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Abstract

Recently Cherchye et al. (2011) reformulated the Walrasian equilibrium in-

equalities, introduced by Brown and Matzkin (1996), as an integer program-

ming problem and proved that solving the Walrasian equilibrium inequalities is

NP-hard. Following Brown and Shannon (2000), we reformulate the Walrasian

equilibrium inequalities as the Hicksian equilibrium inequalities.

Brown and Shannon proved that the Walrasian equilibrium inequalities are

solvable iff the Hicksian equilibrium inequalities are solvable. We show that

solving the Hicksian equilibrium inequalities is equivalent to solving an NP-hard

minimization problem. Approximation theorems are polynomial time algorithms

for computing approximate solutions of NP-hard minimization problems.

The contribution of this paper is an approximation theorem for the NP-hard

minimization, over indirect utility functions of consumers, of the maximum dis-

tance, over observations, between social endowments and aggregate Marshallian

demands. In this theorem, we propose a polynomial time algorithm for com-

puting an approximate solution to the Walrasian equilibrium inequalities, where

explicit bounds on the degree of approximation are determined by observable

market data.

Keywords: Rationalizable Walrasian markets, NP-hard minimization problems,

Approximation theorems

JEL Classification: B41, C68, D46
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1 Introduction

The Brown-Matzkin (1996) theory of rationalizing market data with Walrasian mar-

kets, where consumers are price-taking, utility maximizers subject to a budget con-

straint, consists of market data sets and the Walrasian equilibrium inequalities. A

market data set is a finite number of observations on market prices, income dis-

tributions and social endowments. The Walrasian equilibrium inequalities are the

Afriat inequalities for each consumer; the budget constraints for each consumer and

the market clearing conditions in each observation. The unknowns in the Walrasian

equilibrium inequalities are the utility levels, the marginal utilities of income and the

Marshallian demands of individual consumers in each observation. The parameters

are the observable market data: market prices, income distributions and social en-

dowments in each observation. The Walrasian equilibrium inequalities are said to

rationalize the observable market data if the Walrasian equilibrium inequalities are

solvable for some family of utility levels, marginal utilities of income and Marshallian

demands of individual consumers, where aggregate Marshallian demands are equal

to the social endowments in every observation. This theory is intended to provide

an empirical, nonparametric foundation for equilibrium in market economies, consis-

tent with the Walrasian paradigm, as articulated by Arrow and Debreu (1954). As

such, the Brown—Matzkin theory of rationalizing market data with Walrasian markets

requires an efficient algorithm for solving the Walrasian equilibrium inequalities.

The Tarski—Seidenberg theorem, Tarski (1951), proposes an algorithm, “quanti-

fier elimination,” for deriving a finite family of multivariate polynomial inequalities

from the Walrasian equilibrium inequalities, where the unknowns are the observ-

able market data: market prices, income distributions and the social endowments in

each observation. We define these inequalities as the “revealed Walrasian equilib-

rium inequalities.” It follows from the Tarski—Seidenberg theorem that the revealed

Walrasian equilibrium inequalities are solvable for the given market data iff the equi-

librium inequalities are solvable for some family of utility levels, marginal utilities of

income and Marshallian demands of consumers. The revealed Walrasian equilibrium

inequalities exhaust the empirical content of equilibrium in the Walrasian model of

market economies. An example is the special case of Afriat’s (1967) seminal theorem

on revealed consumer demand, where consumer’s demands are observable. The Afriat

inequalities are linear inequalities, hence they can be solved in polynomial time, using

interior point methods. In Afriat’s theory,  , introduced by Varian (1982), is the

revealed Afriat equilibrium inequalities. Unfortunately, in general, the computational

complexity of the Tarski—Seidenberg algorithm, is known to be doubly exponential

in the worse case. See Basu (2011) for a discussion of the Tarski—Seidenberg theorem

and the computational complexity of quantifier elimination.

A decision problem is a problem where the answer is “yes” or “no.” In this pa-

per, the decision problem is: Can the observed market data set be rationalized with

Walrasian markets? That is, are the Walrasian equilibrium inequalities solvable if

the values of the parameters are derived from the observed market data? A deci-

sion problem is said to have polynomial complexity, i.e., the problem is in class  ,

if there exists an algorithm that solves each instance of the problem in time that
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is polynomial in some measure of the size of the problem instance. For solving lin-

ear programming, interior-point methods are polynomial time algorithms, but the

simplex method solves the worse case linear program in time that is exponential

in some measure of the size of the worse case linear program. In the literature on

computational complexity, polynomial time algorithms are referred to as “efficient”

algorithms. A decision problem is said to be in  , if there exists an algorithm

that verifies, in polynomial time, if a proposal is a solution of the problem instance

Clearly,

 ⊂ 

but it is widely conjectured by computer scientists that

 6= 

What is the computational complexity of solving the Walrasian equilibrium inequal-

ities? This important question was first addressed by Cherchye et al. (2011). They

proved that solving the Walrasian equilibrium inequalities, reformulated as an integer

programming problem is  -. The decision problem  is said to be  -

if every problem in  can be reduced in polynomial time to . That is, if we can

decide the  - problem  in polynomial time then we can decide every 

problem in polynomial time. In this case, contrary to the current beliefs of computer

scientists,

 = 

Brown and Shannon (2000) proposed a “dual” theory of rationalizing market data

with Walrasian markets, where demands of individual consumers are not observed,

and the Afriat inequalities are replaced by the dual Afriat inequalities for minimizing

the consumer’s monotone, convex, indirect utility function over prices subject to her

budget constraint. This “dual” family of Walrasian equilibrium inequalities is called

the Hicksian equilibrium inequalities in this paper. The Hicksian equilibrium in-

equalities are said to rationalize the observed market data if the Hicksian equilibrium

inequalities are solvable for some family of indirect utility levels, marginal indirect

utilities and Marshallian demands of individual consumers, derived from Roy’s iden-

tity, where the aggregate Marshallian demands are equal to the social endowments

in every observation. Brown and Shannon proved that the Walrasian equilibrium

inequalities are solvable iff the Hicksian equilibrium inequalities are solvable. The

Hicksian equilibrium inequalities are unsolvable iff for very solution of the consumer’s

dual Afriat inequalities there is excess aggregate Marshallian demand in some obser-

vation. Of course, if for some family of consumer’s indirect utility functions “markets

almost clear” in every observation, then the market data is “almost rationalized”

by Walrasian markets. Theorems of this kind for  - minimization problems,

where the degree of approximation is explicit are called "approximation theorems" in

the literature on computational complexity. The contribution of this paper is an ap-

proximation theorem for the  - minimization, over indirect utility functions of

consumers, of the maximum distance, over observations, between social endowments

and aggregate Marshallian demands. In this theorem, we propose a polynomial time
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algorithm for computing an approximate solution of the Walrasian equilibrium in-

equalities, where explicit bounds on the degree of approximation are determined by

observable market data.

2 Solving the Walrasian Equilibrium Inequalities

For completeness, we recall the (strict) Afriat inequalities (1967) and the (strict)

dual Afriat inequalities, introduced by Brown and Shannon (2000). Given solutions

of the Afriat inequalities, we also recall Afriat’s construction of a piece-wise linear,

monotone, concave utility function for rationalizing Marshallian demands. This is

the same construction used by Brown and Shannon to derive a piece-wise linear,

monotone, convex indirect utility function, from solutions of the dual Afriat inequal-

ities, to rationalize Marshallian demand.

Proposition 1 If the market data set is

 ≡ {    }=1
where

() = max
 ·≤

()

and



µ




¶
= min



·≤1



µ




¶
then the (strict) Afriat inequalities for  observations are:

   +  · ( − ) for   ≤ 

and the dual (strict) Afriat inequalities for  observations are:

 −   ∇ 



µ




¶
·
µ



− 



¶
where (i)  and  are positive utility levels, (ii)  are positive marginal utilities

of income, (iii)  are the market prices in observation, (iv)  is the consumer’s

income in observation , (v)  and  are the Marshallian demands in the respective

budget sets, (vi)  and  are positive indirect utility level, (vii)  ≡ ∇ 

 (),

and (viii) where  ¿ 0

Proposition 2 If the (strict) Afriat inequalities are solvable for utility levels,,

marginal utilities of income  and Marshallian demands  for the given market

data

 ≡ {    }=1
then b() ≡ =

max
=1

[ +  · (− )]
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is a piece-wise linear, monotone, concave utility function that rationalizes {}==1 .

That is, b() = {max b() :  ·  ≤ }

Proposition 3 If the (strict) dual Afriat inequalities are solvable for indirect utility

levels, and marginal indirect utilities

 ≡ ∇ 

 (




)

for the given market data

 ≡ {    }=1
then b ³



´
≡

=

min
=1

∙
∇ 




µ




¶
·
µ



− 



¶¸
is a piece-wise linear, monotone, convex indirect utility function that rationalizes

{}==1 . That is,

b µ


¶
=
n
min b ³



´
:



·  ≤ 1

o


In addition to the Afriat and the dual Afriat inequalities, our analysis is predicated

on Roy’s identity.

Proposition 4 Roy’s Identity [Theorem 223 in Simon and Blume (1994)]Let ()

be a 2utility function that satisfies monotonicity and strict concavity. Let ( ) be

the Marshallian demand function for  and  ( ) the corresponding indirect utility

function. If ( ) and ( ) are all strictly positive, then

( ) = −
 ()


 ()


Definition 5 If the market data set  = {    }
 then, the Hicksian equilib-

rium inequalities are defined as:(1) The strict, dual Afriat inequalities for each con-

sumer.(2) Market clearing in each observation, where it follows from Roy’s identity

that the Marshallian demands are:

 ≡ −
∇(



)

∇(


)
=
(− 


)

− ·
2

=


 ·  =
(−)




That is,

 =


 ·  

Hence markets clear in each observation iff for  = 1 2  

=X
=1

 =

=X
=1



 ·  ≤  
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Rationalizability of the Hicksian equilibrium inequalities was established by Brown

and Shannon (2000).

Theorem 6 (Brown and Shannon) If

 ≡ {    }


is the given market data set, where for 1 ≤  ≤ 

=X
=1

 =  ·  

then the following statements are equivalent:

(a)There exists a strictly convex, monotone, smooth indirect utility function ()

that rationalizes 

(b)There exists numbers

 ≡ 

µ




¶
and vectors

 ≡ ∇



µ




¶
∈ 

for   = 1 2   such that  6=  (i)

 −    ·
µ



− 



¶
for 1 ≤  ≤ ; 1 ≤  ≤  . where (ii)

− · 
2

≡   0  ¿ 0

Proof. See Theorem 1 and Lemma 1 in Brown and Shannon.

Corollary 7 (Brown and Shannon) An equivalent family of dual Afriat inequalities,

where prices are not normalized by incomes, is the following: for   = 1 2  

such that  6= 

 −  



· ( − )−  · 

2
( − )

for 1 ≤  ≤ ; 1 ≤  ≤  . where

∇

µ




¶
=





for 1 ≤  ≤ ; 1 ≤  ≤  ., where

∇

µ




¶
= − · 

2
≡  

In Lemma 2, Brown and Shannon show that Hicksian equilibrium inequalities are

equivalent to the Walrasian equilibrium inequalities. That is, the Walrasian equilib-

rium inequalities are solvable iff the Hicksian equilibrium inequalities are solvable.
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3 An Approximation Theorem for Walrasian Markets

The best known uniform bound on the marginal utilities of income is the assumption

that consumers are endowed with quasilinear utilities. In this case, we restrict atten-

tion to rationalizing market data with Hicksian economies where  = 1. That is,

we assume the market data can be rationalized by a Hicksian quasilinear economy,

where each consumer is endowed with a smooth, monotone, convex, indirect quasilin-

ear utility function. The Hicksian quasilinear equilibrium inequalities consist of the

Hicksian equilibrium inequalities and the linear equalities:

 · (−) = 2 

The Hicksian quasilinear equilibrium inequalities is a family of linear inequalities in

 , where

=X
=1

 ≡ −
∇

³



´
∇

³



´ = =X
=1

³
− 



´
− ·

2

=

=X
=1

(−)




Hence Γ, the optimal value of the linear program , can be computed in polynomial

time, where

Γ ≡
⎧⎨⎩ min
1≤;≤0

 :
X
 6=1

(−)


≤ 

⎫⎬⎭ : 

Γ = 1 iff the market data is rationalized by a Hicksian quasilinear economy.

The importance of Hicksian quasilinear economies is that they allow us to approxi-

mate market economies, where we assume the consumer’s marginal utilities of income

 ≥ 1. The empirical justification for this assumption follows from restricting in-

comes of consumers to to be bounded above and the empirical finding of Laydard

(2008) and Elsas and Assmann (2012) that the marginal utility of income diminishes

with income, as conjectured by the classical economists. Diminishing marginal util-

ity of income is one of the theoretical justifications for progressive taxation. Hence

w.o.l.o.g. we assume that the lower bound on the marginal utilities of income for each

consumer is one. In this case, the Hicksian equilibrium inequalities are augmented by

the linear inequalities:

 · (−) ≥ 2 

If we recast the dual Afriat inequalities as the first order conditions for min-

imizing a smooth, monotone, convex indirect utility function subject to a budget

constraint defined by the Marshallian demand, then we can invoke Gauvin’s (1977)

theorem that the set of Lagrange multipliers for the budget constraint is bounded iff

the consumers optimization problem satisfies the Mangasarian—Fromovitz constraint

qualification, derived in Mangasarian—Fromovitz (1967). That is, for fixed (  )

the th consumer solves the following optimization problem ():

min
{∈

++|  ·≤1}


µ




¶
= 

µ




¶

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The Lagrangian for  is

( : ) ≡ 

µ




¶
+ 

µ



·  − 1

¶
where

 ≡ −
∇

³



´
∇

³



´ = − 


− ·
2

=


 ·  =

³
−



´




Hence the first order conditions are:




= ∇

µ




¶
= − = 





=




iff  =  

The Mangasarian—Fromovitz constraint qualification follows from Slater’s constraint

qualification for convex inequality constraints, e.g., the budget constraint. See the

Fritz John Theorem, Theorem 19.1, in Simon and Blume (1994) for the Mangasarian—

Fromovitz constraint qualification and Theorem 19.12 in Simon and Blume for Slater’s

constraint qualification.

Gauvin computes a bound Υ on the Lagrange multipliers  by solving the

following linear program:

 ≤ Υ ≡ min
{∈ | ·≤−1

∇

µ




¶
·  = ∇

µ




¶
·  

We compute a universal upper bound Θ on the  , independent of ∇ () and

 , as the optimal value of the maxmin optimization problem, where Π is the family

of dual Afriat inequalities for consumer ,

Θ ≡ max


∈Π

min
{∈ | ·≤−1}

(−)


· 

If  is the social endowment in observation  and  ≤  then Υ ≤ Θ. The
results in Brown and Calsamiglia (2007) imply that the quasilinear solutions of the

dual Afriat inequalities are characterized by the family of linear inequalities :  = 1,

hence

1 ≤ Θ
(−) and  lie in separable polyhedral constraint sets and the objective function
is bilinear. Gosh and Boyd (2003) – see section 2 on bilinear problems – show

that maximin problems with these properties can be reduced to a linear program and

solved in polynomial time. Since  =   it follows that  ≤ Θ For 1 ≤  ≤ :

Definition 8 Approximation Theorems If  () is the optimal value of a  -

 minimization problem for the input  and \ () is the optimal value of the
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approximating minimization problem for the input , then the ratio
\ ()

 ()
is bounded

above by the “approximation ratio” () ≥ 1. Hence

 () ≤ \ () ≤ () ()

where \ () and () can be computed in time polynomial in 

Lemma 9 [Approximation Lemma]: If Θ ≥  ≥ 1, then

Θ

=X
=1

 ≥
X
1

(−)


≥
=X
=1

 for 1 ≤  ≤ 

Proof.
=X
=1

 ≡ −
∇(



)

∇(


)
=

=X
=1

³
− 



´
− ·

2

=

=X
=1

(−)




If Θ ≥   1, then

Θ
X

 1

(−)


≥
X
1

(−)



X

 1

(−)




That is,

Θ

=X
=1

 ≥
X
1

(−)


≥
=X
=1

 for 1 ≤  ≤ 

Theorem 10 [Approximation Theorem]If (1) ∆ is the optimal value of the noncon-

vex program , where

∆ ≡
⎧⎨⎩ min
1≤;≤0

 :
X

 1

(−)


≤ 

⎫⎬⎭ : 

(2) Γ is the optimal value of the linear program where

Γ ≡ min
1≤;≤0

 :
X
1

(−)


≤ } : 

(3) Ψ is the optimal value of the nonconvex program  , where

Ψ ≡
⎧⎨⎩ min
1≤;≤0

 : Θ
X

 1

(−)


≤ 

⎫⎬⎭ : 

Then

() Ψ ≥ Γ ≥ ∆
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and

() Ψ = Θ∆

That is,

() Θ∆ ≥ Γ ≥ ∆

Proof. (a) follows from the approximation lemma. To prove (b) note the 1 − 1
correspondence between  and  where

→ 

Θ
≡  and → Θ ≡ 

That is,

Ψ

Θ
=

⎧⎨⎩ min
1≤;≤0

 :
X

 1

(−)


≤ 

Θ


⎫⎬⎭ =

⎧⎨⎩ min
1≤;≤0

 :
X

 1

(−)


≤ 

⎫⎬⎭ = ∆

Hence

Ψ = Θ∆

∆ = 1 iff the market data is rationalized by a Hicksian economy, where all con-

sumers are endowed with indirect utility functions with marginal utilities of income,

 ≥ 1. Γ = 1 iff the market data is rationalized by a Hicksian quasilinear economy,
where all consumers are endowed with quasilinear utility functions, i.e., the marginal

utilities of income,  = 1 Θ and Γ are optimal values of linear programs, hence

they can be computed in polynomial time using interior point methods. ∆ is an

 −  minimization problem.

Utility functions with marginal utilities of income bounded below by one are

interesting in their own right, e.g., in fields like public finance and development

economics. We close with an extension of the Brown-Calsamiglia characterization

of quasilinear utility functions, where the marginal utilities of income equal one, to

utility functions where the marginal utilities of income are bounded below by one.

Proposition 11 The market data {  }==1 is rationalized by an indirect utility

function ( ), where the marginal utilities of income

 ≡  · (−)
2

are bounded below by one, iff the following family of linear inequalities are solvable,

(1)  −  



· ( − )−  · 

2
( − )

(2)  ≥ 1 or equivalently  · (−) ≥ 2 

10



Proof. Necessity is immediate. We use Afriat’s construction for sufficiency:

( ) ≡ ∨==1

"
 +




· (− )−  · 

2
( − )

#


It follows from convex analysis that the subgradient of the max of a finite family

of convex functions is a convex combination of the subgradients of the component

functions. Since the marginal utilities of income of the component functions are

bounded below by one, the marginal utility of income of ( ) is bounded below

by one.
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