
 
 

 
 
 
 

P.O. BOX 208118 | NEW HAVEN CT 06520 -8118 USA | PEABODY.YALE. EDU 

 
 
JOURNAL OF MARINE RESEARCH 
The Journal of Marine Research, one of the oldest journals in American marine science, published 

important peer-reviewed original research on a broad array of topics in physical, biological, and 

chemical oceanography vital to the academic oceanographic community in the long and rich 

tradition of the Sears Foundation for Marine Research at Yale University. 

 

An archive of all issues from 1937 to 2021 (Volume 1Ð79) are available through EliScholar,  

a digital platform for scholarly publishing provided by Yale University Library at  

https://elischolar.library.yale.edu/. 

 

Requests for permission to clear rights for use of this content should be directed to the authors, 

their estates, or other representatives. The Journal of Marine Research has no contact information 

beyond the affiliations listed in the published articles. We ask that you provide attribution to the 

Journal of Marine Research. 

 

Yale University provides access to these materials for educational and research purposes only. 

Copyright or other proprietary rights to content contained in this document may be held by 

individuals or entities other than, or in addition to, Yale University. You are solely responsible for 

determining the ownership of the copyright, and for obtaining permission for your intended use. 

Yale University makes no warranty that your distribution, reproduction, or other use of these 

materials will not infringe the rights of third parties. 

 
This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. 
https://creativecommons.org/licenses/by-nc-sa/4.0/ 

 

 



Salt � ngers in three dimensions

by Timour Radko1 and Melvin E. Stern1

ABSTRACT
Three dimensional (3D) numerical calculations are made for a vertically unbounded � uid with

initially uniform vertical gradients of sugar (S) and salt (T), where t 5 k S/k T 5 1�3 is the diffusivity
ratio, and the molecular viscosity is n ¾ k T. The latter inequality allows us to neglect the nonlinear
term in the momentum equation, while retaining such terms in the T-S equations. The discrete 3D
Fourier spectrum resolves the fastest growing horizontal wavelength, as well as the depth indepen-
dent Fourier component. Unlike previous calculations for the pure 2D case the � nite amplitude
equilibration in 3D is primarily due to the instability of the lateral S-gradients in the � ngers, and the
consequent transfer of energy to vertical scales comparable with the � nger width. It is shown that
� nite amplitude two-dimensionaldisturbancesare unstableand give way to three dimensional � ngers
with much larger � uxes. Calculations are also made for rigid boundary conditions at z 5 (0, L) in
order to make a rough quantitative comparison with previous lab experimentswherein a � nger layer
of � nite thickness is sandwiched between two well-mixed (T, S) reservoirs.The � ux ratio is in good
agreement, and the � uxes agree within a factor of two even though the thin interfacialboundary layer
between the reservoir and the � ngers is not quite rigid because sheared � ngers pass through it. It is
suggested that future experiments be directed toward the much simpler unbounded gradient model,
for which � ux and variance laws are given herein.

1. Introduction

This paper continues the calculation of Stern and Radko (1998, cited as ‘‘SR’’ hereafter)
of the � uxes and statistics of salt � nger in an unbounded (x, y, z) domain whose
undisturbed state consists of vertically uniform property (T, S) gradients. Such a state has
been realized in a ‘‘run-up’’ experiment using the ‘‘double bucket’’ technique to build up
uniform property gradients from the bottom to the top of a tall vessel (Stern and Turner,
1969). This setup is signi� cantly different (and conceptually simpler, as will appear) from
the more common ‘‘run-down’’ experiments with two deep well-mixed layers with
different (T, S) separated from the intervening � nger region by a very thin transition region
in which the � ngers are sheared by the large-scale convective eddies in the mixed layer.
This dynamically complex transition region may exert a ‘‘control’’ (or boundary condition)
which limits both the amplitude of the vertical velocity in the � nger region and its
quantitative connection with the given (T, S) properties in the reservoirs. Also relevant (as
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mentioned in SR) is the fact that the past laboratory (4/3) � ux laws are not generally
applicable to oceanic salt � ngers since deep homogeneous layers are seldomly observed at
their extremities. In these cases the � uxes should be more directly related to the locally
averaged T-S gradient, by means of such relationships as obtained herein.

For reasons of tractability we consider the simplest parametric regime, one which is
experimentally realizable and qualitatively (but not quantitatively) related to the oceanic
case. This regime is the isothermal two-solute problem, where S represents the contribution
to the buoyancy of the lower diffusivity ( k S) solute (e.g., sugar) and T represents the higher
diffusivity ( k T ; k S/t ) solute (e.g., salt). In this case ( k T ; 1.5 3 102 5 cm2/sec is small,
compared to the viscosity n < 1 3 10 2 2 cm2/sec, so that the � nger Reynolds number
O( k T/n ) is small, and the nonlinear momentum terms are negligible (SR) compared to
buoyancy, viscous, and pressure gradient forces. This allows a great simpli� cation in the
numerical solution of the nonlinear thermodynamic equations for dS/dt, dT/dt. If the
expansion or contraction coefficients in the equation of state is absorbed in the (T, S)
symbols, then the nondimensional R 5 TZ/SZ gives the undisturbed vertical (z) density
ratio, and the sugar � nger experiments are encompassed in the parametric regime

R 2 1 5 O(1), t 5 kS /kT 5 O(1), 0 , e ;
1

Rt
2 1, v/ k T ® ` . (1)

Previous 2D calculations (SR) have almost exclusively been used in the past. An
exception is the work of Proctor and Holyer (1986) who conclude that for marginal � nger
convection with nearly zero growth rate the nonlinearly preferred mode is 2D and not 3D.
This is in con� ict with all laboratory experiments [without external shear] where 3D
� ngers are realized. In the present paper, on the other hand, the fastest growing wave is
fully resolved at � nite amplitude, and we will show that 2D � ngers are unstable to 3D
perturbations, even when the initial state 2D � ngers consists of relatively large amplitude
and chaotic structures. In Section 2d it is shown that the � nite amplitude 3D motion
consists of a chaotic horizontal planform containing a ‘‘mixture’’ of ‘‘square’’ cells and
‘‘rolls.’’ The main quantitative result (Section 4) is that the vertical � uxes and horizontal
variances in 3D � ngers are much larger than in the 2D case, at least for the R $ 1.6 range of
the computations. The � ux is primarily due to the dominant depth-independent Fourier
mode, which equilibrates (Section 3c) by energy transfer to small vertical wavelengths; the
modi� cation of the horizontally averaged T, S � elds is unimportant in this model which is
spatially homogeneous in the statistical sense.

Since our unbounded model has signi� cantly different ‘‘end conditions’’ than previous
laboratory experiments, we make calculations (Section 6) for rigid boundary conditions at
z 5 (0, L ), where T and S are also prescribed, and where very thin purely diffusive
boundary layers also appear. In this case steady 3D � ngers with square planform are
obtained with a � ux ratio in good agreement with the ‘‘reservoir’’ experiments, and the
individual � uxes agree within a factor of two.

Asymptotic calculations for e ® 0 and t ® 0 (Section 5) are also presented since these
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support the mechanistic picture and explain dependence of the � uxes on the parameters
( t , R) obtained in the � nite ( e , t ) calculations.

2. Calculations for moderate ‘‘aspect’’ ratio m

a. Formulation

As in SR the Boussinesq equations of motion are nondimensionalized using the
conventional ‘‘� nger width’’ d 5 ( k Tn /gTz)1/4 as the length scale; Tzd is the scale for both
the total ‘‘temperature’’ deviation (T 8(x, y, z, t) 1 u (z, t)) and the total ‘‘salinity’’ deviation
(S8 1 s (z, t)) from their respective undisturbed values (T, S); k T/d is the velocity scale;
d2/k T is the time scale, and n k T/d2 is the pressure scale. By de� nition the horizontal average
(denoted by a bar) of T 8 and S8 vanishes. In the limit [Eq. (1)] appropriate to sugar-salt
� ngers the Boussinesq equations reduce to

5
0 5 2 = p 1 = 2v 1 (T 8 2 S8)k (2.1a)
= · v 5 0 (2.1b)
d

dt
[T 8 1 u ] 1 w 5 = 2(T 8 1 u ), T ; T 8 1 u (2.1c)

d

dt
[S8 1 s ] 1

1

R
w 5 t = 2(S8 1 s ), S ; S8 1 s (2.1d)

where p is the departure of the pressure from the horizontal average. Two more ‘‘mean
� eld’’ equations are the de� nitions of u (z, t), s (z, t) as the horizontal averages of (T, S).
Alternatively, as in the Fourier series calculation given below, ( u , s ) appear as the zero
vertical wave number components of (T, S) in Eq. (2.1c,d).

In our unboundedT-S � eld we introduce a � nite computationaldomain which is periodic
in x, y, and z. The vertical size of this is a large multiple (µ) 2 1 of the � nger width, but the
important depth independent Fourier mode (m 5 0) is included.The fundamental horizon-
tal wavelength (k0) and its harmonics fully resolve the fastest growing wave, and its
subharmonic will be included in some calculations. These are � rst performed (Section 2)
for R 5 2.8 and for a moderate aspect ratio of µ 5 1:5, de� ned as the ratio of the horizontal
� nger wavelength to the maximum (� nite) vertical wavelength. Subsequent (Section 3)
calculations, extending to smaller aspect ratios: 1/10 , µ , 1/80 will demonstrate
convergence of the statistics. In Section 4 the calculations are extended to smaller R where
the amplitudes are larger. Quantitative results for heat � ux and temperature variance as a
function of R are given for the � xed t 5 1�3 appropriate to a sugar-salt laboratory
experiment.

Eqs. (2.1a,b,c,d) will be integrated in time using a pseudo-spectral method, in which all
the equations are inverted exactly in the Fourier space, and the aliasing error associated
with differentiation in z is removed by zero padding.The Fourier images of Eq. (2.1a,b) are
then given by the linear relation

2 k 2p3 5 im(T 83 2 S83),

1999] 473Radko & Stern: Salt � ngers in three dimensions



where A3 here denotes the Fourier amplitude of a quantity with wavenumbers (k, l, m) and
k 2 5 k2 1 l2 1 m2. The advantage of the high Prandtl number equations is that the pressure
anomaly is readily computed from the (T, S) � eld, and then the velocities are determined
by (2.1a). Time integration of Eq. (2.1c,d) performed by a fourth order Runge-Kutta
scheme and a periodic Cartesian grid with (Nx, Ny, Nz) points is used to compute the
nonlinear terms. Periodic boundary conditions for T 5 T 8 1 u and S 5 S8 1 s in x, y, and z
appropriate for the Fourier-spectral method are employed, and the size of the computa-
tional domain is systematically increased (Section 3) as µ decreases, thereby approaching
an unbounded � uid state.2

b. Time-dependent solutions

A 3D numerical calculation for the aspect ratio µ 5 1�5 was initialized with the fastest
growing linear normal mode for t 5 1�3, R 5 2.8 (see SR). The � rst experiment was
initialized using ‘‘rolls’’:

T 8 5 0.2 sin (mz) cos (kx 1 ly), (2.2)

for the horizontal planform, and the second one using ‘‘square’’ cells:

T 8 5 0.2 sin (mz) cos (kx) cos (ly), (2.3)

where k 5 l 5 k0 / Î 2, m/k0 5 0.2, and

k0 5 1 e3 2
1/4

, e 5
1

R t
2 1. (2.4)

Although this value of k0 corresponds to the maximum growth rate (SR) for long waves
(m/k0 ® 0), it is also close to the fastest growing horizontal wavelength for the � nite m
given above. In both experiments [(2.2), (2.3)] the nondimensional time step was 0.1, a
grid with (Nx, Ny, Nz) 5 8 3 8 3 32 nodes was used, and the horizontal dimensions of the
computational domain included one fastest growing wavelength (2p /k0).

For 0 , t , 100 (Fig. 1) the disturbance (2.2) grows exponentiallyand the growth rate of
3.28 3 10 2 3 is in acceptable agreement with the (linear) theoretical value (3.58 3 102 3),
considering that the initial amplitude in (2.2) is not very small. The motion remains
essentially two-dimensional until t 5 1,000, at which time the three-dimensional noise
(generated by the computer) is ampli� ed by (TZ, SZ), thereby producing the dramatic
increase of the heat � ux (Fig. 1) in the transition to the three dimensional time-dependent
regime. At any time the horizontal cross-section (Fig. 2) of the typical (T, S) � eld in this
phase consists of irregular structures which are some combination of (3D) ‘‘square cells’’
and (2D) ‘‘rolls’’ (including their higher harmonics), as constrained by the limited x, y

2. Some comparisons were made using the integrating factor technique (Canuto et al., 1987) to evaluate the
linear diffusive terms, and this method proved superior for small R (Section 4) where it allowed a larger D t (for
computational stability). But for R 5 2.8 (in this section) the two methods required the same D t, and the results
obtained by the two different methods agreed exceptionally well.
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waves. The vertical cross-sections (Figs. 3a,b) indicate the dominance of the depth-
independent (m 5 0) harmonic, and the presence of smaller scales with comparable
vertical and horizontal dimensions (referred to as ‘‘round eddies’’). The perturbation
density � eld (Fig. 3c), however, is not dominated by the m 5 0 component, but by the
‘‘round eddies.’’ Similar results have been obtained (not shown) with other initial
conditions, such as the normal mode ‘‘square cells’’ (Eq. 2.3).

As in SR 2D case, it is possible to obtain 3D steady state solutions by using a code
restricted to a sine series of Fourier components of (T, S). But when the resulting steady
state [square cell] was used as an initial condition in an unconstrained 3D calculation
(allowing for all the cosine terms includingm 5 0) an instability occurs, and the amplitude
of the heat � ux (not shown) increased dramatically; at t 5 4,000 its value Nu 5 9 was more
than two orders of magnitude larger than in the constrained steady state. The structure of
the resulting (T, S) � eld (not shown), as well as the statistically steady value of the heat
� ux, is similar to that obtained previously [in Figs. 1–3]: most of the energy is again in the
m 5 0 vertical mode, and the horizontal cross-sections reveal the complexity and irregularity of
the planform. Results similar to those above have also been obtained using smaller

Figure 1. Numerical solution of the three-dimensionalhigh Prandtl number equations for 1:5 aspect
ratio, initiated by the 2D normal mode (Eq. 2.2). The average heat � ux (Nusset number) is plotted
as a function of time. By t 5 4,000 heat � ux reaches the statisticalequilibriumvalue Nu < 9, as the
system evolves to the time-dependent three-dimensional (see Fig. 2) chaotic regime. This
instability is typical of all initial 2D conditions.
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computational domains with 1:4 and 1:2 aspect ratios (not shown); the latter calculation
suggests that the character of the system might be captured by a ‘‘low-dimensionalmodel.’’

c. Subharmonic instability

To determine the effects of the horizontal subharmonics with smaller wave numbers
(k/2, l/2) than the one of maximum growth, the following modi� cation was made. The � nal
data (t 5 7,500) for the previous run were used as the initial condition in a computational
domain twice as large (in both x and y) as the one previously used. This horizontal grid
contains two wavelengths of the fastest growing mode, and the initial condition contained a
small amplitude subharmonic (kf 5 lf 5 k0/(2Î 2)). This has the surprising effect of reduc-
ing the heat � ux to a new stable average (not shown) which is half the value that occurs in
the absence of the subharmonic. The horizontal cross-section of the resulting T � eld
(Fig. 4) still indicates the dominance of the fastest growing mode, and the vertical
cross-section (not shown) shows that the motion is still almost depth-independent.

Figure 2. The isopleths of the temperature T(x, y, 0, 10000) for the run in Figure 1 in a horizontal
cross-section at z 5 0. This illustrates the complexity of the three-dimensional (T, S) � eld in the
chaotic phase of the calculation.
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Figure 3. Vertical (x, z) cross-sectionof (a) temperature T(x, 0, z); (b) vertical velocity w(x, 0, z); (c)
density 2 r (x, 0, z) 5 T 2 S; for the run in Figure 1 (t 5 10,000). The m 5 0 mode dominates the
amplitude of the temperature and the vertical velocity; this agrees with the well known visual
signature of long, thin and ‘‘weak’’ (R 5 2.8) � ngers. The density plot emphasizes the presence of
dynamically important perturbations whose vertical scale is comparable to the width of the salt
� ngers.
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d. Horizontal planform

The horizontal planform in subsection b is limited geometrically by the fact that there
are only two fastest growing modes in the Fourier expansion, these being associated with
the orthogonal fundamental horizontal waves:

A cos (kx 1 ly 1 w 1), B cos (kx 2 ly 1 w 2), (2.5)

where A, B . 0 and k 5 1 5 k0/ Î 2 from (2.4).All the previous calculationscon� rm that the
largest amplitudes appear in these fastest growing modes (rather than their harmonics), so
that the evolution of the horizontal planform of the salt � ngers will yield either distorted
‘‘rolls’’ when A Þ B, or distorted ‘‘square cells’’ when A < B. Although this constraint is
somewhat relaxed when the subharmonic is added (Fig. 4), one would really like to add
waves with other azimuthal orientation. Nevertheless, some quanti� cation of the planform
structure can be obtained in terms of the parameter

j 5
A 2 B

Î A2 1 B2
,

Figure 4. Horizontal cross-sectionof the temperature for the subharmonic calculation in Section 4c
at t 5 2,000 and z 5 0. The isotherms indicate the dominance of the fastest growing mode, which
here is half the fundamental Fourier wavelength, µ 5 1�5.
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which indicates whether a particular � eld is mainly dominated by rolls in the x 2 y 5
constant direction (when j ® 2 1), or by rolls in the x 1 y 5 constant direction (when
j 5 1 1), or by square cells (when j ® 0). When this diagnostic was applied to the
dominant m 5 0 mode in Figure 2 the value j 5 2 0.64 was obtained. In order to see how j
changes in time we considered the evolution of the steady-state ‘‘rolls’’ (see Appendix and
Fig. 19a) when this state was used (without subharmonics) as an initial condition in an
unconstrained three-dimensional run. Figure 5 shows that the heat � ux reaches statistical
equilibrium at t 5 4,000 and then continuouslyoscillates about the mean value of Nu < 9,
but the parameter j exhibits oscillation on a remarkably larger time scale. The fastest
growing disturbance (see Appendix) on the initial steady state consists mostly of orthogo-

Figure 5. Destabilizationof the exact ‘‘rolls’’ (see Appendix). (a) The heat � ux as a function of time.
(b) The parameter j , which indicateswhether the state can be associatedwith the ‘‘rolls’’ ( j 5 6 1)
or with the ‘‘cells’’ j 5 0. Note the presence of large time scales in the variation of j re� ects
changes in geometrical orientationunaccompaniedby heat � ux. R 5 2.8.
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nal rolls (in the x 2 y 5 const direction), which explains the value of j < 2 1 near t 5 0.
Afterward the chaotic regime follows, wherein j changes irregularly. Judging from
Figure 5, the preferred (i.e., statistically more probable) values of j are 6 0.5, and the
transitions between j 5 0.5 and j 5 2 0.5 regimes occur quite rapidly.

3. Smaller aspect ratios

In order to examine the effect of increasing the largest allowed (� nite) vertical
wavelength, the vertical size of the computational domain is now systematically increased.
We shall see that very long waves do not have much effect for a certain range of R, and
therefore the moderate aspect ratio calculations adequately describe the � uxes and
variances in an unbounded � uid.

a. Convergence of the statistics

We start with the (T, S) � eld at t 5 12,650 of the previous calculation (Fig. 5), and
supplement this by a new and longer fundamental wavelength of m 5 0.1 k0 with small
initial amplitude. The vertical size of the computational domain was doubled by using 64
grid points in z (instead of 32 employed previously). The resulting nondimensional heat
� ux (not shown) decreased from an average Nu 5 9 to Nu 5 7 units at the end of this run.
The T-� eld (µ 5 1�10) in Figure 6 (t 5 2,000 units after initialization) is similar to the � nal
T-� eld for the µ 5 1�5 run in Figure 5, inasmuch as both are dominated in amplitude by the
m 5 0 harmonic (this is sometimes referred to as an elevator mode). The total disturbance
‘‘energy’’ 7 T 2 8 of the state in Figure 6 is 39.5, while 38.0 of this amount is in the m 5 0
mode, and these numbers are 25% less than those in the 1:5 case (for the run in Figure 5,
t 5 12,650). The distribution of the energy density (Fig. 7) for the T-� eld [similar in both
cases] reveals two maxima: one of them is the fundamental wavelength and the other
occurs around m 5 0.4. Since the dominant horizontal wavenumber is also k 5 0.4, this
corresponds to our ‘‘round eddy’’ (see the short coherent waves in the region of large
horizontal T-gradients in Fig. 6). In the next subsection we will show that these m < k
modes, rather than the larger amplitude fundamental or the mean � eld u , are the most
important for equilibrating the (linear) growth of the large elevator (m 5 0) mode.

Now we continue to decrease the aspect ratio by using the (T, S) � eld for Figure 6 to
initiate a new calculation with the fundamental wavenumber (in z) m 5 0.05 k0, employing
the same technique as used previously.After another t 5 2,000 time interval the heat � ux
for this run (not shown) increased back to an average value of Nu 5 9, and the oscillations
of the heat � ux became more regular. The energy spectrum is similar to that in the previous
case, except that the magnitude of the fundamental harmonic (m 5 0.05 k0) increases, and
the latter feature persists when the calculations are extended to a µ 5 1�40 and then to a 1:80
aspect ratio (not shown). But the statistically averaged heat � uxes and the total energy do
not change much when the aspect ratio is decreased as demonstrated by Table 1. The fact
that the value of the energy density in the longest resolved harmonic (m . 0) increases as
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the aspect ratio is decreased, while at the same time the total energy in all the m Þ 0 modes
does not change signi� cantly suggests that the spectrum for the unbounded(µ ® 0) system
may have an integrable singularity at m ® 0.

To examine the effect of decreasing the aspect ratio in a subharmonic calculation we
used (T, S) for the state in Figure 4 (subharmonic 1:5 calculation) and added a new and
twice longer fundamental wavelength in z, using the same procedure as previously. When
the calculation (not shown) was continued for 2,000 time units the heat � ux or Nu 5 5.0
was only slightly less than for the 1:5 calculation; the T-� eld at t 5 2,000 and the
m-spectrum were similar to those discussed above. The subharmonic calculations for µ 5
1�20 (Fig. 8) also gave similar results.

b. Instability of chaotic 2D � ngers

As a � nal indication of the ubiquitous instability of 2D � ngers we consider the very
chaotic 2D state at t 5 10,000 which SR obtained for µ 5 1�20, R 5 2.8 using the initial
condition

T 5 0.2 sin (k0x) cos (2mz) 1 0.02 sin (k0x) cos (mz) 1 0.02 sin ((k0 /2)x) cos (2mz).

Figure 6. The isopleths of the temperature T(x, 0, z, 2000) for the � nal state of the µ 5 1�10 run (see
text). Note the coherent small-scale waves in the region of large horizontalT-gradients.
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The solution at t 5 10,000 is now oriented as a role in the x 1 y 5 constant direction, and
then the calculation is continued using the three-dimensional code. Within the subsequent
interval 0 , t , 500 the (T, S) � elds (not shown) remain effectively two dimensional and
the average value of the heat � ux (Fig. 9) is close to the value of Nu < 0.1 obtained in the

Figure 7. Distribution of the ‘‘energy’’ 7 T2 8 in vertical harmonics for the 1:10 aspect ratio state in
Figure 6. The dominant m 5 0 model is not shown. The spectrum has two maxima, one of which
corresponds to the longest resolved wavelength and the other to the ‘‘round eddies’’ whose vertical
dimensionsare comparablewith the � nger width. The graph is normalized so that the area bounded
by the curve corresponds to the energy in all the m Þ 0 modes.

Table 1. Heat � ux, total energy 7 T 2 8 , and the part of energy contained in the m Þ 0 modes as a
function of the aspect ratio. The latter two were obtained by averagingover several discrete times,
whereas the heat � ux is a complete time average. Note that neither heat � ux nor the total energy
change signi� cantly as we decrease the aspect ratio.

R 5 2.8

1:5 1:10 1:20 1:40 1:80

heat � ux 9.0 6.7 8.4 8.8 8.5
total energy 48.8 39.5 43.0 40.2 41.8
energy in m Þ 0 modes 2.7 1.5 2.1 2.5 2.5
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2D calculations, but at t 5 500 the three-dimensional perturbations originating from numerical
noise have grown sufficiently to affect the heat � ux, and at t 5 3,300 this increases by a factor of
50, at which level it starts to equilibrate.This agrees with the statisticallysteady value of Nu < 5.0
obtained above for the subharmonic calculations with quite different initial conditions.

c. The mechanism of amplitude equilibration

Why is the 3D heat � ux much larger than the 2D � ux, and what prevents the m 5 0
normal mode from continually growing at the rate predicted by linear theory? One
nonlinear stabilization mechanism, such as occurs in Rayleigh-Benard convection as well
as in some constrained 2D salt � nger calculations (SR), involves the modi� cation of the
horizontally averaged T, S � elds. To estimate the stabilizing in� uence of these terms, we
reproduced some of our present calculations with a modi� ed code in which the generation
of these mean � elds ( u , s ) was suppressed by setting their value to zero at each time step.
Remarkably, this alteration did not result in any signi� cant changes in the statistically

Figure 8. The isopleths of the temperature T(x, 0, z, 1000) (the vertical cross-section) for the 1:20
aspect ratio run with subharmonics. Horizontal scale is exaggerated by a factor of 5 Î 2. The
temperature � eld is dominated by m 5 0 mode.
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steady values of the heat � ux and energy, and this proves that the m 5 0 equilibration
occurs by a different mechanism.

Another stabilization mechanism is by nonresonant (triad) energy transfer, e.g. mode
(k, l, m1) interacting with (2k, 2l, 2 m1) draws energy from the self amplifying (k, l, 0)
mode. The magnitude of this energy transfer depends on the nonlinear heat advective term
in the temperature equation:

N 5 = · (vT ) 5 = · 3 o
n

ṽ exp (inz) · o
m

T̃ exp (imz) 4 , (3.1)

where T̃(x, y, m) is the Fourier transform (in z) of T(x, y, z). The z-average of (3.1) can then
be written as

N(x, y) 5 o
n5 1,M

N0n(x, y) (3.2)

Figure 9. A highly disordered two-dimensional motion was used to initiate the three-dimensional
calculations (solid line), in which the numerical noise grows rapidly and eventually result in the
transition to the quite different regime, characterized by a larger heat � ux. When these three-
dimensional perturbationsare numerically suppressed (dashed line) the heat � ux remains small.
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where N0n(x, y) 5 = h · [ ṽ(x, y, n)T̃(x, y, 2 n) 1 ṽ(x, y, 2 n)T̃(x, y, n)], and M is the number
of vertical harmonics. Then the equation for the m 5 0 mode [T0(x, y)] is given by

­

­ t
T0(x, y) 5 2 o

n
N0n(x, y) 1 linear contribution to m 5 0,

and the growth of its energy is

0.5
­

­ t
T 0

2(x, y) 5 2 o
n

T0 (x, y)N0n(x, y) 1 linear contribution, (3.3)

where the bar denotes an (x, y) average. The plot (Fig. 10) of F(m) 5 2 T0(x, y)N0n(x, y) as
a function of m 5 nm0 (here m0 denotes the fundamental z wavenumber) for the µ 5 1�20

subharmonic run demonstrates that the mode which is most effective in equilibrating (via

Figure 10. The energy transfer function F(m) indicates the stabilizing effect of waves with different
vertical wave numbers on the amplitude of the m 5 0 mode (see text). The most effective in
suppressing the growth of this mode are the ‘‘round eddies’’ (m , 0.4), area bounded by the curve
corresponds to the total nonlinear transfer of the energy to the m 5 0 mode (as in Eq. 3.3). The
right-handside of this equationwas evaluated at equally spaced times in the 1:20 subharmonicrun,
and the results were averaged.
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negative F) the m 5 0 component has a vertical scale comparable to the horizontal one.
This small-scale wave, easily visible in Figures 6 and 8, transfers heat and salt laterally
(‘‘eddy diffusivity’’) between up and downgoing � ngers (m 5 0). This, in conjunctionwith
the lateral (T, S) gradients, equilibrates the growth of the � ngers.

Figures 6 and 8 also suggest that these small-scale waves can be interpreted as
instabilities of the horizontal temperature gradients associated with the m 5 0 mode.
Support for this view was obtained by an approximate linear stability calculation (not
presented) using a ‘‘basic’’ state in which the vertical � ngers were only growing slowly.
Then the fastest growing new wave perturbation was found to have a scale consistent with
the ‘‘round eddies’’ (i.e., m , k0).3 Since these have too small a value of (m2 1 k0

2) to draw
energy from the undisturbedmean-� eld, it is quite plausible that their energy is supplied by
the horizontal gradients in the ‘‘basic’’ salt � ngers.

Why don’t the longer waves (m # 0.2), with larger amplitude (see Fig. 7), have more of
a stabilizing (eddy diffusivity) effect on m 5 0 than the round eddies? One explanation is
that the net lateral heat and salt � ux, by the horizontal velocity (u, v) of the eddies is
proportional to the small ­ / ­ z , m, but this does not appear to be sufficient to account for
the magnitude of the effect in Figure 10. Equally important is the phase correlation between
(T, S) and u or v; this correlation is apparently larger for the round eddies (see Figs. 6, 8)
because of the energetics of the instability mechanism which produces them.

Relevant to this important point is the behavior of F(m) in the two dimensional case, as
was obtained from (SR) by averaging several T-� les at R 5 2.8. We then found (not shown)
a tendency for equilibration (F , 0) of the m 5 0 mode by the long waves (m , 0.2), and
this implies that in 2D the longer waves of larger amplitude are more important than the
round eddies, and these are able to limit the growth of m 5 0 at lower amplitudes.This may
be due to the fact that ­ u/­ x 1 ­ w/ ­ z 5 0 in 2D in which case there is a direct correlation
between u and w (or T ) which results in a lateral uT � ux. In 3D the vT � ux in the long
waves may have a compensating effect.

4. Extension to smaller R

After this rather extensive examinationof the behavior of 3D � ngers at one density ratio,
we now proceed to values below R 5 2.8. Since the calculations (Section 3) indicate that
the averaged characteristics do not change as µ/k0 is decreased below 0.2, the following
calculations are restricted to a 1:5 aspect ratio, and include a subharmonic component.As
in SR, the calculations over a range of (R, t) were expedited as indicated below.

We used the state obtained at the end of the previous subharmonic run for R 5 2.8, µ 5
1�5 to initiate a new run with R decreased to 2.6. Although the values of (T, S) at the
grid-points were not changed, the spatial separation between the grid-points was decreased
to re� ect the modi� cation of the x-wavelength of the fastest growing normal mode. The

3. A referee suggested these resemble the ‘‘lumpy’’ disturbances described by Turner and Chen (1974) in their
Figure 3.
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new calculation, carried on for an additional 1,000 time units, allowed us to obtain
approximately statistically steady values of the heat � ux and the temperature variance.
Subsequently, R was decreased four more times with initial values obtained in a similar
manner, and the integral characteristics are summarized in Table 2. For the larger R the time
step employed was 0.1, but the smaller R results in much larger amplitudes (Table 2), and
numerical stability for R 5 1.8 required a time step of 0.025.

Figure 11 reveals the temporal variation of average heat � ux in each discrete R-interval,
and the average in each interval is plotted in Figure 12 as a function of ln e . Many structural
features observed previously, such as the dominance of the m 5 0 mode and the extreme
disorder of the density � eld on the smaller vertical scales, appear in the low R regime as
well. Aside from the fact that the CPU time gets longer as R decreases, the calculationsare
only recorded in Table 2 for R $ 1.8 for the following reasons. At the end of the previous
run for µ 5 1�5, R 5 1.8 the code was modi� ed to admit a much smaller (µ 5 1�20) aspect
ratio, and then the run was continued for another 500 time units (not shown). During this
interval there were � fteen oscillations of the heat � ux about a mean value of Nu 5 120,

Table 2. Statistically steady values of the integral characteristicsas a function of R. See text.

Period of time R D t 2 av 7 wT 8 av 7 T 82 8 g 5 7 wT 8 /7 wS 8

0–1,000 2.6 0.1 18.96 74.98 0.90
1,000–2,000 2.4 0.1 41.59 124.66 0.88
2,000–3,000 2.2 0.05 63.45 208.11 0.86
3,000–4,000 2.0 0.05 96.91 307.40 0.85
4,000–5,000 1.8 0.025 151.39 437.83 0.83

Figure 11. Variation of heat � ux ( 2 Nu) with t in discrete R intervals (see text). R 5 2.6
(0 , t , 1000), R 5 2.4 (1000 , t , 2000). R 5 2.2 (2000 , t , 3000), R 5 2.0
(3000 , t , 4000), R 5 1.8 (4000 , t , 5000).
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which is 25% less than the µ 5 1�5 value. Preliminary calculations for R 5 1.6 indicated that
the difference in Nu for µ 5 1�20 and µ 5 1�5 is even larger; i.e., the long waves which do not
affect signi� cantly the heat � ux at R . 1.8 are becoming more important at smaller R. This
can also be seen in Figure 13 where a long warm � nger starts to fracture (near the bottom of
the diagram) as a portion is sheared horizontally. Thus the regime (R . 1.8) of extraordi-
narily high vertical � nger coherence is apparently changing to a new regime (R , 1.8),
with more vertically irregular (fractured, bifurcated) � ngers. On the other hand, the salt/heat � ux
ratio, as R goes from 2.0 to 1.6, increases from 1/0.85 to 1/0.80 for both µ 5 1�20 and µ 5 1�5.

If the average heat � ux, temperature variance and density � ux are assumed to satisfy
simple power laws of the form

2 av 7 wT 8 5 Ae p, av 7 T 2 8 5 B e q, av 7 w(T 2 S ) 8 5 C e r, (4.1)

then the constants may be determined from the plot (Fig. 12) of the data in Table 2 and for

Figure 12. The statistical averages, obtained from the time records (e.g., Fig. 11) are plotted as a
function of e (in each segment) in logarithmic coordinates.
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Figure 13. A vertical section of the isotherms (T(x, 0, z) for R 5 1.8 and a small aspect ratio 1:20 (the
horizontalscale is enlarged by a factor of 3)). Note the ‘‘fracture’’of the warm � nger at the bottom,
which is indicative of the onset of a regime (R # 1.6) in which the � ngers have reduced vertical
coherence.



R 5 2.8 in Section 2. The least square � t of a straight line to this data yields

p < 1.50, q < 1.27, r < 2.11.

A 5 291, B 5 742, C 5 84.

When the estimate of the slope of the curves is made from the two � rst points only (for
R 5 2.8 and R 5 2.6), the values are:

p < 1.73, q < 1.43, r < 2.71.

The signi� cance of these exponents appears in the following theoretical section, but the
reader who is more interested in the relevance of the foregoing calculations to previous
laboratory experiments may proceed to Section 6.

5. Asymptotic formulations

We shall now show that many of the foregoing features of salt � ngers are retained in an
asymptotic limit e ® 0 (R ® 1/t ), which simpli� es the governing system (2.1) from two
T-S prognostic equations to one � rst order equation (5.14), containing only one parameter
( t ). The results will supply con� dence in the foregoing numerics and their physical
interpretation.Moreover, the parametric range of this asymptotic theory is also experimen-
tally realizable using different solutes, but this range ( e ® 0) is such that calculationsusing
the more accurate equations (2.1) would be impractical.Asymptotic theory for t ® 0 (� xed
e ) is also considered.

a. The nonlinear e ® 0 equations with t 5 O(1)

The linear theory (see Eq. 2.4) indicates that the horizontal wavelength of the fastest
growing disturbance on the uniform (T, S) gradient is proportional to e 2 1/4, and for small e
the growth rate of this perturbation is O( e 3/2). This suggests transforming x and y using
e 2 1/4 as the horizontal scale, and using e 2 3/2 as the time scale. Less obvious is the question
of scaling the vertical coordinate z. Since the foregoing numerical calculations indicate that
the ‘‘round eddies,’’ with comparable horizontal and vertical dimensions are crucial for
stabilizing the dominant m 5 0 mode, we will also use e 2 1/4 as the vertical scale. (A much
larger value of the latter was suggested by SR, but the following is the more appropriate
e ® 0 theory.) The continuity equation requires that the scales of all the velocity
components u, v, and w are the same.

Let us use the pressure p as an independent variable and its scale is taken as e 3/2 for the
following reasons. The ‘‘density equation’’ formed by multiplying the salinity equation
(2.1d) with t 2 1 and subtracting the result from the temperature equation (2.1c) (as in Eq. 14
of Stern and Radko, 1998) results in a linear advection term e w, and our previous work
suggests that this is of the same order as nonlinear terms, such as w( ­ / ­ z)T. From this it
follows that the scale of the temperature (and salinity) is e 3/4. Since the diffusion term in
(2.1c) is of the same order as the linear advective term we scale the velocity components as
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e 5/4. Finally, the momentum equation (2.1a) suggests that pressure term = p is of the same
order as the viscous term = 2v, which implies scaling of the pressure as e 3/2.

These anticipated balances lead to the following formal transformations of the variables
in the temperature, salinity, momentum and continuity equations. Let

x 5 e 2 1/4x0, y 5 e 2 1/4y0, z 5 e 2 1/4z0, t 5 e 2 3/2t0 (5.1)

(u, v, w) 5 e 5/4(u0, v0, w0) 1 . . . , p 5 e 3/2p0, (5.2)

T 5 e 3/4T0 1 . . . , S 5 e 3/4S0 1 . . . . (5.3)

where (. . .) indicate higher order terms in the following expansion.
The result of taking the e ® 0 limit is as follows. The leading order ( e 5/4) balance of the

advection diffusion equations (2.1c,d) yields the diagnostic relationship

w0 5 = 0
2T0 5 = 0

2S0, (5.4)

where

= 0
2 ;

­ 2

­ x0
2

1
­ 2

­ y0
2

1
­ 2

­ z0
2

.

The physically important implication of (5.4) is that to leading order the horizontal
averages ( u , s ) of temperature and salinity are zero:

T0 5 S0 5 0. (5.5a)

Unlike the asymptotic expansion ( e ® 0) suggested by SR, these ‘‘mean � eld modi� ca-
tion’’ terms are unimportant here. Eq. (5.4) also implies

T0 5 S0. (5.5b)

From the momentum equation (2.1a) we see that the scale of the next term in the expansion
of (T, S) is e 7/4; thus the expansion (5.3) should be continued as

T 5 e 3/4T0 1 e 7/4T1, S 5 e 3/4S0 1 e 7/4S1, w 5 e 5/4w0 1 e qw1, (5.6)

where the as yet undetermined exponent q needs to be evaluated (for consistency).
The leading order balance of the momentum equation (2.1a) gives

­

­ x0
p0 5 = 0

2u0,
­

­ y0
p0 5 = 0

2v0, (5.7)

and in view of (5.5b)

­

­ z0
p0 5 = 0

2w 1 T1 2 T1 2 (S1 2 S1), (5.8)

wherein p0 5 0.
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The next order ( e 9/4) balance of the advection diffusion equations (2.1c,d), using 1/R 5
t (1 1 e ) gives the prognostic equations

­

­ t0
T0 1 = 0 · (v0T0) 5 = 0

2T1 2 w1 e
q (5.9)

­

­ t0
S0 1 = 0 · (v0S0) 1 t w0 5 t = 0

2S1 2 t w1e
q. (5.10)

By subtracting from (5.9) and (5.10) their respective horizontal averages, bearing in mind
that T0 5 S0 5 0, we get

­

­ t0
T0 1 = 0 · (v0T0) 2

­

­ z0
(w0T0) 5 = 0

2(T1 2 T1) 2 w1 e
q (5.11)

­

­ t0
S0 1 = 0 · (v0S0) 1 t w0 2

­

­ z0
(w0S0) 5 t = 0

2(S1 2 S1) 2 t w1e
q (5.12)

Now multiply (5.11) by t , subtract the result from (5.12), and use (5.8) to eliminate the
right-hand side. Since T0 5 S0, the result is

(1 2 t ) 3 ­

­ t0
T0 1 = 0 · (v0T0) 2

­

­ z0
(w0T0) 4 1 t w0 5 t = 0

2 1 = 0
2w0 2

­

­ z0
p0 2 . (5.13)

For simplicity at this point we drop the subscripts ‘‘0’’ since all the following derivation is
based on leading order variables. From (5.7), (5.4), and the continuity equation we obtain
the diagnostic equation

= h
2 p ;

­ 2

­ x2
p 1

­ 2

­ y2
p 5 2

­

­ z
= 2w 5 2

­

­ z
= 4T.

This results in the closed system of asymptotic equations:

5
(1 2 t ) 3 ­­ t

T 1 = · (vT ) 2
­

­ z
(wT ) 4 1 t w 5 t = 6T 2 t

­

­ z
= 2p (5.14a)

= h
2 p 5 2

­

­ z
= 4T (5.14b)

= 2u 5
­

­ x
p (5.14c)

= 2v 5
­

­ y
p (5.14d)

w 5 = 2T (5.14e)
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in which the only nonlinear term = · (vT ) available to equilibrate the growth of a (linear)
normal mode requires the transfer of energy to two other Fourier components (‘‘triad
interaction’’). These components are generally present in a noisy 3D system, but in a 2D
� ow there are special initial conditions (SR) where this is not the case, and in which the
mean � eld terms [(T0, S0) Þ 0] are required for equilibration. It only remains to indicate
that the exponent q (for the w1 term) can be obtained by going to the next order in the
prognostic equations (5.9–5.10), where we have terms like e 7/4( ­ S1/­ t0) e3/2 1 w1 e q, from
which q 5 13/4 (in 5.6) is determined.

The asymptotic theory therefore suggests the following scalings of heat � ux, tempera-
ture variance and density � ux:

7 wT 8 , e 2, 7 T 2 8 , e 3/2, 7 w(T 2 S) 8 , e 2.5.

or in terms of notation used in Eq. (4.1) p 5 2, q 5 1.5, r 5 2.5. Thus, the asymptotic
theory rationalizes the empirical values p 5 1.73, q 5 1.43, r 5 2.71 obtained numerically
in Section 4.

b. Numerical solutions of the e ® 0 equations

In that which follows we will numerically solve the asymptotic system of equations
(5.14) and compare the qualitative results with the numerical solutions of the � nite e
system (2.1).

We again use a pseudo-spectral code for a periodic three dimensions grid with (8, 8, 32)
points. The horizontal size of the computational domain was based on the wavelength of
the fastest growing perturbation with no subharmonics permitted, and the aspect ratio was
m/k0 5 1�5. When initialized by a small amplitude two-dimensional normal mode
[T , sin (k0(x 1 y)/Î 2) cos mz] of fastest growth, the motion soon became three-dimen-
sional due to the instabilities originating from the numerical noise.

The variation of the heat � ux in time is presented in Figure 14 in the ‘‘rescaled’’
variables [(5.1)–(5.3)], which are such that the previous heat � ux (Nu) is related to the
rescaled one (Nu0) by Nu 5 e 2Nu0. We can see that the system preserves the chaotic
character of the � nite e calculations, as well as the dominant amplitude of the m 5 0 mode
(Fig. 15). The vertical spectrum of the T-� eld (not shown) for t 5 250 again reveals the
importance of the round eddies (m 5 1) for the equilibration of this m 5 0 mode.

For quantitative comparison with the � nite e calculation we note that a small � nite e 5
0.017 gives an rms T which exceeds the e ® 0 result by 40%; this discrepancy is simply
due to the fact that the nonlinear terms are still comparable to the linear ones even through e
is so small.

c. The asymptotic theory for t ® 0, R ® ` , t R 5 O(1)

For this limit we transform Eq. (2.1) by

t 5 (1/t )t0, (u, v, w) 5 t (u0, v0, w0), (T, S, p) 5 t (T0, S0, p0), (5.15)
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and the resulting asymptotic ( t ® 0) equations become

5
0 5 2 = p 1 = 2v 1 (T 2 S8)k
= · v 5 0
w 5 = 2T
­

­ t
S 1 = · (vS) 1 b w 5 = 2S

(5.16)

where the subscripts ‘‘0’’ have been dropped.
Numerical calculations of these equations for b 5 ( t R) 2 1 5 1.071 were initiated with

the t 5 12,650 data of the run in Figure 5 rescaled according to (5.15). Then the calculation
was carried on using (5.16) for t 5 8,000 (rescaled units), and the resulting heat � ux
eventually equilibrates at Nu0 < 150, which gives

Nu < 150t 2 ( t ® 0, b 5 1.071). (5.17)

The vertical cross-section of the � nal S-� eld (Fig. 16) again reveals the dominance of the
m 5 0 mode as well as the presence of the ‘‘round eddies’’ with the vertical wavenumbers
m < k0, and the horizontal cross-section (not shown) is dominated by the fundamental

Figure 14. The heat � ux as a functionof time for e ® 0 [Eqs. (5.14)].The plot is in rescaled variables
(see text). The 2D initial state evolves to a 3D chaotic regime with much larger � ux.
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Figure 15. The isopleths at t 5 250 of the temperature T(x, 0, z) for the run in Figure 14. The motion
is dominated by the m 5 0 mode, and structure of the vertical cross-section is similar to those
observed in the calculationswith the � nite e code.
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Figure 16. The isopleths of the salinity S(x, 0, z, 8000) for Eq. (5.16). Note the dominance of the
m 5 0 mode and the presence of the smaller scale features. Structure of the salinity � eld is
remarkably similar to that which was observed in the calculationswith the � nite t system.



(fastest growing) mode.All of these features are qualitatively similar to what was observed
in the calculation with the original system (2.1). The quantitative error in the heat � ux was
80%, relative to that in Figure 5 ( t 5 1�3), but calculations using Eqs. (2.1) for t 5 1�6 with
the same b 5 (1/Rt ) 5 1.071 gave an average value of the heat � ux which reduces the error
of (5.17) to 45% as we decrease t by a factor of two; this is consistent with the scaling of
the relative error of our theory as O( t ).

6. Comparison with experiments

The only � ux measurements available to compare with our low Reynolds number theory
are in those ‘‘run-down’’ experiments in which the sugar � ngers are coupled to deep
convecting layers (with speci� ed T, S) by very thin horizontal transition regions through
which the sheared � ngers pass. To some extent the very complex dynamics in the latter
regions must control the maximum vertical velocity (and � uxes) in the � nger layer. Since
there is no such inhibition on w in our unbounded model, we expect that the latter
overestimates the � ux relative to the ‘‘run-down’’ experiment, for a given value of R in the
� nger layer. Additional calculations have, therefore, been made for rigid (w 5 0) slippery
conditions with speci� ed (T, S) at z 5 (0, L) in the expectation that this strong boundary
condition will better model the ‘‘run-down’’ � uxes at the same T, S.

Figure 17 shows the nondimensional heat � ux for an aspect ratio µ 5 � nger half
width/L 5 1/40 when R 5 1.6, and when w is constrained to be a Fourier sine series (w 5 0

Figure 17. The heat � ux as a function of time for a ‘‘rigid lid’’ experiment, the motion is initiated by
2D rolls which transformto the squarecell structureas a result of the instability. (No subharmonic.)
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at z 5 0, L). The initial disturbance was chosen to be 2D, and the 3D computer noise did
not affect the heat � ux until t . 100, at which time a transition to a steady 3D pattern
(Fig. 18a,b) with a square planform occurred.4 The � nal values of the heat � ux and � ux
ratio were

Nu 5 15, g 5 0.90, µ 5 1/40.

4. Similar 3D patterns were obtained for smaller µ, but stable 2D patterns were obtained for larger µ. Note that
in the lab experiments (referred to below) µ is not an independent parameter, but is determined by the overall T, S
differences.

Figure 18. The isotherms for the � nal steady state that appeared in the experiment in Figure 17. (a)
Horizontal cross-section indicating remarkably regular square cell structure; (b) Vertical cross-
section along the diagonal in (a). Note the presence of the thin boundary layers at the top and at the
bottom.
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In addition to reducing Nu by more than an order of magnitude from its value in the
unbounded model, the rigid solution has thin boundary layers at z 5 0, L (Fig. 18b) and
modi� ed mean � elds such that the local density ratio at z 5 L/2 increases to 2.4, as
compared with the overall R 5 1.6.

This value of g compares favorably with g 5 0.88 obtained by Griffiths and Ruddick
(1980) in their ‘‘run-down’’ experiment. Their nondimensional heat � ux is given by

Nu 5
g FS

k T D T/L
5

g (C/r )( D S)4/3

k T D T/L
5

g (C/r )( D T )1/3L

R4/3 k T

where r ; 1.05 g/cc, D T equals the overall difference in T between the two deep mixed
layers, R 5 D T/ D S, and their expansion coefficients have been absorbed in our S, T
symbols. For R 5 1.6 their Figure 4 gives

C < 0.3 3 102 3 g cm 2 2s 2 1,

and from their Figure 5b we estimate L < 2.4 cm. The initial D T for this run was 1.7 3
5.8%, and we estimate at the time of Figure 5b the value of D T is reduced by half, or D T
1.7 3 0.058/2 5 0.049 (n.b. Nu only depends on ( D T )1/3).

To estimate the experimental aspect ratio µ we turn to Figure 19 in Shirtcliffe and Turner
(1970), which at L 5 2.4 cm gives a � nger half width of 0.13/2, or µ 5 (0.13/2)/2.4 5 1/37,
which is close to the value (1/40) used in our calculation. Based on an overall R 5 1.6 we
then get

Nu 5
(0.88)(0.3/1.05)102 3(0.049)1/3(2.4)

(1.6)4/3(1.5 3 10 2 5)
5 7.9

which is half the value in our rigid lid model. Lambert and Demenkow (1972, p. 639) have
found ‘‘for a typical experiment FS(kS D S/L) 2 1 is of the order of 50.’’ Therefore, Nu 5
50 t g /R < 50(1/3)(0.88)/1.6 5 9. Although the appropriate R is uncertain in this
experiment, the � ux is consistent with Griffiths and Ruddick (1980), and consistent with
our model containing a rather strong rigid boundary condition.

7. Conclusions and suggestions

For small aspect ratio (µ) two-dimensional salt � ngers are highly unstable to three-
dimensional perturbations, and the latter have statistically steady values of the convective
heat � ux Nu ; 2 7 wT 8 and temperature variance 7 T 2 8 which are much larger than those in
the two-dimensionalcase (SR). The unconstrained two-dimensional calculationsmay be of
interest only when a strong external shear (Kunze, 1994) is present.

All of the simulations in the unconstrained 3D regime are characterized by dominant
vertical (m 5 0) mode, whose nonlinear equilibration is due to the relatively small
amplitude (‘‘round eddies’’) modes with vertical scale comparable to the � ngerwidth; these
eddies absorb energy from the m 5 0 mode via the classical ‘‘triad mode interaction’’
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mechanism. The convective modi� cation of the horizontally averaged T, S � elds is small,
and has an insigni� cant nonlinear stabilization effect. In the (R, t ) range considered the
statistical averages of heat � ux and temperature variance were found to be insensitive to
the increase of the fundamental vertical wavelength, indicating convergence of these
averages, and validating the vertically unbounded model.

Most of our calculations concentrated on the parameters t 5 1�3, R 5 2.8, and the
extension to 1.8 # R # 2.6 (Section 4) showed that the � nger structure is similar. The � ux
values are summarized in Table 2, and Eq. (4.1) gives the approximate empirical formulas
for the statistically averaged values of the heat � ux, density � ux and the temperature
variance as functions of e (for 0.07 , e , 0.88). For smaller values the asymptotic ( e ® 0)
(R ® 1/ t ) theory (Section 5) is qualitatively useful in verifying and understanding the
mechanism of nonlinear stabilization.

Although past laboratory experiments involve intractable boundary conditions, an
approximation to these (Section 6) yields very good agreement for the � ux ratio g , and the
individual � uxes agree within a factor of two. Nevertheless it is suggested that future
experiments be made to test the unbounded model, which gives the � ux (or the horizontal
variances) as a function of the local average T-S gradients.
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APPENDIX

A rigorous demonstration of the 3D instability of steady 2D rolls

An exact steady 2D equilibrium state (as well as an exact 3D state) with vertical
velocities satisfying ‘‘rigid’’ boundary conditions w 5 0 at z 5 0, L can be obtained
numerically in terms of a Fourier sine series for (T, S) (excluding all cosine terms,
including m 5 0). We made such calculations with the 3D code for µ 5 0.2 and for
parameters (t , R, D x, D y, D t, . . .) corresponding to those in Section 2. The resulting steady
temperature � eld (Fig. 19a) normal to the rolls is the same as obtained by SR using a 2D
code. We now want to show that this true equilibrium is linearly unstable when all Fourier
components (including cosine terms) are allowed as perturbations in the 3D code. The
fastest growing normal mode was computed as follows.

The system (2.1) was linearized about the steady state 5 T* , S* , v* 6 to obtain

5
0 5 2 = p̂ 1 = 2v̂ 1 (T̂ 8 2 Ŝ8)k,
= · v̂ 5 0
­

­ t
T̂ 1 = · (v̂T* ) 1 = · (v* T̂ ) 1 ŵ 5 = 2T̂

­

­ t
Ŝ 1 = · (v̂S* ) 1 = · (v* Ŝ) 1

1

R
ŵ 5 t = 2Ŝ

(A.1)

where 5 T̂, Ŝ, v̂ 6 is a small 3D disturbance. These equations were numerically integrated
using Figure 19a for 5 T* , S* , v* 6 . The pseudo-spectral method used to compute 5 T̂, Ŝ, v̂ 6 is
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Figure 19. (a) The experiment with the rigid lid code initiated by ‘‘rolls’’ (Eq. 2.2) with aspect ratio
1:5 yields a steady state as given by the vertical cross-sectionof temperature (T* ), in the direction
normal to the orientationof the ‘‘rolls.’’ (b) Isotherms T̂ (x, y, 0) of the fastest growing disturbance
at z 5 0 (for the steady state consisting of the 2D rolls in Fig. 19a). This disturbance can be
associatedwith ‘‘rolls’’ oriented normal to the basic state rolls.
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similar to the one used in Sections 2–5, and corresponds to the unconstrained system
without subharmonics (i.e., the horizontal size of the computational domain equals the
wavelength of the fastest growing mode (2.4)). The fastest growing normal mode was
obtained by introducing a norm of the disturbance a 5 7 T̂ 2 8 1/2, and computing it at � xed
intervals of time tint. When calculations were initiated by a random initial condition for
(T̂, Ŝ) after a while the norm ‘‘a’’ started to increase by equal amounts:

lim
t® `

a(t 1 tint)

a(t)
5 const 5 exp (l tint). (A.2)

This means that the disturbance is eventually dominated by the fastest growing normal
mode, and Figure 19b shows the temperature eigenfunctions in the regions z 5 0, L of
strong gradients. These perturbations may be described as (mainly) secondary rolls aligned
normal to the basic � eld rolls. The growth rate l 5 0.039 is an order of magnitude larger
than the maximum growth rate (0.0036) of the primary instability in a completely
undisturbed initial state with uniform vertical gradients. This indicates that the energy for
this secondary instability is mostly supplied by the large local mean � eld gradients of the
steady state in the boundary layers (see Fig. 19a) rather than by the basic (T, S) gradient.
Especially noteworthy is the fact that the fastest growing perturbationof these 2D solutions
is fundamentally three-dimensional.
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