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ABSTRACT

The problem considered here is that of using a data-driven procedure to
select a good estimate from a class of linear estimates indexed by a dis-
crete parameter. In contrast to other papers on this subject, we consider
models with heteroskedastic errors. The results apply to model selection
problems in linear regression and to nonparametric regression estimation via
series estimators, nearest neighbor estimators, and local regression esti-
mators, among others, Generalized CL (GCL), cross-validation (CV), and
generalized cross-validation (GCV)} procedures are analyzed. The GCL and CV
criteria are shown to be asymptotically optimal under general conditions.
The GCV criterion is found to be asymptotically optimal only under a condi-
tion that is satisfied in some applications but not in others. For example,
it is satisfied in the nearest neighbor estimation context but not in the

series estimation, local regression estimation, or model selection contexts.

The proofs rely heavily on results of Li (1987).



JEL classification number: 211.

Key words: Additive interactive regression model, cross-validation, gener-
alized CL’ generalized cross-validation, heteroskedastic errors, interactive

spline estimators, local regression estimator, model selection, nearest
neighbor estimators, nonparametric regression, ridge regression estimators,
series estimators, spline estimators.



1. Introduction

Suppose the observations Yo, - (yl, ceey yn)' satisfy the model
Y; = By + e i=1,2, ..., n,
where B, = (pl, ce pn)' is the unobserved mean vector of Yo and
e = (el, Ceey en)' is the unobserved error vector comprised of indepen-

dent, mean zero, variance ai errors. Consider a class of linear estimators
En(h) = Mn(h)yn, where each estimator is indexed by a parameter h in an
index set Hn‘ Here Hn(h) iz an n X n nonrandom matrix that may depend on
some nonrandom regressor variables as well as the parameter h. The object

is to use the observed vector ¥, to select h from Hn in such a way as to

make the average squared prediction error
: -1 - 2
L (h) = oy, - Mty |

as small as possible (where | denotes the Euclidean norm).

This problem has been analyzed by Li (1987) and others for the case
where the error variances oi are homoskedastic. Here we extend the results
of Li (1987) to the case of heteroskedastic errors. For ease of comparison,
we adopt the same notation and numbering of assumptions and equations as in
Li (1987). Assumptions and equations that appear in this paper but not in
Li‘s are denoted by asterisks; those without asterisks are the same as in
Li's.

Examples of the problem outlined above include:



EXAMPLE 1. Model Selection: Associated with each Y there are P, explan-
atory variables Xgqe =ve xip arranged in decreasing order of importance.
n
A linear model By = z?-lxijﬁj is proposed based on the first h variables and
s A , -1
one estimates g using the least squares estimator En(h) - Xh(XhXh) Xﬁyn.
Here Xh is the (full rank) n X h design matrix with (i,j)-th element xij
and M _(h) is the projection matrix Xh(XﬁXh)—IXE. The index set H_ is

{1, ..., pn]. The goal is to determine an appropriate model for the purpose

of estimating B-

EXAMPLE 2. Series Estimation of a Nonparametric Regression Model [Gallant
(1981), Geman and Hwang (1982), Andrews (1988)]: The mean of Y; is an
unknown function £(+) of an observed regressor vector z, in 2 ¢ Rp,
By = f(zi). A series approximation of f(zi) is constructed based on h
terms, 2?=1xj(zi)ﬁj, where the functions xj(-), j=1, ..., h are known
(e.g., trigonometric functions) and the coefficients ﬁj, j=1, ..., h are
unknown. One estimates p_ by estimating the unknown constants {ﬁj} by
least squares: En(h) - Xh(X£Xh)—1X£yn, where Xh is the (full rank) n x h
matrix with (i,j)-th element xj(zi). As in Example 1, Hn(h) - Xh(Xﬁxh)-1X£.
The index set Hn is (1, ..., n) or some subset thereof. The goal is to
determine the appropriate number of terms in the series expansion to be used

in estimating B

EXAMPLE 3. Series Estimation of an Additive Interactive Regression (AIR)
Model [Andrews (1988), Andrews and Whang (1989)]: The wmodel is the same as

in Example 2 except that £(+) 1is known to be of the form

A B(a)
£(e) = a§1 bfl fab(-) for unknown functions {fab(-)}, where fab(zi) depends

on only "a" (=< d) different elements of the d-vector z, for each



(]

b=1, ..., B(a). For example, one might have flb(zi) - f{b(zib) and
f2b(zi) - fgb(zil, 212)’ where z, = (zil’ N zid)'. If A =1, the model
is an additive regression model. If A > 1, the model allows interactions
between the elements of z,. If A = d and all the interaction terms are
included, then the model is a fully nonparametric regression model. As
shown in Andrews and Whang (1989), the rate of convergence of series esti-
mators in AIR models depends on A and not on d, and hence, the curse of
dimensionality is circumvented. Typically A is taken to be quite small,
e.g., one or two, and some of the possible interaction functions fab(-) for
each a =1, ..., & are excluded,

A series approximation of f(zi) is constructed using a series approxi-

hab

mation cflxabc(zi)ﬂabc of each function fab(zi), where {ﬁabc} are unknown

coefficients and {xabc(-)] are known functions (e.g., trigonmometric func-

tions) that depend on the same elements of z, as does fab(-) for all

c=1, ..., hah‘ One estimates gy by using least squares to estimate
A ' "1
[ﬁabc} : En(h) - xh(xhxh) thn, where Xh is the (full rank)
A B(a)
n X (afl bfl hab) matrix with i-th row given by the elements of {xabc(zi)
c=1, ..., hab; b=1, ..., Bla); a=1, ..., A}. The parameter h in this
example is a vector (hll' A, hlB(l)' h2l' ey hAB(A)) of non-negative
integers of dimension D = X B(a). The index set Hn is some subset of

a=1
{(h € IE : h'l < n), where I+ denotes the set of non-negative integers and 1

denotes a D-vector of ones. The goal is to determine the appropriate nunber

of terms hab in the series expansion of each of the functions fab(-).



EXAMPLE 4. Nearest-neighbor Estimation of a Nonparametric Regression Model

[Stone (1977)]: The model is as in Example 2. Let zi(j) denote the j-th

nearest neighbor of z, in the sense that ||zi - | is the j-th smallest

%1(3)]
number among the n values “zi - zv“, vel, ..., n. (Ties may be broken in
any systematic fashion.) For a given weight function v h(-), the
h-nearest-neighbor estimate of By is pi(h) - E?-lwn,h(j)yi(j)‘

is of the form Mn(h)yn, where each row of Hn(h) is some permutation of the

Hence, En(h)

n-vector (wn,h(l)’ . wﬁ,h(h)’ 0, ..., 0). Uniform, triangular, and gquad-
ratic weights among others have been considered in the literature (see Stone
(1977, p. 600)). Assumptions on the weights wn,h(.) are specified below.
The index set Hn is {1, ..., n) or some subset thereof. The goal is to use

¥, to determine the number of neighbors to include in the estimate of B

Additional examples include local regression estimation of nonpara-
metric regression models (see Cleveland and Devlin (1988)), kernel
nonparametric regression estimation with single or multiple smoothing param-
eters (e.g., see Bierens (1987)), smoothing spline nonparametric regression
estimation (see Wahba (1989)), interaction spline nonparametric regression
estimation with multiple smoothing parameters (see Wahba (1986)), and ridge
regression estimation. The latter four examples apply only if one restricts
(somewhat unnaturally) the possible values of the smoothing parameter to a
finite grid of points that increases with the sample size,

We analyze three different procedures for selecting h:

(i) Generalized CL (GCL) : Select h, denoted by hM’ that achieves

. -1 ~ 2 -1
Eé;nn ”yn - gn(h)” + 2n "tr Mn(h)ﬂ . (1.1%)



where § is an n X n diagonal matrix with diagonal elements (oi, e 02].

This procedure is a generalization for models with heteroskedastic errors of

Mallows' (1973) CL procedure. In the model selection example, GC, is a

L
generalization of Mallow's well-known C_ procedure.

(i1) Generalized cross-validation (GCV) [Craven and Wahba (1979)]:

Select h, denoted by hG, that achieves

-1 Y
ooy, - B ]
min

-1
he (1 - n “tr M (b))

3 | (1.2)

where ¢tr Mn(h> denotes the trace of the matrix Mn(h)

(iii) (Delete one) Cross-validation [Allen (1974), Stone (1974},
Geisser (1975), Wahba and Wold (1975)]: Select ﬁ, denoted by ﬂc’ that min-
jmizes the sum of squared prediction errors for ¥i- where the predictor of
¥y is based on the estimator of B that uses all of the data except y.. The
form of this predictor depends on the definition of En(h) when the sample

size is n-1. Given Yo e Yio1 Yielr oo Yo write the predictor of ¥

n =~

as y_; = zj-lmij

(h)yj with mii(h) = (0, Then hC achieves

min n_lllyn - Pin(h)ynn2 : (1.3)

heH
n

where Hn(h) is the n x n matrix with Eij(h) as the (i,j)-th entry.

Note that the GCL procedure requires knowledge of the error variances
{ai, Caey ai] whereas the GCV and CV procedures do not. In Exanmple 4,
however, a "feasible" analogue of GCL, which does not require knowledge of

the error variances, can be considered (see Section 2 below).

In the examples considered above, the selection procedures simplify.



In Examples 1-3,

ﬁn(h) - Dn(h)(Mn(h) -I1)+1 ., (1.4)

vhere Dn(h) is an n x n diagonal matrix with i-th diagonal element equal to
{1 - mi(h))-l, mi(h) is the i-th diagonal element of the matrix Mn(h)' and
Iﬁ iz the n-dimensional identity matrix (see Li (1987, p. 960)). 1In this

case, the CV criterion (1.3) becomes

R R . 2 2
min n z (yi - pi(h)) FAQ R mi(h)) . (1.5)
heHn i=1

In Examples 1-4, nmltr M (h) equals h/n, h/n h'l/n, and w h(l) respective-
n
ly. In Example 4, n 1tr M (h)d = w h(l)n Eh ¥ h(j)y

A 1’ Y4 1(3+1)°

and Mn(h) has rows that are permutations of (wn h(1), ceny wn,h(h)’ 0, ...,

»
0) and diagonal elements that are zeroes.
We are interested in determining conditions under which the above pro-
cedures are asymptotically optimal in the sense that
L (h)

1nf L (h)
hEH

B 1 and (1.6)

R (ﬁ)
1nf R_(h)

heH
n

+ 1 (1.7%)

even when the errors are heteroskedastic, where Rn(h) - ELn(h) and " B 1 =
denotes convergence in probability as n - .
In Section 2 we find that analogues of Li's (1987) conditions for the

asymptotic optimality of Mallow's C, procedure when the errors are homoske-

L



dastic can be used to establish the optimality of GCL when the errors are
heteroskedastic, 1In Section 3, we use Li’'s notion of a nil-trace estimator
to obtain the asymptotic optimality of GCV from the asymptotic optimality of
GCL' To do so, a condition is needed that 1Is satisfied in Example 4 but not
in Examples 1-3. This condition is satisfied if the diagonal elements of
Mh(h) are all equal. In Section 4, the asymptotic optimality of CV is
established using the results of Section 2 for GCL. The conditions used
here are analogous to those of Li for the homoskedastic error case. In
particular, the additional condition used in the treatment of GCV is not

needed and CV is asymptotically optimal in all of the examples. Section 5

contains proofs of the results.

2. Generalized CL

We have

R_(h) = EL (h) = n—l"An(h)gnnz + o ter M! ()M ()G,

where An(h) - In - Hh(h). Let A(Mn(h)) denote the largest eigenvalue of

Mn(h). The asymptotic optimality of GC. is established under the assump-

L

tions

Tim sup AM () <=, (A.1)
n—+ heH
Tl
sup Ee?m < w, 0 < inf ai < sup ai < w (A.2%)
i>1 i>1 izl
) (an(h))_m +0 as n- o, (A.3)

heH
n



for some positive integer m, (Assumption (A.1l) of Li (1987, p. 961) has

"lim" in place of *Tim," but the latter undoubtedly was intended.)
N+ N+
Under assumption (A.2*%), assumption (A.3) holds if and only if it holds

with G replaced by 021 for arbitrary 02 in [inf 02, sup ai]. Thus, (A.3)
n 1>1 i>1
in the case of heteroskedastic errors is no stronger than it is in the case

of homoskedastic errors.

THEOREM 2.1%. Under assumptions (A.l), (A.2%), and (A.3), GC

ically optimal, i.e., (1.6) and (1.7%) hold with h = hM'

L is asymptot-

EXAMPLES 1-3 (cont.). In these examples, (A.l) is automatically satisfied,
since Mn(h) is a projection matrix. In addition, in Examples 1 and 2, (A.3)
with m = 2 can be replaced by

inf an(h) + ® (4.3")
hEHn

since (A.2%) and (A.3') imply (A.3) with m = 2. To see the latter, apply
Li's (1987) argument given in his equations (2.5) and (2.6) with ha2 re-

placed by tr Mn(h)ﬂ and h inf a? in the two places it appears in (2.5) and
i=1

replace 0-& by (inf ai)_2 where it appears in (2.6). 1In Example 3, (A.3)

with m = D+1 canlij replaced by (A.3'). This is proved in a manner analog-

ous to that for Examples 1 and 2 using the fact that X (h'l)“m < @ if
hEI.l.)+

m > D+1, where I++ denotes the set of positive integers.

If the true model in Example 1 is a linear regression model with re-

Eressors [xij :j =1, ..., h*} for some h* finite and P, = h* for all n
large, then inf Rn(h) = 0(1/n) and Assumption {A.3') does not hold. Thus,
heH
n

(A.3') holds in Example 1 only if the linear models that are under consider-



ation in the model selection problem are all just approximations to the true
model. Similarly, in Examples 2 and 3, (A.3') holds only if f£(+) does not

have a finite expansion in terms of the series functions (x,(s)} or

h|
{x {(*)} (since inf R (h) = R _(h*) = 0(1/n) for some h* < « if it does
abe n n
heHn
and if lim max{(h : h € Hn} zh*),
e

COROLLARY 2.,1%. In Examples 1 and 2, GCL is asymptotically optimal if

(A.2%) with m = 2 and (A.3') hold. In Example 3, GC. is asymptotically

L
optimal if (A.2%) with m = D+1 and (A.3') hold.

EXAMPLE 4 (cont.). As shown by Li (1985, lLemma 4.1), in this example con-

dition (A.1) is implied by the following assumptions on the weights:

There exists a positive number §' such that v h(1) <1-35"'

(2.7)
for alln, h = 2 .
For all n, h, and i, wn,h(i) > wn,h(i+1) =0 . (2.8
s (1) -1 (2.9)
1i=1n,h : :
In addition, (A.3) is implied by
=l/m _ o (A.3")

lim (inf Rn(h))n
n-o hEHn

Thus, we obtain

COROLLARY 2.2%, In Example 4, GCL is asymptotically optimal if (A.2%),

(A.3"), and (2.7)-(2.9) hold.
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In this example, the second summand of the GCL criterion simplifies to

-l1.n 2 -ln 2
an,h(l)n zi-lai' If O is unknown, then one can replace n 21—101 ( rn)

by a consistent estimator, call it ?n. If the weights satisfy

w (1)
Tim sup —E—Eigﬂ-——- <w
o) hEHn zi-lwn,h(i)

(2.10%)

then GCL based on ?n still is asymptotically optimal. This follows because

sup |'n _ Tnlwn’h(l) < sup |"n _ Tn|wn'h(1)
heH R, (0 hefl inf o> 0 .w> (i)
n n j=1 j Ti=1"n,h

For example, if the weights satisfy (2.7)-(2.9) and

v h(1) = Chhl for some C < =, for all h € Hn' nz1, (2.11%)
X . h 2 .
and Hn is a subset of (2, ..., n}, then (2.10%) holds (since Ei-lwn h(1)

1

> wi h(1) +h (1 - v h(l))2 ). The former conditions are easily seen to

hold for common weights, such as uniform, triangular, and quadratic weights.
15 2
COROLLARY 2.3%. In Example 4, if .= z o5 is replaced in GCL by an es-

i=-1

timator ?n such that ?n - B 0, then GC, is still asymptotically optimal

L
under (A.2%), (A.3"), (2.7)-(2.9), and (2.10%), (2.10%) can be replaced by

(2.11%) if Hn is a subset of (2, ..., n} for all n.

REMARK. An analogous result holds in the kernel nonparametric regression
estimation example when the smoothing parameter is chosen from a finite but

expanding grid of points.
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3. Generalized cross-validation

Li (1987) introduced the nil-trace estimator as a tocl for establishing
the asymptotic optimality of GCV based on the asymptotic optimality of CL'
Here we use the same tool to obtain conditions for the asymptotic optimality
of GCV based on GCL when the model errors are heteroskedastic. These condi-
tions are more restrictive than in the homoskedastic error case and do not
cover all of the examples.

The following conditions are used by Li (1987) in the homoskedastic

error case and will be used here:

inf L_(h) Bo . (A.4)
hel_

-1 ,
For any sequence {hn € Hn} such that n "tr Mn(h)Mn(h) -+ 0,

-1 9 -1 (A.5)
¢ .

we have (n "tr Mn(hn)) /n tr Mn(hn)Mn(hn) -+ 0;
sup ln_ltr Hn(h)l = 7 for some 0 < 7y < 1; and (A.6)
heH

n

-1 2, -1 ,

sup (n "tr M_(h))“/n "tr M_(h)M’'(h) = v, for some 0 <y, < 1. (A.7)
nel n n n 2 2

n

(In Li (1987), (A.6) is stated without the absolute value signs. Inspection
of his proof shows that they should be added. This change has little impact
on the restrictiveness of the assumption.)

Assumption (A.4) requires the existence of a consistent choice of
{hn : n = 1) when B is known. This is not overly restrictive. By Markov's

inequality, (A.4) is satisfied if inf Rn(h) + 0 as n » =, In Example 1,
heH
n

(A.4) requires that the true model can be approximated arbitrarily well by a
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linear model with a sufficiently large number of regressors. In Examples
2-4, (A.4) requires a weak form of consistency of the nonparametric esti-
mator under consideration for some sequence {hn :nzz1l). Andrews and Whang
(1989) provide conditions under which (A.4) holds in Examples 2 and 3. See
below for comments on (A.5)-(A.7).

For the heteroskedastic error case, we need two additional conditions:

sup [|n_ltr M_(h)Q - o ler M_(h)n er @]/[(1-n ler Hn(h))Rn(h)}] - 0; (H.1%)
heH_
m(h) 20 Vi=1, ..., o, Vhek . (H.2%)

(As above, mi(h) is the i-th diagonal element of Mn(h).) Assumption (H.2%)
is not very restrictive; it is satisfied in Examples 1-4. Assumption
(H.1*}, however, is restrictive. It is satisfied If the diagonal elements
of Mn(h) are all equal, since nfltr Mn(h)ﬂ - n_ltr Mn(h)n-ltr 1 in this
case, Thus, in Example 4, (H.1#*) is satisfied, but in Examples 1-3 it is
not necessarily satisfied. If (H.l1*) does not hold, then the GCV criterion
differs from Ln(h) by a term that depends on h and is not negligible
asymptotically relative to Ln(h).

THEOREM 3.1%, Under assumptions (A.l), (A.2%), (A.3)-(A.7), (H.1l%*), and

A

(H.2%), hG is asymptotically optimal.

EXAMPLE 4 (cont.). Consider nearest neighbor weights wn h(-) that satisfy

(2.7)-(2.9) and

There exist fixed positive numbers Al and A2 such that

—(1/241,) (3.9)

w {1y =X h for allhel” , n>1.
n,h n
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Condition (3.9) is satisfied by most commonly used weights. As shown in Li
(1987, p. 967), (2.7) and (3.9) imply both {(A.5) and (A.7). Since GCV is
undefined when h = 1, we take Hn to be some subset of (2, ., n). In this
case, (A.6) reduces to (2.7). In addition, (H.2%) follows from (2.8) and
(H.1*) holds by the definition of Mn(h). Hence, we get the following corol-
lary to Theorem 3.1%:

COROLLARY 3.1*%., In Example 4, suppose the nearest neighbor weights satisfy

A

(2.7)-(2.9) and (3.9). Then, hG is asymptotically optimal if (A.2%),

(A.3"), and (A.4) hold and Hn is some subset of {2, ..., n},

REMARKS. 1. The conditions of the Corollary are exactly the same as those
of Li’s (1987) Corollary 3.2 except the errors are allowed to be heteroske-
dastic. A similar generalization of Li’'s results for Examples 1-3 does not
hold, because (H,l1*) is not generally satisfied in the latter examples.

2. In the treatment of problems with continuous index sets Hn, one also
needs a condition such as (H.1*) in order to establish the asymptotic opti-
mality of GCV. Note that for kernel estimators of nonparametric regression
models, (H.1*) is satisfied. This is consistent with Hirdle, Hall, and
Marron's (1988) results for GCV using kernel estimators. Also note that
(H.1*) is not satisfied by local regression, spline, or ridge regression
estimators. It would be useful to quantify the extent of the potential

asymptotic non-optimality of GCV for such estimators.
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4. Cross-vallidation

Let Eﬁ(h) - ﬁn(h)yn denote the delete-one estimator of B By con-
struction, ﬁn(h) has all diagonal elements equal to zero. Hence, the CV
choice of h is just the GC. choice of h based on the delete-one estimator

L

H;(h). Using this observation, the asymptotic optimality of GCL can be used

to obtain the asymptotic optimality of CV, as in Li (1987).
Let

- -1 2 - -
L) =nfg, - p (] and K (h) = EL_(h)

THEOREM 4.1*%, Suppose (A.1l), (A.2¥*), (A.3), (A.4), and the following condi-

tions hold:
Tim sup A(M _(h)) < = , (A.8)
n+x heH n
1
)y (nﬁn(h))'m + 0, and (A.9)
hel

For any sequence {hn € Hn}, we have Rn(hn)/Rn(hn) -+ 1

_ (A.10)
if either R (h ) » 0 or R (h ) =+ 0,
nn n'n

Then hc is asymptotically optimal.

REMARK. This Theorem is a direct analogue of Li’'s (1987) Theorem 5.1.



EXAMPLES 1-3 (cont.). In these examples, (A.8)-(A.10) are implied by (A.2%)

(with m = 2 in Examples 1 and 2 and m = D+l in Example 3) and (A.3') plus

Tim sup X(Mn(h)) < 1 and (5.1)
oo heHn

There exists a positive constant A < = such that

1

- - (5.2)
for all h Hn and n =z 1, A(Hn(h)) < An “tr Mn(h),

where X{+) denotes the largest diagonal element of a matrix.

Condition (5.1) requires the self-weights {mi(h)} to be bounded away
from one. (They are necessarily = 1, since Hn(h) is a projection matrix.)
This condition is not overly restrictive, since its failure indicates poten-
tially extreme overfitting of the model. If some self-weight mi(h) is close
to one, then the non-diagonal elements of the i-th row of Mh(h) must be
close to zero, the estimater ﬁi(h) of By must be close to Yio and the
delete-one estimator of By may deviate substantially from ﬁi(h). In this
scenario, the CV criterion cannot be expected to perform well.

Condition (5.2) prohibits highly unbalanced designs. It is equivalent
to requiring the ratio of the maximum to the average diagonal element of
Mn(h) to be bounded above by some A < « for all h € Hn and n 1. If (5.2)
does not hold, then some elements of p are estimated much less accurately

than others using En(h), since the variance of ﬁi(h) equals aimi(h).

THEOREM &4.2*. In Examples 1 and 2, if (A.2%) with m = 2, (A.3'), (A.4),

(5.1), and (5.2) hold, then hc is asymptotically optimal. In Example 3, the

same conditions but with m = D+1 suffice for asymptotic optimality of hc.
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REMARK, The Theorem shows that CV is asymptotically optimal in Examples 1-3
under the same conditions when the errors are heteroskedastic as when they
are homoskedastic. This contrasts with the results of Section 3 for GCV.
For these examples, the asymptotic optimality of GCV does not carry over

from homoskedastic to heteroskedastic errors.

EXAMPLE 4 (cont.), Consider the following assumption on the regression
function:

£ = sup [£(2)| <= . (F.1%)

zeZ2

Using this assumption and Theorem 4.1%, we get the following result for the
use of CV with nearest neighbor estimators:
THEOREM 4.3*, In Example 4, if the nearest neighbor weights satisfy (2.7)-
(2.9) and (3.9). Then, hC is asymptotically optimal if (A.2%), (A.3"),

(A.4), and (F.l1%*) hold and Hn is some subset of {2, ..., n}.

REMARK. In this example as well, CV is asymptotically optimal with hetero-

skedastic errors under the same conditions as with homoskedastic errors.

5. Proofs

PROOF OF THEOREM 2.1*. The proof of (1.6) is the same as Li's (1987) proof

of Theorem 2.1 except for the following: aztr Hn(h) is replaced by

tr Mn(h)ﬂ in (2.1)-(2.3) and everywhere it appears in the proof of Theorem
. oon ler M (WM (h) =< R (h) is replaced by (inf a?/sup %)
21 Y=t
-1 , . 2
X n tr Mn(h)Mn(h) = Rn(h) just above (6.1), and o tr Hn(h)Mé(h) is

2.1

replaced by tr Mé(h)Mn(h)ﬂ in (6.2). Li's proof uses Theorem 2 of Whittle
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(1960). The latter also applies when the errors are heteroskedastic provid-
ed (A.2%) holds.

The second result of the Theorem, (1.7*), holds by (1.6) above and

sup |L_(R)/R_(h) - 1] Eo. (5.1%)
heH
n
Equation (5.1%) is the same as (2.4) of Li (1987). Its proof in the context
of heteroskedastic errors is included in the proof of the preceding para-
graph, because (2.4) is established as part of Li's proof of Theorem 2.1.
Note that the summand Znhltr Mn(h)ﬂ arises in the GCL criterion because

. -1 .
it equals 2n EeéMn(h)en, where e - (el. C ey en) . O

L)

In view of (5.1%), whenever (1.6) holds for some estimator h, so does
(1.7%), provided (A.1l), (A.2%), and (A.3) are in force. Since the latter
(or assumptions that imply the latter) are assumed in each of the results of
this paper, it suffices to establish just (1.6) in the remainder of this
section.

Following Li (1987, p. 965) define the nil-trace estimator En(h) as
B (h) = —ay_ + (L+a)p (h) (5.2%)

where a = n-ltr Mn(h)/(l - nfltr Hn(h)). The matrix ﬁn(h) associated with

En(h) is given by

— _ *
M (h) = =l + (l+a)M (h) . (5.3%)
It has trace equal to zero. Define

L (h) = n'lﬂgn - En(h)ll2 and R (h) = EL (h) . (5.4%)
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PROOF OF THEOREM 3.1*, Let EG denote the GCL choice of h based on En(h).

That is, EG minimizes

1

n*lHyn - En(h)"2 +n tr ﬁn(h)ﬂ (5.5%)

over Hn' where

1 1

nler H_(hya - (o Ler M_() - o ler nn(h)n“lcr 2)/(1-n"ter M_(h)) . (5.6%)

Using Li‘s (1987) proof of Theorem 3.2, we find that EG is asymptotic-

ally optimal for use with the estimator (h). The following changes are

£n
hG

needed in Li’s proof: All references to are changed to EG' The expres-

sion for nﬁn(h) is replaced by
= 2 , -l
nR_(h) = ["An(h)gn" + tr M’ (WM (h)B - 2n "(txr M (h))tr M ()R

(5.7%)
+ n_z(tr Mn(h))ztr Q]/(n_ltr An(h))2 )

Then, Li's (6.3) follows from (A.6) and (A.7), and his (6.4) follows from
(A.6), (A.7), (H.2%), and (A.2%) (where Rn(h) in (6.4) is as defined in the
present paper). Assumption (H.2%) is used here to bound the magnitude of
| tr Mn(h)ﬂ|. The rest of Li’'s proof of Theorem 3.2 follows without change.
Li‘s use of his Theorem 3.1 is justified in the present context, because it
holds as stated provided (A.2*) is assumed. His proof of Theorem 3.1 goes
through with heteroskedastic errors, since Rn(h) -3 i:i ai n—ltr M&(h)Mh(h).
This completes the proof of the asymptotic optimality of EG' Note that

(H.1*) has not been used thus far.

We now show that
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L (hy)/L (B B, (5.8%)

This result plus the asymptotic optimality of Eb gives the desired result.

To show (5.8%), note that

1

nly - g @A -t @nien Tty -Eml? . (s.9%)

Hence, EG also can be defined as the value that minimizes

1

0y, - 8 @2/ - o er 1 w))? 4 0 ter B ma (5.10%)

In analogy with Li's (1987) argument of (2.1)-(2.4) and in view of (5.6%),

(H.1%), and (5.1%), we obtain (5.8%). D

PROOF OF THEOREM 4, 1%, The proof is the same as Li's (1987) proof of
Theorem 5.1 except the appeals to Theorems 2.1 and 3.2 are replaced by

appeals te Theorems 2.1% and 3.1%. O

PROOF OF THEOREM 4.2%, It suffices to establish (A.8)-(A.10), then Theorem
4.1*% yields the desired result. TFirst consider Examples 1 and 2. Li's
(1987) proof of Theorem 5.2 shows that (A.l) and (5.1) imply (A.8). Li's

proof that (A.9) and (A.10) hold also applies in the present case provided

1, aztr ¥ (h )ﬁ’(hn), 02(1 + o(l))tr Mn(h)Hé(h), and azﬂn

9. -
one replaces o h n
n n'n’n

in his proof by inf a2h n—1

i"n
2 =1 "
and inf aihn’ respectively, and provided one replaces o in his equation
izl

(2.6) by 1/inf o,
i»1 *
The proof for Example 3 is similar, even thouh h is vector-valued. In

, tr Mﬁ(hn)nn(hn)n' (1 + o(1))tr Mﬁ(h)Mn(h)Q,

those places where hn or En is used as a scalar in Li's proof of Theorem
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5.2, it needs to be replaced by tr M _(h ) or tr Mn(ﬁn) respectively. The
condition on m in Example 3 arises because the analogue of (2.6) of Li
(1987) needed for this example in Li's proof of Theorem 5.2 holds only if

z (h'.l_)-m < @ (as in Section 2 above) and the latter holds when m = D+1.D
D

hel
++

PROOF OF THEOREM 4.3*. It suffices to show that (A.8)-(A.10) hold. (A.8)
and (A.9) hold by the same argument as gilven by Li (1987, proof of Theorem
5.3).

We now show that (A.10) holds. By Li's proof of Theorem 5.3, we have
-1 2 -1 = 2 2.2
o™ g, =M g 17 -l - B oo |7 = bw  (DTEC (5.11%)

In addition, it is straightforward to see that

-1 1 noh 2
n tr M (hM'h) =n " Z o Zw (j)"1{(m = 1(j)) and
n n < m n,h
j=1 m=1 "3i=1
(5.12%)

. _ TR 2h+1 9
n tr Mn(h)ﬂﬂé(h) =n X Z °. z vy h(j—l) I(m = 1(j)) ,

i=1 m=1 j=1 "

where wn’h(O) = 0, Thus, we get
-1 , B 2
n tr Mn(h)ﬂﬂé(h) z inf o, = v h(j) , and (5.13%)
vzl j=1

-1 I -
|n"ler M_(w)aM: (h) - 0 ler B_(hai! () |

g 1™ © h+l | 2 2|
<supo_n T T T l(m=1i(j))w {(Jg~1)" - w {(3) (5.14%)
vl 7 i=1 m=l j=1 n.h n.h

2 2
= gsup o 2w (1)
vel ¥ n,h ’
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where the equality uses (2.8).

-1 2 -1 .
Since Rn(h) = n uﬁn - Mn(h)gn" + n txr Hh(h)nnn(h) and analogously

for ﬁn(h), we get

IRn(h) - ﬁn(h)| < (Afi + 2 sug ai)wn h(1)2 . (5.15%)
iz e

Thus, the desired result [R (h) - R (h)|/R_(h) B 0 holds 1f

2,0 2
"0/ 2 g p (D) Bo. (5.16%)

Under (2.7) and (3.92), this holds by the same argument as given by Li (1987,
proof of Theorem 5.3). (Note that Li's proof of this contains two typo-
graphical errors--on the third last line of p. 974, h-1 should be (6')2h_1

and (3.8) should be (3.9).) D
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