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A two-layer model for the separation of inertial 

boundary currents' 

Dennis W. Moore and Pearn P. Niiler 
N ov a Univ,rsity 
Fort Lauderdale, Florida 333r4 

1. Introduction 

The problem of the steady circulation in an inviscid, two-layer ocean is 
solved in the limit of small mid-oceanic Ross by number. The model is not new. 
Certain aspects of the problem have been treated by Fofonoff (1954 and 1962), 
Deacon et al (1955), Charney (1955), Morgan (1956), Stammel (1958), 
Robinson (1963), Blandford (1965), Jacobs (1968), and Schmitz (1969). Their 
efforts to explain the relevance of the model to the real ocean are considered 
more than adequate, and no such effort will be made here. At various stages of 
the analysis, the connection wi th some of these previous works will be pointed 
out. The main thrust of this paper is the mathematical treatment of the separa-
tion of the western boundary current from the coast and its subsequent steady 
meandering across the ocean basin. The soluti on to the circulation problem is 
obtained by the method of matched asymptotic expansions. In this model, the 
flow is confined to the upper layer, in which the potential vorticity is every-
where positive. 

2. Equations of the model 

The equations of motion and continuity in non-dimensional form are 

and 

s(UU2 + ?Uy)-f?+Dx= o, 

s(U?2 + ??v)+JU+Dy= o, 

(UD)x+ (//D)v = o, 

(2. I) 

(2.2) 

(2.3) 

(cf. equations 1-3 of Charney, 1955). 
The dimensionless velocity component in the eastward (x) directi on is U 

and in the northward (y) direction is ?, and the dimensionless depth of the 

r. Received: 2I May r974. 
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upper layer is D. The dimensionless Coriolis parameter is given by f = I + y. 
Horizontal distances have been non-dimensionalized with respect to R tan 00 , 

where R is the earth's radius and 0o is the latitude where y = o. The depth of 
the upper layer is non-dimensionalized with respect to Ho, the nominal depth 

T l · l · iJegHo h . h d . of the warm layer. he ve oc1ty sea e 1s + R 
0 

, w ere (!o 1s t e ens1ty 
(!o1 o tan o 

of the lower (motionless) layer, iJe is the density difference between the two 
layers, g is the acceleration due to gravity, and /o is the value of the Coriolis 

Th R b b . . b iJegHo 
parameter at y = o. e oss y num er 1s given y e = + R 

0 
, 

(!01 02 2tan2 0 

which is also the square of the ratio of the internal Rossby radius of deformation 
to the length scale of the basin. 

The boundary conditions are that U = o on x = o and x = Xo and // = o 
on y = o and y = yo, provided that D > o on these boundaries. Furthermore, 
there is a natural boundary condition on any line along which D = o, namely 
that there is no transport across such a line. The above equations and boundary 
conditions do not constitute a well-set problem without some specification of 
the vorticity distribution in the fluid. Note that all non-trivial solutions to the 
above equations with the specified boundary conditions will consist of a closed 
gyre or gyres. 

It is convenient to introduce the transport stream function "P defined by 

and 

UD = -1Pv, 

//D = "Px, 

(cf. equation 6 of Charney, 1955). 

(2.4) 

(2.5) 

There are two exact first integrals of equations (2.1)-(2.3) which may be 
obtained very simply in the following manner. Equations ( 2. 1) and ( 2.2) may 
be rewritten in the form 

:x{i(U2+//2)+D}-//n{e(//x-DUv)+f} = o, (2.6) 

and 

:y{i (U2+//2)+D}+ UD{8(//x-DUv)+f} = o. (2.7) 

It is then convenient to define the Bernoulli energy 

and the potential vorticity 

e 
B = - (U2+//2)+D, 

2 
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Using these definitions and the definition of the transport stream function 
allows equations ( 2.6) and ( 2. 7) to be written as 

(2.8) 
and 

Multiplying equation (2.8) by -'lj)y and equation (2.9) by "Px and adding gives 

(2.10) 

which implies that B = B("P)· It then follows from either equation (2.8) or 

(2.9) that P = P("P) = ~: (cf. Fofonoff (1962), equations 110- 114). There-

fore the Bernoulli function and potential vorticity are conserved on each 
streamline. 

In the model explored here, the simplest possible choice for B("P) is made, 
namely 

B = Po'lj)+ /,pc , 
2 0 

where Po is a constant and Jc is the value of the dimensionless Coriolis para-
meter at some latitude y = Jc• The potential vorticity therefore is constant 
everywhere and equal to Po. Such a simple choice may seem to be a severe 
restriction on the class of available solutions. There seems to be no reason to 
choose a more complicated function B("P) (see Section 11). In fact, the analysis 
of even this simple case is moderately difficult. The essential features of the 
circulation discussed here can be easily extended to a wide class of function B ( "P) 
satisfying certain restrictions. These restrictions will be stated during the anal-
ysis of the simplest case, and the relation of this work to previous efforts in-
volving more complicated choices for B("P) will be discussed. Furthermore, no 
generality is lost by choosing Po = 1, for the dependence on Po can be removed 

by scaling U, /7 and D by (;J "P by (PS) and e by Po. 

The equations for the conservation of Bernoulli energy and potential vorticity 
now become 

s +c 
- (U2 + /72 )+D = 'f/J+~, 
2 2 

( 2. I I) 

and 
( 2. I 2) 

For typical oceanic values of the parameters, the Rossby number e is on the 
order of 10-4. In the following analysis, we develop the asymptotic solution for 
the circulation pattern in the limit of small s. 



[o,o] 
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Figure r. Schematic representation of the circulation pattern. In the case illustrated, the flow in the 
boundary layer along y - o is to the west (see Section ro). 

3. Synopsis of the analysis 

The analysis we present involves the derivation and solution of various 
asymptotic approximations to the equations of Section 2. These approxima-
tions are valid in the o. Many different regions are distinguished, each 
of which is characterized by a specifics-dependence for both the dependent and 
independent variables. The purpose of this section is to describe how the various 
regions fit together, and to present an overview of the circulation pattern. 

In the interior of the basin, the flow is a slow westward drift, and the depth 
of the moving layer increases linearly with latitude. This flow encounters the 
meridional boundary and is deflected to the north as an intense, narrow inertial 
boundary current. The width of the current is O(s1/2) and the northward 
velocity is O(s-1 l 2). The depth of the moving layer on the western coast de-
creases to the north, and the interface surfaces near an apparent separation 
latitude f = Jc- At this latitude, the jet leaves this coast but remains coherent 
with cross-stream width of O(s1 l 2). It leaves the coast going nearly parallel to 
it, with an initial deflection through an angle which is O(s3l10). The free jet 
meanders to the east, while oscillating about the latitude f = Jc with an O(s1/4) 

amplitude and O(s1 l4) downstream wavelength. We present solutions that are 
symmetric about the mid-longitude of the basin. The overall circulation pattern 
is presented schematically in Figure 1. 
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The major part of the analysis is concerned with the details of the transition 
from a western boundary current to a free inerti al meander, the so-called sepa-
ration process. In this model, separation occurs when the depth of the moving 
layer right at the boundary goes to zero, and the VJ = o streamline leaves the 
coast. Much of the analysis is concerned with determining the behavior of the 
layer depth at the coast as a function of latitude. This analysis begins by noting 
that near/= Jc, the solution for the fl ow in the western boundary current is 
singular. In this solution, the layer depth at the coast goes to zero like V/c-J, 
so that Dy is singular. The U component of flow becomes large, and the scaling 
arguments used to derive the approximate soluti ons for the western boundary 
current are not valid near/= /c-

The appropriate rescaling there is then derived. The relevant length scale 
in they direction near/= Jc is O(s215), and the corresponding velocity U is 
O(s-115). This choice makes the dimensional Uyy comparable to fl(= J0 R-1 

cot 0o). The northward velocity component // remains O(s-1 / 2). In this region, 
the current is deflected uniformly through an angle which is O(s3l10

), except in 
a very narrow region (O(s1fro)) near the coast. In this narrow region, the depth 
D of the moving layer is small (0 (s1f5)). Again, the layer depth at the coast goes 
to zero, but this time with a finite slope (Dy is no longer singular). However, 
a detailed examination of the validity of these solutions reveals that the scaling 
approximations used to derive them again become invalid before the inter-
face actually surfaces. 

To describe the mechanism for the actual separation, a further rescaling is 
found to be necessary. The relevant new x and y scales are O(s"/10) and O(s415) 

respectively. The scales of U and // are O(s-115) and O(s-1 / 2 ) as before, but Dis 
O(s3f5). The equations for the fl ow in this region are exactly analogous to the 
non-linear shallow water equations for one-dimensional time dependent flow 
over a uniformly sloping beach, with a seawall at x = o. The physical mechanism 
for separation is completely revealed by this analogy. 

Figure 2 is a detailed schematic representation of the various regions just 
described, in which the transition from western boundary current to free in-
ertial jet is accomplished. 

4. The geostrophic interior 

In the interior region of the ocean away from longitudinal boundaries, the 
non-dimensional equations are assumed to be correctly scaled as written. All 
fields are taken as O ( 1) quantities and expanded in power series in s. The in-
terior solution will be denoted by a subscript 1. It is 

//, = O(s), 

D, = J +O(s), 

(4.1) 

(4.2) 
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Figure 2. Schematic representation of the various regions involved in the transition from the western 
boundary current to the fr ee inertial meander. The definitions of the various independent 
variables for the different regions are found in the text. 

VJr = [!-~] + O(e), (4.3) 

and 
- I 

U, = f + O(e). (4.4) 

Since f = 1 + y, the interior depth is linear in y, and so is the transport stream 
functi on. The zonal velocity, U,, is decreasing to the north like 1 //, so the 
interior transport per unit width is constant and to the west. 

It is clear from equation (4.3) that VJr = o on y = o only if Jc= 2. It will be 
assumed not that Jc= 2, but that Jc= 2 + o (I). Just how big this o (I) correc-
tion to Jc is, and the necessity for it, will become clear in Section Io. The im-
portant point to note is that regardless of the value of Jc, the geostrophic in-
terior soluti on does not satisfy the boundary condition that U = o on x = o and 
x = Xo . The assumption that the original scaling of the equations is correct 
must be modifi ed near the meridional boundaries. 
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5. The western boundary current 

The slow interior flow encounters the boundary at x = o and is defl ected to 
form a current along the western boundary. Clearly, the non-dimensional 
length and velocity scales associated with this defl ecti on are not 0(1). This was 
recognized by Charney (1955). He showed that the natural width for this 
boundary current is the radius of deformati on, and also determined the cor-
responding velocity scale. In the notation of this paper, the horizontal scale of 
this current is s1 / 2 • The x-coordinate is rescaled by 

X = 81/2/; > 

and the northward velocity V by 

In this boundary layer region, all fields are denoted by a subscript 2. 

Assuming that all other scales are unchanged, the equations are 

and 

v2~- sU2y+ f = D2, 

s(U2U2~+ v2U2y) -fv2+D2~ = o, 

e u· I 2 D Jc 
- 2 + - V2 + 2 = 1/h + - , 
2 2 2 

U2D 2= -vi.y, 

v2D 2 = 1P2r 

(5 . I) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

The boundary conditions for the solution of equations (5. 1) - (5. 5) are that 
U2 = 1/h = o on !; = o, and V2-+ o, 1/h-+ 1J),, and U2-+ U, as /; -+ ro. 

All dependent variables are expanded in power series in s, e.g., v2(!;,y) = 
v20(!; ,y)+sv21(!;,y) + s2v22(!;,y) + O (s3). T o leading order equations, (5.1)-
(5.5) become 

V20~+ f = D 20, (5.6) 

- Jv2o+ D 20~= o, (5.7) 

I /c (5.8) - V202 + D 20 = 1J)20 + - ) 
2 2 

U20D20 = - '!/hoy, (5.9) 

and V20D 20 = '!j) 20~- (5.10) 

Is is seen that the boundary current described by this system is an intense 
flow to the north, which is in geostrophic balance in the cross-stream direction. 
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In the current, the relative vorticity is comparable to the planetary vorticity, 
and the inertial acceleration terms in the north-south momentum equation (not 
written here) are comparable with the Coriolis force and pressure gradient. 
Therefore, this kind of boundary layer is called "inertial". 

The explicit solution is obtained by differentiating equation (5.6) with re-
spect to and substituting into equation (5. 7 ). There results an equation for 
v.o, which is 

(5. I I) 

The solution for v 2 o which satisfies the boundary conditions as ~-'>- oo ts 

(5.12) 

where A.(y) is to be determined from the conditions at = o. 
From equation (5.6) it follows that 

D.o = f-Vf A2(y)e-{f!;. (5- 13) 

Evaluating v 2o and D20 on = o and substituting into the Bernoulli equation 
(5.8) with tp20 = o gives a quadratic equation for A2. The root of this equation 
which corresponds to D20 > o on = o is 

(5 . 14) 

The problem just presented was first discussed by Stammel (Deacon, et al., 
1955), who chose A2= VJ, which corresponds to D20(~ = o,y) = o for all 
y. Robinson (1963) noted that Stommel's solution was associated with an un-
bounded U20 at = o in such a way that = o was not a streamline. Robinson 
gave the correct solution corresponding to the boundary condition tp20 = o on 

= 0 . 

It can now be seen that the depth D .o on the wall = o is given by 

D20(0,y) = Vf({c- J), (5 -15) 

and the moving layer apparently surfaces /c• We now calculate both tp20 

and U20, in order to determine the actual magnitude of the terms omitted in 
deriving equ:ttions (5.6)-(5.10) from (5.1)-(5.5). From this we will show 
that the actual surfacing of the warm layer cannot be accurately described by 
equations (5.6) - (5.10). We will determine the range of y for which these 
equations are valid. The tp20 field may be obtained directly from equation (5.8), 
or just as easily by multiplying equation (5.7) by D20 and integrating in~ to 

find that the quantity (Jtp20- D;o) is independent of ~. Therefore, by 

matching to the interior as ~-'>- oo, tp2o is found to be 
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(5.16) 

The east-west velocity U20 is now computed by ubstituting 'lfho and D 20 into 
equation (5.9). The result may be written in the form 

2/-Jc 
U20 = 2D20 Vf(Jc-J) Z ( l - Z) 

- ; 20 {VJ(fc-J) :/Z -Z2
) + f :y [/(1 - 2)2+ (/ c-/)(22- 1)] }, 

} (5.,7) 

where Z = rVU. 
The terms on the second line are well behaved, for all values of and/ 

sJc, but the term on the first line becomes infinit e /c for all > o. 
Thus, it is clear that the assumption that U remains 0(1) breaks down as 
f Jc, and the soluti ons obtained here become invalid as the Row approaches 
this latitude. The latitude / = Jc will be referred to as the apparent separation 
latitude, since D apparentl y vanishes on = o Jc- The breakdown of the 
scaling assumptions of (5-1) - (5-5) near this latitude will now be discussed in 
detail. 

6. The validity of the boundary current approximation near the 
apparent separation latitude 

Let y' = Jc-J measure distance to the south of the apparent separation lati-
tude. Then for = 0 ( 1) and y' small, the v20, D 20, and U20 fi elds from the 
previous sect ion may be written as 

and 

V20 = (Vfc-V y')r Vtc~ + 0(y'), 

Dw =/ c(l - e-Vtc!) + Vfd rVtc~+ 0 (y') , 

e- VTc~ 
U20 = -v'. I + 0 ( l). 

2 '/cY 

(6. l) 

(6.2) 

(6.3) 

Note that the largest term in U20 is simply obtained from /cU20= -D2oy, 
which means that it is determined geostrophicall y; this is because o(y'- 1

/
2) 

terms in U20V20~+V20V20y cancel exactly. 
W e now compare the -sUy term, which was dropped frorr: equation (5.1) 

to obtain equati on (5.6), with typical retained terms. Companng 

- sUwy = sU2oy' = 0 (sy'-312
) 

to a typical 0(1) term (e.g.,/ ~Jc), we see that if y' is O(s2 i3), the neglected 
term is O ( 1 ). If y' is O ( s•/3), U20 is O ( s-113), which suggests rescaling y' and U 
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according to these scales. However, when this is done, we find by integrating 
the rescaled equations that the '!/1, Y, and D fi elds are independent of latitude 
to leading order. Then we conclude from the rescaled form of equation (5.1) 
that the O ( s-•l3) piece of the U field is at most linear in latitude, and will not 
match the U20 field given by equation (6.3). Therefore, this scaling doesn't 
work, in that the solution to the resulting equations will not match the up-
coming fields. 

We note in passing that a U scale of 0(s-1l 2), which would make the sU2/ 2 

term in equation (5.3) an 0(1) term, would imply (from equation (6.3)) ay' 
scale of 0(s). In that case, the leading term in the rescaled form of equation 
(5. 1) would imply U is again independent of latitude. Therefore, this scaling 
does not work either. In fact, there is no rescaling consistent with equation (6.3) 
for which terms multipled bys in equations (5.1)-(5.3) are comparable to the 
0 ( 1) terms in those equations. 

The next possibility is that sUy, is comparable to an 0(y' 1 l 2) term (e.g., the 
VJcy' rVtcl; in the term V201;)- Again from equation (6.3) this implies that y' 
= 0(s1 l 2) and U = 0(s-•14). This rescaling was done and the resulting equa-
tions were solved to two orders in s1 /4. The leading piece of the U fi eld is 
found in the second order calculation, but will not match the form of equation 
(6.3). 

W e have now presented, without demonstrating the details, three possible 
scalings that do not work. The algebra is straight-forward but laborious, and 
serves no useful purpose by itself. We simply wished to demonstrate how we 
arrived at the rescaling which produces the first cogent set of equations for the 
Row near the separation latitude. We proceed to the correct rescaling by 
making sUy,, in equation (5 . 1) comparable toy' (e.g., they' term in/= /c-y'). 
In dimensional terms, this means that the first breakdown of the solu-
ti on in the western boundary current happens when Uyy is comparable to P, 
From equation (6.3), we see that s Uy,, comparable toy' means that y' = 0 (s•l5) 

and U = 0(s-•ls). 

7. The first correction to the western boundary current 

a. The Correction in the Region = 0(1). 
Let 

and 

define the rescaled variable measuring distance south from the apparent separa-
tion latitude and the rescaled eastward velocity component. The dependent 
variables in the region for and 'Y/ both O ( 1) are denoted by the subscript 3. 
With these rescalings, equations (5.1)-(5.4) become 
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and 

V31;+ s215u3'1) +/ c-s2l5 'YJ = D3, 

sslsu3u31;- s•lsv3u3'1) - (fc- s•ls'YJ)v3+ D 31; = o, 

u2 v2 f 
6s/s 2 + 2 + D . = m + ...!: 

2 2 J r 3 2' (7.3) 

(7.4) 

The variables u3, v 3, D 3, and 'I/J3 are all expanded in powers of s•ls, e.g., 

The zeroth order equations are 

and 

v 301; + Jc = D 3o, 

-JcV3o+ D 301; = o, 

v;0 D Jc 
2+ 30 = '1/J30+;:, 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

The boundary conditions on the fields in region 3 are obtained by matching 
the fi elds to the upcoming solution from region 2 and the interior solution 
(region 1 ), as well as making 'I/J3 = o on = o. To zeroth order, this means 
lim '1/JJo = lim 'I/J 20 , etc. But equation (7.8) shows that 'I/J3o is independent of 

'YJ, and therefore D 3o and v 3o are also 'YJ independent. The solutions are 

and 

where 

V30 = V/c Zc, 

D 30 =/c( I - Zc), 

The equations for the first order problem are 

v 3,1; = D 3,, 

- Jcv 3, + D 311; = o, 

v 3o v3, + D 3, = 'f/J3,, 

(7.9) 

(7.10) 

(7.12) 

( 7 · 1 3) 

(7.i4) 
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and 

From equations (7.12) and (7.13) we find that v 31 satisfies 

v 31gg = Jov3,. 
Therefore 

and 

V31 = -.A3('YJ)Zc, 

D31= VJc.A3('YJ)Zc, 

'ljJ31= Vfc.A3('YJ)Zc(I -Zc), 

(7. I 5) 

(7.I 7) 

(7.18) 

(7.19) 

where .A3('Y/) is a function to be determined. Note that, since Zc = r on = 
o, 1J) 31 satisfies the boundary condition 1jJ3,= o on~= o for any choice of A 3('YJ). 
This is because 1J)3, is determined from equation ( 7. r 4) directly, without using 
any boundary condition on = o. 

From equation (7.15) we find 

For~= O(r), this u3o field will match the U20 field given by equation (6.3) if 

I 
.A3 ~ 00. 

'Y/ 2 'Y/ 

We note that the above solutions are only valid for = O(r), and are not 
valid as o. In the limit o, we can write 

Thus when~= O(s''5) the D3o and s115 D 3, terms are both O(s'i5). Therefore, 
the assumption that D 3 = O(r) is not valid for~= O(s1f5) or smaller, and an-
other rescaling is necessary. 

However, before we do this rescaling, we compute the solutions in region 3 
to one more order. These fields will be needed to find the zeroth order solution 
for all the fields which is uniformly valid in~ (r; fixed), and to determine .A3('Y/)· 

The second order equations are 

and 

V32g+U3o'Y/-'Yj = D32, 

-JcV32+D32g= V3o(U3o'Y/-'YJ), 
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Note from equation ( 7. 1 8) and ( 7. 20) that u3o is in geostrophic balance. 
Also, from equati ons (7 .6) and ( 7. 1 3), we find v 3o and v 3, are in geostrophic 
balance. Therefore, as the Row approaches the apparent separation latitude, it 
is geostrophic to leading order in both directi ons. The first quasi-geostrophic 
effects are due_ to the u30'1'/-17 terms in equati ons (7.22) and (7.23). 

From equations (7.22) and (7.23) we find 

V32,;,;- Jcvp = V3o(U30'1'/-17) - U30,;'I'). (7.2 5) 

The soluti on of equation (7.25) is 

_A 3'1')'1') 2 I ( _A 3'1')'1')) v32 = C3(17) Zc+ Zc+ - 17 - v- Zc, 
3J C 2 /c 

where CJ(17) is a function to be determined. Then we find from equation (7.22) 

} (727) 

and from equation (7.24), 

'ljJp= + VJcC3(17)Zc(I -Zc) 

+ .AJ'l')'I') [Zc _ 2Z~ + z~ _ ~VJc(Z~-Zc)] + A; z~ 
V Jc 2 3 3 2 2 

- 17 l I - ~c + ~Jc (Zc- Z~)]. 

b. The Correction in the Region = O(s'l 5). In the last section, we showed 
that when is O (s'l5) the expression for D 3 is O(s'15). Al so, since 1/13 ~ D;/2/c, 
it is O(s•is) when is O(s'l5) . 

Therefore, let 

and 

= e'isC' 

D = s'lsd4, 

1P = s•fs <p4. 

The region for which C = 0 (I) will be d:noted by a :ubscript 4. With all other 
variables scaled as in region 3, the equations for region 4 are 
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U4d4 = rp4'Y/, 

v4d4= 'P4t,· 

[32,3 

(7.29) 

(7.31) 

(7.32) 

The dependent variables are again expanded in powers of e1i5, for example 

We only require the zeroth order fields for u4, d4, and rp4, and the zeroth and 
first order fields for v4• From the zeroth order contributions of equations 
(7.29) and (7.30) we see that 

(7.33) 

From the first order contributions of (7.29), it follows that 

(7.34) 

where .AlrJ) is to be determined by matching to region 3. From the first order 
contribution of equation (7.30) we obtain 

(7 .35) 

By integrating equation (7.32) with the boundary condition rp4o = o on I:,= 
o, we find 

Then equation (7.31) gives 

(7 .37) 

and we see that u4o = o on I:,= o as long as .A4 ('Y/) =;&- o. 
The proper matching of the solutions in region 3 and region 4 can be ac-

complished by using an intermediate scale variable, but in this case the func-
tions are sufficiently simple that we proceed by writing the region 3 stream 
function in terms of I:, through O(e2l5) and match by inspection. We find that 
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This should match e2 i5 rp 4o. Comparing equations (7.36) and (7.38), we see 
that the /;2 terms are identical, the 1; terms match if .A4('YJ) = .A3(rJ), and the 
constant term gives 

.A 3TJTJ + .A· = 'YJ . 
3V!c s 

(7.39) 

c. The behavior of the layer depth on the western boundary. The solution of 
equation (7.39) determines the unknown function .A3 ( = .A4) . From equation 
(7 .35) we see that .A4 is proportional to the depth of the warm water along the 
western boundary(~= 1; = o). Equation (5.15) for the depth of the warm layer 
on the boundary according to the region 2 solution may be written in terms 
on 'Y/ as 

D,o(o,y) = e'/5 V /c'YJ + o(e2 is). 

The boundary conditions for equation (7.39) are obtained by matching s'15d4 

on the western boundary to equation (7.40). This means 

(7 .41) 

We also recall from Section 7 a that matching u20 and u3o for = 0 (I), 
'YJ oo implied 

(7.42 ) 

It is clear from equation (7.39) that the conditions (7.41) and (7.42) are con-
sistent with a solution for 'Y/ large of the form 

(7.43) 

The general solution of equation (7.39) is called a first Painleve Transcendent 
(see Ince, p. 345). For our purposes, it suffices to note that the solution is not 
obtainable by quadrature, and numerical integration is necessary. The depend-

ence of .A3 on Jc can be removed by setting .A~= (3VJc)113.A3 and rJ 1 = 
(3 V Jc)213 'Y/· Then equation (7.39) becomes 

JI ,112 I 

./13 T/ 1 T/ 1 + ./1 3 = 'YJ ' 

and the asymptotic form (7.43) becomes 

I .A'~ '1'1
1,12+ _ _ + O(rJ'-91•). 

3 ., 8 'Y/'2 

(7.44) 

(7.45) 

Equation (7.44) has been integrated numerically using the asymptotic solu-
tion give by equation (7.45) and its first derivative evaluated at 'YJ

1 
= 20 to 
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Figure 3. The solution of equation (7.44) for A'3(r/), compared with V11'• 

provide initial conditions for .d' and d.d' /dr/. The solution is shown m 
Figure 3. For comparison, V11' is also shown. We see that .d' is nearly in-
distinguishable for V11' for 17' > 2. The important property of .d' is that it goes 
to z_:ro at 17' = 17~ -.715 with a finite slope A~,~ .959. Therefore, the 
1 /Vy' singularity in equation (6.3) for U20 has been removed, and the apparent 
separation latitude is a small distance (larger, however, than the boundary 
current width) north of/= /c-

lt is interesting to investigate the direction of the streamlines near the separa-
tion latitude. The direction of a streamline is given by 

0 = tan-r [(dX) ] = tan-1 ( u), 
dY tp=const // 

where 0 is measured clockwise from due north. In region 
equations (7.9) and (7.20) that 

(
8- 1/5 A 317 Zc) 

VJc A317 
03 tan-1 e-1/2 V Jc Zc ~ e3fw h 

3, we find from 

(7 .4 7) 

independent of r Thus to leading order for = 0 ( 1) the streamlines are parallel, 
and 0 depends only on latitude. The bulk of the western boundary current 
veers away from the coast at a very small angle. 
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Near the coast, in region 4, we find from equations (7.33) and (7.37) that 

83/10 A r 0 41) ', 
4 ~ A4(TJ) + Jc( 

Therefore, 03 as C co, but the streamline on the coast C = o still goes 
straight north as long as A4(ri) -:f- o. However, near 'Y/ = 'YJo, where 
the expression (7.48) is not analytic. The value of 04 at C = o, 'Y/ = 'YJo is un-
defined. We have not yet uncovered a mechanism for the separation of the '1/J 

= o streamline from the coast. To do so, we must examine the validity of the 
scaling in region 4 as 'YJo• 

From equation (7.33)-(7.35) and (7.37), we can compute the behavior of 
each term in equation (7.29) near C = o, 'Y/ = 'YJo• The quantities v 4c and d4 
are regular in C and 'Y/, but 

l (7.49) 

is singular at C = o, 'Yj = 'Y/o· Near 'Y/ = 'Yjo, A4 is approximately tX(TJ-TJo) where 

We see that if C and ri-rio are both O ( 132
/ 5 ), 133l5 u4o7J is O ( s1l5) and is comparable 

to s1f5Jc, which suggests rescaling ri-rio and C with respect to 13
215 • Rescaling 

ri-rio with respect to any higher power of 8 would give u independent of that 
rescaled latitude to leading order and therefore the fields could not match those 
in region 4. 

8. The second correction to the western boundary current 

a. The equations f or the separation of the boundary streamline. The depth of 
the interface on the western boundary in region 4 is given by D = s1

15A 4 (ri), 
which goes to zero at 'Y/ = 'YJo, with slope 

tX = d.d4(TJ) I . 
d 'Y/ 1J = 1/• 

The apparent separation latitude is now at f = Jc- s2l5 rJo, which is north of 
/c since 'YJo is negative and 'Y/ was measured south from Jc• To discuss the separa-
tion of the boundary streamline '1/J = o, we introduce the following rescaled 

variables. 
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t; = 82/sa2J0-s/2a, 

r10 - 'YJ = s2lsaJc-3/2-c, 

U = c-,tsafc-,t2u5, 

17 = c- i/2 [/c'/2 + ss/s a2Jc-3/2 v5], 

D = sslsazJc-, ~5, 

VJ = s6lsa4Jc-3X5· 

[32,3 

The region where a and -,; are O (I) is denoted by a subscript 5. The various 
powers of a and Jc that appear in the rescaling are simply there for later con-
venience, to avoid yet another re-definition of variables. The potential vorticity 
equation in terms of the scaled variables is 

where all the small terms have been collected on the right hand side of the 
equation. In the Bernoulli equation, the O (I) balance is between the Jc/2 on 

the right hand side and the leading term of 8 :
2 

= ({ +O(s3l5)) on the left 

hand side. The residual Bernoulli equation is 

u; +vs+~s = sslsa2Jc-2 [xs- "'i]. 
The equations for the transport stream function are 

and 

(8.2) 

(8.3) 

(8.4) 

The dependent variables are expanded in power series in s1 /s. The zeroth 
order equations are 

Vsoa- U50,+ I = O, (8.5) 

U502 
(8.6) - + V5o+~so = o, 

2 

Uso~so = - Xso,, (8.7) 
and 

~so= Xsoa· (8.8) 

It is convenient to use equations which involve u5o and ~so alone. Substituting 
for Vso from equation (8.6) into (8.8) gives 



1974] Moore & Nii /er: Separation of I nertial Boundary Cur rents 475 

and eliminating Xso between equations (8.7) and (8.8) gives 

(8.10) 

Equations (8.9) and (8. 10) are the firs t momentum equati on and the continuity 
equati on. Since J/ is a constant to leading order, northward advecti on becomes 

ti me-like ( J/ :y :-c), and the Corioli s term ( - f J/ - 1 in equati on (8.9)) 

is a uniform force which accelerates the flui d seaward. 
The matchi ng condit ions fr om region 4 to region 5, obtained from equati ons 

(7.35) and (7.37) are that 

as cofor all a, and that 

as - co for all a. 

£& 5o ~ a - -c 

a 
U50 ~ --

a-"C 

(8.1 I) 

(8. I 2) 

There exists an exact analogy between this problem and a problem in non-
linear, non-rotating shall ow water theory. L et 

£&50 = h 50+ a . 

Then equations (8.9) and (8.10) become 

(8. I 3) 
and 

(8.14) 

T hese are the equations which govern one-dimensional shall ow water moti ons 
over a uniformly sloping beach. The boundary condition that u5o = o at a = o 
if h5o > o there can be interpreted as having a seawall at a = o. The quanti ty 
h5o is then the elevati on of the free surface above the foot of the seawall, as 
illu strated in Figure 4 . A t an init ial time T = - To (To)) I), the free surface is 
level with h50 = To, and the fluid is moving seaward with an initi al velocity 

distribution u 50 = _ a_. W e see from this problem that for large a there is a+-co 
uniform outflow, co, r ) = 1. Therefore, the water level at the seawall 
must decrease, and eventuall y the waterline recedes down the beach. When the 
water level decreases past the foot of the seawall, u5o at the waterli ne is the rate 
at which the waterline recedes away from the seawall. This waterlin e is given 
by h5o = - a, which is £& 5o = o. 

One exact soluti on of equati ons (8.9) and (8. Io) is u 50 = I, £& 50 = a - T + Tn 



Journal of Marine Research [32,3 

Figure 4 . Schematic representation of the non-linear shallow water flow over a sloping beach with 
a seawall. 

where -r, is a constant. The corresponding hso = -r,- -r. In the shallow water 
analogy, this exact solution represents uniform outflow with the water level 
dropping at a uniform rate. In the separation problem, this solution shows that 
the separated streamline is straight and makes an angle with the coast which 
is equal to 03 as given in equation (7.47). 

We assume that the solution of equations (8.9) and (8. Io) with initial con-
ditions given by equations (8. I I) and (8. I 2) will be asymptotically equal to the 
above solution as oo, where the constant -r, defines a further refinement in 
the position of the separation latitude. 

9. The free meandering jet 

After the boundary current leaves the coast, it is useful to describe the flow 
in terms of a curvilinear coordinate system. Let B'l 2r measure distance normal 
to the streamline '1/J = D = o (hereafter called the reference streamline), and let 
B'/4s measure distance along this streamline. The motivation for choosing B'/4 

for the downstream scale has been thoroughly discussed by Robinson and Niiler 
(1967). See their equations (5.2) and (5.3), and for the slope parameter S sub-
stitute 

{3Ho Ho 
Jo = R tan 0o' 

since in their case the scale is topographically determined, but in our case it is 
determined by (3. The B'/2 cross-stream scale reflects the fact that the entire 
western boundary current separates from the coast in a coherent fashion. The 
coordinate system is sketched in Figure 5. The quantity E, 114Y6= ({-Jc) 
measures the distance of the reference streamline north from the apparent sepa-
ration latitude. The velocity parallel to the reference streamline is denoted by 
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y 

i'Y 

X 

Figure 5. Schemat ic representation of the coordinate system for the fr ee meander. 

e-1 / 2 v6, and normal to the reference streamline by e-114 µ 6. In the meandering 
jet region, all dependent variables are denoted by a subscript 6. The curvature 
of the reference streamline is denoted by 

d0 
c 1 l4 K 6= --6-

d(s1l4s)' 

where 06 measures the direction of the reference streamline. The equations for 
the meandering jet are 

(9.3) 

and 
(9.4) 

The boundary conditions for the soluti on of Equations (9.1)-(9.4) are 1fl6 = 
D6 = o on r = o and tp6 tp, as oo. Since the differential equati on for v6 
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is second order in r , specifying three boundary in general overdetermines the 
problem. The condition that all three boundary conditions are compatible gives 
an equation for the curvature K 6 as a function of s. 

The variables µ6, 116, D 6, "P6, Y 6, and K 6 are now expanded in powers of 
e1 / 4_ The equati ons to zeroth order are 

116or + J c = D 60 ' (9.5) 

11602 D Jc (9.6) - + 60 = "P6o + - , 
2 2 

µ6oD 6o = - "P6os> (9.7) 
and 

116oD6o = "P6or · (9.8) 
The soluti ons are 

V6o = V J c !!l' c, (9.9) 
D 6o = J c ( I - !!l' c), (9.10) 

and 

"P6o = f ( I - !!l' c)2, 
2 

( 9. I I) 
where 

!!l' c = exp [ - V / er]. 

Since '1jJ60 is independent of s, µ60 = o, and the leading contribution to µ6 is 
actually O(e1 l 4). 

The equati ons fo r the fir st order fi elds are 

and 

116,r + K6o 1160 + Y6o = D6, , 

116, 1160 + D6, = "P6, , 

( 9.12) 

( 9.1 3) 

As usual, we eli minate D6, and "PG, to obtain a linear equati on fo r 1161 which 
contains an inhomogeneous term involvi ng K60 , Y60 and 1160 . The solution for 
1161 which vanishes at r = o (as it must from equati on (9.13) and the boundary 
conditions on "P6, and D61) and as ro is 

Substituting from equati on ( 9. 15) into equati on ( 9.12) and evaluating the 
resulting expression at r = o gives an equation for K60 in terms of Y60 , 
which is 
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I -- V Jc K6o + Y-60 = 0 · 
3 

In equati on (9.16) the curvature K60 is 

_ d' Y-60 ( (dY-60)')-3/
2 

K6o - dX' I + dX ' 

where X measures longitude in units of s 1 l4. Therefore, equati on (9.16) is a 
second order differential equation for the locati on of the reference streamline 
as a function of longitude. The initi al conditions are given by specifying the 
position Y-60 and direction dY-60 /dX of the reference streamline as it leaves the 
coast at X = o. We recall that Y-60 measures distance north from f = Jc in 
units of s1 / 4. The first correcti on (cf. Section 7) to the western boundary 
layer moved the apparent separation latitude from f = Jc to f = Jc- s2 l5 'YJ0 • 

The second correction ( cf. Section 8) produced an additional o ( s4l5) dis-
placement of the separation point. On the scale of s1l4 both these displacements 
are small, so the initial position is Y-60 = o at X = o. 

The solutions given in Sections 7 and 8 show that the entire stream 
leaves the coast coherently at a small angle from due north, 03 = 0 ( s3l10

) (see 
equati on (7.47)). Since X and Y-60 in equation (9.16) are both measured 
on the same scale (i.e., s''4), the initial direction is due north to leading 
order. This means dX/dY-60 = o at X = o. The solution of equation (9.16) 
with these init ial conditions can be written in term of elliptic integrals. 
The position Y-60 is a sinuous function of X, with maximum amplitude 

(

2 _)1/2 _ 
3 

V Jc and wavelength 3.39 fc' l4/V 3 . Figure 6 shows the shape of the 

reference streamline for one wavelength of the meander. 
The dynamics of this free meandering jet are identical to the baroclinic case 

of inerti al jets discussed by Robinson and Niil er ( I 967 ). Equation ( 9. 16) can 
be obtained from the cross-stream integral balance of vorticity flux in the jet, 
and is seen to represent a balance between the total advection of relative vor-
ticity and planetary vorticity. In this formulation, correct to O ( s1 l4), Robinson 
and Niiler's (1967) equation (2.31) becomes 

co co 

K6o J 'V~oD6odr + Y-60 f 'V6oD6odr = o, ( 9· 1 7) 
0 0 

and upon substituting for v60 and D60 from equations (9.9) and (9.10), we again 
obtain equation (9.16). 

There is a recirculation within the southern side of each meander. This 
steady pattern is simply the zonal geostrophic drift to the west given by the 
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Figure 6. The solution to equation (9.16) for no as a function of X. 

original interior constant potential vorticity flow, and thus does not represent 
the "radiation of a geostrophic wave" by the meander suggested by Robinson 
and Niiler ( I 967 ). 

10. The completion of the circulation pattern 

The equations and boundary conditions for the circulation, given in Section 
2, admit solutions for which the stream function 1P is symmetric about the 
mid-longitude x = xo/2 of the basin. The solution we have presented so far 
does not admit this symmetry unless the east-west wavelength of the free 
meandering stream can be adjusted so that a crest or a trough of the wave 
falls exactly at x = xo/2. That is to say that an odd number of half wave-
lengths of the meander should just fit into the basin. This can always be done 
by changing /c by an amount which is O ( e1 / 4), and we recall here that we 
stated in Section 4 that such a o ( 1) correction to Jc would indeed be made. 
The wavelength of the meander is approximately 1.96 e114/c'l4, and /c was 
assumed to be 2 + o ( 1 ). Therefore, the number of waves across the basin is 
an O(e-r/4) quantity. To make the meandering wave fit in the basin so that 
the solution may be taken as symmetric about xo/2 means that if we change /c 
by an O(e1 l4) amount, the wavelength of each wave will change by an O(e1 / 2) 

amount, and since there are O(e-114) waves in the basin, the total number of 
half waves between x = o and x = xo will change by O ( 1 ). 

Here is a specific example. Let e (( 1 and xo be given. Compute the quantity 
xo/.98 (2e)-i/4 and find the largest odd integer (2N + 1) which is less than or 
equal to this quantity, i.e., 

Xo 
- 8 (2e)-r/4= 2N +I+ c5 
. 9 

where 0 :5 c5 < 2 . (10.1) 
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Then we choose Jc to be 
8 Jc= 2 + - (.980)(2t:)1 /4. 

Xo 
(10.2) 

The 0(131/4) contribution to Jc then provides the wavelength correction neces-
sary to just fit 2 N + I half wavelengths into the basin. Of course, equation 
(10.2) is not the only possible choice for Jc which will sati sfy symmetry about 
xo/2 . W e could have chosen any odd integer 2 N + 1 as long as o in equation 
(10.1) remained an 0 (1) quantit y; in general, o could be positive or negative. 
Equati on (10.2) would still apply and 2N + 1 half wavelengths would complete 
the northern edge of the circulati on pattern. 

W e recall from Section 4 that if Jc-I= 2, the interior stream function ip1 does 
not satisfy the boundary condition 'lp1 = o on y = o. In fact, if Jc= 2 + LI 131 / 4, 

then we find from equation (4.3) that 

LI 
"P1(x,y = o) = - - 131 /4+ 0(8) . 

2 

Therefore, to make the total stream function equal to zero aty = o, we must 
add a weak southern inertial boundary current to the circulation. Neary = o, 
the soluti ons for U, //, D and "P are easily found to be 

l LI - 1/2 U = - - +- 8-1/4e-e y 
f 2 ' 

( l 0.3) 

// = o, 

LI - ,12 
D = f + - 13 ' 14 e-e II, 

2 
( l 0 . 5) 

and 

LI [ -,~ ] "P = Y - 2 131/4 l - e-e Y . ( I 0.6) 

For LI > 0, we see from equation (10.6) that "P = o at y = o and again at 
y = (Ll /2) 131/4 (i.e., at f = Jc/2). The southern boundary current in this case 
represents an eastward Row with U = O(s-114) in a region of width 0(131/2

) . 

The corresponding eastward transport is returned to the west by the interi or 
westward drift south of y = (Ll /2) 131 / 4. Thus there is a weak closed gyre be-
tween y = o and y = (Ll /2)131/4. N ote from equation (5.13) and (5.14) that at 
f = Jc/2, A 2 = o, Vzo = o, and D 20 is independent of r Thus the zero interi or 
streamline at y = (Ll/2) 131/ 4 extends straight to the meridional boundary. The 
westward interi or drift south of y = (Ll/2) 131/4 reaches the western boundary 
region and Rows southward there. It turns from south to east in an O ( 131/ 2) x 
0(131/2) corner region near x = y = o, and Rows eastward as an 0(131/2

) wide 
current against the southern boundary, as shown by equations ( 1 o. 3)-( 1 o.6 ). 
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We have formulated the corner problem; the stream function correction in the 
corner obeys e'v2 7P = "P, with '1jJ = o on x = o and '1jJ = (iJ/2) e1 l4 on y = o. 
The solution to this problem has already been discussed by Moore (1968), 
and does provide a smooth turning of the boundary current. 

If iJ <O, the southern boundary current flow is westward and this transport 
is turned northward in the southwest corner and flows into the western bound-
ary current. The western boundary layer solution given in Section V is un-
changed outside the corner region. 

Fofonoff ( 1962) has postulated that the solution to this baroclinic circulation 
problem consists of a slow geostrophic interior flow to the west, inertial bound-
ary currents along western and eastern boundaries, and a straight inertial east-
ward jet at the separation latitude which completes the pattern. See Figure 3 
of his article. He does not discuss how the transition from western boundary 
current to straight eastward jet is accomplished. Our analysis shows that as long 
as the northern boundary of the basin is sufficiently far north, the correct 
circulation pattern for this model looks more like our Figure l . 

11. More general choices for B (y) 

W e recall from Section 2 that the Bernoulli function and potential vorticity 
are conserved on each streamline. Therefore, we write B = B("P) and P = P('1p). 
But these conservation theorems derived from equation ( 2. Io) do not imply 
that B("P) and P("P) are necessarily single valued functions of "P· It is perfectly 
possible to have two or more different streamlines having the same value of '1/J, 
and there is no reason to suppose B (and P) will be the same on these different 
streamlines. All we know for sure is that B and P are conserved on any given 
streamline. This apparently trivi al remark is important for understanding the 
discussion of separation given by Charney (1955). In his model, Charney 
divides the fl ow into two regions, a slow geostrophic interior and an intense 
western boundary layer. The Bernoulli function and potential vorticity are 
conserved along streamlines in both regions. In the interior, he chooses a stream 
function distribution given by 

'1jJ = 7Po-y(J-Jo)2, 

which is symmetric about y = yo. The corresponding interior D field in the 
notation of this paper is 

Dz= D~- 2y(1 + Yo) (J-Jo?-4; (J-Jo)3, 

cf. Charney ( l 955), equation ( l 7). This D field is not symmetric about y = y0 • 

Therefore, the Bernoulli function B = D + e uz = D + !... (Dy)2 

is not sym-
2 2 j 

metric about y = y0 • This implies that B, considered as a function of "P, is not 
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single valued. Therefore, a streamline south of y = y
0 

with a given value of the 
stream function 1P = 1P, cannot be the same streamline as the one an equal 
distance north of y = y0 having the same stream functi on value. That is to say, 
a specification of the interior 1P field such as Charney made overspeci fies the 
problem. A well set problem is obtained if B is specified as a single valued 

increasing analytic function of 1P, so that the potential vorticity P = is 
everywhere positive. • 

The constant potential vorticit y distribution was chosen for this paper be-
cause the x dependence of the field in the western boundary current could be 
written down expli citl y. It is well known (Charney 1955, Morgan 1956, 
Fofonoff 1962) that with more general choices for B(VJ), the x dependence 
must be obtained by numerical quadrature. The use of explicit solutions in our 
example has facil itated the examinati on of the validity of the approximations 
involved. We have found that all the scaling arguments we have made can be 
consistently applied to more general choices for analytic B(VJ) as long as P(VJ) 
> o and P 1P ;;:: o. The physics of the separation phenomenon is the same for 
these more general cases as for the one we have discussed in detail. The de-
tailed analysis of the more general case has been carried out, but yi elds no 
new insights and is therefore not presented . 
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