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TESTS OF INDEPENDENCE IN SEPARABLE ECONOMETRIC
MODELS

DONALD J. BROWN AND MARTEN H. WEGKAMP

ABSTRACT. A common stochastic restriction in econometric models separable in the
latent variables is the assumption of stochastic independence between the unobserved
and observed exogenous variables. Both simple and composite tests of this assumption
are derived from properties of independence empirical processes and the consistency
of these tests is established.

1. INTRODUCTION

Recently, Brown and Wegkamp (2002) proposed a family of extremum estimators
for semiparametric econometric models separable in the latent variables W, where
W = p(X,Y,0), X a random vector of observed exogenous variables, Y a random
vector of observed endogenous variables, W is drawn from a fixed but unknown dis-
tribution and € is a vector of unknown parameters. An important special case is
the implicit nonlinear simultaneous equations model, where a reduced form function
Y = p 1(X,W,0) exists. Of course, in general Y = p~ (X, W, ) is non-additive in W,
e.g., consider the random utility model proposed by Brown and Matzkin (1998), where
the random utility function V(Y,W,0) = U(Y,0) + W - Y. In this case the structural
equations defined by W = p(X,Y,0) are equivalent to the first order conditions of
maximizing V (Y, W, 0) subject to the budget constraint P-Y = I (P and I stand for

prices and income, respectively). The details can be found in Section 2 below.

The principal maintained assumption in Brown and Wegkamp (2002) is the stochastic
independence between W and X. In this paper we propose tests of this assumption
using the elements of empirical independence processes. We present both simple tests,
i.e., the null hypothesis states that for a given 6y, p(X,Y,6y) and W are independent,
as well as composite tests where the null hypothesis is that there exists some 6, € O,

the set of possible parameter values, such that X and p(X,Y, ) are independent.

Date: January 15, 2003.
Key words and phrases. Cramér—von Mises distance, empirical independence processes, random
utility models, semiparametric econometric models, specification test of independence.
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2 DONALD J. BROWN AND MARTEN H. WEGKAMP

Here we extend the analysis of Brown and Wegkamp (2002) beyond the characteriza-
tion of the independence of random vectors in terms of their distribution functions. In
particular, we define a family of weighted minimum mean-square distance from inde-
pendence estimators in terms of characteristic or moment generating functions. These
estimates are computationally more tractable than the ones considered by Brown and
Wegkamp (2002). We show asymptotic normality, and consistency of the bootstrap for

our estimates and the consistency for the tests.

The paper is organized as follows. In Section 2 of this paper we present both the
general econometric model and two examples which motivated this research. Properties
of empirical independence processes are reviewed in Section 3. Asymptotic properties
of our estimators are derived in Section 4, and Section 5 discusses tests of independence

between the observed and unobserved exogenous variables.

2. THE ECONOMETRIC MODEL

In this paper we consider semiparametric econometric models, which are separable
in the latent variables. In these models we have a triple (X,Y, W) € R¥ x RF2 x Rk
of random vectors, where X and W are stochastically independent. The exogenous
variable W = p(X,Y) € R* is unobserved and drawn from a fixed but unknown
distribution. In this paper we consider structural equations p of the parametric form
p(z,y) = p(x,y,0) for some § € © C RP.

In general, two random vectors X € R** and W € R*? are independent if and only if
(2.1) Ef(X)g(W)=IEf(X)Eg(W) for all f € Fy, g € Fo,
where F, (£ = 1,2) are
(2.2) Fo={1(coy("), t eR¥}.

Note that each F, in (2.2) is a universal Donsker class, indexed by a set of finite
dimensional parameters (s,t) € R¥ x R*2 only. This situation has been considered in
Brown and Wegkamp (2002). Indeed, there are other classes Fy, for which (2.1) holds

as well. For example, the classes
(2.3) Fo={exp(<t,->), te R},
or the classes

(2.4) Fo={exp(i <t,->), t € R*} where i =+/—1,
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or the classes of all C* functions on R¥¢. The first two sets of classes are Donsker, pro-
vided ¢ ranges in a bounded subset. In (2.3) we compare the joint moment generating
functions (m.g.f.’s) with the product of its marginal m.g.f.’s, and in (2.4) the compar-
ison is based on characteristic functions. The class of all C* functions is not finite
dimensional, and therefore is uninteresting from a computational perspective. We note
in passing that this formulation using expected values does not allow for comparison
between the joint density of X and p(X,Y,#), and the product of its marginal densities.
In fact, our estimators can be viewed as moment estimators as (2.1) is a family, albeit

infinite, of moment conditions.

Let (X1,Y7),---,(X,,Y,) be independent copies of the pair (X,Y). Motivated by

the equivalence (2.1), we compare the empirical version

—Zf p(X:, i, 0)) Zf ) D g(p(X Vi 6))
1=1

for all f € fl and g € F,y. Letting P, = n_1 Zi:l 0x,,y; be the empirical measure
based on the sample (X1,Y7),---,(X,,Y,), we can write the preceding display more

compactly as

P f(z)g(p(z,y,0)) = Ppf(2)Pag(p(z,y,0)) for all f € Fy, g€ Fo.

Observe that this amounts to comparing the joint cumulative distribution functions

(c.d.f.’s) with the product of the marginal c.d.f.’s.

In order to obtain a tractable large sample theory, we consider the statistics

W= [ [ {Pufie)oole..0) = Bufu@)Pagi(pla, 0.0} du(s,1),
RF1 xRF2
where p is a c.d.f. acting as a weight function. We require that y has a strictly positive
density. In this way, we guarantee that all values s and ¢, that is, all functions f, € Fy,
are taken into account. The heuristic idea is that the unique minimizer of M, (8; P,,; 1)

should be close to the unique minimizer of

MEPiw= [ [ APL@apw0.0) - PL@Po(p(r, 0.0} duls,0)
RF1 xRF2
where P is the probability measure of the pair (X,Y). The unique minimizer of this
criterion is denoted by 6p = 0(P; iu). Observe that M(6; P; i) is finite for all 6 since p
is a distribution function, and that M (6p; P; ) = 0 if and only if p(X,Y,60p) and X
are independent. In this case 0(P; 1) does not depend on y and we say that the model
is identified. We can interpret M(f) as the Cramér-von Mises distance between the
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actual distribution of the pair (X, p(X,Y, 6)) and the (product) distribution of (X, W),
where the marginals X and W) are independent and Wy has the same distribution as
p(X,Y,0). Observe that

M@ = M) + 50— 00) M (6,) B~ 6r),

provided M € C?(0), for some 6,, between fp and 0. We can view the first term on the
right as the approximation error due to the finite dimensional model, and the last term
can be thought of as the estimation error, which has an asymptotic X;,Q, distribution (cf.
Theorem 4.1 below) under some regularity assumptions. For instance, suppose that

p(X,Y) and X are independent for some p which we approximate by some finite series

P
i=1
based on some finite dimensional basis 91, - - - , 1.

We end this section with two examples of implicit nonlinear simultaneous equations
models separable in the latent variables, which motivated our research. In both ex-
amples, we show that the econometric model is identified for the class of extremum

estimators proposed in this paper and hence can be estimated by these methods.

Ezample 2.1 (A Random Utility Model of Consumer Demand). We consider a consumer
with a random demand function Y (P,I,W,6,) derived from maximizing a random
utility function V (Y, W, 6,) subject to her budget constraint P -Y = I. First, the
consumer draws W from a fixed and known distribution. Then nature draws X =
(P, 1), from a fixed but unknown distribution. The main model assumption is that W
and X are stochastically independent. The consumer solves the following optimization
problem:

maximize V (y,w, ) over y such that p-y = I.

The econometrician knows V(y,w,f) and O, the set of all possible values for the
parameter 6, but does not know 6y, the true value of . Nor does the econometrician
observe W or know the distribution of W. The econometrician does observe X = (P, I).
The econometrician’s problem is to estimate 6, and the distribution of W from a
sequence of observations Z; = (X;,Y;) for i = 1,2, ...,n. The structural equations for
this model are simply the first-order conditions of the consumer’s optimization problem.
These conditions define an implicit nonlinear simultaneous equations model of the form
W = p(X,Y,0), where the reduced form function is the consumer’s random demand
function Y (P, I, W, 6,) for the specification of V (y, W, 6) proposed by Brown—Matzkin
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(1998), i.e., V(y,W,0) = U(y,0) + W - y. They assume that for all # € ©, U(y, ) is a
smooth monotone strictly concave utility function on the positive orthant of R¥, i.e.,
DU (y,0) > 0 and D?U(y, 0) is negative definite for all y in the positive orthant of R¥.

Our examples are suggested by their model, where first we consider:
V(y,W,0) =Inyo + 01 Iny, + 02 Inys + Wiy, + Waya,

where 60,60, € (0,1) and yp is the numeraire good. Then the first-order conditions for
this optimization problem can be written as W = p(X,Y,0), where X = (P, Py, I),
Y = (}/E),Yl,}é) and 6 = (01,02)

(i) Wi =PI - PY, — PYy) ! — 6y,
(i) Wy = Py(I — PLY) — PyYa) ™' — Oayy

Equations (i) and (ii) can (in principle) be solved uniquely for the random demand
functions Y7 (X, W, ) and Y5(X, W, #). This verifies that there exists a unique reduced
form Y = v(X,W,0) such thatW = p(X,v(X,W,0),0). To verify that the matrix
0p/0y has full rank, we note that

91 Op
@ — oy1 0y
Ay Op2 Ops
oyr Oyo
where
Op1 _ pi b
oy (I — D1y — p2y2)2 Z/%
Opr _ Op2 _ Pip2
8y2 8y1 (I — Py — 102?!2)2
dp2 . pg 0o
a, 2 +
53/2 (I —P1y1 — p2y2) Yo

and det(0p/0dy) > 0. Hence 0p/0y has (full) rank 2. This and the implicit function
theorem imply that Oy(z, W, 0)/0x can be computed from the structural equations

W = p(z,y,0). In fact,
o\ _[o0] " [on
or) dy ox

Op1 Op1 Op
oo _ | oy Op, OI
Oz Op2 Op2 Op2

3p1 8p2 8[
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where
op _ 1 N P11
om (I —piyr —p2ye) (I — piyy + pay)?
% _ D21
Op (I —puyr +p2y2)?
% _ b
oI (I —puy + paya)?
Ops _ 1 N P22
om (I —piyy +p2y2) (I — p1y1 + paye)?
% _ P1y1
Opr (I —piyr +paya)?
% _ P2
oI (I —piyr + poyp)?

We see that dp/0z has rank 2 and is independent of § and W and that 0p/dy is
independent of W. Therefore,

Oz I R
if and only if
ap(%yago) — 8,0(x,y,0) a.e
oy oy o
But
(i) Op(@:y,00) _ 9p(@:9,9) . ig and omly if 0 = b,
oy Jy
where Brown and Matzkin (1998, Theorem 1’) have showm that
0 6 0 6
0 7é 00 — y(xaw) 0) 7é y(.’L’,’U), )
Oz Oz

is necessay and sufficient for identification. It is important to notice that the structural

equations for this model are nonlinear in both parameters and variables.

Ezample 2.2 (A Simple Pure Trade Model). In applied general equilibrium analysis,
there are two methods for determining parameter values: calibration and econometric
estimation. The latter method, although theoretically more appealing, suffers from a
number of limitations. In particular, the random shocks to tastes and technology enter
the model in an ad hoc fashion, i.e., in most cases they are simply added to reduced
forms of the deterministic structural equations, such as demand or supply functions. In
addition, given the nonlinear nature of the structural equations, assumptions of model
identification are problematic. In fact, as pointed out by Mansur and Whalley (1984)
in their survey article, these issues have not been successfully resolved even for simple
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textbook models of general equilibrium such as the pure trade model. Surprisingly,
this is still the case [cf. Dawkins, Srinivasan and Whalley (2001, page 3664)].

In this example, we consider a simple pure trade model with two countries, where
the tastes of each country is characterized by a random utility function, representing
the distribution of tastes within the country. The analysis is partial equilibrium in
that the random utility functions V (y, yo, w) = U(y) + yo + w - y are quasi-linear with

a random linear perturbation.

The assumption of quasi-linearity plays a number of roles in our analysis. Most
importantly, this specification gives rise to monotone individual demand functions for
fixed realizations of W, see Quah (2000) for discussion. If we posit a distribution
economy where the income distribution is fixed, then monotonicity of individual de-
mand implies monotonicity of aggregate demand, a sufficient condition for uniqueness
of the equilibrium price vector, see Hildenbrand (1994, Theorem 1 in Appendix 1).
This uniqueness of equilibrium price vectors is an essential ingredient in our proof of

identification.

Let us denote the two countries as A and B and the aggregate endowment in the
world as (g,60). Then the countrywide endowments are (€4,e04) = aa(e,&p) and
(eB,c0B) = ap(e, &), where aq,ap > 0 and ay + ag = 1. We now normalize prices

(P, po) such that (p,po) - (g,€0) = 1.

The observable exogenous random variables are (¢, £q). The unobservable exogenous
random variables are W, and Wpg, the random shocks to tastes. The observable endoge-
nous random variables are the equilibrium price vector (p, pg) and the consumptions of

country A, (ya,Yoa). @4 and ap are deterministic and fixed.

As noted earlier these assumptions are sufficient for uniqueness of the equilibrium
price vector, conditional on the realizations of W = (W4, W) and (g,¢q), but they
limit our ability to identify each country’s characteristics, i.e., (Ua, fu,) and (Ug, fuz)
where f,, and f,, are the distributions of W4 and Wiy, respectively, since (e4,€04)
and (ep,e9p) are dependent, i.e., linearly related. Hence we assume that Uy = Ug.
That is, each country has the same quasi-linear location function, but the distribution
of tastes about the location function in each country may differ.

The remaining assumptions follow those of Brown and Matzkin, except we assume
that the quasi-linear utility functions under consideration are parameterized by a com-
pact subset of RF, with nonempty interior, denoted ©. All distributions have smooth
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densities and their supports are in the positive orthants of the relevant Euclidean
spaces. The final identifying assumption is that W = (W, Wp) is stochastically inde-
pendent of (g, ¢&p).

We now proceed to show that this model is identified, i.e., if 6 # 0 then the resulting
distributions of data are unequal. The structural equations can be expressed in terms
of each country’s F.O.C.’s for utility maximization subject to their budget constraints.
We use the market clearing conditions to express the F.O.C.’s for country B in terms

of country A’s consumptions.

Structural Equations:

(2.5) wa = p/po — DU (ya)
(2.6) wp = p/po — DU (e — ya)
(2.7) Yoa = (@ — P ya)/po
(2.8) YoB = (ap —p- (€ —ya))/po

We can solve these equations in two steps, because of the assumption of quasi-linear
utility functions. First, we solve (2.5) and (2.6) for ¢ = p/py and y4. Then we substitute
these values into the budget constraints, (2.7) and (2.8), to solve for yo4 and py. Hence

the relevant structural equations for our estimation procedure are

(2.9) wa = q— DU(ya)

(2.10) wp =q— DU(g — ya)

This is a system of 2k equations in 2k unknowns, ¢ and 4, with 2k unobserved
random variables W = (W,, Wg). We write this system as w = g(q,ya,¢,0) where
f indexes U. The standard assumptions on U that it is smooth, strictly concave and
monotone with interior optima on budget sets, together with our earlier assumptions,
guarantee the existence of a unique smooth function h(w,e,0) = (g,y4) such that
w = g(h(w,e,0),e,0). As noted earlier, Brown and Matzkin (1998, Theorem 1’) have
shown the following necessary and sufficient condition for identification: Vﬁ,g € 0,
0 # 0 if and only if
Oh(w, e, 0)
Oe

h(wa’j’ %) where w = g(h(w, ¢, 9),6,5).

#*
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Applying the implicit function theorem to the structural equations (2.9) and (2.10),

we deduce that

Oh(w, e, 0) [_[ —D2U(y4) ]‘1[ 0 }

Oe T | I DU(e—ya) D?U(e — ya)
Our assumptions of smoothness and strict concavity of U(-) guarantee that DU (y,)

is negative definite, hence invertible. Moreover, these assumptions guarantee that
[D2U(ya) + D?U(e — ya)]™" exists. Let R = D*U(y4) and S = D?>U(e — y4), then
[J—R]4_'MR+$1 R(R+S)™]
I s | -R+S) (R+S)
and
[I—R]I[O] [ S(R+ 5)~? mR+$1‘[
I s S| | —(R+S)" (R+5" |
[ R(R+9)7S }
(R+9)7tS
Therefore Oh(w, e, 0)/de = Oh(W, e, )/ if and only if
(i) R(R+S) 'S = R(R+5)'S and
(ii) (R+S)'S = (R+8)'S.
(i) and (i) imply (R — R)(R—+S) 1S = 0. Since (R+S) 1S is nonsingular we see that
R=R. Summarizing, we have proven that the structural equations wa = ¢ — DU(ya)
and wg = ¢ — DU (e — y4) are identified if and only if V 6, 0 e O, 0 # ] implies that
3y, such that D2U (7 ,) # DU (7).

One obvious example of a family of utility functions with this property are Cobb-

n o

Douglas utility functions.

3. INDEPENDENCE EMPIRICAL PROCESSES
Given the classes F; and F,, we define F = F; and
G={f(p(-,-,0): fEFqs 0€0}={gp(-,-,0): tcR2 gcOl.
As before, we denote the joint probability measure of the pair (X,Y) by P, and the
empirical measure based on the sample (X1,Y:),---,(X,,Y,) by P,. For any f € F
and g € G, set
]D)n(f: g) = Pnfg - ]Panng
and
D(f,9)=Pfg— PfPg,
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so that

ML) = [ [ B2(fu i) (st
RF1 xRk2
in the new notation. Finally, we define the independence empirical process Z,, indexed
by F x G by
Zn(f,9) = Vn(D, — D)(f, 9).
Observe that [cf. Van der Vaart and Wellner (1996, page 367)]

Zn(f,9) = Vn{(Pu—P)(fg) = (Pug)(Pn — P)(f) = (Pf)(Pn — P)(g)}
(3.1) = Vn(P, — P)((f = Pf)(g — Pg)) — Vn(Pn — P)(f)(Pr — P)(g)
The minor difference with the original formulation of independence empirical processes
due to Van der Vaart and Wellner (1996, Chapter 3.8) is that we consider the marginal
distributions of (X, p(X,Y,6)) rather than (X,Y). The next result states sufficient

conditions for weak convergence of the independence empirical process Z,, in £>°(F x G).

Let [|P|| z be the sup-norm on £°(F) for any class F, i.e. ||P||z = sup,_ r P|f|.

Theorem 3.1. Let F,G and F x G be P-Donsker classes, and assume that || P|| r <
oo and ||[Pllg < oo. Then Z, converges weakly to a tight Gaussian process Zp in
12(F x G).

Proof. The first term on the right in (3.1) converges weakly as F x G is P-Donsker.
The second term in this expression is asymptotically negligible, since F and G are

P-Donsker. We invoke Slutsky’s lemma to conclude the proof. O

We can also bootstrap the limiting distribution of Z,,. Let (X7, Y7"),---, (X}, Y) be

n'-n

an i.i.d. sample from IP,,, and let P} be the corresponding bootstrap empirical measure.

Then we define the bootstrap counterpart of Z,, by
Z;(f,9) = vVn(D; — Dy)(f. 9),
where I}, (f, g) = v/n(Py fg — P fPrg).

Theorem 3.2. Let F,G and F x G be P-Donsker classes, and assume that || P|| r <
oo and ||[Pllg < oo. Then Z; converges weakly to a tight Gaussian process Zp in
°(F x G), given P*®-almost every sequence (X1,Y1), (Xa,Y3),---.

Proof. We first note that

Z:z(fa g) = \/E(P:z - Pn)((f - ]Pnf)(g - Png)) - \/E(P:z - Pn)(f)(ﬂ):; - Pn)(g)
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and recall that \/n(P: — P,) converges weakly [cf. Theorem 3.9.12 in Van der Vaart
and Wellner (1996)]. An application of Slutsky’s lemma concludes our proof. O

4. ESTIMATION OF 0p

4.1. A general result. Given P-Donsker classes F = {f, : s € R*} and G =
{g1p: t € R* 0 €0} and a c.d.f. u, we can define

ML) = [ [ Bi(fugi) (st
R*1 xRF2
and
M@ = [ [ Do) duts.)
RF1 xIRF2
We propose to estimate p = 0(P;u) by b, = 6(P,; ;1) which minimizes the random
criterion function M, over ©. Then, provided M has a unique, well-separated minimum

at an interior point fp of ©, it follows immediately by the weak convergence of Z, (cf.
Theorem 3.1) and Theorem 5.9 in Van der Vaart (1998, page 46) that

-~

0, € argmin M, (f) — argmin M () = Op,
in probability. We will now show the asymptotic normality of the standardized distri-
bution \/ﬁ(é\n —0p).
We impose the following set of assumptions:

(A1) M has a unique global, well-separated minimum at #p in the interior of © and
M(0; P) € C*(©) and M"(p; P) is non-degenerate.
(A2) D(fs, g+) is differentiable with respect to 6 for all s, ¢, and its derivative satisfies

D(s,t,0) — D(s,t,0p)| < |0 — 0p|A(s, 1)

for some A € L*(p).
(A3) sup,; P|fsgre — fsgr9p)> — 0 as 6 — Op.
(A4) The map p(-,-, ) is continuously differentiable in 6.
(A5) The classes F,G and F x G are P-Donsker.

We have the following result:

Theorem 4.1. Assume (A1) — (A5). Then, \/ﬁ(@\n —0p) has a non-degenerate Gauss-

tan limiting distribution.
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Proof. The result follows from Theorem 3.2 in Wegkamp (1999, page 48). We need to

verify the following three conditions:

(i) 6, — 0p in probability.
(ii) M has a non-singular second derivative at 0p.
(iii) v/n(Z,, — Z)(8) is stochastically differentiable at 0p.

As noted above, (i) follows from general theory. Condition (ii) is subsumed in (A1).
It remains to establish (iii). Let the symbol ~» denote weak convergence in general

metric spaces. (A3) implies that
Z,(0) — Zyn(0p) ~ 0 as § ~ 0p, n — cc.

Consequently, by the continuous mapping theorem
[ ] 2000 = 22 0100)] dus,1) 0
RF1 xRk2
as 0 ~ 0p, n — 0o. (A2), (A3) and the continuous mapping theorem yield also that

/ [D(fS’ gt,ﬂ)Zn(fSa gt,@) - D(fSa gt,ep)Zn(fS7 gt,ﬂp)

RF1 xRF2

(0 eP) (5 t eP) n(fs,gt,ep)] d/],(S,t) ~ 0

as f ~» 0p, n — oo. Conclude that

V(M — M)(6)
// n(fs) g0) dp(s,t) + 2 // D(fs, 9t,0)Zn(fs, 9,9) dpa(s, )
RF1 xRF2 RF1 xRk2
~ [ [ Zittega)auts.ty+2 [ [ DUeiguan)Zul e ian) dus, 1) +
RF1 xRF2 RF1 xRk2
4200~ 00) [ [ Dlost.00)Z0lFe g1ap) du(s, ) + (1 -+ 6~ 00
RF1 xRk2
= VM, = M)(6p) + 20 = 05) [ [ Dlst.08) 20l 100) dis(5,1)

RF1 x RF2

+op(1 + |0 — 0],

which establishes (iii). O
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In fact, the asymptotic linear expansion
(4.3) V(0 — Op)
=200 On))" [ [ Dl 8,001 Zul o 0r) (s, 1) + (1)

RF1 xRF2
holds. This expression coincides with the one derived in Brown and Wegkamp (2002,
page 2045).

In addition, the conditional distribution of the bootstrap estimators \/ﬁ(@*Z — @\n)
has the same limit in probability. Here 5;: is based on i.i.d. sampling from P,, see
Section 3. The proof of this assertion follows from similar arguments as Theorem 4.1,
see Brown and Wegkamp (2002, pages 2046 - 2048) and is for this reason omitted.

Theorem 4.2. Assume (A1) — (A5). Then
V(= 8,) — V(0 — 0p) ~ 0.

We apply the developed theory to the special cases where F and G are indicator

functions of half-spaces (—oc, ] or exponential functions exp(¢'zx).

4.2. Estimators based on the distribution functions. For every s € Rf ¢t € RF2
and 0 € O, define the empirical distribution functions
1< 1<
(1) = 32X < b Guolt) = - D {p(X;, Vi) < 1} am

i=1 i=1
n

Hng(s,t) = %Z{XZ S S, p(XZa}/;ae) S t}

=1

The criterion function Mj,, becomes in this case

M, (0) = M0 Poi) = [ [ {Ba6)Gur(t) ~ Buas,0))” dis, )
RF1 xRF2
This is essentially the empirical criterion proposed by Brown and Wegkamp (2002).
We obtain its theoretical counterpart M () = M (0; P; u) by replacing the empirical
distributions F,, G,9 and H,y by the population distributions.

Assumption (A3) is verified if p(z,y, @) is Lipschitz in 6, see Brown and Wegkamp
(2002, page 2043, proof of Lemma 3). Assumptions (A2), and (A4) follow from smooth-
ness assumptions on p(-,+,d) and P. For (A1), we refer to Brown and Wegkamp (2002,
Theorem 3, page 2038). We now show how to verify (A5).
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We define the sets
Apy = {(x,y) € R\ TR 2 p(z,y,0) < t}, teR2 9eco,
and the associated collection
A={4,:0€0, teR"}.

Note that G corresponds to the indicators I4 of sets A € A, and F corresponds to
corresponds to the indicators I of sets B € B= {{z € R" : z <t}, ¢t € R* }, which

is universally Donsker. Condition (A5) becomes in this specific setting
(A5’) The classes of sets A, A x B are P-Donsker.

Sufficient conditions for A to be P-Donsker are either smoothness of p(x,y, ) (with
respect to z and y, not #) or that p ranges over a finite dimensional vector space. See
Brown and Wegkamp (2002) for a discussion.

Ezample 4.3. Let {p(-,-,0), 0 € ©} be a subset of a finite dimensional vector space.
Then both A and B are VC-classes, and A x B, the product of two VC-classes, is
again VC, see Van der Vaart and Wellner (1996, page 147). Hence A, B and A X B are

universally Donsker.

Ezample 4.4. Let the support of (X,Y) be a bounded, convex subset of R¥T*2 with
non-empty interior, and, for each 6, p(x,y,#) have uniformly bounded (by K) partial
derivatives through order 8 = |«/, and the derivatives of order (3 satisfy a uniform
Holder condition of order o — 3, and with Lipschitz constant bounded by K. For a
complete description of the space C%[X x Y], we refer to Van der Vaart and Wellner
(1996), page 154. If @ > d and P has a bounded density, then A and A x B are
P-Donsker. To see why, we first notice that A x B has constant envelope 1, and that

Qlfg— fal> <2QIf — f1* +2Qlg — 3%,
and that f < f < fy and g, < g < gy implies frgr, < fg < fugy. Hence
NB(257L2(Q)7}7 X g) S NB(€7L2(Q)7:F)NB(57L2(Q): g)a

where Np(e, L*(Q), F) is the e-bracketing number of the set F with respect to the
L?(Q) norm. Since log N'g(g, L2(Q), B) < log(1/¢), the bound on the bracketing num-
bers in Corollary 2.7.3 in Van der Vaart and Wellner (1996) on A implies that A x B
is P-Donsker.
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4.3. Estimators based on the moment generating functions. Assume that X
and p(X,Y,0) are bounded, so that in particular their m.g.f.’s exist. For every s €
RFt ¢t € R¥ and § € O, define the empirical m.g.f.’s

Pn(s ZGXP < 8, Xk >), no(t) ZGXP {<t,p(X, Yy, 0) >}

and Cno(s, 1) Zexp {< 8, X >+ <t,p(Xg, Y%, 0) >}.
"=

Let k = ki + ko, and C. > 0 be such that pu[—C., C.]¥ = 1 —¢. In this case we take the

random criterion function M,

M, (6) = M(8; Pr; 1) = / / (6a()no(t) — Cug(5,8)}? du(s, 1),

[~Ce,4-Ce]*

This setting corresponds to
F.={exp(< t,z >), t € [-C.,+C. "}

and
= {exp(< t, p(z,y,0) >), t € [-C.,+C.]*, 0 € ©}.

Van de Geer (2000, Lemma 2.5) shows that the box [—C.,C.]** can be covered by
(4C.67" + 1) many d-balls in R*. Since

P, lexp(< s, X >) —exp(< t, X >)\2 < IP’n||X||2||s — t||2,

it follows from the above covering number calculation that the uniform entropy condi-
tion (cf. Van der Vaart and Wellner (1996, page 127) is met, and consequently the class
F. is P-Donsker. Restricting the integration over [—C,, C.]F, which has u-probability
equal to 1 — ¢, forces the function M to be within € of the original criterion function,

since

// D?(s,t) du(s,t) — // D?(s,t) du(s,t)| < p (RF \ [-C., CJF) <

RF1 xRF2 [—C:,C.®
Assumption (A1) will force the corresponding unique minimizers to be close as well.
Notice that F, is not a Donsker class if we take C. = +o00. G, will be a P-Donsker
class if {p(+,-,0) : 0 € ©} has this property. This is a consequence of the fact that the
Donsker property of a class is preserved under Lipschitz transformations, see Theorem
2.10.6 in Van der Vaart and Wellner (1996, page 192).
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Assumptions (A2) and (A3) follow from (A4), smoothness of p(-,-,6), and the
smoothness of the exponential function. Again, for (Al) we refer to Brown and
Wegkamp (2002, Theorem 3, page 2038).

5. TESTS OF INDEPENDENCE

Our null hypothesis is that p(X,Y’) and X are independent for some specified struc-
tural equation p(z,y) = p(z,y,60). Following the discussion in Van der Vaart and
Wellner (Chapter 3.8, 1996), a reasonable test is based on the Kolmogorov-Smirnov
type statistic

Kn = S:ltp \/ﬁ |Pnfs(x)gt(p(x: y)) - ]Pnfs(x)]Pngt(p(xv y))| .

Provided F x G, F and G are P-Donsker, the limiting distribution of K, under the
null is known and can be bootstrapped (see Van der Vaart and Wellner, 1996, pages
367 -369).

Alternatively, we propose tests based on the criteria M|, defined above. Given ob-
servations (Xj, Y;) we can compute (X;, W;) = (X, p(X;, Y;)). Next, we note that

Zn(fag) = \/_(]D) - )(f,gop)
- Z{f IES(X:)Eg(W:)}

_% Z{ F(X) - EF(X) % > {9(W:) — Eg(W)}

is the same independence empirical process discussed in Van der Vaart and Wellner
(1996, Section 3.8). Theorem 3.8.1in Van der Vaart and Wellner (1996, page 368) states
that Z,(f, g) converges weakly to a tight Gaussian process Z in F x G. Consequently,
under the null hypothesis

(5.1) nM, = // {Zu(fs,9) +VnD(fs, )} duls,t)

converges weakly to

(5.2) / / p(fs) t) du(s, )

RF1 xRF2

by the continuous mapping theorem. However,

nM,, — +oo (in probability)
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under any alternative Px yy with

/D2(f5agt) d,U,(S,t) > Oa

which, provided F and G are generating classes as in (2.2), (2.3) or (2.4), is equivalent
with X and W = p(X,Y) are dependent. This implies that the power of the test

converges to one under each alternative, that is, the test is consistent.

In lieu of the normal limiting distribution (5.2), we can also rely on the following
bootstrap approximation for the distribution of the test statistic under the null. Let
PX and PV be the probability measures of X and W, respectively, with empirical
counterparts denoted by PX and PYV

n

respectively. Under the null hypothesis, the
joint distribution of (X, W) is the product measure PX x PW and a natural estimate
for the joint distribution of (X, W) is PX x P/V. In order to imitate the independence
structure under the null hypothesis, we sample from the product measure PX xP)V. Let
(X5, W), -+, (X, W) be the resulting i.i.d. sample from PX x P and let Z and
M be the bootstrap counterparts of Z,, and M,, respectively, based on this sample.
Van der Vaart and Wellner (1996, Theorem 3.8.3) show that Z}(f, g) converges weakly
to Zpxypw almost surely. Since this limit coincides with the limiting distribution of
nM,, under the null hypothesis, nM, can be used to approximate the finite sample
distribution of nM, in a consistent manner (under the null hypothesis). Note that this
procedure is model based as the resampling is done from the estimated model under
the null hypothesis.

In addition, we present a specification test where the composite null hypothesis is the
existence of a fy € © such that X and p(X, Y, 6y) are independent. We base the test on
the statistic T}, = nM, ([9\), and we show that 7}, equals in distribution approximately
nM,, (o) plus some drift due to 5n In general the limiting distribution depends on 6,

but it can be bootstrapped.
Theorem 5.1. Assume (A1) - (A5) and M(6y) = 0. Then

(5.3) 1M, (8,) — / [Zn(fsagt,ﬂo) + v/n(8, — 6y)'D(s, 1, 00)}2 du(s,t) ~ 0,
and
(5.4) / (20 (Fes o) + VB — 00 Ds. 1, evo)}2 du(s. 1)

1s asymptotically tight. Moreover,

~

(5.5) nM, (6%) — 4nM, () ~ 0.
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Proof. First, we note that Z,(fs, g;¢) is stochastically differentiable in 6 for all s,¢ by
Condition (A3). An application of the functional continuous mapping theorem yields
that

Z(for 9100) — Zn(fsr 90.0)]7 da(s,t) ~» 0, for @' ~ 6.

RF1 xRF2

The stochastic equicontinuity, weak convergence of 5n and (A2) yield the following
expansion of M, (6,,):

@) = [ 0D (7 9,5,) du(s,1)
N / [{Z"(fs,gt,ﬁn) — Zn(fs, gt,Ho)} + Zn(fs, 9t.00) + \/ﬁD(fsagtﬁn)r du(s, )
= / [Zn(fwgt,ﬂo) + \/ﬁ(an — 00)'D(8,t, 90)}2 du(s,t) + op(1).

Since ), is asymptotically linear [cf. (4.3)], i.e.,

O, =00 +n" > Y(X;) +o0,(n"?)

i=1

for some 1 € £>(PX). Hence the vector

(Zn(fs>gt,00) , \/ﬁ(é\n - 90)) = (Zn(fSagt,Go) ) n_1/2 Zd}(Xz) + Op(1)>

converges weakly to a tight limit. Claim (5.3) and (5.4) follow from the continuous

mapping theorem.

We note that by Theorem 4.2

-~

(5.6) V(0" = 0,) — /(B — o) ~ 0

and by condition (A3)

(5.7) Z(0) — Z.(0) ~ 0 and Z2(0,) — Zy(6p) ~ 0.
Also, Theorem 3.2 and condition (A2) imply that

D(fs; g10) = (0" = 60)' D(s, 1, 60) + o([|6" — bol|)

in £(p), so that

/ (Do g1) = " = 0 D(s,1,00) — (B — 00)' Ds. 1 90)]2 du(s. 1) = o(n~).
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This in term implies that
W (07) = [ [V, o] dis. 0
= / (7 (fss 910°) + Zon(fs, 910) + V0D (fss gro-)]” dpa(s, 1)
= / [ZZ(fs, 9t0+) + L fs, 910°) + /(0" — 0,)' D(s, 1, 00)+

~ . 2
+vn(0n — 00)' D(s,t,00)| du(s,t).
Invoke (5.6) and (5.7) to deduce the second claim (5.5). O

This result says that the distribution of nM,, (§*)/4 can be used to approximate the
finite sample distribution of our test statistics 7;,. Again, we note that the power

of the test converges to one, as nM, (@\n) — o0 under any alternative Py with
[ D*(fs, gt) du(s, t) > 0, that is, PXPW # pXW.
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