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Abstract

We show that the conventional CUSUM test for structural change can be ap-
plied to cointegrating regression residuals leading to a consistent residual based
test for the null hypothesis of cointegration. The proposed tests are semipara-
metric and utilize fully modified residuals to correct for endogeneity and serial
correlation and to scale out nuisance parameters. The limit distribution of the
test is derived under both the null and the alternative hypothesis. The tests are
easy to use and are found to perform quite well in a Monte Carlo experiment.
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1 Introduction

In the last ten years, a substantial body of econometric theory has developed for
testing the presence of cointegration in time series models (see Phillips, 1991a; Stock
and Watson,1988; Phillips and Ouliaris, 1990; Hansen, 1992a; Johansen, 1991, 1995;
and Park, Ouliaris and Choi, 1988, among others). In their original study, Engle
and Granger (1987) suggest testing cointegration by examining whether or not the
residuals from the cointegrating regression contain a unit root, and Phillips and
Ouliaris (1990) study the asymptotic properties of these so-called residual-based tests.
Stock and Watson (1988) propose the ‘common trends’ approach based on the fact
that a vector time series cointegrated with order r can be written as the sum of
n — r common trends and an I(0) component. Using the reduced rank regression
technique, Johansen (1991, 1995) studied likelihood inference based on a Gaussian
error correction model and showed that the asymptotic distribution of the likelihood
ratio tests for cointegration is determined by a generalized eigenvalue problem and
has the form of a multivariate unit root distribution. More recently, Phillips (1996)
has proposed treating cointegrating rank as a matter of order selection and gives
methods for the joint determination of cointegrating rank and lag order selection in
vector autoregressions that have been shown to be consistent in Chao and Phillips
(1999).

Among these various tests for cointegration, the residual-based procedure has been
one of the more frequently used approaches in empirical research. The residual-based
procedure was analyzed and critical values were reported in Phillips and Ouliaris
(1990) and later by MacKinnon (1991). These tests take the residuals calculated
from the cointegrating regression (conventionally, a simple OLS regression among the
levels of economic time series) and apply unit root tests to the residuals. If there is no
cointegration among the individual time series, the residual process should contain a
unit root. Otherwise, if there is cointegration, the residuals will be stationary. Thus,
unit root tests can be applied to the residual process and the null hypothesis that
there is a unit root in the residual process corresponds to the null hypothesis of no
cointegration in the vector time series. These procedures are used in the same way as
unit root tests, but the data are the residuals from the cointegrating regression, and
the alternative hypothesis of cointegration is now the main hypothesis of interest.

Being unit root tests, these procedures are designed to test the null hypothesis of
no cointegration. Since cointegration is the primary interest, it is natural to consider
residual-based procedures that seek to test a null hypothesis of cointegration. Shin
(1994) used a component representation of the time series and proposed a residual-
based test for the null hypothesis of cointegration based on the KPSS (Kwiatkowski



et al. 1991) test for stationarity. Related, but less popular, methods have been
considered by Park (1990), and Park, Ouliaris, and Choi (1988), among others.

As this paper shows, the null hypothesis of cointegration can be tested by directly
looking at the fluctuation in the residual process of a cointegrating regression. In
particular, we show that the conventional CUSUM (or MOSUM) test for structural
stability can also be applied to the residuals in a cointegrating regression and provide
another way of testing the null hypothesis of cointegration. The CUSUM test was
introduced by Brown, Durbin and Evans (1975) for the study of structural change
and the original test statistic was constructed based on cumulated sums of recursive
residuals. Ploberger and Kramer (1992) extended the CUSUM test to OLS residuals.
Nowadays, these tests are widely used in econometrics and statistics, and have become
especially popular because they draw attention to structural change and breakpoints
in the data. This paper follows up previous work on CUSUM tests and considers its
extension to the residuals in cointegrating regressions. To obtain a valid cointegrating
CUSUM test, we modify OLS regression by means of semiparametric corrections for
serial correlation and endogeneity and construct fully modified (Phillips and Hansen
1990) residuals so that the limit process of the corresponding partial sums can be
expressed as a variance parameter multiplied by a functional of Brownian motion that
is free of nuisance parameters. Under the null hypothesis of cointegration, fluctuations
in the residual process u; are simply “equilibrium errors” and thus the cumulated
sums of the cointegrating residuals are of order n!/2. If the residuals display too
much fluctuation, we should reject the null hypothesis of cointegration.

Closely related work to the work of the present paper is Hao and Inder (1996)! who
considered testing structural change in cointegrated regressions (i.e. 3 = constant in
regression (4) in Section 2) based on the CUSUM statistic. While these authors focus
on the constancy of the regression parameter (3, we consider a residual-based test for
the null hypothesis of cointegration against the alternative of no cointegration. The
two models have the same behavior under the null hypotheses but are different under
the alternatives. Readers are referred to Hao and Inder (1996) or an earlier version
of the current paper for a detailed asymptotic analysis on the null model.

The paper is organized as follows. Section 2 develops the fully modified CUSUM
test for cointegration. Consistency is studied in Section 3. Section 4 reports finite
sample size and power based on a Monte Carlo experiment and Section 5 concludes.
Proofs are given in the Appendix.

In matters of notation, we use “=" to signify weak convergence of the associated
probability measures, [nr] to signify the integer part of nr, := to signify definitional

equality, and I(k) to denote integration of order k. Continuous stochastic processes

!We thank the referees for bringing to our attention this related work.



such as the Brownian motion B(r) on [0, 1] are usually written simply as B and inte-

grals [ are understood to be taken over the interval [0, 1], unless otherwise specified.

2 A CUSUM Test for the Null of Cointegration

Consider an m-vector time series {z;} generated by
2z = Ody + 7, (1)

where d; is the deterministic trend component with unknown coefficient matrix ®
and z{ is the stochastic component. The leading cases of interest for d; are: (1) no
trend d¢ = 0; (2) a constant term d; = 1; and (3) a linear time trend d; = (1,t)". The

stochastic component is an integrated process

Zf = Ztsfl +§t7 = ]-7 cees Ty (2)

where the initial observation of z{ is taken to be z§ = 0, and the process {&,} is
strictly stationary and ergodic with zero mean, finite variance, and spectral density
matrix fee(A). For convenience in deriving asymptotic theory, we assume that the
random sequence {,} follows a general linear process (Phillips and Solo 1992) whose
coefficients satisfy the summability conditions given in the following Assumption.

AssuMPTION L (LINEAR PROCESS): &, = C(L)et, where e; is a white noise process
with zero mean and variance matriz ¥. > 0, and C(L) = Y32, C;L7, |C(1)] # 0,
and Y32, j2|C4| < co.

This assumption ensures that the partial sum process constructed from &, satisfies
a multivariate invariance principle: n—1/2 21[:1:1] & = B,(r),0 <r <1, where B,(r)
is a Brownian motion with long-run variance 2 = C(1)3.C(1)". We partition z; =
(ys,xf") into the scalar variate y§ and the p-vector z§ (m = p+1) with the following

conformable partition of z, &, B,(r), and € :

ye | 1 S0 | 1 By(r) | 1 wyy W
2t = ) = ’ BZ r)= ’ Q = Y °
t l xt ] p & l & | p T ) | oy O
Following Phillips and Ouliaris (1990) and Hansen (1992a), we assume {2z > 0 so

that cointegration among the elements of x} is excluded. If a p-vector 3 exists such
that

u =y — 'y (3)
is stationary with continuous spectral density f,,, (), then y; and zj are cointegrated

in the sense of Engle and Granger (1987). If the process u; satisfies Assumption L,



then a functional limit theorem holds for the partial sums constructed from wug, viz.
n-1/2 ZEZ’I] uy = Byu(r) = BM(w?),0 <r < 1, where w? = 27 f,,,,(0) is the long-run
variance of the process uy.

As discussed in Phillips (1986) and Phillips and Ouliaris (1990), the hypothesis
of interest can be formulated in terms of the variance parameters. Notice that || =
(wyy - w’wa;xlwxy> Que|, so that if wy » = wyy — Wl O lwsy = 0, Q is singular, and
y; and xf are cointegrated (Phillips, 1986). Thus, in terms of the conditional variance
parameter wy z, the null hypothesis of cointegration corresponds to Hy : wy.; = 0, and
the alternative hypothesis of no cointegration is Hy : wy , > 0. Tests based on this
formulation in terms of the variance parameter were originally developed in Phillips
and Ouliaris (1988) and involve a null in which the parameter w, , is on the boundary.
Their approach uses principal components and leads to a confidence limit rather than
a formal statistical test of the null. For that reason, residual based cointegration tests
(where Hj is the null) are considered to be more practical.

Combining models (1) and (3), we have the following representation
yr ='de + 'z +u = Twy + g, (4)
where

Tt

H:[fy', ﬁ'},andwt:ldt].

The residual-based test (Engle and Granger, 1987; Phillips and Ouliaris, 1990; Hansen
1992a) considers a null hypothesis of no cointegration and applies scalar unit root

tests to the residuals of the cointegrating regression (4):
~ ~, > =
Ut = Yt — "Y/dt — 6 Tt = Yt — Hwt. (5)

In this paper, we propose testing the null hypothesis of cointegration (Hy) directly
by looking at the fluctuation in the residual process ;. The intuition of the suggested
tests is as follows. If a long term equilibrium relationship exists between y; and ¢, i.e.,
y¢ and x; are cointegrated, then the residual process in the cointegrating regression
(5) should be stable and fluctuations in u; reflect only equilibrium errors. Otherwise,
the fluctuations in 4; can be expected to be of a larger order of magnitude. Thus,
the null hypothesis of cointegration should be rejected whenever there is excessive
fluctuation in the residuals of (5).

To measure the fluctuation in the residual process, we consider the following

cumulated sum statistic (also see Remarks 1 and 2 below for related discussion)

Eﬁt.

t=1

1

max ——=

k=1,...n \/T0 (6)




We assume that there is a standardizing matrix D, such that Dpd,,) — d(r) as
n — oo. For the case of a linear trend, D,, = diag[1,n!] and d(r) = (1,7)". Un-
der Assumption L and the null of cointegration, the least squares estimator of the
cointegrating vector (3, B, is m-consistent and the asymptotic properties of B are well
known (Park and Phillips 1988; Phillips and Hansen 1990). Indeed,

n@-5 = | 1 BBl h I BBt Aua | (7)

where Agy, = Y720 E(€9,u0) is a one-sided long-run covariance and B, (r) = Bg(r) —
([ Bod') ([ dd)™'d(r). As a result, the partial sum of the residuals @; satisfies the
following invariance principle

[nr]

W Y23 i = f(r, Buy By Aus), ®)
t=1

where f(r, By, B, Auz) is a function of B,(r), B,(r), and A,;. However, under the
alternative hypothesis of no cointegration (Hj), the residual process of regression (5)
is nonstationary and the cumulated sum process constructed from u; has a larger
order of magnitude. It is easy to verify that in this case Z,EZ] Uy = Op(n3/?). As a
result, the statistic (6) diverges at rate n under Hj.

A valid test statistic should have a limit distribution that is free of nuisance para-
meters under the null hypothesis. Notice that the limiting processes By (r) and By(r)
in (8) will be correlated Brownian motions whenever contemporaneous correlation
between &,, and u; exists. Despite super-consistency, 3 is second-order biased and
the miscentering effect in the limit distribution (7) is reflected in Ag,,. As a result,
the statistic (6) can not be used directly for testing cointegration.

To eliminate the nuisance parameters from the limiting null distribution, we con-
struct fully modified (FM) residuals. Fully modified least squares regression was
originally proposed by Phillips and Hansen (1990) and further studied in Phillips
(1995) with the intent of providing a regression based procedure for the optimal
estimation of cointegrating regressions. To construct fully modified residuals, we
consider the following kernel estimates of w2, Mgy, Quz, Mgz = S0 E(€9:Ehy), and
Qu = 250 oo E(&xpu0) (see, e.g., Phillips, 1995):

2 % h A % I
P2 = k(—)Cuu(h), Agu =Y k(=—=)Cyu(h),
h=—M M h=0 M

~ if: h - i h

Npw = k(==)Clz(h), Quy = E(=7)Cru(h),
h=0 M h=—M M

N % h
h=—M M

6



where k(-) is the lag window defined on [—1,1] with £(0) = 1, and M is the band-
width parameter satisfying the property that M — oo and M/n — 0 as the sample
size n — oo. In later analysis, for notational convenience, we will also use the spec-
tral window corresponding to k(-), viz., K(\) = lim(2rM)~t Y, k(h/M)e***. The
quantities Cyy(h), Cpu(h), and Cyz(h) are sample covariances defined by Cy,(h) =
n=t Y Uytigg, Cou(h) = 7t Y Amyliyrp, Coz(h) = 071 Y AxyAx,, where Y sig-
nifies summation over 1 < t,t + h < n. Thus, Cm(h) =n! qu 1h AmtA$t+h for
h > 0. Under the null hypothe51s of cointegration, w Am, Am, Qm, and Qm are
consistent estimates of w2, Agy, Mgz, Qeu, and Q.
Following Phillips and Hansen (1990) and Phillips (1995), we define

~

y;' =y — AxtQ Qm, and /A\iu = /A\m — AMQQQ}QM

The fully modified estimator of II is then defined by the following formula

oo ) ()

and has an asymptotically mixed normal distribution.

The fully modified residual process can be constructed based on 3" and I+:
ﬁ#’::yt fi+u%7

and

-1

1/zzu ;»ww{wl [/ dW1S’] [/Olss'} /Os} = W IV (r),

where w2 | = w2 — Qe Q7 0, S(r) = (d(r), Wa(r)"), Wi(r) and Wa(r) are 1 and

p-dimensional standard Brownian motions that are independent of each other.

2

. ~ _~2 A =1
Since &, , = &z, — Qe 27} Q,y is a consistent nonparametric estimator of w2 | we

u.x?

obtain the following CUSUM test that is asymptotically free of nuisance parameters

and can be used in testing the null hypothesis of cointegration:

s, = [nax

7 i3

9)

We summarize the asymptotic distribution of C'S,, in Theorem 1.

THEOREM 1: Under the null hypothesis of cointegration, if us satisfies Assumption
L, then, as n — oo,

CSp = sup [Wy(r)l, (10)

0<r<1

7



where Wo(r) = Wi(r) — [} awas') [t 58] i s

Just like the limit distribution of the residual-based test for the null of no coin-
tegration, the limiting variate (10) is dependent on the limiting function of the de-
terministic trend, as well as the known dimensional constant p. For the case with
no trend, critical values have been computed based on a direct simulation with a
sample size of n = 2000 and 20,000 replications. These critical values are reported
in Table 1. For cases where d; equals a constant and a linear trend, Tables of critical

values can be found in Hao and Inder (1996) and an early version of the current paper.

Table 1: Upper Tail Critical Values for C'S,,: Case with No Deterministic Trend

Critical level 5% 10% 7.5% 5% 25% 1%
p=1 1.480 1.616 1.714 1.842 2.063 2.326
p=2 1.285 1.411 1.486 1.601 1.782 2.043
p=3 1.148 1.242 1.325 1.414 1.547 1.761
p=4 1.034 1.128 1.190 1.277 1.445 1.632

REMARK 1. In principle, any other fluctuation test statistics can be applied in the
same way. Generally speaking, if we consider a continuous functional h( ) that mea-
sures the fluctuation of in the residual process and denote Y,,(r) = \/_ )Ztmn] A+)
h(Yy,(r)) may be used as a test statistic. For example, the MOSUM test with cointe-

grating regression residuals can be constructed as follows

)

1 k+[nh]
MS, = Inax

o
. n—[nh| wu :p\/_ Z

where 0 < h < 1 is a bandwidth parameter for the moving window, indicating the

; (11)

proportion of 4;” used to construct the moving sum. Differing from the CUSUM
test, where more and more residual terms enter the cumulated sum, each moving
sum ( f +,!ﬁ @;) in the MOSUM test contains a fixed number of ;. From the con-
struction of the MOSUM test, it is apparent that the critical values of the detrended
MOSUM test will depend on the width of the moving window. It can be shown
that under the assumptions given in Theorem 1, the MOSUM test with cointegrating
regression residuals converges weakly to supg<,<1_p [Wy(r +h) — W, (r)|. Since the
use of other types of fluctuation test statistics does not affect our analysis in any sub-
stantive way, we will focus our discussion on the CUSUM test to keep the discussion
simple.

REMARK 2. The limiting distribution of supy<,<; [W4(r)| may be treated as an
generalized version of the classical Kolmogoroff-Smirnoff type distribution. Notice



that by using the Cramer-von Mises type measure for the fluctuation in residuals, we
can derive the Shin (1994) test. In this sense, both the CUSUM test and the Shin
test can be obtained by testing the fluctuations in the residuals. Our procedure cor-

responds to the Kolmogoroff-Smirnoff test and the Shin test is of Cramer-von Mises

type.

3 Test Consistency

This section considers the asymptotic behavior of the cointegrating CUSUM test
under the alternative hypothesis of no cointegration. It is important that a statistical
test be able to fully discriminate between the null and the alternative in large samples.
This is a nontrivial matter for the proposed test because both the numerator and the
denominator of the test statistic diverge under the alternative.

Under the alternative hypothesis, there is no cointegration between y; and z; and
(4) is commonly regarded as a spurious regression, whose asymptotic behavior was
studied by Phillips (1986). As a result, the partial sum of @, has a different order
of magnitude. In particular, it can be shown that maxy—; . , ﬁ ‘Zle @j ) diverges
as n — oo. However, notice that under Hj, the nonparametric kernel estimators &2,
Am, and Qmu, which are constructed from the residuals of (5), diverge as well. In
order to prove consistency, we need to show that the denominator diverges at a slower
rate.

Under H; and Assumption L, the least squares estimator of 3 has a non-degenerate

limiting distribution as n — oo, viz.

i=(/ Exdﬁgd)_l ([ Baslaa) = ca

where B, 4, defined similarly to B, is the Hilbert projection of By(r) onto the space
orthogonal to d(r). The least-squares residual u; and its partial sum process have the

following asymptotic behavior:

1
L N ﬁydm—( / ﬁydﬁgd) ( / ﬁmﬁ’wd) Bou(r) == Q(r),
[rer]

n 32N 6 = TQ s)

The nonparametric kernel estimates play an important role in the proposed pro-

Qr).

cedure and affect the order of magnitude of the test statistic. The following Lemma,
which is based on Phillips (1991b), gives some useful limit results for the nonpara-

metric estimates under the alternative hypothesis.



LEMMA 1: Under Hy and Assumption L, as n — oo, M — oo, and M/n — 0,
o) 1 Q
0 = 2mK(0) ( J Q) +

1
“ Ry = 20EL(0) < / deQ>+A*,
M 0 —

1
Lo o 27K (0) / Q?,
-

— W

where Qe = Quan, A = Ao, ' = (1, =€), Qe = [Way © Qual, Az = D20 E(AzpAz) =
[Azy : Aza], K(0) = 5= [ k(x)dz is the spectral window evaluated at 0, and K1(0) =
WMy oo 5irg Somo k(h/M) is the one-sided counterpart of K (0).

Using the result of Lemma 1, we obtain the following Theorem on the consistency
of the test CS,,.

THEOREM 2: Under Hy and Assumption L, as n — oo, Pr[CS,, > B,] — 1 for any

nonstochastic sequence By, = o(n*/2M~1/2),

From theorem 2, it is apparent that the behavior of C'S,, under the alternative
hypothesis is similar to that of the KPSS (Kwiatkowski et al., 1992) test in that the
divergence rate of C'S,, under H; is dependent on the bandwidth expansion rate.

REMARK 3. If we compare the proposed test with a CUSUM test for a structural
break (say, Hao and Inder (1996), Ploberger and Kramer (1992)), the statistical prop-
erties of the residual process u; in these models do not change between the null and
the alternative hypothesis, and thus the order of magnitude of the scalar (the variance
estimator @, ;) also does not change under the alternative hypothesis. However, in
the present paper, the behavior of u; changes fundamentally between the null and
the alternative, and both the cumulated sum (in the numerator) and the variance es-
timator (in the denominator) diverge under the alternative hypothesis, complicating

the consistency issue.

REMARK 4. In stationary time series regression (i.e. with I(0) regressors, see
Ploberger and Kramer, 1992), the limiting distribution of the CUSUM statistic is
asymptotically invariant to the limit behavior of the regressors (only the constant
term plays a role in the limit). However, in the cointegrating CUSUM test (9), be-
cause of the larger signal contained in the nonstationary regressors, the regressors do
influence the limiting distribution, and critical values of the test are dependent on the
dimension of x;, reproducing the well known phenomenon that arises in conventional
residual based tests (Phillips and Ouliaris, 1990).

10



REMARK 5. The nonparametric variance estimates that are used in the fully mod-
ified regression entail a choice of bandwidth M. Just like other statistical procedures
that use nonparametric estimators, the finite sample performance of the proposed
test depends on the choice of bandwidth. The empirical size and power of the test
can vary considerably with bandwidth selection although, as long as the bandwidth
M satisfies a certain expansion rate, the semiparametric tests are asymptotically
equivalent.

In the literature of covariance (or, more generally, spectral density) estimation,
several automatic bandwidth methods have been developed by Sheather (1986),
Robinson (1988), and Andrews (1991) among others. Since the focus of those papers
was density estimation itself, not hypothesis tests that may rely on such estimators,
the criterion functions are different and it can be anticipated that optimal bandwidth
choices will change with the criterion functions, depending on the focus of interest
in the study. More importantly, traditional bandwidth selection methods in spec-
tral density estimation were derived for stationary time series with weak dependence.
However, the stationarity properties of the time series in the current paper change
between Hy and Hy. Thus, taking into account the trade-off between correct size and
reasonable power, the optimal bandwidth choices obtained in past studies may not
be appropriate in our test. Indeed, if we use the traditional data dependent band-
width choices in cointegration tests, the sampling performance of the tests may be
good under the null hypothesis, but will be poor under the alternative. For example,
Andrews (1991) studied bandwidth selection in nonparametric variance estimation
based on minimizing the mean squared error of the kernel variance estimator and
found that the optimal bandwidth is given by a rule of the form c(f, k:)nl/ 3 for the
Bartlett estimator, where ¢(f, k) is a function of the unknown spectral density. A
data dependent bandwidth choice can then be proposed by estimating c(f, k) using
a plug-in method. If we use this estimator in the cointegration tests, the order of
magnitude of c(?,\k:) may change between Hy and H;. Actually, c(?,\k) may diverge

under the alternative, reducing the power of the test.

4 Finite Sample Performance

A Monte Carlo experiment was conducted to examine the finite sample performance
of the CUSUM test for cointegration. From the construction of the test, it is apparent
that its finite sample performance depends on the sample size n and the bandwidth
parameter M used to calculate the long-run variance and covariance parameters.

Thus, special attention is paid here to the effects of the bandwidth and sample size

11



on the performance of these tests.

The data were generated from the following bivariate regression model

yr = By +ug, B=1, (12)
where
Ut = QU_1 + ¢

and

Axy=v,t=1,...,n.

The random vector (e, v) is independently distributed as bivariate normal N (0,3),

=, 1)

The initial values are all set to be zero. We examined the test without trend (i.e.

and

d; = 0) and the linear trend case (i.e. di = (1,t)). Thus, the corresponding 5% level
critical values are 1.842 (no trend case) and 0.834 (linear trend case), respectively.

In this model, the AR coefficient « is a convenient nuisance parameter to investi-
gate. For |a| < 1,y and x; are cointegrated, and when o = 1, there is no cointegration
and regression (12) is a spurious regression. As o approaches unity, there is more and
more persistence in the residual process. In consequence, it is anticipated that the
empirical rejection rate of these tests will increase as « increases, and the test will
overreject the null hypothesis of cointegration for large «, depending on how close «
is to unity. A wide range of a values has been considered in the simulation, including
a = 0,0.2.0.4,0.6,0.8,0.9,0.95. We are especially interested in the case where « is
close to unity. In this case, the system is nearly cointegrated and overrejection will
happen more frequently. For this reason, three values (o = 0.8,0.9,0.95) that are
close to unity are studied. These values are also commonly used in the Monte Carlo
study for unit root tests.

Notice that the bandwidth parameter M corresponds to the number of lags used
to calculate the long-run variance parameters. Intuitively, for a > 0, the larger the
« value, the longer the lags we should need. Thus, for small «, we expect that a
small bandwidth value should provide reasonably good finite sample performance.
As « increases, we need a larger M to estimate the long-run variance parameters.
This intuition is confirmed in the simulation results. In the experiment, we have also
examined the performance of the test for different choices of the correlation coefficient
p- Since the results are qualitatively similar, we report the results for the case where
p = 0.7. The experiment considered the following sample sizes: n = 100, 200, 300, 500.
These sample sizes were chosen because they represent the most relevant range of
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sample sizes in empirical work. All experiments use 5,000 replications. For the kernel
function, the Bartlett window is used, following Kwiatkowski et al. (1992), so that
nonnegativity of the variance estimator is guaranteed.

Since the bandwidth is an important parameter in the construction of the test
statistic, we examined the test based on quite a few different choices of bandwidth:
M1 =1, M2 =3, M3 = [4(n/100)"/%4), M4 = [0.5n'/3], M5 = [n/3], M6 = [2n"/3],
M7 = Andrews (1991) AR(1) plug-in estimator. The first two bandwidth values are
fixed and relatively small. Thus, only when « is close to zero will the test using these
bandwidth choices have reasonably good performance. The other five bandwidth
choices are all increasing with the sample size. M3 is of order n'/4 and has been used
in Schwert (1989), Kwiatkowski et al. (1992), and other simulations. In the spectral
density estimation of stationary time series, the optimal bandwidth is O(n!/3) for the
Bartlett kernel. For this reason, we considered several bandwidth choice that are of
order n'/3. In particular, M4, M5, and M6 are all of order n/3 but have different
fixed scalars. M7 = 8(f)n'/3 is the data dependent bandwidth using the AR(1)
plug-in.

We examined the size and power of the residual-based procedures. In particular,
Table 2 reports the empirical size of tests corresponding to different serial correlation
(a) and bandwidth (M) choices at the 5% level and for the sample size n = 100.
Tables 3, 4, and 5 report the empirical size for cases of n = 200, 300, and 500. When
the value of « is taken to be unity, the rejection rates provide the empirical power
of the residual-based test and these are reported in Table 6 for different choices of
the bandwidth parameter. Both the case without a trend and the linear trend case
are reported. In particular, the top panels in these tables reports the results with no
trend and the bottom panels gives results with a linear trend.

From Tables 2, 3, 4, and 5, we can see that the tests have reasonable size if the
bandwidth is appropriately chosen.. The poor cases are those with large a and small
M, and those with a small sample and large M. For cases with large a (> 0.6),
the problem of overrejection is severe when M = 1 or 3 because, according to the
asymptotic theory, the validity of the tests requires M to increase with n in this case.
Size distortion is especially large when a = 0.9, or 0.95 because in these cases the
residuals are nearly integrated. A very large bandwidth is needed to reduce the size
distortion for cases with large . We also see that as the sample size increases, for
large enough bandwidth choices, the size property is reasonably good, corroborating
the asymptotic theory.
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Table 4: Empirical Size, n = 100

No Trend Case

M1 M2 M3 M4 M5 M6 M7

o= 0.025 0.020 0.017 0.022 0.017 0.009 0.023

a=0.2 0.041 0.022 0.019 0.031 0.019 0.009 0.025

a=04 0.080 0.031 0.022 0.049 0.022 0.013 0.022

a=06 0180 0.046 0.028 0.086 0.028 0.014 0.017

a=08 0304 0.112 0.075 0.215 0.075 0.014 0.016

a=09 0511 0285 0.158 0.435 0.158 0.025 0.021

a=095 0606 0.396 0.308 0.525 0.308 0.052 0.025

Linear Time Trend

M1 M2 M3 M4 M5 M6 M7

a=0 0.023 0.021 0.019 0.023 0.019 0.034 0.023

a=0.2 0.061 0.031 0.027 0.043 0.027 0.030 0.031

a=04 0.151 0.053 0.042 0.078 0.042 0.035 0.032

a=06 0325 0.105 0.069 0.182 0.069 0.039 0.040

a=08 0.717 0.289 0.184 0.463 0.184 0.047 0.159

a=09 0862 0509 0.352 0.698 0.352 0.051 0.215

a=0.95 0905 0.606 0.445 0.752 0.445 0.048 0.365

Table 5: Empirical Size, n = 200

No Trend Case

M1 M2 M3 M4 M5 M6 M7

a=0 0.027 0.021 0.019 0.021 0.014 0.010 0.026

a=02 0.044 0.023 0.022 0.035 0.018 0.012 0.032

a=04 0.090 0.031 0.029 0.046 0.025 0.014 0.031

a=06 0210 0.049 0.034 0.095 0.028 0.016 0.024

a=0.8 0412 0.163 0.092 0.297 0.075 0.029 0.019

a=09 0646 0381 0.248 0.556 0.236 0.049 0.015

a=0.95 0855 0.656 0.483 0.802 0.459 0.109 0.027

Linear Time Trend

M1 M2 M3 M4 M5 M6 M7

a=0 0.038 0.033 0.032 0.036 0.031 0.032 0.036

a=02 0.080 0.047 0.041 0.060 0.036 0.027 0.047

a=04 0182 0.075 0.060 0.110 0.050 0.036 0.044

a=06 0445 0.152 0.113 0.235 0.088 0.052 0.056

a=0.8 0.807 0452 0.316 0.650 0.231 0.086 0.069

a=09 0906 0.772 0.645 0.885 0.526 0.156 0.094

a=0.95 0949 0.855 0.788 0.915 0.718 0.265 0.096
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Table 6: Empirical Size, n = 300

No Trend Case

M1 M2 M3 M4 M5 M6 M7

a=0 0.029 0.027 0.024 0.027 0.019 0.011 0.031
a=0.2 0045 0.034 0.028 0.034 0.021 0.018 0.046
a=04 0094 0.036 0.032 0.036 0.028 0.022 0.043
a=0.6 0225 0.061 0.036 0.061 0.035 0.028 0.041
a=08 0433 0.135 0.078 0.135 0.065 0.036 0.039
a=09 0698 0.361 0.202 0.361 0.175 0.049 0.031
a=0.95 0.801 0.603 0.446 0.603 0.429 0.122 0.034

Linear Time Trend
M1 M2 M3 M4 M5 M6 M7
a=10 0.039 0.038 0.039 0.038 0.036 0.034 0.039
a=0.2 0.091 0.053 0.046 0.053 0.044 0.042 0.049
a=04 0205 0.091 0.062 0.091 0.055 0.046 0.052
a=0.6 0489 0.169 0.095 0.169 0.085 0.056 0.060
a=08 0839 0.514 0.279 0.514 0.212 0.085 0.077
a=09 0941 0.826 0.617 0.826 0.522 0.165 0.094
a=0.95 0.965 0.935 0.833 0.935 0.762 0.345 0.083
Table 7: Empirical Size, n = 500
No Trend Case

M1 M2 M3 M4 M5 M6 M7

a=10 0.035 0.034 0.034 0.034 0.032 0.027 0.055
a=0.2 0.059 0.045 0.043 0.045 0.038 0.028 0.056
a=04 0.099 0.051 0.046 0.051 0.040 0.030 0.051
a=0.6 0230 0.069 0.048 0.069 0.041 0.030 0.050
a=0.8 0489 0.201 0.109 0.201 0.060 0.039 0.047
a=0.9 0722 0509 0.262 0.509 0.191 0.051 0.039
a=0.95 0.848 0.775 0.655 0.775 0.502 0.163 0.036

Linear Time Trend

M1 M2 M3 M4 M5 M6 M7

a=10 0.041 0.038 0.039 0.038 0.037 0.032 0.041
a=0.2 0.097 0.057 0.046 0.057 0.044 0.039 0.047
a=04 0213 0.089 0.065 0.089 0.060 0.055 0.057
a=0.6 0524 0.172 0.103 0.172 0.087 0.078 0.078
a=0.8 0883 0.517 0.265 0.517 0.179 0.092 0.090
a=0.9 0952 0.863 0.705 0.863 0.506 0.171 0.102
a=0.95 0.989 0.962 0.895 0.962 0.810 0.385 0.135
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Table 8: Empirical Power
No Trend Case
M1 M2 M3 M4 M5 M6 M7
n=100 0.784 0.501 0.400 0.631 0.400 0.145 0.031
n =200 0947 0.798 0.727 0.875 0.665 0.358 0.025
n=300 0973 0896 0.794 0.896 0.762 0.452 0.045
n=>500 0.992 0962 0.914 0.962 0.806 0.635 0.047

Linear Time Trend
M1 M2 M3 M4 M5 M6 M7
n=100 0.925 0.666 0.529 0.815 0.529 0.092 0.322
n=200 0.992 0.938 0.886 0.972 0.825 0.416 0.112
n=2300 0.999 0.982 0.935 0.982 0.902 0.606 0.091
n=>500 0.999 0.998 0.992 0.998 0.979 0.804 0.253

Table 6 reports simulation results on the power of these tests. Again, the effects
of the bandwidth and the sample size on the power of the tests are considered.
The tests have good power in many cases (except for those with small samples and
large bandwidths, and those using M7). As anticipated from test consistency, for
each bandwidth choice, the power increases as n increases. It is also apparent from
Table 8 that for each sample size, the power decreases as the bandwidth parameter
increases. According to the asymptotic analysis, the distribution of the tests under
the alternative hypothesis depends on n/M, with large M (given n) generally reducing
power.

A final word on the test using bandwidth M7. In this case, the test has good
size property but almost no power. Notice that, corresponding to the AR(1) plug-in
method, M7 = 1.1447(6n)Y/3 where § = 4 5*/(1 — %)% and p is the AR(1) coefficient
estimator. Under the alternative hypothesis, 5 actually diverges to oco. In fact, M7
is of order n under the alternative. As a result, the test is no longer consistent and
has no asymptotic power against Hj.

5 Conclusion

This paper shows how the CUSUM test for structural change can be applied to cointe-
grating regression residuals. In particular, residual-based tests for the null hypothesis
of cointegration can be constructed by looking at fluctuations in the residuals from the
cointegrating regression. Asymptotic distributions of these tests were derived under
both the null hypothesis and the alternative of no cointegration. The limit distrib-
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utions are nonstandard and are functions of several Brownian motions, but depend
only on the dimension of the system and on the form of any deterministic detrending.
The new tests are shown to be consistent and their asymptotic behavior under the
alternative is similar to that of the KPSS tests in the sense that their divergence
rate depends on the bandwidth parameter. These tests complement conventional
residual-based procedures and are a companion to the work of Hao and Inder (1996)

on the use of CUSUM tests for structural breaks in cointegrating regression.

6 Appendix: Proofs

In this Appendix, we give proofs for the results under H;. For asymptotic analysis of
the test under Hy, readers are referred to Hao and Inder (1996) or an earlier version

of the current paper which may be obtained from the authors.

6.1 Proof of Lemma 1

By definition,
-y k(37 Caulh),
h=—M

where .
Cru(h) = - ;Axtaﬂh; 1<t t+h<n.

Let and z; = (y,,2;) be the OLS detrended 2, then

N ~ 1 1
=== (g =5 ( ).

= % k( ( ZAxtzt+h>< ),1§t,t+h§n.
h=—M
)

Following similar arguments as in Phillips (1991) and with M = O(n 1/ 3) as n — oo,

Thus

we have

1
M Z [E 2. AMW]

h=—M

N 271‘( /k: ds)/dBBd+Qm
27

— 27K(0) / dB,B.,+ ...
0
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where B, (r) = B.(r) — (/ B.d') ([ dd’) " d(r). Under the alternative hypothesis,

5= ([ Babla) B (f BealBoa) = o

1 ¥ h (1 . 1
i, 2, Ko (;;A%%)] (5

=M

N [2%[((0) /O 1 dB:BEZdJrQM} ( 5 5 )

1
— 2 K(0) / B, BLyn + Q)
0

thus

1
= 20K (0) [ By [Bya— Ciad] + L
0

1
() / dB,Q + ..
0 i
Similarly, we can show that
1
M

For &2 , = &2 — ﬁuxﬁajwlﬁw, we first look at &2. Notice that

R 1 1
Ay = 21K (0) / dB,B. n + Ay.n = 21 K1(0) / dB,Q + A..
0 0 -

-
h=—M M

where

1 SN 1 ~ 1
Cuu(h)zﬁ ututJrh:EZ(lv _ﬁ)§t§:€+h<_3)a IL<tt+h<n
¢ ¢

Hence, by the same argument as before, for M = O(nl/ 3) as n — oo, we have

1, 1Mkh[1

— 0 — > k(57
nM M, =~ "M

_Cuu:|
n
1
= 21K (0) / Q.
) =
Thus, under the alternative,

&2 = 0p(nM), Qg = Op(M), and Qe 0 = O, (M?),

Uu

1 1 0 1 A A~
nsz'm - nM“’Z_ nMQMQMlQM
1
= W‘”i*‘%(l)

= 21K(0) /O o
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6.2 Proof of Theorem 2

Under the alternative hypothesis,
W= -l

—1
= — W/l — Az} 1y + 0, (Zwsw'5> (ZwsAm‘sﬂm}Qm + [ nAt, 0 })
-1
= U — AP Qg + ) (Z wsw;> (Z we A1y + [ nAt, 0 D .

By the result of Lemma 1 and notice that

Afy = Ao — Moo Qe = O, (M),

we have
[nr]
n3/2 Z
nﬂ A
~ /
= n3/2 Z 3/235[7”]Q oy
1 —1
t=1 E E]
1 [nr]
- —Sa 1
n3/2 ;ut +Op( )
= Q(r).
Thus

%CSH = max \/M
n k=1,.

= maX ———

Z

1 [nr] A+

Z

1
= sup —F/—
0<r<1 /nflj\/jflai
—-1/2

= [2%[((0) /O 1 QQ] sup )@(7’)\-

0<r<1

The result of Theorem 2 then follows immediately.

19



7 References

Andrews, D.W.K., 1991, “Heteroskedasticity and autocorrelation consistent covari-

ance matrix estimation,” Econometrica, 59, 817-858.

Brown, R.L., J. Durbin, and J. Evans, 1975, “Techniques for testing the constancy
of regression relationship over time,” J.R.S.S. (B), 37, 149-63.

Chao, J. and P. C. B. Phillips (1999). “Bayesian model selection in partially non-
stationary vector autoregressive processes with reduced rank structure,” Jour-
nal of Econometrics, Vol 91, 227-271.

Engle, R.F. and C.W.J. Granger (1987), “Cointegration and Error Correction: Rep-

resentation, Estimation, and Testing”, Econometrica 55, 251 - 276

Johansen, S. (1991), “Estimation and hypothesis testing of cointegration vectors in

Gaussian vector autoregressive models”, Econometrica 59, 1551 - 1580.

Johansen, S. (1995), Likelihood-based inference in cointegrated vector autoregressive

models, Oxford: Oxford University Press.
Hannan, E. J., 1970, Multiple Time Series, Wiley, New York.

Hansen, B., 1992a, “Efficient estimation and testing of cointegrating vectors in the

presence of deterministic trends”, Journal of Econometrics, 53, 87-121.

Hansen, B., 1992b, “Tests for parameter instability in regressions with I(1) process-
es”, Journal of Business and Economic Statistics, Vol. 10,321-335.

Hao, K. and B. Inder, 1996, “Diagnostic test for structural change in cointegrated

regression models,” Economic Letters 50, 179-187.

Kwiatkowski, D., P.C.B. Phillips, P. Schmidt and Y. Shin, 1992, “Testing the null
hypothesis of stationarity against the alternative of a unit root: How sure are

we that economic time series have a unit root?”, Journal of FEconometrics, 54,
159-178.

Park, J., S. Ouliaris, and B. Choi, 1988, “Spurious regressions and tests for cointe-

gration”, mimeo, Cornell University.

Park, J., P.C.B. Phillips, 1988, “Statistical inference in regressions with integrated
process: Part I”, FEconometric Theory, 4, 468-498.

Phillips, P.C.B., 1986, “Understanding spurious regression,” Journal of Economet-
rics, 57, 1361-1401.

20



Phillips, P.C.B., 1991a, “Optimal inference in cointegrated systems”, Fconometrica,
Vol 59, 283-306

Phillips, P.C.B., 1991b, “Spectral regression for cointegrated time series”, in Non-
parametric and semiparametric methods in econometrics and statistics, edited
by W.Barnett, J. Powell and G. Tauchen. Cambridge: Cambridge University
Press.

Phillips, P.C.B., 1995, “Fully modified least squares and vector autoregression,”
FEconometrica, 63, 1023-1078.

Phillips, P. C. B., 1996, “Econometric model determination”. Fconometrica, 64, pp.
763-812.

Phillips, P. C. B. and B. E. Hansen (1990). “Statistical inference in instrumental
variables regression with I(1) processes,” Review of Economic Studies 57, 99—
125.

Phillips, P. C. B. and S. Ouliaris (1988), “Testing for Cointegration Using Principal
Components Methods”, Journal of Economic Dynamics and Control, 12, 205-
230.

Phillips, P. C. B. and S. Ouliaris (1990), “Asymptotic properties of residual-based
tests for cointegration,” Econometrica, 58, 165-193.

Phillips, P.C.B. and V. Solo, 1992, “Asymptotics for linear processes,” Annals of
Statistics, 20, 971-1001.

Ploberger, W., and W. Kramer, 1992, “The CUSUM test with OLS residuals,”
Econometrica, 60, 271-85.

Robinson, P. M. (1991), Automatic frequency domain inference on semiparametric

and nonparametric models, Econometrica 59, 755-786.

Shin, Y., 1994, “A residual based test of the null of cointegration against the alter-

native of no cointegration,” Econometric Theory, 10, 91—115.

Stock, J. H. and M. W. Watson (1988), “Testing for common trends”, Journal of
American Statistical Association, 83, 1097 - 1107.

Xiao, Z., 2001, “Testing the null hypothesis of stationarity against an autoregressive
unit root alternative,” Journal of Time Series Analysis, 22, 87-105.

Xiao, Z. and P.C.B. Phillips, 1998, “A CUSUM test for Cointegration Using Re-

gression Residuals,” Working Paper, University of Illinois.

21



	A CUSUM Test for Cointegration Using Regression Residuals
	Recommended Citation

	cusum11.dvi

