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Abstract

A monopolist sells informative experiments to heterogeneous buyers. Buyers differ in

their prior information, and hence in their willingness to pay for additional signals.

The monopolist can profitably offer a menu of experiments. We show that, even under

costless information acquisition and free degrading of information, the optimal menu

is quite coarse. The seller offers at most two experiments, and we derive conditions

under which flat vs. discriminatory pricing is optimal.
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1 Introduction

We consider a monopolist who wishes to sell information about a payoff-relevant vari-

able (the “state”) to a single buyer. The buyer faces a decision problem, and the seller

has access to all the information that is relevant for solving it. In addition, the buyer

is partially and privately informed about the relevant state variable. For example, the

buyer’s private information may concern his beliefs over the state, or directly his prefer-

ences over certain actions. Within this context, we investigate the revenue-maximizing

policy for the seller. How much information should the seller provide? And how should

the seller price the access to the database?

We are initially motivated by the role of information in markets for online adver-

tising. In that context, advertisers can tailor their spending to the characteristics of

individual consumers. Large data holders compile databases with consumers’ browsing

and purchasing history. Advertisers are therefore willing to pay in order to acquire

information about each consumer’s profile. A contract between a buyer and a seller

of data then specifies which consumer-specific attributes the seller shall release to the

advertiser before any impressions are purchased. An alternate example is given by

vendors of information about specific financial assets. In that case, the buyer could

be any investor, such as a bank, who wishes to acquire a long or short position on a

stock, based on its underlying fundamentals. Finally, one may consider the problem

of a manager seeking access to the “knowledge database” of a consultant in order to

steer his firm in the right direction.

In all these examples, the monopolist sells information. In particular, the products

being offered are experiments à la Blackwell, i.e. signals that reveal information about

the buyer’s payoff-relevant state. As the buyer is partially informed, the value of any

experiment depends on his type. The seller’s problem is then to screen buyers with

heterogeneous private information by offering a menu of experiments. In other words,

the seller’s problem reduces to the optimal versioning of information products.1

A long literature in economics and marketing has focused on the properties of in-

formation goods. This literature emphasizes how low marginal costs and digitalized

production allow sellers to easily degrade (more generally, to customize) the attributes

of such products (Shapiro and Varian, 1999). This argument applies even more force-

fully to information products, i.e. experiments, and makes versioning an attractive

price-discrimination technique (Sarvary, 2012). In this paper, we investigate the valid-

ity of these claims in a simple contracting environment.

1For example, recall the case of the Consumer Sentiment Index released by the University of Michigan
and Thomson-Reuters, which was initially available in different versions, based on the timing of its release.
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Environment The seller does not know the true state, but she can design any

experiment ex-ante. The seller’s problem is therefore to design and to price an “in-

formation product line” to maximize expected profits. An “information product line”

consists of a menu of experiments, and we characterize the optimal menu for the seller

in this environment. To our knowledge, this is the first paper to analyze a seller’s

problem of optimally “packaging” information in different versions.

The distinguishing feature of our approach to pricing information is that payments

cannot be made contingent on the buyer’s actions or on the realized states. That

is, actions and states are not contractible. Consequently, the value of an allocation

(i.e., an information structure) is independent of its price. This allows us to cast

the problem into the canonical nonlinear pricing framework. Clearly, this also leaves

open the question of how much more can be achieved in terms of profits in a richer

contracting environment.

Finally, despite the buyer being potentially informed about his private beliefs, the

analysis differs considerably from a belief-elicitation problem: the buyer’s type (beliefs

or tastes) acts as a specific parameter in the demand for information.

Results Because information is only valuable if it induces to change one’s optimal

action, buyers with heterogeneous beliefs and tastes will rank experiments differently.

More precisely, all buyer types agree on the highest-value information structure (i.e., the

perfectly informative experiment), but their ranking of distorted information structures

differs substantially.

This is, in fact, a peculiar property of information as a product. Outside of very

special examples, buyers have heterogeneous ordinal preferences for signals, which in-

duces a trade-off for the seller between the precision of an experiment (vertical quality)

and its degree of targeting (horizontal positioning). At the same time, this asymmetry

in buyers’ valuations allows the seller to extract more surplus. In our context, this

is achieved by offering a slightly richer menu than, for instance, in Mussa and Rosen

(1978).

We find that bundling information is optimal quite generally. For regular or sym-

metric distributions, the intuition from Riley and Zeckhauser (1983) applies, and the

seller adopts flat pricing. However, the flat pricing result depends heavily on the distri-

bution of types. With a general distribution, ironing and discriminatory pricing emerge

naturally as part of the optimal menu.

Even in environments where virtual values are linear in the allocation, the seller

can exploit differently informative signals. Thus, unlike in Myerson (1981) or Riley

and Zeckhauser (1983), the seller offers more than just the maximally informative

experiment at a flat price. In particular, the optimal menu consists of (at most) two
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experiments: one is fully informative; and the other (if present) contains one signal

that perfectly reveals one realization of the buyer’s underlying state. This property is

best illustrated in a binary-type model, but holds more generally any time a seller has

the ability to version its product along more than one dimension.

Related Literature This paper is tied to the literature on selling information. It

differs substantially from classic papers on selling financial information (Admati and

Pfleiderer, 1986, 1990), as well as from the more recent contributions of Eső and Szentes

(2007b) and Hörner and Skrzypacz (2012).

We then discuss differences with a model of disclosure. In such a model, the seller

of a good discloses horizontal match-value information, in addition to setting a price.

Several papers, among which Ottaviani and Prat (2001), Johnson and Myatt (2006),

Eső and Szentes (2007a), Bergemann and Pesendorfer (2007), and Li and Shi (2013),

have analyzed the problem from an ex-ante perspective. In these papers, the seller

commits (simultaneously or sequentially) to a disclosure rule and to a pricing policy.

More recent papers, among which Balestrieri and Izmalkov (2014), Celik (2014), and

Koessler and Skreta (2014) take an informed-principal perspective. Abraham, Athey,

Babaioff, and Grubb (2014) study vertical information disclosure in an auction setting.

Finally, the commitment to a disclosure policy is also present in the literature on

Bayesian persuasion, e.g. Rayo and Segal (2010) and Kamenica and Gentzkow (2011).

However, these papers differ from our mainly because of (i) lack of transfers, and (ii)

the principal derives utility directly from the agent’s action.

2 Model

We consider a model with a single agent (a buyer of information) facing a decision

problem. We maintain throughout the paper the assumption that the buyer must

choose between two actions.

a ∈ A = {aL, aH} .

In this section, we assume the relevant state for the buyer’s problem is also binary,

ω ∈ Ω = {ωL, ωH} .

The buyer’s objective is to match the state. In our applications, an advertiser

wishes to purchase impressions only to consumers with a high match value; an investor

wants to take a short or long position depending on the underlying asset’s value; and

a manager wants to adopt the right business strategy.

We will consider for now a fully symmetric environment, and let the buyer’s ex-post
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utility u (a, ω) from taking action a in state ω be given by

a = aL a = aH

ω = ωL 0 −1

ω = ωH 0 1

Note that with only two actions, it is without loss to assume that the state ω equals

the buyer’s payoff from taking the “high action” aH , net of the payoff from choosing aL.

The buyer and the seller have a common prior belief

p = EF [θ] .

In addition, the buyer privately observes an informative signal. We denote the buyer’s

interim belief by

θ = Pr (ω = ωH) .

The distribution of interim beliefs F (θ) is common knowledge to the buyer and the

seller.2

A strategy for the seller consists of a menu of experiments and associated tariff

M = {E , t}, with
E = {E} t : E → R

+.

An experiment E ∈ E consists of a set of signals and a probability distribution mapping

states into signals.

E = {SE , πE} πE : Ω → �SE .

Signals are conditionally independent from the buyer’s private information.

With the independence assumption, we are adopting the interpretation of a buyer

querying a database, or request a diagnostic service. In particular, the buyer and the

seller draw their information from independent sources. Under this interpretation, the

seller does not know the realized state ω at the time of contracting. The seller can,

however, augment the buyer’s original information with arbitrarily precise signals.

For instance, with the online advertising application in mind, the buyer is privately

informed about the average returns to advertising. The seller can, however, improve

the precision of his estimate consumer by consumer. The two parties therefore agree

to a contract by which the seller discloses specific attributes of individual consumers

upon the buyer’s request. Thus, even if the seller is already endowed with a complete

2In order to interpret the model as a continuum of buyers, we shall assume that states ω are identically
and independently distributed across buyers, and that buyers’ private signals are conditionally independent.
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database, she does not know the realized state of the actual buyer at the time of

contracting.

To conclude the description of the model, we summarize the timing of the game:

(i) the buyer observes an initial signal, and forms his interim belief θ; (ii) the seller

offers a menu of experiments M; (iii) the buyer chooses an experiment E, and pays

the corresponding price t; (iv) the buyer observes a signal s from the experiment E

(given the true state ω); and finally (v) the buyer chooses an action a.

3 The Seller’s Problem

In this section, we begin by defining the demand for information of each buyer type.

Let u(θ) denote the buyer’s payoff under partial information

u (θ) � max
a∈A

Eθ [u (a, ω)] .

The value of experiment E for type θ is then equal to the net value of augmented

information,

V (E, θ) � EE,θ[max
a∈A

Es,θ [u (a, ω)]]− u (θ) .

We now characterize the menu of experiments that maximizes the seller’s profits.

Because the Revelation Principle applies to this setting, we may state the seller’s

problem as designing a direct mechanism

M = {E (θ) , t (θ)}.

that assigns an experiment to each type of the buyer. Because we have assumed no

costs of acquiring information, the seller’s problem consists of maximizing the expected

transfers subject to incentive compatibility and individual rationality:

max
{E(θ),t(θ)}

∫
t (θ) dF (θ) ,

s.t. V (E (θ) , θ)− t (θ) ≥ V
(
E
(
θ′
)
, θ
)− t

(
θ′
) ∀ θ, θ′,

V (E (θ) , θ)− t (θ) ≥ 0 ∀θ.

3.1 Buyer’s Utility

The seller’s problem can be immediately simplified by taking advantage of the binary-

action framework. In particular, we can reduce the set of optimal experiments to a

very tractable class.
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Lemma 1 (Binary Signals).

Every experiment in an optimal menu consists of two signals only.

The intuition for this result is straightforward: suppose the seller were to offer

experiments with more than two signals; she could then combine all signals in experi-

ment E(θ) that lead to the same choice of action for type θ; clearly, the value of this

experiment V (E(θ), θ) stays constant for type θ (who does not modify his behavior);

in addition, because the original signal is strictly less informative than the new one,

V (E(θ), θ′) decreases (weakly) for all θ′ �= θ.

Therefore, we may focus on experiments with binary signals:

E (θ) =

sL sH

ωL β(θ) 1− β(θ)

ωH 1− α(θ) α(θ)

.

Throughout the paper, we adopt the convention that α(θ) + β(θ) ≥ 1 (else we should

relabel the signals sL and sH . We shall also refer to the difference in the conditional

probabilities α and β as the relative informativeness of an experiment.

We now derive the value of an arbitrary experiment. In particular, the value of

experiment (α, β) for type θ is given by

V (α, β, θ) = [(α− β) θ + β − (1− θ)−max{0, 2θ − 1}]+ .

Figure 1 shows the value of information for two particular experiments. The first

experiment is fully informative. The second experiment contains a signal (sL) that

fully reveals state ωL, and a partially informative signal (sH).

Figure 1: Value of Experiment (α, β)

(α, β) = (1, 1) (α, β) = (1, 1/2)
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Notice that the value of information includes both level effects (terms depend on

the allocation or type only) and interaction effects. In particular, the shape of the

buyer’s reservation utility implies that V (α, β, θ) peaks at θ = 1/2 for all experiments.

Conversely, extreme types have no value of information.3

Note that the allocation and the buyer’s type interact only through the difference

in the experiment’s relative informativeness α−β. This is clear from Figure 1. A more

optimistic type has a relatively higher value for experiments with a high α because

such experiments contain a signal that perfectly reveals the low state. Because this

induces types θ > 1/2 to switch their action (compared to the status quo), these types

have a positive value of information for any experiment with α = 1.

Perhaps more importantly, the specific interaction of type and allocation in the

buyer’s utility means that the seller can increase the value of an experiment at the

same rate for all types. In particular, increasing α and β holding α− β constant, and

increasing the price at the same rate, the seller does not alter the attractiveness of the

experiment for any buyer who is considering choosing it.

The next result allows us to further simplify the class of optimal strategies for the

seller.

Lemma 2 (Partially Revealing Signals).

Every experiment in an optimal menu has α = 1 or β = 1.

In other words, at least one signal perfectly reveals one state in any experiment part

of an optimal menu. Clearly, this result suggests a one-dimensional allocation rule

q(θ) � α(θ)− β(θ) ∈ [−1, 1] .

With this notation, two distinct information structures q ∈ {−1, 1} correspond to

releasing no information to the buyer. (These are the two experiments that show the

same signal with probability one.) We should also point out that (because of Lemma

2), a negative value of q implies β = 1 and a positive q implies α = 1. The fully

informative experiment is given by q = 0. We summarize all optimal experiments in

the tables below.

E =

sL sH

ωL 1− q q

ωH 0 1

E =

sL sH

ωL 1 0

ωH −q 1 + q

1 ≥ q ≥ 0 0 ≥ q ≥ −1

3Note that buyer types with degenerate beliefs do not expect any contradictory signals to occur, and
hence they are not willing to pay for such experiments. More generally, a buyer’s willingness to pay does
not depend on whether he holds correct beliefs.

8



We may then rewrite the value of experiment q ∈ [−1, 1] for type θ ∈ [0, 1] as

follows:

V (q, θ) = [θq −max{q, 0}+min{θ, 1− θ}]+ . (1)

It can be useful, at this point, to pause and discuss similarities between our demand

function and those obtained in traditional screening models (i.e., when sellers offer

physical goods).

All buyer types value the vertical “quality” of information structures, as measured

by their participation constraint (which is reflected in the min term). Note, however,

that the utility function V (q, θ) has the single-crossing property in (θ, q). This indi-

cates that buyers who are relatively more optimistic about the high state ωH assign

a relatively higher value to information structures with a high q. In particular, very

optimistic types have a positive willingness to pay for experiments with α = 1 because

such experiments contain signals that perfectly reveal the low state ωL.

Figure 2 shows the value assigned to different experiments q by two types that are

symmetric about 1/2.

-1.0 -0.5 0.5 1.0
q

0.05

0.10

0.15

0.20

0.25

0.30

V

Figure 2: V (q, θ), θ ∈ {1/3, 2/3}

Though the seller’s problem is reminiscent of classic nonlinear pricing, we uncover

a novel aspect of horizontal differentiation. This feature is linked to the relative in-

formativeness of an experiment. Furthermore, the quality and “positioning” of an

information product cannot be chosen separately by the firm. The information nature

of the good induces a technological constraint (which given by the formula for q) that

limits the asymmetric informativeness of an experiment, holding constant its quality

level.4

4It is then difficult to imagine a non-information analog for our demand function.
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To summarize, we present a canonical model for selling information that nonetheless

differs from existing screening models along several dimensions: (a) buyers have type-

dependent participation constraints; (b) experiment q = 0 is the most valuable for

all types; (c) a specific buyer type (θ = 1/2) always has the highest pay for any

information structure; (d) buyers are horizontally differentiated with respect to the

relative informativeness of experiments.

3.2 Incentive Compatibility

We now use the structure of the problem in order to derive a characterization of im-

plementable allocations q(θ). In particular, the buyer’s utility function in (1) has a

downward kink in θ. As discussed earlier, this follows from having an interior type

assign the highest value to any allocation (and from the linearity of the buyer’s prob-

lem).

Therefore, we compute the buyer’s rents U(θ) on [0, 1/2] and [1/2, 1] separately.

We first recognize that the buyer’s rents will be non-decreasing on the first subinterval

and non-increasing on the second. Thus, the participation constraint will bind at θ = 0

and θ = 1, if anywhere. Furthermore, types θ = 0 and θ = 1 have no value for any

experiment, and must therefore receive the same utility.

We then apply the envelope theorem to each subinterval separately, and we impose

a continuity requirement on the rent function U(θ) at θ = 1/2. This restriction yields

an extra condition,

U(1/2) = U(0) +

∫ 1/2

0
Vθ(q, θ)dθ = U(1)−

∫ 1

1/2
Vθ(q, θ)dθ.

Such a condition can always be written for any type. What is new here is that no

further endogenous variables (e.g. U(θH) in Mussa and Rosen, 1978) appear. It is

more useful in our context as a consequence of having two extreme types with zero

value of information. Differentiating (1) and simplifying, we can express the above

condition as

U(1/2) =

∫ 1/2

0
(q (θ) + 1)dθ = −

∫ 1

1/2
(q (θ)− 1)dθ,

and hence obtain the following result.

Lemma 3 (Implementable Allocations).

The allocation q (θ) is implementable if and only if

q (θ) ∈ [−1, 1] is non-decreasing,

∫ 1

0
q (θ) dθ = 0.
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The integral constraint is a requirement for implementability. As such it is not

particularly meaningful to analyze the relaxed problem. This is in contrast with other

instances of screening under integral constraints (e.g., constraints on transfers due

to budget or enforceability, or capacity constraints). Finally, the resemblance to a

persuasion budget constraint is purely cosmetic.

We can now state the the seller’s problem, and give its solution in the next section.

(In the Appendix we characterize the transfers associated with allocation rule q(θ) in

the usual way.)

max
q(θ)

∫ 1

0

[(
θ +

F (θ)

f (θ)

)
q (θ)−max {q (θ) , 0}

]
f (θ) dθ, (2)

s.t. q (θ) ∈ [−1, 1] non-decreasing,∫ 1

0
q (θ) dθ = 0.

4 Optimal Menu

We now fully solve the seller’s problem (2) for the binary-state case. It can be useful

to rewrite the objective with the density f(θ) explicitly in each term:

∫ 1

0
[(θf (θ) + F (θ)) q (θ)−max {q (θ) , 0} f (θ)] dθ.

This minor modification highlights two important features of our problem: (i) the

constraint and the objective have generically different weights, dθ and dF (θ); and (ii)

as a consequence, the problem is non separable in the type and the allocation, which

interact in two different terms.

We therefore must consider the “virtual values” for each allocation q separately,

φ(θ, q) :=

⎧⎨
⎩θf (θ) + F (θ) for q < 0,

(θ − 1)f (θ) + F (θ) for q > 0.

The function φ(θ, q) takes on two values only due to the piecewise-linear objective

function. The two values represent the marginal benefit to the seller (gross of the con-

straint) of increasing each type’s allocation from −1 to 0, and from 0 to 1, respectively.

We now let λ denote the multiplier on the integral constraint, and define the ironed

virtual value for experiment q as φ̄ (θ, q). We then can then reduce the seller’s problem

to the following maximization program.
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Proposition 1 (Optimal Allocation Rule).

Allocation q∗(θ) is optimal if and only if there exists λ∗ > 0 s.t. q∗(θ) solves

max
q∈[−1,1]

[∫ q

−1

(
φ̄ (θ, x)− λ∗) dx] for all θ,

has the pooling property, and satisfies the integral constraint.

The solution to the seller’s problem is then obtained by combining standard La-

grange methods with the ironing procedure developed by Toikka (2011) that extends

the approach of Myerson (1981). In particular, Proposition 1 provides a characteriza-

tion of the general solution, and suggests an algorithm to compute it.

To gain some intuition for the shape of the solution, observe that the problem is

piecewise-linear (but concave) in the allocation. Thus, absent the integral constraint,

the seller would choose an allocation that takes values at the kinks, i.e. q∗(θ) ∈
{−1, 0, 1} for all θ. In other words, the seller would offer a one-experiment menu

consisting of a flat price for the complete-information structure. It will indeed be

optimal for the seller to adopt flat pricing in a number of circumstances. The main

novel result of this section is that the seller can (sometimes) do better by offering one

additional experiment.

Proposition 2 (Optimal Menu).

An optimal menu consists of at most two experiments.

1. The first experiment is fully informative.

2. The second experiment (contains a signal that) perfectly reveals one state.

We now separately examine the solution when one or two items are present in the

optimal menu.

4.1 Flat Pricing

We illustrate the procedure in an example where ironing is, in fact, not required. Let

F (θ) =
√
θ, and consider the virtual values φ(θ, q) for q < 0 and q ≥ 0 separately.

The allocation that maximizes the expected virtual surplus in Proposition 1 assigns

q∗(θ) = −1 to all types θ for which φ(θ,−1) falls short of the multiplier λ; it assigns

q∗(θ) = 0 to all types θ for which φ(θ,−1) > λ > φ(θ, 1); and q∗(θ) = 1 for all types θ

for which φ(θ, 1) > λ.

12



Figure 3: Optimal Menu: Flat Pricing

q1 q2
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0.5

1.0
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Virtual Values Allocation Rule

Figure 3 (left panel) considers the virtual values and multiplier λ∗. Figure 3 (right

panel) illustrates the resulting allocation rule. In order to satisfy the constraint, op-

timal value of the multiplier λ∗ must identify two symmetric threshold types (θ1, θ2)

that separate types receiving the efficient allocation q = 0 from those receiving no

information at all, q = −1 or q = 1. It is then clear that, if virtual values are strictly

increasing, the optimal menu is given by charging the monopoly price for the fully

informative experiment.

The one-experiment result holds under weaker conditions than increasing virtual

values. We now derive sufficient conditions under which the solution q∗ takes values in

{−1, 0, 1} only, i.e., conditions for the optimality of flat pricing.

Proposition 3 (Flat Pricing).

Suppose any of the following conditions hold:

1. F (θ) + θf(θ) and F (θ) + (θ − 1)f(θ) are strictly increasing;

2. the density f(θ) = 0 for all θ > 1/2 or θ < 1/2;

3. the density f(θ) is symmetric around θ = 1/2.

The optimal menu contains only the fully informative experiment (q∗ ≡ 0).

An implication of this result is that the seller offers a second experiment only if

ironing is required (but it is easy to construct examples with non-monotone virtual

values and one-item menus).

Notice further that if q∗(1/2) = 0, all allocations q(θ) symmetric about 1/2 satisfy

the constraint automatically. That is because if the seller offers just one experiment,

then one may recall from Figure 1 that the two marginal types will be symmetric about

1/2. Thus, if it is optimal to offer a symmetric allocation rule, the constraint has no

bite.
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Figure 4 suggests the shape of the (symmetric) solution. Regardless of the proper-

ties of the distribution function F (θ), e.g. hazard rate, the solution to the restricted

problem is a cutoff policy. Because the cutoff is symmetric, it follows that the solutions

to the two subproblems satisfy the integral constraint, and hence provide a tight upper

bound to the seller’s profits.

Figure 4: Symmetric Distribution and Allocation Rule

4.2 Discriminatory Pricing

We now illustrate the ironing procedure when virtual values are not monotone, and

how it leads to a richer (two-item) optimal menu. Consider a bimodal distribution of

types, which is given in this case by a linear combination of two Beta distributions.

The probability density function and associated virtual values are given in Figure 5.

Applying the procedure derived in Proposition 1, we consider the ironed versions of

each virtual value, and we identify the equilibrium value of the multiplier λ∗. Notice

that in this case the multiplier must be at the flat level of one of the virtual values:

suppose not, apply the procedure from the regular case, and verify that it is impossible

to satisfy the integral constraint.

Figure 6 illustrates the optimal two-item menu. Note that for types in the “pooling”

region (approximately θ ∈ [0.17, 0.55]), the level of the allocation (q∗ ≈ −0.21) is

uniquely pinned down by the pooling property and by the integral constraint.
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Figure 5: Irregular Distribution
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Figure 6: Optimal Menu: Discriminatory Pricing
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Ironed Values Allocation Rule

In both examples, extreme types with low value of information are excluded from

purchase of informative signals. In the latter example, the monopolist is offering a sec-

ond information structure that is tailored towards relatively lower types. This structure

(with q < 0) contains one signal that perfectly reveals the high state. This experiment

is relatively unattractive for higher types, and it allows the monopolist to increase the

price for the large mass of types located around θ ≈ 0.7.

Moreover, note that type θ = 1/2 need not receive the most efficient information

structure despite having the highest value of information. This is because, unlike in

Mussa and Rosen (1978), the highest type is not at one extreme of the distribution.

In particular, in the optimal menu, inducing the middle types to purchase the fully

informative experiment would require the monopolist to lower the price of the sec-

ond experiment, leading to loss of revenue on the high-density types around θ ≈ 0.2.

Because there are so few types around 1/2 the monopolist prefers to distort their
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allocation instead.

In the next subsection, we offer a precise characterization of the optimality of one-

vs. two-item menus in a two-type environment.

4.3 Two Types

We provide intuition for Proposition 2 through a two-type example. In particular,

let θ ∈ {0.2, 0.7} with equal probability. The optimal menu is then given by q∗(θ) ∈
{−1/5, 0}, with prices t∗(θ) ∈ {8/25, 3/5}. In this example, the seller can offer the fully

informative experiment q = 0 to the type with the highest valuation (i.e., θ = 0.7) and

extract the buyer’s entire surplus. In a canonical screening model, the seller would

now have to exclude the lower type θ = 0.2. However, when selling information, the

monopolist can design another experiment with undesirable properties for the high

type. In particular, the seller offers an experiment which is relatively more informative

about the high state, and sets the price so to extract the low type’s surplus. The

optimal menu is then characterized by the most informative such experiment the seller

can offer while extracting the entire surplus and without violating the high type’s

incentive-compatibility constraint. Figure 7 illustrates the value of the two experiments

offered by the monopolist as a function of the buyer’s type θ ∈ [0, 1].

1/2 7/100 12/10

t

t2

t1

V-t

θ

Partially Informative

Fully Informative

Figure 7: Net Value of Experiment q

More generally, with two types, we know the optimal menu contains either one or

two experiments: if one only experiment is offered, one or both types may purchase.

Offering two experiments is optimal only if the two types are asymmetrically located on

opposite sides of 1/2. (Clearly, if they were at the same distance, the the seller would

obtain the first-best profits.) Moreover, the allocation is characterized by “no distortion

at the top,” and by full rent extraction whenever two experiments are offered.5

5The type θ closer to 1/2 buys the perfectly informative experiment. This will no longer be true with
more than two types.
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Which distribution of types would the seller like to face? Notice that the horizontal

differentiation aspect introduces a trade-off in the seller’s preferences between value of

information and ability to screen different types (i.e., value creation vs. appropriation).

Screening becomes easier when types are located farther apart. Finally, observe that

seller may benefit from mean-preserving spread of F (θ). This seemingly counterin-

tuitive result may happen when the seller sells information only to the less informed

type. Thus the ex ante Blackwell more informative structure may leave the buyer be

interim less informed. This translates into higher profits for the seller, but it does not

imply she would like to give out free information.

We summarize our results with two types. Let θ ∈ {θ1, θ2} with the corresponding

frequency μ � Pr (θ = θ1). We assume without loss that θ1 ≤ 1/2 and that the first

type is less informed, i.e., |θ1 − 1/2| ≤ |θ2 − 1/2|. Finally, we define the following

threshold:

μ̄ � 1− θ2
1− θ1

,

and we obtain the following result.

Proposition 4 (Two Types).

The optimal menu with two types is the following:

(a) if |θ2 − 1/2| = |θ1 − 1/2|, then
q∗(θ) ≡ 0;

(b) if |θ2 − 1/2| > |θ1 − 1/2|, then

q∗(θ1) �= q∗(θ2) ⇐⇒ μ > μ̄;

(c) if |θ2 − 1/2| > |θ1 − 1/2| and θ2 > 1/2, then

0 = q∗(θ1) < q∗(θ2) < 1.

To conclude, we remark that the solution with two types can always be reconciled

with the general case, and found using the integral constraint. In particular, because

we can assume that the fully uninformative information structure is always present in

the mechanism at zero price, we can construct the optimal allocation rule q∗(θ) defined
on the entire unit interval in order to satisfy the integral constraint. Not surprisingly

then, the allocation rule resembles that of Figure 6, though the discreteness of this

examples introduces an additional discontinuity.
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Figure 8: Optimal Allocation: Two Experiments (q ∈ {−1/5, 0})

4.4 Continuum of States

Moving to the case of a continuous state variable ω, it can be useful to focus attention

on the following interpretation: a buyer is uncertain about the profitability of a project,

and decides whether to invest or not. In particular, let the state space be Ω = R, the

binary action set A = {aL, aH}, and identify the state ω ∈ Ω with the incremental

value of taking the high action aH , so that the ex-post utility is given by

u (a, ω) =

⎧⎨
⎩ω, a = aH ,

0, a = aL.

The buyer’s private information is captured by his type θ ∈ R that characterizes his

interim beliefs, g (ω | θ). We normalize the type to represent the interim profitability

of a project so E [ω | θ] = θ.

Thus, the optimal action under prior information is aH if and only if θ ≥ 0. The

resulting reservation utility is given by

u (θ) = max {0, θ} .

Unlike in the case of binary state, there is no reason to restrict a priori the set of

experiments included in any optimal menu. For now, we concentrate a natural one-

dimensional class of partitions {E (q)}q∈R, with the generic element E (q) revealing

whether ω is above or below q. (Unlike for the case of heterogeneous tastes), the

buyer’s belief type affects his perception of an experiment. Thus, it changes both

marginal probabilities of signals and posterior means. Therefore, the posterior means

following a signal realization depend on the buyer’s type as well as on the experiment.
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We define

μ0 (q, θ) :=E [ω | ω ≤ q, θ] ,

μ1 (q, θ) :=E [ω | ω > q, θ] .

We complete the class by letting E (±∞) represent the fully uninformative experiments.

We now derive the value of a generic experiment E (q) for type θ. If the experiment

has positive value, it induces the buyer to invest only upon realization of the high

signal. Therefore, it is straightforward to calculate

V (q, θ) =

[∫ ∞

q
ωg (ω | θ) dω −max {0, θ}

]+
.

For a given experiment, the value function is generally non-linear and single-peaked at

θ = 0. For a given type, the value function has the highest value of fully informative

experiment at q = 0 and vanishes at infinity.

Unfortunately, the information value V (q, θ) does not satisfy the monotone hazard

rate condition in general. Indeed,

∂2V (q, θ)

∂q∂θ
= −q

∂g (ω | θ)
∂θ

∣∣∣∣
ω=q

.

For example, consider the case of an unbiased estimator (θ = ω + ε), where the distri-

bution of the error is single-peaked at zero. In this case ∂g (ω | θ) /∂θ ≤ 0 for ω < θ

and ∂g (ω | θ) /∂θ ≥ 0 for ω > θ so that the condition ∂2V (q, θ) /∂q∂θ ≥ 0 is equiv-

alent to requiring q ∈ [0, θ]. However, there is no reason to believe an optimal menu

would assign allocations in this interval only. The following result is an immediate

consequence of the this analysis.

Lemma 4 (Single Crossing).

The value of information V (q, θ) satisfies the single-crossing property globally if and

only if

∂g (ω|θ)
∂θ

≥ (≤) 0 ∀ω > 0,

∂g (ω|θ)
∂θ

≤ (≥) 0 ∀ω < 0.

The condition states that higher types θ must attach uniformly greater probability

for positive states. The condition of Lemma 4 holds in the following example where

the interim distribution of beliefs is a skewed uniform distribution.
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Example Let θ ∈ [−1/3, 1/3] be uniformly distributed and the interim beliefs of

type θ be distributed on Ω = [−1, 1] according to

g (ω | θ) = 1 + 3θω

2
.

We can verify that E [ω | θ] = θ holds and that the density g(ω | θ) satisfies the

conditions of Lemma 4. The value of information is given by

V (q, θ) =

[
−1

2
θq3 +

2θ + 1− q2

4
−max {0, θ}

]+
.

The incentive compatibility condition requires that q (θ) be weakly decreasing in θ.

However, the rent function V (θ) is again single-peaked in θ with a maximum at θ = 0.

This introduces the familiar integral constraint

∫ 1/3

−1/3
q (s)3 ds = 0, (3)

and leads to a solution that is analogous to the binary-state case.

In particular, as we show in Appendix B, the optimal solution is characterized

by flat pricing whenever virtual values are monotone: all types θ that purchase the

information receive the information that enables them to achieve the ex post efficient

decision. In other words, q∗(θ) = 0 for all participating types. The set of participating

types is an interval centered around 0. Therefore, the solution is in line with our

findings in Proposition 3.

In contrast, when virtual values are not monotone, the allocation is distorted for

a positive measure of types, and does not involve more than two distinct information

structures, as in Proposition 2.

5 Heterogeneous Tastes

Here we examine the model where agents have private information over their (positive

or negative) bias for the high action aH . For the case of binary states, we can adapt

our analysis from the model with heterogeneous beliefs. For the case of continuous

states and regular distribution of types, we can characterize the optimal menu.

5.1 Binary State

We consider the case of a binary state ω, and we let p denote the common prior belief

that the state is high, p = Pr (ω = ωH). We then let the buyer’s private information

be his “bias” θ ∈ [0, 1], which enters the ex-post utility of choosing the “high action”
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in such a way that the extreme types have weakly dominant strategies:

u(aH , θ, ω) � θ − 1[ω = ωL].

It is well-known that in this context, the type with the highest value of information

is θ = 1−p. Furthermore, easy algebra shows that the natural analog of the allocation

measure for belief heterogeneity is

q(θ) � 2pα(θ)− 2(1− p)β(θ).

We can then apply the same derivation of necessary and sufficient conditions for im-

plementability, and formulate the seller’s problem as follows:

max
q(θ)

∫ 1

0

[(
θ +

F (θ)

f (θ)

)
q (θ)−max {q (θ) , 0}

]
f (θ) dθ,

s.t. q (θ) ∈ [−2(1− p), 2p] non-decreasing,∫ 1

0
q (θ) dθ = 4p− 2 =: q∗(p).

Note that the seller’s problem with heterogeneous buyer tastes is identical to the

case of heterogeneous beliefs for p = 1/2. Our earlier results apply, and hence the

optimal menu contains q∗(p) and at most one q̄(p) �= q∗(p). Furthermore, we can show

that the second experiment (if present) becomes relatively more informative about state

ωL if the buyer’s prior belief over state ωH increases. This is clear from the discussion

of buyers’ relative preferences for signals that induce a change in their action. We

formalize this intuition and discuss its welfare consequences in the following result.

Proposition 5 (Comparative Statics – Binary State).

1. The relative informativeness of the second experiment q̄(p) is increasing in p.

2. The overall informativeness of the second experiment is increasing in p if and

only if q̄(p) < q∗(p).

5.2 Continuous States

For the case of a continuum of states, we assume the ex-post utility of buyer type θ is

given by

u (a, ω, θ) =

⎧⎨
⎩ω − θ, a = aH ,

0, a = aL.

We assume that states ω are distributed on the entire real line according to G(ω).

The buyer’s type θ is also distributed on the real line according to F (θ). We assume
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that the distribution of types has a log-concave density f(θ). As noted by Bagnoli and

Bergstrom (2005) and Eső and Szentes (2007b), a log-concave density implies that

Φ (θ, λ) := θ − λ− F (θ)

f (θ)

is strictly increasing in θ for all λ ∈ (0, 1). We then have the following characterization

of an optimal menu for regular (i.e., log-concave) distributions.

Proposition 6 (Heterogeneous Tastes – Continuum of States).

The optimal allocation rule and payment function are given by

q∗ (θ) = Φ (θ, λ∗) ,

t∗ (θ) =
∫ q∗(θ)

−∞

[
q∗−1 (ω)− ω

]
dG (ω) ,

where λ∗ ∈ (0, 1) is the unique root of

∫ ∞

−∞

(
ω − Φ−1 (ω, λ∗)

)
dG (ω) = 0.

We illustrate the result in an example. Let ω ∼ N (0, 1) and θ ∼ N (0, 1). The

value of the multiplier is then λ∗ = 1/2. The corresponding optimal allocation rule

and price are given in Figure 9.

Figure 9: Optimal Menu with Continuous States
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6 Conclusions

We have examined the problem of a monopolist selling incremental information to pri-

vately informed buyers. The optimal mechanism involves at most two experiments,
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and we obtain sufficient conditions for one-item menus to be optimal. From the point

of view of selling information, even under costless acquisition and free degrading, the

optimal menu is quite coarse: this suggests a limited use of versioning, and the prof-

itability of “minimal” distortions, in the absence of further, observable, heterogeneity

among buyers or cost-efficiency reasons to provide impartially informative signals.

The comparative statics of the seller’s profits with respect to the distribution of

types underscore a trade-off between value of information (to the buyer) and ability to

screen (for the seller). For instance, the ex-ante least informed types are not necessarily

the most valuable, nor do they purchase the most informative signals in equilibrium.

For the binary model, we have shown the equivalence between an environment with

heterogeneous tastes for actions and one with heterogeneous beliefs. More work is

required to clarify the role of orthogonal vs. correlated information that underscores

the difference between preferences vs. beliefs heterogeneity with a continuum of states.

Further interesting extensions include studying the following: the optimal menu

when the buyer is informed about an ex-ante type (e.g., about his private information

structure, before observing any signals); the role of information-acquisition costs for the

seller (which do not play a significant role if fixed or linear in precision, but may induce

further cost-based screening if convex in the quality of the information released to the

buyer); and the effect of competition among sellers of information (i.e. formalizing the

intuition that each seller will be able to extract the surplus related to the innovation

element of his database).
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Appendix

A Proofs for Section 3

Proof of Lemma 1. Consider the following procedure. Fix any type θ and experiment

E. Let Sa
E denote the sets of the signals in experiment E that induce type θ to choose

action a. Thus, ∪a∈ASa
E = SE . Construct the experiment E′ as a recommendation for

type θ based on the experiment E, SE′ = {sa}a∈A and

πE′ (sa|ω) =
∫
Sa
E

πE (s | ω) ds ω ∈ Ω, a ∈ A.

By construction, E′ induces the same outcome distribution for type θ as E so V (E′, θ) =
V (E, θ). At the same time, E′ is a garbling of E so by Blackwell’s theorem V (E′, θ′) ≤
V (E, θ′) ∀ θ′.

We can use this procedure to construct for any feasible direct mechanism {E (θ) , t (θ)}
another feasible direct mechanism {E′ (θ) , t (θ)} with its experiments consisting of no

more signals than the cardinality of action space A. Because we consider a binary

setting, every experiment in an optimal menu consists of two signals only. �

Proof of Lemma 2. Consider any feasible direct mechanismM = {α (θ) , β (θ) , t (θ)}.
For each θ define ε (θ) := 1−max {α, β}, α′ (θ) := α (θ) + ε (θ) , and β′ (θ) := β (θ) +

ε (θ). It follows from the information value formula that

[
V
(
α′ (θ) , β′ (θ) , θ

)− ε (θ)
]+

= V (α (θ) , β (θ) , θ) .

Consequently, a direct mechanism M′ = {α′ (θ) , β′ (θ) , t (θ) + ε (θ)} is feasible, for any

type θ either α (θ) = 1 or β (θ) = 1, and all transfers are weakly greater than in M. �

Proof of Lemma 3. Since each type’s outside option coincides with the value of

choosing an uninformative experiment, we drop the positivity qualifier in the formula

for value function and set q (0) = −1 and q (1) = 1.

Necessity. For any two types θ2 > θ1 we have

V (q1, θ1)− t1 ≥ V (q2, θ1)− t2,

V (q2, θ2)− t2 ≥ V (q1, θ2)− t1,

V (q2, θ2)− V (q1, θ2) ≥ t2 − t1 ≥ V (q2, θ1)− V (q1, θ1) .

It follows from the single-crossing property of V (q, θ) that q2 ≥ q1 hence q (θ) is
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increasing. Because the buyer’s rent is non-decreasing (non-increasing) in θ on [0, 1/2]

and [1/2, 1] respectively, we can compute the function U (θ) on [0, 1/2] and [1/2, 1]

separately as

U(1/2) = U (0) +

∫ 1/2

0
Vθ (q, θ) dθ = U (1)−

∫ 1

1/2
Vθ (q, θ) dθ.

By the envelope theorem Vθ (q, θ) = q+ 1 for θ < 1/2 and = q− 1 for θ > 1/2. Taking

into account the boundary conditions U (0) = U (1) = 0 we obtain

∫ 1

0
q (θ) dθ = 0.

The corresponding transfers can be derived from the allocation rule as

U (θ) = V (q (θ) , θ)− t (θ) = 0 +

∫ θ

0
q
(
θ′
)
dθ′ +min {θ, 1− θ}

t (θ) = q (θ) θ −
∫ θ

0
q
(
θ′
)
dθ′ −max {q (θ) , 0} .

Sufficiency. Expected utility for a type θ from reporting θ′ is

V
(
q
(
θ′
)
, θ
)− t

(
θ′
)
=

(
θ − θ′

)
q
(
θ′
)
+

∫ θ′

0
q (θ) dθ +min {θ, 1− θ}

which is maximized at θ′ = θ by monotonicity of q (·); incentive constraints are satisfied.
At the same time U (θ) is equal to zero for types 0 and 1 and is weakly positive for all

others; participation constraints are satisfied. �

B Proofs for Section 4

Proof of Proposition 1. Consider the seller’s problem (2). We first establish that

the solution can be characterized through Lagrangean methods. For necessity, note

that the objective is concave in the allocation rule; the set of non-decreasing functions

is convex; and the integral constraint can be weakened to the real-valued inequality

constraint ∫ 1

0
q(θ)dθ ≤ 0. (4)

Necessity of the Lagrangean then follows from Theorem 8.3.1 in Luenberger (1969).

Sufficiency follows from Theorem 8.4.1 in Luenberger (1969). In particular, any solution
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maximizer of the Lagrangean q(θ) with

∫ 1

0
q(θ)dθ = q̄

maximizes the original objective subject to the inequality constraint

∫ 1

0
q(θ)dθ ≤ q̄.

Thus, any solution to the Lagrangean that satisfies the constraint also solves the orig-

inal problem.

Because the Lagrangean approach is valid, we can apply the results of Toikka (2011)

to the solve the seller’s problem for a given value of the multiplier λ on the integral

constraint. Write the Lagrangean as

∫ 1

0
[(θf (θ) + F (θ)) q (θ)− (max {q (θ) , 0}+ λ)f (θ)] dθ.

In order to maximize the Lagrangean subject to the monotonicity constraint, consider

the generalized virtual surplus

J̄(θ, q) :=

∫ q

−1

(
φ̄ (θ, x)− λ∗) dx,

where φ̄ (θ, x) denotes the ironed virtual value for allocation x. Note that J̄(θ, q) is

weakly concave in q. Because the multiplier λ shifts all virtual values by a constant,

the result in Proposition 1 then follows from Theorem 4.4 in Toikka (2011). Finally,

note that ¯phi(θ, q) ≥ 0 for all θ implies the value λ∗ is strictly positive (otherwise the

solution q∗ would have a strictly positive integral). Therefore, the integral constraint

(4) binds. �

Proof of Proposition 2. From the Lagrangean maximization, we have the following

necessary conditions

q∗(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 if φ̄(θ,−1) < λ∗,

q̄ ∈ [−1, 0] if φ̄(θ,−1) = λ∗,

0 if φ̄(θ,−1) > λ∗ > φ̄(θ, 1),

q̄′ ∈ [0, 1] if φ̄(θ, 1) = λ∗,

1 if φ̄(θ,−1) > λ∗,

and ∫ 1

0
q∗(θ)dθ = 0.
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If λ∗ coincides with the flat portion of one virtual value, then by the pooling property

of Myerson (1981), the optimal allocation rule must be constant over that interval, and

the level of the allocation is uniquely determined by the integral constraint. Finally,

suppose λ∗ equals the value of φ̄(θ, q∗(θ)) over more than one flat portion of the virtual

values φ̄(θ,−1) and φ̄(θ, 1). Then we can focus without loss on the allocation q∗ that

assigns experiment q = 0 or q ∈ {−1, 1} to all types in one of the two intervals. �

Proof of Proposition 3. (1.) If F (θ) + θf (θ) and F (θ) + (θ − 1) f (θ) are strictly

increasing then the ironing is not required and it follows from the analysis in the text

that the optimal solution has a single step at q = 0.

(2.) If all types are located at one side from 1/2 then the integral constraint has no

bite since the allocation rule q (θ) can always be adjusted on the other side to satisfy

it. The unconstrained problem has a single step at q = 0 that results in flat pricing.

(3.) If types are symmetrically distributed then the separately optimal menus for types

θ < 1/2 and θ > 1/2 are the same. Since the profits in the jointly optimal menu cannot

be higher than weighted sum of profits in the separate ones the result follows. �

Example with Continuous States. The rent function V is non-decreasing in θ on

[−1/3, 0] and non-increasing on [0, 1/3] . Thus, the individual rationality constraint will

bind at θ ∈ {−1/3, 1/3} , if anywhere. Conjecture (and verify ex-post) that the indirect

utility of the extreme types satisfies U (−1/3) = U (1/3) = 0. We can then write the

rent function as

U (θ) =
1

2

∫ θ

−1/3

(
1− q (s)3

)
ds, for θ ≤ 0,

U (θ) =
1

2

∫ 1/3

θ

(
1 + q (s)3

)
ds, for θ > 0.

Continuity at θ = 0 implies once more that

∫ 1/3

−1/3
q (s)3 ds = 0, (5)

which we maintain as an additional constraint.

Writing out the transfers, integrating by parts, and using the constraint (5) yields

the following problem for the monopolist:

max
q(θ)

∫ 1/3

−1/3

[
−
(
θq (θ)3 +

q (θ)2

2

)
f (θ)− q (θ)3 F (θ)

]
dθ

s.t.

∫ 1/3

−1/3
q (s)3 ds = 0, q (θ) non-increasing.
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Let λ denote the multiplier on the integral constraint, and write the Lagrangean as

L (θ) = −q (θ)2
[
f (θ)

2
+ q (θ) (F (θ) + θf (θ)− λ)

]
.

Now notice that, in order to maximize the Lagrangean with respect to q (θ), the mo-

nopolist should set

q (θ) =

⎧⎪⎨
⎪⎩

1 if F (θ) + θf (θ) + f(θ)
2 < λ

0 if F (θ) + θf (θ) + f(θ)
2 ∈ [λ, λ+ f (θ)]

−1 if F (θ) + θf (θ) + f(θ)
2 > λ+ f (θ) .

(6)

]In other words, the monopolist’s problem (for a given λ) is equivalent to

max
q(θ)

∫ 1/3

−1/3

[
−q (θ)

(
F (θ) + θf (θ) +

f (θ)

2
− λ

)
+ f (θ)min {q, 0}

]
dθ

s.t.q (θ) non-increasing.

This problem is weakly concave in q, so the procedure from the binary-state case

applies. In particular, the solution again consists of at most two information structures.

Furthermore, if both virtual values

F (θ) + θf (θ) +
f (θ)

2
,

F (θ) + θf (θ)− f (θ)

2

are increasing, then the allocation (6) is weakly decreasing in θ for all λ. Therefore, in

this case the value of the multiplier λ∗ is such that the integral constraint is satisfied.

(This requires finding two types θ1 = −θ2 such that both virtual values are equal to

λ.) The optimal solution in this case leads again to a flat pricing solution in which

all types θ that purchase the information receive the information that enables them

to achieve the ex post efficient decision. Now suppose that the virtual values are not

increasing. Then the method of ironing pointwise in q again leads to two ironed virtual

values, and to a procedure similar to the binary case.

For concreteness, if F (θ) is uniform, then the optimal flat price is p∗ = 1/8, leading

to the allocation q∗ (θ) = 0 for θ ∈ [−1/4, 1/4] and to q∗ (θ) ∈ {−1, 1} outside that

interval. If F (θ) is given by the distribution used in the Section 4.2 and Figure 5, the
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optimal menu is given by

q (θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 for θ ≈ [−1/3,−0.19]

.14 for θ ≈ [−0.19, 0.03]

0 for θ ≈ [0.03, 0.16]

−1 for θ ≈ [.16, 1/3] .

C Proofs for Section 5

For the case of heterogeneous tastes and a continuum of states, we first characterize

the set of implementable allocations in the Lemma 5. Recall that in what follows, for

a function x (y) we define x (−∞) := limy→−∞ x (y) , and x (∞) := limy→∞ x (y) .

Lemma 5 (Implementable Allocations).

The mechanism q (θ) , t (θ) ≥ 0 is incentive compatible and individually rational if and

only if

q (θ) is non-decreasing,

q (−∞) = −∞, q (∞) = ∞,

t (θ) =

∫ q(θ)

−∞

[
q−1 (ω)− ω

]
dG (ω) ∀ θ ∈ R,

t (−∞) = 0, t (∞) = 0.

Proof of Lemma 5. Necessity. Monotonicity of the allocation rule follows from the

increasing differences property of V (q, θ). Our definition of uninformative experiments

as long as the fact that the value of any experiment goes to zero as θ goes to infinities

leads to q (±∞) = ±∞. Individual rationality then implies that transfers are going to

zero too as long as θ goes to infinities, t (±∞) = 0. Define the indirect utility

U (θ) := max
θ′

V
(
q
(
θ′
)
, θ
)−t

(
θ′
)
= max

θ′

[
θG

(
q
(
θ′
))

+

∫ ∞

q(θ′)
ωdG (ω)− t

(
θ′
)]−max {μ, θ} .

By the fundamental theorem of calculus followed by the envelope theorem applied to

the first term

U (θ) = μ+

∫ θ

−∞
G (q (z)) dz −max {μ, θ} .

It follows that

t (θ) = θG (q (θ))−
∫ q(θ)

−∞
ωdG (ω)−

∫ θ

−∞
G (q (z)) dz

= θG (q (θ))−
∫ q(θ)

−∞
ωdG (ω)− zG (q (z)) |θ−∞ +

∫ θ

−∞
zdG (q (z))
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=

∫ q(θ)

−∞

[
q−1 (ω)− ω

]
dG (ω) .

where, the second line is obtained with integration by parts and the third line follows

from monotonicity of q (·).
Sufficiency. For IC, given the allocation and payment rules

V
(
q
(
θ′
)
, θ
)
= θG

(
q
(
θ′
))

+

∫ ∞

q(θ′)
ωdG (ω)−

∫ q(θ′)

−∞

[
q−1 (ω)− ω

]
dG (ω)−max {μ, θ}

= θG
(
q
(
θ′
))− ∫ q(θ′)

−∞
q−1 (ω) dG (ω)−max {0, θ − μ}

=

∫ q(θ′)

−∞

[
θ − q−1 (ω)

]
dG (ω)−max {0, θ − μ} .

By monotonicity of q (·), θ ≥ q−1 (ω) if and only if ω ≤ q (θ). Therefore, truth-telling

is optimal. For IR, as shown above

V (q (θ) , θ) =

∫ q(θ)

−∞

[
θ − q−1 (ω)

]
dG (ω)−max {0, θ − μ} .

By monotonicity of q (·), θ ≥ q−1 (ω) for all ω ≤ q (θ) so

∫ q(θ)

−∞

[
θ − q−1 (ω)

]
dG (ω) ≥ 0 ∀ θ.

Furthermore,

t (∞) =

∫ ∞

−∞

[
q−1 (ω)− ω

]
dG (ω) = 0

so

∫ q(θ)

−∞

[
θ − q−1 (ω)

]
dG (ω) =

∫ ∞

−∞

[
θ − q−1 (ω) + ω − ω

]
dG (ω)−

∫ ∞

q(θ)

[
θ − q−1 (ω)

]
dG (ω)

= θ − μ−
∫ q(θ)

−∞

[
θ − q−1 (ω)

]
dG (ω) ≥ θ − μ ∀ θ.

The last inequality follows from the monotonicity of q (·). Thus, for all θ, it holds that
V (q (θ) , θ) ≥ 0. �

Proof of Proposition 6. The value of experiment E (q) for type θ is

V (q, θ) = (1−G (q)) (μ1 (q)− θ)−max {0, μ− θ}

if θ ∈ [μ0, μ1] and zero otherwise. We can now use characterization of implementable

allocations in Lemma 5 to calculate the expected profits from the mechanism with
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allocation rule q (θ):

π =

∫ ∞

−∞
t (θ) f (θ) dθ =

∫ ∞

−∞

[∫ q(θ)

−∞

(
q−1 (ω)− ω

)
g (ω) dω

]
f (θ) dθ

=

∫ ∞

−∞

[∫ ∞

q−1(ω)

(
q−1 (ω)− ω

)
g (ω) f (θ) dθ

]
dω

=

∫ ∞

−∞

(
q−1 (ω)− ω

) (
1− F

(
q−1 (ω)

))
g (ω) dω

= E [(Θ (ω)− ω) (1− F (Θ (ω)))]

where Θ (ω) := q−1 (ω) and the expectation is taken with respect to ω. Note that the

feasibility conditions can be rewritten in terms of Θ (ω) as Θ (ω) being non-decreasing,

Θ (−∞) = −∞,Θ(∞) = ∞, and EΘ(ω) = Eω = μ. Therefore, the maximization

problem of the seller can be stated as

max
Θ(ω)

E [(ω −Θ(ω))F (Θ (ω))]

s.t. EΘ(ω) = Eω

Θ(ω) is non-decreasing,

Θ (−∞) = −∞, Θ(∞) = ∞.

Consider the relaxed problem

max
Θ(ω)

∫ ∞

−∞
(ω −Θ(ω))F (Θ (ω)) g (ω) dω

s.t.

∫ ∞

−∞
(ω −Θ(ω)) g (ω) dω = 0.

This is a standard isoperimetric problem studied in the calculus of variations with the

corresponding Euler equation

−F (Θ (ω)) g (ω) + f (Θ (ω)) (ω −Θ(ω)) g (ω) + λg (ω) = 0 ∀ω ∈ R

that can be rewritten as

ω = Θ(ω)− λ− F (Θ (ω))

f (Θ (ω))
=: Φ (Θ (ω) , λ) ∀ω ∈ R. (7)

Note that Φ (θ, 1) is just the virtual valuation of a type θ. The log-concavity assumption
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on f (·) ensures that the optimal rule is increasing and can be written as

Θ (ω) = Φ−1 (ω, λ)

where the inversion is on θ. Plugging it into the integral constraint we obtain

∫ ∞

−∞

(
ω − Φ−1 (ω, λ)

)
g (ω) dω = 0.

We claim that there exists unique λ∗ ∈ (0, 1) that satisfies this equation. First, by (7),

ω > Θ(ω) ∀ω ∈ R at λ = 0 and ω < Θ(ω) ∀ω ∈ R at λ = 1 . Therefore,

∫ ∞

−∞

(
ω − Φ−1 (ω, 0)

)
g (ω) dω > 0,∫ ∞

−∞

(
ω − Φ−1 (ω, 1)

)
g (ω) dω < 0.

The integral is continuous in λ so the existence of λ∗ follows from the intermediate value

theorem. Second, notice that Φ (Θ (ω) , λ) is strictly decreasing in λ so the integral is

strictly decreasing in λ. It thus follows that λ∗ is unique. Finally note that since Θ (ω)

was defined as q−1 (ω) so the optimal allocation for type θ is just Φ (θ, λ). �
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