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AN ANALYSIS OF THE STffiRING AND MIXING 
PROCESSES IN INCOMPRESSIBLE FLUIDS 

BY 
CARL ECKART 

Scripps Institution of Oceanography1 

University of California 
La Jolla, California 

INTRODUCTION 

In the laboratory, the phenomena accompanying the mixture of two 
fluids are so commonplace that they do not seem to merit investiga-
tion. In the ocean and atmosphere, the phenomena are presumably 
very similar, but the lack of a good theory on which to base calcula-
tions complicates the problem much more than in the laboratory. 

It is useful to consider a trivial experiment by way of introduction: 
the mixing of coffee and cream. Three more or less distinct stages can 
be observed: 

l. The initial stage, in which rather large volumes of cream and coffee 
are distinctly visible; there are sharp gradients at the interfaces be-
tween the volumes, but elsewhere the gradient is practically zero. 
Averaged over the entire volume, the gradient is small. If motion of 
the liquids is avoided, this state persists for a considerable time. 

2. The intermediate stage, after motion has been induced by stirring 
the liquids; the masses of cream and coffee are distorted, with a rapid 
increase in the extent of the interfacial regions having high concentra-
tion gradients. The average value of the gradient is correspondingly 
increased. 

3. The final stage, in which the gradients disappear, apparently 
quite suddenly and spontaneously, with the liquid becoming homo-
geneous. 

It is a reasonable working hypothesis to assume that these three 
stages (or at least the second and third) also occur in the ocean and 
atmosphere when concentration or temperature differences arise. 

The potentially long duration of the first stage may be ascribed to 
the slowness of the diffusion or heat conduction process which results 
from the small average value of the gradients. During the second 
stage, the average value of the gradient is increased by the relative 

1 Contributions from the Scripps Institution of Oceanography, New Series, No. 389. 
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motion of different parts of the liquid as a result of stirring. The dis-
appearance of the gradients ~u~ing the thi:d stage is p_resumably caused 
by molecular diffusion. This 1s more ~ap1d than durmg the fi:st stage, 
because stirring has increased the gradients and thus has also mcreased 
the diffusion currents. For convenience, this last stage may be called 
mixing, to distinguish it from stirring. 

TWO EXAMPLES OF STIRRING 

As a first example of stirring, one may consider the formation of a 
steep thermocline by lateral advection; Fig. 1 represents a vertical 

(0) ,Jl 
Figure 1. Stirring action of laminar fl.ow . 

section of the fluid. Suppose that initially there is a small horizontal 
gradient, but that the regions A and B (Fig. la) are at appreciably 
different temperatures because of the relatively large distance sepa-
rating them. Suppose further that the fluid everywhere moves hori-
zontally, but that there is a vertical velocity gradient; the motion is 
laminar, with shear across the horizontal planes. Then, since the 
upper parts of the regions A and B move with a higher velocity than 
the lower parts, these regions will be distorted until eventually the 
configuration of Fig. lb is produced. The particles 1 and 2 will have 
moved much closer together, although the temperature difference be-
tween them is unaltered. Thus the original small horizontal gradient 
will have been converted into a much larger vertical gradient. 

This example suggests that the large thermal gradients shown on the 
bathythermogram of Fig. 2 may be indicative of regions of relatively 
large velocity gradients, and that the whole trace is indicative of hori-
zontal shear in the layers between the depth of 120 and 240 feet. 
Possibly this suggestion could be tested experimentally. 

As a second example, suppose the initial temperature distribution to 
be as before, but that an eddy is somehow set up with its axis horizontal 
and perpendicularly bisecting the line joining the centers of A and B 
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(Fig. 3a). In this eddy, let the orbits of the fluid particles be circular 
and be described with an angular velocity w that is a function of their 
distance from the axis of the eddy. Then, after the lapse of successive 
intervals of time, the regions A and B of Fig. 3a will be deformed and 
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Figure 2. Bathythermogram taken on August 3, 1946, from U. S. S. INGRAHA>< at 
Lat. 11° 48' N ., Long. 164° 46' E. Temperature In °F., depth in feet. 

assume the configuration shown in Figs. 3b and 3c. It is clear that 
such an eddying motion will be very effective, not merely in increasing 
the mean gradient but also in increasing the interfacial area of the 
regions A and B and in decreasing the interfacial distance between 
them. All three effects are such as to increase the flow of heat by 
conduction. During the stage of stirring these three processes domi-
nate; ultimately they may so increase the conduction of heat that the 
latter dominates and causes the mean gradient to diminish toward 
zero. 

It is not difficult to show that, because of the stirring action, the 
mean gradient at a distance r from the center of the eddy is 

½ I ar (dw/dr) t I , 
where a is the initial horizontal gradient, and tis the elapsed time since 
the initial instant. Thus, if the eddy persists long enough, the gradi-
ent, and consequently the heat flow, may become very large indeed. 

Having considered these two examples of stirring, the next section 
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will examine the laws according to which heat conduction or diffusion 
operates to reduce the mean gradient. In the succeeding section, the 
manner in which these laws are modified by stirring will be treated 
in some generality. 

(0) -., ·~· 
(b) 

(ti 

Figure 3 . Stirring action of circular eddy. 

THE EQUALIZATION OF GRADIENTS BY 
CONDUCTION OR DIFFUSION 

In order to avoid, initially, the complication of the stirring process, 
consider conduction or diffusion in a solid substance. The differential 
equation governing this is 

(1) 

where "is the conductivity or diffusion constant, and (J the temperature 
or concentration. On differentiating this, one obtains 

a 
at V8 = KV2V8 ; (2) 



1948] Eckart: Stirring and Mixing Processes 

multiplying scalarly by VO, the result is 

I a 
- - ( ve)2 = " ve · { v2 ve l 
2 at 

= "V · {VO V20} - "{V28}2 

= V · {::VO} - " { V20 r. 

269 

(3) 

If one integrates the terms of this equation over a volume and uses the 
divergence theorem, the result is 

d~ Jff (vo)
2 

dr = 
ool (4) Jl 11 · VO :: du - " ff! { v2o} 2 dr , 

where dr and du are the elements of volume and area, and II the unit 
vector normal to du. 

At first, assume that the surface integral vanishes. This will cer-
tainly be the case if either: (a) the temperature of each point of the 
boundary is constant, so that aoJat = 0, or (b) no heat flows through 
any point of the boundary, so that 11-VO = 0. Then, since {V20} 2 > 0, 
the right side of (4) is either negative or at most zero. Hence the 
integral on the left must decrease, or at most remain constant. 

Define therms gradient, G, by the equation 

G'1- = !ff ( vo) 2 dr , (5) 

ool 

where V is the volume of the region under consideration. The 
quantity I, defined by 

12 = Jff (v2o)2 dr, (6) 

ool 

is a convenient measure of the inhomogeneity of the material inside V. 
Using these definitions, 

1 dG'1-
- -- = - J2. 
2 dt 

(7) 

For a given inhomogeneity, therefore, the mean square gradient de-
creases at a rate directly proportional to the constant "· 
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The activity of the material inside V is measured by the quantity 
A, defined by 

(8) 

Because of (1), (7) may also be written 

1 dG2 1 
--- = --A2. 
2 dt K 

(7.1) 

For a given activity, the mean square gradient thus decreases at a rate 
inversely proportional to the constant K. 

However, the most important conclusion is that whenever the sur-
face integral of ( 4) vanishes tlie rms value of the gradient never in-
creases. In the case of a small solid object in the laboratory, the 
conditions for the surface integral to vanish are easily fulfilled. How-
ever, if an arbitrary volume of the ocean or the atmosphere is con-
sidered, this is no longer true. The conduction of heat through the 
boundary, and its consequent change in temperature, may become very 
important. Moreover, the process of stirring must be considered. 

MODIFIED EQUALIZATION THEOREMS WHEN THE 
SUBSTANCE IS AN INCOMPRESSIBLE FLUID 

When the substance under consideration is an incompressible fluid, 
rather than a solid, (1) becomes 

DO 
- = K'i/ 28 
Dt ' 

(10) 

or, using the indicial notation, 

De a2e 
-=K--
Df ox;2 ' 

(11) 

where 
D a a 
-=-+u;-. 
Dt at ax; 

The differentiation of this equation (as above) encounters a complica-
tion, because 

a D D a OU; a 
OX; Dt = Dt OX; + ox; OX; • (l 2) 
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The analogue of (2) is therefore 

D a8 a a28 au, a8 
-- - K--- - --· 

Dt OXj OXj ax?- OX; OX; , 
(13) 

and involves the velocity gradient au,/axi. 
Multiplying by iJ(J / iJxi, and summing, 

1 D ( 08 )2 a ( ao a28 ) 
2 Dt ax, K ax; ax; ax.2 

{ 
iJ2(J }2 iJU; i){J i){J 

- K ax;2 - OXj OX; OX; • 
(14) 

In order to obtain simple integrated results, it is now necessary to 
choose a volume V whose boundary is not stationary but which moves 
so that it always encloses the same fluid. Integrating over such a 
moving volume, the result is 

_:_ d(Jl = ff V • VB D{J da- - K12 - s (15) 
2 dt Dt ' 

lmdry 

where the additional term is 

jj(]J iJu; iJ(J iJ{J 
S = ---dr 

ax; OX; OX; 
ool 

(16) 

and is a measure of the rate at which stirring decreases the mean square 
gradient. 

The other terms of (15) have been adequately discussed above, so 
that it remains only to discuss the integrand of (16). The velocity 
gradient is usually resolved into two components 

where 

au, 
- = U[ji] + U (ji ) , 
OXj 

1 {au, aui} 
U[;;J=- ---

2 OXj ax, 

(17.1) 

(17.2) 

is recognized as being (except for a factor - ½) the curl or vorticity of 
the motion, while the tensor 

1 {au, au;} 
U[;i] =- -+-

2 ax; ax, 
(17.3) 

is called the deformation tensor and will be recognized from the familiar 
Stokes law of molecular viscosity. 
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It may be somewhat surprising to note that the integrand of (16) is 
independent of the curl, U[;,1, but it can be shown that 

au; ae M ( ae ) 2 ae ae ae ae 
---=ucu> - +2uc12,--+2uc1aJ--
iJx; OX; ox; OX1 OX1 OX2 OX1 ax, 

( 
ae ) 2 ae ae + U(22) - + 2U(2a) - -
0X2 ax.: axa 

+ U(33) - • ( 
ae )2 
ax, 

This is an important result, because it is known that curl or vorticity 
is very difficult to generate in a large mass of fluid whose coefficient of 
viscosity is small. If it should have appeared that the opposite were 
true, that S depended only on the curl, then the hypothesis under 
investigation would have to be rejected. Such a result would have 
made the process of mixing so strongly dependent on viscosity as to be 
untenable. The astonishment at the result arises from the popular 
confusion of curl or vorticity with eddy motion. The second. example 
above shows that eddy motion is very effective in mixing, possibly 
more so than laminar motion. On the other hand, it is a fact that in 
laminar motion the curl cannot be zero, whereas it is easy to give an 
example of eddy motion with circular orbits for which the curl van-
ishes; e.g., w(r) = 1/r. Thus, there is no inconsistency between (16) 
and the two examples discussed earlier. 

In the examples, and in the more general discussion of stirring, it 
was indicated that the effect of the velocity gradients is usually to in-
crease the mean temperature or concentration gradients. Therefore, 
it might be expected that the quantity S is always negative. This 
cannot be proven; in the case of an incompressible fluid, the velocity 
must satisfy the equation 

'v·U = 0, 
or 

U(ll) + U(22) + U(33) = 0 . 

Hence, usually at least one of the three terms of this equation (say 
u,11)) will be positive and at least one (say uc22>) will be negative. 
Under these conditions, a gradient having the x1 direction would make 
S > 0, while a gradient having the x 2 direction would make S < 0. 
Thus S may have either sign, and stirring may sometimes have the 
effect of decreasing the mean gradient. This situation will be clarified 
by a re-examination of the first example. 
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MORE DETAILED EXAMINATION OF 
MIXING BY LAMINAR FLOW 

273 

The example of stirring by laminar motion is simple enough so that 
fairly detailed calculations can be ma.de. If the temperature (or 
concentration) at time t = 0 is 

8 = ax + by + c , (18) 

it is required to find a solution of 
aB aB - + u(y) - = K v2B at ax ' (19) 

which also reduces to (18) when t vanishes. 
When " = O, this solution is unique, being 

B = Bo = a[x - u(y)t] + by + c. (20) 

This represents the effect of advection or stirring. The component of 
the gradient in the y-direction is 

aB du 
-=b-at-. 
ay dy 

For small values of t, its magnitude may either increase or decrease, 
depending on the relation between a, b and du/dy. For sufficiently 
large values of t, however, the second term must dominate, and hence 
the magnitude of the gradient will ultimately increase. 

This illustrates two general propositions. It has already been noted 
above that advection may either increase or decrease the gradients. 
The new proposition is that, ultimately, advection usually increases the 
magnitude of the gradient. This is not without exception. In the 
textbook example of small surface waves, the motion is everywhere 
periodic and everywhere has the same period. Consequently, the 
changes caused by a.dvection must also be periodic and they therefore 
constitute an exception to the rule. Actual surface waves, however, 
are not periodic, and their a.dvective effects presumably conform to 
the rule. Because of these exceptional cases, a general proof of the 
proposition will be difficult and will be analogous to the proof of the 
ergodic theorem. 2 

Turning next to the case " ¢. 0, one may set 

B =Bo+ iJ, (21) 

2 G.D. Birkhoff. Proof of a recurrence theorem for strongly transitive systems. 
Proc. nat. Acad. Sci., 17: 65o-655 (1931). 
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where tJ is determined by the equation 

at1 atJ - + u(y) - - K !::.2iJ 
at ax 

d2u 
- aKt-. 

dy2 

[VII, 3 

(22) 

At t = O, one must require tJ = O; it is characteristic that this require-
ment does not uniquely determine tJ. Physically this means that con-
ditions at the boundary of the medium are important: the sun may rise 
at some time after t = 0 and cause warming, etc. 

However, special solutions of (22) can easily be obtained. One, 
which is independent of x, is the series 

tJ = - aI:00 
_K __ -- u(y), 

m-ltm ( d )2"'-2 
m-2 rnl dy 

(23) 

which can be considered as the solution that is applicable in the ab-
sence of such external effects as were just mentioned. It therefore 
determines the mixing process that is induced by laminar flow. 

Since the series for begins with a term in t2, it follows that, for 
sufficiently small values of t, the effect of mixing will be negligible 
compared to the advective effect which is measured by the term 
- aut in (20). The time, tc, at which the first term of the series for 

becomes equal to the advective term, is given by 

tc = 2u / ( K ::: ) 

and is a function of y. 
Since u/(d2u/dy2) has the dimensions of an area, it may be set equal 

to Z2
, where l is a length that measures the homogeneity of the velocity 

distribution. Hence 

tc = 2l2/K. (24) 

For water, the thermal diffusion constant is K = 1.4 x 10-3 cm2/sec., 
while for the diffusion of dissolved salts, K = 2 x 10-6 cm2/sec. This 
leads to the following values for tc: 

1 m. 
1 cm. 
0.1 mm. 

MIXING TIMES 

thermal 
168 d. 
24 min. 
0.15 sec. 

salt 
32 yr. 
28 hr. 
10 sec. 

These values suggest that the saline microstructure of the sea may be 
much more pronounced than the thermal microstructure since dif-
fusion can scarcely counteract the effect of mixing. ' 
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The solution for {} in the case of a circular eddy is more complicated 
but should be derivable without excessive difficulty. 

THE EFFECT OF VISCOSITY 

The two examples considered above are both steady states of flow, 
and it is unlikely that steady motion will persist over the relatively 
long time interval tc. In particular, it can be shown that viscosity will 
usually modify the motion considerably in such a length of time, unless 
it is balanced by a suitable pressure distribution. 

The viscous effects a.re governed by equations that are very ana-
logous to (10), except that K is replaced by the kinematic viscosity n. 
For water n/K (Prandtl's number) has the value 7.5. Consequently, 
the viscous effects will become appreciable in a time that is less than 
that required for thermal mixing. They will, in general, tend to 
increase l and hence slow down the mixing process. However, this 
tendency may be counteracted by pressure gradients or wind stresses. 

CONCLUSIONS 

1. In all except certain very special cases, advection alone will 
ultimately increase the mean value of any initial gradient. 

2. This effect of advection is appropriately called stirring. 
3. Stirring is independent of the vorticity of the motion and can 

occur even if the motion is not turbulent. It may be the explanation 
of the high gradients shown by some bathythermograms. 

4. The effect of conduction or diffusion is to decrease the mean 
value of the gradient. 

5. This is appropriately called mixing. 
6. Ordinarily, the early stages of a process in which both stirring 

and mixing occur will be dominated by the advective processes. 
7. These may so increase the mean gradient that the mixing process 

will ultimately dominate over the stirring process. 
8. Viscosity, if not counteracted by other factors, tends to stop the 

stirring process before an appreciable amount of mixing can occur. 


