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The Strong Law of Demand*

Donald J. Brown Caterina Calsamiglia

February 14, 2003

Abstract

We show that a demand function is derived from maximizing a quasilinear
utility function subject to a budget constraint if and only if the demand function
is cyclically monotone. On finite data sets consisting of pairs of market prices
and consumption vectors, this result is equivalent to a solution of the Afriat
inequalities where all the marginal utilities of income are equal.

We explore the implications of these results for maximization of a random
quasilinear utility function subject to a budget constraint and for representative
agent general equilibrium models.

The duality theory for cyclically monotone demand is developed using the
Legendre—Fenchel transform. In this setting, a consumer’s surplus is measured
by the conjugate of her utility function.

1 Introduction

Hildenbrand (1983) proposed a generalization of the law of demand, i.e., downward
sloping market demand curves, for multi-commodity market demand functions, where
individual’s income is price independent. His generalization, i.e., monotone market
demand functions, was subsequently extended by Quah (2000) to individual demand
functions. In particular, it is known that agents who maximize homothetic or quasi-
linear utility functions subject to a budget constraint have monotone demand func-
tions. Moreover, given a finite family of observations of a consumer’s demands at
market prices, Afriat (1981) derived necessary and sufficient conditions such that the
data set is rationalizable with a homothetic utility function (see Varian (1983) for a
discussion. )

To our knowledge, there does not exist a comparable result for quasilinear ra-
tionalizations. Here we extend Afriat’s non-parametric tests for models of consumer
behavior to tests for quasilinearity. Our motivation derives primarily from a series
of papers authored by Bewley on the permanent income hypothesis and Marshall’s
general equilibrium model in his famous Note XXI in the mathematical appendix to
his Principles of Economics (1890), a model that differs in fundamental ways from
the general equilibrium model of Walras (1900). In Marshall’s model there are no

*We are pleased to thank Truman Bewley, Ben Polak and Mike Todd for their helpful remarks.
We are also indebted to Mariona Costa for her generous assistance.



explicit budget constraints for consumers, the marginal utilities of income are ex-
ogenous constants and market prices are not normalized. Moreover, he “proves” the
existence of market clearing prices, as does Walras, by simply showing the equality
of the number of equations and unknowns.

The permanent income hypothesis was proposed by Friedman (1975) as an expla-
nation of a consumer’s life cycle of savings and consumption decisions. Friedman’s
model consists of three equations. The principal equation is the demand function
derived from utility maximization subject to a budget constraint, where the utility
function is homothetic. As is well known, in this case the marginal utility of income
depends only on prices, i.e., it is independent of income, and changes in consumer
welfare can be measured by changes in consumer surplus, if only prices change and
income remains constant.

Bewley (1977) reformulates this aspect of Friedman’s model by assuming that con-
sumers maximize quasilinear utility functions subject to a budget constraint. Here
the marginal utility of income is independent of both prices and income, i.e., it is con-
stant, an assumption made by Cournot (1838), Dupuit (1844) and Marshall (1890).
Marshall justifies this assumption in the mathematical appendix of his Principles
of Economics, where consumers have additively separable utilities and he assumes
“consumer expenditures on any one thing is a small part of this total expenditure".
Bewley’s justification is similar, i.e., he makes the same assumptions for consumers
maximizing additively separable utility functions over an infinite horizon.

In Bewley (1980) he considers a pure exchange economy, where each agent has a
quasilinear utility function and income is price independent. He proves the existence
of a unique competitive equilibrium and shows that it is globally stable with respect
to tAtonnement price adjustment. It is clear that his approach can also be used to
show that equilibrium prices are a monotone function of the social endowment.

Demand functions generated from quasilinear utility maximization subject to a
budget constraint enjoy an additional property not possessed by monotone demand
functions. That is, they are cyclically monotone, such demand functions are said
to satisfy the strong law of demand. Cyclically monotone demand functions not
only have downward sloping demand curves, in the sense that they are monotone
functions, but also their line integrals are path-independent and measure the change
in consumer’s welfare for a given multi-dimensional change in market prices.

We show that a finite data set consisting of pairs of price vectors and consumption
vectors can be rationalized by a quasilinear utility maximization subject to a budget
constraint if and only if the data set is cyclically monotone. An equivalent condition
for quasilinear rationalization is that the Afriat inequalities have a solution where
all the marginal utilities of income are equal. Quasilinear rationalizations appear to
be special cases of the more general consumer optimization problem considered by
Bewley (1980):

1
(1) o {Fo0) =9}
where g is a strictly concave smooth monotonic utility function on R, ; A is the
constant exogenous marginal utility of income; p is the vector of market prices and



x is the consumption vector. In his model, there is no budget constraint and prices
are not normalized. As such, this specification rationalizes the family of equations
defining Marshall’s general equilibrium model (absent production). We refer to (M)
as the Marshallian consumer optimization problem.

(M) need not have a solution for all p € R”}, but as noted in Bewley (1980)
the set of p such that (M) has a solution is nonempty, open and convex. Given his
assumptions on g, it follows from Hadamard’s Theorem — see Gordon (1972) for
a discussion and proof of Hadamard’s Theorem — that (M) has a solution for all
p € R%, if and only if the gradient map, i.e., # — Jdg(x), is a proper map. Recall that
a continuous map ¢ : V — W is proper if for every compact subset K C W, /~(K)
is a compact subset of V. In Marshall’s specification of individual’s utilities, where
consumers have smooth additively separable utility functions, the marginal utility
of consumption of each good goes to infinity as consumption goes to zero and the
marginal utility of consumption of each good goes to zero as consumption goes to
infinity, the gradient map is proper (e.g., U(x) = Inx has a proper gradient map,
but U(x) = x — e ® does not). Marshall’s demand functions are defined on all of
R? .. Bewley (1980) is therefore a generalization of Marshall, where Bewley drops
Marshall’s assumptions of separability of the utility function and properness of the
gradient map.

We show for finite data sets, that the Marshallian consumer optimization prob-
lem is equivalent to the Walrasian consumer optimization problem with a quasilinear
utility function. Since on finite data sets, the testable implications of Friedman’s
assumption of homothetic tests — see Varian (1983) — differ from those of Bew-
ley’s assumption of quasilinear preferences, we can test which permanent income
hypothesis is supported by market data. That is, the equilibrium correspondence in
Friedman’s model is monotone, but it follows from our analysis that the equilibrium
correspondence in Bewley’s model is cyclically monotone.

Bewley (1986) considered an exchange economy with a continuum of traders, each
endowed with a random quasilinear utility function. Random quasilinear utility func-
tions have also been discussed by Brown and Wegkamp (2003). Their specification:
v(z,e) = u(x) + - x + xp is a special case of the random utility model suggested
originally by Brown and Matzkin (1998). Brown and Wegkamp propose a semipara-
metric estimator for utility functions in this class, assuming that the utility shock e
is stochastically independent of market prices and consumer income, where all ran-
dom vectors have compact support, and u(z) belongs to a known parametric family,
e.g., Cobb—Douglass. We show that if ¢ lies in a compact set in R”, then our non-
parametric characterization of quasilinear rationalization extends to maximization of
a random quasilinear utility function of the form wu(x)+¢-x + o subject to a budget
constraint. In particular, this model is refutable on finite data sets.

2 The Strong Law of Demand

Hildenbrand’s (1983) extension of the law of demand to multicommodity market
demand functions requires the demand function to be monotone. He showed that it



is monotone if the income distribution is price independent and has downward sloping
density. Subsequently, Quah (2000) extended Hildenbrand’s analysis to individual’s
demand functions. His sufficient condition for monotone individual demand is in
terms of the income elasticity of the marginal utility of income. Assuming that the
commodity space is Rﬂ ., we denote the demand function at prices p € Rﬁ 4 and
income I € Ry by z(p,I). This demand function satisfies the law of demand or is
monotone if for any pair p,p’ € Rﬁ . of prices and income, I:

(p—p)-[zp,I) — 2@, 1)] <0

This means, in particular, that the demand curve of any good is downward sloping
with respect to its own price, i.e., satisfies the law of demand if all other prices are
held constant.

We now introduce the strong law of demand, which implies not only the law of
demand, i.e., monotonicity of the demand function, but also for a given change in
prices, induced changes in consumer welfare is measured by the change in consumer
surplus.

Definition 1 A correspondence p from R™ to R™ is cyclically monotone if
(x1 — o) -+ (2 — 1) - 2] + -+ + (T — TW) - Ty >0

for any set of pairs (zj,x}), i = 0,1,...,m (m arbitrary) such that =} € p(z;). In
particular, a demand function, z(p) : R}, — R’ is cyclically monotone if for any
set of pairs (pr,zr), 7 =1,....m

xo- (p1 —po) +x1-(P2—p1) + -+ ZTm - (Po — Pm) > 0.

Definition 2 A demand function x (p, I) satisfies the strong law of demand if it is
cyclically monotone.

Definition 3 If u is a concave function on R”, then 3 € R” is a subgradient of u
at x if for all y € R” : u(y) < u(x) + G- (y — z).

Definition 4 If u is a concave function on R", then Ju () is the set of subgradients
of u at w.

Definition 5 Let the data (p,,x,), 7 = 1,...,N be given. The data is quasilinear
Walrasian-rationalizable if for some g, > 0 and I > 0, z, solves

1 U

(1) i () + o,

st.pr-x+x0, =1

where U is a concave function.



Definition 6 Let the data (py,z,), 7 =1,..., N be given. The data is Marshallian-
rationalizable if for some A > 0, x, solves

(II) max G(z)—Apr-x

zeRY
where G is a concave function, or equivalently

(I1I) max U(x) —pr-x

z€RY

for some concave U, where U(x) = G(x)/A.

We now prove the main result of this paper, i.e., necessary and sufficient con-
ditions for data to be quasilinear Walrasian-rationalizable. This is an extension of
Afriat’s nonparametric tests for models of consumer behavior to a test for quasilinear
behavior. The underlying idea is Rockafellar’s characterization of the subgradient
correspondence of a concave function.

Theorem 1 (Rockafellar (1970, Theorem 24.8, p. 238). Let p(x) be a correspon-
dence from R™ to R™. In order that there exists a closed proper concave function U
on R™ such that p(x) C OU(x) for every z, it is necessary and sufficient that p(x)
be cyclically monotone.

In his proof he constructs the following function , U, on R"™:
U(z) =inf{z}, - (x —xm) + -+ a5 - (v1 — x0)}

where the infinum is taken over all finite sets of pairs (z%,z,), r = 1,...,m (m arbi-
trary) in the graph of p(x). Note that if the graph of p(x) has only a finite number
of elements then the domain of U is all of R™. Also note that for this U, x} is the
subgradient of U at z,.

Theorem 2 The following conditions are equivalent:

(a) The data (pr,x,), r = 1,....N is Marshallian-rationalizable by a continuous,
concave, monotonic utility function U.

(b) The data (pp,x,), r = 1,...,N is quasilinear Walrasian-rationalizable by a con-
tinuous, concave, monotonic utility function U.

(¢) The data (pr,x,), r = 1,...,N satisfies Afriat’s inequalities with constant mar-
ginal utilities of income, i.e., there exist G, > 0 and A\ > 0 for r = ¢,.... N
such that

Gr <Gr+Apr- (vp — ) Vr,l=1,..,N

or equivalently
U-<Ur+pe- (xp —xg) Vr,l=1,..,N

where U, = Gy /.



(d) The data (zr,pr), 7 = 1,..., N is cyclically monotone, i.e., for any set of pairs
(Ts5,ps)s s =1,...;mipo- (x1—x0) +p1- (T2 — 1)+ + Pm - (To — Tm) > 0.

Proof (a) = (b): obvious.

(b) = (c): the F.O.C. of the Walrasian problem state that 33, € 0U(x) and
Ar > 0 such that 3, = Aqp,, where in this case A\, = 1 for all r. Since U is concave,
U(zy) < U (x¢) + By (xp —xg) for r, 0 =1,2,...,N. Let U, = U(z,) forr=1,...,N
and we have a solution for the Afriat inequalities, where all of the marginal utilities
of income are equal, i.e., A\, =1 for all r.

(¢) = (d): from the Afriat inequalities, we know that for every family of data
points (py, x,), say r = 1,...,m, the following inequalities are true:

Ur—Uy < po- (21— x0)
Uy—U < p1-(z2—a1)
Up—U, < Pm - (l'O - xm)

Adding up these inequalities, we derive the condition that defines cyclical monotonic-
ity, i.e., the left hand side sums to zero.

(d) = (a): By Theorem 1, we obtain a concave U where p, is a subgradient of U
at x,. Hence the F.O.C. for the Marshallian optimization problem are satisfied. H

Bewley (1980) defines the consumer’s surplus at prices p as h(p) = maxzern {39(z) —p-a},
i.e., the optimal value function for (M). Convex analysis has a rich theory of
duality based on the Legendre-Fenchel transform of a concave function U(z), de-
noted U*(p), called the conjugate of U(x) : U*(p) = inwaRL {p-x—U(x)}. Hence
U*(p) = —h(p), here h(p) = supyepn  {U(x) —p-2)},U(x) = 39(x) and h is an
extended real-valued function. The conjugate (or surplus function in Bewley’s ter-
minology) plays the same role in analysis of the Marshallian consumer optimization
problem as the indirect utility function does in the Walrasian model of consumer
choice.

In Theorem 2, we have shown that cyclical monotonicity of the gradient map is
equivalent to Marshallian rationalizations of the data. It follows from the following
proposition in Rockafellar (1970), that cyclical monotonicity of the demand function
is also equivalent to Marshallian rationalizations of the data.

Theorem 3 (Rockafellar (1970), Corollary 23.5.1, p. 219) If f is a continuous
concave function on R}, , then p € 0f(x) if and only if x € 0f*(p).

Theorem 4 The following conditions are equivalent:

(a") The data (py,xy), r = 1,...,N is Marshallian-rationalizable by a continuous,
concave, monotonic utility function U.



(b') The data (pr,xr), 7 =1,...,N is quasilinear Walrasian-rationalizable by a con-
tinuous, concave, monotonic utility function U.

(") The data (pp,x), r =1,..., N satisfies Afriat’s inequalities with constant mar-
ginal utilities of income, i.e., there exist G, > 0 and A\ > 0 for r = ¢,.... N
such that

G, <Gg+Apg- (xp — ) Vr,d=1,...,.N

or equivalently
U <Up+pr-(xp —x¢) Yr,d=1,...,N

where Ur = Gr /.

(d') The data (pr,xr),  =1,...,N is cyclically monotone, i.e., for any set of pairs
(Ps, @), s =1,.,m o (pr—po) + 21+ (P2 —p1) -+ + Zm - (P0 = Pm) 2 0.

Proof The cyclical monotonicity condition in (d’) is simply the monotonicity con-
dition on the gradient map of —h(p), the conjugate of U(x). Since [U(p)]* (z) = U(x)
— see Theorem 12.2, p. 104 in Rockafellar (1970) — this condition is equivalent to
condition (d) in Theorem 1, by Theorem 3. [

If we require strict inequalities in (c¢) and (d) in Theorem 2 or in (¢’) and (d’) in
Theorem 4, then it follows from Lemma (2) in Chiappori and Rochet (1987) that the
rationalizations in both theorems can be chosen to be C* functions. In this instance,
it follows from the implicit function theorem that the Marshallian demand function
x(p) = —0h(p)/0p. Hence for any line integral in the domain of z(p), we see that
_ppf x(p)dp = —_];T(@h(p)/@p) = —_;f dh(p) = h(p1) — h(p2). That is, for smooth
Marshallian demand functions consumer surplus is well-defined — the line integrals
are path independent — and the change in consumer surplus induced by a change in

market prices is the change in consumer’s welfare.

3 Representative Agent Models

Both Bewley (1980) and Friedman (1975) formulate the permanent income hypoth-
esis as a property of a representative agent model of a competitive market econ-
omy. The representative agent’s homothetic utility function in Friedman’s Walrasian
model is given by Fisenberg’s Theorem for aggregating homothetic consumers where
the income distribution is price independent — see Eisenberg (1961). This agent’s
endowment is the social endowment of the economy and she maximizes her util-
ity function subject to a budget constraint defined by market clearing, competitive
prices and the social endowment. This is a Walrasian consumer optimization prob-
lem with homothetic tastes and Quah (2000) has shown that the demand function
for such agents is monotone — see Theorem 2.2 in his paper and recall that the
marginal utility of income for a homothetic agent is independent of income. The
equilibrium correspondence for this economy is simply the inverse of the demand



function of the representative agent. Assuming strict concavity of her utility func-
tion guarantees that her demand function is strictly monotone. A smooth map is
strictly monotone if and only if its derivative is negative definite — see Theorem
5.4.3 in Ortega and Rheinboldt (1970) or use Roy’s identity. In representative agent
economies, we have the following identity: z(p(e)) = e, where x(p) is the aggregate
demand function, p(e) is the equilibrium map and e is the social endowment. Hence
0x/0e = (0x/0p)(Op/de) = I. That is, Op/de = (0x/0p)~', but the inverse of a
negative definite matrix is negative definite. Therefore, p(e) is a monotone function.

If the data set is (pr,e,), 7 = 1,...,n, where p, are equilibrium market prices and
er is the social endowment, then the following theorem of Varian (1983) characterizes
the testable implications of Friedman’s representative agent model, given a finite set
of observations on social endowments and market clearing prices.

Definition 7 U is a Walrasian rationalization of the data if u(x;) > u(x) for all
such that p; - < p;-x;, fori =1,...; N.

Theorem 5 (Varian (1983), Theorem 2, p. 103) The following conditions are equiv-
alent:

(1) There exists a non-satiated homothetic utility function that is a Walrasian ra-
tionalization of the data.

(2) The data satisfies the Homothetic Axiom of Revealed Preference (HARP): for
all distinct choices of indices (i, j, ...,m) we have (p;-x;)(pj - k)...(Dm - ;) > 1.

(3) There exists numbers U; > 0, i = 1,...,n such that U; < Ujpjz; for i,j =

1 n.

)

(4) There exists a concave, monotonic, continuous non-satiated, homothetic utility
function that is a Walrasian rationalization of the data.

The representative agent’s utility function in Bewley’s Marshallian model is given
by the social welfare function

T
1
Wi(e) = mfgﬁi [;A_th(wt)]

T
s.t. g Ty =e
=1

where Gy is a strictly concave smooth utility function on R}, and A; is consumer
t’s constant exogenous marginal utility of income. Bewley solves the Marshallian
consumer optimization problem: maxccrn , {W(e) — p-e}. He shows that it has a
solution if and only if p is the unique market clearing set of competitive prices for the
exchange economy populated with consumers (Gy, \¢) and with social endowment e.



That is, fix e at € and find the supporting prices p for the Pareto optimal allocation
defined by the social welfare function W (-) evaluated at e.

Let H(p) = maxecrr , {W(e) — p- e}, then it follows from Theorem 16.4, p. 145
in Rockafellar (1970) that H(p) = Zle h:(p) if p is a competitive equilibrium vector
of prices. Hence —(8H/p)ly; = S L, —(0h:/p)|p = S°L, 24(p) = x(p) = e. Since
H () is a strictly smooth convex function of p on its domain, we see that —9*H /0p? =
O0x(p)/0p is negative definite.

That is, z(p) is cyclically monotone. The equilibrium map p(e) is again the inverse
of the demand function of the representative consumer. It follows from the duality
relationship of Theorem 3 that p is the unique equilibrium price vector for the social
endowment é if and only if p = (0W/0e)|c—z and —(0H/Jp)| = €. Since W is a
smooth concave function, we know that the gradient map é — (OW/de)|e=z = p is
cyclically monotone. Hence, our Theorem 2 characterizes the testable implications
of Bewley’s representative agent model, given a finite set of observations on social
endowments and market clearing prices. That is, the equilibrium correspondance is
cyclically monotone.

4 Random Quasilinear Rationalizations

If consumers have random quasilinear utility functions as in Bewley (1986), then in
general the testable implications cannot be derived from a representative agent model.
In fact, a priori, there may be no testable implications. Can anything happen? No,
not if each individual’s distribution of utility shocks has compact support, and agents
have random utility functions of the form V' (z,e) = U(x)+e-x+xo. Assuming U(x) is
strictly concave, smooth and monotonic, each realization of € gives rise to a quasilinear
utility function having all of the properties previously derived,. i.e, for fixed e, the
random demand function z(p,e) is cyclically monotone. Of course, a finite family
of observations of such demand functions need not by cyclically monotone, since
each observation can in principal be drawn from a “different” cyclically monotone
demand function. It is therefore surprising that the hypothesis of random quasilinear
rationalization of a data set is refutable. As a consequence, this hypothesis is testable
in the sense of Brown—Matzkin (1995), i.e., there exist a finite family of polynomial
inequalities involving only observations on market data that are solvable if and only
if the data can be rationalized with a random quasilinear utility function. In fact,
using Fourier—-Motzkin elimination — see Ziegler (1995) — there exists a family of
linear inequalities in the data that are solvable if and only if the data has a random
quasilinear rationalization.

Definition 8 U(x) + ¢ -2 + x¢ is a random quasilinear rationalization of the data
(p1,21), ey (Pr, @) if Fe1, ..., and T > 0 such that z, is the solution to

max U(x) + &, - x + o,

st. pr-x4+x0, =1



The utility shock ¢ has compact support if there exist emin and emax such that
Emin < € < €max, Where the quasilinear model is a special case of the random quasi-
linear model if i, < 0.

(RAI): Given the data set (p1, 1), -..(Pn, Tn), the Afriat inequalities for a random
quasilinear utility function of the form V(x,e) = U(z) + ¢ - x + ¢ are:

Ui <Uj+ (pj—¢j) (s —xj) fori,j =1,...,N
Emin L €j < €max for j=1,..,N
U; >0 fory=1,..,.N

These are linear inequalities in the unknown U; and ¢;. Hence they can be solved
in polynomial time using interior-point linear programming algorithms.

Figure 1 shows that for two observations, all possible pairs of budget lines defined
by the gradients of U(x) at x1 and x5, given consumption at x; and x5, violate WARP.
Hence rationalizations with random quasilinear utilities of the form U(z) +¢-x + w9,
where € has compact support is refutable.

X2

P~ Erx o
pl_gmin

Figure 1
DU(z)=p—¢

Emin S € S Emax
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Theorem 6 Given a finite exchange economy with T consumers and a finite set
of observations consisting of allocations and market clearing prices in each observa-
tion. The data can be rationalized by random quasilinear utility functions of the form
Ui(xy) + &t - @ + xor if and only if each consumer satisfies (RAI).

This analysis extends to random Walrasian rationalizations, where we do not

assume quasilinearity. In the homothetic case, we can derive a family of smooth
convex Afriat inequalities that also can be solved in polynomial time, using interior
point methods. For this model to be refutable in general, we must also assume that
the marginal utilities of income lie in a compact set.
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