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Abstract

We characterize the revenue-maximizing mechanism for time separable allocation problems

in continuous time. The valuation of each agent is private information and changes over time.

At the time of contracting every agent privately observes his initial type which influences the

evolution of his valuation process. The leading example is the repeated sales of a good or a

service.

We derive the optimal dynamic mechanism, analyze its qualitative structure and frequently

derive its closed form solution. This enables us to compare the distortion in various settings. In

particular, we discuss the cases where the type of each agent follows an arithmetic or geometric

Brownian motion or a mean reverting process. We show that depending on the nature of the

private information the distortion might increase or decrease over time.

Keywords: Mechanism Design, Dynamic Auctions, Repeated Sales, Impulse Response Func-

tion, Stochastic Flow.

JEL Classification: D44, D82, D83.

∗The first author acknowledges financial support through NSF Grants SES 0851200 and ICES 1215808. We are

grateful to the Symposium Editor, Alessandro Pavan, the Associate Editor and two anonymous referees for many

valuable suggestions. We thank Heng Liu, Preston McAfee, Balázs Szentes and seminar audiences at the University

of Chicago, INFORMS 2012, and Microsoft Research for many helpful comments.
†Department of Economics, Yale University, New Haven, CT 06511, dirk.bergemann@yale.edu
‡Department of Economics, UC Berkeley, Berkeley, CA 94720, philipp.strack@gmail.com

1



2

1 Introduction

1.1 Motivation

We analyze the nature of the optimal, revenue-maximizing, contract, in a dynamic environment with

private information at the initial time of contracting as well as in all future periods. We consider a

setting in continuous time and are mostly concerned with environments where the uncertainty, and

in particular the private information of the agent is described by a Brownian motion. The present

work makes progress by considering allocation problems that we refer to as weakly time separable.

Namely, (i) the set of available allocations at time t is independent of the history of allocations

and (ii) the flow utility function of the agent and the principal at time t depend only the initial

and the current private information of the agent (and hence the qualifier of weakly time separable).

The beneficial implications for the analysis of the optimal dynamic mechanism that come with the

restriction to weakly time separable environment were already established in earlier work, notably

in Pavan, Segal, and Toikka (2014a), with additional results in the online appendix, Pavan, Segal,

and Toikka (2014b), where they define a corresponding separable environment.

With time separability, the allocation rule that maximizes the expected dynamic virtual surplus

has the property that the allocation at time t is a function of the report of the agent at time 0 and

time t only. As a result, at every time t > 0, each agent is only facing a static reporting problem

since the current report is only used to determine the current allocation. A notable implication of

this separability is that the incentive compatibility conditions can be decomposed completely into a

time 0 problem and a sequence of static problem at all times t > 0. This decomposition is possible

in either discrete time as established earlier by Pavan, Segal, and Toikka (2014a) or in continuous

time as established here. The restriction to time separable allocation problems is sufficiently mild to

include many of the allocation problems explicitly analyzed in the literature so far, for the example

the optimal quantity provision by the monopolist as in Battaglini (2005) or the auction environment

of Eső and Szentes (2007).

The specific contribution of the continuous time setting to the analysis of the optimal mechanism

arises after establishing the necessary conditions for optimality under time separability. And in fact,

we obtain the first order conditions by using the envelope theorem using a small class of relevant

deviations which is precisely the approach taken in discrete time, see for Eső and Szentes (2007) and
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Pavan, Segal, and Toikka (2014a) for the seminal contributions. The resulting dynamic version of

the virtual utility accounts for the influence that the present private information has on the future

state of the world (and hence future private information of the agent) through a term that Pavan,

Segal, and Toikka (2014a) refer to as impulse response function. Now, in continuous time, the

equivalent expression, which is commonly referred to as stochastic flow, is compact and summarizes

the nature of the underlying stochastic process in an explicit formula. We then make use of the

information conveyed by the stochastic flow in three distinct ways.

First, we explicitly derive the nature of the optimal allocation policy and the associated transfer

rules. We consider in some detail a number of well-known stochastic processes, in particular the

arithmetic and the geometric Brownian motion. The natural starting point here is to consider the

case in which the private information of the agent is the current state of the process, in particular

the initial state of the Brownian motion is private information, but we also analyze the problem

when either the drift or volatility of the process are private information. In Section 5 we consider

the nature of the optimal mechanism for repeated sales when the type of the agent follows a

geometric Brownian motion. We establish that commonly observed contracts such as flat rates, free

consumption units, two-part tariffs and leasing contracts emerge as features of the optimal contract

design.

Second, we derive sufficient conditions for the optimality of the dynamic mechanism in terms

of the primitives of the stochastic process. This is demonstrated in detail in Section 6 where

we, for example, derive sufficient conditions for optimality when the private information of agent

cannot be ordered by first order stochastic dominance. In particular, we can allow the variance

rather than the mean of the stochastic process to form the private information, and yet display

transparent sufficient conditions for optimality. In much of the earlier literature, the types had

to be assumed to be ordered according to first-order stochastic dominance in order to give rise to

sufficient conditions for optimality.

Third, and finally, we systematically extend the analysis from Markovian settings where the

initial private information (as well as any future private information) is the state of the stochastic

process to settings in which the initial private information can present a structural parameter

of the stochastic process. The resulting environment then fails to be Markovian as the law of

motion is determined both by the current state and the structural parameter of the stochastic
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process. But importantly, the initial information about the parameter of the process and the

ongoing information about the state of the process still conforms with our restriction to weakly

time separable environments.

The initial private information may represent the drift or the volatility of the Brownian motion,

or the long-run mean or the reversion rate of a mean-reverting Ornstein-Uhlenbeck process. The

resulting informational term in the virtual utility, which is referred to as generalized stochastic flow

in probability theory, still permits a compact representation that can be used for the determination

of the optimal policy and/or for the sufficient conditions. With the notable exception of the recent

papers by Boleslavksy and Said (2013) and Skrzypacz and Toikka (2015), and a discussion in the

supplementary appendix of Pavan, Segal, and Toikka (2014a), the earlier contributions with an

infinite horizon did not allow for the possibility that the very structure of the stochastic process

may constitute the private information. Interestingly, the continuous time version of this generalized

impulse response function is often a deterministic function of the initial state and time, whereas the

corresponding discrete time process has a generalized impulse response function that depends on

the realization of the entire sample path. This is shown for example in Section 5 where the initial

private information is the mean of the geometric Brownian motion. The discrete time counterpart

of this process, namely the multiplicative random walk, was analyzed earlier by Boleslavksy and

Said (2013). Here the generalized impulse response term involves the number of realized upticks and

downticks. In the continuous time equivalent, the generalized stochastic flow is simply the expected

number of upticks or downticks which is a deterministic function of time and the initial state.

We should add that the current focus on time separable allocation problems is restrictive in

that it excludes problems such as the optimal timing of a sale of a durable good, where the present

decision, say a sale, naturally preempts certain future decision, say a sale, again. But our setting

allows us to restrict attention to a small class of deviations, deviations that we call consistent. The

consistent deviations, by themselves only necessary conditions, nonetheless completely describe the

indirect utility of the agent in any incentive compatible mechanism. More precisely, at time zero

the initial shock of the agent is drawn and the initial shock determines the probability measure

of the entire future valuation process. If the agent deviates he changes the probability measure of

the reported valuation process. To avoid working with the change in measures directly we restrict

attention to consistent deviations. We call a deviation consistent if, after his initial misreport, say
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b instead of a, the agent reports his valuation as if it would follow the same Brownian motion as

the one which drives his true valuation. As there is a true initial shock, namely b, which could have

made these subsequent reports truthful, the principal cannot detect such a deviation and is forced

to assign the allocation and transfer process of the imitated shock b. In particular, this allows us to

evaluate the payoffs of the truthful and the consistently deviating agent with respect to the same

expectation operator. Now, as we assume the initial shock to be one dimensional and given that

all deviations are parametrized over the time zero shock, standard mechanism design arguments

deliver the smoothness of the value function of the agent.

Within the large class of time separable allocation policies we can rewrite the sufficiency con-

ditions exclusively in terms of the flow virtual utilities. By using the class of consistent deviations

and allowing for time separable allocation policies, we can completely avoid the verification of the

incentive compatibility conditions via backward induction methods which was the basic instrument

to establish the sufficient conditions used in much of the preceding literature with dynamic adverse

selection.

1.2 Related Literature

The analysis of the revenue maximizing contract in an environment where the private information

may change over time appears first in Baron and Besanko (1984). They considered a two period

model of a regulator facing a monopolist with unknown, but in every period, constant marginal

cost. Besanko (1985) offers an extension to a finite horizon environment with a general cost func-

tion, where the unknown parameter is either distributed independently and identically over time,

or follows a first-order autoregressive process. Since these early contributions, the literature has

developed rapidly. Courty and Li (2000) consider the revenue maximizing contract in a sequential

screening problem where the preferences of the buyer change over time. Battaglini (2005) consid-

ered a quantity discriminating monopolist who provides a menu of choices to a consumer whose

valuation can change over time according to a commonly known Markov process. In contrast to

the earlier work, he explicitly considered an infinite time horizon and showed that the distortion

due to the initial private information vanishes over time. Eső and Szentes (2007) rephrased the two

period sequential screening problem by showing that the additional signal arriving in period two

can always be represented by a signal that is orthogonal to the signal in period one. Eső and Szentes
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(2014) generalize this insight in an infinite horizon environment and show that the information rent

of the agent is only due to his initial information.

Pavan, Segal, and Toikka (2014a) consider a general environment in an infinite horizon setting

and allowing for general allocation problems, encompassing the earlier literature (with continuous

type spaces). They obtain general necessary conditions for incentive compatibility and present a

variety of sufficient conditions for revenue maximizing contracts for specific classes of environments.

A feature common to almost all of the above contributions is that the private information of the

agent is represented by the current state of a Markov process, and that the new information that

the agent receives is controlled by the current state, and in turn, leads to a new state of the Markov

process. Notably, Pavan, Segal, and Toikka (2014a), Boleslavksy and Said (2013) and Skrzypacz

and Toikka (2015) allowed for the possibility that the very structure of the stochastic process

may constitute the private information. For example, Boleslavksy and Said (2013) let the initial

private information of the agent be the mean of a multiplicative random walk. Interestingly, this

dramatically changes the impact that the initial private information has on the future allocations.

In particular, the distortions in the future allocation may now increase over time rather than decline

as in much of the earlier literature. The reason is that the influence of the structural parameter,

such as the drift or the variance, on the valuation may increase with the time horizon.1 Finally,

Kakade, Lobel, and Nazerzadeh (2013) consider a class of dynamic allocation problems, a suitable

generalization of the single unit allocation problem and impose a separability condition (additive or

multiplicative) on the interaction of the initial private information and all subsequent signals. The

separability condition allows them to obtain an explicit characterization of the revenue maximizing

contract and derive transparent sufficient conditions for the optimal contract.

The remainder of the paper proceeds as follows. Section 2 presents the model. In Section 3 we

derive the necessary and sufficient conditions for the revenue maximizing contract. In Section 4 we

analyze the implications of the revenue maximizing contract for the structure of the intertemporal

distortions. The nature of the optimal contract for repeat purchases of a product or service is

analyzed in Section 5 in an environment where the type follows a geometric Brownian motion.

1In a recent contribution, Garrett and Pavan (2012) also exhibit the possibility of increasing distortions over time,

but the source there is a trade-off in the retention decision of a known agent versus a hiring decision of new, hence

less well known agent.
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Section 6 examines the optimal allocation among competing bidders when the private valuation is

either driven by the arithmetic Brownian motion or the mean-reverting Ornstein-Uhlenbeck process.

Section 7 concludes with a brief discussion of open issues. The Appendix contains some auxiliary

proofs and additional results.

2 Model

There are n agents indexed by i ∈ {1, . . . , n} = N . Time is continuous and indexed by t ∈ [0, T ],

where the time horizon T can be finite or infinite. If the time horizon is infinite, then we assume a

discount rate r ∈ R+ which is strictly positive, r > 0.

The flow preferences of agent i are represented by a quasilinear utility function:

vit · ui(t, xi
t)− pit. (1)

The function u : R+ × R+ → [0, u] is continuous and strictly increasing in x, decreasing in t and

satisfies u(t, 0) = 0 for all t ∈ R+. We refer to u(t, xi
t) as the valuation of xi

t ∈ [0, x] ⊂ R+ with

0 ≤ x < ∞. The allocation xi
t can be interpreted as either the quantity or quality of a good that

is allocated to agent i at time t. The type of agent i in period t is given by vit ∈ R+ and the flow

utility in period t is given by the product of the type and the valuation. The payment in period t

is denoted by pit ∈ R.

The type vit of agent i at time t depends on his initial shock θi at time t = 0 and the contem-

poraneous shock W i
t at time t:

vit � φi(t, θi,W i
t ) . (2)

Note, that the initial private information θ need not to be the initial type vi0, but might be any

other characteristic determining the probability measure over paths of the types (vt)t∈R+ . In the

case of the Brownian this might be the initial value, the drift, or the variance, in the case of a mean

reverting process this might be the mean reversion speed or the long run-average. At time zero

each agent privately learns his initial shock θi ∈ (θ, θ̄) = Θ ⊆ R, which is drawn from a common

prior distribution F i : R → [0, 1], independently across agents.

The distribution F i has a strictly positive density f i > 0 with decreasing inverse hazard rate

(1− F i) /f i. The contemporaneous shock is given by a random process (W i
t )t∈R+ of agent i that
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changes over time as a consequence of a sequence of incremental shocks and W i
t is assumed to be

independent of W j
t for every j 	= i. The function φi : R+×Θ×R → R aggregates the initial shock θi

and the contemporaneous W i
t of agent i into his type vit. In Sections 5 and 6, the valuation function

ui (t, xi
t) is simply a linear function ui (t, xi

t) = xi
t and the type vit can then be directly interpreted

as the marginal willingness to pay of agent i.

The function φi is twice differentiable in every direction and in the following we use a small

annotation for partial derivatives, i.e.

φi
θ(t, θ, w) �

∂φi(t, θ, w)

∂θ
. (3)

If θi is the initial value of the process of agent i, that is vi0 = θi, then the derivative φi
θ is commonly

referred to as the stochastic flow ; or generalized stochastic flow if θi determines the evolution of a

diffusion by influencing the drift or variance term (see for example Kunita (1997)). The stochastic

flow process (φi
θ(t, θ,W

i
t ))t∈R+ is the analogue of the impulse response functions described in the

discrete time dynamic mechanism design literature (see Pavan, Segal, and Toikka (2014a), Definition

3). As we will see in the examples presented later the stochastic flow is of a very simple form for

many classical continuous time diffusion processes, like the arithmetic and geometric Brownian

motion.

We assume that for every agent i a higher initial shock θi leads to a higher type, i.e. φi
θ(t, θ, w) ≥

0 and an agent i who observed a higher value of the processW i
t has a higher type, i.e. φ

i
w(t, θ, w) > 0

for every (t, θ, w) ∈ R+ ×Θ× R.

Assumption 1 (Decreasing Influence of Initial Shock).

The relative impact of the initial shock on the type:

φi
θ(t, θ, w)

φi(t, θ, w)
(4)

is decreasing in w for every (t, θ, w) ∈ R+ ×Θ× R.

Assumption 2 (Decreasing Influence of Initial vs Contemporaneous Shock).

The ratio of the marginal impact of initial and contemporaneous shocks:

φi
θ(t, θ, w)

φi
w(t, θ, w)

(5)

is decreasing in θ for every (t, θ, w) ∈ R+ ×Θ× R.
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The last assumption implies that the type with a large initial shock is influenced more by the

contemporaneous shocks that arrive after time zero.

Assumption 3 (Finite Expected Impact of the Initial Shock).

The expected influence of the initial shock on the type grows at most exponentially, i.e. there exists

two constants C ∈ R+, q ∈ (0, r) such that E [φi
θ(t, θ

i,W i
t )] ≤ Ceqt for all t ∈ R+ and θ ∈ Θ.

Assumption 3 ensures that the effect of a marginal change in the agent’s type on the sum of

discounted expected future types is finite.2

At every point in time t the principal chooses an allocation xt ∈ X from a compact, convex set

X ⊂ R
n
+, where x

i
t can be interpreted as the quantity or quality of a good that is allocated to agent

i at time t. We assume that it is always possible to allocate zero to an agent, i.e.

x ∈ X ⇒ (x1, . . . , xi−1, 0, xi+1, . . . , xn) ∈ X .

To ensure that the problem is well posed we assume that for every feasible allocation process

xi = (xi
t) gives finite expected utility to agent i, i.e.

E

[∫ T

0

e−rt1{vit≥0}v
i
tu

i(t, xi
t)dt | θi

]
< ∞,

for every θi in the support of F . The principal receives the sum of discounted flow payments∑
i∈N pit minus the production costs c(xt):

E

[∫ T

0

e−rt

(∑
i∈N

pit − c (xt)

)
dt

]
. (6)

The cost c : X → R+ is continuous and increasing in every component with c (0) = 0.

Definition 1 (Value Function).

The indirect utility, or value function, V i(θi) of agent i given his initial shock θi, his consumption

process (xi
t)t∈R+ and his payment process (pit)t∈R+ is

V i(θi) = E

[∫ T

0

e−rt
(
ui(t, xi

t)v
i
t − pit

)
dt | θi

]
. (7)

2Assumption 3 is weaker than the assumption of a process with bounded impulse responses as discussed in Pavan,

Segal, and Toikka (2014a), as the later would correspond to φi
θ being uniformly bounded. The present assumption

rather than the bounded impulse responses has the advantage that it clude many processes such as the geometric

Brownian motion, which the former would exclude.
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A contract specifies an allocation process (xt)t∈R+ and a payment process (pt)t∈R+ . The allocation

xt and the payment pt can depend on all types reported (vis)s≤t,i∈N by the agents prior to time t.

We assume that the agent has an outside option of zero and thus require the following definition:

Definition 2 (Incentive and Participation Constraints).

A contract (xt, pt)t∈R+ is acceptable if for every agent i it is individually rational to accept the

contract

V i(θi) ≥ 0 for all θi ∈ Θ ,

and it is optimal to report his shock θi and his type (vit)t∈R+ truthfully at every point in time t ∈ R+.

Given the transferable utility, we define the flow welfare function s : R+ × R
n × X → R that

maps an allocation x ∈ X and a vector of types v ∈ R
n into the associated flow of welfare

s(t, v, x) =
∑
i∈N

vitu
i(t, xi)− c(x) . (8)

The social value of the allocation process (xt)t∈[0,T ] aggregates the discounted flow of social welfare

over time and is given by:

E

[∫ T

0

e−rt

(∑
i∈N

vitu
i(t, xi

t)− c (xt)

)
dt

]
= E

[∫ T

0

e−rts(t, vt, xt)dt

]
. (9)

As the allocation xt at time t does not influence the future evolution of types or the set of possible

future allocations the problem of finding a socially efficient allocation is time-separable. We define

the optimal allocation function x† : R+ × R
n → R

n that maps a point in time t and a vector of

types v into the set of optimal allocations

x†(t, v) = argmax
x∈X

s(t, v, x) . (10)

An allocation process (xt)t∈[0,T ] is welfare maximizing if and only if xt ∈ x†(t, vt) almost surely for

every t ∈ [0, T ].

Given the essentially static character of the social allocation problem, it follows immediately

that the welfare maximizing allocation x† can be implemented via a sequence of static Vickrey-

Clarke-Groves mechanisms and associated payments:

p† it � p† i(t, vt) = max
x∈X

∑
j �=i

[
uj(t, x)− uj(t, x†(t, vt))

]
vjt − c(x) + c(x†(t, vt)) . (11)
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3 Revenue Maximization

In this section we derive a revenue maximizing direct mechanism. Without loss of generality we

restrict attention to direct mechanisms, where every agent i reports his initial shock θi and his type

vit truthfully. We first obtain a revenue equivalence result for incentive compatible mechanisms.

3.1 Necessity

We begin by establishing that the value function of the agent if he reports truthfully is Lipschitz

continuous. As φi is strictly increasing in w we can implicitly define the function ω : R+×Θ×R → R

by

vi = φi(t, θi, ω(t, θi, vi)) for all (t, θi) ∈ R+ ×Θ . (12)

Thus ω identifies the value that the contemporaneous shock W i
t has to have at time t to generate

a contemporaneous type vi given the initial shock θi. We derive a necessary condition for incentive

compatibility that is based only on the robustness of the mechanism to a small class of deviations,

which we refer to as consistent deviations.

Definition 3 (Consistent Deviation).

A deviation by agent i is referred to as a consistent deviation if an agent with type vi0 = φi(0, a,W i
0)

(and associated initial shock a ∈ Θ) misreports v̂i0 = φi(0, b,W i
0) (and associated initial shock b ∈ Θ)

at t = 0 and continues to misreport:

v̂it = φi(t, b, ω(t, a, vit)), (13)

instead of his true type vit at all future dates t ∈ R+.

Thus, an agent who misreports with a consistent deviation, continues to misreport his true type

vit in all future periods. More precisely, agent i’s reported type v̂it = φi(t, b,W i
t ) equals the type

he would have had if his initial shock would have been b instead of a. We note that the misreport

generated by a consistent deviation has the property that the principal can infer from the misreport

the true realized path of the contemporaneous shocks W i
t . Now, since the allocation depends on

the type vit rather than the path of contemporaneous shocks W i
t , the (inferred) truthfulness in the

shocks is not of immediate use for the principal. We now show that this, one-dimensional, class
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of consistent deviations is sufficient to uniquely pin down the value function of the agent in any

incentive compatible mechanism at time t = 0. The class of consistent deviations we consider here

are not local deviations at one point in time, but rather represent a global deviation in the sense

that the agent changes his reports at every point in time.

As φi(0, θ,W0) is strictly increasing in θ, it is convenient to describe the initial report directly

in terms of the true initial shock a and the reported initial shock b. We thus define V i(a, b) to be

the indirect utility of agent i with initial shock a but who reports shock b and misreports his type

consistently as v̂it = φi(t, b, ω(t, a, vit)). Note that by construction W i
t = ω(t, a, vit). Consequently

the allocation agent i gets by consistently deviating and reporting b is the same allocation that he

would get if his initial shock were b and he were to report it truthfully. Hence V i(a, b) is the indirect

utility of an agent who has the initial shock a but reports initial shock b and misreports his type

consistently and is given by:

V i(a, b) = E

[∫ T

0

e−rt
(
ui(t, xi

t(b))φ
i(t, a,W i

t )− pit(b)
)
dt

]
.

Note, that when restricted to consistent deviations the mechanism design problem turns into a

standard one-dimensional problem, and the Envelope theorem yields the derivative of the indirect

utility function of the agent:

Proposition 1 (Regularity of Value Function).

The indirect utility function V i of every agent i ∈ N in any incentive compatible mechanism is

Lipschitz continuous and has the weak derivative

V i
θ (θ) = E

[∫ T

0

e−rtui(t, xi
t(θ))φ

i
θ(t, θ

i,W i
t )dt

]
a.e. . (14)

Proof. As the agent can always use consistent deviations, a necessary condition for incentive com-

patibility is V (a, a) = supb V (a, b) . As φi is differentiable the derivative of V with respect to the

first variable is given by

Va(a, b) =
∂

∂a
E

[∫ T

0

e−rt
(
ui(t, xi

t(b))φ
i(t, a,W i

t )− pit(b)
)
dt

]
= E

[∫ T

0

e−rt
(
ui(t, xi

t(b))φ
i
θ(t, a,W

i
t )
)
dt

]
≤ uE

[∫ T

0

e−rtφi
θ(t, a,W

i
t )dt

]
,

which is bounded by a constant by Assumption 3. By the Envelope theorem (see Milgrom and

Segal (2002), Theorem 1 and Theorem 2) we have that V i(θ) = V i(θ, θ) is absolutely continuous an
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the (weak) derivative is given by (14). As argued above (14) is bounded and thus V i is Lipschitz

continuous.

We introduce the virtual value function J i : R+ ×Θ× R → R as:

J i(t, θi, vi) = vi − 1− F (θi)

f(θi)
φi
θ(t, θ

i, w(t, θi, vi)) . (15)

We observe that the above virtual value is modified relative to its static version only by the term

of the stochastic flow φi
θ that multiplies the inverse hazard rate. Thus, the specific impact of the

private information in the dynamic mechanism is going to arrive exclusively through the stochastic

flow φi
θ (see (3)), the continuous time equivalent of the impulse response function. The properties

of the virtual value are summarized in the following proposition:

Proposition 2 (Monotonicity of the Virtual Value).

If the virtual value J i(t, θi, vi) is positive then it is non-decreasing in θi and vi.

The proof of Proposition 2 given in the Appendix establishes the monotonicity of the virtual value

from Assumptions 1 and 2 using algebraic arguments. We observe that Proposition 2 establishes

the monotonicity of the virtual value only for the case that the virtual value is positive. In fact, our

assumptions are not strong enough to ensure the monotonicity of the virtual valuation independent

of its sign. The reason not to impose stronger monotonicity conditions is that for many important

examples discussed later (for example the geometric Brownian motion with unknown initial value)

the virtual value is only monotone if positive.

We can now establish a revenue equivalence result that describes the revenue of the principal in

any incentive compatible mechanism solely in terms of the allocation process x = (xt)t∈R+
and the

expected time zero value the lowest type derives from the contract V i(θ).

Theorem 1 (Revenue Equivalence).

For any incentive compatible direct mechanism the expected payoff of the principal depends only on

the allocation process (xt)t∈R+ and is given by the virtual value:

E

[∫ T

0

e−rt

(∑
i∈N

pit − c(xt)

)
dt

]
= E

[∫ T

0

e−rt

(∑
i∈N

J i(t, θit, v
i
t)u

i(t, xi
t)− c(xt)

)
dt

]
−
∑
i∈N

V i(θ). (16)
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Proof. Partial integration gives that in any incentive compatible mechanism (x, p) the expected

transfer received by the principal from agent i equals the expected virtual value of agent i :

E

[∫ T

0

e−rtpitdt

]
= E

[∫ T

0

e−rtui(t, xi
t)v

i
tdt

]
−
∫ θ

θ

f(θi)V i(θi)dθi

= E

[∫ T

0

e−rtui(t, xi
t)v

i
tdt

]
−
∫ θ

θ

f(θi)
1− F (θi)

f(θi)
V i
θ (θ

i)dθi − V i(θ)

= E

[∫ T

0

e−rtui(t, xi
t)

(
vit −

1− F (θi)

f(θi)
φi
θ(t, θ

i,W i
t )

)
dt

]
− V i(θ) .

Summing up the transfers of all agents and subtracting the cost gives the result.

As Theorem 1 provides a necessary condition for incentive compatibility it follows that if there

exists an incentive compatible contract (x, p) such that the allocation process x maximizes the

expected virtual value given by (16) it maximizes the principal’s surplus. Clearly, to maximize the

virtual surplus it is optimal to set the transfer to the lowest initial shock equal to zero: V i(θ) = 0

for all agents i ∈ N . The revenue of the principal defined by (16) equals the expected welfare when

true types are replaced with virtual values:

E

[∫ T

0

e−rts(t, J(t, θt, vt), xt)dt

]
, (17)

where we defined the flow social value s (·) earlier in (8). In the next step we establish that there

exists a direct mechanism that maximizes the expected virtual value defined in (16). To do so let

us first state the following result which ensures that there exists a time separable allocation that

maximizes the virtual value:

Proposition 3 (Virtual Value Maximizing Allocation).

There exists an allocation function x� : R+ ×Θ× R
n → X such that the process

x�
t � x�

t (t, θ, vt)

maximizes the expected virtual value of the principal defined in (15). Furthermore, the allocation

x� i(t, θ, vt) of agent i is non-decreasing in his type vit and his initial type θi.

Proof. For every t, θ, vt there exists a non-empty set of allocations which maximize the flow of

virtual values,

X�(t, θ, vt) = argmax
x∈X

s(t, J(t, θ, vt), x) = argmax
x∈X

∑
j∈N

J j(t, θj, vjt )u
j(t, xj)− c(x),
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and we denote by J(t, θ, vt)∈ R
n the vector of virtual valuations, i.e. J(t, θ, vt)

i= J i(t, θi, vit). As u
i

and c are increasing in xi is is optimal to set the consumption of agent i to zero xi = 0 if his virtual

value J i(t, θi, vit) is negative. As u
i is increasing in x and J i is increasing in θi and vi by Proposition

2 it follows that the objective function of the principal
∑

i∈N max{0, J i(t, θi, vit)}ui(t, xi) − c(x) is

super-modular in (θi, xi) and (vit, x
i). By Topkis’ theorem, there exists a quantity x�(t, θ, vt) ∈

X�(t, θ, vt) that maximizes the flow virtual value such that the allocation x� i(t, θ, vt) of agent i is

non-decreasing in θi and vit. As the virtual value of the principal at time t depends only on t, the

initial reports θ, and the type vt, this flow allocation that conditions only on (t, θ, vt) is an optimal

allocation process:

sup
(xt)

E

[∫ T

0

e−rts(t, J i(t, θit, v
i
t), xt)dt

]
= E

[∫ T

0

e−rt sup
x∈X

s(t, J i(t, θit, v
i
t), xt)dt

]
.

3.2 Sufficiency

To prove incentive compatibility of the optimal allocation process let us first establish a version of

a classic result in static mechanism design.

Proposition 4 (Static Implementation).

Let y ⊂ R and let β : Y × Y → R be absolutely continuous in the first variable with weak derivative

β1 : Y × Y → R+ and let β1 be increasing in the second variable. Then the payment

p(y) = β(y, y)−
∫ y

0

β1(z, z)dz .

ensures that truth-telling is optimal, i.e. β(y, y)− p(y) ≥ β(y, ŷ)− p(ŷ) for all y, ŷ ∈ Y .

Proposition 4 is similar to Lemma 1 in Pavan, Segal, and Toikka (2014a) and Proposition 2

in Rochet (1987) and differs only in the continuity requirements, absolute continuous rather than

Lipschitz continuous.

In the first step we construct flow payments that make truthful reporting of types optimal (on

and off the equilibrium path) if the virtual value maximizing allocation process x� is implemented.

Define the payment process pt � p(t, θ, vt) where the flow payment pi : t× Θ× R
n → R of agent i

is given by:

pi(t, θ, vt) � vit u
i(t, x� i(t, θ, vt))−

∫ vit

0

ui(t, x� i(t, θ, (v−i
t , z)))dz .
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Proposition 5 (Incentive Compatible Transfers).

In the contract (x�, p) it is optimal for every agent at every point in time t > 0 to report his type

vit truthfully, irrespective of the reported shock θ and past reported types (vs)s<t.

Proof. As the allocation x�(t, θ, vt) and the payment p(t, θ, vt) at time t are independent of all past

reported types (vs)s<t the reporting problem of the agent is time-separable. As ui is increasing in

x, and x� is increasing in vi by Proposition 2, we can apply Proposition 4 to

(vi, v̂i) �→ viui(t, x�(t, θ, (v̂i, v−i))) ,

and so guarantee that the payment scheme p(t, θ, v) makes truthful reporting of types optimal for

all t, θ, v, v̂i.

It remains to augment the payments from Proposition 5 with additional payments that make

it optimal for the agents to report their initial shocks θ truthfully. Note, that as the payments

from Proposition 5 ensure truthful reporting of types even after initial misreports, we know how

agents will behave even after an initial deviation. This insight transforms the time zero reporting

problem into a static design problem in which the payments from Proposition 4 can be used to

provide incentives.

Define the payment process

P �
t � p(t, θ, vt) +m(θ) (18)

where the fixed flow payment mi : Θ → R of agent i is given by:

mi(θ) = E

[ ∫ T

0

re−rt

1− e−rT

[ ∫ vit

0

ui(t, x� i(t, θ, (z, v−i
t )))dz

−
∫ θi

θ

φi
θ(t, z,W

i
t )u

i(t, x� i(t, (z, θ−i), (φi(t, z,W i
t ), v

−i)))dz
]
dt

]
.

Theorem 2 (Revenue Maximizing Contract).

In the virtual value maximizing contract (x�, P �) it is optimal for every agent at every point in time

t > 0 to report his shock θi and type vit truthfully, irrespective of the reported shocks θ and past

reported types (vs)s<t.

Proof. Start with the flow payments p of Proposition 5. By construction of the payments each agent

reports his type truthfully independent of his initial report θ. Let V̂ (θi, θ̂i) be the agent’s value if
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his true initial shock is θi but he reports θ̂i and reports truthful after time zero

V̂ (θi, θ̂i) = E

[∫ T

0

e−rt
[
vit u

i(t, x� i(t, (θ̂i, θ−i), vt))− p(t, (θ̂i, θ−i), vt)
]
dt

]
.

As it is optimal to report vit truthfully we have that

∂

∂vit

(
vit u

i(t, x� i(t, (θ̂i, θ−i), vt))− p(t, (θ̂i, θ−i), vt)
)
= ui(t, x�(t, (θ̂i, θ−i), vt)) .

Thus, the derivative of agent i’s value with respect to his initial shock is given by

V̂θi(θ
i, θ̂i) = E

[∫ T

0

e−rt
[
φi
θ(t, θ

i,W i
t ) u

i(t, x� i(t, (θ̂i, θ−i), vt))
]
dt

]
.

As φi
θ is positive, ui is increasing in x, and x� i is increasing in θ̂i by Proposition 2, Proposition

4 implies that truthful reporting of θi is optimal for agent i if he has to make a payment of

mi(θ)(1 − e−r T )/r at time zero. As the principal can commit to payments we can transform this

payment into a constant flow payment with the same discounted present value by multiplying with

r/(1 − e−r T ). Note, that as the payment m(θ) does not depend on the types it is optimal for the

agent to report his types truthfully in the contract (x�, P �) where P �
t � p(t, θ, vt) +m(θ).

Theorem 2 describes a revenue maximizing direct mechanism where the agent reports his types

and the principal decides on a price and an allocation at every point in time. The next result shows

that in the case of a single agent there also exists a simple indirect mechanism in the form of a

two-part tariff that which maximizes revenue.

In this mechanism the agent picks a contract at time zero and chooses how much to consume at

every point in time. The price paid by the agent at time t for his consumption at time t depends

only the initial contract choice through the fixed payment and the level of consumption xt at time

t through the variable payment, and thus takes the form of a two-part tariff.

Proposition 6 (Two-Part Tariff).

Consider the single agent case. There exist a revenue maximizing two-part tariff, where at time zero

the agent communicates θ truthfully and then at every point in time t chooses his consumption xt

and pays p̃(t, θ, xt) .

Proof. Define the set of types such that a given allocation x is optimal at time t

V �(t, θ, x) = {v ∈ R : x = X�(t, θ, v)} .
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We can define the payment as ∞ if an allocation is never optimal, i.e. V � = ∅. For every allocation

x such that V �(t, θ, x) 	= ∅ there exists at least one type v such that the agent would receive this

allocation x if he reports v in the direct mechanism of Theorem 2. The payment of the mechanism

described in Theorem 2 depends only on the allocation, but not on the type v. Thus, we have that

the following payment implements the virtual value maximizing allocation in an indirect mechanism:

p̃(t, θ, x) =

⎧⎪⎨⎪⎩
inf{p(t, θ, v) : v ∈ V �(t, θ, x)}, if V �(t, θ, x) 	= ∅;

∞, else .

The revenue maximizing mechanism suggested by Proposition 6 is a menu over static contracts.

This means that it is sufficient that the payments and allocations at time t depend only on the time

t types and the time zero shocks.

3.3 The Relation between Discrete and Continuous Time Models

We should emphasize that the basic proof strategy to construct the optimal dynamic mechanism

in continuous time mirrors the approach taken in discrete time, see Eső and Szentes (2007) and

Pavan, Segal, and Toikka (2014a). As in these earlier seminal contributions, we obtain the first

order conditions by using the envelope theorem using a small class of relevant deviations. Thus, the

valuable insights from discrete time carry over to continuous time. Similarly, for the sufficient con-

ditions, we use monotonicity conditions and time separable allocation to guarantee that it remains

optimal for the agent to report truthfully after any misreport. Here, the continuous time version

of the sufficiency arguments sometimes have the advantage that they can be expressed directly in

terms of the primitives of the stochastic process which we will illustrate in Section 6.

A brief, but more detailed comparison with the discrete time arguments might be instructive at

this point. Eső and Szentes (2007) and Pavan, Segal, and Toikka (2014a) show that the additional

signals arriving after the initial period can be represented as signals that are orthogonal to the

past signals. In the present setting, the type vt at every point in time is represented as a function

φi of the initial shock θi, and an independent time t signal contribution (increment) dWt, i.e.

vt = φi(t, θi,W i
t ). Our use of consistent deviations is similar to the deviations used in Pavan, Segal,

and Toikka (2014a) and Eső and Szentes (2014) where each agent reports the shock Wt after time

zero truthfully to establish revenue equivalence.



19

We can also relate the relevant conditions that guarantee the monotonicity of the type with

respect to the initial shock. Indeed, our Assumptions 1 and 2 are closely related to the Assumptions

1 and 2 of Eső and Szentes. In particular, we show in the Appendix that our Assumption 1 is implied

by Assumption 1 in Eső and Szentes and thus weaker. Furthermore, Assumption 2 of our setup is

exactly equivalent to Assumption 2 in Eső and Szentes. Hence, the basic conditions on the payoffs

and the shocks extend the conditions of Eső and Szentes directly to an environment with many

periods and many (flow) allocation decisions.

Pavan, Segal, and Toikka (2014a) observed in the context of a discrete time environment that

time-separability of the allocation plus monotonicity of the virtual value in θi and vit is sufficient

to ensure strong monotonicity of the virtual value maximizing allocation (monotonicity in θi and

vit after every history). Furthermore, they show that strong monotonicity is sufficient for the im-

plementability of the virtual value maximizing allocation (Corollary 1). In Section 5 in the supple-

mentary Appendix they use this insight to describe optimal mechanisms for discrete time situations

where the private information of the agent is not the initial state of the process, but a parameter

influencing the transitions.

As the allocation at time t does not change the set of possible allocations at later times our

environment is time-separable. Our assumptions are similar to the assumptions made in the section

discussing separable environments in Pavan, Segal, and Toikka (2014a) in the sense that they

ensure strong monotonicity which in turn implies implementability of the virtual value maximizing

allocation. However, our assumptions on the stochastic process are weaker than the assumptions

made on the primitives in Proposition 1 in Pavan, Segal, and Toikka (2014a) to allow for the

geometric Brownian motion. The reason that we can establish sufficiency under weaker assumptions

on the stochastic process lies in the multiplicative separable structure we assume between the type

and the allocation.
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4 Long-run Behavior of the Distortion

In this section we analyze how the allocative distortion behaves in the long-run. We are interested

in the expected social welfare generated by the revenue maximizing allocation compared to the

expected welfare generated by the socially optimal allocation. We begin with the following definition

and recall that the flow social welfare s (·) as the sum of the flow utilities over all agents, see (8).

Definition 4 (Vanishing Distortion).

The allocative distortion vanishes in the long-run if the social welfare generated by the revenue

maximizing allocation converges to the social welfare generated by the socially optimal allocation as

t → ∞:

lim
t→∞

E
[
s
(
t, vt, x(t, vt)

)− s
(
t, vt, x(t, J

i(t, θ, vt))
)]

= 0 .

The characterization of the long-run behavior comes in two parts. We first provide sufficient

condition for the long-run behavior to vanish. Then we provide necessary conditions for persistence

of allocative distortions in the long-run in the case of a single agent.

Proposition 7 (Long-run Behavior of the Distortion).

The following two statements characterize the long-run behavior of the distortion:

(a) The distortion vanishes in the long run if the expected type of any initial shock converges to the

expected type of the lowest shock, i.e.

lim
t→∞

E
[
vt | θi = x

]− E
[
vt | θi = θ

]→ 0 . (19)

(b) If n = 1, u(t, x) = x, c(x) is twice continuously differentiable, strictly convex with 0 < c′′(x) ≤ D

and the expected type for a (non-zero measure) set of shocks does not converge to the expected

type of the lowest shock (i.e. (19) is not satisfied), then the allocative distortion does not vanish.

Proof. First note that the difference in the expected type between a random and the lowest initial

shock equals

E [vt]− E
[
vt | θi = θ

]
= E

[
φi(t, θi,W i

t )− φi(t, θ,W i
t )
]

= E

[∫ θ

θ

1− F (z)

f(z)
φi
θ(t, z,W

i
t )f(z)dz

]

= E

[
1− F (θi)

f(θi)
φi
θ(t, θ

i,W i
t )

]
.
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Part (a): We prove that the distortion vanishes if limt→∞ E

[
1−F (θi)
f(θi)

φi
θ(t, θ,Wt)

]
= 0. We first

show that the welfare loss at a fixed point in time can be bounded by the difference between virtual

value J ∈ R
n and type v ∈ R

n

s(t, v, x�(t, v))− s(t, v, x�(t, J))

=

(∑
i∈N

viui(t, x� i(t, v))− c(x�(t, v))

)
−
(∑

i∈N
viui(t, x� i(t, J))− c(x�(t, J))

)

=

(∑
i∈N

viui(t, x� i(t, v))− c(x�(t, v))

)
−
(∑

i∈N
J iui(t, x� i(t, J))− c(x�(t, J))

)
−
∑
i∈N

(vi − J i)ui(t, x� i(t, J))

≤
(∑

i∈N
viui(t, x� i(t, v))− c(x�(t, v))

)
−
(∑

i∈N
J iui(t, x� i(t, v))− c(x�(t, v))

)
−
∑
i∈N

(vi − J i)ui(t, x� i(t, J))

=
∑
i∈N

(vi − J i)(ui(t, x� i(t, v))− ui(t, x� i(t, J)).

As the set of possible allocations X is compact and ui is continuous there exists a constant C > 0

such that ∑
i∈N

(vi − J i)(ui(t, x� i(t, v))− ui(t, x� i(t, J)) ≤ C
∑
i∈N

(vi − J i) .

Hence the welfare loss resulting from the revenue maximizing allocation resulting from the revenue

maximizing allocation is linearly bounded by the difference between virtual value and type. As the

difference between vit and J i
t equals

1−F (θi)
f(θi)

φi
θ(t, θ

i,W i
t ) it follows that

E [s(t, vt, x
�(t, vt))− s(t, vt, x

�(t, Jt))] ≤ C E

[∑
i∈N

(vi − J i)

]

= C E

[∑
i∈N

1− F (θi)

f(θi)
φi
θ(t, θ

i,W i
t )

]
= C

(
E [vt]− E

[
vt | θi = θ

])
.

Taking the limit t → ∞ gives the result.

Part (b): We prove that the distortion does not vanish in the long run if the expected type of any

initial shock does not converge to the expected type of the lowest initial shock. First, we prove that
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the distortion changes the allocation. As ui(t, x) = x is linear and c is convex this implies that the

function x �→ vx− c(x) is concave and has an interior maximizer for every (t, v). This implies that

for every point in time t and every type v

0 = v − c′(x�(t, v)) .

By the implicit function theorem

x�
v(t, v) =

1

c′′(x�(t, v))
≥ 1

D
.

Intuitively this means that the allocation is responsive to the type v. We calculate the change in

social welfare induced by the type v and the virtual valuation J

s(t, v, x�(t, v))− s(t, v, x�(t, J)) = [vx�(t, v)− c(x�(t, v))]− [vx�(t, J)− c(x�(t, J))]

=

∫ v

J

x�(t, z)dz − (v − J)x�(t, J)

=

∫ v

J

x�(t, z)− x�(t, J)dz

≥ 1

D

∫ v

J

(z − J)dz =
(v − J)2

2D
.

As the difference between type and virtual value is given by 1−F (θi)
f(θi)

φi
θ(t, θ

i,W i
t ) taking expectations

yields

E [s(t, v, x(v))− s(t, v, x(J))] ≥ 1

2D
E

[
(
1− F (θi)

f(θi)
φi
θ(t, θ

i,W i
t ))

2

]
≥ 1

2D
E

[
(
1− F (θi)

f(θi)
φi
θ(t, θ

i,W i
t ))

]2
=

(E [vt]− E [vt | θi = θ])
2

2D
,

where the middle step follows from Jensen’s inequality. As limt→∞ E [vt |θ = x ]− E [vt | θi = θ] 	= 0

for positive probability set of initial shock x it follows that limt→∞ E [vt ]− E [vt | θi = θ] 	= 0.

The sufficient condition for the allocative distortion to vanish requires that the conditional

expectation of the type vt at some distant horizon t converges for all initial realizations of the

shock, θ, to the conditional expectation of the type vt given the lowest initial shock θ. Clearly, in

any model where the initial state θ is the current state of a recurrent Markov process, such as in

Battaglini (2005), the sufficient condition will be satisfied as the influence of the initial state on the

distribution of the future states of the Markov process is vanishing.
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In turn, the failure of the sufficient condition is almost a necessary condition for the allocative

distortion to persist. However, in addition we need to guarantee that the allocation problem is

sufficiently responsive to the conditional expectation of the agent everywhere. This can be achieved

by the linearity and convexity conditions in Proposition 4.2. We state the necessary conditions only

for the problem with a single agent. With many agents, we would have to be concerned with the

further complication that the distortion that each individual agent faces may be made obsolete by

the distortion faced by the other agents, and thus a more stringent, and perhaps less transparent

set of conditions would be required.

5 Repeated Sales

A common economic situation that gives rise to a dynamic mechanism design problem is the repeated

sales problem where the buyer is unsure about his future valuation for the good. Examples of such

situations are gym membership and phone contracts. At any given point in time the buyer knows

how much he values making a call or going to the gym, but he might only have a probabilistic

assessment on how much he values the service tomorrow or a year in the future. Usually, it is

harder for the buyer to assess how much he values the good at times that are further in the future.

Mathematically this uncertainty about future valuations can be captured by modelling the buyers

valuation as a stochastic process.

From the point of view of the seller the question arises whether the uncertainty of the buyer can

be used to increase profits by using a dynamic contract. In reality a variety of dynamic contracts are

used, for example for gym memberships and mobile phone contracts, as documented in DellaVigna

and Malmendier (2006) or Grubb and Osborne (2015):

1. Flatrates where the buyer only pays a fixed fee regardless of his consumption.

2. Two-part tariffs where the buyer selects from a menu a fixed fee and a price of consumption.

He pays the fixed fee independent of his level of consumption. In addition the buyer has to

pay for his consumption. Tariffs with higher fixed fees feature lower prices of consumption.

3. Two-part tariffs where the buyer selects from a menu a fixed fee and a corresponding amount

of free consumption units. He pays the fixed fee independent of his consumption. In addition

the buyer has to pay for his consumption if it exceeds the given threshold. Tariffs with higher



24

fixed fees feature higher amounts of free consumption.

4. Leasing contracts where the buyer selects the length of the lease term and the price charged

per unit of time.

While those dynamic contracts can be observed in a wide range of situations, their theoreti-

cal properties, surprisingly, have not been widely analyzed. Using a dynamic mechanism design

perspective, we can explain why and under what circumstances these specific features of dynamic

contracts and consumption plans might be offered.

For the purpose of this section, we assume that ui (t, xi
t) = xi

t for all i and ti, and the flow utility

of the agent is described by

vt · xt − pt.

Hence vit immediately represents the willingness to pay of the agent in period t. We shall assume

that the type (vt)t∈R+ of the buyer follows a geometric Brownian motion which is shifted upwards

by v ≥ 0, i.e.

dvt = (vt − v)dWt , (20)

where (Wt)t∈R+ is a Brownian motion. The choice of the shifted geometric Brownian motion as the

type process ensures that the valuation vt for the good will be greater than v at every point in time

t. Furthermore, the valuation at time t is the agent’s best estimate of his valuation at later times

s > t, i.e.

vt = E[vs | vt] .

For the moment, the initial shock θi is taken to be the initial type of the buyer v0 ∈ (v,∞). We

assume that the distribution function F is such that v �→ 1−F (v)
f(v) v

is decreasing and f(v) ≥ 1/v.

At every point in time t the buyer chooses an amount of consumption xt ∈ X ⊆ R+ and pays

pt such that his overall utility equals

E

[∫ ∞

0

e−rt(vt · xt − pt)dt

]
.

In the following we describe the revenue maximizing dynamic contract offered by a monopolistic

seller. In general, dynamic contracts could have complicated features as the payments at time t

could depend on all the past consumption decisions and messages sent by the agent. However we

will show, using the results of the previous section, in particular Proposition 6 that offering a menu

of simple static contracts is sufficient to maximize the expected intertemporal revenue.
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To evaluate dynamic contracts from the sellers perspective, we assume that the seller faces

continuous, non-decreasing production cost c : X → R+, such that his overall payoff equals

E

[∫ ∞

0

e−rt(pt − c(xt))dt

]
.

The following results describes optimal contracts (indirect mechanism) for the seller.

Proposition 8 (Revenue Maximizing Contract).

An indirect revenue maximizing mechanism is given by a menu (m, p(m, xt)) of membership fees m

and consumption prices p(m, xt) of the form

p(m, xt) = A(m)c(xt)− (A(m)− 1)v xt.

Thus, the optimal contract is of the following form: At time zero the seller offers a menu of static

contracts each consisting of a time independent fixed membership fee m ≥ 0, and a consumption

dependent payment:

p(m, xt) = A(m)c(xt)− [A(m)− 1] v xt.

The consumption dependent payment p consists of a price of consumption of A(m) ≥ 1 and

a linear consumption discount (A(m) − 1)vxt. If the buyer accepts a contract he has to pay the

membership fee m ≥ 0 independent of his consumption. At the same time he has to pay p(m, xt)

depending on his consumption xt in period t such that his overall payment at time t equals

pt = m+ p(m, xt) = m+ A(m)c(xt)− [(A(m)− 1] vxt . (21)

The optimal fixed fee m(v0) that is chosen by the agent at the beginning of the contracts depends

on the agent’s initial valuation v0. It will be such that A(m(v0)) =
v0

J(v0)
, where J(v) = v − 1−F (v)

f(v)

is the virtual value.

With the general characterization of the optimal contract given by Proposition 8 we next es-

tablish under what conditions in terms of the nature of the private information and the cost of

delivering the service c (x) which of the above mentioned contract features will arise as a part of an

optimal contract.
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5.1 Flat Rate Contracts

In a flat rate contract the payment pt is constant over time and independent of the buyers consump-

tion. As the buyers utility increases in the consumption level he will always consume the good at

the maximum possible intensity.

Assume the production cost c is constant and normalized to zero, the set of possible allocations

is given by X = [0, 1], and the minimal valuation v equals zero. A direct consequence of the

transfers described in (21) is the following result characterizing an optimal mechanism with zero

(marginal) cost of production: The optimal mechanism is a flat rate where every agent who accepts

the contract at time zero, makes a constant flow payment, independent of his consumption, and

consumes the maximal possible amount: xt = 1.

While the buyer enjoys a utility of vt from consuming the good he dislikes the payments p and

he will suffer from a negative flow utility vt − p if vt < p. If his current valuation vt is below the

flat rate price p, not only is his current flow of utility negative, but also his expected continuation

utility of the contract:

E

[∫ ∞

t

e−rs(vs − ps)dt | vt
]
=

vt − p

r
. (22)

However, as the agent is (legally) bound to the contract he is forced to make the payments. Hence

a flat rate contract makes use of the fact that the agent can commit himself to future payments

and consumption before he learns his valuation.

As a consequence of condition (22) only the agents with an initial valuation v0 ≥ p accept the

contract. All agents with an initial valuation v0 < p reject the contract and never consume the

good no matter how high the consumption utility is at times t > 0.

5.2 Two-Part Tariffs

Having seen that zero marginal cost lead to flat rate tariffs, the next section describes the optimal

contract for convex costs. Assume that the minimal valuation v equals zero and the cost function

c is strictly convex. By condition (21) a two-part tariff where the agent pays m independent of his

consumption and A(m)c(x) depending on his consumption x is a revenue maximizing contract for

the principal. It is worth noting that a simple menu of static two-part tariffs can hence maximize

the revenue of the principal.
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Figure 1: The initial valuation v0 is exponentially distributed with mean 50 and the valuation

evolves as a geometric Brownian motion without drift.

We illustrate the structure of the two-part tariff with the following quadratic cost function.

Example 1. Let c(x) = x2/2 and the initial valuation be exponentially distributed with mean μ, i.e.

F (v0) = 1− exp(v0
μ
) and v = 0. The optimal contract sets for every fixed fee m ∈ (0,∞) a price of

consumption xt equal to:

A (m) =
x2
t

2

[
1− exp

(−2mr(r − σ)

μ

)]−1

.

Figure 1 illustrates Example 1 where the valuation evolves as a geometric Brownian motion

without drift. The solid lines are two paths of the valuation starting at an initial valuation of 60

(red) and 80 (blue) which coincide after time t = 45. The dashed lines are the consumption levels in

the revenue maximizing contract if the cost of production is quadratic c(x) = x2/2. As the optimal

consumption is linear in the valuation they are parallel on a logarithmic scale. Note, that even after

the valuations coincide the consumption levels of the agents with different initial valuations differ

and the optimal consumption level react with differing intensity to changes in the valuations. The

consumption of the agent in the welfare maximizing contract would exactly equal his valuation.

Figure 2 illustrates how the consumption at time t depends on the time zero valuation in the
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Figure 2: Illustration of Example 1: v = 0, c(x) = x2/2, v0 exponentially distributed with mean

μ = 1 and a constant discount factor of r = 1.

context of Example 1. The picture on the left the displays the revenue maximizing menu of contracts

(two-part tariffs). The picture on the right displays the contract chosen by the consumer depending

on his initial valuation v0. The blue line shows the fixed feem(v0) and the red line the cost multiplier

A(m(v0)) in the contract chosen by a consumer with initial valuation v0.

5.3 Free Minute Contract

We now consider the case in which the minimal type v of the agent is is strictly positive and that

the density at the minimal valuation is bounded away from zero, or f(v) > 1/v. In addition we

assume that the marginal cost of providing the good vanishes for small quantities, i.e. c′(0) = 0.

When the agent decides how much to consume at time t he solves the maximization problem:

max
x

{xvt − (m+ A(m)c(x)− (A(m)− 1)vx)} .



29

This leads to the first order condition:

0 = vt − A(m)c′(x) + (A(m)− 1)v ⇔ c′(x) = v +
(vt − v)

A(m)
.

As the marginal cost of providing the good vanishes if the quantity goes to zero it follows that the

consumption of the agent is bounded from below at every point in time by c′−1(v). Hence we can

interpret the amount c′−1(v) as a quantity provided to the agent for free. This is a feature that is

common in mobile phone contracts. In such a contract the agent can consume a certain number of

minutes for free and only has to pay for the consumption exceeding this amount.

5.4 Leasing Contracts

So far, the initial private information pertained to the initial value of the geometric Brownian

motion. By contrast, now we consider the case where the initial private information θ of the agent

constitutes the drift of the geometric Brownian motion. The valuation vt then evolves according to:

dvt = vt (μdt+ σdWt) .

A solution to the above differential equation is given by:

vt = φ(t, θ,Wt) = v0 exp

(
(θ − σ2

2
)t+ σWt

)
, (23)

and the derivative of the type φ with respect to θ equals:

φθ = φt.

Thus the virtual value is now given by:

J(t, θ, vt) = vt

(
1− 1− F (θ)

f(θ)
t

)
. (24)

In terms of the cost of providing the service, we assume the same cost structure as in the above

analysis of the flat rate contract, namely, the cost of production is constant and normalized to

zero and xt ∈ [0, 1]. Interestingly, the distortion is still formed on the basis of a multiplicative

handicap, but now the handicap factor is increasing linearly in time as expressed by the second

term of the virtual utility. It follows that in contrast to the above cases of an unknown initial value,
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the distortion is now growing over time. As vt is positive, it follows that the virtual valuation is

strictly positive until a deterministic time T is reached which is precisely given by the hazard rate:

L(θ) =
f(θ)

1− F (θ)
,

and thereafter the virtual value turns negative. Thus, the allocation of the object to agent i ends

with probability one at time L(θ). As shown in the appendix, this contract can be implemented by

a constant leasing payment p(θ) the agent makes at every time t ∈ [0, L(θ)].

Corollary 1. The mechanism which allocates the object to the agent with shock θ if and only if

t ∈ [0, L(θ)] and requires a payment of

p(t, θ) =

⎧⎪⎨⎪⎩
r

1−e−rL(θ)

(
v0

e(θ−r)L(θ)−1
θ−r

− ∫ θ

0
e(z−r)L(z)[L(z)(z−r)−1]

(z−r)2
dz
)

if t ∈ [0, L(θ)]

0 else

is revenue maximizing.

To establish the above formula for the payments we calculate the expected value that the agent

with initial shock θ derives from getting the object until time L(θ̂). By the envelope theorem the

payment equals this value minus the integral over the marginal value of those types with a lower

initial shock.

In a recent paper, Boleslavksy and Said (2013) derive the revenue maximizing contract in a

discrete time setting where the private information of a single agent is the uptick probability of a

multiplicative random walk. As it is well known, the geometric Brownian motion can be viewed as

the continuous time limit of the discrete time multiplicative random walk stochastic process. Thus,

it is naturally of interest to compare their results to the implications following our analysis. In

terms of the private information of the agent, the unknown drift in the geometric Brownian motion

here represents the unknown uptick probability analyzed in Boleslavksy and Said (2013). As the

general convergence result of the stochastic process itself would suggest, we can also establish, see

the Appendix for the details, that the continuous time limit of the virtual valuation derived in

Boleslavksy and Said (2013) is the virtual value derived above by (24). However, in the continuous

time limit the expression for the virtual value, see (24), becomes notably easier to express and

to interpret. The analysis in Boleslavksy and Said (2013) explicitly verifies the validity of the
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incentive constraints in the case of a single agent. With the general approach taken here, we can

obtain sufficient conditions for the revenue optimal contract and associated allocations even in the

presence of many agents. In fact, the next section considers such an allocation problem, namely

the allocation of a single unit among competing bidders. This second class of allocation problems is

notably more restrictive in terms of the cost of providing the service, namely constant for a single

unit, but allows to draw some novel insight regarding the structure of intertemporal distortion with

many agents.

6 Sequential Auctions and Distortions

We illustrate the impact that the structure of the private information has on the intertemporal

policies and the allocative distortion within the context of a sequential auction model. The allocation

problem is as follows. At every point in time t, the owner of a single unit of a, possibly divisible,

object wishes to allocate it among the competing bidders, i = 1, ..., n. The allocation space is given

at every instant t is given by xi
t ∈ [0, 1] and

∑n
i=1 x

i
t ≤ 1. The marginal cost of providing the object

is constant and normalized to zero. The flow utility of each agent i is given by vit · xi
t − pit.

We can interpret the allocation process as a process of intertemporal licensing where the current

use of the object is determined on the basis of the past and current reports of the agents, and in

particular, the assignment of the object can move back and forth between the competing agents.

Alternatively, the description of the valuation could be rephrased as a description of the marginal

cost of producing a single good, and the associated allocation process is the solution to a long-term

procurement contract with competing producers. As in the static theory of optimal procurement,

the virtual value would then be replaced by the virtual cost, but the structure of the allocation

process would remain intact.

6.1 Arithmetic Brownian Motion

In the previous section we represented the valuation process by a geometric Brownian motion, now

we consider the arithmetic Brownian motion, thus indicating the versatility of the current approach.

The arithmetic Brownian motion vit is completely described by its initial value vi0 and the drift μ

and the variance σ of the diffusion process Wt. The willingness to pay of agent i therefore evolves
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according to:

dvit = μdt+ σdW i
t ,

so that the type of agent i, his willingness to pay, can be represented as:

vit = vi0 + μt+ σW i
t . (25)

We analyze the incentive problem when either one of the three determinants of the Brownian motion,

the initial value, the drift or the variance is unknown, whereas the remaining two are commonly

known. Surprisingly, we find that even though we consider the same stochastic process, the nature

of the private information, i.e. about which aspect of the process the agent is privately informed, has

a substantial impact on the optimal allocation. In particular, we find that the distortion is either

constant, increasing or random (and increasing in expectation) depending on the precise nature of

the private information.

Unknown Initial Value We begin with the case where the initial value of the Brownian motion,

vi0 = θi, is private information to agent i, as are all future realizations of the Brownian motion, vit.

In contrast, the drift μ and the variance σ of the Brownian motion are assumed to be commonly

known. Given the representation of the Brownian motion (25), we have

vit = φi(t, θi,W i
t ) = θi + μt+ σW i

t . (26)

The partial derivative of φi with respect to θ is given by φi
θ = 1. It follows that the virtual value is

given by:

J i(t, θi, vit) = vit −
1− F (θi)

f(θi)
, (27)

and the distortion imposed by the revenue maximizing mechanism is constant over time. In every

period, the object is allocated to the agent i∗t with the highest virtual utility, provided that the

valuation is positive. Thus, the allocation proceeds by finding the bidder with the highest valuation,

after taking into account a handicap, that is determined once and for all through the report of the

initial shock.

Earlier, we gave a general description of the payments decomposed into an annualized up-front

payment m and a flow payment pt. In the present auction environment, we can give an explicit

description of the flow payments in terms of the virtual utility of the agents. The associated flow
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transfer of the bidders, pit, which also follows directly from the logic of the second price auction are

given by:

pit =

⎧⎨⎩ maxj �=i

{
vjt − 1−F (θj)

f(θj)

}
+ 1−F (θi)

f(θi)
, if i = i∗t ;

0, if i 	= i∗t .
(28)

Thus, it is only the winning bidder who incurs a flow payment. By rewriting (28), we find that

the winning bidder has to pay his valuation, but receives a discount, namely his information rent,

which is exactly equal to the difference in the virtual utility between the winning bidder and the

next highest bidder, i.e.

pi
∗
t = vi

∗
t −

(
J i∗(t, θi

∗
, vi

∗
t )−max

j �=i∗

{
J j(t, θj, vjt )

})
. (29)

By construction of the transfer function, the flow net utility of the bidder is positive whenever he

is assigned the object, as

vi
∗
t ≥ vjt −

1− F (θj)

f(θj)
+

1− F (θi
∗
)

f(θi∗)
, (30)

and thus, the flow allocation proceeds as a “handicap” second price auction, where the price of the

winner is determined by the current value of the second highest bidder, as measured by the virtual

utility, and the “handicap” is computed as the difference between the constant handicap of the

current winner and the current second highest bidder. The above version of the handicap auction

appeared in Eső and Szentes (2007) in a two period model of a single unit auction. Similarly, Board

(2007) develops a handicap auction in a discrete time, infinite horizon model, but where the object

is allocated only once, at an optimal stopping time. There, the handicap is represented as here,

by the constant terms, (1− F (θj)) /f (θj) and (1− F (θi)) /f (θi), but the second highest value

is computed as the continuation value of the remaining bidders, as in Bergemann and Välimäki

(2010).

Unknown Drift We now consider the case where the initial private information is the drift of the

Brownian motion. Let vit ∈ R+ be an arithmetic Brownian motion with drift θ and known variance

σ and known initial value, vi0:

vit = φi(t, θi,W i
t ) = vi0 + μt+ σW i

t . (31)
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The derivative of the valuation φi with respect to the initial private information θ, which is now

the drift of the Brownian motion, is given by φi
θ = t. Thus the virtual value is now:

J i(t, θi, vit) = vit −
1− F (θi)

f(θi)
t. (32)

The flow payment is of exactly the same form as (29), and the virtual utility function is given

by (32). The distortion is still formed on the basis of the handicap, by the inverse hazard rate

(1− F (θi)) /f (θi), but now the handicap is increasing linearly in time. In contrast to the case

of the unknown starting value, the distortion is growing deterministically over time, rather than

vanishing over time. Since vit might be growing as well, the deterministic increase in the distortion

does not allow us to conclude that the assignment of the object is terminated with probability one

at some finite time T , a conclusion that we arrived earlier in Section 5 where we considered the

geometric Brownian motion.

Unknown Variance We conclude the analysis with the case of unknown variance and the valu-

ation vit then evolves according to:

vit = φi(t, θi,W i
t ) = v0 + μt+ θiW i

t . (33)

Now, the initial private information θi represents the volatility of the Brownian motion. The

derivative of the valuation φi with respect to the initial private information θi now takes the form:

φi
θ =

φi − v0 − μt

θi

In consequence the virtual value of agent i can be expressed as:

J i(t, θi, vit) = vit −
1− F (θi)

f(θi)

vit − v0 − μt

θi

= vit

(
1− 1− F (θi)

f(θi)θi

)
+

1− F (θi)

f(θi)θi
(v0 + μt). (34)

Note, that it follows from J i(t, θi, vit) = vit − 1−F (θi)
f(θi)

W i
t that the expected virtual value equals the

expected value for any time zero shock θi. The variance of the Brownian motion does not lend

itself to an ordering along the first order stochastic dominance criterion, rather it is ordered by

second order stochastic dominance. Formally, in the case of unknown variance φi does not satisfy

the assumptions φi
θ ≥ 0 and Assumption 2. But as those assumptions were only used to establish
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that the virtual value is increasing in θ, v if it takes positive values, we can dispense with them here

as we can ensure monotonicity here by requiring that μ, v0 ≤ 0.

The basic idea is to use the convexity of the objective function to guarantee that an increase

in variance leads to an increase in the expected (virtual) valuation. After all, if the virtual value

turns negative, the seller does not want to assign the object to the buyer, thus the revenue is flat

and equal to zero. It therefore follows that the revenue of the seller has a convex like property. But

in contrast to the utility of the buyer, which is linear in vt, and hence strictly convex if truncated

below by zero, the virtual value of the seller has additional terms, as displayed by (34) which need

to be controlled to guarantee the monotonicity of the virtual utility. From the expression of the

virtual utility function we can immediately derive sufficient conditions for the monotonicity. Thus

if we assume that the initial value v0 is negative, v0 ≤ 0, and the arithmetic Brownian motion has

a negative drift μ ≤ 0, then we are guaranteed that the convexity argument is sufficiently strong.

Formally, let θ̂ be the solution to θ̂ − 1−F (θ̂)

f(θ̂)
= 0. As

J i(t, θi, vit) ≤ vit

(
1− 1− F (θi)

f(θi)θi

)
the virtual value J i(t, θi, vit) is only positive if the valuation vit is negative, for all θ

i < θ̂. But this

implies that the gross expected utility of all agents with initial type θi < θ̂ is negative, and hence

they cannot generate a nonnegative revenue due to the ex ante participation constraint, and hence,

it can never be optimal to allocate to an agent with variance θi < θ̂. Thus, we ignore agents with

low variance θi < θ and never allocate the object to them. As 1−F (θ)
f(θ)

is decreasing we have that

1 − 1−F (θ)
f(θ)θ

> 0 for all θ > θ̂ and hence J i(t, θi, vit) is increasing in vit and θi for all vit > 0 , θi > θ̂.

Hence, by the argument of Proposition 5, there exists a payment such that truthful reporting of

valuations becomes optimal irrespective of the reported types. As the virtual value

J i(t, θi, φi(t, θi,W i
t )) = W i

t (θ −
1− F (θ)

f(θ)
) + μt+ v0

is increasing in θ whenever W i
t > 0 and decreasing whenever W i

t < 0 it follows that the product

W i
tu

i(t, x� i(t, (θ̂i, θ−i), vit))

is increasing in the reported shock θ̂i. The derivative of the agents utility with respect to his initial

shock simplifies to

E

[∫ T

0

e−rt
[
W i

t u
i(t, x� i(t, (θ̂i, θ−i), vit))

]
dt

]
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and thus, by the argument of Theorem 2, the virtual valuation maximizing allocation for the shocks

θ > θ̂ is incentive compatible.

The last two examples emphasize that our approach can accommodate not only private informa-

tion about the initial state of a random process, but also private information about the structural

parameters of the stochastic process per se, such as the mean or the variance of the process.

6.2 Ornstein-Uhlenbeck process

Finally we describe the implications for the revenue maximizing allocation if the stochastic process

is given by the Ornstein-Uhlenbeck process, which is the continuous-time analogue of the discrete-

time AR(1) process. This example is closely connected to the discrete time literature. Besanko

(1985) showed that the distortions induced by the discrete-time AR(1) process vanish for unknown

initial value of the process if and only if the process is mean-reverting. Furthermore, the AR(1)

process, was the leading example in the analysis of the impulse response function in Pavan, Segal,

and Toikka (2014a).

The Ornstein-Uhlenbeck process vit is completely described by its initial value vi0, the mean

reversion level μ, the mean reversion speed m ≥ 0 and the variance σ ≥ 0 of the diffusion process

Bt. The willingness to pay of agent i evolves according to the stochastic differential equation:

dvit = m(μ− vt)dt+ σdBi
t ,

where Bt is a standard Brownian motion. The Ornstein-Uhlenbeck process can be represented using

a distinct Brownian motion B̃ as:

vt = v0e
−mt + μ(1− e−mt) +

σe−mt

√
2m

B̃2mt−1 . (35)

Hence we can define the process W as a time-changed Brownian Motion by

Wm
t =

e−mt

√
2m

B̃2mt−1 .

Using W we can represent the valuation of the agent as

vt = v0e
−mt + μ(1− e−mt) + σWm

t .
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Unknown Initial Value Consider the case where the valuation process is an Ornstein-Uhlenbeck

process and the initial valuation is private information, i.e. vi0 = θi. Given the representation (35)

it follows that
∂φi(t, θi,W i

T )

∂θi
= e−mt.

Thus, Assumption 1 and 2 are satisfied. The virtual value J i equals

J i(t, θi, vit) = vit −
1− F (θi)

f(θi)
e−mt .

Hence the optimal mechanism is a handicap mechanism with a deterministic handicap that is

exponentially decreasing over time. As the Ornstein-Uhlenbeck process in the long run converges

to a stationary distribution which is independent of the starting value θi, Proposition 7 applies

and the distortion vanishes in the long run. Intuitively the initial valuation does not change the

expected valuation in the long run.

Unknown Long Run Average We can also take the structural parameter of the stochastic

process to be the private information of the agent, that is we can take the expected long run

average of the process to be the private information of agent i, i.e. μ = θi. Given the representation

(35) it follows that
∂φi

t

∂θi
= 1− e−mt.

Thus, Assumption 1 and 2 are satisfied. The virtual value J i equals

J i(t, θi, vit) = vit −
1− F (θi)

f(θi)
(1− e−mt) .

Hence the optimal mechanism is a handicap mechanism with a deterministic handicap that is

increasing over time. As the Ornstein-Uhlenbeck process converges in the long run to a stationary

distribution which depends on the long run average θi the distortion increases in the long run.

Intuitively, the expected valuation converges to the long run average θi, and so does the virtual

value, it converges to the long rune average of the virtual value as well. In a notable recent

contribution, Skrzypacz and Toikka (2015) consider dynamic mechanisms for repeated trade under

private information. In particular they analyze the discrete time version of the mean-reverting

process in which the persistence of the stochastic process is private information, the equivalent of

the mean-reversion speed m here. They establish that the allocative distortion is increasing over

time rather than decreasing as when the initial state is private information.
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7 Conclusion

We analyzed a class of dynamic allocation problems with private information in continuous time. In

contrast to much of the received literature in dynamic mechanism design, the private information of

each agent was not restricted to the current state of the Markov process. In particular, the private

information was allowed to pertain to structural parameters of the stochastic process such as the

drift of the arithmetic or geometric Brownian motion, or the speed of the mean-reverting process. By

allowing for a richer class of private information structures, we gained a better understanding about

the nature of the distortion due the private information. In contrast to the Markovian settings,

where the distortions induced by the revenue maximizing allocation are typically vanishing over

time, we have shown that the distortion can be constant, increasing or decreasing over time. The

analysis of the private information in terms of the stochastic flow, the equivalent of the impulse

response functions in continuous time, allowed us directly link the nature of the private information

to the nature of the intertemporal distortion.

A distinct advantage of the continuous and time-separable approach taken here is that we could

offer explicit solutions, in terms of the optimal allocation, the level of distortion and the transfer

payments. We highlighted this advantage in the analysis of the repeated sales environment in which

we gave complete, explicit and surprisingly simple solutions to a class of sales/licensing problems.

In particular, we showed that we can implement the dynamic optimal contract by means of an

essentially static contract, a membership contract, that displayed such common empirical features

as flat rates, free consumption units and two-part tariffs.



39

Appendix

Proof of Proposition 2. As there is no risk of confusing agents we drop the upper indices in the

proof and denote by (θ, v) the type and the type of agent i. Assume that the virtual value is

positive J(t, θ, v) > 0. We first prove the monotonicity in v and than in θ.

Part 1: J(t, θ, v) > 0 ⇒ Jv(t, θ, v) ≥ 0:

Note that

J(t, θ, v) = v − 1− F (θ)

f(θ)
φi
θ(t, θ, w(t, θ, v)) = v

(
1− 1− F (θ)

f(θ)

φi
θ(t, θ, w(t, θ, v))

φi(t, θ, w(t, θ, v))

)
.

As φi
θ > 0 it follows that J(t, θ, v) ≤ v and hence v ≥ 0. Consequently the second term needs to be

positive as well. Clearly, v �→ v is non-decreasing. As φi
θ/φ

i is decreasing in w by (4) and w(t, θ, v)

is increasing in v, so the second term is increasing in v.

Part 2: J(t, θ, v) > 0 ⇒ Jθ(t, θ, v) ≥ 0 :

It remains to prove that the virtual value J(t, θ, v) = v − 1−F (θ)
f(θ)

φi
θ(t, θ, w(t, θ, v)) is non-decreasing

in θ. First, note that 1−F (θ)
f(θ)

is decreasing in θ by assumption. Second, note that 0 = φi
θ +φi

wwθ and

hence

∂

∂θ
φi
θ(t, θ, w(t, θ, v)) = φi

θθ(t, θ, w(t, θ, v)) + φi
θw(t, θ, w(t, θ, v))wθ(t, θ, v)

= φi
θθ(t, θ, w(t, θ, v))− φi

θw(t, θ, w(t, θ, v))
φi
θ(t, θ, w(t, θ, v))

φi
w(t, θ, w(t, θ, v))

.

Now we replace w(t, θ, v) by w and prove that the derivative is negative for any w ∈ R :

= φi
θ(t, θ, w)

(
φi
θθ(t, θ, w)

φi
θ(t, θ, w)

− φi
θw(t, θ, w)

φi
w(t, θ, w)

)
= φi

θ(t, θ, w)

(
∂

∂θ
log(φi

θ(t, θ, w))−
∂

∂θ
log(φi

w(t, θ, w)

)
= φi

θ(t, θ, w)
∂

∂θ
log

(
φi
θ(t, θ, w)

φi
w(t, θ, w)

)
≤ 0 .

The last step follows as
φi
θ(t,θ,w)

φi
w(t,θ,w)

is decreasing in θ by (5), and so the logarithm is decreasing as

well.
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Proof of Proposition 4. We have that

β(y, ŷ)− p(ŷ) = β(y, ŷ)− β(ŷ, ŷ) +

∫ ŷ

0

β1(z, z)dz =

∫ y

ŷ

β1(z, ŷ)dz +

∫ ŷ

0

β1(z, z)dz

=

∫ y

ŷ

β1(z, ŷ)− β1(z, z)dz +

∫ y

0

β1(z, z)dz ≤
∫ y

0

β1(z, z)dz = β(y, y)− p(y) .

Proof of Proposition 8. Note that a strong solution for the geometric Brownian motion is given by:

vt = v0 exp

(
−σ2

2
t+ σWt

)
+ v.

By (15) the virtual value equals

J(t, v0, vt) = vt

(
1− 1− F (v0)

f(v0)v0

)
+

1− F (v0)

f(v0)v0
v . (36)

As shown in Theorem 1 the seller aims at maximizing

E

[∫ T

0

e−rt (Jtxt − c(xt))

]
.

Define A(v0) =
(
1− 1−F (v0)

f(v0)v0

)−1

. At every point in time t the seller aims at choosing the consumption

level xt that maximizes the virtual value

J(t, v0, vt)xt − c(x) =

(
vt

(
1− 1− F (v0)

f(v0)v0

)
+

1− F (v0)

f(v0)v0
v

)
x− c(x)

= A(v0)
−1 (vtx− A(v0)c(x) + (A(v0)− 1)xv)

Consequently a payment of pt = A(v0)c(x)− (A(v0)−1)xv perfectly aligns the interest of the buyer

and the seller at every point in time t > 0. It remains to prove that it is incentive compatible for

the buyer to report his time zero type truthfully.

Let us first deal with the case where v = 0. Note that in this case Assumption 1 and 2 are

satisfied and thus Proposition 2 yields the monotonicity of the virtual valuation J(t, v0, vt) in v0

and vt conditional on Jt ≥ 0. If v is greater zero it follows from f(v) > 1/v and the monotonicity

of 1−F (v0)
f(v0)v0

that for all v0 ≥ v

1− 1− F (v0)

f(v0)v0
> 0 .

Hence, the virtual value defined in (36) is increasing in vt and v0. The proof of Theorem 2 show

that this is sufficient for for the existence of a payment that makes it incentive compatible to report

the time zero valuation truthfully.
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Consider now the special case of quadratic costs, c(x) = x2/2 and let the initial valuation v0 be

exponentially distributed with mean v̂:

P[v0 ≤ x] = 1− exp (−v0/v̂) .

Consider the situation where the agent decided on a contract (m,A(m)) and the consumption tariff

A(m) is fixed. The optimal consumption of the agent at time t is given by

{xt} = argmax
x≥0

(
x vt − A(m)

x2

2

)
=

vt
A(m)

.

Hence, the agents expected time zero utility from the contract is

max
(xt)t∈R+

E

[∫ ∞

0

e−rt(vtxt −m− A(m)c(xt))

]
= E

[∫ ∞

0

e−rt

(
v2t

2A(m)
−m

)]
=

v0
2A(m)(r − σ)

− m

r
. (37)

Hence, if the agent will choose his optimal contract he will maximize (37) over m select a contract

(m,A(m)) only based on his time zero valuation v0. Let us denote by m(v0) the fixed fee chosen by

the agent of initial valuation v0. In the optimal contract

A(m(v0)) =

⎧⎪⎨⎪⎩
v0

v0−μ
if v0 ≥ μ

∞ else .

Hence all buyers who initially have a valuation below the average time zero valuation μ will be

excluded and never consume the good no matter how high their future valuation is.

Proof of Corollary 1. We can explicitly calculate the time zero expected utility the agent derives

from consuming the good when she reported a shock θ̂ if her true shock equals θ

V̂ (θ, θ̂) = E

[∫ L(θ̂)

0

e−r tvtdt

]
=

∫ L(θ̂)

0

e−r t
E [vt] dt =

∫ L(θ̂)

0

e−r teθ tv0dt

= v0

[
e(θ−r)t

θ − r

]t=L(θ̂)

t=0

= v0
e(θ−r)L(θ̂) − 1

θ − r
.

Thus, time zero transfers that make this allocation incentive compatible are given by

V̂ (θ, θ)−
∫ θ

0

∂V

∂θ̂
(z, z)dz = v0

e(θ−r)L(θ) − 1

θ − r
−
∫ θ

0

e(z−r)L(z) [L(z)(z − r)− 1]

(z − r)2
dz .

If payment is made as a flow transfer on the time interval [0, L(θ)] we need to adjust it by multiplying

with r(1− e−rL(θ))−1.
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Relationship to Eső and Szentes (2007)

In Lemma 2 Eső and Szentes show that their Assumption 1 is equivalent to (in our notation)

φi
θw(t, θ, w) ≤ 0, (A)

and their Assumption 2 is equivalent to (in our notation)

φi
θθ(t, θ, w)

φi
θ(t, θ, w)

≤ φi
θw(t, θ, w)

φi
w(t, θ, w)

. (B)

As
∂

∂w

φi
θ

φi
=

φi
θwφ

i − φi
θφ

i
w

φi2
,

Assumption 1 of Eső and Szentes implies our Assumption 1 and is thus stronger. As

∂

∂θ

φi
θ

φi
w

=
φi
θθφ

i
w − φi

θφ
i
θw

φi2
w

=
φi
θ

φi
w

(
φi
θθ

φi
θ

− φi
θw

φi
w

)
.

Hence, Assumption 2 of our setup is exactly equivalent to Assumption 2 in Eső and Szentes.

Relationship to Boleslavksy and Said (2013)

We briefly establish the relationship between the multiplicative random walk in the discrete time

environment of Boleslavksy and Said (2013) and the geometric Brownian motion analyzed here. Let

(Xk)k∈N be a multiplicative random walk, i.e.

Xk+1 =

⎧⎪⎨⎪⎩
uXk, with probability θ,

dXk, with probability 1− θ ;

for some d < 1 < u and let the uptick probability θ ∈ (0, 1) be the private information. Boleslavksy

and Said (2013) show, see page 11, Eq. (7), that the virtual value in period k equals3

vik

(
1−
∑
s≤k

1{Xs=dXs−1}
u− d

d(1− θ)

1− F (θ)

f(θ)

)
.

3For convenience we translated their result into our notation. We use k for the period to clearly differentiate

between periods and physical time.
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In the next step we let the period length Δ go to zero. To do so let d ≡ dΔ, u ≡ uΔ and t ≡ Δk ∈ N.

The virtual value at the physical time t thus equals

vit

⎛⎝1−
∑
s≤ t

Δ

1{Xs=dXs−1}
(
(
u

d
)Δ − 1

) 1− F (θ)

f(θ)(1− θ)

⎞⎠ .

Note that
∑

s≤ t
Δ
1{Xs=dXs−1} is Binomial distributed and converges to its expectation for Δ → 0,

i.e.

lim
Δ→0

∑
s≤ t

Δ

1{Xs=dXs−1} = E

⎡⎣∑
s≤ t

Δ

1{Xs=dXs−1}

⎤⎦ = (1− θ)
t

Δ
.

As limΔ→0
1
Δ

(
(u
d
)Δ − 1

)
= 1 we have that the virtual value goes to:

vit

(
1− (1− θ)

t

Δ

(
(
u

d
)Δ − 1

) 1− F (θ)

f(θ)(1− θ)

)
= vit

(
1− t

1

Δ

(
(
u

d
)Δ − 1

) 1− F (θ)

f(θ)

)
= vit

(
1− 1− F (θ)

f(θ)
t

)
,

which establishes the convergence to the virtual value derived earlier in (24).
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