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PROBABILISTIC VALUES FOR GAMES*

by

Pradeep Dubey
Robert James Weber

Yale University

1. Intrgguction

Much attention has been given toc methods for measuring the "value"
of playing a particular role in an n-person game. The study of various
values is motivated by several considerations. One is to determine an
equitable distribution of the wealth available to the players through their
participation in the game. Another is to help an individual compare his
prospects from participation in several games. A study of eqguitable distri-
butions may shed light upon a player's prospects. However, a study of
individual prospects need not yield any information concerning the relative
‘fairness of various distributions of wealth.

The well-known Shapley value assigns to every n-person game an
n-vector of payoffs. Since this value serves as a method for determining
equitable distributions, it is natural that a defining property of the Shapley

value is itg "efficiency” (or "Pareto, optimality"); that is, the sum of

*The research reported in this paper was supported, in part, by grant

NOO014-77-C~-0518 from the QOffice of Naval Research.



the individual payoffs is constrained to egual the payoff achieved through
the cooperation of all of the players. However, when the players of a game
individually assess their positions in the game, there is no reason to
suppose that these assessments (which may depend on subjective or private
information) will be jointly efficient. Indeed, conservative assessments
may combine into a sub-efficient vector, while optimistic assessments may be
super-efficient.

This paper presents an axiomatic development of values for both
n-person and infinite {(non-atomic) games. Our results will center afound
the class of "probabilistic" values, which are defined (for finite games) in
the next section. Since this class of values includes both the Shapley value
and the also-familiar Banzhaf value, our work provides a suitable context

for further study of both.

2. Definitions and Notation

For our purposes, we fix a particular set N = {1,2,...,n} of
players. The collection of coalitions (subsets) in N is denoted by 2N .
A game on N is a real-valued function v: 2N -+ R which aséigns a "worth"
to each coalition, and which satisfies v{(@) =0 . Let J? be the collection
of all games on N (note that J& is a (2" - 1)-dimensional vector space),
and let v’ be any game in Jy . '"The game v is monotonic if v{s) > v(T)
for all S » T ; v is superadditive if v(S u T) 2 v(S} + v(T) whenever
SnT=¢g ., The class of all monotonic games is denoted by 7@b, and the
class of all superadditive games by ag . For future reference, note that

9’!: and ,‘ are cones in Jy ; that is, each is closed under addition,and

under multiplication by nonnegative real numbers. BAlso note that neither



class contains the other.

If the game v +takes only the valuves 0O and Y , then v is

simple. If v{Ss) =1, then § is a winning coalition; otherwise § is

* * '
a losing coalition. A& ' ﬂhb , and 43* denote, regpectively, the class

of all simple games on N , those which are monotonic, and those which are
superadditive., For simple games, note that superadditivity implies mono-

I3 * * L
tonicity; hence, ’u, = ,8 . (Some authors prefer to restrict the term
l * h
"gsimple game"” to elements of jbb ; the more general games j&' are then
called "o—l‘games.“}

Two special types of games will play an important role in our work.

For any nonempty coalition T , let v be defined by VT(S) = 1 1if
§ 5T, and O otherwise, BAlsg, let V_ be defined by GT{S) = 1 if

T

A ~
s;'r , and 0 otherwise. Let C"-'{VT: g #T c N}, and C={VT:¢#TCN} ;
y K3 3 k3 A ]
any game 1in ¢ is a carrier game. Observe that every game in ¢ or ¢ is

monotonic, superadditive, and simple. We shall cccasionally refer to the game

v defined by v.(S} =1 for all nonempty coalitions S . This game is

¢ g
monotonic and simple, but is not superadditive.
For any ccllection Y < 19 of games, and for any player i ¢ N,

a value for i on :r is a function ¢i: :f + R . As we have previously
indicated, the value ¢i(V) of a particular game Vv represents an assess-
ment by 1 of his prospects from playing the game. This definition stands
somewhat in contrast to the more traditional definition of a "group value®
¢ = (¢l,¢2,...,¢n) which associates an n~vector with each game. The
construction of group values from our individual values will be treated
later in this paper.

Recently, Blair {11 and Dubey {31 have discussed a family of values

which arise from individual perceptions of the coalition-formation process.



(Earlier discussions of related matters appear in [4] and [5].) Fix a player
i , and let {p;: T ¢ N\i} be a probability distribution over the collection
of coalitions not containing i . (Incidentally, notice that we shall often
omit the braces when writing one-player coalitions such as {i} .) A value

¢i for i1 on .7 is a probabilistic value if, for every v € 7 ‘

o, = I pplv(rui) - viml .
TeN\i
Let i viéw his participation in a game as consisting ﬁerely of joining
some coalition § , and then receiving as a reward his marginal contribution
vis u i) —.v(S) to the coalition. If, for each T < N\i , p; is the
(subjective) probability that he joins coalition T , then ¢i(v) is simply
his expected payoff from the game.

Both the Shapley and Banzhaf values are instances of probabilistic
values. The Banzhaf value (for. an individual player i ) arises from the
subjective belief that the player is equally likely to join any coglition;
that is, p; = l/(2n_1) for all T < N\i . The Shapley value arises from
the belief that the coalition he joins is equally likely to be of any size ¢
(0 £t <n=-1) , and that all coalitions of size t are equally likely;

1 t! ¢ (n -t -1}

. i_ 1, _ .
that is, Pr = [n — 1) = — for all T < N\i , where

t

t= |7 .
In the following sections, we shall investigate several reasonable
conditions which a value might be expected to satisfy. We will find that the

only values which satisfy these conditions are closely related to the prob-

abilistic values.



3. The Linearity and Dummy Axioms

Given a game v , and any constant ¢ > 0 , consider the game cv
defined by (cv)(8) = c*v{(8) for all S8 c N . It seems reasonable to assume
that such a rescaling of the original game would simply rescale a player's
assessment of his prospects from plaving the game. Similarly, let v and
w be games, and consider the game v + w defined by (v + w}{(8) = v(8) + w(S)
for all S ¢ N . A rational player, facing the latter game, ﬁight well con-
sider his prospective gain to be the sum of his prospective gains from the
two original games.

Consider a cone J of games in /& . A linear function on y is a

function £:J -+ R satisfying f(v + w) = f(v) + £(w) and flcv) = c*f{v)
for all v,wed and ¢ >0 . Let ¢, be a value for i on g . The

preceding comments are reflected in the following criterion,

Linearity Axiom. ¢i is a linear function on .7 .

Since /& ., M, ana 8 are all cones in ﬁ, the following

theorem applies to a value on any of these domains.

THEOREM 1. Let ¢~i be a value for i on a cone .7 of games. Assume that
¢i satisfies the linearity axiom. Then there is a collection of constants

{aT: T < N} such that for all v ¢ _7 .

. (v) = ¥ a_wviT) .
1 TN T



Proof. ¢. has a unique linear extension to the linear subspace

1
oc = ﬁ spanned by ,1 . This extension can in turn be extended to a linear

; ext
function ¢/ on all of M ; by defining ¢EXt

arbitrarily on a basis of the orthogonal complement of L.

For any nonempty T < N , define the game Vi by WT(S) =1 if §=17T,

. . . ext
and 0 otherwise. Then {wT: g # T <« N} is a basis for 4? , and ¢i

is uniquely determined by its values on this basis. Any Vv ¢ zy'can be

written as v = J Vv(T) * w_ ; since ¢°**  is linear,
' T i
P#AT<N
03wy = T vem o+ o7 wy)
: PFAT<N

However, ¢i is simply the restriction of ¢ixt to :7 . Therefére, upon
téking a4y = ¢§Xt(wT) for all nonempty T < N , and defining a‘a arbitrarily,
we obtain the desired result. [

A player i is a dummy in the game v if v(S u i) = v(S) + v(i)
for every S ¢ N\i . This terminoclogy derives from the observation that such
a player has no meaningful strategic role in the game; no matter what the

situation, he contributes precisely v(i) . Therefore, the following criterion

seems reasonable. Let ¢i be a value for i on a collection J of games.
Dummy Axiom. If i Is a dummy in Vv ¢ :f , then ¢i(v) = (i) .

This axiom actually has two aspects. While specifying the prospec-
tive gain of a dummy in a game v , it implicitly states that ¢i and v
are measured in common units, under a common normalization. These aspects
are exploited separately in the proof of the following result. Recall that

¢ denotes the collection of carrier games.



THEOREM 2. Let ¢i be a value for i on a collection 5’ of games, defined

by ¢i(v) = Z 'aTv(T) for every v ¢ Y . Assume that 57 contains & .
TcN

Then there is a collection of constants {pT: T c N\i} satisfying z P =
: TeN\i

such that for every v € :’ ’

. (v) = ) pplv(T v ) - v(D)] .
TcN/1

Proof. First, note that for any nonempty T < N\i , player i is
a dummy in Vo € ¢ . Therefore, ¢i(vT) = vT(i) = 0 . It follows that
=a_+ a.. =0 . For inductive purposes, assume it has been shown

% Vivg! N T %M\i

that a, . + ap =0 for every T c N\i with |T] > k > 2 . (The case

k= n -1 has just been established.) Take any fixed § c N\i with

|s| = x ~ 1 . fThen

dp.(v) = ) a = ] (a., . +a)t+ (a, . +al)
1 S os T TN\i Tui T Sul s
T25
#
=gy Y3 =09

the next~to-last equality follows from the induction hypothesis, and the last

from the dummy axiom.

Therefore, Lo +a, = 0 for all T < N\i with 0O < ITl <n-1.
For every such T , define pT = aTui = ~aT . Also, define pg = ai . Then
for every v e :f ’

¢i(v) = ) aTv(T) = ) pT[v(T u i)y -v(mil .

TcN TeN\1



Consider vi € t: . Player i is a dummy in this game; indeed,
every player is a dummy in v, Therefore, ¢i(vi) = vi(i) =1 . But, since
v.(T v i) - vi(T) =1 for every T c N\i , the expression in the preceding

i

paragraph yields ¢i(vi) = z Py - 0
TcN\i

When this theorem is taken in conjunction with the preceding one, we

obtain the following result.

' THEOREM 3. Let ¢i be a value for i on 29 , M. or Af . Assume that
¢i satisfies the linearity and dummy axioms. Then there is a collecticon of

constants {pT: T ¢ N\i} satisfying Z P, = 1 , such that for every game
TN\ i

v in the domain of ¢i '

o;(v) = ] p IviTu i- viD] .
. TcN\i

4. The Monotonicity Axiom

Let v be any monotonic game. A player i , facing the prospect of
playing this game, may be uncertain concerning his eventual payoff. However,
for every T c N\1 , v(T U i) - v(T) > 0 ; therefore player i knows, at
the least, that his presence will never "hurt" a coalition. This motivates
the following criterion. Let ¢i be a value for i on a collection ’5' of

games.

Monotonicity Axiom. If v € ;1 is monotonic, then ¢i(v) 20.

The following proposition will be of value.



proEOsition. Let ¢i be a value for 1 on a collection :f of games.

Assume that there is a collection of constants {pT: T ¢ N\i} , such that for

ail v Edf

¢, (V) = 7 PLIV(T U i) - v(D)] .
TcN\L

Further assume that j contains the game Vv_ , for some T < N\i (note that

T
T may be empty), and assume that ¢i satisfies the monotonicity axiom. Then

P

>0 .
T=

Proof. The game GT is monotonic. Therefore, ¢i (GT) = Pp >0.0
. N
The collections of games 4& and m each contain ¢® , and also
contain v

g On the other hand, ,8 contains a , but not Gpj . Therefore,

we have the following theorems.

- THEOREM 4. Let ¢vi be a value for 1 on /9 or m Assume that d)i
satisfies the linearity, dummy, and monotonicity axioms. Then ¢i is a
probabilistic value. Furthermore, every probabilistic value on ﬁ or m

satisfies these three axioms.

THEOREM 5. Let ¢Ji "be a value for i on ,J . Assume that ¢i ‘satisfies
the linearity, dummy, and monotonicity axioms. Then there is a collection of

constants {pT: T ¢ N\i} satisfying ) Py = 1, and Py > 0 for all
ToN\i

nonempty T < N\i , such that for every game Vv € 4& ,
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9, (v) = L pplv(Tu i) - v(ml .
TcN\i )

Purthermore, every such value on ,)K satisfies these three axioms.
In the case of values on )9 or ;bb , we thus have a natural axiomatic
characterization of the probabilistic values. However, for values on A! we

are unable to rule out the possibility that pﬂ < Q.. This phenomenon is

investigated in the next section.

5. Values for Superadditive Games

It is natural to seek an explanation of the preceding results. A
value for a class of games yields a relative evaluation of one's prospects
from playing the various games. If the class of games is sufficiently rich,
the only evaluatioh functions satisfying certain reasonable criteria are the
probabilistic values. Why, if one's consideration is restricted solely to
superadditive games, does the class of reasonable evaluation functions
broaden in the indicated manner? We shall attempt to provide a rationale.
Consider any particular game v . A player i , faced with the
prospect of playing this game, may seek to determine the amount of gain which
he is "guaranteed,” in the sense that he contributes at least this amount
to any coalition which he joins. In the’'case where v is superadditive,
this “floor" to his expectation is precisely v(i) , since v(T u i} - v(T) 2> v(i)
for all T < N\i (and since, when T = @ , his marginal contribution is
exactly v{i)). Taking this amount as assured, the player will then strive
(i)

to achieve as great a reward as he can, in the new game v defined by
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. v(s) if i £ s ,
v(l)(S) =

v(s) - v{i) otherwise .

(This is the game that he perceives himself to be playing, after having
mentally "withdrawn" the amount v(i) from the game.) However, any
gain from this new game is uncertain, and depends upon such factors as
the bargaining abiiity of the player. Hence, the two amounts under con-
sideration, wv{i} and his gain from playing v(i) , are measured respec-
tively in "certain" and "uncertain" units.

Assume that the player's attitude toward risk is such that one
unit of uncertain gain is worth Y units of certain gain to him. (Hence,
Y < 1 corresponds to risk-aversion, and Y = 1 to risk-neutrality.)
Further assume that he evaluates his prospects, from any game Vv with
v(i} = 0 , in terms of a probabilistic wvalue ¢i(v) . Then, his evalua-

tion of any superadditive game v, expressed in units of certain gain, will be
(1) .
= * +
Ei(v) Y ¢i(v ) vii) .

One would expect an aversion to risk to limit a player’'s coptions.
That such is the case is the impact of the following theorem. Let P
be the set of probabilistic values on ,8 » and for any Y > 0 let
' . ' ' _ C (i)
v(y) ={£i: Ei is a value on Js , and for some ¢i e P, Ei(v) =Y * ¢i(v )
+ v{i) for all v ¢ J‘ } . This is the set of all evaluation functions

on ,8 arising from the considerations discussed previously, when Y

represents player i's attitude toward uncertain gain.

THEOREM 6. If 0 <Y' <y , then V(Y') ;v(y) . Furthermore,
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proof. If 0 <Y’ <y , then any Ei € V(y') corresponds to
some ¢’ € P , which is in turn associated with a probability distribution
1

{ppr T < N\i} . But then, let ¢. €P be associated with the probability
=X

distribution {qT: T ¢ N\i} , where 9 =y " Pyp for all nonempty

T ¢ N\i , and qg = 1 = E Ay - It follows that Ei(v) =y e ¢i(v(1)) + v
T#P

for all ve A, so £, € V{Y) . Hence, V(Y') < V(Y .

Consider any probability distribution {pT: T ¢ N\i} such that

P. =0 . Then, if ¢. is the associated probabilistic value on Ag ’
g i

Ei(v) =y ¢i(v(i)) + v(i} defines a value Ei € V(y} which is not in

viy') for any Y’ < Y . Hence the indicated containment is strict.

Finally, observe that, when Y = 1 , every value Ei in

Vi{y) = V{(1) is of the form

£ () = ¢i(v‘i’> + vii)
=4 I ppltvitu i) -v) - v(T)J} + vi(i)
TeN\L
= 1 pyviTu i) - v(D]
TcN\1
=,
so v(1) =P . 0O

Another point of view is offered by this theorem. If a player
wishes to evaluate his prospects from superadditive games, he can
satisfy our criteria of rationality while still basing his evaluation in

part on his posture toward risk. However, these same criteria, when
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applied to the evaluation of broader classes of games, force the player

into a posture of risk-neutrality. It would be of interest to learn

precisely from where this consequence of risk-neutrality arises.

6. Values for Simple Games

Simple games, particularly those which are monotonic, are often
used to represent political games. A value for a player may then indicate
the plgyer‘s perceived political power in various games. Under this inter-
pretation, the dummy and monotonicity axioms remain reasonable. However,
the linearity axiom does not Seem to apply; indeed, the sum of simple
games is generally not simple.

An alternative akiom has been suggested by Dubey {2Z] . For any
games v and w , define v vw by (v VvV w)(S) = max {(v(S),w(5)) and
define v Aw by (v Aw(S) = min (v(5),w(S8)) , for all S c N . If
v and w are simple, then v vVw and v Aw are also simple. A coali-~
tion is winning in v v w if it wins in either v or w ; it is winning
in v A w if it wins in both , Therefore, each coalition wins as often
in v and w together as it does in v Vw and v A w together.

Let ¢i be a value for i on a collection :7 of games,

rransfer Axiom. If v ,w ,vVw,and v Aw are all in J’ , then

¢i(v) + ¢i(W) = ¢i(v vV ow) o+ ¢i(v Aw) o,

The name of this axiom is motivated by the following observation.
The game v A w arises from v when all of the coalitions which win only

in v are made losing; v Vv w arises from w when these same coalitions
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are made winning. Hence, v aw and v v w arise from v and w when
winning coalitions are "transferred" from one game to the other,
We require several definitions. Let v be a simple game. .}

minimal winning coalition in v 1is a winning coalition with no proper

subsets which are also winning; a hole in v is a losing coalition with a
winning subset. Note that the monotonic simple games are precisely those
without holes.

Let :f be a collection of simple games, and let v be any game
in :7 . We define two types of operations which can be performed on v .

-

let T be a minimal winning coalition in v . Define the game Vv by
-T . -T -T .
v (8) = v(s) for all §# T, with v "(T) =0 ; v arises from v
by the deletion of a minimal winning coalition. On the other hand, let
. , +T +T
T be a hole in v , and define the game v by v (8) = v(s} for all

. + + . . .
S# T , with v T(T) =1; v T ariges from v by the insertion of a

{new) winning coalition. The collection Y is closed under deletion and

insertion if these operations, applied to any game in 37 . give rise only
* *

to other games in :f . In particular, 4’ : My and 46? are all closed

under deletion and insertion,

The following result is an analogue of Theorem 1.

THEOREM 7. Let \7 be a collection of simple games which contains & and
is closed under deletion and insertion. Let ¢i be a value for i on ar,

~
and assume that ¢i(vN) = (0 .* Finally, assume that ¢i satisfies the

*Recall that the game GN is defined by GN(S) =0 for all S ¢ N . This
game is contained in every nonempty collection of games which is closed

under deletion, and every player in N is a dummy in the game.
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transfer axiom. Then there is a collection of constants {aT: T < N}

A

such that, for all games v ¢ 7 ,

o, (v) = ] av(T) .
i ren T

Proof. We claim that ¢i is determined on all of ;7 by its
values on tB. In order to verify this claim, first consider the collection
:7; of monotonic games in JJ . This subcollection of Y is also closed
under deletion and insertion, and contains Ci. Since VN € a: , the claim
is trivially true for this game. Assume that the claim has been verified
for all games in J’M which have at most k winning coalitions (the only
game in :7& with just one winning coalition is vN), and let v ¢ :7'be any

game with kX + 1 winning coalitions. Let T be any minimal winning

o - . -T -T
coalition in v , and consider the games vT ¢ vV , and VT Av . The

first is a carrier game, while the latter two are both in ;ﬁd and have

. : c o . -T
no more than k winning coalitions. Since Vo Vv = v , we have from

-

the transfer axiom that ¢i(v) = ¢i(vT) + ¢i(v"T) -9, ( Av ) . It

iV

follows from the induction hypothesis that ¢i(v) depends only on the
~values of ¢i on (3. This verifies the claim throughout :7; . (Observe
‘that the game GN requires special treatment; since it has no winning
coalitions, it is not covered by the induction.)
Next, assume that the claim holds for all games in :r_which have
at most k holes (the case k = 0 has just been treated) , and let
v o€ :f be a game with k + 1 heoles. Let T be any hole of maximum
A +T

cardinality, and consider the games Vo r ¥V A Vg = Vi and v Vv VT = v .

The first of these is in €, the second is in :7; , and the third is in :7
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and has only k holes. Since ¢i(v) = ¢i(v v VT) + ¢i(v A VT) - ¢i(vT) .
it follows (by induction) that ¢i(v) depends only on the values of ¢i
on lS. This completes the verification of the claim.

We have just seen that ¢i is determined by its values on e:.
Since* c ié a basis for ﬁ, there is a unique linear function ¢1in
on J& which coincides with ¢i on e: . This linear function must

satisfy the transfer axiom, because (v Vw) + (v AW) =V + W for all v

and w in 4’ . Therefore, ¢11n and ¢i must coincide on :’. Since
¢11n can be expressed in terms of its values on the basis {WT: g#Tc Nt

of 1? {see the proof of Theorem 1) , it follows that ¢i has the desired

form. [J
We can now invoke Theorem 2 and the proposition concerning mono-

tonicity, in order to obtain- analogues of Theorems 4 and 5.

. * a K
THEOREM 8. Let d)i be a value for i on 3 or M . Assume that
¢i satisfies the transfer, dummy, and monotonicity axioms. Then ¢i

- . - *
is a probabilistic value. Furthermore, every probabilistic value on 4&

*
or M, satisfies these three axioms.

*
THEOREM 9. Let ¢i be a value for i on ,8 . Assume that ¢i

satisfies the transfer, dummy, and monotonicity axioms. Then there is

a collection of constants {pT:T c N\i} satisfying Z PT %= 1 , and
TcR\i
*Assume that E CSVS = 0 . Then for any nonempty T c N , z Cg = 0
prSCN gASCT

Solving this system of equations successively for lT|

]

1,2,...,n yields
. n . .
Cp = 0 for all T ¢ N . Hence the 2 - 1 games vy, are linearly inde~

pendent in /&
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j >0 for all nonempty T < N\i , such that for every game v ¢ 4‘* ’
¢, (0 = § plv(Tui) - vl .
TcN\L

*
Furthermore, every such value on 45 satisfies these three axioms.

The discussion of the previcus section, interpreting the class

) . *
of values on AS, applies with equal strength to ;& .

7. Symmetric Probabilistic Values

A probabilistic value assesses the relative desirability of being
a particular player in various games. At times, one might also want to
compare the desirability of playing various roles within a particular game.
Such comparisons can be facilitated by the use of a collection ¢ = (¢l,...,¢n)
of values, with ¢i(v) representing the value of being player 1 in game
§ . Such a collection is a group value.

et ™= (mM{l),...,7{n}) Dbe any permutation of N . For any

S ¢ N, define 7S = {m(i): 1 € 8} . The game 7v is defined by
{(rv) (18} = v{S) for all S ¢ N . (v arises upon the re-labelling of
the players 1,...,n with the labels 7(l),...,7{(n).}) Let ;7 be a collec-

tion‘of games with the propérty that, if v € Jf , then every 17v ¢ :7 HE
such a collection is symmetric.

| Let ¢ = (¢l,...,¢n) be a group value on :7. For the comparison
of ro1es in a game to be meaningful, the evaluation of a particular position
should depend on the structure of the game, but not on the labels of the

Plavers,
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Symmetry Axiom. For every v ¢ :1 and every permutation W of N ,

and for every i e N , ¢i(v) = ¢ (mv) .

m{i)

Observe that each of the classes /’, h, A,ﬂ,%, and /"

) . .
contains both d: and € ; also each of these classes is symmetric.

Therefore, the following theorem applies to values on any of these classes.

THEOREM 10. Let :7 be a symmetric collection of games, containing f: and
A .
C. Let ¢ =(¢l,...,¢n) be a group value on ¥ . such that for each

ieN and v ¢ :7 P

o vy =} p;IV(T v i) - v(D] .
TcN\i

Assdme.that ¢ satisfies the symmetry axiom. Then there are constants

n-1

: . . i
{pt}t=0 such that for all i e N and T ¢ N\i , PT = p

||

Proof. For any i € N, let T. and T, be any two coalitions

1 2
in N\i satisfying 0 < |Tl| = |T2| <n-1. Consider a permutation T
of N , which takes T1 into T2 while leaving 1 fixed. Then
p; = ¢.(G Y = b, (V. ) = p1 , where the central equality is a consequence
1 i Tl i T2 TZ

of the symmetry axiom.
Next, let i and j be distinct players in N , and let T, be
a nonempfy coalition in N\{i,j} . Consider the permutation T which
interchanges i and j while leaving the remaining players fixed. Then
A y i A ~ ] .
mv_ o= v = = =
T _ and Pr ¢i(vT) ¢j(vT) PL where the central equality

is again a consequence of the symmetry axiom. Combining this with the
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previous result, we find that for every 0 < t < n -~ 1 there is a P,
such that p% = P, for every i ¢ N and T c N\i with |T| = ¢t .
Again, for distinct players 1 and 3j , let T interchange i

and Jj while leaving the remaining players fixed. Then P;\i = ¢i(vN)

_ - 3 , . .

= ¢j(vN) pN\j . Let pn__1 be this common value. Then for all i € N,
i —i

Poni T Ppar

Finally, for each i e N ,

i P “El n-1 |

py = 1- pp=1- { ]p ;

2 T<N\i T =1 L BT
TP

this last expression is independent of i .

Therefore, p; = p; for all i,3 e N, Letting P, be this common value
completes the proof of the theorem. [
We shall return to this result later in the paper, when we

briefly consider the Shapley value.

8. Efficiency without Symmetry: Random-order Values

Consider a collection ¢ = (¢l,...,¢n) of values, all on the
domain :7 , one for each player in N . Depending on the game v under
consideration, the players' assessments, as a group, of their individual

prospects may be either optimistic or pessimistic; that is, z ¢i(v) may be

ien
either greater than or less than v(N) . However, if the group assessment
is neither optimistic nor pessimistic, the payoff vector ¢(v) = (¢1(v),...,¢n{v))

may be taken as an equitable distribution of the resources available to the
grand coalition N . Therefore, it is of interest to study those collec-

tions of values ¢ = (¢l,...,¢n) which meet the following criterion.
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Efficiency Axiom. For every Vv ¢ :7 , z ¢i(v) = v(N)} .
ieN
A group value satisfying this axiom is said to be efficient,
any efficient group value ¢ provides a fair distribution scheme
for the games in :1 . The following theorem characterizes all such

group values.

THEOREM 11, Let ¢ = (¢1,...,¢n) be a group value on J’, defined for all

i eWN and all v « :’ by ¢.,(v) = Z pl[v(T u i) - v(m™l . Assume
i . T
TcN\ i1
A .
that :’ contains & and & . Then ¢ satisfies the efficiency axiom

il

if and only If Z pl ., =1, and Z p1 . E 93 for every nonempty
. NA\i . T\i . T
ieN ieT JET

TZN.

it

Proof. For any V € 49, let” ¢N(v) { ¢i(v) . Then

ieN

oy = I 1 p;',[v(’l‘ U i) - v(T)]
ieN TcNAiL
) v(T)[ Y pi ) pj} .
TCN ser M ypp T

It is immediately clear that any ¢ which satisfies the conditions of the

theorem is efficient; that is, ¢N(v) = v{(N) .

For any nonempty T < N , consider the games VT and GT .

Since v, (S) = v, (S) for all §# T, and v (T) = 1 while ¥ (T) =0

r

it follows from the preceding equation that

o (v) - ¢ (¥.) = ) Pt - ) P
N T N'T ieT T\i jéT
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However, VT{N) - GT(N) is 1 if T =N, and is 0 otherwise. Therefore,
if ¢ satisfies the efficiency axiom, then the indicated conditions must
alsé hold. U

It is conceivable that the efficiency of a group value is an
artifact, existing in spite of the fact that the players have grossly
different views of the world. However, we can define a family of group
values, each of which arises from a viewpoint common to all of the players.

Let {r“: T e} be a probability distribution over the set I of

n! orderings of N ; Lo is the probability associated with the ordering
T o= (il""'in) in which the %-th player is player ik . For any ordering
i
. . k. .
T = (11""'ln) ,let T o= {ll""’lk-l} be the set of predecessors of

ik in 7 . A random-order group value £ = (51,...,gn) on :7 is

defined by

g, = e vt v - vimh o,
well

for all i e N and all v € :7 .

An interpretation of this definition can be given. Assume that
the players have as their goal the eventual formation of the grand coalition,
. N ., Further assume that they see coalition-formation as a sequential
process: given any ordering T of the players, each player i 3joins with
his predecessors in 7 , making the marginal contribution v(ﬂi v i) - v(wi)
in the game v . Then, if the players share a common perception {rw: m e I}
of the likelihood of the various orderings, the expected marginal contribution

of a player is precisely his component of the random~order group value.
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THEOREM 12. Let E = (El,...,En) be a random-order group value on :’ R
associated with with the probability distribution {rw: m e I} . There
exists a collection ¢ = (¢1,...,¢n) of probabilistic values on :7 , such
that ¢i(v) = Ei(v) for all i e N and all v ¢ cr . Furthermore, ¢

satisfies the efficiency axiom.

Proof. For any 1 ¢ N and v ¢ :’ ’

Y r“[v(ﬂi v i) - v

E. (v}
i mell

) r |[v{T u i) - v(T}] .
peN\i | {mell:nl=T}

Define, for all i ¢ N and all T < N\i ,

i .
Pp = 2- i
{“EH:H1=T}
and let ¢ = (¢l,...,¢n) be the associated collection of probabilistic
values. (It is easily verified that, for each i ¢ N, {pp: T © Wil

is a probability distribution.) Clearly, ¢ =§ .

Observe that, for any Vv ¢ Jf P

I g, = [ f r“[v{wi v i) - v
ieN ien mell

- En r ) vimt v i) - v(ni)}
Te ieN

= ] r v =vim .
mell
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Theréfore, since ¢ = £ , it follows that ¢ satisfies the efficiency
axiom. 0O
The preceding theorem shows that every random-order value is an

efficient probabilistic (group) value. The converse result also holds.

THEOREM 13. Let ¢ = (¢1,...,¢n) be a collection of values on :7 ’

defined for all i ¢ N andall ve J by ¢,(v) = ] priviT ui) - viml .
T<N\i

Assume that Z pl . =1 , and that z pl . o= Z pj for -all nonempty
. N\i : T™i 5T
ieN ieT JET

)]

T ; N . Then there is a random-order value £ (El,...,En) on 5’, such

that Ei(v) = ¢i(v) for all i1 e N and v ¢ :7 .

Proof. For any i ¢ N and T < N\i , define Ad(T) = E p% .
JET
and A(i;T) = p;/Ad(T) . Consider any ordering T = (il,...,in) e T, and
define
i1
r, = pﬂ 'A(lz;{ll})'A(13;{11,12}) s A(ln:{llf...,ln_l}) .

It is easily verified, by repeated summation, that
Z r = Z E Z .o ) S . =1 ,
. £ S T . . S . . . (i ,-..,1)
well =1 lzﬁ{ll} 135{11,12} 1n£{11"'"’1n-1} 1 n

50 {rﬂ: 7 ¢ I} is a probability distribution.
Let £ be the random-order value associated with {rw: e lly .

Since

£, = ] Lo r {Iv(Tu i) - vim] o,
TN\ [ {Tell:mi=}
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it will suffice +to show that for all i e ¥ and T < WN\i ,

pr= I x
T {TT:TTi=T} m

Observe that

_— .
{renior) T iler i emMi} i

leT\{lt,...,lz}

) ;L.

1t+2£TU{1} lt+3£TU{l'lt+2} 1n£Tu{1,1

3
resegl

t+2

i i
i Pt . Pt"} . }
P T4, } ™i i,
d . d . . X d ..
AT(T) i €T A SANEFDONE RS ANEO0 NG AN C WL T2

Y

e ) Pg ) A(

i imulih
OEL NP IS Sl G T TS B

1

h .

a
teserl

cee 1 Y L JRVAR € R SO -1

inéTU{ T R S

t+2 n-1

This summation can be carried out explicitly. Proceeding from right to left,

the first n - (¢t + 1) sums each, in turn, have value 1 . Continuing

.

i .
inductively, each sum of the form Z ka\i is preceded by a factor
lkETk k 'k
with denominator Ad(Tk) = { p% . Therefore, from the hypothesis of the
j«éTk k

theorem, it follows that the expression simplifies to Py ¢ @s desired. [J
Combining the preceding results, we obtain an interesting cbser-

vation. A collection of individual probabilistic values is efficient for

r,. :
‘1} (1110--;1n)
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all games in its domain precisely when the players' probabilistic views
of the world are consistent; that is, only when the various {p;: T < N\i}

arise from a single distribution {rﬂ: T e M} .

9, The Shapley Value

A standard characterization of the Shapley (group) wvalue is as
the only value which satisfies the linearity, dummy, symmetry, and efficiency
axioms [6] . From our previous results, we can quiqkly prove the uniqueness
of the Shapley value, and simultaneously obtain a simple derivation of the
explicit formula for the Shapley value. Traditional proofs center around
a consideration of the carrier games in ‘5. It appears that our considera-

N ‘
tion, as well, of the games in (& simplifies matters.

THEOREM 14, Let ¢ = (¢1,...,¢vn) be a group value on /9, ?)L, or X .
Assume. that each ¢i satisfies the linearity and durmy axioms, and that ¢
satisfies the symmetry and efficiency axioms. Then for every v 1in the

domain of ¢ , and every 1 ¢ N ,

2 t!{n - £t - 1)!

[V(T U i} - V(T)] r
n!

P, (v) =
* TeN\i

where +t generically denotes the cardinality of T .

Proof, From Theorems 3 and 10, it follows that there is a sequence

{p n-1 , such that each ¢, (v) = f p Iv(T u i) - v(T)] . Specializing
t t=0 i T
TN\
Theorem 11 to the symmetric case, we must have Z p;\i = npn_1_= 1l , and

ieN
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-1
o}
.
1

i | _
) Pryg = P

(n - tip, for all nonempty T Z N .
ieT JET

Consequently,

[

- n-1 _ 1
P17 ln-1Fn-1 "0 7

and
n-1 - n-1
t JPe t-1)Ft-1

for all 1<t <n~1 . It follows that, for each t , {n-l]Pt =Bl-

t!(n_t—l)! .D

and therefore, pt = o

It may be noted that, upon replacement of the linearity axiom

with the transfer axiom, we obtain a similar theorem characterizing the

Shapley value on ﬂ* ;?’f, or 5 .
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10. Interlude

In the preceding sections, we have given two interpretations té a
group value ¢ = (¢1,...,¢n) on a collection d of games. The use of ¢
to indicate an equitable distribution of resources seems reasonable only
when ¢ is efficient. BHowever, the interpretation of ¢ as an evaluation
function, to be used by a single player comparing various positions within
a game, is broadly applicable.

Just as the prospects of various positions can be compared, the
prospects of the coalitions in a game can be studied. For any particular

. . . ~ N . .
game ¥ € C’ , we can define a function ¢v : 27 + R , which assigns to

each coalition S its total value ¢v(S) Z ¢i(v) . Note that this

ieS

set-function is additive; i.e., if S n T @ ,‘then $v(5) + $V(T) = $V(S uT) .
An important class of games corresponds to economic markets

invelving a large number of traders, in which each trader holds only a

negligible proportion of the total resources of the economy. Such a situa-

tion can be conveniently represented by a non-atomic continuum of traders.

Since each player is a dummy in the corresponding game, the study of

individual values is of little interest. However, the relative prospects

of various coalitions (i.e., various segments of the market) can be repre-

sented by an additive set-function on the c9ntinuum of players. This

representation is investigated in the next section. BAagain, an axiomatic

characterization of probabilistic valueg is our central result.
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11. Values of Non-Atomic Games

We now turn to investigate the implications of dropping the
efficiency axiom in the context of non-atomic games. The mathematical
getting for the study of such games has been spelled out in {11]. For
completeness' sake we will quote freely from [11} and first recall several
basic definitions and results.

| Let {I,cz} be a measurable space, isomorphic* to the Clﬁsed unit
interval with its Borel subsets. The term "set function™ will ﬁean a
mapping v of € into the reals such that v(@) = 0 . 1In the interpre-
tation, a set function is a game, I is the player set, and dB is the
o-algebra of coalitions. A set function v is monotonic if S > T implies

v(S) > v(T), and is of bounded variation if it is the difference of two

monotonic set functions. The éollection of all set functions of bounded
variation forms a vector space over the reals and will be called BV .
FA is the subspace of BV consisting of bounded, finitely additive,
signed measures on {I,{S} and CA is the set of members of FA that
are countably additive.

Let Q be any subspace of BV . The set of all monotonic set
functions in Q@ will be denoted Q+ . A mapping of Q@ into BV is
positive if it maps Q+ into BV+ .

Let (& denote the set of all isomorphisms of {I,&} onto

*Two measurable spaces are called isomorphic if there is a one-to-one

function from one onto the other that is meagurable in both directions.
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itself. Each 6 in G induces a linear mapping 0, of BV onto itself,
defined by (8,v)(S) = v(8(8)) . A subspace Q of BV is symmetric if
6,0 =0 forall O in & .

We are now prepared to define a "value."* Let ©Q be a symmetric
subspace of BV . A valueon Q 1is a positive linear mapping 7N from ¢

into** CA such that

(a) For all ©® in & and v in Q , we have
no,v =08, mv) .
(B) For all v in CA n Q '

niv} = v

(A) clearly corresponds to the symmetry axiom for values of
finite games. (If we had defined (6,v)(8) = v(G-I(S)) ' theﬁ (4)
would have taken the form 8, (n(B,v)) = nv . The correspondence with
the symmetry axiom in the finite case would then have been more transparent.

However, the terminolegy used above is more in keeping with [11].)

The monotonicity axiom is captured in the requirement that

a value be a positive mapping. (B) has been discussed in [11] (pp. 15-16,

' pp. 293-4) under the name "Projection Axiom." It may be viewed as the

-

*We depart from the usage in (1l], where values are required to satisfy the
“"efficiency axiom," (nv) (I} = v(I) , instead of (B).
**1he effect of considering FA in place of CA , either here or in

(B} , is discussed in Remark 3 of Section 12.
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non-atomic analogue of the dummy axiom for finite games., Consider a finite
additive game v3 2N +R , i.e., v UT) =vi{(sS) + v(T) whenever S nT=6¢.
Then each i ¢ N is a dummy in v , hence ¢i(v) = v(i) , or equivalently
olv) = v .

Our focus in this paper will be on a particular subspace of BV
called pNA , which also plays a crucial role in [11} . Fi:st let us

introduce the variation norm || || on BV given by
[lv]] = inf [(u(m) + w(Dn1 ,

where the infimum is taken over all monotonic set functions u and W such
tﬁat veuyu-w. BV is a Banach space with ﬁhis norm (see* Proposition
4.3); FA and CA are closed subspaces of BV (Proposition 4.4). Denote

by NA the subspace of CA consisting of non-atomic measures.

The subspace pNA is the subset of BV spanned by all powers

of measures in NA . The word "spanned" is used here in a topological linear
sense; i.e., the space spanned by a subset of BV is the closure (in the
variation norm) of the set of all linear combinations of elements of that
subset. PNA is clearly closed and symmetric. It is also internal

{see Proposition 7.19);

i.e., Ilvll = inf [u(I) + w(I)] , where u and w are

members of pNA+ {and Qot just of BV+) sucﬁ that v = u - w . A fortiori,
PNA is reproducing, i.e., pNa = pNA+ - pNA+ . Therefore, by Proposition
4.15, any positive linear operator from pNA inte BV is continuous. 1In

particular, if n is a value on pNA , then n is continuous or,

*All unattributed results are from [11] .
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equivalently* it has finite norm (where the norm of n is
sup {||n{s]vl] « vepna, v# o0}

Of particular interest are those games v in pNR of the form
veFfou [i.e., v(S) = £(u({s)) for all s e¢ £ 1 , where u is a
finite~dimensional vector of measures in NA+ , and f is a real-valued
function that is continuously differentiable** on the range of U , with
£(0) = 0 . {Note that by Lyapunov's theorem the range of U is compact
and convex.) For the proof that f o U ¢ pNA for all such § and f
see Proposition 7.1.

We will first focus our attention on games of the form € o U
. where | is one-dimensional. Without loss of generality, {1,¢} will
henceforth be taken to be the closed unit interval [0,1] with its Borel

subsets. A will stand for the Lebesgue measure on I . Given two

measures # and & on I recall that W is absolutely continuous

with respect to & , written u << § , if u{S) = 0 whenever E{s) = 0 .
If y << £ , then by the Radon-Nikodym theorem there exists a measurable
function £: I +MR such that u{s) = [faf for all S e & . f is called
the Radon-Nikodym derivative of u wiih respect to & and is denoted

du/éE . If it happens that, for some M < ® ,ldu/d€|< M almost everywhere

on I , we will say that du/df is bounded.

*See, for example, Theorem 5.4 of (12} .

*%xfor a precise definition, see page 22 of [11] .
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We introduce some more notation:

+ +
NAl*-‘-{ueNA D) =1} .
(Thus NAI is the set of all probability measures on I .)
+ + .
NA,bd = {u e NA, U << A, du/dh is bounded Yo,

C; ={f: TR : £{0) = 0 and f is continuously differentiable}

+
CéNAI ={vepNA : v=Ff oy where f ¢ Cé P W€ NAl} .

The following two propositions pave the way towards characterizing

all values on pNa .

Proposition I. Let mn be a value on pNA . There exists a unique measure

+ + 1

E e NAlbd guch that for any | € NA, and any f € o

1
(*) ME o w) = (f £'abn
0
where f£' denotes the derivative of f .
Proof. First take U to be the Lebesgue measure A . We can
show, by exactly the same arguments as in the first part of the proof of

Proposition 6.1, that nv coincides on any two sets of equal A-measure

for any v € pNA , i.e., (nv)(S) 1is a function of A(S) alone. Write
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(N(E ° AN (8) = gf(A(S)) . Then from 7T (f ¢ A) ¢ CA it follows that 9
. \ . e, + _ 7
is bounded on I , and is additive, i.e., gf(xl xz). gf(xl) + gf(xz)

whenever x.,X and x, + x are in [0,11

17%5 1 2 . This implies that

gf(x) = gf(l)x .

Consider the mapping A: Cé + R given by:
A(f) = gf(l) .

Note that gf(l) = (N(f o A))(I} . Since n is linear on pNA , it is
clear that A 1is a linear functional. It will be helpful to view A
with its domain transformed. Te this end, let C be the set of all con~-

tinuous real-valued functions on f0,1] . Both ¢ and Cl are vector

0
spaces over the field of real numbers.
Define 4 : C; + C asg follows:
(d(£r)(x) = £' (x) ,
for f ¢ Cé and x € I . It can be easily verified that 4 is a vector

-1 .
space isomorphism) and that d is given by

X

Q1 E) 0 =J Fieyar
0

for E €e C and x ¢ X

*That is, d is one~to-one and onto, and linear in both directions.
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Now define A : C * R by

H =@ E

—

for any fec . Clearly A is linear, since A and d are linear.
Moreover K is positive, i.e., K(E) > 0 whenever §:; 0 . To check

this let £ 20. Then £ = d—l(%) is monotonic on I , i.e., £(x) > &(y)
whenever x >y . Hence, the game f o A is a monotonic set function.

But since' n is a positive mapping, n{f ¢ A) is also a monotonic function.
This implies that h(E) = gf(l) = (n(f o A)) (I) > 0 , which easily
translates into: A(f) 2 0 . Hence, K is a positive linear functional

on C.

Then by the Riesz representation theorem* there exists a unique,

finite, positive measure £ on {I,€} such that

1
A(E) =J fag .
0
This says that
1
AME)Y = J £'ag .
0

Recalling that (n(f = A)}(S) = gf(l)-X(S) , we have verified the
formula (*) for the case when U is the Lebesque measure ) . (However
. ’

we have not yet shown that £ ¢ NAjbd .)

When U # A , let 8 be the automorphism'of {1,¢ 1 such that

*See, for example, page 34 in (12] .
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«H

B (£ © W)

N8, (£ o 1) = n(f o A)

£ o (8,1

{Lemma 6.2

n{f o u)

We shall

it

i

-35-

assures us that such a 0 exists.) Then

f o« A, and so, by what we have just proved,

(flf’dE)A . Hence, by the symmetry axiom (A),
)

8728, nee 0w = BB, (£ o w

*

now proceed to demonstrate that £ is the type of measure

. . + .
claimed, i.e., & ¢ NAlbd . First suppose, to the contrary, that £ has

atoms,

the sequence*

Let x ¢ (0,1}

be any atom of & . Construct

{fn}ndn c ¢ defined by

(0, if ye[0x-3 or if x e [x+ 511 ;
1
y ~ (x - ;ﬂ 1
T e 1f y e (- ;ux] n [0,1) ;
£ (y) = n
1
(x + ;) -y 1
1 , Af YE(er"';)n[O,l] .
n
Y
penote a T(E) by f . Then {f } c ¢t . Consider the sequence of
n n n ndh 4]
* N is the set of positive integers.
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in NA here v = f ©° XA . Clearl v is monotoni
games {Yn}ndu in p . wher n n arly v i nic,

hence [1vn[| = £ (1) é:%- . On the other hand, since nv_ is also

monotonic, ||nv || = (v ){I) = flf'dg = flE df > £(x) . Therefore,
n n o P o D =

[, ]

M~ 1] —> ® , which contradicts the fact that n is continuous on pNA .
n

We conclude that £ must be non-atomic.
We now show that sup {g(S)/K(S) : 5 e @, A(s) > 0} is finite.
" If not, there is a segquence of Borel sets {Sn}neN such that

E(Sn)/k(sn) >n + 1 and A(Sn) >0 , for all n ., Since the Lebesgue

measure is regular, for any Sn there exists a countable collection of disjoint

n ; .
such that Y = U I, > Sn and A(Y\Sn) §=l(sn)/n .

open intervals, {1 },
jem

jijem '

Now E(Y)/A(Y) > n , hence for some j* we must have E(Ig*)/l(I?*) >n .

Let I?* = (an,Bn) , and put an‘= max {O,Qn -(E——E—E“J},

a n n
Bn = min { 1 ’ Bn + {_B_—:_E_) } .
n

Define {gn}ndN © C as follows:

(1 if y e 8",
- gn ~n n
L2 it oy e [60,aM .
n n
N a’ -«
qn{Y)": ) 'én - n “n
:___.'__X,_ if y € (B ..-B ] r
n n
g - B
| ¢ otherwise .
Again consider the seguence {vn}ndN in pNA given by v_ = g, ° A where

-1 ~ .
gn = 4 (gn) . Arguing as before we derive:
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1
. _ o~ n 8N _ P
Hv H o= g 1) -[ gt < AMIT ¢ BT
g
1
I‘nvh‘[ = J ;;dg:; E(I?*) . But then,
0
n ' n
vt E(T},) o EaEDY o X
h = n n_ n 1, =n+1 =
I]vnH :\(I?*) . [B - oy [A(Ij*)](l +9)
a contradiction. This proves that there exists an M, 0 < M < o ,

such that sup {E(S)/A(S) ; s ¢ &, A(s) > 0} < M . Therefore, for any
€>0 and any s e £ ; A(S) < /M implies £(S) < € . Then, £ <<} , and
therefore df/d} exists. Clearly, df/d\ > 0 almost everywhere.
We assert that also d4f/dA < M almost everywhere. If not, iet
T ={t € I :(3a&/dl(t) > M} , with A(T} > O . Then, E&(T) = [(dE/aA)dx > MA(T) ,
a contradiction. This shows that d&€/dA is bounded, *

Finally, it remains to show that £(I) =1 . Take the game £ o )\

where f(x) = x for x ¢ I . Then, by (B), we must have n(f o A) = X .

On the other hand, we have shown that n(f = A)

(rerapya = (frap)a
0 0

= (E(I))eA . Hence &(I) =1 . [

+ ,
Proposition II. For each § ¢ NAlbd ; there is a unique value ng on pNA

which admits of the representation below. Let v iIin pNA be such that

there exist Y , £, and U asg follows:

(i} U 1is a finite dimensional vector of non-atomic measures with
range H , f is a real-valued function on H and continuously
differentiable there with f£(0) =0, U 1is a compact convex

neighborhood in H of the diagonal [0,u(I)] , and
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v{s) = £(u(S)) whenever }u(S) € U .
Then, for all § ¢ C,

(i) (ngv) (5) = (Yt en(mrage)

o p{(s)

whére fu(S) is the derivative of f In the direction u(8) .

. + . .
Proof. Fix & ¢ NAlbd ,and let v, u, £, U be as in (i).

Define the- signed measure vf u by
r
1
\ = f tu(Ir))dt(t .
f'u(s) I U(S)( B(I))dE(t)
Q

It is easy to verify the gountable additivity.of vf:ﬂ from the explicit
formula. This is carried through for the case £ = A in the beginning of
the proof of Proposition 7.6. BAn exactly analogous argument can be used
when & # A .

Let I = st us bea Hahn decomposition (see Theorem 6,14 in
; i.e.,

. . +
[12)) of I with respect to Vv is nonnegative on S and

£, VE,u

. oy - + -
its subsets, nonpositive on S and its subsets, and S n S =@,
+ -
Put v = (8 ) and b= u(Il}) , so (s ) =Db -y . Then as shown** jin
the proof of Proposition 7.6,
1 1

livl| ;j £, (oo |ac +J ENRTSItE,
0 0

*when u{8) = 0 we define the integral to be 0 ,

**In [11] it is proved that ]lv'l > +

Yt (b at
0 Y

1 |
£ (tbyat|
g pey (EDYEE|

But their proof in fact shows the stronger inequality we have used,
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But then, choosing M so that df/dA\ < M almost everywhere, we get

1 1
(iii) mjlv]] > MJ lfy(tb)ldt + MJ 1fb#y(tb)idt
0 0
1 1
if |fy(tb)[d€(t) +J |fb_y(tb) |ag ()
0 0
1 1
> J fy(tb)dg(t) + J £y (EPIAE ()
0 0

[}

+ -
Ivf'u(s y| + lvf.u(s }

n

[ivg 1

Let D be the linear subspace* of set functions v in DpNA that
can be represented by some W , £, and U as in (i). For every such

v, W, £, U0 define

We need to check that this is an admissible definition, i.e., that it does
not depend on the cheoice of u , £, and U . Indeed, this too has
been done in Proposition 7.6 for the case £ =X . When & # A no
difficulty arises and the same proof may be invoked.

D contains all the linear combinations of powers of measures in
NA , so it is dense in pNA . (iii) shows that [{¢(w){{/{{v]| = M for
all veD . Furthermore ¢ maps D into CA , which is complete.

Therefore, there is a unigque extension of ¢ to a continuous linear operator

*This subspace ig named Q in [11].
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from pNA to CA . Call this extended operator nE . It is the only
operator on PpNA which satisfies (ii) for all v as in (i), i.e., all
v in D .

To conclude the proof, we must verify that nE is a value; i.e.,

nE is positive and satisfies (A) and (B) . To check (A) {symmetry), consider

+

1 __+
v=fFf olU e CNA, . Then for each Geﬁ,e*ueNAl,hence

o1

Bve=1fFfo (9*u) ¢ CNa_ . Also

o_p
=+

1
nge*v J £7dE10,u

0

1
0, J £raElu
0

il

B*ngv .

Since both ng and 8* are continuous on pNA , it feollows that

nEB* - G*ng is a continuous linear operator on pNA that vanishes on
1+ . . . ;

CONAl . Therefore, it vanishes on the (topological linear) span of
1+ . . .

CONAl , which is pNA . This proves symmetry.

For any Q < BV , let us denote Q the closure of @ in the
variation norm. Let P be the space of all polynomials in non-atomic
measures. Whenever we write v = f ° i ¢ P ,'we take f to be a polynomial
and U  a vector of measures in NaA . Clearly, P = pNA .

An alternative definition of the variation norm will be useful in
the sequel. Let §! be a nested chain of sets @ = S0 c§ c©,..c 8 =1,

1 m

m
and let v € BV . Put ||v||Q = .Zl |v(Si) - v(Si_l)] . Then
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Proposition 4.1 establishes that ||v|] = sup ||vHQ , where the
supremum is taken over all chains @ .

To check that ng satisfies (B), the projection axiom, first
consider v =f o UeCANP, Without loss of generality (see page 42
of [11]), we can assume that H , the range of WU , is full-dimensional.

We assert that £ must be linear. Pick any x ¢ H and consider
the ray er= {tx : ¢ 20, tx ¢ H} . Let tlx and t2x be in Rx
such that (tl + tz)x € Rx . Since Rx < H , there is an 8 ¢ ¢ such
that U{(s) = (t1 + ﬁz}x . By Lyapunov's theorem (applied to H on S},
for some T < S5, u(T) = tlx . Hence p(S\T) = tzx . But f o {4 e CA ,

and therefore

f((t1 + t2)x) (£ o Y} (s}

it

(f o W) (T + (£ ¢ p) (S\T)

f(tlx) + f(tzx) .

Thus f is additive on Rk ; clearly it is bounded. Consequently £ is
‘linear on Rx for any x € H ; i.e., f is homogeneous cof degree one on
H . Now consider Vf , the gradient of £ ., Due to homogeneity, Vf is
constant on each ray Rx . Since these rays all contain the origin, VI

in fact must be constant throughout H . It follows that f(x)} = c°x

for all x ¢ H, where c¢ is this constant gradient vector.

Now,
1
(ngv) (s) = (f) £(s) (e (1)) dE (t)
1
= ceu(s) [ ag(w)
]
= £(u(S))
= v(8) .

Thus, ngv = v for all v e CAnpP.
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7o complete our verification of (B), it will suffice to show that
CANP=CANPpPNA . Since CANnP=NA and P = PNA , we need only
show that any limit of non-atomic set functions is non-atomic. Suppose,
to the contrary, that some v € pNA has an atom x in I , ji.e., for
some S'c INx} , v(5 u {x}} # v(S) . Take {vn}nE c P such that

N

v, TV Clearly each v_ is non-atomic, so vn(s v {x}h) = vn(s) for all

n .. But then, considering the chain {@,s,5 u {x},1} , we get
- > - - v -
[lvn vl =:I(vn vy(s u {x}) (v, v) (s) |
= {v(s) -~ vis v {xh| ,
i.e., Ilvn - vll-ﬁ+-> 0 , which is a contradiction,

Finally, we must show that ng is positive on pNA . We will

begin by showing this on D , i.e., nE(D+) c cat . Suppose Vv € D" and

(ngv)(S) <0 forsome Se & . Let v(T) = (£ » u)(T) whenever U(T) ¢ U ,
where 4 , £, U are as in (i) . Then since

1

(HEV)(S) = J fu(S
G

}(tu(I))dE(t) ’

fu(s)(tu(l)) must be negative for all t in some subset of [0,1] of
positive E-measure . Select a particular such t , satisfying 0 < t < 1 .
(Such.a t always exists because £ is non-~atomic.) It can be shown,

using Lyapunov's theorem, that for any 0<71<1-~ t there exist two

disjoint sets RT and 'I‘T in € such that
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tu (1)

u(RT)

U(TT) Tu(sy .

(For a proof of this see Note 2 of Section 7 in {11].) Put PT =R_UT_ .

For T sufficiently close to 0 , we have u(RT) and u(PT) in U , and

It

V(PT) = f(u(PT)) £{tu(I) + TU(S))

f(t +

& £(EU(T)) - Tfu(s)(tu(I))
< £{tu(1))
= f(U(RT))
= v(RT) ,

et +
contradicting that v ¢ D .
It is straightforward to show that if livn - v]] —> 0 ana if

Vo is monotonic for every n , then v is monotonic. This implies that:

+ . . =4 ;
(a) CA is closed since CA 1is closed; (b} D <(D} . Since

, , , , + + +
nE is continuous, we immediately get nE(D+) < CA from HE(D y o« Ca .

We wish to show that nE(D) ) ©cCcA . (Note D = pNAa .
For each k > 0 and each m with 1 <m < Zk , define a measure
k
X by
" Y

A(5) = 2%Als o [
m

. k . .
where A is Lebesque measure. Let A be a vector measure, of dimension

2k , defined by
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k
2
the range of Ak is the closed unit cube Rk = [0,1] . Denote by &a

k
the set of all set functions of the form £ o A~ , where k > 0 ,
and f is continuously differentiable on er and takes the value O
‘at the origin. Obviously, A c D .

— +
Iet v € (A) . Then there is a sequence {Vn}ne < A such that

N

v - vﬂ[\ —> 0 . Since A is internal (Lemma 7.18), we can write
v =1 =-W , where u ,w ¢ A+ and [iv l| - (u (I) + w (I}) —¥—> o .
n n n n n n n n
Consider llv - vnll = l|v - (un - wn)]l . This bounds the variation of
v - u_+w_ on the chain {@,I} ; hence, (I} - u (I) +w _(I) —> 0 .

n n _ n n
Subtracting these two limiting equations, we obtain (Ilvnll - v(I)) - 2wn(I) + 0.
But l‘vn|| -+ |lv|l = v(I) , so wn(i) + 0 . Therefore, llv - unll-—*—b o,

and v € AT .

- — + -+
‘Clearly A% ¢ (A) , and we have just shown that (A) c at .

_I + +
A . Since A cD, we have A c D . Consegquently

— o+
Hence, (A) =

{(recalling that ng(D+) < CA+) ((K}+) c CA+ . Take any Vv € (E)+ .

' ﬂg

As shown in the proof of Proposition 7.19 in [11], there is an automorphism

8 of {1,€} such that B,v e (K)+ . But then ng(v) = 6:1n (6,v) € BIICA+ = CA+

£

— +
This proves that ”g(‘D)+’ ccA’, i.e., that N is positive on pNA . [

At last we come to the main theorem in this section.

: +
THEOREM 15. The set of values on pNA is the set {n, : £ ¢ NAlbd} '

2

where ng is as in Proposition II .

Proof. We verified in Proposition 1I that every 1 is a value

£
on pNA . Now suppose ¢ 1is a value on pNA . By Proposition I there

. . +
exists a unique § ¢ NAlbd such that
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¢(f o n} £'abiu

1]
O

i+

+
for any £ o y ¢ CONAl

. ¢ and n£ coincide on C;NAl  Which spans

pNA . Since ¢ is continuous on pNA , and since CA 1is closed, there is

a unique linear extension of ¢ from the domain Cé

+ s N
spanned by CéNA1 ; i.e., to pNA . That this extension coincides with

+
NAl to the domain

is obvious. {]

"g
12. Remarks

(1) The non-atomic values {nglg € NAIbd} derived axiomatically
on pNA can also be obtained from aymptotic considerations. This reveals
the sense in which they approximate values of finite games, and was carried
out by one of us in [3]. The results in (31 help to justify the term
"probabilistic value” for ng . It is shown there that for any v € pNA ,
and any sequence {Vn} of finite games that "converges" to v in an

neRy

appropriate sense, we have

~

¢£Vn —— T”IEV '

where Vo is a game with m = m(n) players, and ¢Evn is the additive

set-function derived from the symmetric probabilistic value with

pt(E) = flst(l - s)m_l—tdg(s) for 0 £t <m- 1. In this sense, “g
0

is a probabilistic value for a game with a continuum of players.
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(2) Although the probabilistic values ng are in general not
efficient, it is worth noting that for non~-atomic market games* (with
transferable utilities) they do all become efficient; indeed they coincide
with each other, and in particular with the Shapley value Ny which is
always efficient. To see this, first consider a market game v of finite

type. As shown in [3], v can be approximated by a sequence v, = nf °y, € b,

where each £ is howogeneous. But ngv = lim nEVn . Since f is

k44
honogeneous, nfu(S) is constant along the diagonal [0,u{I)] . Therefore,
by formula (ii) of Proposition II, NV, is independent of £ ¢ NAlbd . and

then so is ngv . If the market game v is not of finite type, we may
view it as a limit of market games of finite type (with the number of types

increasing to infinity} as in {11}. Again a limit argument shows that nE

is independent of £ . B§ Theorem J, the upshot of this is that all the

ng -values are in the core of any market game, and coincide with the competitive
- payoff of the market. Even in the case of non-transferable-utility markets,

we may define " ng ~value allocations" exactly as the (Shapley) value
allocations were defined in [13]. Again it follows from the results ip

[13] and our preceding arguments that ,ng allocations, for any £ ¢ NAIbd ’
coincide with the competitive allocations of the market.

(3] There are two ways in which ¥FA c¢ould have been used in
place of Cﬁ H as‘the rahge of the value'operator or in the projection axiom
{B). If FA were used for the range, leaving (B} unchanged, our results
would be unaffected; it is easy to deduce that the effective range would

- still be just CA. We think that the projecticn axiom, on all of FA . is

a consequence of Proposition II. However, we have no proof of this as yet.

*For their definition see Chapter 6 of {111 .
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(4) Earlier in this paper it was shown, for the finite-player
case that the Shapley value is characterized uniquely by the linearity,
dummy, symmetry, and efficiency axioms. For the non-atomic case, we can
obtain a similar result. The natural non-atomic analogue of the efficiency

axiom is
() (Mv){1) = v(I) , for all v e Q .

Of the values on pNA considered in Proposition II only nA satisfies this
additional axiom,
To see this, recall that for any value ng P
1

(ﬂg(f ° 4))(8) = f £
‘ o

u(s)(tu(l))dﬁ(t)

for f o U € ClNA+ c D

oNA, .. In particular, for any [o,B] < I , consider

V.= 9, ° A , where 9, is defined as in the proof of Proposition I

(with o = o, Bn = B ; also set a=a . = 87) . From (C) we must
have

1
(ngvn)(l) = J gn(t)dE(t) = (gn o A)(I) .
0

Now

1
B-a<ig oMM B-0@d+3,

and
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1
£(la,B1) < J g/ (£)AE(E) < ECa,B)) L E(BD +m -2 (8 -w
0

where M. bounds df/dA . Letting n * @ in the preceding inequalities,
and noting that the two central terms are equal, we obtain E&([u,B]) =B - &
for all [d,B] cI;ie., £E=i.

Indeed, we could have replaced (B) with (€) in our original defi-
nition of "value." Propositions T and II would then have held with " A
reélacing f E.e NAIbd “:; their proofs would have reguired only minor
modifications. With the exception of the argument requiring the Reisz

representation theorem, this would amount to the approach of [11].
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