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Adaptive Testing on a Regression Function at a Point

Timothy B. Armstrong∗

Yale University

October 3, 2014

Abstract

We consider the problem of inference on a regression function at a point when

the entire function satisfies a sign or shape restriction under the null. We propose a

test that achieves the optimal minimax rate adaptively over a range of Hölder classes,

up to a log logn term, which we show to be necessary for adaptation. We apply the

results to adaptive one-sided tests for the regression discontinuity parameter under a

monotonicity restriction, the value of a monotone regression function at the boundary,

and the proportion of true null hypotheses in a multiple testing problem.

1 Introduction

We consider a Gaussian regression model with random design. We observe {(Xi, Yi)}ni=1

where Xi and Yi are real valued random variables with (Xi, Yi) iid and

Yi = g(Xi) + εi, εi|Xi ∼ N(0, σ2(Xi)), Xi ∼ FX (1)

We are interested in hypothesis tests about the regression function g at a point, which we

normalize to be zero. We impose regularity conditions on the conditional variance of Yi and

the distribution of Xi near this point:

ηt ≤ |FX(t)− FX(−t)| ≤ t/η, η ≤ σ2(x) ≤ 1/η for |x| < η, 0 < t < η (2)

∗email: timothy.armstrong@yale.edu. Thanks to Alexandre Tsybakov, Matias Cattaneo and Yuichi Ki-

tamura for helpful discussions.
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for some η > 0. Note that this allows (but does not impose) that our point of interest, 0

may be on the boundary of the support of Xi.

We consider the null hypotheses

H0 : {g|g(x) = 0 all x} (3)

H0 : {g|g(x) ≤ 0 all x} (4)

and the alternative H1 : {g|g(0) ≥ b}, where, under the alternative, we also restrict g to be

in a Hölder class of functions with exponent β ≤ 1:

Σ(β, L) ≡ {g||g(x)− g(x′)| ≤ L|x− x′|β all x}

where L > 0 and 0 ≤ β ≤ 1. That is, we consider the alternative

H1 : g ∈ G(b, L, β) ≡ {g|g(0) ≥ b and g ∈ Σ(L, β)}.

We also consider cases where certain shape restrictions are imposed under the null and

alternative.

For simplicity, we treat the distribution FX of Xi and the conditional variance function σ2

as fixed and known under the null and alternative. Thus, we index probability statements

with the function g, which determines the joint distribution of {(Xi, Yi)}ni=1. We note,

however, that the tests considered here can be extended to achieve the same rates without

knowledge of these functions, so long as an upper bound for supx σ
2(x) is known or can be

estimated.

It is known that the optimal rate for testing the null hypothesis (3) or (4) against the

alternative H1 when g is known to be in the Hölder class Σ(L, β) is n−β/(2β+1). That is, for

any ε > 0, there exists a constant C∗ such that

lim sup
n

inf
g∈G(C∗n−β/(2β+1),L,β)

Egφn ({(Xi, Yi)}ni=1) ≤ α + ε

for any sequence of tests φn with level α under the null hypothesis (3). Furthermore, using

knowledge of β, one can construct a sequence of tests φ∗
n that are level α for the null

hypothesis (4) (and, therefore, also level α for the null hypothesis (3)) such that, for any
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ε > 0, there exists a C∗ such that

lim inf
n

inf
g∈G(C∗n−β/(2β+1),L,β)

Egφ
∗
n ({(Xi, Yi)}ni=1) ≥ 1− ε. (5)

We ask whether a single test φn can achieve the rate in (5) simultaneously for all β ≤ 1.

Such a test would be called adaptive with respect to β. We find that the answer is no, but

that adaptivity can be obtained when the rate is modified by a log log n term, which we show

is the necessary rate for adaptation. In particular, we show that, for C∗ small enough, any

sequence φn of level α tests of (3) must have asymptotically trivial power for some β in the

class G(C∗(n/ log log n)
−β/(2β+1), L, β) in the sense that, for any β < β ≤ 1,

lim sup
n

inf
β∈[β,β]

inf
G(C∗(n/ log logn)−β/(2β+1),L,β)

Egφn ({(Xi, Yi)}ni=1) ≤ α.

Furthermore, we exhibit a sequence of tests φ∗
n that achieve asymptotic power 1 adaptively

over the classes G(C∗(n/ log log n)−β/(2β+1)), L, β) while being level α for the null hypothesis

(4):

lim
n→∞

inf
β∈[ε,1]

inf
G(C∗(n/ log logn)−β/(2β+1),L,β)

Egφ
∗
n ({(Xi, Yi)}ni=1) = 1

for any ε > 0 and large enough C∗.

Our interest in testing at a point stems from several problems in statistics and econo-

metrics in which a parameter is given by the value of a regression or density function at

the boundary, and where the function can plausibly be assumed to satisfy a monotonicity

restriction. This setup includes the regression discontinuity model and inference on param-

eters that are “identified at infinity,” both of which have received considerable attention

in the econometrics literature (see, among others, Chamberlain, 1986; Heckman, 1990; An-

drews and Schafgans, 1998; Hahn, Todd, and Van der Klaauw, 2001). In the closely related

problem where g is a density rather than a regression function, our setup covers the problem

of inference on the proportion of null hypotheses when testing many hypotheses (see Storey,

2002). We discuss these applications in Section 3. The results in this paper can be used to

obtain adaptive one-sided confidence intervals for these parameters, and to show that they

achieve the minimax adaptive rate.

The literature on asymptotic minimax bounds in nonparametric testing has considered

many problems closely related to the ones considered here, and our results draw heavily

from this literature. Here, we name only a few, and refer to Ingster and Suslina (2003),
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for a more thorough exposition of the literature. Typically, the goal in this literature is to

derive bounds in problems similar to the one considered here, but with the alternative given

by {ϕ(g) ≥ b} ∩ F , where ϕ(g) is some function measuring distance from the null and F a

class of functions imposing smoothness on g. Our problem corresponds to the case where

ϕ(g) = g(0) and F = Σ(L, β), where we focus on adaptivity with respect to β ≤ 1. Lepski

and Tsybakov (2000) consider this problem for fixed (L, β), and also consider the case where

ϕ(g) is the ℓ∞ norm. Dumbgen and Spokoiny (2001) consider the ℓ∞ norm and adaptivity

with respect to (L, β) and find, in contrast to our case, that adaptivity can be achieved

without a loss in the minimax rate (or, for adaptivity over L, even the constant). In these

papers, the optimal constants C∗ and C∗ are also derived in some cases. Spokoiny (1996)

considers adaptivity to Besov classes under the ℓ2 norm and shows that, as we derive in our

case, the minimax rate can be obtained adaptively only up to an additional log log n term. It

should also be noted that the tests we use to achieve the minimax adaptive rate bear a close

resemblence to tests used in other adaptive testing problems (see, e.g., Fan, 1996; Donoho

and Jin, 2004, as well as some of the papers cited above).

Our results can be used to obtain one-sided confidence intervals for a monotone function

at the boundary of its support, which complements results in the literature on adaptive

confidence intervals for shape restricted densities. Low (1997) shows that adaptive confidence

intervals cannot be obtained without shape restrictions on the function. Cai and Low (2004)

develop a general theory of adaptive confidence intervals under shape restrictions. Cai, Low,

and Xia (2013) consider adaptive confidence intervals for points on the interior of the support

of a shape restricted density and show that, in contrast to our case, the adaptive rate can be

achieved with no additional log log n term. Dumbgen (2003) considers the related problem

of adaptive confidence bands for the entire function. Our interest in points on the boundary

stems from the specific applications considered in Section 3.

2 Results

We first state the lower bound for minimax adaptation. All proofs are in Section 4. For the

purposes of some of the applications, we prove a slightly stronger result in which g may be

known to be nonincreasing in |x|. Let G|x|↓ be the class of functions that are nondecreasing

on (−∞, 0] and nonincreasing on [0,∞).

Theorem 1. Let 0 < β < β ≤ 1 be given. There exists a constant C∗ depending only on

β, β, L and the bounds on FX and σ such that the following holds. Let φn be any sequence
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of tests taking the data {(Xi, Yi)}ni=1 to a rejection probability in [0, 1] with asymptotic level

α for the null hypothesis (3): lim supn E0φn ≤ α. Then

lim sup
n

inf
β∈[β,β]

inf
G(C∗(n/ log log n)−β/(2β+1),L,β)∩G|x|↓

Egφn ({(Xi, Yi)}ni=1) ≤ α.

Note that the results of the theorem imply the same results when the requirement that

g ∈ G|x|↓ is removed from the alternative, or when the null is replaced by (4) with the possible

requirement g ∈ G|x|↓.

We now construct a test that achieves the (n/ log log n)β/(2β+1) rate. For k ∈ {1, . . . , n},
let ĝ be the k-nearest neighbor estimator of g(0), given by

ĝk =
1

k

∑

|Xj |≤|X(k)|
Yi where |X(k)| is the kth least value of |Xi| (6)

for |X(k)| < η, and ĝk = 0 otherwise, where η is given in (2). Let

Tn = max
1≤k≤n

√
kĝk

and let cα,n be the 1 − α quantile of Tn under g(x) = 0 all x. Note that, by the law of

the iterated logarithm (applied to the N(0, 1) variables Yi/σ(Xi) conditional on the Xi’s),

lim supn cα,n/
√
log log n ≤

√
2 supx σ(x). Let φ

∗
n be the test that rejects when Tn > cα,n.

Theorem 2. The test φn given above has level α for the null hypothesis (4) and, for all

ε > 0, satisfies

lim
n→∞

inf
β∈[ε,1]

inf
G(C∗(n/ log logn)−β/(2β+1),L,β)

Egφn = 1

for C∗ large enough.

3 Applications and Extensions

3.1 Inference on a Monotone Function at the Boundary

We note that, in the case where 0 is on the boundary of the support of Xi, the results

in the previous section give the optimal rate for a one sided test concerning g(0) under a

monotonicity restriction on g. This can be used to obtain adaptive (up to a log log n term)
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one-sided confidence intervals for a regression function at the boundary, where the log log n

term is necessary for adaptation. This can be contrasted to the construction of adaptive

confidence regions for a monotone function on the interior of its support, in which case the

log log n term is not needed (cf. Cai, Low, and Xia, 2013).

The problem of inference on a regression function at the boundary has received consid-

erable attention in the econometrics literature, where the problem is often termed “identi-

fication at infinity” (see, among others, Chamberlain, 1986; Heckman, 1990; Andrews and

Schafgans, 1998; Khan and Tamer, 2010). In such cases, it may not be plausible to assume

that the density of Xi bounded away from zero or infinity near its boundary, and the bound-

ary may not be finite (in which case we are interested in, e.g. limx→−∞ g(x)). Such cases

require relaxing the conditions on FX in (2), which can be done by placing conditions on

the behavior of u 7→ g(F−1
X (u)). In the interest of space, however, we do not pursue this

extension.

3.2 Regression Discontinuity

Consider the regression discontinuity model

Yi = m(Xi) + τI(Xi > 0) + εi, εi|Xi ∼ N(0, σ2(Xi)), Xi ∼ FX .

Here, we strengthen (2) by requiring that [FX(x) − FX(0)]/x and [FX(−x) − FX(0)]/x are

both bounded away from zero and infinity. The regression discontinuity model has been

used in a large number of studies in empirical economics in the last decade, and has received

considerable attention in the econometrics literature (see Imbens and Lemieux, 2008 for a

review of some of this literature).

We are interested in inference on the parameter τ . Of course, τ is not identified without

constraints on m(Xi). We impose a monotonicity constraint on m and ask whether a one

sided test for τ can be constructed that is adaptive to the Hölder exponent β of the unknown

class Σ(L, β) containing m. In particular, we fix τ0 and consider the null hypothesis

H0 : τ ≤ τ0 and m nonincreasing (7)

and the alternative

H1 : (τ,m) ∈ Grd(b, L, β) ≡ {(τ,m)|τ ≥ τ0 + b and m ∈ Σ(L, β) nonincreasing}.
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We extend the test of Section 2 to a test that is level α under H0 and consistent against H1

when b = bn is given by a log log n term times the fastest possible rate simultaneously over

β ∈ [ε, 1], and we show that the log log n term is necessary for adaptation.

To describe the test, let {(Xi,1, Yi,1)}n1
i=1 be the observations withXi ≤ 0 and let {(Xi,2, Yi,2)}n2

i=1

be the observations with Xi > 0. Let ĝ1,k be the k-nearest neighbor estimator given in (6)

applied to the sample with Xi ≤ 0 and let ĝ2,k be defined analogously for the sample with

Xi > 0. Let

T rd
n (τ) = max

1≤k≤n

√
k(ĝ2,k − ĝ1,k − τ).

Let crdn,α be the 1−α quantile of T rd
n (0) when m(x) = 0 all x and τ = 0. The test φrd

n,τ0
rejects

when T rd
n (τ0) > crdn,α.

The following theorem gives the optimal rate for adaptive testing in the regression dis-

continuity problem, and shows that the test φrd
n,τ0

achieves it.

Theorem 3. The conclusion of Theorem 1 holds in the regression discontinuity model with

the null hypothesis (3) replaced by (7) and G(C∗(n/ log log n)
−β/(2β+1), L, β) ∩ G|x|↓ replaced

by Grd(C∗(n/ log log n)
−β/(2β+1), L, β). The conclusion of Theorem 2 holds with φn replaced

by φrd

n,τ0
and G(C∗(n/ log log n)−β/(2β+1), L, β) replaced by Grd(C∗(n/ log log n)−β/(2β+1), L, β).

3.3 Inference on the Proportion of True Null Hypotheses

Motivated by an application to large scale multiple testing, we now consider a related setting

in which we are interested in nonparametric testing about a density, rather than a regression

function. We observe p-values {p̂i}ni=1 from n independent experiments. The p-values follow

the mixture distribution

p̂i ∼ fp(x) = π · unif(0, 1) + (1− π) · f1(x)

where f1 is an unknown density on [0, 1] and π is the proportion of true null hypotheses.

Following Storey (2002), we are interested in an upper bound for π. Given observations

from the density fp(x) with f1(x) completely unspecified, the best upper bound for π is

simply infx∈(0,1) fp(x). If the infimum is known to be taken at a particular location x0, we

can test the null hypothesis that π ≥ π0 against the alternative π < π0 by testing the null

that fp(x) ≥ π0 all x against the alternative fp(x0) < π0. In other words, we are interested

in a version of the problem considered in Section 2, with the regression function g replaced
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by a density function fp. Inverting these tests over π0, we can obtain an upper confidence

interval for π.

Assuming the p-values tend to be smaller when taken from the alternative hypothesis,

we can expect that f1(x) is minimized at x = 1 so that fp(x) will also be minimized at

1. Following this logic, Storey (2002) proposes estimating π with a uniform kernel density

estimate of fp(1). We now consider the related hypothesis testing problem

H0 : fp(x) ≥ π0 all x (8)

with the alternative

H1 : fp ∈ Gπ0(b, L, β) ≡ {f |fp(1) ≤ π0 − b and fp ∈ Σ(L, β)}

which allows for an upper confidence interval for π. The rate at which b = bn can approach 0

with H1 and H0 being distinguished gives the minimax rate for inference on the proportion

of true null hypotheses when the density under the alternative is constrained to the Hölder

class Σ(L, β).

To extend the approach of the previous sections to this model, let π̂0(λ) =
1

n(1−λ)

∑n
i=1 I(p̂i >

λ) be the estimate of π̂0 used by Storey (2002) for a given tuning parameter λ. We form our

test by searching over the tuning parameter λ after an appropriate normalization:

Tn(π0) = sup
0≤λ<1

√

n(1− λ)[π0 − π̂0(λ)].

We define our test φn(π0) ofH0 : π ≥ π0 to reject when Tn(π) is greater than the critical value

cn,α(π0), given by the 1−α quantile of Tn(π0) under the distribution π0 ·unif(0, 1)+(1−π0)·δ0,
where δ0 is a unit mass at 0.

We note that Tn(π0) bears a resemblence to the higher criticism statistic, employed in

a related testing problem by Donoho and Jin (2004). The higher criticism statistic takes

a similar form to Tn(π0), but sets π0 = 1 and searches over the smallest ordered p-values,

rejecting when one of them is too small. Donoho and Jin (2004) use this to test the null

that π = 1 against alternatives where π is close to one and the remaining p-values come

from a normal location model with the mean slightly perturbed, achieving a certain form

of adaptivity with respect to the amount of deviation of π and the normal location under

the alternative. In contrast, Tn(π) looks at the larger ordered p-values in order to achieve

adaptivity to the smoothness of the distribution of p-values under the alternative in a setting
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where π may not be close to 1.

We now state the result giving the adaptive rate for the test φn(π0).

Theorem 4. The test φn(π0) is level α for (8) and, for some C∗, satisfies

lim
n→∞

inf
β∈[ε,1]

inf
Gπ0 (C∗(n/ log logn)−β/(2β+1),L,β)

Efpφn = 1

for all ε > 0.

Given the close relation between nonparametric inference on densities and conditional

means (cf. Brown and Low, 1996; Nussbaum, 1996), a lower bound for this problem analogous

to the one given in Theorem 1 for the regression problem seems likely. However, in the interest

of space, we do not pursue such an extension.

4 Proofs

Proof of Theorem 1

The following gives a bound on average power over certain alternatives, and will be used to

obtain a bound on minimax power over certain alternatives conditional on X1, . . . , Xn. Note

that the bound goes to zero as M → ∞ for C < 1.

Lemma 1. Let W1, . . . ,WN be independent under measures P0 and P1, . . . , PN , with Wi ∼
N(0, s2i ) under P0 and Wi ∼ N(mi,k, s

2
i ) under Pk. Let M and M be integers with 1 ≤ 2M <

2M ≤ N , and let M = M −M +1. Let φ be a test statistic that takes the data to a rejection

probability in [0, 1]. Suppose that, for some C,

|mi,k/si| ≤ C
√

logM/
√
k all i, k

and that mi,k = 0 for i > k. Then

1

M

M
∑

j=M

EP
2j
φ− EP0φ ≤

√

1

M
(MC2 − 1) +

2

M(
√
2− 1)

C2(logM)MC2/
√
2 ≡ B(C,M).

Proof. We express the average power as a sample mean of likelihood ratios under the null,
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following arguments used in, e.g., Lepski and Tsybakov (2000):

1

M

M
∑

j=M

EP
2j
φ− EP0φ =

1

M

M
∑

j=M

EP0

dP2j

dP0

φ− EP0φ

=
1

M

M
∑

j=M

EP0 exp

(

N
∑

i=1

((mi,2j/s
2
i )Wi − (mi,2j/si)

2/2)

)

φ− EP0φ

= EP0







1

M

M
∑

j=M

[

exp

(

N
∑

i=1

(µi,jZi − µ2
i,j/2)

)

− 1

]

φ







where µi,j = mi,2j/si and Zi ≡ Wi/si are independent N(0, 1) under P0. By Cauchy-Schwarz,

the above display is bounded by the square root of

EP0







1

M

M
∑

j=M

[

exp

(

N
∑

i=1

(µi,jZi − µ2
i,j/2)

)

− 1

]







2

=
1

M2

M
∑

j=M

M
∑

ℓ=M

EP0

[

exp

(

N
∑

i=1

(µi,jZi − µ2
i,j/2)

)

− 1

][

exp

(

N
∑

i=1

(µi,ℓZi − µ2
i,ℓ/2)

)

− 1

]

.

(9)

Expanding the summand gives

EP0

[

exp

(

N
∑

i=1

(µi,jZi − µ2
i,j/2)

)

− 1

][

exp

(

N
∑

i=1

(µi,ℓZi − µ2
i,ℓ/2)

)

− 1

]

= EP0

[

exp

(

N
∑

i=1

[µi,jZi − µ2
i,j/2] +

N
∑

i=1

[µi,ℓZi − µ2
i,ℓ/2]

)]

− EP0

[

exp

(

N
∑

i=1

[µi,jZi − µ2
i,j/2]

)]

− EP0

[

exp

(

N
∑

i=1

[µi,ℓZi − µ2
i,ℓ/2]

)]

+ 1

= EP0

[

exp

(

N
∑

i=1

[(µi,j + µi,ℓ)Zi − (µ2
i,j + µ2

i,ℓ)/2]

)

− 1

]

using the fact that exp
(

∑N
i=1[µi,jZi − µ2

i,j/2]
)

has mean 1 under P0 (since it is a likelihood

10



ratio). Using properties of the normal distribution, this is equal to

exp

(

N
∑

i=1

[(µi,j + µi,ℓ)
2/2− (µ2

i,j + µ2
i,ℓ)/2]

)

− 1 = exp

(

N
∑

i=1

µi,jµi,ℓ

)

− 1.

Letting ck = C
√
logM/

√
2k be the bound for µi,k = mi,2k/s2k and using the fact that the

summand in the above display is zero for i > 2j∧ℓ, the above display can be bounded by

exp
(

2j∧ℓcjcℓ
)

− 1 = exp
(

C2(logM)2j∧ℓ2−(j+ℓ)/2
)

− 1 = exp
(

C2(logM)2−|j−ℓ|/2)− 1.

It follows that (9) is bounded by

1

M2

M
∑

j=M

[exp
(

C2 logM
)

− 1] +
2

M2

M
∑

j=M

j−1
∑

ℓ=M

[exp
(

C2(logM)2−|j−ℓ|/2)− 1]. (10)

Using the fact that exp(x)−1 ≤ x ·exp(x), the inner sum of the second term can be bounded

by

j−1
∑

ℓ=M

C2(logM)2−|j−ℓ|/2 exp
(

C2(logM)2−|j−ℓ|/2)

≤ C2(logM) exp
(

C2(logM)/
√
2
)

j−1
∑

ℓ=M

2−(j−ℓ)/2

≤ C2(logM) exp
(

C2(logM)/
√
2
)

∞
∑

k=1

2−k/2

= C2(logM)MC2/
√
2 1√

2− 1

Plugging this into (10) and taking the square root gives a bound of

√

1

M
(MC2 − 1) +

2

M(
√
2− 1)

C2(logM)MC2/
√
2

as claimed.

We now construct a function in G(b, L, β) for each β ∈ [β, β] that, along with Lemma 1,

can be used to prove the theorem.
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Lemma 2. For a given L, β, n and c, define

gβ,n,c(x) = max{c[(log log n)/n]β/(2β+1) − L|x|β, 0}.

Let 0 < β < β be given. For small enough c, we have the following. For any sequence of

tests φn taking the data into a [0, 1] rejection probability,

lim
n→∞

inf
β∈[β,β]

[

Egβ,n,c
φn − E0φn

]

= 0.

Proof. Let N̂(β) = N̂(β,X1, . . . , Xn) =
∑n

i=1 I(L|Xi|β ≤ c[(log log n)/n]β/(2β+1)) =
∑n

i=1 I(|Xi| ≤
(c/L)1/β[(log log n)/n]1/(2β+1)). Let η > 0 satisfy condition (2). Letting N(β) = η−1 ·
n · [(log log n)/n]1/(2β+1), we have, for (c/L) ≤ 1, EPX

N̂(β) ≤ N(β) so that PX(N̂(β) ≤
2N(β) all β ∈ [β, β]) → 1 where PX is the product measure on the Xi’s common to all dis-

tributions in the model (see, e.g., Theorem 37 in Chapter 2 of Pollard, 1984). Note that

N(β)/ log log n = η−1(n/ log log n)2β/(2β+1) and gβ,n,c(x) ≤ c[(log log n)/n]β/(2β+1) for all x,

so that

gβ,n,c(x) ≤ c[(log log n)/n]β/(2β+1) = cη−1/2 [N(β)/ log log n]−1/2 (11)

for all x.

LetMn = ⌈log2[2N(β)]⌉ andMn = ⌊log2[2N(β)]⌋, and let βk,n be such that k = 2N(βk,n)

(so that β ≤ βk,n ≤ β for 2Mn ≤ k ≤ 2Mn). Let Mn = Mn − Mn − 1 and note that

Mn ≥ (log n)/K for a constant K that depends only on β and β. Plugging these in to the

bound in (11) yields the bound

gβk,n,n,c(x)

σ(x)
≤ cη−1/2

√
2k−1/2[log(KMn)]

1/2

inf |x|<η σ(x)
≤ 2cη−1k−1/2[logMn]

1/2 (12)

where the last inequality holds for large enough n (the last equality uses the fact that

inf |x|<η σ(x) ≥ η1/2 for η satisfying condition (2)).

Consider the event An that N̂(β) ≤ 2N(β) for all β ≤ β ≤ β, which holds with probability

approaching one under PX as stated above. On this event, we have, letting X(i) be the

observation Xi corresponding to the ith least value of |Xi|, |gβn,k,n,c(X(i))| = 0 for i >

2N(βn,k) = k for all β ≤ βn,k ≤ β. Using this and the bound in (12), we can apply Lemma
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1 conditional on X1, . . . , Xn to obtain, for any test φ,

1

Mn

Mn
∑

j=Mn

Egβ
n,2j

,n,c
(φ|X1, . . . , Xn)− E0(φ|X1, . . . , Xn) ≤ B(2cη−1,Mn)

on the event An for large enough n. Thus,

lim
n→∞

inf
β∈[β,β]

Egβ,n,c
φn − E0φn ≤ lim

n→∞

1

Mn

Mn
∑

j=Mn

Egβ
n,2j

,n,c
φn − E0φn

≤ lim
n→∞

EPX

1

Mn

Mn
∑

j=Mn

[

Egβ
n,2j

,n,c
(φ|X1, . . . , Xn)− E0(φ|X1, . . . , Xn)

]

I(An) + [1− PX(An)]

≤ lim
n→∞

B(2cη−1,Mn) + [1− PX(An)].

This converges to zero for small enough c.

Theorem 1 now follows from Lemma 2, since gβ,n,c ∈ G(c[(log log n)/n]β/(2β+1), L, β).

4.1 Proof of Theorem 2

For the given test φ∗
n, we have

inf
g∈G(b,L,β)

Eg(φ
∗
n|X1, . . . , Xn) ≥ inf

g∈G(b,L,β)
Pg

{

∑

|Xi|≤(b/L)1/β Yi
√

∑n
i=1 I(|Xi| ≤ (b/L)1/β)

> cα,n|X1, . . . , Xn

}

.

Under Pg, the random variable

∑
|Xi|≤(b/L)1/β

Yi√∑n
i=1 I(|Xi|≤(b/L)1/β)

in the conditional probability statement

above is, conditional on X1, . . . , Xn, distributed as a normal variable with mean

∑

|Xi|≤(b/L)1/β g(Xi)
√

∑n
i=1 I(|Xi| ≤ (b/L)1/β)

≥ b

2

∑n
i=1 I(|Xi| ≤ (b/(2L))1/β)

√

∑n
i=1 I(|Xi| ≤ (b/L)1/β)

(13)

and variance

∑

|Xi|≤(b/L)1/β σ
2(Xi)

∑n
i=1 I(|Xi| ≤ (b/L)1/β)

≤ sup
x

σ2(x)

where the lower bound on the mean holds for g ∈ G(b, L, β) by noting that, for g ∈ G(b, L, β),
g(x) ≥ b − L|x|β, so g(x) ≥ 0 for |x| ≤ (b/L)1/β, and, for |x| ≤ [b/(2L)]1/β, g(x) ≥

13



b− L|[b/(2L)]1/β|β = b/2. Consider the event that

1

K
≤
∑n

i=1 I(|Xi| ≤ t)

t · n ≤ K for all
(log n)2

n
≤ t ≤ 1

log n
, (14)

which holds with probability approaching one for large enough K. On this event, for b in

the appropriate range, the right hand side of (13) is bounded from below by

b

2
·

1
K
· n · (b/(2L))1/β

√

K · n · (b/L)1/β
=

1

2K
√
K

· 2−1/β · L−1/(2β)
√
nb1+1/(2β)

For b = c(n/ log log n)−β/(2β+1), this is

1

2K
√
K

· 2−1/β · L−1/(2β)c1+1/(2β)
√

log log n

and, for large enough n, this choice of b is in the range that the bound in (14) can be applied

for all β ∈ [ε, 1]. Thus, on the event in (14), we have, for large enough c,

inf
β∈[ε,1]

inf
g∈G(c(n/ log logn)β/(2β+1),L,β)

Eg(φ
∗
n|X1, . . . , Xn)

≥ inf
β∈[ε,1]

1− Φ

(

cα,n − 1
2K

√
K
· 2−1/β · L−1/2βc1+1/(2β)

√
log log n

supx σ(x)

)

.

By the law of the iterated logarithm applied to the iid N(0, 1) sequence {Yi/σ(Xi)}ni=1,

we have cα,n ≤ C
√
log log n for large enough n for any C >

√
2 supx σ(x). Thus, the bound

in the above display goes to one for large enough c. Since this bound holds on an event with

probability approaching one, the result follows.

4.2 Proof of Theorem 3

The proof of the extension of Theorem 2 is similar to original proof and is omitted. To prove

the extension of Theorem 1, assume, without loss of generality, that τ0 = 0. Define sgn(Xi)

to be −1 for Xi ≤ 0 and 1 for Xi > 0. Note that, for any function g ∈ G(b, L/2, β)∩G|x|↓, the

function mg(x) = g(x) ·sgn(Xi)−2g(0)I(Xi > 0) is in Σ(L, β) and is nonincreasing (to verify

Hölder continuity, note that, for x, x′ with sgn(x) = sgn(x′), |mg(x)−mg(x
′)| ≤ |g(x)−g(x′)|

and, for x, x′ with sgn(x) 6= sgn(x′), |mg(x) − mg(x
′)| = |g(x) − g(0)| + |g(x′) − g(0)| ≤

(L/2)|x|β + (L/2)|x′|β ≤ L|x− x′|β, where the last step follows since |x− x′| ≥ x ∨ x′).
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Note that, under m = mg, τ = 2g(0), the regression function is x 7→ mg(x)+2g(0)I(xi >

0) = g(x) · sgn(Xi) so that {Yi · sgn(Xi), Xi}ni=1 are distributed according to the original

regression model (1) with the given function g. Of course, for m(x) = 0 all x and τ = 0,

the regression function is 0 for all x. Thus, for any level α test φn of (τ,m) = (0, 0), we can

construct a test φ∗
n of (3) in the original model (1) that has identical power at g to the power

in the regression discontinuity model at (2g(0),mg) for any g with g ∈ G(b, L/2, β) ∩ G|x|↓

for some b, L and β. Since (2g(0),mg) ∈ Grd(2b, L, β) whenever g ∈ G(b, L/2, β) ∩ G|x|↓

by the argument above, it follows that infβ∈[β,β] inf(τ,m)∈Grd(2c(n/ log logn)−β/(2β+1),L,β) E(τ,m)φn ≤
infβ∈[β,β] infg∈G(c(n/ log logn)−β/(2β+1),L/2,β)∩G|x|↓

Egφ
∗
n, which converges to zero for c small enough

by Theorem 1.

4.3 Proof of Theorem 4

We first show that the distribution used to obtain the critical value is least favorable for this

test statistic, so that the test does in fact have level α.

Lemma 3. The distribution f
π0

= π0 · unif(0, 1) + (1− π0)δ0, where δ0 is a unit mass at 0,

is least favorable for Tn(π0) under the null π ≥ π0:

Pfp(Tn(π0) > c) ≤ Pf
π0
(Tn(π0) > c) all fp with π ≥ π0

Proof. For p̂1, . . . , p̂n drawn from fp = π0 · unif(0, 1) + (1− π0)f1, let q1, . . . , qn be obtained

from p̂1, . . . , p̂n by setting all p̂i’s drawn from the alternative f1 to 0. Then Tn(π0) weakly

increases when evaluated at the qi’s instead of the p̂i’s, and the distribution under fp of

Tn(π0) evaluated with the qi’s is equal to the distribution of under f
π0

of Tn(π0) evaluated

with the p̂i’s.

The result now follows from similar arguments to the proof of Theorem 2 after noting

that cn,α(π0)/
√
log log n is bounded as n → ∞ (cf. Shorack and Wellner, 2009, Chapter 16).
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