.994 1 1

Table 4: Power for Unweighted Instrument KS Test under Design 1

σ2
n θ1 − θ1 n = 100 n = 500 n = 1000

0.1 0.198 0.567 0.859
0.2 0.49 0.977 1

1
4
n−1/5 0.3 0.77 1 1

0.4 0.955 1 1
0.5 0.997 1 1
0.1 0.208 0.62 0.851
0.2 0.475 0.983 1

1
4
n−1/3 0.3 0.808 1 1

0.4 0.958 1 1
0.5 0.994 1 1
0.1 0.203 0.591 0.822
0.2 0.474 0.981 1

1
4
n−1/2 0.3 0.804 1 1

0.4 0.946 1 1
0.5 0.996 1 1

Table 5: Power for Weighted Instrument CvM Test under Design 1
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tn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.207 0.503 0.729
0.2 0.48 0.954 1

n−1/5 0.3 0.759 1 1
0.4 0.956 1 1
0.5 0.997 1 1
0.1 0.144 0.453 0.63
0.2 0.378 0.939 0.998

n−1/3 0.3 0.691 1 1
0.4 0.886 1 1
0.5 0.982 1 1
0.1 0.156 0.358 0.502
0.2 0.348 0.898 0.991

n−1/2 0.3 0.649 0.999 1
0.4 0.862 1 1
0.5 0.974 1 1

Table 6: Power for Weighted Instrument KS Test under Design 1 (from Armstrong and Chan
(2016))

hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.186 0.547 0.858
0.2 0.453 0.97 1

n−1/5 0.3 0.729 1 1
0.4 0.934 1 1
0.5 0.994 1 1
0.1 0.188 0.663 0.843
0.2 0.452 0.987 1

n−1/3 0.3 0.794 1 1
0.4 0.947 1 1
0.5 0.997 1 1
0.1 0.185 0.582 0.848
0.2 0.443 0.977 1

n−1/2 0.3 0.78 1 1
0.4 0.942 1 1
0.5 0.997 1 1

Table 7: Power for Kernel CvM Test under Design 1
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hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.16 0.439 0.625
0.2 0.343 0.92 0.997

n−1/5 0.3 0.62 0.999 1
0.4 0.883 1 1
0.5 0.975 1 1
0.1 0.095 0.266 0.481
0.2 0.201 0.715 0.929

n−1/3 0.3 0.382 0.976 1
0.4 0.606 0.999 1
0.5 0.809 1 1
0.1 0 0.094 0.138
0.2 0 0.255 0.404

n−1/2 0.3 0 0.508 0.773
0.4 0 0.812 0.982
0.5 0 0.976 1

Table 8: Power for Kernel KS Test under Design 1

θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0 0 0
0.2 0.001 0 0
0.3 0.005 0 0
0.4 0.008 0.001 0.004
0.5 0.023 0.054 0.119

Table 9: Power for Unweighted Instrument CvM Test under Design 2

θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0 0 0
0.2 0.003 0.002 0.001
0.3 0.007 0.022 0.037
0.4 0.01 0.145 0.412
0.5 0.039 0.596 0.884

Table 10: Power for Unweighted Instrument KS Test under Design 2
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σ2
n θ1 − θ1 n = 100 n = 500 n = 1000

0.1 0 0 0
0.2 0 0 0

1
4
n−1/5 0.3 0.003 0 0

0.4 0.007 0.006 0.013
0.5 0.04 0.118 0.294
0.1 0 0 0
0.2 0 0 0

1
4
n−1/3 0.3 0.001 0.001 0

0.4 0.011 0.009 0.016
0.5 0.032 0.139 0.371
0.1 0 0 0
0.2 0.001 0 0

1
4
n−1/2 0.3 0.003 0 0

0.4 0.009 0.003 0.014
0.5 0.034 0.114 0.288

Table 11: Power for Weighted Instrument CvM Test under Design 2

tn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0 0 0
0.2 0.006 0.016 0.032

n−1/5 0.3 0.026 0.138 0.295
0.4 0.064 0.449 0.831
0.5 0.175 0.848 0.995
0.1 0.007 0.012 0.005
0.2 0.016 0.062 0.1

n−1/3 0.3 0.041 0.215 0.456
0.4 0.119 0.604 0.876
0.5 0.21 0.902 0.996
0.1 0.006 0.014 0.01
0.2 0.023 0.057 0.086

n−1/2 0.3 0.038 0.229 0.389
0.4 0.119 0.532 0.791
0.5 0.203 0.85 0.982

Table 12: Power for Weighted Instrument KS Test under Design 2 (from Armstrong and
Chan (2016))
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hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0 0 0
0.2 0.001 0.002 0

n−1/5 0.3 0.008 0.007 0.024
0.4 0.012 0.108 0.369
0.5 0.074 0.484 0.923
0.1 0 0.001 0
0.2 0.001 0 0

n−1/3 0.3 0.003 0.009 0.011
0.4 0.023 0.126 0.273
0.5 0.062 0.519 0.848
0.1 0 0 0
0.2 0.001 0 0

n−1/2 0.3 0.001 0 0
0.4 0.005 0.007 0.023
0.5 0.023 0.089 0.308

Table 13: Power for Kernel CvM Test under Design 2

hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.001 0.001 0.001
0.2 0.009 0.029 0.049

n−1/5 0.3 0.044 0.185 0.386
0.4 0.082 0.524 0.867
0.5 0.18 0.879 0.997
0.1 0.007 0.015 0.014
0.2 0.015 0.067 0.129

n−1/3 0.3 0.029 0.18 0.454
0.4 0.087 0.525 0.856
0.5 0.167 0.825 0.98
0.1 0 0.014 0.006
0.2 0 0.025 0.032

n−1/2 0.3 0 0.057 0.123
0.4 0 0.163 0.286
0.5 0 0.321 0.604

Table 14: Power for Kernel KS Test under Design 2
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θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.005 0 0.001
0.2 0.031 0.046 0.058
0.3 0.131 0.454 0.743
0.4 0.359 0.914 0.997
0.5 0.619 0.999 1

Table 15: Power for Unweighted Instrument CvM Test under Design 3

θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.006 0.015 0.013
0.2 0.027 0.231 0.402
0.3 0.117 0.737 0.959
0.4 0.34 0.982 1
0.5 0.568 1 1

Table 16: Power for Unweighted Instrument KS Test under Design 3

σ2
n θ1 − θ1 n = 100 n = 500 n = 1000

0.1 0.006 0 0.001
0.2 0.037 0.079 0.136

1
4
n−1/5 0.3 0.133 0.515 0.837

0.4 0.341 0.941 1
0.5 0.636 1 1
0.1 0.006 0.003 0.001
0.2 0.029 0.065 0.173

1
4
n−1/3 0.3 0.143 0.514 0.872

0.4 0.375 0.961 1
0.5 0.642 1 1
0.1 0.006 0.003 0
0.2 0.043 0.059 0.101

1
4
n−1/2 0.3 0.161 0.52 0.845

0.4 0.335 0.935 0.999
0.5 0.63 0.999 1

Table 17: Power for Weighted Instrument CvM Test under Design 3
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tn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.034 0.064 0.12
0.2 0.093 0.466 0.704

n−1/5 0.3 0.272 0.869 0.99
0.4 0.501 0.994 1
0.5 0.767 1 1
0.1 0.039 0.104 0.116
0.2 0.112 0.429 0.64

n−1/3 0.3 0.257 0.838 0.979
0.4 0.463 0.994 1
0.5 0.717 1 1
0.1 0.03 0.083 0.087
0.2 0.121 0.325 0.523

n−1/2 0.3 0.24 0.762 0.967
0.4 0.397 0.984 1
0.5 0.669 1 1

Table 18: Power for Weighted Instrument KS Test under Design 3 (from Armstrong and
Chan (2016))

hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.013 0.017 0.018
0.2 0.05 0.229 0.446

n−1/5 0.3 0.187 0.757 0.965
0.4 0.411 0.98 1
0.5 0.698 1 1
0.1 0.007 0.012 0.01
0.2 0.044 0.167 0.323

n−1/3 0.3 0.173 0.676 0.932
0.4 0.377 0.986 1
0.5 0.657 1 1
0.1 0.002 0.001 0
0.2 0.029 0.03 0.049

n−1/2 0.3 0.082 0.326 0.654
0.4 0.21 0.866 0.991
0.5 0.47 0.996 1

Table 19: Power for Kernel CvM Test under Design 3
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hn θ1 − θ1 n = 100 n = 500 n = 1000
0.1 0.043 0.087 0.161
0.2 0.099 0.487 0.722

n−1/5 0.3 0.261 0.876 0.99
0.4 0.48 0.995 1
0.5 0.746 1 1
0.1 0.037 0.086 0.122
0.2 0.079 0.297 0.528

n−1/3 0.3 0.164 0.646 0.912
0.4 0.296 0.937 0.999
0.5 0.507 0.996 1
0.1 0 0.035 0.026
0.2 0 0.087 0.118

n−1/2 0.3 0 0.195 0.385
0.4 0 0.427 0.703
0.5 0 0.716 0.952

Table 20: Power for Kernel KS Test under Design 3

66


	On the Choice of Test Statistic for Conditional Moment Inequalities
	Recommended Citation

	tmp.1623804409.pdf.vYt2Q

