The Journal of Marine Research, one of the oldest journals in American marine science, published important peer-reviewed original research on a broad array of topics in physical, biological, and chemical oceanography vital to the academic oceanographic community in the long and rich tradition of the Sears Foundation for Marine Research at Yale University.

An archive of all issues from 1937 to 2021 (Volume 1–79) are available through EliScholar, a digital platform for scholarly publishing provided by Yale University Library at https://elischolar.library.yale.edu/.

Requests for permission to clear rights for use of this content should be directed to the authors, their estates, or other representatives. The Journal of Marine Research has no contact information beyond the affiliations listed in the published articles. We ask that you provide attribution to the Journal of Marine Research.

Yale University provides access to these materials for educational and research purposes only. Copyright or other proprietary rights to content contained in this document may be held by individuals or entities other than, or in addition to, Yale University. You are solely responsible for determining the ownership of the copyright, and for obtaining permission for your intended use. Yale University makes no warranty that your distribution, reproduction, or other use of these materials will not infringe the rights of third parties.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/
A Demonstration of Magnification of Dynamic Topography at the Thermocline

D. J. Baker, Jr.

Pierce Hall, Harvard University
Cambridge, Massachusetts

Since the ocean is hydrostatic to a very good approximation, it is well known that dynamic topography at the surface (for example, across the Gulf Stream) is inverted and magnified at the thermocline by a factor proportional to the average density difference of the regions above and below the thermocline. This effect, also observable in the atmosphere, was first explained by Margules (1906). This effect is a maximum if the velocities in the lower layer are zero. If \(h(x) \) is the surface topography, then the interface will vary as \(H(x) = \left[\frac{\rho_1}{\rho_2 - \rho_1} \right] h(x) \); see Fig. 1.

An idealized system that illustrates this interesting inverse magnification can be constructed in the laboratory by utilizing a cylindrical tank, of radius \(r \), that contains two immiscible fluids of depths \(H_1 \) and \(H_2 \) and of slightly differing densities. The tank is set into rotation with angular velocity \(\Omega \). The following sequence of events occurs: the lower fluid, being in contact with a rigid surface (the bottom), comes into rigid-body motion through Ekman layer suction (Greenspan and Howard 1963) in a time proportional to \(H/\Omega v \), where \(H \) is the thickness of the lower fluid, \(\Omega \) is the rotation rate, and \(v \) is the viscosity. The upper fluid, however, will not come into rigid-body motion as rapidly as this, because the effects of the side walls and the lower fluid boundary are not as efficient in producing the secondary flows necessary for establishment of the new rigid rotation. The upper fluid will spin up in a time that is intermediate between the diffusive time,

1. Accepted for publication and submitted to press 30 March 1968.
Before both layers have spun up, however, there will be a critical time during which the lower fluid is spinning rapidly and the upper fluid is rotating very slowly, if at all. Typical values for such a laboratory experiment are $\Omega = 9.0$ rad/sec, $H_1 = H_2 = 6.4$ cm, $r = 6.9$ cm, $\rho_1 = 0.792$ g/cc (methanol), and $\rho_2 = 0.776$ g/cc (thin-ex, a commercially available paint thinner). This critical time occurs at about two minutes after the rotation is initiated.

At this time, a remarkable phenomenon is observed: a greatly magnified parabola at the interface and a level upper surface (Fig. 2). If we imagine ourselves in the rotating system, we can understand this phenomenon from the point of view of a layer of no motion underlying a moving layer—a typical oceanic situation. In the rotating system, the lower layer will have zero relative motion while the upper layer (motionless in the rest frame) will appear to be rotating in the opposite direction when observed from the rotating frame. The upper surface, though level in the rest frame, will not be level in the rotating frame. Since a level surface in the rotating frame is paraboloid, a surface that is level in the rest frame will appear dome-shaped to the observer in the rotating frame. This dome-shaped surface will be inverted and magnified at the interface by the density difference ratio, as indicated above, thus producing the large parabola. When the upper fluid finally spins up, we observe gently sloping parabolas at both the surface and the interface, as expected from rigid-body rotation in this system.

We thus have an idealized model and demonstration of the inverse magnification of surface topography at the thermocline; this can be useful in illustrating this point to students. (Some interesting and as yet unexplained nonsymmetric flows may also be observed during this transient flow.)

I would like to thank Dr. E. Schulman for useful discussions on this problem. This research was supported by grant NONR 1866(51) from the Office of Naval Research to Harvard University.
REFERENCES

MARGULES, MAX

ROBINSON, A. R.

PRANDTL, LUDWIG

GREENSPAN, H. P., and L. N. HOWARD