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Abstract

System Abstractions for Scalable Application Development at the Edge

Bo Hu

2022

Recent years have witnessed an explosive growth of Internet of Things (IoT) devices, which

collect or generate huge amounts of data. Given diverse device capabilities and application

requirements, data processing takes place across a range of settings, from on-device to a

nearby edge server/cloud and remote cloud. Consequently, edge-cloud coordination has been

studied extensively from the perspectives of job placement, scheduling and joint optimiza-

tion. Typical approaches focus on performance optimization for individual applications.

This often requires domain knowledge of the applications, but also leads to application-

specific solutions. Application development and deployment over diverse scenarios thus

incur repetitive manual efforts.

There are two overarching challenges to provide system-level support for application

development at the edge. First, there is inherent heterogeneity at the device hardware

level. The execution settings may range from a small cluster as an edge cloud to on-

device inference on embedded devices, differing in hardware capability and programming

environments. Further, application performance requirements vary significantly, making it

even more difficult to map different applications to already heterogeneous hardware. Second,

there are trends towards incorporating edge and cloud and multi-modal data. Together,

these add further dimensions to the design space and increase the complexity significantly.

In this thesis, we present a novel framework to simplify application development and

deployment over a continuum of edge to cloud. Our framework connects different dimensions

of design considerations, corresponding to the application abstraction, data abstraction and

resource management abstraction respectively.

First, our framework masks hardware heterogeneity with abstract resource types through

containerization, and abstracts the application processing pipelines into generic flow graphs.

Further, our framework supports a notion of degradable computing for application scenarios



at the edge that are driven by multimodal sensory input. Next, as video analytics is the

killer app of edge computing, we include a generic data management service between video

query systems and a video store to organize video data at the edge. We propose a video data

unit abstraction based on a notion of distance between objects in the video, quantifying the

semantic similarity among video data. Last, considering concurrent application execution,

our framework supports multi-application offloading with device-centric control, with a

userspace scheduler service that wraps over the operating system scheduler.
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Chapter 1

Introduction

1.1 Applications at the edge

Recent years have witnessed an increasing number of Internet of Things (IoT) devices,

ranging from smart thermometers to industrial robots. According to the Cellular IoT and

LPWA Connectivity Market Tracker report [1], by the end of 2025, there will be more

than 41.2 billion devices that have active network connections. 31 billion of them will

be IoT devices. By analyzing the data generated by these devices, one can make better

decisions. For example, real-time video analytics (e.g., collision detection [2] and traffic

monitoring [3]), smart home (e.g., intruder alert [4] and smart lighting [5]), smart health

(e.g., fall detection [6] and sleep monitoring [7]) and industrial automation (e.g., equipment

maintenance [8] and manufacturing quality control [9]) are already seen in everyday life.

Many IoT applications are powered by edge computing, an emerging paradigm that ex-

tends computation, communication and storage capacities toward the network edge, either

directly on IoT devices or on nearby computation servers [10]. Compared to local-only com-

putation, edge computing overcomes the restrictions of limited computation capacity on IoT

devices. Compared to moving workloads to remote servers, edge computing brings several

benefits, including reducing network latency, reducing the backbone network overhead and

preserving data privacy [11]. Edge devices range from end devices like smartphones and IP

cameras to a cluster of servers located at the network edge. In other words, edge devices

can include all but servers in the cloud.

1



Various support is needed across the software stack to build an application at the edge.

For a general software stack, there are four layers, from top to bottom: application, middle-

ware, OS and hardware. The middleware layer manages interactions between the application

and the OS layers, providing more intuitive system abstractions to the application layer. A

database is a simple example of such a middleware.

Applications at the edge typically have software stacks like those shown in Figure 1.1.

There is no explicit middleware layer in the current edge computing landscape. Exist-

ing works have mainly focused on improving application performance on the edge via

application-specific solutions [12–16], ignoring the programmability challenges that appli-

cation developers might face. In other words, application developers still need a significant

amount of domain-specific knowledge outside of that specific to their application to develop

an application at the edge. For example, developers have to determine the right amount

of computation resources they want before actually deploy their applications on the edge.

Application development at the edge is still unscalable.

Application

OS

Hardware

Figure 1.1: A typical software stack of applications running at the edge

1.2 Challenges in developing applications at the edge

In this section, we will further discuss and quantify the challenges in developing applications

at the edge. There are two overarching factors that make development hard. The first is

heterogeneity at the edge. The second is emerging application trends.

2



1.2.1 Heterogeneity at the edge

In this section, we will discuss heterogeneous edge environment, including hardware, pro-

gramming environment and application requirement heterogeneity.

Hardware heterogeneity. The hardware devices at the edge are heterogeneous, ranging

from embedded sensors, wearable devices, and mobile phones to edge servers with a full

spectrum of computation capability and architecture [17]. In terms of computation capa-

bility, for the same workload, the completion times for these devices can differ by orders of

magnitude. For example, when running the same OpenCV [18] face recognition workload,

it takes 2263.71 ms for a Samsung Galaxy Nexus Android smartphone to process a single

image, while it only takes 197.77 ms for an Intel Core i7 with 3.6GHz, 4-core CPU Server

to process the same workload. In addition, different hardware has different processor ar-

chitectures, from ARM64 in a Raspberry pi to a high-end GPU server with NVIDIA GPU

support. This further complicates the application development on these devices.

Programming environment heterogeneity. Running on top of heterogeneous hard-

ware, the programming environments at the edge are incredibly diverse, ranging from oper-

ating systems to different programming platforms to libraries and tools. For operating sys-

tems, in addition to commonly-seen operating systems like Windows and Linux on servers

and Android and IOS on mobile phones/tablets, there are various lightweight operating

systems designed for embedded devices, including Raspbian [19], RISC OS [20], Ubuntu

Core [21] and more. Furthermore, the same application functionality can be built on dif-

ferent platforms. For instance, platforms like Tensorflow [22], Mxnet [23] and PyTorch [24]

provide similar features to ease the development of deep learning applications, but have

entirely different APIs. For libraries and tools, building an application typically involves

various third-party tools. Choosing a proper set of libraries alone requires a significant

amount of domain knowledge.

Application requirement heterogeneity. Different applications can have different per-

formance requirements. For example, for intrusion detection in the smart home scenar-

ios, low latency is the main performance target [25]. While for workloads like person

re-identification (e.g., spot a criminal within the video data captured by different surveil-
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lance cameras), the results’ accuracy becomes the main target. Further, even for the same

workload, the performance requirements vary with deployment scenarios. Take an object

recognition application [26] as an example; when run on a mobile phone, it might value

processing time more than accuracy compared to the same workload running in a data

center, given the interactive nature of mobile phones.

Together, these aspects outline a large design space to explore to find tradeoff points

between hardware, programming environment, and application requirements.

1.2.2 Emerging application trends enlarge design space

In addition to the heterogeneous edge environment, a second contributor to scalable appli-

cation development at the edge is the emerging application trends. These include diverse

device/edge/cloud interactions, diverse data types and rates, and concurrent and continuous

application execution.

Diverse device/edge/cloud interactions. There are several reasons why the interac-

tions among devices, edge and cloud are highly dynamic. First, the availability of compu-

tation resources (e.g., CPU, memory, GPU) varies on the edge device during runtime due

to multiple workloads competing for the same resource. For instance, [27] observes that

over 50% of the requests could break the real-time response requirements when multiple

workloads are racing for the communication channel for offloading. Second, in addition to

running on a single device, applications running at the edge also can be run on a cluster

of devices. It can be a cluster of embedded devices like an FPGA cluster or a cluster of

servers or even a mix of several different types of edge devices.

Diverse data types and rates. Since its inception, edge scenarios have seen increasingly

sophisticated analytics workloads operating on multimodal data such as both video and

audio [28, 29]. The type, amount and rate of data vary. For example, the data processing

rate can range from processing a single data frame (∼ 1 MB) at a time to processing multiple

data streams (> 100 MB/min) continuously.

Concurrent and continuous application execution. Applications at the edge are be-

coming increasingly sophisticated, enhancing our interaction with the environment. Some

scenarios might involve multiple concurrent applications or modules working together (Google
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Tango [30], Gabriel [31] and DeepEye [32]), where each module is individually computa-

tionally intensive and requires offloading to the edge. Worse, these applications embody a

vision of continuous operations, further straining the already limited resources on mobile

devices.

Altogether, these application trends enlarge the design space and increase the develop-

ment complexity significantly.

Discussion. Given all these challenges, we argue that there should be a framework to serve

as the middleware layer in the current edge applications’ software stack, enabling scalable

application development at the edge. Specifically, this middleware layer should fulfill the

following requirements.

• From the application layer’s perspective, this middleware layer needs to provide novel

system abstractions for the emerging application trends on the edge. Specifically, for a

single workload, our middleware layer needs to separate data management from actual

processing logic, dealing with a huge amount and various types of data generated at the

edge. For multiple workloads running simultaneously, it needs to provide a resource

management service to handle concurrent workload execution.

• From the OS and hardware layers’ perspective, our system needs to mask heteroge-

neous edge devices and various programming environments on top of them, providing

an abstract notion of available resources to the upper-level application layer.

1.3 Contributions

In this thesis, we present a novel framework to simplify application development and de-

ployment over a continuum of edge to cloud, serving as a middleware layer to bridge the

gap between the application and underlying OS layer’s in the current software stack at

the edge. Corresponding to the requirements we have summarized above, the framework

consists of three pieces, Crystal, Video-zilla and LinkShare. These pieces connect different

dimensions of design considerations, corresponding to the generic application development,

data management and resource management respectively.
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Specifically, Crystal masks hardware heterogeneity with abstract resource types through

containerization and abstracts the application processing pipelines into generic flow graphs.

Further, it supports a notion of degradable computing for application scenarios at the edge

that are driven by multimodal sensory input. Video-zilla is a generic data management ser-

vice between video query systems and a video store to organize video data at the edge. We

propose a video data unit abstraction based on a notion of distance between objects in the

video, quantifying the semantic similarity among video data. Last, considering concurrent

application execution, LinkShare supports multi-application offloading with device-centric

control, with a system-level scheduler service that wraps over the operating system sched-

uler.

In summary, this thesis makes the following contributions:

• We identify and quantify key challenges of developing applications at the edge, point-

ing out that the overarching issue of applications development at the edge is scalability.

• We sample the design space and connect different dimensions of design considerations,

corresponding to the generic application development, data abstraction and resource

management abstraction respectively.

• We build a novel framework to enable easy application development, scalable data

processing and resource management.

1.4 Dissertation roadmap

This dissertation is organized as follows: Chapter 2 first explains the background of edge

computing and applications running at the edge and then gives a broad overview of the

existing efforts of boosting application development at the edge. Chapter 3 then presents a

case study further to illustrate the connection among our three pieces of work.

The following three chapters introduce the system abstractions and systems we build

to enable scalable application development at the edge. Chapter 4 explains Crystal, a

framework to simplify multimodal analytics development over heterogeneous edge scenarios.

Following that, Chapter 5 introduces a novel data abstraction to organize multimedia data
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better. Furthermore, we build Video-zilla, an indexing layer for computing scalable live

video analytics across the edge and cloud. Chapter 6 focuses on multi-application execution

at the edge and proposes a novel resource management abstraction. Based on that, we

build LinkShare to enable Device-Centric Control for concurrent and continuous Mobile-

Edge/Cloud Interactions. In addition, Chapter 7 discusses the challenges and possible

solutions to organize heterogeneous and decentralized edge infrastructures.

In the end, Chapter 8 concludes this thesis and discusses a few future research directions

extended from this thesis.
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Chapter 2

Background

2.1 Canonical applications

There are various applications running at the edge. We explain these applications and

highlight their development requirements.

Smart video surveillance. Recent years have witnessed a sharp uptick in the number

of video cameras. 2018 alone saw 140 million shipments of video cameras [33]. According

to the British Security Industry Authority [34], approximately 300,000 cameras are already

deployed in UK schools. The boom of video cameras deployment, especially from mobile

phones and low-cost IP surveillance cameras has led to an exponential growth of video data.

Due to the limited maximum attention span of any personal monitoring (around 20 min),

there is a drive to automatically analyze these video data [35] This led to the emergence

of smart video surveillance systems [36–38]. The computation cost of video processing is

high. To ensure low latency and efficient network bandwidth usage, edge computing has

been seen as a promising approach [39].

Multiple queries can be run on a smart video surveillance system. One classic example is

an intrusion or crime detection application [40]. A video surveillance system is expected to

provide a real-time alert when a situation of interest occurs, for instance, when an unknown

person breaks into a house. Another commonly seen workload is traffic monitoring. Works

like Vision Zero [41] aim at reducing traffic accidents by detecting “close-calls” between cars,

bikes, and pedestrians. This detection query helps preemptively deploy safety measures.
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In addition to these two types of workloads, many more queries can run on a surveillance

system, including vehicle counting for congestion control [42], license plates recognition for

suspicious car detection [43] and poorly-visible pedestrians detection (for instance, blocked

by other cars) to aid decision in autonomous-driving cars [44].

Industrial IoT. Sometimes termed “Industry 4.0”, the fourth industrial revolution aims to

realize interconnected, intelligent manufacturing systems by integrating advanced manufac-

turing techniques with the Industrial Internet of Things (IIoT) [45]. Billions of computation

and sensory devices will be deployed to perform various tasks. These devices monitor di-

verse conditions, such as temperature, humidity, and anomalous audio. Given the volume

and sensitivity of the data, on-premise (private-cloud) data analytics is preferable to public

cloud offloading [46]. Both IBM [47] and SIEMENS [48] provide edge-based products for

manufacturing quality assurance.

Running in a private edge cluster, a smart manufacturing system like that in [49] typ-

ically needs to support various workloads. For instance, a data-driven risk assessment for

industrial manufacturing systems has been presented based on real-time data [50]. Another

example is fault detection of sensors in a manufacturing scenario. [51] presented real-time

and robust sensor fault detection in a hydraulic system. In addition to these workloads, there

are others like automatic assembly line resequencing [52], supply chain optimization [53] and

interactive industrial robots [54].

Wearable assistance. Leveraging sensor data to provide cognitive assistance has long

been an active area of research for IoT applications and commercial products, e.g., Google

Lens [55] using images from mobile/wearable cameras and human activity recognition using

audio input and inertial unit sensing data on earphones [56, 57]. These often run some

processing on the device to provide real-time response.

For instance, Gabriel [31] provides interactive cognitive assistance using Google Glass

to help people suffering from cognitive declines, such as those with Alzheimer’s disease.

The patients are often unable to remember the names of friends or remember to perform

daily tasks. When looking at a person that the user might know, the assistant will tell the

user the name of the person immediately. When looking at his/her plants, it will remind

him/her to water them. These two scenarios require face recognition and object recognition

9



respectively.

Discussion. The wide range of scenarios outlined above share several common development

challenges:

First, all these workloads run on heterogeneous edge devices with mixed processing

capabilities (CPUs, GPUs, FPGAs). Even for a single workload, running on different

devices can have orders of magnitude performance difference [26].

Second, a single workload may need to process a massive amount of data, and even more

than one input stream. For instance, a surveillance camera capturing 1080p video at 30

frames per second captures 200 GB of video per day. A crime detection program that needs

to run over 100 such cameras will need to process 20 TB of data per day. Another example

is the interactive industrial robots in IIoT. A robot can take audio, video and more input

from various sensors in it to perform workloads like path finding [54].

Third, multiple workloads can run simultaneously on the same set of edge devices.

Further, one workload may need to process data generated by multiple IoT devices. Take

the sensors’ fault detection in the industrial IoT scenario as an example; here one needs to

jointly consider data collected by all the available sensors to detect the failed sensors in a

system.

Despite all these common challenges, the state of the art is to deploy expensive cus-

tom solutions with application-specific monolithic software stacks at the edge, demanding

significant amounts of domain-specific knowledge and repeated development effort.

2.2 Related works

In this section, we will review several directions of research carried out in edge computing.

We only discuss general edge references are listed here. Additional work more specifically

related to individual projects will be covered in the following chapters.

2.2.1 Different edge concepts

There are several different terms when one refers to edge computing. In this section, we

carefully discuss these terms, and these terms are interchangeably used throughout this
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thesis.

Cyber forging. The origin of the idea of edge computing can date back to two decades ago.

[58] proposes the concept of cyber forging, which is a mechanism to use “opportunistically

discovered servers in the environment” to improve the performance of applications on mobile

devices. Mobile devices can offload their workloads to nearby servers called surrogates.

These surrogates can be located in public spaces like airports and coffee shops. Fifteen

years later, [59] provides a valuable reflection on cyber forging, summarizing the main

technique achievements and remaining challenges.

Cloudlet. The concept of cloudlet was first introduced in [60] and a prototype implemen-

tation at CMU. As its name suggests, a cloudlet is a small-scale cloud datacenter that is

located at the Internet edge. Serving as a middle tier, it bridges the mobile devices and

cloud. Compared to the concept of cyber forging, a cloudlet takes a step forward to consider

the impact of the cloud as well.

Mobile edge computing. The term mobile edge computing was standardized by Eu-

ropean Telecommunications Standards Institute (ETSI) and Industry Specification Group

(ISG) [61]. According to ETSI, mobile edge computing is defined as: “Mobile edge comput-

ing provides an IT service environment and cloud computing capabilities at the edge of the

mobile network, within the radio access network (RAN) and in close proximity to mobile

subscribers.” As we can see from this definition, mobile edge computing weighs more on the

integration between computation capabilities and the radio access network.

Fog computing. Along with the emerging Internet of Things, fog computing was first

proposed in [62]. “Fog” originates from its cloud-like computation properties, while it is

closer to the “ground”, i.e., the Internet-of-Things devices.

2.2.2 Enabling techniques

Application offloading. Computation offload to the cloud has been explored exten-

sively in the last 20 years [63–70]. Several works (for instance, MAUI [12], Thinkair [15],

COMET [14], CloneCloud [13] and more [16, 71]) focus on seamlessly partitioning a single

workload spanning the mobile device and the remote server. Further, works like MCDNN [72]

provide a common platform for multiple applications concurrently utilizing deep neural net-
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works (DNN).

Workload placement. Partitioning and placing a workload across end devices, edge

devices and potentially cloud servers is the key enabler of edge computing. Workload place-

ment has been extensively discussed in the literature [73–75]. Typically, workload placement

involves finding the available resources that satisfy the applications’ requirements and opti-

mizing performance objectives. Existing works can classified by the performance goals they

target, including latency [76–78], resource utilization [79–81], energy consumption [82, 83],

monetary cost [84,85] and more.

Operating system virtualization. Operating system virtualization allows multiple op-

erating systems to run on a single physical machine. Like cloud computing, edge computing

is highly dependent on system virtualization that decouples hardware from upper-level soft-

ware in order to support features like multi-tenancy [86–88]. However, as edge computing

differs from cloud computing in terms of constrained resources and heterogeneous devices,

heavyweight virtualization techniques like the virtual machine [89] cannot be applied to

edge computing. These constraints demand the deployment of lightweight virtualization

techniques like containers [90] and unikernels [91]. Based on application requirements and

resource availability, these techniques may also need to be used in combination [92].

2.2.3 Emerging edge infrastructures and testbeds

This section explores emerging edge infrastructures from both the hardware and software

perspectives. Furthermore, we will discuss some recent testbeds that are developed to help

test edge computing platforms.

Edge infrastructures. An edge infrastructure is composed of hardware and software

to manage the computation, storage and network resources at the edge. From the hard-

ware perspective, a wide range of devices including drones, network gateways, WiFi Access

Points (APs) and edge ISP servers can serve as computer servers for efficient resource pro-

visioning [93]. For instance, FocusStack [94] uses multiple Raspberry Pi boards installed in

connected vehicles to build a video-sharing application at the edge. [95] aimed at building an

edge infrastructure with laptops and mobile phones used in public environments like movie

theaters and cafes. Another option is co-locating computation devices with network gate-
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ways. Works like GENI [96] integrate network, computation and storage resources together

to collect rich datasets for public safety surveillance and vehicle internal-state sensing and

modeling at the edge.

From the software perspective, in addition to the operating system virtualization we

mentioned above, another important pillar is the network resource virtualization. An edge

infrastructure can adopt software-defined networking (SDN) and network functions virtual-

ization (NFV) for managing the network through software [97]. Built on top of SDN/NFV,

all virtual computation units for the same tenant can be in the same virtual LAN (VLAN),

even if they are located in different areas.

In addition, works like [98–100] tried to explore the middleware layer for application

development at the edge. However, they restricted themselves to a limited set of mobile

devices. For example, [99] mainly aims at Android smartphones, which can not be easily

generalized to the wide range of emerging edge devices.

Edge testbeds. Along with the emergence of various edge infrastructures, there are efforts

from both academia and industry to provide testbeds to boost edge research. For instance,

initially designed for testing ideas on a configurable cloud platform [101], the Chameleon

testbed is evolving to include a preview set of new capabilities to allow users to experiment

with edge devices [102]. Another effort made in academia is the 5th generation test net-

work (5GTN) architecture [103]. 5GTN allows third-party edge service providers to test

their applications in a 5G mobile edge computing framework. The Platforms for Advanced

Wireless Research (PAWR) program [104] funds several more testbeds [105–108], aiming at

“enabling the emerging Internet of Things(IoT), edge computing and heterogeneous wireless

connectivity technologies.”

In addition, there are also several testbeds from industry. For instance, Nokia and its

partners delivered an intelligent car-to-car infrastructure communication system over LTE

network [109], opened an opportunity for connected-vehicle application developers to test

their ideas.
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2.2.4 Security and privacy

On the one hand, edge computing has provided significant assistance for efficiently process-

ing huge workloads created by various IoT devices. On the other hand, its hasty devel-

opment has led to potential security and privacy concerns. In this section, we explore the

existing efforts that are dealing with security and privacy issues at the edge.

It is important to implement security and privacy mechanisms to safeguard the edge

resources from any intrusion. Here, we mainly discuss the two most important perspectives:

1) identification and authentication and 2) data security. For more detail, papers like

[110,111] provide a thorough survey of security and privacy threats and defense mechanisms

at the edge.

Identification and authentication. In cloud computing, a data center is typically owned

by a single cloud service provider. However, in the edge paradigm, a group of edge devices

can be hosted by several providers. Proper identification and authentication are required to

enable everyone in the ecosystem, such as end devices, edge service providers, and even cloud

service providers, to authenticate each other mutually. User-friendly solutions, including

authenticated key exchange within local wireless ad-hoc networks [112] or via NFC [113],

have been proposed to provide a secure authentication service. For authentication between

users and the cloud when the edge is temporarily unavailable, [114] provides a stand-alone

authentication mechanism to enable user devices with the corresponding cloud servers.

Data security and privacy. In an edge computing paradigm, user data can be outsourced

to edge servers. This leads to several potential security problems. For example, outsourced

data can be modified or even deleted because of malicious computation activities at the

edge. There are several efforts to mitigate this concern. Similar to that in the cloud,

some apply [115–119] appropriate methods to audit data storage at the edge to confirm

that data are properly stored. In [120], a verifiable computing protocol is proposed to

provide a computationally-sound proof. In addition to the works mentioned above, data

encryption is another crucial way to protect data security. Works like [121–123] provide

various encryption mechanisms to deal with different data usage scenarios.
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2.2.5 Discussion: missing points

Unfortunately, existing works cannot scale application development at the edge. The over-

arching issue is that application developers still need to make hard decisions, despite all

these tools, when dealing with each of these issues. This leads to application-specific solu-

tions. Because of that, application development at the edge still needs a significant amount

of domain knowledge (e.g., the specifics of the application and the execution environment

setup). For instance, a video analytic application can run on both a smartphone and an IP

camera integrated with a Raspberry pi. As an application developer for now, one still needs

to manually figure out the hardware specs and the runtime environment setup to implement

the application-specific logic.

Further, because certain issues (like the need to deal with heterogeneous hardware we

mentioned in the example above) apply across applications, application developers tend

to make repeated efforts when developing these applications. Therefore, in this thesis,

we propose a novel framework to simplify application development and deployment over a

continuum of edge to cloud, providing end-to-end support to application developers.
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Chapter 3

Case study: Smart video

surveillance applications at the

edge

In this chapter, we present a case study to further illustrate the connection among the three

pieces of work in this thesis.

3.1 A benchmark application

We show a typical development process of a smart video surveillance application at the

edge, on top of a multi-camera system with 12 video surveillance cameras.

The main reason we chose video analytics is that it is the killer app at the edge. Specif-

ically, we implement an object re-identification application to associate a particular object

across different scenes and camera views. An exploratory object re-identification query can

be “find a car in video data captured by those 12 video cameras within the last hour.” In the

runtime, users can send their queries to servers in the cloud and get the query results. Each

surveillance camera can offload the captured video to a nearby edge server and, optionally,

to the centralized data center.

DNN-based visual feature matching is the state-of-the-art solution to the object re-

identification problem. In our case, we choose to use ResNet50 (pretrained on Microsoft
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COCO dataset [124]) as the feature extractor for our re-identification problem. For com-

parison, we build our application both directly on the raw video data and on Video-zilla,

a video indexing layer that groups semantically similar video data together. Video-zilla

uses an ingestion feature extractor to help extract semantic information from data. We use

VGG16 (pretrained on Microsoft COCO dataset), a lightweight object feature extractor to

serve as the ingestion feature extractor.

Various deployment scenarios. We consider two different edge-cloud deployment sce-

narios. We start with a simple homogeneous deployment scenario where all edge servers

have the same hardware specification.

However, edge devices, in reality, are heterogeneous [10]. Both the application itself and

our Video-zilla indexing system can be run on a range of devices with various processing

capabilities. To automatically deal with this heterogeneity, we encapsulate both the ap-

plication and Video-zilla index system to run on top of Crystal. Video-zilla is abstracted

as a flow graph in Crystal, represented by a set of interconnected containers. In our cur-

rent implementation, our benchmark application is built by extending the query interface

processing component provided by Video-zilla. When running our benchmark application,

essentially, we are running a customized version of Video-zilla with application-specific logic.

Real-world dataset. we assemble publicly available real-world datasets to emulate a real-

world multi-camera surveillance system for public transportation, like that in Chicago [125].

The total length of these videos is 8 hours, including three types of feeds from both station-

ary and moving cameras: i) 10 road-view captured by in-vehicle cameras: 5 of them capture

the downtown areas [126] of New York City, London, Chicago and Los Angeles, one per city;

the other five capture highways across the U.S. [127]; ii) 1 train-station video live streams

from Youtube [128]; and iii) 1 harbor video feeds from Youtube [129]. We intentionally set

the number of cameras in train stations and harbors to be smaller than that of in-vehicle

cameras, which matches the expected ratio between these feeds in practice.

Hardware setting. For the homogeneous setting, we use two Linux servers to host the

hierarchical index, both with 8-core 2.1 GHz Intel Xeon CPUs, one with a NVIDIA RTX

2080Ti GPU, and the other with an NVIDIA RTX 2070 GPU. We run an inter-camera

index on the former and intra-camera indices on the latter. For the heterogeneous setting,
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we keep the server with an NVIDIA RTX 2080Ti GPU to run an inter-camera index. For

the intra-camera indices, we run them on three different devices: a GPU server with an

NVIDIA 2070Ti GPU, a CPU server with a quad-core Intel Core i7 6700 3.4 GHz CPU with

8 GB memory, and a Raspberry Pi 4 with 8 GB memory. These devices represent typical

processing units across the edge and the cloud, covering a wide range of heterogeneity.

3.2 Quantitative results

We run the object identification application in both the homogeneous and heterogeneous

settings. Specifically, the query is in the format of find image frames that contain object

X within all video data. We let X be a fire hydrant, boat or train, which is represented

by corresponding image frames that contain this object. We generate 10 query instances,

taken from the real-world videos, per query type.

Figure 3.1 shows the normalized accumulated GPU time when processing these queries

with and without Videozilla. Compared to running queries directly on the raw video data,

Video-zilla uses 50 times less GPU time for the same set of queries at the cost of less than

3% accuracy loss.
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When considering the heterogeneous deployment scenarios, due to the operating system

layer’s difference, migrating our benchmark application from a GPU server to a CPU server

and Raspberry pi boards requires a signification amount of development effort. As men-

tioned above, we encapsulate both the application and Video-zilla index system to run on

top of Crystal. The original Video-zilla implementation totals about 4K lines of code, most

in Java. With the help of containerization support provided by Crystal, it took less than

100 lines of code to port Video-zilla to all three different devices. Furthermore, thanks to

the built-in featurizer library in Crystal and the query API provided by Video-zilla, defining

our benchmark application to work on these three devices takes less than 30 lines of code.

Listing 3.1 shows the pseudo-code snippet.

public Module [][] build() {

// Crystal APIs to specify feature extrator

Module resultRefinement = new Module("video", "ResNet50");

// Video -zilla APIs to specify query logic , pass a function

handler

Method queryResult = new Method(getResults);

affectRec.setConfig("config.yaml");

affectRec.input("path/to/object/of/interest")

// Crystal APIs to link the above two modules

Module [][] app = {{ queryReuslt , resultRefinement }};

return app;

}

public List <INDArray > getResults(INDArray objectImg) {

// Video -zilla query APIs

List <INDArray > results = directQuery(objectImg , "object

identification");

return results;

}
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// deviceType can be "cpu", "gpu" and "raspberry4 ".

public void run(device , deviceType) {

Module [][] app = build();

this.setConstraint(app , "accuracyLoss", 10, "lessThan");

this.setGoal(app , "time", "minimize");

this.setGolden("path/to/ground -truth/results");

// actually start the execution.

this.execute(app , device , deviceType);

}

Listing 3.1: Building an example Crystal Application

3.3 Beyond a single application

So far, we have focused on building a single application at the edge in this case study.

However, as we mentioned above, multiple applications can run on the same set of edge

devices. When it comes to the video analytic scenarios, various applications, including

moving object tracking [130], object identification [131], face recognition [132] and more,

can be hosted by a single smart video surveillance system. These workloads compete not

only for computation resources at the edge but also for network resources. To deal with

network resource contention across these workloads, we built LinkShare to enable device-

centric network control for concurrent and continuous Mobile-Edge/Cloud Interactions.
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Chapter 4

Crystal: Simplifying multimodal

analytics development over

heterogeneous edge scenarios

4.1 Introduction

Since its inception, edge scenarios have seen increasing complexity in terms of more diverse

execution settings [57, 133] and more sophisticated analytics workloads operating on mul-

timodal data such as both video and audio [28, 29]. The notion of “edge” is constantly

broadened to include the full spectrum of processing capabilities, ranging from wearable or

embedded devices to a small server cluster in or near an enterprise. This exacerbates the

hardware heterogeneity already seen in edge devices [17, 134] to disparity over orders of

magnitude. Meanwhile, multimodal analytics is substantially more complex than its single-

modal counterpart, due to added data processing pipelines and more inference options.

(Section 4.2).

Existing multimodal, edge analytics applications tend to be monolithic and purpose-

built, ranging from research prototypes intended to explore new applications [135–137] or

extract more insight from the multi-modal data [138], to industry solutions to individual

use cases (e.g., Siemens Industrial Edge for Industrial IoT [48]. Their monolithic nature
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mixes generic application logic with specific execution and deployment considerations. Not

only does this preclude code reuse, the development process requires substantial domain

knowledge to implement multimodal learning, optimize for diverse hardware processing

capability, and manage dependencies between the toolchains.

To address these issues, we design and implement Crystal, a framework to ease multi-

modal analytics application development over diverse edge settings. Building on Crystal,

the developer only needs to write tens of lines of application code regardless of the exe-

cution setting, and the framework then performs necessary adaptations to the desirable

deployment settings and performance targets (Section 4.3).

Crystal refactors the application processing into three abstract layers (Figure 4.1): ap-

plication flow assembly, execution shaper, and containerization. Containerization masks

hardware heterogeneity with abstract resource types (Section 4.4), while the assembly layer

abstracts the application processing pipelines into generic flow graphs as well as provides

built-in library support for common analytics modules (Section 4.5). The middle shaper

layer then supports a notion of degradable computing to map the application flow to the

available resource and streamlines the analytics processing (Section 4.6). This architecture

decouples application-specific logic, generic optimization strategies, and hardware-specific

deployment considerations from one another.

Beyond code reuse and facilitating application development with minimal domain knowl-

edge, Crystal provides system support to streamline the processing flow and adapt to hard-

ware capability that may vary by orders of magnitude. The application assembly layer

generates alternate flow graphs by skipping the processing of one or more modalities, based

on implicit data redundancy across modalities (Section 4.5). This expands the potential

optimization space to cater to the level of hardware disparity. The shaper layer intro-

duces a notion of approximate Pareto-frontier, i.e., a small subset of the optimization space

that identifies the performance boundaries, and then navigates the search space efficiently

through a combination of offline and online profiling to quickly identify the application

configuration settings to match the hardware processing capability (Section 4.6). Further,

Crystal provides wrappers and lightweight data passing mechanisms (Section 4.7) to fa-

cilitate interfacing with existing toolkits such as open-source pre-processing packages in
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different languages (e.g., Matlab for audio [139], C++ for face recognition [140]), machine

learning or deep learning frameworks (e.g., TensorFlow and PyTorch), and container tech-

nologies (Docker and Kubernetes).

Extensive evaluation (Section 4.8) shows that Crystal reduces the application develop-

ment effort to writing only tens of lines of code for the application logic or adding new

processing modules. Crystal can degrade or scale execution gracefully across a continuum

of processing capability, from resource-constrained settings like a Raspberry Pi to a small

EC2 server cluster, while operating within the desirable performance targets.

4.2 The need for framework support

Consider the following three application domains:

Wearable assistance. Leveraging sensor data to provide cognitive assistance has long

been an active area of research for IoT applications and commercial products, e.g., Google

Lens [55] using images from mobile/wearable cameras and human activity recognition using

audio input and inertial unit sensing data on earphones [56, 57]. These often run some

processing on device to provide real-time response.

Smart spaces. Home and office automation has been studied since the early days of

the IoT vision [141]. These may draw on simple measurements like temperature and hu-

midity and/or security camera feeds [142], driven by gestures, facial expressions, or voice

commands [143]. While existing home assistants like Alexa are cloud-based, there is also

interest in confining sensitive personal data within the home via an in-home server or con-

troller1.

Industrial IoT. Sometimes termed “Industry 4.0”, the Industrial Internet of Things

(IIoT) refers to interconnected sensors and other devices used to drive manufacturing au-

tomation [144]. Sensors monitor diverse conditions, such as temperature, humidity, and

anomalous audio. Given the volume and sensitivity of the data, on-premise (private-cloud)

data analytics is preferable to public cloud offloading [46]. Both IBM [47] and SIEMENS [48]

provide edge-based products for manufacturing quality assurance.

1. ISPs like at&t and Comcast are interested in adding compute service to their existing bundles.
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4.2.1 Heterogeneity in Edge Scenarios

The three examples above highlight vastly different “edge scenarios”. The mode of process-

ing varies from single application on a single device, to potentially multiple applications on

a server cluster. There are two immediate consequences of the hardware heterogeneity, i.e.,

diversity in the development and execution environments, and disparity in the processing

capability.

Running a single application on various types of devices itself is non-trivial, due to

the dependencies in the development and execution toolchains. Consider a simple image

featurizer, using PyTorch-based VGG19 BN [145]. Running this on a Raspberry Pi 3 (32-

bit CPU) vs Pi 4 (64-bit CPU) requires different pre-built PyTorch and resolving operating

system dependencies given different instruction sets.

Worse, the device processing capabilities range from a low-power processor on an em-

bedded device, to multi-core CPUs or GPUs on a single server, to multiple powerful servers.

This then translates to wide-ranging performance for the same processing task. It takes

14.75, 246.42, and 66040 seconds to run VGG19 BN over 1000 images on an Nvidia 2080Ti

GPU server, an Intel Core i7 CPU server and a Raspberry pi 4 respectively, i.e., orders of

magnitude performance difference!

4.2.2 The Complexity of Multimodal Analytics

While multi-modal learning dates back decades [146], what is new is that multimodal an-

alytics applications are becoming sophisticated, more diverse, and maturing from research

prototypes focusing on data mining to real-world applications [147]. Consider multimodal

affective recognition application, MFN, as an example. MFN takes three modalities, video,

audio and text, as inputs to recognize the affection of the person of interest. Figure 4.2

illustrates the processing pipeline of MFN.

Compared to single-modal analytics, incorporating additional input modalities incurs

complexity and challenges.

Multiple data types. For example, text and video data differ in the data formats, but

more importantly the feature extraction mechanisms (i.e., the featurizers). Across modali-
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ties there is a range of open-source toolkits and proprietary solutions, varying in maturity,

but more importantly, different language implementations. For example, audio processing

packages are often in Matlab to leverage the built-in signal processing toolboxes, while

popular computer vision libraries are variously implemented in Python. Since multimodal

learning is an active research topic, new models are proposed frequently, impeding stan-

dardized implementations.

Multiple processing branches. Since each modality needs specific processing steps, a

multimodal application pipeline starts with multiple separate branches and merge them

at some point. This makes the overall performance susceptible to potential imbalance in

the input data rate and processing rate between the branches. A delay in any branch can

potentially bottleneck the overall application processing.

Multiple inference paradigms. Depending on whether the individual modalities are

pre-processed before being fed into a final inference model, multimodal applications can

adopt late fusion, early fusion, or mixed fusion. This means the processing pipelines of

multimodal applications can take on several shapes.

From single-modal to multi-modal. Extending single-modal analytics to multimodal

analytics introduces new challenges and optimization opportunities.

First, the multiple branches in a multimodal application requires “cross-branch” support

to streamline the overall application flow. This includes support for lightweight data passing

and multiple language runtimes, if the modality-specific featurizers are implemented in

different languages. In contrast, single-modal applications can be abstracted into model

serving workloads [148], and containerization alone, using existing technologies, is roughly

sufficient to deploy these on heterogeneous devices.

Second, multiple modalities introduce additional dimensions to the performance opti-

mization space, due to the inherent redundancy across different modalities [147, 149, 150].

Thus adding or removing one or more modalities introduces extra performance tradeoffs.

Back to the MFN example, the three input modalities essentially contain part of the state

or the person of interest. The spoken language information is implicitly covered by both

audio and text data.

Third, performance optimization involves more than tuning the final inference model.
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The inference performance of a single-modal application is bound by the inference model,

and adapting this model [134, 151] only is often sufficient to explore tradeoffs between

inference accuracy, latency, and resource availability. In contrast, the main performance

bottleneck of a multimodal application may instead be a preprocessing step. In the MFN

example, the audio featurizer, not the final affective recognizer, contributes to the bulk of

the overall processing time.

4.2.3 Existing approaches and limitations

Existing ML/DL application implementation frameworks [148, 152] are limited in several

ways.

First, they are typically designed for cloud-based deployment scenarios, where the dy-

namic workload pattern instead of the hardware heterogeneity is the main challenge. They

do not provide built-in support to resolve toolchain dependencies. Second, the mechanisms

provided are inadequate to handle orders of magnitude difference in the resource availability.
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Initially designed for single-modal analytics, these frameworks do not provide mechanisms to

handle multi-modal analytics effectively. For example, without leveraging the redundancy

across different modalities, they miss a wide range of performance trade-off possibilities.

Third, these frameworks are designed for single-language runtimes, while multimodal ana-

lytics raise the possibilities of using existing packages implemented in different languages.

Using existing frameworks requires porting necessary packages to the same language, which

can be tedious and error-prone.

Our approach. To address the above challenges and fill in the gap between existing solu-

tions, we design and implement Crystal to provide generic system support for multimodal

analytics across a continuum of edge scenarios. We describe the overall architecture and

the APIs next, followed by detailed descriptions in subsequent subsections.

4.3 Crystal Overview

Crystal comprises three layers (Figure 4.1): application flow assembly, application shaper,

and containerization. The three-layer architecture is inspired by Sapphire [153], separating

application logic from deployment. However, we need to add the shaper stage to further

tailor an application to heterogeneous processing capabilities.

Containerization. The lowest container layer directly interfaces with heterogeneous hard-

ware units, regardless of whether the execution is intended for a single device (a raspberry

pi, a CPU or a GPU server) or a server cluster (CPU/GPU clusters), to provide an abstract

notion of resources to the layer above. This layer essentially provides runtime instances

with wrappers around the basic Docker containers to include dependencies. Each type of

hardware is encapsulated in a number of container instances, each instance set up with

the runtime dependencies for specific combinations of machine learning frameworks (e.g.,

TensorFlow and PyTorch) and language bindings (e.g., for Java, C++, or Python). Each

processing component in an application pipeline runs in its own container. This layer can

interface with a container orchestration framework like Kubernetes [154] to allow the appli-

cation to run across multiple devices. Running on a single device is equivalent to running

on a single-node cluster. (Section 4.4)
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Application assembly. The top layer in Crystal interfaces with the analytics application.

It provides built-in library support to the application developer to simplify application

pipeline construction, and combines these and the custom application logic to assemble

the processing flow in terms of a directed acyclic graph (DAG). Further, Crystal generates

alternate DAGs by pruning one or more modalities. These DAGs are presented to the lower

shaper layer. (Section 4.5)

Shaper. The shaper aims to “adapt” the abstract flow graphs to fit to available compute

resources and map the graph components to the containers. This layer selects one of the

DAGs from the assembly layer, as well as suitable configuration settings for each component

on the DAG. Crystal first conducts offline profiling to reduce the search space and then an

online profiling phase to finalize the actual flow graph and configurations. (Section 4.6)

4.3.1 Crystal APIs

Crystal exposes four types of APIs to application developers:

Processing hardware specification. The target execution device can be specified by its

IP address and device type. Crystal currently supports three types of hardware, “2080 Ti

GPU server,” “Intel Core i7 CPU server,” and “Raspberry Pi 4.”

Defining processing components. Each processing step in an application flow graph

can use either a built-in method or a new user-defined mechanism. The former can be

specified with Module(), while the latter can be invoked via Method(), which is just a

simple wrapper around a user-defined function. To better prepare for shaping, developers

also need to specify the output data type of the custom method using textttsetOut(), as

well as any user-defined performance metric and calculation method using setCalMetric().

The input data to the inference process can be either read from a file on the disk or streaming

data from a specified network port, using setSource(). All data for the same modality are

merged into a single stream.

For applications that are based on deep learning inference, Crystal interfaces with an

existing automatic model compression tool. An application developer can specify the deep

learning model file containing both the parameters and structural information that they

use in the customized inference module by calling Model() API. In the meantime, applica-
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tion developers must provide the training/validation/test datasets by calling setTrain(),

setValid() and setTest().

Execution pipeline specification. After defining individual components in a flow graph,

specifying the flow graph itself is straightforward. The actual graph is represented as a 2-D

Module array, and each pair of Modules represents a source-destination edge in the flow

graph.

public Module [][] build()

Module videoFeaturizer = new Module("video", "VGG16");

videoFeaturizer.setSource("/path/to/video/input/file");

Module audioFeaturizer = new Module("audio", "Spectral_Rolloff")

;

audioFeaturizer.setSource("localhost :5600");

Model lstm = new Model("path/to/model");

lstm.setTrain("path/to/train/dataset");

lstm.setTest("path/to/test/dataset");

lstm.setValid("path/to/valid/dataset");

Method affectRec = new Method("path/to/algorithm/execution/logic

", lstm);

affectRec.setOut("affection", int);

affectRec.setCalMetric("accuracy", "calculateF1");

affectRec.setConfig("config.yaml");

Module [][] app = {{ videoFeaturizer , affectRec}, {audioFeaturizer

, affectRec }};

return app;

public void run(device , deviceType)

Module [][] app = build();

this.setConstraint(app , "accuracyLoss", 10, "lessThan");

this.setGoal(app , "time", "minimize");

this.setGolden("path/to/ground -truth/results");

this.execute(app , device , deviceType);

Listing 4.1: Building an example Crystal Application
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4.4 Masking heterogeneity

Crystal masks the diversity of execution environments across heterogeneous devices through

a container layer. When developers deploy an application on device, there is one container

for each processing component, such as an audio featurizer, within the application. Crystal

hooks to Docker [155] to provide container support.

Individual container formation. Each container in Crystal combines all sorts of bind-

ings to run a single processing component on a specific device. Crystal supports language

specific bindings, including C++, Java (supporting Maven and Gradle dependency man-

agers), Python (supporting pip dependency manager). On top of that, for multimodal

applications in particular, one application may include one or more DNN-based modules.

Crystal supports the bindings for two widely-used DNN programming frameworks, Tensor-

flow and Pytorch. For the same set of bindings, such as TensorFlow with an additional

C++ bindings, Crystal includes two versions to deal with X86 64 and aarch64 CPU archi-

tecture respectively. Besides, Crystal also supports NVIDIA GPUs differentiated by various

NVIDIA Cuda versions. Currently, Crystal supports bindings for NVIDIA Cuda 9.1, 10.0

and 10.1, which cover a wide range of NVIDIA GPUs.

Container orchestration. When running on more than one device, existing container

orchestration frameworks can balance load, auto-scale, and detect and handle failure au-

tomatically. Crystal integrates with Kubernetes [154] to perform all these functions. At

run-time, Kubernetes runs as a background daemon, and Crystal submits requests to Ku-

bernetes using kubectl apply to deploy applications on specific devices.

Other deployment setups. By separating the container layer from the upper layers,

Crystal can be easily extended to support extra deployment requirements.

For instance, to support multi-tenancy, instead of Kubernetes, we can interface with the

framework to manage multi-tenancy; it just needs to expose to the shaper layer the specific

amount of resource allocated to each tenant, which might be dynamically adjusted.

For another example, consider supporting certain types of split edge-cloud execution.

Unless the application pipeline (e.g., Neurosurgeon [156]) or the DNN model is split dy-

namically [157, 158], Crystal can also directly interface with such a runtime. This new
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runtime provides containers corresponding to the cloud or edge execution; The developer

can provide the respective application logic corresponding to the cloud and the edge (the

same logic or adapted to each), which can then be mapped to the corresponding containers

by Crystal.

4.4.1 Device registration

When deploying an application on a new device with already supported processors, appli-

cation developers can call registerDeviceType(deviceType) to register handlers of their

devices, and call setCPU(CPU-arch-name) to specify the CPU architecture. If their de-

vices provide GPU support, developers can also inform Crystal of the GPU specification

by calling setGPU(GPU-cuda-version). Developers can add most commodity off-the-shelf

computation devices using these simple APIs.

List 4.2 demonstrates how to add devices to Crystal.

// GPU server with Cuda 10.0

Crystal.registerDeviceType("2080Ti -Cuda10 .0");

Crystal.setCPU("X86_64");

Crystal.setGPU("Cuda10 .0");

// CPU server with X86_64 CPU

Crystal.registerDeviceType("Corei7");

Crystal.setCPU("X86_64");

// Raspberry pi 4 with aarch64 CPU

Crystal.registerDeviceType("RaspberryPi4");

Crystal.setCPU("aarch64");

Listing 4.2: Registering new devices in Crystal

4.4.2 Adding new hardware

Unsupported CPUs or GPUs. For devices with an unsupported type of CPUs or

GPUs, such as a 32-bit CPU or a non-NVIDIA GPU, framework developers need to build

customized containers for each components from scratch. Each container’s specification is

stored in a separate Dockerfile. A dockerfile should be named “DockerName.CPUType.GPUType.”
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For example, one framework developer may want to run PyTorch 1.20 on a 32-bit CPU ma-

chine without GPU support. The Dockerfile will be named “Pytorch120.X86 32.None”.

After that, developers only need to put these files in the default component dockerfile path

in Crystal. Crystal will automatically parse the CPU type and GPU type.

Other specialized hardware. For devices with specialized hardware, for example, a

specific type of FPGA-based accelerator, framework developers need to build customized

containers for each processing component. A container is defined in a dockerfile that contains

all execution dependencies. It is simple to Integrate these customized containers to Crystal.

Developers should add their device type as an additional file descriptor right after their

Dockerfiles, such as “Pytorch120.FPGA,” and add these files to the Crystal component path.

Developers should simply call registerDeviceType("FPGA") to register their devices, and

call an additional setUnknown() to indicate to Crystal that they need to directly search for

the device type when deploying an application on it.

4.5 Generating application flow graphs

In this section, we discuss how to generate flow graphs in the application assembly layer,

including application flow graph construction and alternative flow graph generation.

4.5.1 Flow graph construction

The application assembly layer generates an application’s flow graph as a directed acyclic

graph (DAG). The basic unit of an application’s flow graph is referred to as a processing

component, while each processing component runs in a single container when deployed on

a specific device.

Constructing a flow graph essentially means streamlining all components within this

flow graph together, linking upstream components with downstream components in the

DAG. As multimodal applications tend to have components that are written in different

programming languages, Crystal thus provides a language-agnostic inter-component com-

munication interface. Built upon this interface, the flow graph will be in the format of a

edge set where each edge specifies an communication interface between two components.
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Such an interface requires two things. First, as different programming languages has

different built-in data types, this interface needs to provide a unified data abstraction to help

translate all these different data types. Second, the amount of time to pass data through

this interface should be lightweight, to ensure negligible overhead to the overall processing

time.

Unified data abstraction. Crystal uses Protobuf [159] as the unified data abstraction

format to serialize/deserialize data types in different programming languages. We use Pro-

tobuf because it is a language-agnostic, platform-agnostic tool to represent structural data.

In the meantime, when comparing to serialization method like JSON [160] and XML [161],

the data in Protobuf are stored in binary format, which will largely reduce the space over-

head.

Lightweight data passing. Crystal establishes a shared memory circular buffer between

any two components that need to communicate. Each buffer has its unique name. Any

component can access this buffer by having this name and access mode (create, read-only,

read-write) specified. Communicating via shared memory can minimize communication

overhead by bypassing copying data to/from the OS kernel. While one processing compo-

nent reads from this buffer, another can write messages to different locations, synchronized

by a per-message read-write lock mechanism.

By default, each circular buffer has a length of 20 messages with dynamic message size.

We set the maximum message size to 100,000 bytes to avoid unbounded sized messages.

4.5.2 Alternative flow graphs generation

As discussed in Sec. 4.2, there is implicit correlation between input data across different

modalities. This correlation can be used to either improve inference quality or reduce

inference latency. In particular, generating the pruned flow graphs provides additional

dimensions for the application shaper layer. Crystal generates these alternative flow graphs

by skipping the processing components of one or more input modalities in the original

flow graph. We refer to this process as modality-based flow graph pruning. Generating

alternative flow graphs makes it possible to run an application on more heterogeneous

devices.
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Modality-based flow graph pruning. Given the original processing flow graph, Crystal

will first tag all the processing components within the pipeline using the modalities that it

takes as inputs. Consider the application in Figure 4.1 as an example. The audio featurizer,

face featurizer and DNN components will be tagged as “Audio,” “Face,” and “Audio + Face”

respectively.

Having all components tagged, Crystal then prunes one or more modalties from the

original data flow. If one component only takes the pruned modalities as inputs, it will

be pruned accordingly. As the remaining components may depend on the output of some

pruned components, the pruner sets these inputs as zero vectors with corresponding dimen-

sions. If we revisit the example in Figure 4.1, in this case, Crystal will generate two pruned

flow graphs – one with the audio modality pruned, the other with the face modality pruned.

4.6 Application shaper layer

To adapt to the hardware heterogeneity on edge, Crystal needs a large optimization space

and a way to navigate this massive space efficiently. Sec. 4.5 addressed the first need by

generating alternative flow graphs in addition to the original one. In this section, we focus

on the navigating strategy, including a two-phase search for the configuration combination

and, for DNN based applications, further model compression based on the resource setting.

More specifically, when application developers implement an application, Crystal first

runs it through the offline profiling phase at the development time, where Crystal will select

a subset of the whole configuration space so that the massive search space is narrowed down.

Given the hardware heterogeneity, running this offline profiling on less powerful devices like

raspberry pi can take unavoidably long period of time. Hence, we introduce an approximate

mechanism in Crystal. In the offline profiling phase, an application only needs to be profiled

once. When in the online phase, at the deployment time, we run a simple heuristic to figure

out the right configuration based on the device it is deployed on.

Offline profiling. A multimodal application has several adjustable parameters, and dif-

ference combinations of parameters can influence its performance. Considering the MFN

application in Sec. 4.2, adjustable parameters in MFN include language featurizer types,
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video resolution, video frame rate, audio frequency, and FFT window length of the audio

feaurizer. Figure 4.3a shows the accuracy-processing-time trade-off by choosing different

combinations of parameters.

It is time-consuming to search through the whole configuration space each time when

deploying an application. Therefore, Crystal narrows the massive configuration search space

in the offline profiling phase by finding its Pareto-frontier, which is a small subset of the

overall search space. For each configuration in the Pareto-frontier, one can not improve the

target performance at any single dimension without worsening the performance at other

dimensions. For instance, for a configuration in the Pareto-frontier of MFN, reducing the

processing time always comes at the cost of accuracy reduction. The red dash line in

Figure 4.3a illustrates the Pareto-frontier given the affection recognition’s accuracy as the

performance goal. A single data frame in MFN is a combination of a sentence in text

together with corresponding video and audio frames.

Getting an accurate Pareto-frontier for an application on each individual device is not

yet an efficient solution, especially for those less powerful devices, such as embedded devices.

With that in mind, Crystal introduces a concept of approximate Pareto-frontier. Instead of

running offline profiling for each device, Crystal runs profiling on the most powerful available

device and get an accurate Pareto-frontier for that device. Based on that, Crystal includes

all configurations that use the same processing time to achieve less than K% accuracy loss

compared with the configurations on the Pareto-frontier to approximate the frontier. K is

defined as the width of the Pareto frontier. The original results of the Pareto-frontier is

a discrete configuration set. We impute the configurations between each pair of adjacent

configurations using linear regression. This newly generated frontier is referred to as an

approximate Pareto-frontier. Although different devices’ accurate Pareto-frontier for the

same application may include different configurations, an approximate frontier can actually

include most of these configurations when K is set properly. Empirically, we set K as

5. Furthermore, during this profiling process, we cache the intermediate results for each

processing component within a flow graph to further reduce the profiling time.

Online profiling. Having a small subset of configurations, i.e. the approximate Pareto-

frontier, as inputs, in the online profiling phase, for each application on any specific device,
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Crystal runs an early-terminate configuration selection algorithm to reach the performance

goal under the specified constraints. For example, the performance goal and constraints can

be: minimizing the processing time given less than 3% accuracy loss compared to the most

accurate result. Crystal first eliminates all configurations in the frontier whose accuracy

losses are larger than 3%. Within all remaining configurations, from the configuration that

achieves the least to the best accuracy, we continue to run each configuration on-device

until stop observing performance gain by profiling the last M configurations. Empirically,

we set M as 4.

The impact of introducing alternative flow graphs. Figure 4.3b illustrates the impact

of generating additional alternative flow graphs in the upper application assembly layer.

For the MFN example mentioned previously in Sec. 4.2, apart from the original accuracy-

processing-time trade-off shown in Figure 4.3a, there are two other sets of configurations

as a result of two additional pruned data flow graphs. We can see that pruning video or

audio modality away can actually provide more options for our optimizer to degrade the

MFN application. For each individual flow graph, Crystal goes through the same two-

phase optimization process and makes a degradation decision by jointly considering the

configuration results from all flow graphs.

DNN model compression. For deep learning based multimodal applications, reduced

number of modalities typically signals an opportunity for model compression and getting

more performance gain. For instance, the original deep learning model in MFN takes video,

audio and text inputs to perform actual classification task. In a pruned flow graph, one or

more of these inputs will be set to zero vectors. It is possible that some of the parameters

of the model will be multiplied by these zero-weights. Pruning these parameters from the

model will not affect the inference results.

Based on this observation, Crystal introduces a pruned-modality-based DNN model

compressor that hooks to an existing model compressor. First, similar to tagging in the

flow graph pruner, the model compressor performs a model graph analyzing that tags each

layer in a DNN model with the modalities taken as inputs. These tags are used as references

for model compression in the pruning process. For example, when the audio modality is

pruned, all the layers that take inputs only from the audio modality will be pruned.

37



1 1.5 2 2.5 3
Processing time (s) 104

60

65

70

A
cc

ur
ac

y 
(%

)

(a) 324 configurations

0 1 2 3
Processing time (s) 104

50

60

70

A
cc

ur
ac

y 
(%

)

original
prune-audio
prune-video

(b) 756 configs, 3 flow graphs

Figure 4.3: Performance trade-off on 686 data frames in MFN

Crystal then compresses the target model based on the tags. Crystal hooks to a fine-

grained model compressor, the Automated Gradual Pruner (AGP) [162], to prune a DNN

model. There are several reasons to choose this pruning algorithm. First, it supports a

per-layer pruning. During the pruning process, each layer will be pruned gradually based

on the “sparsity” goal set by the pruner. The sparsity is defined as the ratio of non-zero

parameters in the pruned layer to all the parameters in the original layer. With the results

we got from the model graph analyzer, we can set the sparsity goals for each individual

layer. Currently, we use a simple heuristic to set the sparsity for each layer. We assume

that each input modality has equal contribution to the number of non-zero parameters. For

instance, if one layer is tagged with text and video modalities, when text is pruned from

the flow graph, this layer’s sparsity goal will be set to 50%.

Second, this pruner has a few hyper-parameters and thus easy to use. There is only

one per-layer sparsity parameter that needs to be set. Application developers only need to

provide their model specifications and training datasets. This pruner can then automatically

prune the model2.

The existing model pruner we use has limitations in a sense that it doesn’t support

RNN-related compression. We can potentially choose new model pruners to mitigate this

problem in the future.

2. We only presents one model pruner used in Crystal here. Many more pruners can be introduced to
Crystal. The choice of pruners is orthogonal to the overall system design.
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4.7 Implementation

We implement Crystal in Java and C++. Most of the application assembly layer and shaper

layer are written in Java. The language-agnostic inter-component communication interface

is based on the C++ boost library [163] to provide shared memory management and inter-

process synchronization. We also implement multi-language wrappers for this interface

that are built upon Java JNI [164], Python pybind11 [165] and Matlab MEX [166]. It

takes around 2000 lines of Java code and 800 lines of C++ code to write Crystal, and all

inter-component interface wrappers together total around 500 lines of code written in Java,

Python, or Matlab.

Interfacing with external toolkits. For automatic model compression, Crystal interfaces

with the Microsoft Neural Network Intelligence toolkit [167]. Crystal uses Docker to provide

containerization support and Kubernetes to provide container orchestration support. Both

Docker and Kubernetes run as separate daemons, listening for requests from Crystal.

Built-in featurizers. To maximize code reuse and minimize the domain-knowledge and

development effort needed to build a multimodal application, Crystal includes a set of

built-in featurizers for three commonly-seen modalities: video, audio and text.

For video data, Crystal uses FFmpeg to adjust the frame resolution and frame rate. We

implement several commonly-seen image/video featurizers using various different program-

ming languages, including Keras applications (Java-based, contain 26 pre-trained image

featurizers), pretrained-models.pytorch (Python-based, contain 45 pretrained image featur-

izers) and OpenFace (C++-based, a facial analysis toolkit to extract more than 300 facial

features) [140].

For audio, we implement widely-used featurizers, including Covarep (Matlab-based, ex-

tracting 74 different audio features from raw audio data) [139], librosa (Python-based, a

package for music and audio analysis) [168] and Essentia (C++-based, an open-source C++

library for audio analysis) [169].

For text, we implement components including word2vec (C-based, an efficient imple-

mentation of the continuous bag-of-words and skip-gram architectures for computing vector

representations of words) [170], GloVe (Python-based, Global Vectors for Word Represen-
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tation) [171] and Google-bert-pretrained text featurizers [172] (Python-based, the state-of-

the-art DNN text featurizer).

4.7.1 Extending Crystal

The layered structure of Crystal makes it easy to extend system components within one

layer without having to consider other layers.

Adding new components. Crystal includes an interface to introduce a new Crystal

component, making it possible for developers, either multimodal application developers

themselves or third-party developers to contribute their customized processing components

to Crystal. A new component can be straightforwardly defined. One simply needs to define

the inputs and outputs of a component by calling Stream() API provided by Crystal. Read-

ing inputs and writing outputs are straightforward by simply calling Stream. readFrom()

and Stream.append(). And developers implement their customized logic in between.

Extending application shaper layer. One can add different profiling mechanisms and/or

optimization algorithms to the application shaper layer by changing the profiling function in

Crystal For instance, energy consumption is another important type of performance metric,

and it might be the main concern for some embedded devices with limited battery life. One

can integrate an external energy monitor in the application shaper layer and use the output

of this monitor to enable energy-aware application shaping. This monitor can run as an

extra component in addition to the components within an application. One can simply

specify the energy monitoring results by using the same setMetric() API mentioned in

Sec. 4.3.

Extending the container layer. This design makes it possible to substitute any of

these two existing toolkits to other toolkits that supports additional functionalities, such as

multi-tenancy that we discussed before. One only needs to change the requests’ format that

the newer toolkits support. For example, to switch our container orchestration framework

from Kubernetes to Docker Swarm [173], one needs to change the request from Kubernetes’

container cluster specification to Docker Swarm’s container cluster specification.
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4.8 Evaluation

Benchmark applications. We built three benchmark applications on top of Crystal: an

affection recognition application (MFN) that takes video, audio and text as inputs [174], a

gesture generation application (Gesticulator) that takes text and audio as inputs [175], and

a multimodal neural machine translation (MNMT) application that takes image and text

as inputs [176]. Each represents a unique use case of multimodal data processing.

Datasets. We use the CMU-MOSI dataset for the affection recognition application [177],

the Gesticulator dataset for the gesture generation application [175], and the Multi30K

dataset for the neural machine translation application [178].

Hardware. We run each application on three different devices, a GPU server with a

NVIDIA 2080Ti GPU on board, a CPU server with a quad-core Intel Core i7 6700 3.4 GHz

CPU with 8 GB memory, and a Raspberry Pi 4 with 8 GB memory. These devices represent

typical processing units across edge and cloud, covering a wide range of heterogeneity. For

large-scale experiments, we run these applications on Amazon EC2, using up to 10 instances

of m5.large, each with 2 vCPUs and 8GB memory.

4.8.1 Ease of application development

In this section, we quantify how Crystal reduces application development effort on hetero-

geneous edge devices, including the development ease by using Crystal built-in modules,

and adding customized modules.

Crystal applications are easy to implement. Table 4.1 displays the number of lines of

code needed when writing three benchmark applications with and without Crystal. Instead

of building everything from scratch, a developer only needs to write less than 30 lines of

code to build an end-to-end application for deployment across our experimental settings.

This translates to development effort reduction by a factor of 5 to 10.

Crystal framework is easy to extend. Sec 4.7 explained extending Crystal in different

ways. Here, we highlight the ease of adding new featurizers to Crystal. We anticipate this

to be the most common extension to Crystal. We count the number of lines of code to build

each built-in featurizer in Crystal. Across all the built-in featurizers mentioned in Sec 4.7,
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Table 4.1: Lines of code needed to implement applications.

Application
Flow graph

DNN
w/o Crystal with Crystal

MFN 3346 25 542

Gesticulator 3299 21 617

MNMT 2260 20 220

it requires less than 30 lines of code on average to add to Crystalbased on an existing

processing function, which consists of a proto file used to specify input/output message, a

yaml file that contains all configurable parameters, the code to specify the input/output

streams and the specific feature extraction logic.

4.8.2 Graceful performance degradation
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Figure 4.4: Minimizing processing time given accuracy constraints on various devices
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Figure 4.5: Processing time breakdown of the CPU-server performance in Figure 4.4a

In this section, we evaluate the performance of three different applications running on

heterogeneous devices, showing Crystal’s ability to support automatic degradation. For

comparison, we also implement cross-component performance optimization in Pretzel [152],
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Figure 4.6: Maximizing accuracy given processing time constraints on various devices

which essentially conducts performance optimization without alternative flow graphs. We

refer to this as edge-Pretzel. In addition to running Crystal on a single device, we run

Crystal with Kubernetes to scale up to more than one Amazon EC2 server. Crystal supports

a continuum, from cloud to a wimpy embedded device, either degrading gracefully based

on the hardware capability or scaling up seamlessly through interfacing with Kubernetes.

Single-modal applications. We will start from the simplest case – a single-modal ap-

plication. We build a PyTorch-based VGG19 BN [145] object recognition application atop

edge-Pretzel and Crystal respectively. Then we deploy it on the GPU server, Core i7 CPU

server and Raspberry pi 4.

As Pretzel was originally designed for the Cloud setting with only CPU support, the

edge-Pretzel-based application can only run successfully on the Core i7 CPU server. When

setting up the same performance goal of “minimizing the processing time with less than

3% accuracy loss,” Crystal-based and edge-Pretzel-based applications achieve the same

performance (around 160 seconds to process 1000 images) on the CPU server. With the

help of containerization, the Crystal-based application can also run on the GPU server and

Raspberry Pi 4 respectively.

For single-modal applications, the same notion of degradation works for both Crystal

and edge-Pretzel when running on homogeneous devices. But this task can not be fulfilled

without proper system-level support for heterogeneous devices. In the following experi-

ments, we couple edge-Pretzel with the basic containerization support provided by Crystal,

making it possible to run on heterogeneous devices.

Minimizing inference time. Moving to multimodal analytics, we run three multi-modal

applications on heterogeneous devices and set the accuracy constraints accordingly for dif-
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ferent devices. The overall intuition is to relax the accuracy targets on less powerful devices.

Figure 4.4 shows the results. Different applications incur different levels of accuracy loss.

For the accuracy metrics shown in all three X-axes, a larger value on the X axis represents

a higher level of accuracy loss. There are three sets of bars in each subfigure, from left

to right, representing the application performance running on the GPU server, the CPU

server and the Raspberry Pi respectively. We use the inference time that the most accurate

configuration takes on each device as the baseline and normalize the end-to-end inference

times.

For all three applications, edge-Pretzel and Crystal achieve similar processing time per-

formance when running on the GPU server, but Crystal outperforms the edge-Pretzel by

up to 10× when running on the CPU server and the raspberry pi. The main reason is

that generating alternative flow graphs in Crystal is expected to expand the trade-off space

at the cost of reduced accuracy. Relaxing the accuracy constraints makes it possible for

Crystal to find a better configuration to degrade the application.

Zooming in, when considering running MFN on the CPU server with the accuracy

constraints “less than 3% accuracy loss,” Figure 4.5 shows the processing time breakdown of

the Crystal and edge-Pretzel versions of MFN. We can clearly see that Crystal outperforms

edge-Pretzel by wisely pruning all the audio-related processing. Moreover, when considering

video processing in both cases, Crystal assigns even more time compared to edge-Pretzel.

In other words, Crystal strategically assigns the limited resources to the processing of more

important modalities.

Maximizing accuracy. It is a simple process to specify performance goals in Crystal.

With only two lines of code change (one line for the goal, the other for the constraint),

Crystal can switch from targeting processing time minimization to inference result accu-

racy maximization. Figure 4.6 shows the results of maximizing accuracy given processing

time constraints. The X-axis represents the accuracy loss for each application running on

different devices, while the Y-axis shows the processing time reduction target (in terms

of the reduction factor). Similar to Figure 4.4, we set different processing time goals for

different devices. For instance, when application developers expect to see a processing time

reduction by more than a factor of 5, they will set this processing time reduction target to
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Figure 4.8: JSON vs Protobuf

5.

Considering the most accurate version of each application as the baseline, Crystal man-

ages to degrade each application to satisfy the processing time goal with less than 10%

accuracy loss. Compared to edge-Pretzel, Crystal achieves the same processing time goal

with less accuracy loss when the processing time reduction target is small. Moreover, when

running on less powerful devices like the CPU server or raspberry pi, with limited capability

to trade accuracy for processing time, edge-Pretzel fails to fulfill some of the performance

goals when Crystal can manage to generate a suitable degraded application. For such cases,

Figure 4.6 shows edge-Pretzel’s best-effort performance.

Scaling up. Figure 4.7 shows the performance of running Gesticulator on 1 to 10 Amazon

EC2 m5.large instances. As we can see from the figure, the processing time is inversely

proportional to the number of EC2 machines. We also run MFN and MNMT using the

same setting, and observe similar performance results. The configuration of Gesticulator
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Figure 4.9: Profiling time and performance difference given different Pareto frontier’s width

Table 4.2: MFN model pruning

Model
#Non-zero
Parameters

Sparsity (%) Accuracy (%)

Original 7.12 ×105 100 72.3

Audio-based
compression

5.82×105 81.06 71.3

Video-based
compression

5.82×105 81.06 71.2

A&V-based
compression

4.46×105 62.12 70.1

is profiled based on a single EC2 instance. All components within Gesticulator are encap-

sulated into a single Pod in Kubernetes. With Kubernetes, one can scale up Gesticulator

from 1 to 10 machines by simply set the number of replications in the Kubernetes yaml

configuration file. Each workload is first sent to the control plane of Kubernetes, and Ku-

bernetes can automatically handle load balancing and restarting failing EC2 machines. All

these processes are transparent to application developers.

4.8.3 Microbenchmarks

In this section, we evaluate three important system components to show the trade-off when

designing them, including the modality-based DNN model pruner, the language-agnostic

inter-component communication interface and the end-to-end performance optimizer.

Table 4.3: Gesticulator model pruning

Model
#Non-zero
Parameters

Sparsity (%) Jerk (cm/s3)

Original 3.08×105 100 821

Text-based
compression

1.87×105 60.78 750
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Modality-based DNN model pruning. Tables 4.2 and 4.3 show the automatic model

compression results given different pruned modalities. We omit the compression result of

the MNMT application here. As the inference model used in MNMT is a recurrent neural

network (RNN), which can not be further pruned by our model pruner.

As we can see from these two tables, our model pruner can prune up to 40% of the total

number of nonzero parameters while incurring less than 3% accuracy loss for MFN and less

10% Jerk reduction (Jerk is a metric to quantify gesture quality, the higher the better).

We omit text-based model pruning results for MFN and audio-based model pruning results

for Gesticulator, as we found that pruning these modalities will affect the accuracy/jerk

significantly. In the Crystal runtime, these pruned models will not be considered as viable

candidates.

Language-agnostic inter-component communication. One key source of overhead

from language-agnostic inter-component communication is data serialization. Figure 4.8

shows the time and space overhead differences between two commonly-use serialization

techniques, JSON serialization and Protobuf serialization, the latter of which is used in

Crystal. We use these techniques to serialize a variable-length vector of floating-point

numbers, as floats are the representative data type passed between components. For both

subfigures, the X axis is the number of floating numbers in each vector. Figure 4.8a shows

the overall serialization/deserialization time, while Figure 4.8b shows the total message size

after serialization. Protobuf requires two orders of magnitude less serialization time, while

the messages generated requires only half the space compared to those from JSON.

Further, Table 4.4 shows the inter-component communication overhead. First, We fill a

message queue with 1,000 messages. Each message contains a random number of floating

numbers, ranging from 1,000 to 10,000. After generating this message queue, we let compo-

nents written in different programming languages pass these messages between each other

and record the elapsed time. Most of these communication times are less than 1 ms per

message. Even considering the most heavy-weight communication among two components

written in Matlab, it takes on average 3 ms to pass a single message.

For a baseline, we also pass the same set of messages between two Java modules or two

Python modules, via the built-inJava and Python inter-process interfaces. The java-java
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Table 4.4: Cross-language cross-module communication time

Time (s) Java Python C++ Matlab

Java 0.75 0.71 0.72 2.95

Python 0.66 0.26 0.26 2.31

C++ 0.61 0.26 0.19 2.30

Matlab 2.86 2.48 2.49 3.10

communication time is 0.15s, while the python-python communication time is 0.03s. The

difference is mainly from the data serialization/deserialization process in Crystal.

End-to-end performance optimizer. Given that we are using an approximate Pareto-

frontier to estimate all potential configurations when running on different devices, the width

of this frontier determines the overall performance. Figure 4.9 illustrates this trade-off.

When setting the performance goal as minimizing the processing time on the CPU server

with less than 3% accuracy loss, with higher Pareto frontier width, all three applications can

see a processing time reduction. However, this procedure comes at the price of as high as

double the online profiling time. Based on this observation, by default, the Pareto-frontier

width of our performance optimizer is set to be 5%, aiming to balance between profiling

time and application performance.

4.9 Related Work

System support for smart spaces. Both academia [141,179,180] and industry [181–183]

recognize the need for system support for smart spaces. Previous works address the device

heterogeneity challenge by providing unified device abstractions [184, 185] and common

policy languages to ease application deployment across heterogeneous devices [183]. These

take the first step of addressing deployment challenges, but do not deal with heterogeneous

computation power. In contrast, Crystal provides not only a unified deployment interface,

but automatically adapts to myriad processing capabilities transparent to the application

developers.

Multimodal learning. Multimodal learning, or the earlier multi-sensory fusion, extract-

ing insights from more than one modality of input data, supports wide-ranging use cases

such as affective computing [186], speech recognition [138] and activity recognition [137], of
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interest to both academia [136, 187–189] and industry [190]. These works mainly focus on

deriving suitable inference models. A recent work [191] aims to address the imbalance in the

ingestion rates among different modalities. In comparison, Crystal provides generic system

support to simplify application development and deployment in diverse settings, without

modifying the semantics of the inference logic.

Stream processing engines. Streaming data analytics have been explored in both cloud

and edge settings [192]. DS2 [193], intended for the cloud, automatically estimates the

true processing and output rates for each operator within a streaming dataflow to facilitate

dynamic resource allocation. EdgeWise [194] is designed for multiple streaming dataflows

sharing the same edge devices; it employs a congestion-aware scheduler to achieve high

processing throughput. Both systems focus on data processing efficiency, but Crystal focuses

more on mapping that to diverse hardware capability.

Inference serving frameworks. Several machine learning and deep learning serving

frameworks have been developed in recent years for model deployment [148,152,195–197].

Clipper [148] treats a single machine learning model as a black-box and only applies

pipeline-agnostic optimizations such as caching and batching, offering little opportunity to

deal with hardware heterogeneity. Inferline [196] then extends support to a multi-model

inference pipeline. Pretzel [152] aims to gracefully degrade the inference performance as

multiple concurrent inference pipelines compete for resource in the cloud. Nexus [195]

targets inference serving on a GPU cluster. All these works abstract away the analytics

applications (single-modal or multi-modal) into the inference models, while Crystal provides

more system support within a multimodal application. Further, these focus on the cloud,

while edge scenarios may involve resource capability that differs by orders of magnitude and

the available mechanisms for the cloud cannot deal with that level of disparity.

Mensa [197] is a recent edge-centric system for serving a single DNN model on various

mobile accelerators. However, it does not handle other end-to-end application deployment

support as provided by Crystal.
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4.10 Summary

While edge analytics scenarios have grown in complexity due to increasingly sophisticated

multimodal inference logic and heterogeneous hardware execution settings, there is little

generic system support to ease application development.

Therefore, we design and implement Crystal in this chapter. Crystal refactors the

application processing flow into three abstraction layers, masking hardware heterogeneity

with abstract resource types through containerization, and abstracting complex application

logic into dataflow graphs. In doing so, Crystal then shapes the application flow based

on the resource availability and degrades gracefully and automatically. Crystal is shown to

reduce application development effort substantially, and we believe it can facilitate emerging

edge application deployment.

50



Chapter 5

Video-zilla: An Indexing Layer for

Large-Scale Video Analytics

5.1 Introduction

Recent years have witnessed a sharp uptick of the number of video cameras. 2018 alone saw

140 million shipments of video cameras [33]. These are widely deployed for monitoring and

surveillance in diverse sectors, ranging from traffic control [198], crime investigation [199],

to healthcare [200]. For example, the city of Bellevue, WA has deployed cameras at many

intersections to monitor traffic; According to the British Security Industry Authority [34],

approximately 300,000 cameras are already deployed in UK schools. These surveillance

applications have generated a wide variety of video analytics workloads. At the core of these

workloads is a set of computer vision tasks, such as object detection and tracking, which

then form the basis for specific applications such as license plate identification, tracking

suspects, and fall detection for elder care.

While video content analysis dates back decades, today’s large-scale video analytics

landscape is drastically different. First, video analytics used to be run on a small number

of static video clips (i.e., pre-recorded with a fixed number of frames); Instead, we now

have many surveillance cameras generating continuous video feeds. A single camera alone

capturing video at 30 frames per second can generate 20 GB of video per day [201]. Sec-
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ond, the computer vision tasks have also grown in sophistication thanks to the increasing

adoption of deep learning inference. Applying a state-of-the-art object detection DNN in

real time (i.e., processing 30+ frames per second) to a single video feed requires a powerful

GPU [202] costing $4000. Further, it is increasingly common to aggregate and analyze a

large number of video feeds [203], for example, to track a suspect car around a city. The

sheer volume of the videos today presents colossal scalability challenges to large-scale video

analytics systems.

Existing large-scale video analytics systems tackle the daunting scalability prospects by

leveraging the inherent redundancy within video feeds [202,204,205]. For example, objects

in successive frames are likely to be the same, exhibiting frame-level redundancy ; Cameras

deployed at the same intersection often capture the same vehicles and pedestrians, though

from different perspectives, due to the spatial-temporal correlation of camera placement

and captured scenes. The former optimizes for individual frame retrieval, oblivious to the

collective semantics of a feed, while the latter optimizes across video feeds, though requiring

manual labeling. Redundancy elimination combines naturally with edge processing [36] and

large-scale video analytics is a killer app for edge computing [203].

Still, neither redundancy management strategy can keep pace with the growing num-

ber of video feeds. Inter-feed analytics jobs effectively need to profile each camera feed

individually. Fundamentally, a camera feed comprises of scenes, each carrying an implicit,

collective sense of content semantics, such as parking lot, downtown, and school. This se-

mantics dictates the type of objects and events featured in the feed. Exposing this semantics

facilitates further optimizations to process the most relevant (subsets of) feeds. However,

there are few mechanisms available to recognize this collective semantics and organize feeds.

Feeds today are mainly stored in a file system following common encoding formats. Recent

video analytic systems each implements application-specific frame profiling and sampling

strategies to reduce redundant data processing. (Section 5.2)

In this chapter, we build Video-zilla, a standalone indexing layer interposed between

video query systems and a video store to organize large-scale, multi-camera feeds. We

propose a video data unit abstraction called semantic video stream (SVS) based on a notion

of distance between objects in the video (Section 5.3). SVS implicitly characterizes the video
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Figure 5.1: Video-zilla architecture

content by scenes, which is missing from current video data abstractions and offers a suitable

middle-ground granularity between individual frames and an entire camera feed. We then

build a hierarchical index that analyzes and exposes the semantic similarity both within

and across camera feeds (Section 5.4). This way, Video-zilla can quickly organize video

feeds based on their content semantics without manual analysis of video content, while

preserving the boundaries between cameras (Section 5.5). Video-zilla provides a generic

service to a range of query systems. The index can be run either offline over static videos

or online over live feeds with new frames arriving continuously. The built-in automatic

video segmentation naturally delineates different scenes, which is also useful for moving

cameras like dashcams or drones capturing frequent changing scenes. Finally, we refactor

existing large-scale video analytics pipelines to separate out frame content analysis as an

independent module, providing a per-camera video ingestion interface to the underlying

surveillance cameras and a centralized query interface to upper-level video query engines

(Section 5.6).

Video-zilla effectively acts as an explanation database [206–209] for the video data, and

a similar approach can apply to other unstructured but correlated IoT data. We evaluate

Video-zilla with three case studies, object identification, specialized network training and

video archiving (Section 5.7). Compared to existing indexing strategies, Video-zilla reduces
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query resource usage by up to 14× and can offer video clustering or archival support that

is currently not feasible. Video-zilla can replace substantial code development for video

content analysis in existing analytics systems with a few lines of query code.

In summary, we make three contributions: First, we propose Semantic Video Stream

(SVS), a novel video data unit abstraction based on a notion of distance between objects

in the video, which abstracts away the video content precisely and concisely. Second, based

on SVS, we build a hierarchical video index as a data organization strategy to expose the

correlation between and within camera feeds. By preserving the boundary between cameras

while capturing their correlation, this lends to easy incorporation of additional cameras or

policies such as privacy measures. Third, we advocate for refactoring current video analytic

systems into a generic indexing layer, Video-zilla, and the specific analytics queries on top

of that. Video-zilla can simplify building analytic applications and reduce time complexity

of inter-camera video analytics to sublinear with the number of camera feeds.

5.2 Tackling the scalability challenge

Consider a canonical multi-camera deployment (Figure 5.1). For surveillance applications,

the objects in the videos constitute the main content of interest, hence the “video seman-

tics”. Video analytics systems sift through the video feeds for certain objects. Given the

high data volume and the low ratio of signal (useful objects) to noise (useless background

scenes), efficient analytics rests on pruning the search space fast. Existing systems are still

far from scaling analytics sublinearly with the number of feeds and frames.

5.2.1 Lack of adequate video data abstraction

Video data are gigantic but highly redundant. The key enabler of a scalable multi-camera

video analytics system is to fully understand and leverage this inherent redundancy. How-

ever, there is insufficient understanding and characterization of the redundancy in the cur-

rent multi-camera video surveillance landscape, impeding further optimizations.

Types of redundancy within videos. Figure 5.2 shows 4 consecutive images captured

by the same camera. We can always see the same car bounded by the red box across
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all these frames. This is the type of frame-level similarity already leveraged extensively

in video coding and analysis [202, 204]. Figure 5.3 shows snapshots from two live video

feeds captured by surveillance cameras mounted at the same intersection in Jackson Hole,

WY [210]. We can see significant overlap between the views of these two cameras. This

is a form of camera-level spatial-temporal similarity [203, 205] due to the physical camera

placement. Figure 5.4 shows two images captured by video cameras installed in different

parking lots from the VIRAT dataset [211]. Unlike that in Figure 5.3, spatially these two

cameras are not necessarily near each other. However, since both can be viewed as “parking

lot” cameras, the video feeds captured by these two cameras are somewhat similar to each

other. For example, both of them might contain cars and people stepping out of their

cars. We refer to this as stream-level semantic similarity, where a stream is a contiguous

block of frames within a camera feed. We make a distinction between “camera-level” and

“stream-level” since a long camera feed may be divided into multiple streams, each featuring

different objects (hence “semantics”). As a simple example, consider the video feed from

a camera mounted near a railway track. The frames capturing an approaching train are

semantically different from when no train is present.

Existing views and limitations. Current data organization in video query systems

can be seen as an extension of image retrieval systems, built on top of the frame-level

similarity. All video data are treated as a giant collection of video frames. However, this

requires processing every frame within the video collection at ingestion or query time, which

incurs incredibly high computation overhead. While frame sampling or adding camera-level

constraints [36,204,205] can reduce the number of frames processed, the number of frames

extracted from the streaming video data is still huge.

A new abstraction. Clearly, there is a mismatch between existing data abstractions and

the fundamental video data characteristics. This necessitates a mechanism to aggregate

video at a sub-feed level to both accurately preserve the frame-level video content and

minimize the number of data objects to handle. We therefore argue for a level of abstraction

between the feed level and the frame level.

We propose a new data abstraction, semantic video stream (SVS), that can represent the

content of a subset of a feed. Video frames from a single camera can be divided into several
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Figure 5.2: Images captured by the same camera

Figure 5.3: Images captured at the same intersection

video streams based on their content difference, likely due to scene changes. SVSs aggregate

frames to drastically prune the search space. Besides, SVS-based data organization lends to

large-scale inter-feed processing that is currently difficult. Examples are specialized neural

network training and aggressive video archiving. A semantic understanding of video streams

makes it possible to train one specialized neural network per-cluster of SVSs. For the latter,

instead of observing the access pattern of individual frames, we can operate at the level of

an SVS or a cluster of them.

5.2.2 Multi-faceted policy considerations

The rise of edge data source. As data collection is increasingly at the edge of the

network [75], the data volume at the edge is growing exponentially. Further, given how

Figure 5.4: Images captured in different parking lots
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pervasive surveillance cameras are deployed, the captured data tends to raise privacy con-

cerns [212]. Feeds from different cameras may need to be isolated depending on who owns

the camera and manages the captured videos. It is desirable to minimize the number of

raw frames sent both for bandwidth and privacy considerations.

Our approach. We organize video data using a hierarchical index, with inter-camera and

intra-camera components. The hierarchy can be naturally mapped to different processing

locations. Instead of sending all raw data to the cloud, we can send only the representative

video streams, and only raw frames containing objects of interest can leave the edge pro-

cessing point near a camera. Besides largely reducing network overhead in the backbone

network, this offers privacy support by preserving the data boundary and a summary view

across cameras to the cloud to speed up subsequent query processing.

5.2.3 Intertwined management and analytics

Existing video stores treat video data the same as any data, and do not provide any support

to characterize the redundancy. This shifts the burden to the query systems. Recent video

analytics systems implement built-in custom strategies to reduce redundant data processing

and scale analytics [36,204,205].

Scaling implementation efforts. Building an effective video index requires notable do-

main knowledge of video processing [203]. Apart from the merit of the processing strategies,

including an index within each system inevitably requires repeated implementation of com-

mon processing steps, which itself is inefficient. Further, this indicates a lack of separation

between basic data organization and actual analytics that makes it harder to scale in other

ways.

Towards a data organization layer. Instead, video data analysis and organization

should ideally be a separate layer overlaid on a video store and support common types

of video queries. For video surveillance, two common types revolve around specific object

identification (direct queries) and correlating camera feeds (clustering queries). The former

takes the format of find video streams that contain object X in N streams. This forms the

basis for various applications like theft detection [213], incident investigation [214] and even

atmospheric administration [215]. The latter is in the form of find all video streams that
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are semantically similar to a video stream Y, which lends to effective specialized network

training and video archiving. Additional qualifiers over a subset of camera or time range

can be easily supported.

5.2.4 Introducing Video-zilla

So far, we have motivated the need for a new abstraction, a hierarchical index exposing

boundaries between cameras, and a system to separate and interface with the video store

and the query engine. Video-zilla is designed to address these. We outline the challenges

and solutions below.

Deriving semantic video streams. Previously, we gave a qualitative illustration of two

semantically similar video streams. To be integrated into an analytic system, we need a

suitable metric, i.e., a quantifiable definition of “semantics”, to delineate SVSs to provide an

effective abstraction. On that basis, we need to measure the “similarity” between SVSs for

further aggregation. Section 5.3 describes representing a semantic video stream as a feature

map and computing the similarity score between two streams based on a novel metric, object

mover’s distance. We also introduce an approximation method to reduce the computation

overhead.

SVS clustering for index construction. We need an index that is precise and concise,

capturing the video content comprehensively as well as the level of redundancy. This re-

quires low-latency and effective clustering of all SVSs incrementally as new SVSs arrive in

a streaming fashion (Section 5.4).

Expressive interfacing. As a generic indexing layer between a video store and query ap-

plications, Video-zilla should provide clean and expressive interfaces to hide the complexity

of the underlying data organization but capture the video content. Sections 5.5 and 5.6

describe the architecture of Video-zilla, the functionality it provides, and the APIs exposed.

5.3 Semantic video streams (SVSs)

In this section, we define an SVS and a quantifiable notion of “semantics” (Section 5.3.1).

We then propose a novel metric, object mover’s distance (OMD), to compare the seman-
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tics among different video streams, as well as an approximate algorithm (Section 5.3.2)

to speed up OMD computation. Finally, we discuss how to represent several semantically

similar SVSs using a representative SVS (Section 5.3.3), a primitive for subsequent indexing

operations.

5.3.1 Defining Semantic Video Streams

We define a video stream as a contiguous block of frames within a camera feed. The

“semantics” of a video stream describes the content of these frames. For object-identification

based surveillance applications, the content of each frame can be characterized by the objects

captured in that frame. Therefore, we characterize the semantics of a video stream with all

the objects within that stream, with per-object feature vectors. A semantic video stream

(SVS) then is the collection of these feature vectors (i.e., the feature map).

Note that an SVS only captures the object distribution that may correspond to an

event or scene change, but cannot and does not aim to explicitly identify the event. For

example, a train-station camera mainly captures two types of scenes interleaved with each

other: train passing, and empty tracks. These will be mapped to different SVSs, some

featuring trains. An object distribution of “85% train and 15% people” may correspond to

“train passing”. The analytics application using these SVSs may infer the corresponding

events if provided with additional contextual information about the video. Further, an SVS

cannot track object motion, which requires tracking more frame-level information than the

object distribution. Video frame clipping. In preparation for deriving SVSs, we first clip

objects that is contained in each frame using an object detection mechanism. The notion

and derivation of SVS are orthogonal to per-frame object detection, so we can use either

lightweight ones such as the YOLO series [216] or more sophisticated approaches [217–219]

to balance the computation footprint and detection accuracy trade-offs. In our evaluation

we use YOLO. Each object is represented by its four-point 2-D coordinate (top, left, bottom,

right) in the original frame.

Object feature extraction. To characterize an SVS, the first key step is to obtain the

feature vector per object. We can lean on state-of-the-art image classification tools such as

convolutional neural networks (CNNs) [220–222]. The output of a CNN is the probabilities
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of all object classes, and the class with the highest probability is the classification result.

The penultimate layer’s output of a CNN proves to be representative features of an input

image [223]. The features form a real-valued vector, whose length ranges from 512 to 4096

in the latest CNNs [145,220]. Therefore, running a CNN until the penultimate layer on any

image containing an object extracts the feature vector for that object. For a video frame

with multiple objects, we can clip the frame and obtain the feature vectors for all objects

within the frame.

5.3.2 Distance between SVSs

The key to our data indexing system is to cluster semantically similar SVSs to reduce the

search space for queries. Therefore, we need a mechanism to quantify the similarity between

SVSs.

SVS distance. Since the SVS semantics refers to the objects captured, “semantic similar-

ity” between two SVSs manifests as similar objects and their distributions in different SVSs.

An SVS distance metric should then reflect how far object distributions deviate between

SVSs, i.e., the travel cost between objects in different SVSs. As objects are represented by

feature vectors, one natural measure is the Euclidean distance in the feature vector space,

defined as d(i, j) = ||xxxi − xxxj ||2, where xxxi and xxxj are the feature vectors of objects i and j.

The “travel cost” between two objects is a natural building block for the distance be-

tween two SVSs. Let ddd and d′d′d′ be two feature maps, containing n and n′ feature vectors,

respectively. We allow each object i in ddd to be either partially or fully transformed into

any object in d′d′d′. Let T ∈ Rn×n be a cost matrix where Tij ≥ 0 denotes the unit travel cost

from object i ∈ ddd to object j ∈ d′d′d′. To transform ddd entirely into d′d′d′, we need to ensure that

the overall outgoing flow from object i equals di, i.e.,
∑

j Tij = di. Further, the amount

of incoming flow to object j should match d′j , i.e.,
∑

i Tij = d′j . This way, we define the

distance between two SVSs as the minimum cumulative object travel cost required to move

all objects in ddd to d′d′d′, i.e.,
∑

i,j Tijd(i, j).

Object Mover’s Distance. Calculating the aforementioned minimum cumulative object

travel cost can be formalized as:
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Figure 5.5: Illustration of Object mover’s distance

min
TTT≥0

n∑
i,j=1

TTT ijd(i, j) where :

n′∑
j=1

TTT ij =
1

n
, ∀i ∈ 1, ..., n

n∑
i=1

TTT ij =
1

n′
, ∀j ∈ 1, ..., n′

(5.1)

di = 1/n and dj = 1/n′ mean that we treat every feature vector within an SVS equally

by giving them the same weight. The weights in each SVS sum up to 1. Equation 5.1

aims to minimize the weighted cost of transferring (“mapping”) all feature vectors in ddd to

d′d′d′. A vector i in ddd could be mapped to several vectors in d′d′d′, with its weight di split over

the target vectors’ in d′d′d′. Therefore, the mapping is one-to-many, not one-to-one, as shown

in Figure 5.6a.

This is a special case of the well-studied transportation problem, Earth Mover’s Dis-

tance [224], with specialized solvers [225,226]. To highlight this connection, we use the term

object mover’s distance (OMD). OMD is a metric since di,j is a metric [227]. Figure 5.5

illustrates the OMD metric for two SVSs, A and B. Each arrow represents the correspon-

dence (or flow) between two objects, their Euclidean distance shown next to the arrow.

The distance between two SVSs reflects a cumulative travel cost across the objects.

Fast OMD computation. Calculating an accurate OMD between two SVSs hasO(n3 log n)

time complexity, where n is the number of features within a video stream. It is thus im-

practical to compute the OMD between large video streams.

Fortunately, there are several fast specialized approximate computation methods [225,

226, 228]. We adopt the thresholded ground distance method [226]. Instead of comparing
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(a) Original OMD (b) Thresholded OMD

Figure 5.6: Illustration of the thresholded OMD

all pair-wise object moving costs, we set a distance threshold t. Any pair-wise distance

between feature vectors larger than t will be capped to t. We essentially merge all such

pair-wise relationships to a single group.

Figure 5.6 illustrates the transformation process from the original OMD computation to

the thresholded-OMD computation. The boxes are objects and the colors indicate different

video streams. The red circle is the new transshipment vertex that serves as an intermediate

vertex, before a feature vector goes to its original destination. Any incoming edge cost is

the threshold t and any outgoing edge cost is 0. The drastic reduction of the number of

edges is the main reason for computation time reduction when using FastOMD.

5.3.3 Representative construction

To efficiently cluster SVSs, we also need a way to construct a representative SVS for an

SVS cluster. A new SVS can then be compared with per-cluster representatives, rather

than with all SVSs in that cluster. Section 5.4 explains how to identify a suitable existing

cluster for a new SVS to join.

k-clustering representative construction. Recall that objects that are visually similar

have similar feature vectors in the Euclidean space. We perform k-means to derive k clusters

of feature vectors, each has a centroid feature vector. Weighted by the size of each cluster,

these centroids‘ vectors then form a representative SVS.

We adopt the silhouette method to determine the value of k [229]. The silhouette value
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is a measure of how similar an object is to its own cluster compared to other clusters.

Formally, for data point i ∈ Ci, s(i) = b(i)−a(i)
max{a(i),b(i)} , where a(i) = 1

|Ci|−1
∑

j∈Ci,i 6=j d(i, j)

and b(i) = mink 6=i
∑

j∈Ck
d(i, j). A high silhouette value indicates a well-formed cluster.

Defining query hit. To facilitate direct object identification queries, we record the bound-

ary for each weighted center. The boundary is defined by the distances between the farthest

data points in all directions and the cluster center. We obtain a query hit when the queried

feature lies within the boundary of a weighted center.

5.4 Clustering SVSs

Given a set of SVSs, index construction for fast query boils down to clustering the SVSs

based on the similarity of their semantic content. In this section, we first explain an existing

incremental clustering algorithm that works for both the Euclidean and OMD metric space,

explaining the basic data structure and related operations in Section 5.4.1. Section 5.4.2

then maps these basic operations to those needed for an SVS index. Finally, we propose a

novel pruning-based approximation technique to largely reduce the computation overhead

incurred by OMD computation in Section 5.4.3, which is our unique system contribution

when dealing with clustering in the OMD space.

5.4.1 Basic data structure and operations

SVS organization. Taking a leaf out of previous work [230], we organize SVSs with a

tree. Each leaf node in this tree represents a unique SVS. The root node represents all SVSs

stored in the index. Each internal node is the root of a subtree and represents all SVSs at

the leaves in this subtree. Each children node of the same parent node contains a subset of

SVSs of that in parent node. As clustering SVSs can be seen as partitioning a set of SVSs

into multiple subsets, the SVS tree structure encodes multiple ways of clustering SVSs.

Evaluating cluster tree using dendrogram purity. The quality of a cluster tree

is less obvious compared to a “flat” clustering approach, such as k-means. We adopt a

holistic measure, known as dendrogram purity [231]. In words, the dendrogram purity of a

cluster tree with respect to a ground truth clustering C∗ is the expectation of the random
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Figure 5.7: Masking and unmasking

process computed in the following steps: 1) sample two SVSs, si and sj uniformly from

the same cluster Cx in the ground truth; 2) compute their least common ancestor p in the

cluster tree T ; and 3) compute the fraction of leaves of p that also belong to Cx. With this

definition, the dendrogram purity is a real number between 0 and 1. A “perfect” cluster

tree has dendrogram purity 1, in which all leaves of an internal node belong to the same

ground-truth cluster.

Greedy incremental clustering. For live video feeds, new SVSs arrive continuously,

hence it is natural to follow a greedy incremental insertion strategy. For each incoming SVS

x, the algorithm will iterate through all the leaf nodes in the cluster tree to find the nearest

neighbor to x, a leaf node s. A Split operation is performed on s that first disconnects

s from its parent, creates a new leaf node s′ to store x, and finally creates a new internal

node, whose parent is s’s former parent and whose children are s and s′.

Masking and unmasking. However, this greedy insertion strategy cannot reach an opti-

mal dendrogram purity because of the masking effect. Figure 5.7 illustrates the case when

the current leaves in a tree belong to a ‘car-dominant” cluster, denoted C0 and C1. If an

incoming SVS T0 belongs to a “train-dominant” cluster, according to the greedy incremen-

tal tree construction heuristics, it will be first inserted in the tree next to C1. We say T0 is

masked by C0, since C0 and C1 are clearly more similar to each other and should be sibling

nodes. Masking effect essentially means putting a SVS is being covered by a supposed rep-

resentative that does not actually represent it well. The root cause of masking effect is that
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Algorithm 1 Rotate(v, conditionDetect)

(ShouldRotate, ShouldStop) = conditionDetect(v)
if ShouldRotate then

Tree.Rotate(v, conditionDetect)
end if
if ShouldStop then

Output: Tree
else

Output: Tree.Rotate(v.Parent(), conditionDetect)
end if

the random incoming order of SVSs cannot guarantee siblings in a cluster tree are actually

the closest (like T0 and C1 in Figure 5.7b).

Formally, A node v with sibling v′ and aunt a (i.e., the sibling of a parent node) in

a tree is masked if there exists a point x ∈ lvs(v) such that, maxy∈lvs(v′) OMD(x, y) >

minz∈lvs(a)OMD(x, z). lvs(z) is the set of leaves for any internal node z. [230] proves that

a cluster tree without masked nodes has dendrogram purity 1.

Inspired by self-balancing trees like red-black trees [232], we employ the following mask-

ing triggered rotations to mitigate the dendrogram purity loss. When masking is detected,

a Rotate operation swaps the position of s with its aunt in the cluster tree. After the

rotation, the algorithm checks if s’s new sibling is masked and recursively applies rotations

until no masking is detected or we reach the root (Algorithm 1). The intuition behind the

rotations is to move the “masked” node up towards the root by swapping this node with

its aunt recursively, until masking no longer manifests.

5.4.2 Building an SVS index

SVS insertion. The combination of greedy incremental insertion and masking-triggered

rotation provides a baseline algorithm to insert an incoming SVS (Algorithm 2). This is

referred to as purity enhancing rotations for cluster hierarchies (PERCH [230]), building

a cluster tree with optimal dendrogram purity. Further, the algorithm also performs a

balancing-triggered rotation. This is an optimization we will discuss in the following sub-

section, together with a pruning-based nearest neighbor search optimization.

SVS clustering. Given the SVS tree, we derive the actual clusters using the following
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heuristics. We maintain a list of tree nodes to represent different clusters. Initially, only the

root node of a tree is in this list. While the number of nodes in the list (i.e., the number of

clusters) is less than k (determined by the silhouette method mentioned in Section 5.3.3), we

iteratively remove the tree node with the smallest cost in the list, replacing it with its two

children nodes added to the list. The clustering process terminates once there are exactly k

tree nodes in the list. The cost of a tree node v is defined as the maximum distance among

the lvs(v).

Search operations. Our index supports two basic search primitives: feature search and

SVS search, corresponding to the direct identification query and clustering query. A feature

search aims at finding a set of SVSs that might contain feature vectors that are similar to

the target feature vector. We use the decision-boundary-based query (Section 5.3.3), first

to identify candidate clusters of SVSs, and then searching all SVSs in candidate clusters to

find the SVSs that actually meet the requirement. An SVS search aims at finding the SVS

that is closest to the target SVS. This is supported by the nearest neighbor search function

in the insertion algorithm.

Smoothness of the OMD space. The latent space generated by SVSs may not be

smooth, especially when an SVS consists of high-dimensional feature vectors. Due to the

curse of dimensionality [233,234], we cannot avoid this issue completely. This “discontinu-

ity” causes some SVSs to be inserted into the wrong clusters, and a subsequent query to

Video-zilla may either miss an SVS (false negative) or examine an SVS unnecessarily (false

positive).

Given the nature of video scenes, we cannot derive close-form expressions for this dis-

continuity. To quantify its impact empirically, we evaluate the false-positive (FPR) and

false-negative rates (FNR) of queries with and without Video-zilla in Section 5.7.4. Fur-

ther, we also introduce a performance adaptation and bailout mechanism in Section 5.5.3.

5.4.3 Nearest neighbor search optimization

One sub-procedure of the algorithm in 5.4.1, finding nearest neighbors in the cluster tree,

can make its naive implementation slow. In this section, we introduce pruning-based nearest

neighbor search with the help of an easy-to-compute lower bound of OMD. In addition, we
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perform a balancing based rotation operation as further optimization.

Pruning-based search. We propose a novel pruning technique by introducing a cheap

lower bound of the OMD that allows us to prune away the majority of SVSs in the cluster

tree without ever computing the exact OMD distances.

Following [227], it is straightforward to show that the distance among the centroids of

feature vectors within two SVSs is a lower bound for the OMD between them. We refer to

this lower bound as the object centroid distance (OCD) as each SVS is represented by the

weighted average vector over all feature vectors contained in it. Compared to OMD, OCD

is easy to maintain and update in O(N) time, where N is the feature vector dimension.

We use OCD to drastically reduce the amount of OMD distance computation when

performing the nearest neighbor search. We first sort all SVSs within the cluster tree in

ascending order of their OCD distance to the target SVS. Starting from the head of the

sorted list, we repeatedly compute the OMD between the target SVS and the SVS that is

at the head of the sorted list. The distance of this SVS will be updated and the list will be

sorted based on the updated distance. As the OCD is a lower bound of OMD, we maintain

a set of explored SVSs whose OMD has been computed. The first SVS we visited that has

already been explored is guaranteed to be the nearest neighbor of the target SVS.

Although pruning-assisted process can largely reduce the computation overhead of near-

est neighbor search, it cannot reduce the OMD computation when checking the masking

condition or updating the cost for each internal node. As the masking condition is checked

in a bottom-up manner and the check terminates when no further masking effect is detected,

only a small subset of the SVSs within the index are involved. For the cost update for each

internal node in the tree, we adopt a bottom-up approximation heuristic. The algorithm

updates the cost of the nodes along the path from the leaf to the root, terminating once

the cost of a node within the path does not change.

Balancing based rotations. Our pruning method can be largely affected by the depth of

the tree. While our rotation algorithm guarantees optimal dendrogram purity, it does not

provide any guarantees on the depth of the generated cluster tree. The balance of a cluster

tree T is the average local balance of all nodes in T , where the local balance of a node v

with children vl, vr, is bal(v) = min{||lvs(vl)||,||lvs(vr)||}
max{||lvs(vl)||,||lvs(vr)||} . Similar to the masking condition,
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Algorithm 2 Insert(xi, Tree)

nbrs = NearestNeighbor(xi)
leaf = Split(nbrs)
for a in Ancestors(l) do

a.AddPt(xi)
end for
Tree = Tree.Rotate(leaf .Sibling(), CheckMasked)
Tree = Tree.Rotate(leaf .Sibling(), CheckBalanced)
Output: Tree

we will rotate the current node with its aunt in the tree if we find that it will improve the

balance of the tree without causing masking.

5.5 Video-zilla system

Based on the clustering mechanisms described previously, Video-zilla (Figure 5.1) builds a

hierarchical index with two components: 1) an intra-camera index per camera feed to index

the video streams captured by the same camera; 2) an inter -camera index across all cameras

to index the representative semantic video streams constructed by all intra-camera indices.

The inter-camera index resides somewhere centrally, where the queries are issued, while

the intra-camera indices could stay at edge servers to filter raw data and ensure most of

them remain local. Each camera sends raw video data to the nearest edge server, via wired

or wireless connections. The hierarchical index maintains the boundary between cameras,

which allows the components to map to different processing locations when appropriate.

Video-zilla is designed as a layer between the video store and applications. Consider

Microsoft’s Project Rocket [235], for example. Video-zilla can be interposed between the

light and heavy DNN detectors, using the feature vectors extracted by the light DNN

detectors to build the index, and the heavy DNN detectors to refine the final query results.

5.5.1 Hierarchical index generation

An incoming image frame will first pass a key frame selection module, which adaptively

filters video frames based on the computation capacity of the edge server. The selected key

frames will then pass several feature extraction modules to compute application-specific
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feature vectors. Our automatic video segmentation module will then segment a stream of

feature vectors generated by the same camera into separate SVSs. These SVSs will be first

inserted into the corresponding intra-camera index. Finally, triggered by the representative

SVS update in an intra-camera index, the per-model inter-camera index will be updated.

Following this process, our hierarchical index will be constructed incrementally.

Automatic video segmentation. Given a stream of feature vectors, the first key step is

to derive an SVS from them. This can be especially helpful for scenarios with frequent scene

changes, e.g., as a drone flies above different terrains. We propose a greedy segmentation

heuristic. The general idea is to track novel features in consecutive frames and then segment

the video when a set of features seems to drift away from the previous SVS.

Initialization. To bootstrap the system, the initial portion of the streaming video over a

set length of time tmax is extracted as the first SVS. This tmax also serves as the maximum

length of an SVS. The choice of tmax will affect the query result granularity. In practice,

we leave the choice of tmax to the application developer. In our evaluation, we set tmax as

15 minutes.

Tracking novel features. After initialization, we use the representative SVS of the clus-

ter that the last segmented SVS belongs to as the reference SVS. We maintain a current

feature buffer that contains all incoming feature vectors after the last video segmentation.

An incoming feature vector that lies outside the decision boundary (Section 5.3.3) of the

representative will be labeled as a novel feature. We track all novel feature vectors using a

novelty feature buffer.

Video segmentation. Whenever a novel feature vector is added to the novel feature

buffer, we cluster feature vectors in the buffer using k-means and calculate the average

distance between the members and the corresponding cluster center. We compare this

average distance dn in the novelty buffer with dr in the representative. Video segmentation

(Algorithm 3) is triggered when dn ≤ dr. At the same time, we also record the hit pattern

of the weighted clustering centers in the reference SVS. if one of these centers has not been

hit by any incoming features after time tsplit, the video needs splitting. tsplit is set to be

1
10 tmax empirically. To segment the video, the current feature buffer is divided at the point

where the first novelty feature or the last hit feature arrives.
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Algorithm 3 Video segmentation

% A novel incoming feature vector vnovel
NovelFeatureBuffer.add(vnovel)
CurrentFeatureBuffer.add(vnovel)
dn = NovelFeatureBuffer.calAvgDist()
dr = SVSTree.avgRepDist()
thit = SVSTree.maxLastHitTime()
if dn ≤ dr or thit > tsplit then

SV Snew = Features(CurrentFeatureBuffer)
insert(SV Snew, SV STree)

end if

Take a train-station surveillance camera as an example. It should mainly see trains and

people (with luggage) or a largely empty platform. The video feed captured by this camera

will be divided into chunks using our automatic video segmentation mechanism, correlating

with train arrival and departure.

Hierarchical index update. The newly generated SVS is inserted into the correspond-

ing intra-camera index. One or more representative SVSs in this intra-camera index will

be updated. The updated representative SVSs will then replace the outdated versions in

the inter-camera index. This completes one update round of our intra- and inter-camera

hierarchical indices.

Adaptive key frame selection. It is neither computationally feasible nor efficient to

process every single video frame captured by a video camera. This module determines

which video frames should have objects clipped and passed to the feature extraction module.

The ingestion computation cost is determined by both the frame rate and the inter-frame

deviation threshold. The latter one uses the deviation between two consecutive images as

the metric. When the deviation exceeds a threshold t, we consider the incoming image as a

key frame. Many combinations of these two factors are plausible, and we adopt a best-effort

heuristic to avoid queuing. We monitor the input frame queue at the feature extraction

module. Once a queue starts building up, we will downgrade it to a more lightweight

configuration. Conversely, we will upgrade it to a more heavyweight configuration.

Customizable feature extraction. As different applications may prefer specific feature

extraction techniques, we make this module customizable. Each application can regis-

ter their own feature extraction module. We provide several default feature extractors,

including VGG16, VGG19, ResNet50, and ResNet101 [236], all trained on the COCO
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dataset [124].

5.5.2 Query processing

For direct object identification, the query specification includes an image containing the

object of interest, together with the optional time range and camera ID constraints as the

metadata. The candidate representatives SVSs will be first identified in the inter-camera

index. Then the query will be dispatched to all the intra-camera indices containing the

candidate representatives, to search for the actual SVSs that contain the queried object.

A clustering query takes as input a feature map that characterizes an SVS, as well as

the optional time range and camera ID constraints. For this query, Video-zilla returns all

similar SVSs to the input SVS. Video-zilla will check the inter-camera index to find the

cluster C containing the most similar SVS to the input SVS. Each intra-camera index will

return all SVSs that belong to the cluster represented by a representative SVS in C.

5.5.3 Performance monitoring and bailout

Performance monitoring. Due to the errors induced by feature extraction, index build-

ing and SVS candidate selection, querying our hierarchical index cannot guarantee 100%

accuracy. Thus, Video-zilla monitors the error rate of query results and adjusts the index

setting to satisfy the user-defined error preference. Periodically, in addition to querying

the hierarchical index, Video-zilla runs the same query on all the video frames in the back-

ground. This query result serves as the ground-truth. This will inevitably take a long time,

so Video-zilla only performs this operation every 50 queries.

If the current query F1 scores do not meet the user preference, Video-zilla can adjust

the following parameters one at a time: i) increasing the number of clusters within the

inter- and intra-indices; ii) decreasing the OMD computation threshold to derive a more

accurate OMD value; and iii) downgrading to a flat SVS index, i.e., without distinguishing

between the intra- or inter-camera indices.

Bailout. If applying all three parameter adjustments still cannot meet the user error

preference, a bailout mechanism will be triggered, where Video-zilla will downgrade to a

frame-level index to search through video frames across all cameras. Meanwhile, Video-zilla
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periodically runs a query on the hierarchical index to determine when to switch back to the

hierarchical index. Video-zilla performs this operation every 10 queries.

5.5.4 Discussion

Privacy considerations. Orthogonal to common privacy protection approaches such as

data encryption and image anonymization (via pixelation or blurring), Video-zilla intro-

duces some amount of anonymization through feature aggregation. Given our hierarchical

index design, only the representative SVSs in each intra-camera index will be sent to a

centralized operation point to construct an inter-camera index. An analytics user can only

access the few frames returned as the query results and not the raw videos at large.

Security concerns. IoT cameras have been vulnerable to security attacks or exploited in

DDoS attacks (such as Mirai [237]). While this work does not explicitly address security

issues, Video-zilla may help by acting as an intermediary, which facilitates limiting direct

access to the cameras.

Per-model indexing. Video-zilla generates an index per DNN model. However, the

index generation process is the same, regardless of the feature extractor, and hence different

applications can run on a common indexing layer.

Camera ID and time range filtering. We can filter the camera ID at the inter -camera

level when identifying the intra-camera indices to dispatch the queries to. The time range

can be applied in each intra-camera index, by comparing against the video timestamps.

5.6 Implementation

We implement Video-zilla using the Akka toolkit [238]. Following the actor model in Akka,

Video-zilla comprises of five actors, key frame selection, feature extraction, intra-camera

index, inter-camera index and query history cache. Data exchange between modules follows

asynchronous message passing. There is also a query actor per type of queries.

We use the OpenCV library [18] to implement key frame selection, including video I/O,

frame rate control and image deviation computation. Keras 2.3.1 [239] is used to train the

default feature extractors, and the massive online analysis library [240] for representative

72



construction. The fastOMD implementation adapts the fastEMD library [241]. Our incre-

mental clustering algorithm extends the codebase in [230] to our OMD metric space. Each

intra-/inter-camera index is stored as a tree structure.

Our feature extractors are trained using Microsoft COCO, and this code is written in

Python. Other Video-zilla modules are written in Java. The implementation totals about

4K lines of code, including 3K in Java and 400 in Python for the indexing, and around

500-600 lines of Java code for the query stubs. The codebase size of Video-zilla suggests

that existing analytics systems can be simplified substantially by issuing queries to a generic

index in place of performing custom video content analysis per application.

Setup and configuration APIs. The analytics application can add or remove a feed with

cameraStart(cameraID, historyDataTimeRange, appID) and cameraTerminate(cameraID,

appID). We make the feature extraction module pluggable and expose an API to applica-

tions to customize feature extractors. setFeatureExtractors(Model, appID) allows an

application to specify a custom feature extractor to characterize the video semantics.

Query APIs. Video-zilla supports two most common queries, directQuery(objectImg,

appID) for direct object identification, and clusteringQuery(targetSVS, appID) to or-

ganize SVSs. A direct query takes as argument the image of the object of interest, while

a clustering query takes as input the feature map of an SVS. We further provide a utility

API, getMetaData(SVS), to return information such as the start and end timestamps of

this SVS, the camera ID that captured this SVS, and the access time of this SVS.

Customizable APIs: Video archiving as a case study. Developers can also imple-

ment custom APIs by composing the built-in APIs. For example, to build a video archiving

service, we need an API isArchived(targetSVS, appID), which is a variation of the clus-

tering query. Instead of returning a list of semantically similar SVSs, it returns the average

access frequencies of all these SVSs. Code snippet 5.6 shows how to implement this by

composing clusteringQuery and getMetaData.

isArchived(targetSVS , appID):

SVS[] res = clusteringQuery(targetSVS , appID);

sumFreq = 0;

for (SVS svs : res):
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sumFreq += getMetaData(SVS).accessFreq;

return sumFreq / res.length;
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Figure 5.9: Object distributions from the same feed.

5.7 Evaluation

Hardware setting. We use two Linux servers to host the hierarchical index, both with

8-core 2.1 GHz Intel Xeon CPUs, one with a NVIDIA RTX 2080Ti GPU, and the other with

an NVIDIA RTX 2070 GPU. We run an inter-camera index on the former and intra-camera

indices on the latter. In cases we need to run multiple intra-camera indices, this process

is done in a serial fashion on a single machine. This way we avoid any artifacts that may

arise from a distributed setup. Video-zilla is orthogonal to improving processing efficiency

with distributed computing, and can leverage existing works [36,242,243] on that.

Datasets. For the microbenchmarks (Sections 5.7.1, 5.7.2, 5.7.3), we synthesize a dataset

from 1000 SVSs. Each contains 500 1024-dimension feature vectors, and these vectors follow

a multivariate normal distribution. We assume there are 10 different types of feature vector

distributions in total, each containing 100 SVSs.

For the end-to-end case studies (Sections 5.7.4, 5.7.5, 5.7.6), we assemble publicly avail-

able real-world datasets to emulate a real-world multi-camera surveillance system for public

transportation, like that in Chicago [125]. The total length of these videos is 30 hours, in-

cluding three types of feeds from both stationary and moving cameras: i) 40 road-view

captured by in-vehicle cameras: 20 of them capture the downtown areas [126] of New York

City, London, Chicago and Los Angeles, 5 per city; the other 20 capture highways across

the U.S. [127]; ii) 2 train-station video livestreams from Youtube [128, 244]; and iii) 2 har-

bor video feeds from Youtube [129, 245]. We intentionally set the number of cameras in
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Figure 5.10: The impact of threshold on FastOMD.

train-stations and harbors to be smaller than that of in-vehicle cameras, which matches the

expected ratio between these feeds in practice.

5.7.1 Comparison of video characterization

SVS vs. Camera-level. We compare the SVSs from the same camera feed with those

belonging to the same semantic cluster (which may or may not be from the same camera).

For both sets of SVSs, we compute the average OMD distance between the SVSs pairwise.

Besides the first three real-world scenarios, we derive a combined case by concatenating a

downtown road-view video with a highway-to-national park road-view feed. This emulates

a car driving from a downtown area to a highway, to increase the variability of content.

We use four types of feeds, including 10 in-city and 10 on-highway camera feeds as the

in-vehicle case, 2 “harbor” feeds, 2 “train-station” feeds, and 10 camera feeds as the last

combined case. The average length of SVSs extracted by Video-zilla is around 10 minutes

worth of video, 600-700 frames.

Figure 5.8 shows that the average OMDs of in-vehicle cameras are similar to one other,

as the feeds we captured are relatively short and the frame content within each feed is fairly

homogeneous. Empirically, the OMD among the SVSs within the same cluster is around

0.3 and 0.35. However, there is a distinct difference between SVSs in the other three cases.

A lower average OMD for Video-zilla means that Video-zilla is able to better capture the

semantic similarity compared to camera-level video characterization. Further, it shows the

OMD calculation works regardless of whether the video frames are from stationary train-
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station cameras or moving in-vehicle cameras, as the object detection mechanism Video-zilla

adopts works for both cases. As an example, Figure 5.9a shows object distributions from

two SVSs derived from a train station surveillance camera, and Figure 5.9b shows the same

for an in-vehicle camera in LA. The object distribution over time hardly changes for the

LA road-view feed. In contrast, for the train-station feed, the object distribution varies

depending on what events are covered. This highlights the descriptiveness of an SVS over

a camera-level video feed.

SVS vs. Frame-level. Using frame-level characterization results in many more data

objects to handle. Figure 5.9 suggests that SVSs as data units for queries capture the

object distribution, SVS can improve system scalability without sacrificing descriptiveness.

5.7.2 Effective and efficient SVS derivation

Automatic video segmentation. We select and concatenate 10 feature maps as SVSs

from our synthesized dataset. To mimic real settings where SVSs differ in length, the number

of composite feature vectors within each SVS is a random number ranging from 250 to 750,

and the feature vectors in each SVS follow a distinct multivariate normal distribution.

Our automatic video segmentation technique is compared with two baseline methods:

(i) an oracle that can perfectly segment a video feed, which, in our case, means segmenting

the video feed exactly into the 10 original SVSs; and (ii) a strawman that simply divides a

video stream into equal-length video clips, where the fixed length can be 1, 5 or 10 minutes’

worth of video clips.

We evaluate the effectiveness of the video segmentation techniques using the average

OMD distance between SVSs that appear consecutively in a feed. Higher OMDs mean

better segmentation effect. Figure 5.11a shows the average OMD distance using different

segmentation techniques. Our method nearly matches the oracle while outperforming the

strawman method. Zooming in, Figure 5.11b shows the empirical CDF of the OMD between

adjacent SVSs. When video clips are segmented evenly, it is unavoidable that some adjacent

clips are similar to each other and exhibit low OMDs.

Fast OMD. Figure 5.10 shows the impact of the FastOMD threshold α on the computation

accuracy and time. We randomly select 100 pairs of SVSs from the synthesized dataset,
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and compute the pairwise OMD distance as α varies from 0.5 to 1. We use the OMD for

α = 1 as the reference ground truth and calculate the approximation error as the accuracy

metric. The computation time is normalized with respect to the computation time needed

for α = 1.

The approximation error decreases with increasing α at the expense of a higher compu-

tation time. Empirically, α = 0.6 appears to achieve a balance between the computation

accuracy and processing time reduction. For this α value, the average OMD computation

time is reduced to less than a second (767 ms on average). Since the average length of the

SVSs in the real-world dataset is around 12 mins, this overhead is acceptable.

5.7.3 Scalable incremental clustering

Pruned nearest neighbor search. Figures 5.13a and 5.13b show computation reduction

when inserting or querying an SVS given different index sizes, measured by the number of

SVSs with the index. For SVS query, the nearest neighbor search is the only trigger for

OMD computation, and our pruning approach can reduce the computation by 92%. For

SVS insertion, checking for masking and updating the cost of internal nodes incur additional

OMD calculations, but pruning still reduces the total OMD computation by 80%.

Incremental SVS clustering. Figure 5.12 compares Video-zilla’s incremental cluster-

ing algorithm with the commonly-used hierarchical agglomerative clustering (HAC) algo-

rithms [246] with differing linkage choices. All algorithms achieve similar clustering accu-

racy. Every incoming SVS triggers a clustering attempt to update the representative SVSs

of the index. The overhead of the three HAC algorithms increases quadratically with the

size of the index, while that of Video-zilla only linearly by avoiding reconstructing the whole

tree every time.
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Comparison with M-tree. SVS organization leverages a hierarchical incremental clus-

tering tree, which is a well-studied area. We compare our method (PERCH with OMD

approximation, or “PERCH-OMD”) with M-Tree [247], an efficient incremental indexing

method for similarity search in a metric space. Using the synthesized dataset, we perform

a 100-nearest-SVS search for 10 randomly selected SVSs. We choose 100 because this is the

ground-truth cluster size for each SVS cluster in the synthesized dataset.

In Figure 5.14, the x-axis represents the maximum number of elements in a single node

of an M-Tree, which we refer to as the maximum node size, and the y-axis represents the

number of OMD computation needed. For comparison, the dashed line shows the number

of OMD computation needed when using PERCH-OMD.

Both PERCH-OMD and M-tree can derive the correct set of 100 nearest SVSs, but M-

tree incurs extra OMD computation. This shows that the choice of the maximum node size

can heavily influence the number of OMD computation needed. Further, this choice depends

on the number of SVSs within a cluster, which varies with the actual video feeds. The main

reason is that data structures like M-tree still suffer from the masking effect mentioned in

Section 5.4. Elements which belong to the same SVS cluster can be contained in disjoint

subtrees, while some SVSs that should belong to different clusters are included in the same

subtree. The extra OMD computation arises from comparing with these extra elements.

The original M-tree algorithm may also suffer from potential overlap between different leaf

nodes. However, this overlap problem appears to be addressed in most open-source M-tree

implementations.

Comparison with approximate nearest neighbor (ANN) search. Since PERCH-

OMD performs precise nearest neighbor search, we also compare it with its approximate

counterparts. Specifically, we compare with a state-of-the-art ANN algorithm [248]. This

is one of the most efficient ANN algorithms [249], with a well-documented open-source

toolkit [250], including built-in support for the EMD metric space.

As before, we perform a 100-nearest-SVS search for 10 randomly selected SVSs in the

synthesized dataset. The average recall for this ANN algorithm is 97.8%, which is even

slightly better than reported in the original paper (92.5%). This is due to the difference in

the dataset. Still, we can observe accuracy loss when applying ANN. In contrast, PERCH-
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Figure 5.15: The impact of K

OMD considers strictly nearest neighbors, which are by nature more accurate than ANN.

Efficiency-wise, given we are not dealing with a huge number of SVSs, we do not necessarily

need the “most computationally efficient” algorithm.

Index building overhead. For an index that contains 1000 SVSs in our synthesized

dataset, the overall index size is less than 5 MB. The corresponding video length is around

200 hours, whose data size can be more than 20 GB if the video data are captured in 640

× 480 pixels. The overall index building time is less than 20 minutes, which is negligible

compared to the total length of video.

The hierarchical index construction in Video-zilla naturally lends to distributed index-

ing. In contrast, building a single, flat centralized index would send more raw data to a

centralized point. We therefore compare the amount of data sent for index construction

between these two approaches. Assuming key frame selection and feature extraction done

at the edge, we incrementally add 20 camera feeds to the system, each containing 100 SVSs

randomly selected from the synthesized dataset. By only sending representative SVSs,

adopting a hierarchical index can reduce the network traffic between the cloud and edge

servers by a factor of 19.
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5.7.4 Case study: Direct object identification

Direct object identification queries follow the format of find image frames that contain object

X within all streams. We let X be fire hydrant, boat, or train. This is because the object

of interest should be contained in some but not all videos. Searching for giraffe or person

would not make sense, as no videos in our datasets contain giraffes and virtually all contain

people. We generate 50 query instances, taken from the real-world videos, per query type.

We compare Video-zilla with two state-of-the-art correlation analysis mechanisms in

large-scale video analytic systems, per-camera top-k indexing in FOCUS [204] and lever-

aging spatial-temporal correlation between cameras in Spatula [205]. FOCUS optimizes

the processing latency of individual camera feed by building an approximate frame-level

index per feed at ingestion time to reduce query time later. Spatula speeds up multi-feed

analytics by leveraging the insight that objects found in one camera feed will only appear

on nearby cameras with spatial-temporal correlation with the first camera. Both systems

include additional system optimizations such as CNN compression to reduce ingestion over-

head and pruning errors via replay search that are orthogonal to Video-zilla, so we focus on

comparing the query quality and latency for Video-zilla based on SVSs vs using the approx-

imate frame-level index in FOCUS or the spatial-temporal correlation between cameras in

Spatula. Specifically, we compare the intra-camera processing of Video-zilla to using the

per-camera top-k index and the inter -camera processing of Video-zilla to a Spatula-like

system leveraging spatial-temporal correlation. Unless otherwise stated, all queries in this

section achieve at least 95% precision and recall.

Video-zilla vs per-camera top-k. For each camera, we build an approximate top-k

index for the incoming image frames. An incoming query will be directly dispatched to the

top-k indices of all camera feeds, instead of only to the inter-camera index in Video-zilla.

To ensure the performance is not affected by unrelated factors, we use the same ResNet50

used in Video-zilla feature extractor with the additional softmax layer to generate the top-

k index, and we use the same set of video frames to build indices for both systems. This

way, the ingestion overhead of both systems is roughly the same. As in [204], we set k = 3

for all top-k indices, i.e., each object in a streaming video will be indexed by the top 3
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possible object classes in the corresponding top-k index. We adopt the same Yolo-v2 as the

ground-truth CNN in [204].1 The ground-truth CNN is the main contributor to the query

time.

We measure the bottleneck query time (Figure 5.16), i.e., the time taken for the slowest

intra-camera index to return results. This is because the end-to-end query time is bottle-

necked by this even when we parallelize query processing of intra-camera indices.

There are two components of the query processing time: one is searching for the right

frames, and the other is processing those frames to complete the query. By carefully indexing

video data, Video-zilla can minimize the search time and thus reduce the total number of

frames processed in the latter part, seen in a decrease in the cumulative GPU time, but

does not affect the processing time in the slowest intra-camera index. Video-zilla tries to

reduce the computation time on unnecessary video data, not to reduce the essential search

time.

Figure 5.17 shows the cumulative GPU time across all intra-camera indices. We do

not show the cumulative CPU time here as GPU is typically the resource bottleneck for

deep learning inference workloads. While achieving nearly the same query time for all types

queries, Video-zilla reduces the cumulative GPU time by 14× compared to the top-k indices.

Viewed differently, Video-zilla can support up to 14× more video queries simultaneously

while incurring negligible accuracy loss.

The root cause is that a frame-level top-k index does not capture enough feed-level

information, whereas the hierarchical index of SVSs in Video-zilla does. The top-k index

incurs unnecessary computation if it mis-classifies objects, whereas Video-zilla is more ro-

bust. Careful inspection of the top-k indices for each camera feed suggests that a train

object can be found even in the top-3 index of a video captured in downtown Manhattan.

An actual query therefore causes the system to unnecessarily search through the Manhat-

tan feed. Figure 5.18 illustrates this mis-classification effect. For the same video segment,

Video-zilla will identify three object classes, but the top-k index has 4 classes, the fourth

being “other”. This “other” class is the source of extra, unnecessary computation in a top-

1. We also tried YOLO-v3 and YOLO-v4, and saw little difference in the object detection accuracy for
our datasets. However, it is much faster to run v2.

81



fire hydrant boat train
Query type

0

0.5

1

N
or

m
al

iz
ed

qu
er

y 
tim

e

Video-zilla
Top-k

Figure 5.16: Bottleneck query time

fire hydrant boat train
Query type

0

5

10

15

N
or

m
al

iz
ed

cu
m

ul
at

iv
e

G
P

U
 ti

m
e Video-zilla

Top-k

Figure 5.17: Total GPU time
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Figure 5.18: Feature clusters in the same video

k index, as any video frames associated with this class will be examined during an actual

query.

We use K to represent the number of classes that can be recognized in a top-k index.

Setting a proper K value can help reduce the mis-classification effect. In our case, we set K

to 5. Decreasing K from 5 to a lower value will clearly amplify the mis-classification effect

in a top-k index. Therefore we increase K from 5 to 6, 7 and 8. Figure 5.15 shows the

impact of the K value on the cumulative GPU time. However, identifying the right K value

is non-trivial and requires careful inspection of the specific video feed. The whole point of

Video-zilla is to automatically organize data based on its semantics instead. Furthermore,

a larger K requires a more complicated recognition model, hence larger processing overhead

at ingestion time.

Video-zilla vs spatial-temporal correlation. The main purpose is to show the benefits

and caveats of using spatial-temporal correlation compared to the correlation captured

in Video-zilla. Therefore, we use the same intra-camera query mechanism in Video-zilla.

For the inter-camera part, instead of dispatching queries based on the SVS similarity, we

dispatch queries based on the spatial-temporal correlation between the camera that captured
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the image and other cameras within the system. For example, for a fire hydrant query that

is captured by an in-vehicle camera in New York City, we will only search other cameras

located in NYC.

Both camera-level filtering approaches achieve around 95% query precision performance.

However, adopting spatial-temporal correlation leads to higher false negative rates (FNRs)

(Figure 5.19), suggesting the search space is pruned too aggressively. This is because spatial-

temporal correlation is a coarse-grained video similarity.
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Figure 5.19: Performance variation with indexing schemes and feature extractors.

Uncertainty and error rates. Figure 5.19 shows the false positive rates (FPR) and false

negative rates (FNR) for various queries. Recall = 1−FNR. We compare indexing schemes

including “classifier-only” (no indexing), per-camera top-k, spatial-temporal correlation (S-

T), Video-zilla, and a version of Video-zilla without the inter-camera index, where queries

will be sent to all intra-camera indices. Data points corresponding to the same scheme are

linked with dash lines. We experiment with three feature extractors.

When using the state-of-the-art feature extractors like ResNet-34 and ResNet-50, Video-

zilla incurs consistent FNR losses (up to 3%) and up to 80% FPR reduction compared to

classifier only. The FPR reduction shows Video-zilla prunes the search space effectively.

S-T achieves similar FPRs with spatial-temporal pruning. However, that pruning is too

aggressive, hence dramatically increasing the FNRs.

With the less accurate VGG-16 as the feature extractor, error rates vary by the query

goal. The FNR increases for fire hydrant because VGG-16 classifies fire hydrants less accu-

rately than it classifies boats and trains, which propagates to inaccurate clustering. Inter-

estingly, intra only hardly suffers from increased FNR compared to the top-k index. This

suggests a way to mitigate the performance disparity between query types by disabling the
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Figure 5.20: Tuning Video-zilla.

inter-camera index.

To summarize, the following factors affect the Video-zilla performance: First, the FNR

is mainly constrained by the feature extractor accuracy; Second, using intra-camera indices

only achieves lower FNRs, while a two-level index structure achieves lower FPRs and better

processing scalability; Third, certain object types can compound the effect of inaccurate

feature extractors, but reducing the number of hierarchies can mitigate the FNR disparity

across object types; finally, the threshold of the decision boundary to determine query hit

can be adjusted, and wider boundaries typically mean lower FNRs and higher FPRs.

Scalability and accuracy trade-off. Figure 5.20 shows the scalability (in terms of nor-

malized cumulative GPU time), precision and recall trade-off for fire hydrant queries as

the number of clusters varies within an inter-camera index for Video-zilla. Boat and train

queries exhibit similar trade-offs. The red dashed line represents the number of clusters

calculated by maximizing the silhouette value on the real-world dataset. We do not vary

the cluster number in the intra-camera indices because manually setting that number causes

random performance changes in the system. The precision generally increases and flattens

around the chosen number of clusters. It is in fact convex, and will decrease when there are

so many clusters that each SVS forms a distinct cluster. Conversely, recall is concave, and

is highest when there are very few or many clusters. Scalability is similarly concave.
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These results suggest that the precision/recall can be tuned by adjusting the number of

SVSs clusters within an inter-camera index. More clusters initially increase precision and

decrease recall by aggressively eliminating irrelevant video frames, including some relevant

frames with few objects. The aggressive pruning also reduces the GPU time dramatically.

As the cluster number increases further, pruning becomes less effective; more SVSs are

examined, which increases both recall and the GPU time.

5.7.5 Case study: Specialized DNN training

A clustering query follows the format of find all semantic video streams that are semantically

similar to a video stream Y. In this section, we highlight the potential of this novel query

primitive by showcasing its application to specialized neural network training. We compare

the training process based on the results of the clustering query compared to leveraging

spatial-correlation among cameras. The latter is the state-of-the-art camera correlation

model [203]. We use the 20 downtown in-vehicle videos as our dataset, as there is no

obvious spatial-temporal correlation among others.

We adopt a method similar to the approach in [72] that only retrains the first and last

three layers of a model, given limited size of the training dataset. In our case, we only select

k classes of objects that cover 95% of the image frames within the whole dataset. Other

classes will be labeled as an “Other” class. Each class uses 500 images as the training data.

We use four models pre-trained on ImageNet in Keras [236] as the base models: Mo-

bileNetV2, ResNet50, ResNet101, InceptionV3, which cover a range of accuracy and infer-

ence time trade-off. 50 SVSs are selected from our hierarchical index built on top of the 20

downtown videos. For Video-zilla, we get a list of video streams that belong to the same

cluster, and use them as the training data. For spatial-correlation, we treat the videos

captured within the same city as spatially-correlated. Using the output of YoloV2 as the

ground truth, we compare the average top-2 classification accuracy for each trained net-

work. Video-zilla’s automatic clustering is even slightly better (around 1%) than manual

labeling.

By clustering SVSs based on OMD, we successfully cluster video streams that share

similar classes of objects and have objects within the same class visually similar to one
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other. Both factors can be beneficial when training a specialized neural network. The

clustering query by itself can be a novel tool to find the correlation among different video

streams.

Manual labeling (tagging feeds with location) is required to leverage spatial-temporal

correlation, but Video-zilla can automate this process by identifying semantic correlation.

Further, manual labeling also implies some manual thresholding. For example, similar cars

should appear in cameras at consecutive intersections or 10 exits apart on a highway. These

cameras may or may not be labeled as spatially similar, but Video-zilla will recognize those.

5.7.6 Case study: Proactive video archiving

By capturing the correlation between different SVSs, Video-zilla can enable a proactive

video archival service. For example, consider the train-station camera feed mentioned ear-

lier. Most video frames capture empty stations which convey little information. Once a feed

is divided into SVS clusters corresponding to “train arrival”, “train departure” and “empty

station”, the “empty station” cluster can be aggressively archived. For any incoming SVS,

we can estimate its potential hit rate based on the hit rate of other SVSs in the same cluster,

and proactively archive low-information SVSs (for example, to some secondary storage).

For the same query objects considered earlier, we consider the ratio of total temporal

length of SVSs that contain each type of queries to the overall video data length. We also

take a union of all the SVSs that contain any one of the objects of interest, which emulates

the case when an application needs to search for different objects. We assume each object

will be queried at the same frequency, since the hit or miss behavior should not change much

whether an application query for the same object once or multiple times. What matters is

how many different objects are queried, not how often the same (type of) object is queried.

The ratio for fire hydrant, boat, train and combined case is 1.5%, 2.0%, 26.3% and 29.1%

respectively. Even considering the union query case, less than 1/3 length of video data will

be retrieved. This suggests that the storage needs for the video feeds can be reduced by

more than 70% by aggressively archiving low-information video segments.
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5.8 Related work

We are not aware of previous video indexing work using the collective semantics of an entire

video feed. Related work otherwise revolves around video indexing, and video analytics

optimizations.

Video indexing and retrieval. There is a rich literature on content-based video indexing

and retrieval [251–253], mainly on index design for specific query types, such as shot bound-

ary detection [254], key frame extraction [255], semantic search [256] and spatio-temporal

based retrieval [257, 258]. These leverage frame-level or feed-level video data abstractions.

Video-zilla is orthogonal, since we focus on a new abstraction for video data, SVS, which

then lends to an effective index.

Video-zilla can be seen as a form of explanation database [206–209] for video data.

Index structures have been widely used to reduce query latency in conventional SQL

databases [259], key-value stores [260], graph databases [261] and many others [262]. Re-

cent work VStore [263] and VSS [264] aim to design the storage subsystem of a video data

management system (VDBMS), but still operate on the raw video data directly. As a novel

abstraction to capture the inherent similarity within video data, SVS provides new ways to

understand and hence efficiently index video data.

Further, existing semantic video search indices [256, 265, 266] are designed for offline

video databases, where optimizations rely on the ability to process the data in multiple

passes. In contrast, Video-zilla can work for live video feeds, where the main challenges of

real-time ingestion and efficient analysis of streaming data arise from large amounts of data

continuously arriving and processed in a single pass.

Video analytics systems. Thanks to advances in machine learning, recent video analyt-

ics systems have transformed video content analysis from simple information retrieval to

sophisticated decision making. Some [267,268] focus on video data management for emerg-

ing applications, like virtual reality and multi-perspective video analytics, while most [36,

242,243,263,269–273] address the inherent video processing complexity by providing system

support for video encoding and decoding and parallel and distributed processing. Under-

standing the semantic meaning of video data is left to upper-level applications.
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Recognizing the inherent redundancy within video data, more recent efforts explore

smarter video analytics approaches by understanding the video semantics. Noscope [202]

and FOCUS [204] both reduce per-feed query cost, the former with cheap per-camera filters

and the latter by applying a specialized and compressed DNN per video camera at ingestion.

Spatula [205] optimizes cross-camera video analytics by exploiting spatial-temporal locality

in a multi-camera deployment, aiming at enabling effective object tracking functionality.

In contrast, the notion of semantic video streams (SVS) introduces a new dimension to

characterize the correlation among video data and thus provides new optimization oppor-

tunities for object identification applications [274]. Further, all these systems implement

frame analysis as part of the analytics pipeline, whereas Video-zilla acts as a generic index-

ing layer that can help simplify the development effort for new analytics applications by

supporting common indexing operations and query APIs.

5.9 Summary

In this chapter, we propose a notion of semantic video stream (SVS) that exposes the

semantic content of the video feeds and captures object distribution across a set of frames.

This abstraction balances the expressiveness of frame-level analysis and the efficiency of

camera-level aggregation. On this basis, we design Video-zilla, an indexing layer interposed

between a video store and analytics applications. Video-zilla builds a hierarchical index

to capture of the correlation between SVS instances both within and across camera feeds,

so as to dramatically narrow down the search space for common queries. We implement

Video-zilla as well as proof-of-concept query case studies for object identification, video

clustering, and archival. Video-zilla lends to almost constant scalability with the number of

video feeds. We believe the notion of SVS and the hierarchical index of SVS correlation can

also be applied to other domains witnessing large amounts of correlated but unstructured

data.
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Chapter 6

Linkshare: Device-Centric Control

for Concurrent and Continuous

Mobile-Cloud Interactions

6.1 Introduction

Mobile applications are becoming increasingly sophisticated, enhancing our interaction with

the environment or providing cognitive assistance (Section 6.2). Some scenarios might in-

volve multiple concurrent applications or modules working together (Google Tango [30],

Gabriel [31] and DeepEye [32]), where these modules are individually computationally in-

tensive and require computation offloading. Worse, these applications embody a vision

of continuous operations, further straining the already limited resources on the mobile

devices. These represent canonical examples of multiple concurrent and continuous mobile-

cloud/edge sessions.

Although there has been a multitude of computation offloading work over the past fifteen

years [12–16,63–71], existing approaches are limited by intra-application operations only or

cloud-centric scheduling.

Instead, the emerging multi-application scenarios can exhibit a heterogeneous network

and server execution model, involving different server backends. This suggests different
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perceived network latencies and server processing capabilities across applications. Further,

they need to share the wireless interfaces, which can only be controlled at the device.

Cloud-centric management is no longer sufficient in this concurrent mobile-cloud interaction

paradigm. We need to shift the control to a device-driven paradigm. In other words, some

operating system level coordination is needed on the mobile side to adequately support the

prospects of multi-application offloading.

An analysis of the current mainstream offloading mechanisms suggests that the main

consideration is scheduling the network transfer to enable remote computation. In partic-

ular, the bottleneck is often the transfer along the first wireless hop. This is important

given the advent of mobile edge computing promising to bring the remote server closer.

However, the combination of application workloads, network transfer time, and the server

processing time complicates the picture. Most of the canonical applications have soft real-

time constraints for user interaction. This requires a balancing act between minimizing the

end-to-end processing time and meeting deadlines.

For example, the most intuitive approaches of minimizing the end-to-end processing

time (Shortest Job First, or SJF) and earliest deadline first (EDF) scheduling both turn

out to be inadequate. The former (SJF) gives no guarantee about meeting deadlines and can

cause fairness issues (and even starvation). This is because minimizing processing times can

penalize a job as a result of another job using a less powerful backend. EDF, on the other

hand, cannot handle heavy-tailed network transfer time distribution. Section 6.3 analyzes

this in detail and suggests adding limited sharing to EDF (EDF-LS). Essentially, when we

detect a large network transfer, we serve the next two jobs queued in a round-robin fashion.

Following the above study, we build a system-level scheduler service, LinkShare (Sec-

tion 6.4) and implement it on Android (Section 6.4.3). LinkShare wraps over the operating

system scheduler to coordinate among multiple offloading requests, incorporating the EDF-

LS algorithm.

Using benchmark applications representing face recognition, optical character recogni-

tion, speech recognition, and license plate recognition, we find that this additional scheduling

decision is essential, and EDF-LS reduces the deadline miss rate by up to 30% compared to

the baseline EDF (Section 6.5). When the workload is light, EDF-LS hardly incurs penalty
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from sharing, and in fact often outperforms EDF. Even if the network bandwidth increases,

the deadline concern does not disappear, especially alongside improved server capability.

Although the specific system is motivated by multiple mobile offloading jobs, the issues

discussed and the system architecture are generic to concurrent mobile-cloud interactions.

In fact, any concurrent, inter-application network-bound requests could benefit from the

LinkShare service. More broadly, LinkShare as a framework is also applicable when the

“offloading” destination is an edge server or a nearby device instead. It is also amenable

to other scheduling algorithms as warranted by the application requirements. We believe

LinkShare represents a first step towards coordinating an IoT ecosystem tethered to the

mobile device.

In summary, this work studies concurrent and continuous mobile-cloud interactions in-

volving different server backends and argues for a device-centric control mechanism. Specif-

ically, our contribution is three-fold.

First, we analyze the scheduling complexity arising from concurrent offloading work-

loads. Our study points to the need to balance between meeting application deadlines

and avoiding blocking heavy workloads. We adopt limited sharing in addition to Earliest

Deadline First.

Second, we build a general framework as a system-level service, LinkShare, that extends

the operating system scheduler for concurrent inter-application network-bound requests and

incorporates the above scheduling algorithm.

Third, extensive evaluation of an Android implementation of LinkShare confirms the

importance of this additional scheduler and shows that EDF-LS achieves the balancing

goal.

6.2 Motivation

6.2.1 Emerging Application Scenarios

Mobile Augmented Reality (AR) Games. Mobile AR games have been showing their

potential on mobile platforms. One example is the dominoes game included in the Google

Tango [30] project. Instead of getting a set of dominoes at hand, users can place virtual
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dominoes in the real world and arrange them through their mobile phones. It requires

the application to understand the user’s surroundings, remember the exact locations of the

dominoes already placed, and display the virtual dominoes on the screen in the meantime.

To enable all these functions, motion tracking, depth perception, area learning and video

rendering modules are needed. The first two modules help with understanding the envi-

ronment, while area learning helps with remembering the previous operations and video

rendering concurrently displays the virtual dominoes. All these modules coordinate with

one another to make the dominoes game work correctly.

Wearable Cognitive Assistance. Wearable devices for cognitive assistance have been

suggested for more than a decade [275]. More recently, Gabriel [31] provides interactive

cognitive assistance using Google Glass to help people suffering from cognitive decline, such

as those with Alzheimer’s disease. The patients are often unable to remember the names of

friends or remember to perform daily tasks. When looking at a person that the user might

know, the assistant will tell the user the name of the person immediately. When looking

at his/her plants, it will remind him/her to water them. These two scenarios require face

recognition and object recognition respectively. As we cannot predict when the user may

meet with a friend or walk around his/her garden, these two modules must run continuously

and simultaneously.

Smart Video Surveillance. Smart home has become a popular concept in recent years,

and smart video surveillance is a key technology to ensure the security in smart homes.

According to [276], the key to security is situation awareness. The system needs to keep

track of “who are the people in a space?” and “what are the subjects in the space doing?”.

To answer these questions, learning techniques like face recognition, object recognition,

activity tracking are widely employed. To quote one report [277], “one of the biggest

factors assisting market growth” is the real-time access and monitoring capability. All the

above modules need to run concurrently to generate comprehensive real-time alerts.

Observations. Common across these examples, they are all computation intensive and

latency sensitive, and have a continuous flavor. More important, there are multiple modules

either within a single application or across multiple applications. Take the face recognition

module as an example, the average execution time on Google Glass, a Samsung Galaxy
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Android smartphone, and a remote server are 2912, 537, and 41 ms respectively [26]. To

maintain a high refresh rate for an interactive face recognition application, it is impractical

for all these modules to run entirely on the local device.

6.2.2 Limited Execution Model Currently

The de facto approach to handling computation-intensive mobile applications is to offload

computation to the cloud (or, more recently, to the edge). However, the current execution

model typically focuses on only one computation-intensive workload running at a time, and

most optimizations are applied within a single application. This single-workload model

does not suit the emerging applications described above, whether commercialized applica-

tions like Google Tango (multiple modules running concurrently within the same applica-

tion), or research prototypes such as Gabriel (multiple applications running concurrently

within a single device), DeepEye [32](multiple deep vision models running concurrently),

and MCDNN [72] (multiple deep neural network applications running concurrently, sharing

the same library).

Instead, system-level cross-application coordination support is needed to manage simul-

taneous execution of these applications, but existing approaches are still limited to specific

scenarios and do not address concurrently offloading to different backend servers. Tango

takes a hardware approach without offloading. MCDNN operates at the DNN library level,

aiming to process jobs locally as much as possible. DeepEye limits its use cases to multiple

deep vision applications. Gabriel is currently designed for concurrent mobile applications

supported by a common backend server and takes a cloud-centric approach.

6.2.3 Towards device-centric scheduling

The entire offloading job involves local processing and/or data transfer to the remote server

followed by remote processing. Therefore, we need to consider sharing and scheduling for

each component.

With concurrent offloading, different apps may use distinct backend servers, due to

either technical or business-related reasons. For an example of the latter, consider the two

mainstream public cloud platforms: Amazon EC2 and Google Compute Engine (GCE).
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Price-wise, for the same server computation capacity, GCE is cheaper than Amazon EC2.

However, the EC2 deployment covers more datacenters around the world (22 total, 7 in the

US) compared to GCE (21 total, 6 in the US). Therefore, a cost conscious developer who

only needs to provide regional service may opt for a server on GCE, while another developer

aiming for a better service coverage worldwide may favor EC2.

We now face a new situation where the control needs to be shifted to the mobile device.

Since the concurrent applications and their backend servers are likely heterogeneous, such

device-driven control really matters.

Complicating the picture even further, applications have different service requirements,

manifested in deadlines for real-time user interactions [278]. On-device scheduling can make

a huge difference. Even a simple reordering of the offloading requests could dramatically

improve the performance of one module without hurting the others. We will study specific

examples next.

6.3 Scheduling offloading jobs

6.3.1 What to schedule on-device

The anatomy of an offloading job. The processing of a job involving offloading includes

several components: potentially some local processing on the mobile device, transferring the

data to the cloud, and processing on the remote server(s). The second component can be

further split into transfer on the wireless access link and on the wired path to the server. The

split between local and remote processing is specific to the offloading mechanism adopted

in the application.

Within these components, the first component is traditionally managed by the operating

system scheduler and access to the wireless link is also initiated by the mobile device. The

remaining components, transfer on the wired path and the server processing, are beyond

the control of the mobile device. Therefore, the main scheduling decision in our context

concerns sharing the wireless link between concurrent offloading workloads.

Offloading mechanism and scheduling. Existing main-stream offloading mechanisms

are method-based [12,13] or, similarly, based on small execution units [16]. In other words,
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Figure 6.1: Processing Time Breakdown

the whole application process can be divided into many execution units, and each unit is

run either locally or remotely.

Consider face recognition. The recognition function is treated as a standalone method

in MAUI [12]. Invoking this method on a single frame from the video feed comprises an

execution unit. When this application operates on a video feed, each frame is processed

in its entirety either locally or remotely. Therefore, we can decouple the decision between

local vs remote and how to order the remote ones.

To summarize, an offloading scheduler needs to make two decisions: how many jobs to

process locally (then leave to the OS to schedule), and how to order the offloading jobs.

Since the first problem has been studied extensively [63–70], we focus on the second problem

in this paper.

6.3.2 The complexity of offloading

The offloading performance is affected by multiple factors. The server capability determines

the remote processing time. The server’s physical location along with the network conditions

affect the data transfer time. In particular, wireless links are susceptible to interference and

multipath fading.

Figure 6.1 shows the processing time breakdown of our benchmark applications, assum-

ing a 10 Mbps network upload speed. For each application, the point on the left shows the

remote processing time, while the point on the right shows the end-to-end processing time

(i.e., with data transfer time added to the remote processing time). The timing results are

averaged over 500 runs per application. The application and experiment setups are detailed
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Figure 6.2: The impact of server capacity

in Section 6.5.1.

We can see that plate recognition is clearly computation bound, whereas optical char-

acter recognition (OCR) is network bound. While face recognition, plate recognition and

OCR are expected to operate on the same image frame1, face recognition does not need the

entire frame, locally or remotely. The built-in face detection function in the vision library

can narrow down the region of interest before handing the recognition application a subset

of the frame containing these regions only. Therefore, the input size for face recognition is

much smaller than the entire frame.

We then measure the processing times on two different servers, S1 and S2. S1 has an

Intel Core i5-4570 processor (Quad Core, 6 MB Cache, 3.2 GHz) and 8 GB 1600 MHz

DDR3 Memory. This is the same server used for the previous figure and in our evaluation

throughout. S2 is a workstation with an Intel Core i5-4430 Processor (Quad Core, 6 MB

Cache, 3.0 GHz) and 16 GB 1600 MHz DDR3 Memory. We randomly select 500 data

samples from the input dataset and Figure 6.2 shows the processing times of the benchmark

applications on the two servers.

Although the server specifications appear similar, the processing time for face recogni-

tion and plate recognition differ by almost 25%. For face recognition, the processing time

difference is comparable to the data transfer time.

Since the processing times across applications differ anyway, offloading the same appli-

cation to distinct servers is analogous to offloading different applications to the same server.

1. As explained in Section 6.5.1, we cannot train in real time, so the applications are fed with synthetic
video feeds. The input data for plate recognition and OCR are different, hence the transfer times differ.
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Therefore, we implicitly capture the offloading complexity mentioned above by studying a

suite of applications.

One issue remains, however. The benchmark applications are representative of the

continuous applications described in Section 6.2, for which there is an implicit deadline

requirement for processing to ensure smooth user interaction. Meeting deadlines can be

more important than optimizing for the end-to-end processing time, though the latter is an

essential contributing factor to the former. We next explore suitable scheduling metrics to

capture desirable performance goals.

6.3.3 Scheduling metrics and algorithms

Recall that our main goal is to schedule data transfer and hence order the offloading requests.

Scheduling is a well-studied topic. Common metrics and criteria include fairness, minimizing

job time (in our case, this means the shortest network transfer time, or minimal network

queuing delay), and deadline-awareness for real-time jobs. We consider these metrics and

the associated standard algorithms in turn. Note that there are multiple definitions for

fairness. Since we are concerned with a wireless link, we use the common notion of slot-

based fairness, which is also consistent with round-robin in the OS.

Fair sharing vs serial execution. Perhaps one of the simplest scheduling approaches

is to serve all jobs in parallel, i.e., serving the data transfers from all offloading jobs si-

multaneously using technique like parallel TCP [279]. Each application can get the same

share of the bandwidth, which is referred to as fair sharing. Instead, we argue for sequential

offloading (as adopted by First-Come-First-Serve, or FCFS) instead of fair sharing.

Under blocking-based offloading scenarios, a remote execution process cannot make

progress until it has received all the data. Consider a scenario where the concurrent of-

floading tasks are from speech recognition and plate recognition, the former arriving first.

Figure 6.3a compares the end-to-end processing time for each task (the sum of the network

transfer time and the computation time) between fair sharing and FCFS, the latter clearly

outperforming the former. This is mainly because fair sharing incurs higher queuing delay

for each task and hence a much higher average network transfer time of 84 ms, 30% more

than that of FCFS. This in fact reconfirms that fairness often does not align with optimal
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Figure 6.3: The impact of scheduling algorithms on the end-to-end processing time

performance [280].

Therefore, serial execution can achieve better average application processing times by

reducing the average network transfer times.

To pre-empt or not to. The next question is whether to pre-empt any jobs. Devices

are not limited to relatively powerful mobile phones, and could be embedded devices with

limited memory and high context-switching overhead. For these situations, the cost of

moving state between memory and storage to pre-empt one process and bring in the next

could be prohibitive. Therefore, we focus on non-pre-emptive scheduling techniques that can

be applied across a range of devices.

Processing throughput vs deadline. To optimize for performance, perhaps the most

intuitive approaches are minimizing the job completion time and meeting job deadlines

(in our case, bounding the end-to-end processing time). Correspondingly, the canonical

scheduling algorithms are Shortest Job First (SJF) and Earliest Deadline First (EDF).

In particular, it might appear natural to minimize the end-to-end processing time, since

this could be directly achieved with SJF and appear to lead to meeting deadlines. However,

this approach can unintentionally penalize one offloading job as a result of another job

using a less powerful backend. Therefore, the SJF decision should be based on minimizing

the network transfer time alone. For example, if we offload OCR and plate recognition

concurrently, according to the processing time breakdown in Figure 6.1, the scheduler based

on the shortest end-to-end processing time will schedule plate recognition first, and produce

179 ms average end-to-end processing time, while that of the shortest network transfer time

will choose the reverse order of offloading, which will produce 160 ms end-to-end processing

time.

Consider the scenario of concurrent speech recognition and plate recognition jobs again.
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Figure 6.3b shows that, regarding the average end-to-end processing time, SJF outperforms

EDF by only 6%. However, if both had a 150 ms processing deadline requirement, both

meet the deadlines under EDF, while only plate recognition manages so when using SJF.

Therefore, the scheduling decision should primarily depend on the network transfer time

instead of the end-to-end processing time; further, if the main scheduling concern is deadline-

awareness, minimizing the average processing time with SJF does not work well even in the

simplest two-app scenarios. This is despite the fact that a low end-to-end processing time

is essential to meet the deadline.

The tale of the tail. So far, EDF appears to be a winner. However, one consequence of

its non-pre-emptive nature is tail latency. EDF is not tail-robust [281], i.e., its performance

will suffer when the network transfer times of different applications follow a heavy-tail

distribution.

Now consider a face recognition job and an OCR job in the queue. Figure 6.3c shows

that both meet their deadlines (150 ms, marked by the vertical dashed line) under both fair

sharing and EDF. However, the average end-to-end performance of face recognition suffers

under EDF. This is mainly because the network transfer time of OCR is disportionately

large compared to that for face recognition. Although OCR should be prioritized given

the EDF policy, it appears that fair sharing is the right approach instead. Lack of tail-

robustness manifests when the heavy workload essentially blocks the light workload due to

non-preemptive scheduling.

Therefore, EDF suffers when the network transfer time follows a heavy-tail distribution,

but sharing can mitigate this problem.

Summary. To conclude this study, the winning scheduling objective appears to be priori-

tizing meeting deadlines but also trying to be tail-robust at the same time.

6.3.4 EDF with Limited Sharing

To balance the requirements of meeting application deadlines and avoiding a long tail-

latency for network transfer, we augment Earliest Deadline First with Limited Sharing

(EDF-LS). The idea is very simple. EDF-LS starts with EDF as the baseline while dy-

namically determining whether to multiplex the shared link between several transfers. To
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simplify further, we only consider two consecutive transfer tasks.

Suppose the two consecutive tasks in the queue, T1 and T2, are already ordered based

on EDF. Their estimated network transfer times are N1 and N2 respectively. The limited

sharing will be enabled if and only if the following condition holds: N1 > S ·N2. S captures

how much the heavy-transfer task is affecting the other, hence whether sharing is waranted.

We set S = 5 empirically (Section 6.5.4).

This way, our scheduling algorithm can perform like EDF when the network transfer

distribution is short-tailed. When a large transfer task arrives, however, the sharing enabled

can allow small tasks to make progress as well. Note that sharing carries a cost, and therefore

limiting sharing is essential to ensure the overall performance.

6.3.5 Discussion

The choice of offloading destination. Although the above scheduling algorithm is set in

the specific context of current mobile offloading practice, many issues to consider are generic

to multiple concurrent offloading sessions. The destinations can be a nearby (edge) server,

the cloud, or even another nearby mobile device. For example, we can envisage offloading

from a phone to a pad, such as offloading graphics rendering for multi-party gaming. There

can also be more complicated link sharing mechanisms. The above expressions can be

adjusted to reflect more general offloading scenarios.

Intra-application dependencies. So far we have assumed that the individual modules

within an application are independent from one another. It is conceivable that two modules

to be offloaded may instead be logically correlated. For example, one module may need to

wait for the result from another module. We believe such correlation should be managed by

the application itself by setting appropriate per-module deadlines to reflect the correlation,

and therefore we do not consider such dependencies in this paper.

Fending off greedy applications. Another implicit assumption in our discussion is that

each application will suggest reasonable deadlines for their offloading requests. If instead, a

greedy (or malicious) application wants to game the system, it can intentionally set a tight

deadline to gain more network resource. One solution to counter this is to track the variance

of the end-to-end processing time distribution of each application and infer whether any
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Figure 6.4: LinkShare architecture.

application had been favored throughout.

6.4 LinkShare as a service

We next build a system level service, LinkShare, that coordinates multiple offloading jobs.

Fundamentally, LinkShare is an extension to the operating system scheduler. It takes into

account the wireless link bandwidth, remote processing capability, application processing

deadline requirements and their effects on the actual end-to-end processing times. To sup-

port the central goal of making scheduling decisions, it collects information of past runs,

estimates future execution times, and computes an appropriate schedule.
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LinkShare sits between the applications and the operating system. Figure 6.4 shows

the system architecture. There are two control paths: application driven scheduling and

background monitoring. We describe the individual modules next.

Note that our system architecture is independent of the exact scheduling algorithms.

Different scheduling algorithms can be substituted if needed.

6.4.1 Application driven scheduling

The application first decides whether to offload any workload remotely using an existing

offloading runtime or its custom decision module, as discussed in Section 6.3.1. If offloading

is needed, it sends the request to LinkShare, along with the deadline for completing the

remote processing (e.g., in terms of the longest permitted processing time). LinkShare then

determines the order to execute the offloading requests, in terms of the order of data transfer

to the offloading destinations, using the Earliest Deadline First with Limited Sharing (EDF-

LS) detailed in Section 6.3.4.

All offloading requests from applications are first enqueued in the network pending queue.

Given our EDF-LS algorithm, this is essentially a priority queue, where the network trans-

fer completion deadline (computed from the time instant at which LinkShare receives the

request from the application, the estimated remote processing time and the processing

deadline specified by the application) serves as the priority indicator.

The scheduler continues to empty the network pending queue as long as there are pending

offloading requests. Once network transfer is completed, an offloading request is moved from

the network pending queue to the corresponding per-application2 execution pending queue

and remains there until a response is received from the remote server.

6.4.2 Lightweight background monitoring

In the background, LinkShare tracks the states of each scheduled request, including the size

of data transfer sd, and the start and end time of the network transfer ts and te.

Remote processing time estimation. To assess whether an application deadline can

2. Strictly speaking, “per-application” refers to “per-module” in this section.
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be met, it is essential to estimate the remote processing time. The main challenge here

is to the intrinsic variability of processing times. Take popular learning-base mobile ap-

plications as an example. The variability may arise from (a) caching, (b) using multiple

models simultaneously to speed up inference, (c) input variation, and (d) other customized

optimizations [148].

Given all the variability, we estimate the average processing time (i.e., per-application)

instead of the per-job processing time (i.e., for each data transfer). This is for two reasons.

First, it simplifies the system implementation significantly to be lightweight on a mo-

bile device. In contrast, current mainstream per-data-transfer processing time estimation

techniques are all learning based and incur high computation complexity. [13]

Second, since the mobile applications of interest to us usually have soft real-time require-

ments, an accurate estimate of the average processing time is sufficient for our scheduling

goal of meeting deadlines.

We adopt the exponentially weighted moving average (EWMA) to estimate the average,

per-application remote processing time. The estimate Test is initialized to 0 and updated

in an event-driven manner. The completion of each offloading request at time tr triggers an

update for Test based on the previous estimate and the observed processing time (Tcur =

tr − te) incurred by this completed request. Empirically, we set the smoothing parameter λ

to 0.3.

Test = Tprev−est · (1− λ) + λ · Tcur

Network bandwidth estimation. The sharing component of EDF-LS is triggered based

on the projected network transfer times. Therefore, network bandwidth estimation is also

essential to LinkShare. Since wireless link bandwidth is known to fluctuate, we again resort

to the classic EWMA. Triggered when an offloading request completes its network transfer,

the bandwidth estimate is updated as follows:

B(t+ T ) = B(t) + α · (B(t)− u(T )

T
)

Where B(t) is the estimated network bandwidth at time t, T is the interval between
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two updates, u is the number of bytes sent over T , and α is the smoothing parameter. This

way, we can estimate the network bandwidth without incurring any network overhead.

While these above estimation algorithms work well in our evaluations, we realize that

they represent a set of very simple heuristics. More sophistication can be taken into consid-

eration to make these estimation more robust and accurate. For example, when estimating

remote processing time, the estimation accuracy will increase if we can coordinate the real-

time workload information on remote servers. Similar argument can be applied to network

bandwidth estimation. We defer these and other improvements to future work, and cur-

rently choose to focus on the potential benefits brought by scheduling of multiple offloading

applications.

Security considerations. Tracking the variance of the end-to-end processing time distri-

bution of each application might not be resistant to malicious applications that overclaim

deadlines from launch time. Fortunately, proper access control can efficiently protect our

system from these applicaitons. This can be achieved by incorporating a reputation system

(such as Credence [282]) into LinkShare. Each offloading request can be tagged with its ap-

plication source. The tracking of end-to-end processing time of each offloading request can

help to establish a reputation record for each application. The application whose deadline

is always far beyond its end-to-end processing time can be identified and barred from time

to time.

6.4.3 Implementation details

We implement LinkShare as a background application level service in Android Nougat OS

with API version 24.

Since our scheduler runs in the user space, we enforce the schedule computed by setting

the priority of thread that processes the scheduled request to Thread.MAX PRIORITY, using

the Andriod API Thread.setPriority().

LinkShare APIs. LinkShare exposes the following APIs to the applications: offload-

Request, decisionMade, notifySent, and notifyComplete.

offloadRequest is used by an application to send an offloading request to the sched-

uler, containing the module name, input data size, process id, timestamp and the end-to-end

104



// Conventional application code

if(offloadMode == true) {

asyncRemoteRecognition.sent(image);

while(! asyncRemoteRecognition.complete ()) {

continue;

}

result = asyncRemoteRecognition.result;

}

// With the scheduler service

offloadRequest(modName, timeStamp, pid, inputDataSize, deadline);

while(true) {
if(receive decisionMade) {

offloadMode = decision.offloadMode;

}
}

if(offloadMode == true) {

asyncRemoteRecognition.sent(image);

notifySent(modName, timeStamp);

while(! asyncRemoteRecognition.complete ()) {

continue;

}

result = asyncRemoteRecognition.result;

notifyComplete(modName, timeStamp);

}

processing time deadline. Once a schedule has been computed, the scheduler sends a de-

cisionMade message to all applications with pending requests, indicating the module to be

offloaded first.

notifySent is used by an application after completing sending its data to the remote

server. This is intended to notify the scheduler to schedule the next offloading request in

the queue and trigger the network bandwidth estimator to update the runtime bandwidth

notifyComplete is used by an application when a computation job is completed. This

notifies the scheduler to mark this scheduled request as completely and trigger the remote

processing time estimator to update the estimated remote processing time for this specific

application.

The following pseudocode shows code snippets for a face recognition module to send an

offloading job with and without our scheduler service. The lines in bold indicate the code

patch needed to use our service. All changes are on the mobile side, with little overhead.

Application code change. We opt to expose APIs to applications instead of making
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LinkShare transparent for two reasons. First, the application needs to set the deadline

requirement explicitly anyway, since this cannot be inferred accurately. The system can only

track the processing times of past runs and estimate the bounds (the shorest or the longest)

on the deadlines that can be met. Second, the scheduling framework is not restricted to

computation offloading. Therefore, we highlight the APIs needed to coordinate multiple

concurrent network-bound applications in general.

Offloading framework for experiments. We also implement an offloading framework

for experiments. This is independent from our scheduler service.

We define our own communication interface for service-application communication using

Android Interface Definition Language (AIDL [283]). AIDL makes it easy to handle multi-

threaded asynchronous inter-process communication.

The communication framework between our mobile device and server is built on gRPC [284].

gRPC is portable and provides a stream model, which we use to implement an asynchronous

communication channel between a client and the server. The client does not need to wait

for server response before sending another request.

6.5 Evaluation

6.5.1 General setup

Application scenario, benchmarks, and test data. We emulate a Gabriel [31] like

scenario where multiple recognition applications concurrently operate on the camera and

audio feeds from a phone and collectively provide assistance to the phone user to inter-

act with the environment. Each video frame is processed simultaneously by one or more

applications. We built four benchmark applications: face recognition, plate recognition,

speech recognition, and an optical character recognition (OCR) application. These mimic

similar commercial applications but are simplified to contain only the most relevant library

functions. They are also extensively instrumented to provide the measurements we need,

which we cannot obtain from commercial applications.

The Face recognition module recognizes the faces in a given video frame. We build the

module using the Local Binary Patterns Histograms (LBPH) face recognizer in OpenCV [285].
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The experiment data are taken from the unconstrained facial images database [286], which is

a set of real-world photographs selected from the large photobank [287]. We use the cropped

images dataset, where faces were automatically extracted from the original photographs.

This set contains images of 605 individuals, on average 7.1 images per person.

The Plate recognition module recognizes the car license plate in real time. We build this

using the OpenALPR library which is a popular open source plate recognition library [288].

We use the plate dataset from [289], which contains 500 images of the rear views of various

vehicles, the resolution of each image is 640×480.

The Speech recognition module is built on the CMU Sphinx speech recognizer [290]. This

application can recognize a set of spoken commands given by the users, including “open

application”, “call home”, “close application”, “take a picture”, “tell me the location” and

“tell me the time”. The corresponding input data are the voice recordings from different

occupants in our lab, 60 samples in total, 10 for each command. Note that our speech

recognition application is completely processed on a remote server, like the main-stream

speech driven assistant Siri.

The OCR application is built on the tesseract open source OCR engine [291]. It extracts

text information from images. This is to emulate a scenario where users go abroad and

do not understand the local language, so they use their phones to extract the textual

information from signposts and translate it to familiar languages. We use the KAIST Scene

Text Database [292] as the input, which contains signposts and brands under different light

conditions.

Note that these applications all contain specific pre-trained models. During the run

time, they only perform inference on any input data. This is because we cannot train these

applications in real time yet. Therefore, we emulate a video feed using data from the test

sets specified above to generate 4 parallel feeds3. For each application, we generate a long

sequence by randomly drawing data from the corresponding test set and feed this sequence

to the application. Across applications, we make the corresponding frames similar in size

3. While this approach may not fully mimic the inter-frame correlation in a real video feed, it does not
affect our current evaluation. In a real video feed, we could leverage temporal correlation between frames and
skip a few runs for some applications as a further optimization, but this is orthogonal to making scheduling
decisions.
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as much as possible.

Canonical testbed setup. We use a Samsung S9 smartphone as the mobile device, with

an octa-core (2.7 GHz quad-core M2 Mongoose + 1.7 GHz quad-core Cortex A53) processor,

4 GB of RAM and 64 GB of internal storage. We use two servers, each with an Intel core

i5-4570 processor (Quad-core, 6 MB Cache, 3.2 GHz) and 8 GB 1600 MHz DDR3 Memory.

Unless otherwise stated, the network upload speed is 10 Mbps. We use this as the

baseline since the average wireless bandwidth measured was 8.63 Mbps in a recent network

report [293]. This is the perceived TCP transfer throughput, not the physical layer rate on

the wireless link.

The network transfer is over the WiFi link from the phone to the nearest access point.

Since the WiFi networks in our lab are usually faster than the reported average speed and

fluctuate between successive runs, we emulate a stable link at a target upload speed by rate

limiting the WiFi transfers. We consider other network conditions later.

We also explored using other phones and server capabilities (both the network latency

to the server and the processing capability). We find these do not change the qualitative

observations. As long as the server is much more powerful than the phone such that offload-

ing is worthwhile, the performance of our scheduler is indifferent to the phone processing

capability. Further, the effects of server conditions are captured in applications showing

different combinations of the network transfer and server processing times. Therefore, we

only report results based on the canonical setup.

Note that our application benchmarks are not fully optimized, so local processing might

take even longer than it could be. To offset that, we also use less powerful servers. This

means that the effect of network transfer time overhead in our setting is in fact less pro-

nounced than in scenarios with faster phones and servers. We will discuss this in the context

of upload speed scaling in Section 6.5.3.

6.5.2 Scheduler Performance

We aim to answer two questions: (a) is the additional scheduling added by LinkShare essen-

tial? (b) How well does EDF-LS perform in terms of meeting application deadlines? Both

can be addressed together by comparing the performance of several scheduling algorithms.
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Scheduling algorithms for comparison. We compare the following algorithms: (a)

Fair sharing : This algorithm achieves slot-based fairness on the wireless link. (b) First

come first serve (FCFS): this is the most naive non-preemptive scheduling algorithm, as

well as the default network scheduler; therefore it is a proxy for the scheduling decision in

the absence of LinkShare. (c) Shortest job first (SJF): this is the algorithm that minimizes

the network transfer time. (d) Earliest deadline first (EDF): this is the optimal deadline-

aware algorithm among the non-idling non-preemptive scheduling algorithms. (e) Earliest

deadline first with limited sharing (EDF-LS): our algorithm.

Workloads. Given the network transfer time distribution of individual application bench-

marks, we assemble two workloads, referred to as heavy-load and light-load.

The heavy-load includes all four benchmark applications running concurrently. This

is a general case, and likely more common in future. The light-load setting involves only

face, plate, and speech recognition offloading concurrently, without OCR. This division is

motivated by the network transfer time disparity. On average, the network transfer time of

OCR is nearly the sum of the transfer times for the other three applications.

Setting the processing deadline. Since the actual deadline requirements of the com-

merical applications are proprietary, we determine the deadline based on the tail of the

processing time for each application. We consider three options, using the 90th, 95th and

99th percentile of all these applications to determine their individual deadlines respectively.

Note that we assume the application deadline and the request sending interval are

coupled together. This is reasonable since these applications operate on continuous video

feeds, and the frame processing deadline partly arises from the need to keep with the frame

capture rate. Unless stated otherwise, therefore, we will set the sending interval between

two consecutive data frames in each application to be their individual deadline.

Performance metric. We use the deadline miss rate to assess deadline-awareness. This

is defined as the ratio of the number of data frames that miss the deadline to the total

number of data frames sent, turned into a percentage.

Light load. Here we set the deadline as 1.2× the 90th, 95th and 99th percentile of the end-

to-end processing time. Figure 6.5 shows the performance of different scheduling algorithms

performance given these deadline settings. We first note that each application favors specific
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scheduling strategies, and one often benefits at the expense of another.

FCFS vs EDF-LS: As we can see from all three figures, FCFS suffers when considering

face recognition (the least bandwidth hungry in this case) but outperforms all the other

scheduling algorithms when considering plate recognition (the most bandwidth hungry in

this case). This is because the offloading request arrival pattern determines the performance

of FCFS. As the request interval of face recognition is the smallest among these three

applications, the probability of another application blocking the next data frame transfer

is the highest for face recognition among these applications.

Recall that FCFS is a proxy for not employing LinkShare at all, i.e., managing offload-

ing requests without adjusting the network transfer order. Figure 6.5 clearly shows this

additional scheduling is essential.

Fair sharing vs EDF-LS: In contrast, fair sharing outperforms all the other scheduling

algorithms for face recognition, but performs the worst for the other two applications.

This is because, intrinsically, sharing is beneficial to the application that is less bandwidth

hungry. However, it is at the cost of performance degradation of other applications that are

more bandwidth hungry.

SJF vs EDF-LS: When given tighter deadlines, SJF shares similar performance to that

of EDF-LS. When the deadline requirements are relaxed to 1.2× the 99th percentile, EDF-

LS outperforms SJF for speech recognition application and delivers similar performance to

the other applications. The main reason is SJF is that not aware of different deadline re-

quirements across applications. Speech recognition incurs a slightly shorter network transfer

time than plate recognition on average. However, in terms of the network transfer deadline,

plate recognition has a much longer deadline than that of speech recognition. This means

transfer the data frame for speech recognition before plate recognition is a better choice in

general, but making scheduling decisions based on the network transfer time is a bad idea.

EDF vs EDF-LS: In the light workload scenario, EDF and EDF-LS share similar per-

formance across all applications. This is expected, as light load rarely triggers sharing, and

the performance of EDF-LS should converge to that of EDF. Sharing may incur a penalty

in this case, as it slows down one job without helping another job much.

Heavy load. We set the individual application deadline to be 1.5× the 90th, 95th and 99th
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Figure 6.5: Deadline miss rate under light load at 10 Mbps
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Figure 6.6: Deadline miss rate under heavy load at 10 Mbps

percentile of the end-to-end processing time of the respective application. We experimented

with factors ranging from 1.2 to 1.5, and found that 1.5 is a suitable value to allow all these

applications to mostly meet their deadlines.

Figure 6.6 shows the performance of different scheduling algorithms given three different

deadline settings. We mainly discuss the comparison between EDF and EDF-LS in this case,

as the performance of the other scheduling algorithms is similar to the situation under light

load.

The main difference between EDF and EDF-LS can be seen in the performance of

face recognition and OCR. EDF-LS largely outperforms EDF for face recognition, at the

cost of slight performance degradation of OCR. Specifically, the performance improvement

margin is 30% given a tighter deadline (the 90th percentile case) and still 15% given a loose

deadline (the 99th percentile case). This highlights the importance of mitigating head-of-

queue blocking that would have originally happened to EDF. In fact, this blocking issue is

not restricted to EDF. It also plagues other non-preemptive scheduling algorithms like SJF

and FCFS. By mitigating this with limited sharing, we can reduce the missing rate of face

recognition to less than 3%.

Summary. The additional scheduling added by LinkShare over the default OS scheduler is

essential, and EDF-LS can achieve up to 30% reduction in the deadline miss rate compared
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to the baseline EDF.

6.5.3 Impact of Network Conditions

As network transfer is the major bottleneck in our system, intuitively the link quality

dictates the performance of EDF-LS. We consider various bandwidths on steady links and

two real traces of fluctuating networking conditions.

Steady links. Since wireless networks continue to evolve, we may expect increasingly

higher bandwidth. We are therefore interested to see whether the problem remains under

better network conditions.

We repeat the previous heavy-workload experiments under two additional bandwidth

settings, 15 Mbps and 20 Mbps, as a proxy to show the system performance as the upload

bandwidth increases. Note that, as the network bandwidth will affect the estimate of the

end-to-end processing time, the deadline under a higher network bandwidth will be tighter

than that under 10 Mbps.

Figures 6.7a and 6.7b show the performance with 15 Mbps and 20 Mbps upload speeds.

These show that EDF-LS consistently incurs the lowest miss rates for face recognition and

similar miss rate compared to EDF for other applications.

We see that the increasing network bandwidth has the largest impact on the performance

on fair sharing and FCFS. This is because higher bandwidths reduce the network queuing

time and thus mitigate the effect of bad scheduling decisions.

One interesting observation is that, for face recognition, the performance of EDF and

SJF hardly change even as the network bandwidth goes up. The reason is that deadline

misses occur due to the blocking nature of these two algorithms (face recognition is blocked

from data transfer by a network-bound job), not its own network transfer time. The blocking

effect remains even at higher network speeds.

More generally, even as the bandwidth increases further, the scheduling problem is

likely to remain, because the server processing capacity is likely to increase in tandem.

Fundamentally, the cause of missing deadlines in our context is the relative network queuing

delay, i.e., the absolute queuing delay divided by the end-to-end processing time. This

depends heavily on the ratio between the network transfer time and the remote processing
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Figure 6.7: Performance
under different network up-
load speeds
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Figure 6.8: Real WiFi and
LTE traces
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Figure 6.9: Performance
under real WiFi and LTE
network conditions

time.

Fluctuating network conditions. Being aware of the potential influence of mobile net-

work conditions to the evaluation results, we next study the performance as the link condi-

tion fluctuates.

We first measure WiFi and LTE bandwidths by running iperf3, using our mobile phone

as the client sending traffic to one of our servers. Again, these are the TCP throughput

numbers, instead of the raw physical layer rates. The WiFi trace is captured in a cafe near

campus, while the LTE trace is collected as one walks from the student dormitory to the

department building. We record the bandwidth every 0.5 second, which is the minimal

interval supported by iperf. Each trace covers a 150-second period.

Figures 6.8a and 6.8b plot the bandwidth timeseries for the WiFi and LTE traces cap-

tured respectively (the “real” lines). The “estimated” lines in these two figures also show

the estimated network bandwidth using the bandwidth estimation module in LinkShare.

Our module indeed manages to track the trend of average network bandwidth changes.

We then replay these traces to evaluate the performance under fluctuating network

conditions. We assume the same deadline and request sending interval settings (1.5 times

the 99th percentile of the end-to-end processing time) as that in the 10 Mbps, heavy-

workload for both WiFi and LTE.

Figures 6.9a and 6.9b show the performance under WiFi and LTE respectively. EDF-LS
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can still show similar performance to that under steady links.

An interesting observation is that EDF-LS outperforms EDF for all applications, not

just face recognition. This is especially pronounced for LTE. Similarly, fair sharing fares

much better over fluctuating links than steady links. The reason for both observations is

similar to what happened at increasing network upload speeds. Sharing can intrinsically

benefit from a larger bandwidth. In a highly fluctuating network, the network bandwidth

spikes can be better used when multiplexed between different applications.

6.5.4 Microbenchmarks

Finally, we performance several microbenchmarks to assess the design and overhead of our

scheduling algorithm.

Scheduler overhead. The scheduler overhead is mainly from the scheduling decision time.

This takes less than 2 ms.

Processing time estimation. We already assessed the accuracy of the network bandwidth

estimation module in the previous subsection. Here we use face and speech recognition as

two examples to assess the accuracy of the processing time estimation module, shown in

Figure 6.10.

Face recognition is a representative application with relatively stable processing time

pattern, while speech recognition represents a version with more fluctuation. OCR and

plate recognition share similar processing time patterns as that of speech recognition. We

run each application 500 times and randomly selected input data from their respective

dataset. As we can see from the figure, our processing time estimation module manages

to track the trend of the average processing time changes. Quantitatively, the root mean

square errors of the processing time for speech and face recognition are 2.56 ms and 1.54 ms

respectively.

Sharing parameters. Recall that the sharing component of EDF-LS is triggered based

on a threshold, and the parameter S hints at the disparity between the projected network

transfer times between two consecutive offloading requests (Section 6.3.4). Therefore, we

need a suitable value for S.

To avoid the randomness due to the input stream, we first run the heavy-load combi-

114



0 100 200 300 400 500
data frame

10

15

20

25

30

pr
oc

es
si

ng
 ti

m
e 

(m
s)

real
estimated

(a) Face recognition

0 100 200 300 400 500
data frame

35

40

45

50

55

60

pr
oc

es
si

ng
 ti

m
e 

(m
s)

real
estimated

(b) Speech recognition

Figure 6.10: Processing time estimation
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Figure 6.11: The value of sharing parameter

nation under the 99th percentile deadline constraints with S = 3 and 10 Mbps network

upload bandwidth. We record the processing time and file size for each data frame. Then,

we replay the trace in simulation and try different S values to assess its impact.

Figure 6.11 shows the results for S = 3, 4, 5, and 6. The main difference comes from

the performance of face recognition and OCR. The higher the S value, the less benefit

face recognition gained from the limited sharing. A good trade-off between respecting the

deadline and mitigating heading-of-queue blocking is achieved when the S value is around 4

to 5. As S increases (i.e., requiring higher transfer time disparity before enabling sharing),

the performance of EDF-LS approaches that of EDF, which means limited sharing is rarely

activated. Based on this analysis, we set the sharing parameter value to be 5.

Discussion. Another dimension of our algorithm is the choice of the maximum number of

workloads that can share the link bandwidth. The optimal number is workload dependent.

For our workloads, sharing between two consecutive jobs appear to be optimal and the most

robust choice.

Another point worth mentioning is that, for now, the choice of sharing parameter S aims
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at minimizing the average percentage of deadline missing across all workloads. That is to

say, implicitly, we treat all the workload applications the same. However, the preference of

different user might make the utilities of these workload applications different. We believe

it is an interesting future work if introducing utility of each application as a factor when

making scheduling decision.

6.6 Related work

For most of the last decade, the computation-intensive requirement from mobile applications

has been met with computation offloading to a cloud server. New dedicated hardware has

also emerged in recent years. However, existing solutions are limited as new applications

are on the horizon, calling for more inter-module or inter-application coordination. We

will discuss relevant resource management approaches in the context of common offloading

practice.

Dedicated Hardware. The Google Tango project [30] uses dedicated hardware to power

computation-intensive workloads locally. It does not depend on external resources and sim-

plifies application development. Resource management is simply delegated to the operating

system. However, the need for additional hardware and often high power consumption are

ill-suited for wearable devices like Google Glass, which generally require remote support.

Single-module Offloading. Computation offload to the cloud has been explored exten-

sively in the last 15 years [63–70]. Several recent works [12–16, 71] focus on seamlessly

partitioning the workload spanning the mobile device and the remote server.

They assume only one foreground application at a time. All other applications within the

same device are treated as background processes, with lower priorities. This is indeed true

for previous scenarios. However, emerging applications are more sophisticated and all the

modules concerned must be served simultaneously, given the same priority. Single-module

offloading techniques are insufficient.

Multi-module Offloading. MCDNN [72] provides a common platform for multiple ap-

plications concurrently utilizing deep neural networks (DNN). When reasoning about the

workload split between the device and the cloud for each DNN application, MCDNN does
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coordinate on-device resource usage between applications. However, the coordination is spe-

cific to DNN applications run on MCDNN and integrates decisions to trade off classification

accuracy for less resource usage.

Cloud-centric offloading. Gabriel [31], mentioned earlier, offloads all its computation

intensive workloads to the nearby cloudlet, where both the control and computation units

are located. The underlying assumption is all of these applications can be processed on a

single backend server. However, even for Google Glass, apart from a handful of built-in

applications like Google Now and Google Maps, most applications are from third-party

developers, who may maintain their own servers. It may be impractical to make all these

applications offload to the same destination. In that case, the cloud-centric offloading

scheme can not be applied. Instead, a device-centric approach seems more promising.

Deadline-aware scheduling. Deadline-aware scheduling has been studied extensively,

most recently in data center networking [280, 294, 295]. [280] controls the network transfer

rate to meet the deadline, but rate control is difficult for mobile scenarios. [294] pre-empts

flows to approximate a range of scheduling algorithms. However, we explain earlier that

the overhead of link switching in wireless is high.

Summary. Although there is a multitude of offloading schemes to handle computation-

intensive workloads on mobile devices, none appears to provide the coordination needed

between multiple offloading modules to serve the emerging applications outlined above.

LinkShare fills in this gap with a generic on-device scheduling service for all applications

interacting with backend servers. LinkShare augments standard deadline-aware scheduling

to suit our needs.

6.7 Summary

In this chapter, we investigated concurrent and continuous mobile-cloud interactions in the

form of simultaneous offloading jobs. These share the wireless link from the mobile device

but might involve different server backends. Therefore, we need device-centric management,

instead of the more common cloud-centric control.

We build a system-level service, LinkShare, that wraps over the operating system sched-
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uler to coordinate among multiple offloading requests. We study the scheduling require-

ments and suitable metrics, and find that the most intuitive approaches of minimizing the

end-to-end processing time and earliest deadline first scheduling do not work well. Instead,

LinkShare incorporates limited sharing between consecutive workloads in the case of heavy-

tailed distribution. LinkShare is implemented in Android. Extensive evaluation shows that

adopting this additional scheduler is essential and that EDF-LS can achieve up to 30%

reduction in the deadline miss rate compared to the baseline EDF.

The issues we studied are not specific only to computation offloading to a remote cloud.

Even with the advent of edge computing, the same bottleneck remains. LinkShare as a

framework is also applicable when the offloading destination is a nearby server or another

IoT device instead. We believe this is a first step towards coordinating an IoT ecosystem

tethered to the mobile device from the perspective of the mobile frontend.
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Chapter 7

Discussion: Edge Infrastructure

Provisioning

Computation offloading is a standard solution for latency-sensitive and computation-heavy

apps, and there are huge amount of works talking about offloading app codes to the cloud.

However, in order to further reduce the latency, mobile edge computing has received increas-

ing attention nowadays, and there are multiple proposals for edge computing infrastructure

such as smart access point, workstations in base stations, cloudlets, etc. Despite that, there

is a lack of proper business model about how to organize these heterogeneous and decentral-

ized edge infrastructures and provide clean and easy-to-use interfaces to app vendors. In

this chapter, we study the requirements for providing the edge service, and argue for sharing

economy model to organize and provide the service. We further study the challenges and

possible solutions for implementing such sharing economy model.

7.1 Introduction

With the emerging of edge computing, people can deliver even lower latency for applications

by placing computation resource close-by. However, it is extremely difficult to figure out the

proper edge service to use. Traditionally a third-party developer will have to choose the right

cloud provider [296] and server setup (including the number of VMs to balance demands

from different geographical locations and over time), and maintain the server instances.
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Cost issues aside, the technical challenge of identifying the correct server configurations (i.e.,

VM specifications like CPU cores, network bandwidth and storage) to meet all demands

can be non-trivial. In edge computing case, this problem becomes even more severe, since

current edge system proposals (cloudlet, smart base stations, smart AP, etc.) have more

heterogeneous settings (in terms of hardware type, or even pricing model, QoS guarantee,

etc.) without a unified standard.

Therefore, learning from the recent trend of cellular access democratization [297, 298],

we propose a sharing economy model for mobile edge computing, which can help organize

edge service providers under different control domains, and provide app developers with

descent and clean interfaces to use and pay for the edge resources. More specifically, we

propose a Uber-like system called Eber to manage the edge service, which has the following

functionalities:

1. it allows different edge service providers with heterogeneous hardware settings to

join in and jointly provide the edge service to app vendors without the edge service

providers to hardcode anything or know each other’s existence;

2. it hides the underlying infrastructure complexities and provides clean interfaces to app

vendors to offload their app codes and pay for the edge resource they have consumed;

3. it can protect app vendor’s sensitive data and avoid curious edge service providers

probing user privacy;

4. it can protect edge service provider’s confidential information (e.g., hardware type,

workload information, etc.) from Eber and other edge service providers;

5. it can automatically figure out the most proper edge server for the incoming offloading

requests without the app developers worrying about the details;

To summarize, this chapter makes two contributions: first, we propose a sharing econ-

omy model for organizing edge servers under different control domains and providing clean

interfaces for app developers; second, we discuss the key design points and their challenges

for implementing such sharing economy model.
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7.2 Motivation

In this section we talk about why we need a sharing economy model to provide the edge

service.

7.2.1 The need for on-demand edge service

Existing mobile offloading work [12–16] implicitly assume a fixed offloading destination,

typically a server name hard-coded into the application source code or the nearest server

as suggested in the emerging edge and fog computing paradigms [60]. The former requires

determining the best server setup at build time as the offloading destination, while the

latter is ill-suited to handling non-uniform application usage patterns.

The complexity of determining server locations. To statically specify the offloading

destinations in the application source code, application developers need to set up server

side runtime environment. For those in large companies, this could be deployed in their

own data centers, while third-party app developers rent VMs from, say, EC2 [299]. This

requires making difficult choices.

As more apps are emerging as latency sensitive [288,300,301] but the users could use the

apps anywhere, application developers need to decide the geographic distribution of their

servers. Further, We expect this issue to be exacerbated by the emergence of mobile edge

computing (MEC) and Fog Computing to reduce latency [61, 302], which means that the

remote (edge or cloud) server will vary more, affecting the processing performance.

The complexity of resource provisioning. Identifying the server location is only the

first step, we also need to specify how many machines are needed, what are the machine

types, their cost, etc. Even if we took great pain to identify the offloading destination

beforehand, a static destination would incur two problems for resource provisioning due to

non-uniform distribution of the application usage pattern spatially and temporally. This is

more problematic for edge servers.

First, applications exhibit different temporal engagement patterns. [303] studies the

application logs from 230 K mobile apps and 600 M unique daily users, and shows that the

number of application sessions could vary by 6× throughout the day. Moreover, the usage
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Figure 7.2: Illustration for speech recogni-
tion contention

patterns for different application categories also vary during the day and across days. For

example, educational and finance apps see more active usage from 7am to 4pm on workdays,

while sport apps are usually active between 6pm and 10pm at weekends.

Second, servers experience different application access patterns spatially. Figure 7.1

shows the tail distribution of the access pattern of cell towers in a published trace [304]. We

believe this is would also be indicative of the individual server access pattern if the cell base

stations also serve as edge servers. A popular, “hot-spot” server may have difficulty coping

with the huge amount of workload. Even if we could provision the computing resource

accordingly, the resource utilization will fluctuate throughout the day. There might be a

large gap between peak and average utilization, which is inefficient. Conversely, for less

popular servers, either the computing resource will likely be under-utilized most of the time

or they cannot handle potential peak demands of the day.

The diversity and increasing number of IoT devices [305] will further exacerbate these is-

sues, as the local device capability will vary more, hence producing more different offloading

jobs.

Both problems can cause load imbalance across different offloading destinations for the

app, thus decreasing the overall system resource utilization and application performance.

To illustrate the contention effect, we run a simple experiment of multiple speech recognition

instances. We first start one instance on the server and measure its processing rate, and then

keep adding more speech recognition instances. Figure 7.2 shows that the average processing

rate drops from 38 kbps to 17 kbps, which corresponds to a processing time increase from

255 ms to 581 ms. A heavily loaded server nearby may incur a longer end-to-end processing

latency than a lightly-loaded server further away.
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Solution. Given the myriad of configuration choices and the workload dynamics, it is

difficult to determine the best offloading destination at build time. This motivates on-

demand offloading destination determined at runtime, to find the server nearest to the user

that can handle the load. Our solution is offloading as a service, so that we can decouple

the app development from the server infrastructure.

7.2.2 The need for economic efficiency

Based on previous discussion, it is required to provide on-demand edge service. Due to the

low-latency nature of edge computing, the edge servers have to be close to apps, so they

need to be placed in cities or towns. There are three options:

1. one entity runs all edge servers in all cities or towns;

2. each entity runs all edge servers in each city or town;

3. multiple entities run edge servers together in each city or town;

From the edge provider’s point of view, the economic efficiency is the key concern for

providing the edge service. For the first case, it will incur high setup cost for one entity to

deploy all edge servers in all cities or towns. What’s worse, the edge servers could suffer

from hardware/network failures, malicious attack, etc., so the entity has to take care of the

fault tolerance, security guarantee, etc. for all edge server clusters, which makes it infeasible

for one entity.

For the second case, it is affordable for one entity to only take care of one city or

town. However, in this case, the app developers are forced to deal with a huge amount of

edge service providers, which may have various pricing models, QoS guarantees and service

agreements, etc., so it would be extremely tedious for app developers to choose edge service

providers. Therefore, we argue that this is not a good business model for edge service either.

For the third case, this is a sharing economy model where different entities could work

together to jointly provide the edge service. In this case, each entity can take care of

their own edge server clusters in a distributed manner, thus it is more scalable in terms of

fault tolerance, security guarantee, etc. Furthermore, the setup cost is manageable for each
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entity: they can decide the number of edge servers as well as the server setup in a flexible

way based on their own capability. Besides, currently people have various proposals for how

to provide the edge service: cloudlets, basestations with powerful servers, smart AP (access

point), etc. These proposals are suitable for certain scenarios: in small cafes, or cellular

traffic, or home wireless traffic, etc., and a sharing economy model enables them to work

together without requiring one entity to take care of all these scenarios simultaneously, thus

it is more economic efficient.

7.2.3 The need for an easy-to-use interface

From the app developer’s point of view, they want an edge service which provides an easy-

to-use interface which can automatically take care of a bunch of things such as: finding

most suitable edge servers, conducting authentication check, providing security check, cal-

culating the amount of work each edge server has done, etc. This interface needs to hide

the underlying infrastructure complexities and complicated internal business and technical

details.

Specifically, cloud computing currently provides an interface to enable on-demand self-

service and rapid elasticity [306]. The former means resource provisioning should be done

on-demand and without human interaction with the service provider. The latter means the

computation capability can be elastically provisioned and released. For cloud users, the

computation resource available appears to be unlimited.

In the case of edge and fog computing, however, neither on-demand self-service nor rapid

elasticity is available yet. Existing efforts [31,60] have mainly considered the feasibility and

benefit of edge computing compared to cloud computing. Therefore, these assume the edge

server is a black box with unlimited computation resource, which is generally not the case

in practice.

A further issue arises from the prospects of multiple control domains for edge and fog

computing. While (public) cloud computing is mainly powered by a very small number of

cloud service providers with extensive infrastructure deployment, edge and fog computing

can be achieved with a range of infrastructure support, from a single cable modem to a

city-scale micro data center [302]. There is concern that the latter could be expensive,
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while the former may lack federation support. It is non-trivial to both find the nearest edge

server and fully leverage the computation capacity across control domains.

Solution. Since edge and fog computing are considered essential for meeting increasingly

interactive application demands, we explore how to automate basic management for the

edge infrastructure. Specifically, we design an edge management layer to provide a unified

topology management interface, such that even a single edge server can contribute resource

by joining an existing edge network.

7.3 Challenges

In this section, we talk about the preliminary design to build the sharing economy model

for the mobile edge, then we identify the design challenges and propose the corresponding

solutions.

7.3.1 Preliminary design

The sharing economy model involves four parties: app vendors, app users, edge service

providers and a Uber-like management system called Eber. For both app vendors and edge

service providers, they are under different control domains.

Interactions between app users and app vendors. In order to attract users, app

vendors are motivated to rent edge service in order to provide better user experience for

their apps. Furthermore, depending on their business model, they may or may not include

the edge service cost into the app subscription fees.

On the other hand, the app users are completely unaware of the existance of the edge

service. However, when they use the apps, it will trigger the apps to send requests for edge

service.

Interactions between edge service providers and Eber. Edge service providers,

similar to cloud providers, maintain a cluster of edge servers which can provide computation

and storage resource for the app vendors. The difference is, unlike cloud providers, they

cannot directly communicate with app vendors; instead, they need to join a system similar

to Uber or Airbnb, which can unify the edge server providers under various control domains.
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In other words, any entity can provide the edge service by joining Eber.

For Eber, they manage these edge service providers and provide unified interfaces to

app vendors. More specifically, they will accept offloading requests from apps, conduct the

authentication check, schedule the requests to an edge server for computation, give the edge

server credit and charge app vendors for renting the edge service as well as paying the edge

service providers for providing the service.

Interactions between app vendors and Eber. For app vendors, they rent edge service

and pay for it through Eber. However, a key difference is: for Uber scenario, passengers

call vehicles through Uber for themselves; for the mobile edge computing senario, however,

app vendors rent edge service not directly for themselves, but for their users. That means,

it is the app user who initiates the edge service requests, not the app vendor.

7.3.2 Challenge 1: trust across different edge service providers

In the sharing economy model, edge servers are under different control domains, and they

need to work together to provide service. That means they need to solve the trust issues

across different domains, i.e., we need a privacy-preserving mechanism to protect the sensi-

tive infrormation across edge servers under different control domains. Note that they don’t

trust Eber either, since they belong to different parties.

More specifically, the edge server providers want to protect the following information:

1. hardware specifications, including: hardware type (CPU, GPU or FPGA, etc.), edge

server cluster setting (how many edge servers in the cluster, what is their network

topology, what is the internal network setting, etc.), etc. Note that edge server

providers may customize their hardware specs and have specific interconnect design

so that they each can provide the fastest edge services to compete with each other,

therefore it is natural for them to try to protect their hardware spec info;

2. workload information. Since edge servers can earn credits by processing workloads

for the applications, the malicious nodes can infer edge service provider’s revenue

information if they know how much workload each edge server has processed. Note

that if the edge server providers are individuals, they may not care about leaking their
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revenue information. However, if a startup wants to provide the edge service, then

the revenue information is confidential and must be protected;

7.3.3 Challenge 2: trust between edge servers and app vendors

App vendors need to offload part of their app code and data to edge servers, so it is natural

for them to worry about curious edge service providers who try to probe their sensitive

data, or malicious edge service providers who try to return them false results or even virus.

On the other hand, for the edge service provider, they are worried about malicious app

vendors who might upload malicious code to their edge servers to corrupt the machines or

steal other app’s data.

Therefore, the following challenges need to be addressed:

1. code isolation on edge servers. The edge service providers need to isolate app codes

from different app vendors, and prevent app vendors from reading or writing other

app’s data or server OS’s data.

2. encryption on user data. App vendors need to encrypt user data at runtime to prevent

edge service providers from probing the data.

3. an auditing system which can verify the edge servers really execute app code and

return the true result.

7.3.4 Challenge 3: clean interfaces for the app developers

Eber should be able to hide all the underlying complexities (multiple edge service providers

under different control domains, different pricing models, QoS guarantees and service agree-

ments, heterogeneous hardware, dynamic machine workload, etc.) and provide clean and

easy-to-use interfaces to app vendors.

We think the following interfaces are needed:

1. an offloading interface. This interface should allow app vendors to offload part of their

app code and app data to edge servers for processing. Unlike traditional offloading

works which require the app vendors to specify the offloading destination, this interface
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should be able to serve as an agent which can automatically do the matching between

app vendors (codes) and edge servers.

2. a payment interface. This interface should collect workload info on each edge server

(i.e., how long has each edge server work for app vendors) and generate bills for each

app vendors. This is challenging because, the edge server providers may not want the

Eber to know how long it has been working for the app vendors (because it involves

the provider’s revenue information), so we need to encrypt the edge server’s workload

information. In the meanwhile, edge server providers could cheat on this in order to

get more credit, so a encryption protocol is needed to encrypt workload information

and verify its correctness simultaneously.

7.3.5 Efficient resource provisioning mechanism

When apps initiate offloading requests to the edge servers, they need to provision certain

amount of resource on the servers for remote processing. However, the resource provisioning

is very challenging due to the following factors:

1. the app cannot know how much resource it needs for the offloading requests. It can

always ask for a default amount of resource, e.g. ¡1core, 1GB memory¿, but this either

leads to under-allocation which results in slow execution or even program failure (due

to Out-Of-Memory errors), or results in over-allocation which wastes resource and

money.

2. the edge servers could have resource fragments. We can treat the resource allocation

problem as a bin-packing problem, which is NP-hard. Therefore, each edge servers

will inevitably have resource fragments after resource allocation.

For the first issue, i.e., how to estimate app offloading requests’ resource requirements,

there are several approaches: collect app’s history traces and analyze the “right” amount

of resource allocation from the trace, or do complex code analysis to figure out the resource

requirement of app’s source code, or dynamically changes app’s resource requirements based

on its runtime behavior (this is suitable for long-running apps).
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For the second issue, i.e., the resource fragment issue, existing works mainly focus on

proposing greedy algorithm to minimize the resource fragments. However, since edge servers

are under different control domains and have heterogeneous hardware settings (CPU, GPU,

FPGA, etc.), the algorithm needs to be heterogeneous-aware and also needs to protect edge

server’s hardware setting info.

7.3.6 Service discovery

Service discovery can be divided two parts. One is how mobile devices discover available edge

servers. The other is how edge servers that belong to different entities within the same area

can discover each other. For the first problem, Universal Plug and Play (UPnP) technique

mentioned in [31] provides a neat way to help mobile devices seamless discover nearby edge

servers and get connected to them. The second one is the unique problem in our scenarios.

We propose a neighbor discovery service to deal with this problem. Essentially, the neighbor

discovery module constructs an overlay topology over the underlying IP network.

Although there is a large volume of work on self-organizing, scalable overlay network

construction [307–309], we cannot incorporate an existing solution right away. This is

because, in previous scenarios, each node maintains a list of neighbors they already knew

due to the system setup. In contrast, an edge server in our scenario may have no way of

knowing about other edge servers, if they are from different providers.

Therefore, bootstrapping the initial neighbor list is a unique challenge in our case. Once

we address that, we can apply previous topology construction algorithms.

Bootstrapping. To bootstrap a standalone edge server, we propose a mobile topology

dissemination technique. One key insight is to leverage the inherent mobility of IoT devices.

Each IoT device stores the IP address of the last edge server it saw. When it connects to a

new server via UPnP, it will inform the new server of last server IP address. This way, a

standalone server can quickly get to know other edge servers in the system.

After that, the standalone server runs a peer sampling procedure [307] and, from the

already known neighbor, receives a set of random neighbors in the network. This concludes

the bootstrapping process.

The mobile topology dissemination technique incurs low overhead. Further, with high

129



app 1 app 2 app 3

Server

IoT 

Server Scheduler

IoT Scheduler

offloading(appID, inputData)

Offloading 
Server 

c. candOffload
(dstList,

processingRate)

a. initReq
(appID)

d. startOffload

e. 
startOffloading

(appID,
inputData)

Offloading 
Client 

Figure 7.3: Scheduler Workflow.

probability, the last edge server seen by the IoT device is also near the current server, which

heuristically makes the edge server tend to know the nearby server first.

Topology Construction. After bootstrapping, the problem becomes a typical overlay

network construction problem. We run the T-Man [310] overlay network construction and

maintenance protocol and use the ascending order of the RTT between different servers as

the rank function in T-Man. The use of this gossip-based protocol results in fast convergence

(logarithmically), high robustness in dynamic environments and local decision making.
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7.3.7 Efficient scheduling

Figure 7.3 gives an overview of scheduling flow. We would like to help mobile devices to

find out the optimized edge server in terms of end-to-end processing time.

Main components. Each IoT device runs two daemons, an IoT scheduler daemon and

an offloading client daemon. The former sends scheduling requests to the server, while the

latter sends the actual offloading job. They interact with their respective counterpart on

the server, the server scheduler daemon and the offloading server daemon.

APIs. offloading(appID, inputData) will trigger the IoT scheduler to start a series

of scheduling events. App developer needs to modify application’s source code to directly

call this API (only one line of code) to use our offloading service. appID is unique for each

application.

There are also a few internal APIs between client-server daemon interaction:

initReq(appID) is used by the IoT scheduler daemon to connect to the server scheduler

daemon, specifying the id of the application to be offloaded and asking for scheduling

destination candidates.

candOffload(dstList) is used by the server scheduler daemon to return a list of

scheduling destination candidates (decided by the scheduling logic) to the IoT scheduler.

startOffloading(appID, inputData) is used by the offloading client daemon to con-

nect to the offloading server daemon on the final destination server, and send input data

for remote processing.

Basic workflow. Each server runs a server-side scheduler daemon in a decentralized

manner. The scheduler will record the processing rates for all offloading requests 1 executed

on this server, and periodically share the rate information with its neighbors.

When an application wants to offload some computation, it will send an offload message

to the IoT scheduler. The IoT scheduler will send an initReq message to the nearest server

to ask for potential offloading destinations. The server scheduler tries to select the top

two candidates with the highest processing rates for the app. If no servers processed this

1. The scheduler provides a default mechanism of estimating the application processing speed, i.e., the
amount of input data being processed divided by the amount of time used. However, app developers can
also provide customized estimation algorithms, e.g., taking skewness and contention into consideration.
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application before (i.e., they do not have the processing rate information for the application),

the server scheduler will select itself. The server scheduler sends a candOffload message

back to the IoT scheduler with a list of potential destinations and their estimated processing

rates.

From the received candidate list, the IoT scheduler estimates the total processing time

on them as

Ttotal =
S

NetworkThroughput
+
S

R

, where S is the size of the total input data for the session, and R is the estimated processing

rate on the candidate server. Finally, the IoT scheduler chooses one with the least estimated

total processing time, and notifies the offloading client daemon of the final destination.

The offloading client then sends an startOffloading message to the offloading server

at the chosen destination, which will launch the corresponding Docker image based on the

application id and process the input data. All offloading requests within the same session

will always be sent to this same destination server.

7.4 Summary

In this chapter, we study the requirements for providing edge service, and propose a sharing

economy model to organize the heterogeneous and decentralized edge servers. We further

study the challenges for implementing such sharing economy model and talk about possible

solutions.
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Chapter 8

Conclusion and Future Directions

8.1 Conclusion

This thesis proposes a novel framework to simplify application development and deployment

over a continuum of edge to cloud. We first highlight the overarching challenges of the appli-

cation development process at the edge and propose a generic framework to address them,

which consists of a set of new system abstractions. Specifically, Crystal masks hardware

heterogeneity with abstract resource types through containerization and abstracts away the

application processing pipelines into generic flow graphs. Further, it supports a notion of

degradable computing for application scenarios at the edge that are involved with multi-

modal sensory input (Chapter 4). Video-zilla is a generic data management service between

video query systems and a video store to organize video data at the edge. We propose a

video data unit abstraction based on the distance between objects in the video, quantify-

ing the semantic similarity among video data (Chapter 5). Last, considering concurrent

application execution, LinkShare supports multi-application offloading with device-centric

control using a system-level scheduler service that wraps over the operating system scheduler

(Chapter 6).

These three pieces of work sample the design space and provide key connections between

different dimensions of design considerations, corresponding to the generic application de-

velopment, data abstraction and resource management abstraction respectively. Altogether,

we build a novel framework to enable easy application development, scalable data processing
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and performance-aware resource management.

While building these systems, we gained a deeper understanding of applications at the

edge and created an initial platform for easy application development and flexible system

extension. Looking forward, we believe our framework can be further extended to use as

a platform to explore the forthcoming application trends at the edge, for instance, asyn-

chronous multi-stream data ingestion and data management for continuous deep learning.

8.2 Future directions

Designing system abstractions to achieve scalable application development at the edge is

promising beyond this thesis. Edge computing is evolving fast. The edge infrastructure,

edge workload, and data generated at the edge will become increasingly heterogeneous in

the foreseeable future. Building future-proof system architectures is a must. Specifically,

the following are several promising directions to explore.

Data management for continuous deep learning. In addition to the inference-based

(e.g., face recognition, intrusion detection and speech recognition) workloads at the edge,

there is a trend of continuous online learning (e.g. Federated learning [311]), where deep

learning model training is distributed over the edge devices instead of in a centralized cloud.

Much more data are needed for model training than the inference workload. Further, as

model training relies more on the unseen data than seen data, a novel data abstraction and

a data management system built on top of that are in need.

Asynchronous multi-stream data ingestion. By nature, data is generated at the edge

asynchronously. For instance, a video camera on a mobile phone captures 30 video frames

per second. At the same time, the microphone on the same mobile phone captures an

audio signal with a 44.1 KHz sampling rate. For applications that process more than one

input data stream, there is a lack of system-level support to synchronize these asynchronous

data. Thus, current solutions are all application-specific. The right abstraction to enable

asynchronous multi-stream data ingestion should not only cover existing data types but

also be extendable to allow for emerging data types.
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modal interaction for accessible smart homes. In Proceedings of the 8th International

Conference on Software Development and Technologies for Enhancing Accessibility

and Fighting Info-exclusion, pages 63–70, 2018.

[144] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson. The industrial internet of things

(iiot): An analysis framework. Computers in industry, 101:1–12, 2018.

149

https://github.com/covarep/covarep
https://github.com/covarep/covarep
https://github.com/TadasBaltrusaitis/OpenFace
https://github.com/TadasBaltrusaitis/OpenFace


[145] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556, 2014.

[146] K. S. Oie, T. Kiemel, and J. J. Jeka. Multisensory fusion: simultaneous re-weighting

of vision and touch for the control of human posture. Cognitive Brain Research,

14(1):164–176, 2002.
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