
 
 

 
 
 
 

P.O. BOX 208118 | NEW HAVEN CT 06520 -8118 USA | PEABODY.YALE. EDU 

 
 
JOURNAL OF MARINE RESEARCH 
The Journal of Marine Research, one of the oldest journals in American marine science, published 

important peer-reviewed original research on a broad array of topics in physical, biological, and 

chemical oceanography vital to the academic oceanographic community in the long and rich 

tradition of the Sears Foundation for Marine Research at Yale University. 

 

An archive of all issues from 1937 to 2021 (Volume 1Ð79) are available through EliScholar,  

a digital platform for scholarly publishing provided by Yale University Library at  

https://elischolar.library.yale.edu/. 

 

Requests for permission to clear rights for use of this content should be directed to the authors, 

their estates, or other representatives. The Journal of Marine Research has no contact information 

beyond the affiliations listed in the published articles. We ask that you provide attribution to the 

Journal of Marine Research. 

 

Yale University provides access to these materials for educational and research purposes only. 

Copyright or other proprietary rights to content contained in this document may be held by 

individuals or entities other than, or in addition to, Yale University. You are solely responsible for 

determining the ownership of the copyright, and for obtaining permission for your intended use. 

Yale University makes no warranty that your distribution, reproduction, or other use of these 

materials will not infringe the rights of third parties. 

 
This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. 
https://creativecommons.org/licenses/by-nc-sa/4.0/ 

 

 



Journal of Marine Research, 50, 367-384, 1992

Surface-intensified Rossby waves over rough topography

by R. M. Samelson 1

ABSTRACT
Observations and numerical experiments that suggest that sea-floor roughness can enhance

the ratio of thermocline to abyssal eddy kinetic energy, motivate the study of linear free wave
modes in a two layer quasi-geostrophic model for several eases of idealized variable bottom
topography. The foeus is on topography with horizontal seale comparable to that of the waves,
that is, on "rough" small-amplitude topography. Surface-intensified modes are found to exist
at frequencies greater than the flat-bottom baroclinic cut-off frequency. These modes exist for
topography that varies in both one and two horizontal dimensions. An approximate bound
indicates that the maximum frequency of the surface-intensified modes is greater than the
baroclinic cut-off by a factor equal to the total fluid depth divided by the lower layer depth. For
fixed topographic wavenumber, there is not a simple dependence of the degree of surface-
intensification on topographic amplitude, but rather a resonant structure with peaks at certain
topographic amplitudes. These modes may be resonantly excited by surface forcing.

1. Introduction
The past twenty years have seen considerable progress in our knowledge and

understanding of the geographical distribution of eddy energy in the ocean. The
main features evident in early maps based on ship drift data (Wyrtki et al., 1976) and
XBT casts (Dantzler, 1977) have been borne out by later compendia of drifter tracks
and direct current meter measurements (Schmitz et al., 1983). There are eddy energy
maxima near the intense western boundary currents and along the equatorial
waveguides, and expansive minima in the eastern and central regions of the ocean
basins. Instabilities of the boundary currents evidently cause the maxima (Schmitz
and Holland, 1982), and winds likely force mesoscale activity that is significant in the
basin interiors (Muller and Frankignoul, 1981; Samelson, 1990), but much remains to
be learned about the dynamics that determine the distribution.

Still poorly understood is the vertical distribution of eddy energy. In general, eddy
energy is 'surface-intensified,' that is, larger above the thermocline than below.
There are exceptions, such as the energetic recirculation regions of the western
boundary currents, where deep eddy energy levels evidently can approach ther-
mocline levels (Schmitz, 1978). In the less energetic basin interiors, linear quasi-

1. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, U.S.A.
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Figure 1. The ratio of thermocline and abyssal eddy kinetic energy (EKEsoo/EKE4000) versus

nondimensional rms topographic roughness (00) for the data from Dickson (19H3).

geostrophic theory should be more appropriate, but the resulting criterion for the
maximum frequency of baroclinic linear free waves is inconsistent with existing
observations of surface-intensified eddy energy at higher frequencies. This inconsis-
tency has plagued modelling efforts such as those of Muller and Frankignoul (1981)
and Samelson (1990), who were unable to predict vertical structure correctly, despite
accurate predictions of some other aspects of the interior eddy field.

There is evidence that sea-floor roughness on horizontal scales comparable to
those of the eddies contributes to the observed surface intensification of eddy energy.
Wunsch (1983) suggested that the decay with depth of eddy kinetic energy is
enhanced by sea-floor roughness, based on an analysis of five one-year current meter
moorings in the North Atlantic. Dickson (1983) presented a more comprehensive
compendium of eddy kinetic energy observations from 35 moorings for which
long-term current meter records were available near both 500 m ("thermocline")
and 4000 m ("abyssal") depths. (These included the records considered by Wunsch
(1983).) Dickson examined the dependence of the ratio of the thermocline to abyssal
eddy kinetic energy (a measure of surface intensification) on root-mean-square
thermocline velocity and on the ratio of root-mean-square thermocline velocity to
root-mean-square local (100 km radius) bottom depth variation divided by the
bottom depth. In the second case, there was a trend toward relatively weak abyssal
flow for small values of the velocity-to-roughness ratio, and toward vertically uniform
eddy energy for large values of this ratio. Dickson cited this as evidence for the early
ideas of Rhines (1977), who proposed such a rule on the basis of numerical
experiments. However, the variation in root-me an-square velocity was not large.
Dickson's energy ratios have been replotted in Figure 1 versus the topographic
roughness parameter alone. The trend toward relatively weak abyssal flow for large
roughness is clearly evident, though it appears that roughness is necessary rather
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than sufficient for surface intensification. The results of recent numerical experi-
ments show a similar dependence on topographic roughness, both in primitive
equation (Boning, 1989) and quasi-geostrophic models (Owens and Bretherton,
1978; Treguier and Hua, 1988).

Theoretical understanding of the effect of topography on vertical structure is
limited. Rhines (1970), Suarez (1971), McWilliams (1974), and Hogg and Schmitz
(1980) have considered linear quasi-geostrophic vertical modes over topography, but
have restricted attention to topography of horizontal scale large (or small) compared
to the wave. They find a surface-intensified mode, but its frequency is too low to
provide a convincing explanation for the observations, particularly given the restric-
tion to large-scale topography. The interaction of mesoscale ocean currents with
topography of comparable horizontal scale is not well understood. Such topography
may be appropriately termed "rough," though it may still have small amplitude
relative to the fluid depth.

With this motivation, the purpose of the present study is to consider a simple
quasi-geostrophic model of linear free waves in the presence of rough topography,
that is, topography with horizontal scale comparable to that of the waves. Of
particular interest is the question, can bottom roughness cause surface intensifica-
tion at frequencies higher than the cut-off for flat bottom baroclinic waves?

The model is developed in Section 2, and the main results are given in Section 3.
Section 4 is a summary.

2. Model formulation
The ocean will be represented by two homogeneous fluid layers of different

densities, governed by quasi-geostrophic dynamics. Quasi-geostrophy is a consistent
approximation for low-frequency, large-scale motions over small-amplitude topogra-
phy (Pedlosky, 1979). The two-layer model is the simplest representation of density
stratification appropriate for the open-ocean thermocline, and the ratio of upper- to
lower-layer wave amplitudes provides a simple measure of vertical structure that can
be compared in a natural way to the thermocline-abyssal eddy kinetic energy ratios
discussed above. Since the topographic effect has been observed over topography of
relatively small amplitude (8D < 10-\ in Fig. 1) and in quasi-geostrophic models
(Treguier and Hua, 1988), the quasi-geostrophic restriction to small topography
should not be of consequence.

The non dimensional linear quasi-geostrophic potential vorticity equations are
(Pedlosky, 1979)

a a$lat [V2$1 - F\($\ - $2)] + f3~ = 0 (la)

a a$2 a$2 ah a$2 ahat [V2$2 - F2($2 - $\)] + f3~ + ~ ay - ay ax = 0 (1b)
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wherex andy are horizontal coordinates, t\1j is the streamfunction in layerj (j = 1,2),
Fj = J2L2/(g'Dj),fis the Coriolis parameter and 13 = dfldy, L is a length scale,g' is
the reduced gravity based on the density difference between the two layers, and Dj is
the mean depth of layer j. The bottom topography h = h* l(eD2), where h* is the
dimensional topographic variation and E = UI(fL) is the Rossby number for a
characteristic velocity U.

A natural choice for the bottom topography is that of sinusoidal corrugations. Two
such cases will be considered,

and

Case I: h = 8 sin ly

Case II: h = 8 sin Ia.

(2a)

(2b)

Rhines and Bretherton (1973) solved for the free waves over sinusoidal corrugations
in a barotropic (single homogeneous layer) model, noting that the resulting second-
order differential equation for the horizontal structure of the mode was a Mathieu
equation, which has well-known properties. The present analysis is similar in spirit,
but requires numerical solution of the higher-order equations that result in the
two-layer case.

In case I, solutions may be sought in the form

(3)

This leads to the fourth-order set of equations

for the mode amplitudesAj(y), where

IX = -8kllw.

(4a)

(4b)

(4c)

(4d)

The choiceL = (g'D])l/2/fmay be made without loss of generality, so thatFl = 1.
In case II, solutions may be sought in the form

(5)
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resulting in the eighth-order set of equations

for the mode amplitudes Bj(x). Here also the choice FI = 1 may be made without loss
of generality, and ex is again given by (4d).

Periodic solutions (with periods 2'Tr/l and 2'Tr/k, respectively) of (4) and (6) were
found numerically by using a downhill simplex method (Press et al., 1986) to solve the
Floquet-theory problem. The periodic solutions correspond to free wave solutions of
(1) of the form (3) and (5), for topography (2a) and (2b), respectively. A check on the
existence of one of the topographic modes was performed by using a linear spectral
quasi-geostrophic numerical model with leapfrog time-stepping and spectral trans-
forms for the topographic terms. These calculations also serve to illustrate how the
modes may be resonantly forced, and are discussed in Section 3e.

Finally, to verify that the results are not limited to topography that varies in only
one horizontal dimension, the case of two-dimensional topography,

Case III: h = l) cos kx cos Iy, (7)

was briefly considered. Solutions were obtained by spectral decomposition of the
streamfunctions,

I!Jj = (L AjK~ei(KX+AY») e-iw/

resulting in the matrix eigenvalue problem

where

(8)

(9a)

(9b)

(9c)

&KI1 = 1 if K = jJ.. and 0 otherwise, and HK~l1v is a matrix describing the topographic
interaction. The eigenvalue problem (9) was solved numerically using standard
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routines. The topography (7) reduces to the previous cases (with a spatial phase
shift) for k = 0 or I = 0, which allowed a check on the numerics.

3. Results
a. Case I: h = 3 sin Iy. For case I, the topography is given by (2a), and the Eqs. (4)
must be solved for the free wave mode (3). For topographic wavenumber 1= 1 (and
F1 = 1), results were obtained for F2 = 1 and F2 = 0.33, corresponding to layers of
equal depths and to a bottom layer depth three times the upper layer depth,
respectively. Meridionally-periodic solutions with period equal to the topographic
wavelength were found for b2 as a function of ex. Figure 2 shows b2 versus ex for some
of these solution sets, and resembles the classical parameter plane of the Mathieu
equation. (Since the present equations are of higher order, however, the sets of
periodic solutions need not divide the parameter plane into 'stable' and 'unstable'
regions, as they do for the Mathieu equation.) The limit ex ~ 0 corresponds to
vanishing topographic amplitude (3 ~ 0), and the solutions approach the familiar
flat-bottom barotropic and baroclinic modes in that limit. The meridional structure
of these limiting modes is sinusoidal, but the meridional wavenumber is restricted by
the condition that the solution be periodic with the topographic wavelength: For
topographic wavenumber I = 1, the meridional wavenumber must be an integer n.
Substituting the flat-bottom dispersion relations into (4c) gives the quantization
conditions

b2=ln2n2+F +F)1, 1 2' n = 0, 1, 2, ....

for the barotropic and baroclinic modes, respectively. Thus, in the limit a ~ 0, the
solutions in Figure 2 approach barotropic modes at b2 = (0,1,4,9] and baroclinic
modes at b2 = !2, 3, 5, 111, and these have meridional wavenumber n = (0, 1, 2, 3].As
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the topographic amplitude 8 and the interaction parameter a increase from zero, the
vertical and meridional structure of the modes changes (though the meridional
periodicity is maintained), and two separate modes emerge from each flat-bottom
mode with meridional wavenumber n > O.

Although all the solution sets shown in Figure 2 are potentially of oceanographic
interest, attention will be confined here to those which exhibit surface intensification
at frequencies above the flat-bottom baroclinic cut-off. The cut-off frequency, the
highest frequency of free baroclinic modes in the absence of topography, occurs for
flat-bottom modes with meridional wavenumber n = 0 (and k2 = F. + F2), while the
topographic modes (for a > 0) all have non-trivial meridional structure, so this
condition is stringent. Nonetheless, it is satisfied by some of the solutions in the set
denoted by the thick line in Figure 2. As a ~ 0, these solutions asymptote to the
flat-bottom baroclinic mode with meridional wavenumber n = 1, so they may be
considered topographically-modified baroclinic waves. No other solutions in Figure 2
satisfy this condition.

The solutions of (4) depend only parametrically on the zonal wavenumber k. For
given k, the frequency wi 13 may be obtained from b 2 by (4c) and the topographic
amplitude 8113 from a and wi 13 by (4d). The resulting values of wi 13 for the free waves
associated with the solutions shown as the thick line in Figure 2 are contoured in
Figure 3a. The dashed line in Figure 3a is the cut-off frequency versus k for baroclinic
free waves over a flat bottom (which occurs for zero meridional wavenumber). The
ratio EI/E2 of the upper and lower layer kinetic energies for the solutions in
Figure 3a is contoured in Figure 3b. Note the large region of surface-intensified
(energy ratio> 1) free waves with frequency greater than the baroclinic cut-off. The
frequency and energy ratio for these solutions are contoured versus the topographic
interaction parameter ex in Figures 3c and 3d. The dependence on ex is simpler than
that on the topographic amplitude 8/13 (Figs. 3a and 3b). For fixed k, the frequency
tends to increase with a, while for fixed a, the energy ratio increases with Ik I.

The upper and lower layer streamfunctions at t = 0 for the solution with a = 20,
b2 ;::: 1, are shown in Figure 4. The dominant horizontal scale of the motion is much
larger in the upper layer than the lower layer. In the lower layer, there are large
regions of weak flow on the north slopes of the ridges (recall the solution is
doubly-periodic), and regions of more energetic but still weak smaller-scale flow on
the south slopes. The flow in the upper layer is directed almost entirely across the
ridges. Although the parameter 8/13 = 10 for this solution, the corresponding
dimensional scales are physically reasonable: choosing L = 45 km, U = 5 cm s-I,f =
10-4 S-1 and D2 = 2000 m gives a dimensional topographic amplitude of 200 m.
Qualitatively, the mode has wavenumber-O meridional structure in the upper layer
and wavenumber-2 in the lower layer, so its meridional structure differs considerably
from that of the wavenumber-1 flat-bottom mode to which it asymptotes as a ~ O.
The wavenumber-O and wavenumber-2 components will decrease smoothly (though
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Figure 3. (a) Contours of frequency w/f3 versus zonal wavenumber k and topographic
amplitude 0/f3 for the solutions shown as the thick line in Figure 2. The dashed line is the
maximum frequency for baroclinic free waves over a flat bottom for F1 = F2 = 1. (b)
Contours of the ratio of upper- to lower-layer kinetic energy versus k and 0/f3 for the modes
in (a). The dashed line from (a) is also shown. (c) As in (a) but versus k and lx. (d) As in (b)
but versus k and lx.

not necessarily at a uniform rate) as ex and the topographic amplitude approach zero,
leaving the wavenumber-l meridional structure of the flat-bottom mode.

The frequency and energy ratio for solutions with F 2 = 0.33 are shown versus k and
0/13 in Figure 5. These are qualitatively similar to the solutions for F2 = 1 (Fig. 3).
The surface intensification is greater, but this is at least in part a kinematic effect,
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since the lower layer flow is distributed over a layer three times as deep as the upper
layer. The amount by which the maximum frequency of the surface intensified modes
exceed the baroclinic cut-off is less than for the equal layer depth case, as the cut-off
frequency increases (to w/13 = 0.43) but the topographic mode frequencies do not.

b. Case II: h = 8 sin kx. For case II, the topography is given by (2b), and the Eqs. (6)
must be solved for the mode (5). Results were obtained (with FJ = 1) for topographic
wavenumber k = 1, fixed meridional wavenumber I = 0.25, and for Fz = 1 and Fz =
0.33. Note that the meridional wavenumber I must be specified to solve (6), in
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Figure 4. (a) Upper and (b) lower layer streamfunctions at I = 0 for the solution in Figure 2
with a = 20, b2 == 1.

contrast to the parametric dependence of (4) on the zonal wavenumber. Periodic
solutions were found for w/13 as a function of a. Figure 6 shows some of these
solution sets. The vertical lines in Figure 6 indicate the baroclinic cut-off frequencies
for flat-bottom waves for F2 = 1 (solid) and F2 = 0.33 (dashed). For small a, the
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mode frequencies are below the cut-off, but quickly rise above it for ex of order one.
The topographic amplitude 3/r3 may again be obtained from (4d).

The energy ratio Ed E2 for the solutions in Figure 6 shows complex dependence on
frequency (Fig. 7a), but is greater than one for frequencies up to nearly 1.5 times the
cut-off. Thus, surface-intensified modes exist at frequencies above the baroclinic
cut-off for this topography also, indicating that the relative alignment of the ridges
and the planetary vorticity gradient is not crucial to the effect. For fixed wavenumber,
the dependence of Ed E2 on topographic amplitude has a resonant structure, with
sharp peaks at certain topographic amplitudes (Fig. 7b). The dependence on the
topographic interaction parameter ex is similar (Fig. 7c).
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The upper and lower layer streamfunctions at t = 0 for the solution in Figures 6
and 7 with F2 = 1 are shown in Figure 8 for &/f3 = 2.73. This mode has wf13 = 0.488.
In contrast to the solution shown in Figure 4, the horizontal scales of the upper and
lower layer motions are similar in this case. The flow in both layers has significant
components directed across the ridges. As the topographic amplitude approaches
zero, the F2 = 1 mode approaches the flat-bottom barotropic mode with zonal
wavenumber 3 (and frequency w/f3 = 0.33). This mode could be considered a
topographically-modified barotropic wave. The F2 = 0.33 mode, however, ap-
proaches the flat-bottom baroclinic mode with zonal wavenumber 1 (and frequency
w/f3 = 0.42). This mode could be considered a topographically-modified baroclinic
wave.

c. Case Ill: h = & cos kx cos fy. For case III, the computational demands were
considerably greater than for the two cases, and consequently only a few solutions
were obtained, guided by the previous results. The object of these calculations was to
demonstrate that surface-intensified modes can occur as well for topography· that
varies in both horizontal dimensions.

Solutions were obtained for & = 2.73, k = 1 (as in Section 3b, with f3 = 1) and I =
0.0625. The upper- and lower-layer streamfunctions at t = 0 for the surface-
intensified mode with w = 0.492 are shown in Figure 9. The upper- to lower-layer
energy ratio is only 3.1 for this case, so the surface-intensification is not as great as for
the previous cases shown, but here no attempt has been made to optimize this ratio
over topographic amplitude or any other parameter. The dominant horizontal scales
of the free wave mode are the topographic scales.

Numerical solutions were obtained for 16 x 16, 18 x 18, 20 x 20 and 22 x 22
resolutions. The frequency of the mode shown in Figure 9 (22 x 22 resolution)
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varied by less than 0.1% between these calculations, while the ratio of upper to lower
layer amplitudes varied by as much as 10%, but with no consistent tendency as the
resolution increased.

d. A frequency upper bound. A rough estimate of the maximum frequency for a
surface-intensified free wave in the two layer model may be made by simply
neglecting the contribution of the lower layer disturbance to the upper layer
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potential vorticity balance. If the lower layer streamfunction is order -y relative to an
upper layer streamfunction, then (1a) reduces to

(10)

For a free wave mode, the substitution 1jI] = Aei(kx+ly-wt) leads to the dispersion
relation

13k
w = - k2 + f2 + FI + O(-y). (11)

In the absence of topography, the baroc1inic wave solutions of (1) have dispersion



1992]

a)

Samelson: Suiface-intensified Rossby Waves

b)

381

16

8

16

o
o

X/21T
4 o

x/2rr
4

o

Figure 9. (a) Upper and (b) lower layer streamfunctions for case III with 0 = 2.73, k = 1, 1=
0.0625, and FI = F2 = 1.

relation,

(12)

The ratio of the maximum surface-intensified wave frequency to the maximum
flat-bottom baroclinic wave frequency is then, to first order in 'Y,

(13)

which depends only on the stratification parameters Fl and F2 (or, equivalently, on
the depths Dl and D2). For Fl = 1, Rmax = 2 for F2 = 1, and Rmax = 1.33 for F2 = 0.33.
These estimates are consistent with the results obtained in the specific examples
above, for which 0 « 'Y ::; 1.
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e. Resonant response. The surface-intensified free wave modes discussed in Section 3
may be resonantly excited by forcing with the proper spatial structure and frequency
in the presence of bottom topography. Figure 10 shows the equilibrium upper and
lower layer kinetic energy response in a linear spectral quasi-geostrophic model in
which the upper layer streamfunction is forced, for several different topographic
amplitudes, with the spatial structure (Fig. 4) and frequency (w = 0.488) of the mode
from Section 3b (for ~ = 1)withF2 = 1 and 8 = 2.73. The sharp resonant response is
evident, as the response increases by more than two orders of magnitude as the
resonance at 8 = 2.73 is approached. Clearly, the extent to which such modes are
excited will depend on the relative fraction of the forcing that is resonant. The
resonant character of the response, and the complex dependence of the surface-
intensified modes on topographic amplitude (for fixed wavenumber and stratifica-
tion, as in Section 3), suggest that a simple relationship between topographic
amplitude and surface intensification cannot be expected.

4. Summary

Observations and numerical experiments that suggest that sea-floor roughness can
enhance the ratio of thermocline to abyssal eddy kinetic energy motivated the
analysis of a simple quasi-geostrophic model for free waves over topography of
horizontal scale comparable to that of the waves. Surface-intensified free waves exist
in the model at frequencies above the cut-off for flat-bottom baroclinic waves. An
approximate bound indicates that the maximum frequency of these surface-
intensified waves is greater than the baroclinic cut-off by a factor equal to the total
fluid depth divided by the lower layer depth.

For fixed topographic wavenumber, there is not a simple dependence of the degree
of surface-intensification on topographic amplitude, but rather a resonant structure
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with sharp peaks at certain topographic amplitudes. These modes may be resonantly
excited by surface forcing. As the topographic amplitude approaches zero, one of the
surface-intensified wave modes approaches a flat-bottom baroclinic mode, while
another approaches a flat-bottom barotropic mode. Surface-intensified modes exist
for topography that varies in both one and two dimensions.

The sinusoidal topography considered here is highly idealized, but similar modes
likely exist for more complex bottom geometries. It seems likely that the enhanced
ratio of thermocline to abyssal eddy kinetic energy observed in current meter records
over rough sea-floors, and in recent numerical experiments with random topography,
is due at least in part to the excitation of planetary-topographic wave modes with
similar dynamics (though the relevant topographic horizontal scales will often be
smaller than the scales at which the atmospheric forcing is most energetic). The
approximate frequency bound suggests that these linear surface-intensified modes
can exist only up to frequencies about 35% greater than the baroclinic cut-off, for
layer depths appropriate to most of the ocean basin interiors. Further efforts to
understand this phenomenon should consider the effect of nonlinearity, which has
been neglected here.

Acknowledgments. This research was supported by the Office of Naval Research, Grant
NOOOI4-91-J-1570,Code 1122ML. Computational resources were provided by the Woods
Hole Oceanographic Institution. M. Lucas typed the manuscript. This is contribution no. 8005
of the Woods Hole Oceanographic Institution.

REFERENCES
Boning, C. 1989. Influences of a rough bottom topography on flow kinematics in an eddy-

resolving circulation model. J. Phys. Oceanogr., 19, 77-97.
Dantzler, H. L. 1977. Potential energy maxima in the tropical and subtropical North Atlantic.

J. Phys. Oceanogr., 7, 512-519.
Dickson, R. R. 1983. Global summaries and intercomparisons: flow statistics from long-term

current meter moorings, in Eddies in Marine Science, A. Robinson, ed., Springer-Verlag,
New York, 609 pp.

Hogg, N. G. and W. J. Schmitz, Jr. 1980. A dynamical interpretation of low frequency motions
ncar very rough topography-the Charlie Gibbs Fracture Zone. J. Mar. Res., 38, 215-248.

McWilliams, J. C. 1974. Forced transient flow and small scale topography. Geophys. Fluid
Dyn.,6,49-79.

Muller, P. and C. Frankignoul. 1981. Direct atmospheric forcing of geostrophic eddies. J. Phys.
Oceanogr., 11, 287-308.

Owens, W. B. and F. P. Bretherton. 1978. A numerical study of mid-ocean mesoscale eddies.
Deep-Sea Res., 25, 1-14. .

Pedlosky, J. 1979. Geophysical Fluid Dynamics, Springer-Verlag, 624 pp.
Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. 1986. Numerical Recipes:

The Art of Scientific Computing, Cambridge University Press, New York, 818 pp.
Rhines, P. B. 1970. Edge-, bottom-, and Rossby waves in a rotating stratified fluid. Geophys.

Fluid Dyn., 1, 273-302.



384 Journal of Marine Research [50,3

-- 1977. The dynamics of unsteady currents, in The Sea, 6, E. Goldberg, I. McCane, J.
O'Brien and J. Steele, eds., Wiley, 189-318.

Rhines, P. and F. Bretherton. 1973. Topographic Rossby waves in a rough-bottom ocean. J.
Fluid Mech., 61, 583-607.

Samelson, R. M. 1990. Evidence for wind-driven current fluctuations in the eastern North
Atlantic. J. Geophys. Res., 95(C7), 11,359-11,368; correction, J. Geophys. Res., 97(C1),
821-822. (1992).

Schmitz, W. J., Jr. 1978. Observations of the vertical structure of low frequency fluctuations in
the western North Atlantic. J. Mar. Res., 36, 295-310.

Schmitz, W. J., Jr. and W. R. Holland. 1982. A preliminary comparison of selected numerical
eddy-resolving general circulation experiments with observations. J. Mar. Res., 40, 75-117.

Schmitz, W. J., Jr., W. R. Holland and J. F. Price. 1983. Mid-latitude mesoscale variability.
Rev. Geophys., Space Phys., 21, 1109-1119.

Suarez, A. 1971.The propagation and geometry of topographic oscillations in the ocean. Ph.D.
thesis, Department of Meteorology, M.LT., Boston, Massachusetts.

Treguier, A. M. and B. L. Hua. 1988. Influence of bottom topography on quasi-geostrophic
turbulence in the ocean. Geophys. and Astrophys. Fluid Dyn., 43, 265-305.

Wunsch, C. 1983. Western North Atlantic interior, in Eddies in Marine Science, A. Robinson,
ed., Springer-Verlag, New York, 609 pp.

Wyrtki, K., L. Magaard and J. Hager. 1976. Eddy energy in the ocean, J. Geophys. Res., 81,
2641-2646.

Received: 12 March, 1992; Revised 2 June, 1992.


