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Abstract
Essays in Social Coordination

Jacob Derechin
2022

Social Coordination is an essential feature of any social system. Coordination is a

precondition for certain kinds of cooperation, as cooperation implies agents working

together for a common cause, while coordination only implies agents synchronizing

their behavior. For example, social contagion suggests a mechanism for groups to

socially coordinate without necessarily cooperating. When behaviors spread across

social ties the people may not be actively intending to spread the behavior, so they

are not always cooperating. The necessity of coordination does not imply that it is

easy to achieve. In Chapter 1, I survey two theoretical frameworks for operationaliz-

ing the challenges to coordination: The Prisoner’s Dilemma Game and The Generals

Problem. In the Prisoner’s Dilemma game, the agents will both be better off if they

cooperate, but have strong incentives to betray each other. In this classic case coor-

dination is expected but it is not Pareto-optimal, highlighting the differences between

agents simply coordinating (both playing the same strategy) and cooperation for each

other’s benefit. Here, the impediment to cooperation is that of misaligned incentives.

The General’s Problem presents a different barrier to coordination: unreliable com-

munication channels. The Generals all have aligned incentives to coordinate and work

together, but due to the chance that messages may fail to be transmitted, they are

unable to effectively do so. The Byzantine Generals Problem in effect combines the

challenges of coordinating with both misaligned incentives and faulty communication.

In this setting, some of the agents are trying to prevent the rest of the group from



reach consensus.

Chapter 2 is a global consensus experiment in a "Byzantine" setting. The players

have 10 rounds of communication to reach consensus among a set of arbitrary iden-

tifiers. The players are able to send full text messages to each other. This setting

is Byzantine because some of the players disconnect from the game either through

technical problems on their end or through failing to send their messages in enough

time. Additionally, we found that a subset of the players did not perfectly under-

stand the instructions of the game and made errors, thus demonstrating that players

can engage in Byzantine behavior. The players were arranged into a Watts-Strogatz

network and one of the interventions was altering the fraction of odd vertices in these

graphs. The other intervention was to alter the instructions so as to change the story

the players were told about why they were trying to reach consensus. We found that

groups were more likely to reach consensus in groups with a lower fraction of odd ver-

tices, but did not find the changing story about why players were coordinating had

much impact. We found that the human consensus does exhibit some byzantine fault

tolerance. For example, the effect of players dropping out of the game, a classic type

of byzantine fault, had a negligible effect on the outcome. However, we also found

that the fraction of players with misunderstandings or errors negatively impacted the

consensus process. The players did demonstrate the ability to correct misunderstand-

ings in others, but sometimes misunderstandings were contagious. Notably the effect

of misunderstandings is comparable to effect of the fraction of players trying to vote

for the first identifier in alphabetical order. This suggests that in this setting using a

bad protocol is comparable in effect to a byzantine fault.



Chapter 3 is a methodological exploration of creating preference-indifferent iden-

tifiers. Throughout the testing of identifiers to use in the consensus experiment in

Chapter 1, we found that the players expressed preferences over random strings of let-

ters and numbers. To remedy this, we generated nonsense words with an alternating

vowel and consonant pattern to make them easily pronounceable to English speakers.

We developed a software platform for users to evaluate these nonce words as forced-

choice paired comparisons. We then used the Elo algorithm to generate scores for

each of these words. We also developed techniques to find unobserved heterogeneity

in ratings for this setting. We found that human raters do indeed have significant

preferences even over these nonsense words, implying that even if the identifiers are

randomly generated, they are not necessarily preference-equivalent. We also com-

pared the preferences we observed with the predictions of Phonological Cue Theory

and found that our results were not entirely consistent. While this was not initially

devised as a Phonology experiment, the platform we develop may have benefits for

conducting Phonology experiments.

Chapter 4 is an agent-based model assessing the impact of capacity constraints in

a threshold contagion model. Many sorts of contagious phenomenon, such as music,

do not exist in isolation but as part of a competitive marketplace. In these settings

there are often superstars with out-sized popularity along with a large number of

flops with little popularity. I suggest that capacity constraints may be a structural

factor that influences these disparities. In this model, there are multiple potentially

cascading states that the agent can potentially occupy. The agents have a certain

capacity of states that they can occupy at once. For example, suppose someone



has a workout playlist that lasts 1 hour. As they discover new music to add to the

playlist, they have to remove songs currently in the playlist to keep the playlist 1 hour.

Thus, in this setting, the states indirectly trade off with each other by virtue of the

capacity constraint. Increasing the number of states in excess of capacity increased

the unpredictability of which states become popular as well as increased the disparities

between popular and unpopular states. This suggests that capacity constraints may

play a role in explaining market concentration and superstar phenomenon.
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Chapter 1

Introduction

Cooperation is a fundamental building block of any social system. The ability of mul-
tiple agents to work together toward a common cause is a key aspect of social systems.
However, just because the capacity to cooperate is necessary for social functioning,
that does not mean it is sufficient. Agents may still face misaligned incentives as
well as uncertainty about each other, thus presenting challenges to the effectiveness
of the group working together. Given the different scenarios under which cooperation
can take place, it is often operationalized differently. First, I will survey operational-
izing cooperation as the Prisoner’s Dilemma and then as the Generals Problem to
showcase the differences between these two approaches. Then, I present examples of
byzantine faults in real system. Next, I survey operationalizing coordination without
cooperation as social contagion. Then, I present an overview of the following chapters.

1.1 The Prisoner’s Dilemma

In the classic Prisoner’s Dilemma game, agents have two choices: cooperation and
defection. Cooperation can be interpreted as selfless or prosocial behavior while
defection can be interpreted as selfish or antisocial behavior. Table 1.1 shows the
payoff matrix for a Prisoner’s Dilemma game, where T > R > P > S and a > T+S

2

(Rapoport et al., 1965). Thus, it is clear in this game Defection is the dominant
strategy. Conditional on the other player cooperating, it is preferable to Defect since
T > R, and conditional on the other player defecting it is still optimal to Defect
as P > S. The condition of R > T+S

2
ensures that sustained cooperation is more

beneficial than alternating cooperation and defection, which, while not relevant in the
one-shot version of this game, is relevant in the repeated version. This means that
while both players Cooperating would be pareto-optimal, they both have incentives
not to do so. While the prospects are quite grim in a one-shot game, extending the
Prisoner’s Dilemma game to a repeated game context or a population games context
can provide avenues for cooperation to emerge.
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1.1.1 Repeated Games

While in a single interaction there may be no incentive to cooperate, in a repeated
game context things can turn out differently. The classic iterated prisoner’s dilemma
tournaments by Axlerod showed the success of the Tit-For-Tat strategy (Axelrod,
1980, 1981). The Tit-For-Tat strategy begins by cooperating initially and then will
copy the strategy it receives from its partner in the next round. Since two Tit-For-Tat
players start out cooperating, they will cooperate forever achieving the pareto-optimal
outcome. Tit-For-Tat also has the ability to punish defectors, as it will defect when
defected upon. Unlike the Grim Trigger strategy, where the player will cooperate
until its partner defects and then defects forever, Tit-For-Tat has the capacity to
forgive defection (Axelrod, 1980). If its partner returns to cooperation Tit-For-Tat
will as well. This can be problematic in a setting with errors, as Tit-For-Tat can be
caught in a defection spiral. Since Tit-For-Tat has a memory of one round if the initial
round has a cooperator and a defector, the Tit-For-Tat players will alternate between
cooperation and defection forever. To break out of this a new strategy Generous Tit-
For-Tat has a chance to cooperate when it’s neighbor defects, allowing the defection
spiral to break (Molander, 1985). This demonstrates the ability of deterrence via
credible threats as well as the forgiveness of errors to promote cooperation.

1.1.2 Population Games

In a population game setting, instead of two players playing against each other, there
are many players who all have different strategies playing some subset of the play-
ers over time. Here, the overall composition of the population depends on payoffs
the players using each given strategy attain. Population games can showcase the
emergence of cooperation at a population level as well as showcase how it might be
vulnerable to exploitation from defection strategies.

Evolutionary stability is a state where, when the population is seeded with one
agent of a different strategy, it cannot grow and invade the population (Smith, 1974).
While unconditionally playing the dominant strategy Defect is evolutionary stable,
there are some conditions where other strategies can be evolutionary stable as well
(Axelrod and Hamilton, 1981). For example, if the players are likely to play each
other again, Tit-For-Tat can be evolutionary stable (Axelrod and Hamilton, 1981).
Nowak and Sigmund (1992) show that Tit-For-Tat can act as the stepping stone for
even more cooperative strategies to dominate the population, as once Tit-For-Tat
has taken hold it is vulnerable to invasion from strategies like Generous Tit-For-
Tat. Nowak and Sigmund (1993) introduce a strategy PAVLOV which cooperated
if both player played the same action in the previous round and defects otherwise,
which can also out preform Tit-For-Tat under some conditions. Thus, the population
composition can matter considerably for determining which strategies are optimal.
Spatial structure can also influence strategic choice. For example, on a wide array

2



of network structures cooperation can emerge as long as the benefit to cost ratio
of cooperating is greater than the average degree (Ohtsuki et al., 2006). Increased
cooperation when the benefit cost ratio is greater than the average degree has been
replicated with human players (Rand et al., 2014). Network structure also influences
evolutionary dynamics as some graphs have been found to promote selection while
others promote random drift (Lieberman et al., 2005). Non-network spatial structure
can also matter, as in lattice prisoners dilemma games chaotic patterns can emerge
(Nowak and May, 1992).

3



C D
C R,R S,T
D T,S P,P

Table 1.1: Prisoner’s Dilemma Game
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1.2 The Generals Problem

The Generals Problem represents a different way to understand (and a different kind
of) cooperation. Instead of players resisting the temptation to defect, in the Generals
Problem the player’s incentives are aligned, and the difficulty comes from coordina-
tion. Table 1.2 shows an example of the payoff Matrix for a Generals Problem. Here,
the players get a nonzero payoff as long as they either both play 1 or both play 2,
but if they play different actions, they get a payoff of zero. This is an example of
a pure coordination game as described by (Schelling, 1960). Thus, the players need
to coordinate or fail. In theory, the two actions would be identical; in practice, this
is not always the case, as people can have expectations about each other’s behavior
from outside of the game allowing one of the actions to serve as a focal point thus
making coordination easier (Schelling, 1960; Mehta et al., 1994).

Now suppose that there is a small probability that one of the messages between
the players is not transmitted. It has been shown that, in this setting, it would require
infinite messages for the players to achieve common knowledge about each other’s ac-
tions and fully confirm their coordination (Akkoyunlu et al., 1975; Halpern and Moses,
1990). Common knowledge is also related to consensus through Aumann’s classic re-
sult about the failure to agree to disagree, which states that if two agents start with the
same priors, if their posteriors the event in question are common knowledge, they will
be equivalent (Aumann, 1976). Thus, under these circumstances common knowledge
guarantees consensus in a certain sense, as even agents using different information
will reach the same conclusion in Aumann’s setting. Samet (1990) has found that
impossibility of Agreeing to Disagree can be extended to the setting where agents
does not know what they do not know, showing that this works in many reasonable
epistemic situations. This demonstrates that even among agents that are trying their
best to cooperate, coordination can still fail due to communication failures. These
failures are not necessarily absolute, as with slight variations to the game form and
sufficiently small probability of the communication being lost, coordination can occur
most of the time (Rubinstein, 1989; Morris and Shin, 1997). The key difference is
that generals are no longer coordinating on an arbitrary identifier, now the enemy
is either prepared or unprepared. It is advantageous to attack when the enemy is
prepared but disadvantageous to attack when the enemy is prepared. Table’s 1.3 and
1.4 show the payoff matrix for the coordinated attack game as presented by Morris
and Shin (Morris and Shin, 1997). They found in this setting that if the probability
of communication error is less than 1

M+1
, the first general will send the second general

a message to attack, the first general will attack without receiving confirmation from
the second general, and the second general will attack upon receiving the message to
attack (Morris and Shin, 1997). They found that this results in the generals attack-
ing most of the time that the enemy is unprepared (Morris and Shin, 1997). They
also find that when the payoffs are symmetric across players, as shown in Tables 1.5
and 1.6, and the chance that the enemy is prepared is very small, coordinated attack

5



almost always occurs (Morris and Shin, 1997). This suggests that in practice coor-
dination is easier to reach than the pure two generals problems suggests. Many real
settings have built in structures to generate common knowledge. For example, when
advertising at the super bowl people who see the add know that others have seen it
since the event is so popular (Chwe, 2013).

6



1 2
1 a,a 0,0
2 0,0 a,a

Table 1.2: The Generals Game
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Attack No Action
Attack -M,-M -M,0

No Action 0,-M 0,0

Table 1.3: Coordinated Attack Game: Enemy Prepared

Attack No Action
Attack 1,1 -M,0

No Action 0,-M 0,0

Table 1.4: Coordinated Attack Game: Enemy Unprepared

Attack No Action
Attack -M,-M -M,-M

No Action -M,-M 0,0

Table 1.5: Coordinated Attack Game: Enemy Prepared Symmetric

Attack No Action
Attack 1,1 -M,-M

No Action -M,-M 0,0

Table 1.6: Coordinated Attack Game: Enemy Unprepared Symmetric

8



1.3 The Byzantine Generals Problem

The standard Generals Problem assumes that the players all have aligned incentives
and the players do not make errors. The Byzantine Generals Problem relaxes that
assumption. Now the information received in messages from players might be incor-
rect because the sender is actively trying to mislead the group, is simply mistaken, or
stops sending messages altogether for whatever reason (Lamport et al., 1982). This
adds in uncertainly into all of the messages as the players now need to determine if
the message is authentic or "byzantine".

While it is not generically possible to solve the byzantine generals problem, there
are communication protocols that are robust to certain levels of byzantine action
and are still able to coordinate on a value (Lamport et al., 1982). These protocols
are called Byzantine Fault Tolerant. There are many real world systems that utilize
Byzantine Fault Tolerance, like Aircraft Flight Control (Yeh, 2001), Cryptocurrency
Protocols (Nakamoto, 2008; Buterin, 2014), and computer file systems (Castro and
Liskov, 2002).

Sometimes, people respond counter-intuitively to their environment, as the intro-
duction of noise can improve the ability of human groups to coordinate (Shirado and
Christakis, 2017). Thus, it is not a given that all types of Byzantine faults would
necessarily be detrimental to the consensus process, even if that is the expected
outcome. Additionally adding the ability for players to communicate in Prisoners
Dilemma games (Dawes, 1980) and Battle of the Sexes games (Cooper et al., 1989)
has been shown the increase the ability of the group to cooperate.

1.4 Faults and Fault Tolerance in Human Systems

The Byzantine Generals framework can be an interesting way to analyze consensus
problems in human systems. It combines the misaligned incentives problem that is
present in the prisoners dilemma game with the communication problem from the
Standard Generals problem. Unfortunately, these dynamics are present in many im-
portant human systems, which can manifest as errors. A notable example of an error
prone human system is medicine. Medical errors are widespread and impact hundreds
of thousands of people each year in the United States alone (Leape, 2000; Weingart
et al., 2000) and there is likely significant under reporting (Classen et al., 2011).
Medicine is a complex system with many agents interacting, transferring information
and thus many failure points (Leape, 1997). Thus instead of focusing on individual
errors it is appropriate to look to structural factors as generating errors (Leape, 1997;
Reason, 2000).

Interventions based on structural factors have proven effective, for example it has

9



been shown that implementing computerized physician order entry, to standardize
the drug ordering process and ensure legibility, can reduce the frequency of medica-
tion errors (Kaushal et al., 2003). One can think about this setting as a consensus
problem where both the doctor and the pharmacist are working together to get the
patient the proper medication. Suppose the doctor writes the prescription, but has
poor handwriting, so the name of the intended drug (A) appears to be a totally dif-
ferent drug (B). This could be analogous to a byzantine fault, as if the pharmacist
fills the prescription for B, then in a sense the doctor and the pharmacist did not
reach consensus. Thus, computerized physician order entry could be seen as mak-
ing the system more fault tolerant by eliminating the possibility of handwriting faults.

These structural problems are not limited to medicine but are pervasive. For ex-
ample, in military applications, energy production, aviation, and shipping, it has been
found that for organizational reasons, systems are often not optimized for the ease of
use by those who operate them, leading to errors (Perrow, 1983). Thus, the normal
accident theory proposes that faults are in inherent part of complex systems due to
propagation of errors (Perrow, 2011, 1999, 1994). Byzantine faults represent some of
the errors that Perrow studied. For example, Perrow reviews multiple false alarms in
nuclear early warning systems, some were caused by hardware malfunctions, and one
was caused by a bear climbing a fence at a military base causing the nuclear attack
alarm to sound instead of the intruder alarm (Perrow, 2011, 1994). The fact that
nuclear war did not occur, shows that the nuclear early warning system was able to
tolerate these types of byzantine faults, but this demonstrates that byzantine faults
can occur in even the most high stakes systems (Perrow, 2011).

Byzantine faults can occur in communication systems and present as misinforma-
tion. When dealing with human actors you cannot always guarantee that they will
interpret accurate information correctly. For example, a study of Covid-19 risk per-
ceptions found that showing a picture of a beach (a relatively low risk location) before
articles that accurately present the risks of locations for Covid-19 caused some partic-
ipants to rate beaches as riskier and restaurant as less risky, which is the opposite of
what the articles presented (Derechin et al., 2021). This can break down the ability of
public actions to build towards common knowledge, since once could presume there
is a chance the action will be misinterpreted. Additionally, false information com-
monly appears on social media sites (Lazer et al., 2018). Accuracy in discriminating
"fake news" from real news has been shown to depend on a number of psychological
factors. For example, repeated exposure to plausible false news headlines increases
the fraction of people who will rate it as true (Pennycook et al., 2018). The ability
to discriminate between real news headlines and false headlines has been shown to
depend on analytical ability (Pennycook and Rand, 2019), and increasing delibera-
tion time also increases accuracy in this kind of task (Bago et al., 2020). Finally, it
was found that having people rate the accuracy of headlines beforehand made people
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more likely to report wanting to share true headlines (Pennycook et al., 2020).

Altogether, this suggests that byzantine faults occur across a wide variety of do-
mains and that human error can be a source of byzantine faults. While structural
intervention can often improve the robustness of the system, these changes can be
difficult to implement due to organizational factors (Cohen et al., 1972; Perrow, 1994).

1.5 Social Contagion

Social contagion represents an alternate pathway to coordination that does not nec-
essarily require active cooperation. Under this model, people are influenced by the
behavior of others and this influence decays as it propagates outward through so-
cial networks (until about a geodesic distance of 3) (Christakis and Fowler, 2013).
This phenomenon has been observed on a wide range of behaviors including: obesity
(Christakis and Fowler, 2007), loneliness (Cacioppo et al., 2009), smoking (Chris-
takis and Fowler, 2008), happiness (Fowler and Christakis, 2008), sleep loss (Mednick
et al., 2010), drug use (Mednick et al., 2010), depression (Rosenquist et al., 2011), and
general emotional states (Hill et al., 2010). Social influence models have also been
effective for describing the behavior of crowds (Helbing and Molnar, 1995; Helbing
et al., 2005).

Unfortunately, these effects can be difficult to empirically identify. Manski presents
3 key challenges to identifying peer effects: shared environment, properties of the
group itself, and reflection (Manski, 1993). Shared environment is pretty self-explanatory,
people are similar because they are exposed to similar environments. The group
property refers to some property of the group determining the similarity and not the
interactions within the group, for example seeing a higher incidence of breast cancer
in a group of predominantly women than a group of predominantly men. Reflection
refers to the problem of reverse causality in social influence: is it the individual influ-
encing the group or the group influencing the individual (Manski, 1993)? The effects
can also be problematic to identify, as accounting for social influence can introduce
many weak instruments biasing the results (Angrist, 2014). When social influence is
restricted to an agent’s neighborhood it is possible to identify spillover effects using
matching (Forastiere et al., 2021). An experiment at the US Air Force Academy tried
to use a reduced form peer effects model to produce optimal squadron compositions
for improving academic performance, but their intervention ending up making things
worse for the lowest preforming students (Carrell et al., 2013). Both experiments and
agent-based models can be useful for overcoming these methodological challenges.
Experiments can do this by randomizing participants over different social settings.
In agent-based models, the modeler has control of the the exact mechanism of social
contagion in question. This way they can directly simulate what would happen under
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those conditions. Both agent-based models and experiments sacrifice external validity
for internal validity. I find this trade off worthwhile and utilize both experiments and
agent-based models.

1.6 Overview

The following chapters proceed as follows:

Chapter 2 is an online experiment conducted in a Byzantine setting. The players are
working to achieve global consensus and have 10 rounds of synchronous messaging
before they vote. The players can send full text messages to each other allowing for a
rich array of messages that can be sent. This allows us to observe how human players
behave and attempt to solve the Byzantine Consensus problem abstracted from the
complexity of real systems.

Chapter 3 is a methodological exploration on the creation of preference-indifferent
identifiers. During the piloting of the experiment in Chapter 2, we noticed that the
players had preferences over random strings of numbers and letters we were using as
the objects of consensus. This presented a problem for the experiment as the choices
between alternatives were no longer arbitrary. We developed a forced choice plat-
form in combination with the Elo algorithm to generate rankings over nonce words
designed to be pronounceable to English speakers. We also developed techniques to
assess ranking heterogeneity in this setting.

Chapter 4 goes in another direction; it describes an agent based model studying the
capacity constraint in cascade processes with multiple cascading states. In this model,
agents have a limited number states which they can occupy at once which is less than
the total number of possible states. Thus, the states can trade off with each other by
virtue of the agents being over capacity, requiring them to drop previously adopted
states.
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Chapter 2

BFT

2.1 Motivation

The Byzantine Generals Problem is a variation of the classic Two Generals Problem
where global consensus could be inhibited by both lack of message confirmation and
incorrect message information (Lamport et al., 1982). There is now a new class of
agents in the Byzantine Generals problem, the "Byzantine agents", who are not try-
ing to reach consensus. They could feed malicious or error-riddled information into
the system or simply stop responding.
While this problem was initially formulated with computer systems in mind, human
systems face these kinds of challenges as well. Even people who are trying their
best to cooperate with others might sometimes make accidental mistakes, and peo-
ple regularly have to deal with people of varying levels of competence at navigating
institutions. A novice player at a game might still be trying their best to win, but
may blunder because they do not fully understand the rules. In addition to mistakes,
people also have to cope with others with incentives that are not always aligned. The
door-to-door salesman selling a miracle cure claiming treat to all of your ails, may
not have one’s best interest at heart.
People particularly in social systems do not always have the resources to indepen-
dently verify all of the information they encounter and must rely on the testimony
of others to navigate their epistemic landscape, exposing them to the problem of
"bullshit" (Wakeham, 2017). For example, in one study some people rate sentences
composed of random buzzwords as profound (Pennycook et al., 2015). In this sense,
discriminating between truly meaningful information and information that simply
appears meaningful is likely to be an important aspect of the kinds of Byzantine
challenges people can face.
Given the wide range of possible problems it’s clear that not all Byzantine actors are
created equal. For example, imagine a group of friends trying to decide what restau-
rant to eat at, and in one scenario the Byzantine actor provides information about
pineapple cultivation while another, the Byzantine actor is telling different agents dif-
ferent real restaurants. People would expect that the agents being exposed to random
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pineapple facts would probably be able to safely ignore this, while the agents getting
real restaurants might have some more difficulty. Understanding the ways in which
people are able to reach a shared understanding of the social world and coordinate
their actions is thus both complicated and crucial.

2.2 Methods

2.2.1 Experimental Design

We utilized the Breadboard platform to design the game and interface with Amazon
Mechanical Turk (McKnight and Christakis, 2016). 4343 participants passed the
comprehension quiz to start a run of experiment, but only 3419 completed their
run. In this experiment participants, are arranged in a Watts-Strogatz graph (Watts
and Strogatz, 1998) and they were given the objective of all agreeing to the same
arbitrary identifier. Each participant was assigned an arbitrary 5-letter identifier
which represents the object of consensus as well as an arbitrary 4-letter identifier
that represents their name as the player. These were not English words but were
designed by us to have similar patterns to English words and experimentally tested
to be preference-indifferent (Sankaran et al., 2021).

we used a 10-by-3 factorial design with 10 vignette arms and 3 structural inter-
vention arms. The vignette arms involve modifying the instructions to the game to
manipulate the context in which the participants are coordinating. We refer to these
different vignettes as "skins". They are: Managers firing a Worker, Managers hiring
a Candidate, Members of an orchestra selecting a Venue, Members of a city council
selecting a Mascot, Electors choosing a Leader for a nation, Generals choosing a Fort
to attack, Delegates selecting a Host City for the Olympics, Astronauts selecting a
Planet to colonize, Members of the International Horticultural Society selecting a
Plant Name, and Friends choosing a Restaurant to eat at. The full instructions for
the Generals skin is listed in Appendix A.1 while tables of the text that is swapped
between skins is in Appendix A.2.
The structural intervention manipulates the fraction of vertices in the graph that
are even or odd. The 3 levels for fraction of odd vertices are 0.2,0.5, and 0.8. This
structural intervention was chosen because it would alter the kinds of votes players
could receive from their neighbors to be gridlocked. For example, if a player has a
even number of neighbors and half of their neighbors vote for MUXIL and half vote
for QUPEP, the player is the deciding vote. If on the other hand the player has an
odd number of vertices then it is not possible for half of their neighbors to vote for
one identifier and half to vote for the other, but when you include the players own
vote it is. This can help determine how players count their own vote in this process.

In order to quantify the differences between the different Vignettes, we also used
the Elo algorithm (Elo, 1978) to assess each of the scenarios on four dimensions:
Complexity, Familiarity, Stakes, and Emotionally Charge. We recruited an additional
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1693 participants from Amazon Mechanical Turk. The participants were ineligible if
they participated in a run of the main experiment and were subsequently not eligible
to participate in the main experiment. The participants were instructed to read
through the two sets of instructions for two different skins. After the participants
finished reading each of the vignettes, they were asked what the group in each that
scenario was trying to accomplish as an open-ended attention check. Only 1507
participants successfully passed this attention check. Afterwards the participants
were asked the following four questions forced choice questions:

Which scenario do you think is more complex?
Which scenario do you think is higher stakes?
Which scenario do you think is more emotionally charged?
Which scenario do you think is more familiar?
After these questions, the participants were also optionally allowed to submit

open-ended comments. Figure 2.1 shows the Elo values of each Vignette on each
of the four dimensions. These results largely mapped onto our expectations. For
example, Generals leading an army and Electors picking the leader for a nation were
rated as much more complex and higher stakes than friends choosing a Restaurant
to eat at, and friends choosing a restaurant was much more familiar. These results
suggest that the different Vignettes do capture a wide range of potential mechanisms
for how ability to reach consensus might be effected by the context of the challenge.
Furthermore, these results suggest that our skins reasonably express the kinds of
scenarios present in real life. Figure 2.2 shows the Elo values normalized to (0,1)
within each dimension overlaid with the fraction of groups that reach consensus.
There is not a clear relationship between the normalized Elo values and the fraction
of groups that reach consensus.
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Figure 2.1
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Figure 2.2
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2.2.2 Gameplay

When the participants first enter the game upon accepting the Amazon Mechanical
Turk HIT, they are presented with a set of slides showing the instructions for that
game. The instructions for each skin are different, but only the framing information
of the scenario differs; not the core gameplay mechanics. The participants are told
that the character they are playing and what they are trying to accomplish. It is
explained that they will be a four-letter identifier representing their name as a player,
like AHIQ, as well as a five-letter identifier representing the target of cooperation
assigned to them, for example BUMAF.

The objective of the game is global consensus, so it does not matter if any given
player’s target is chosen so long as the whole group agrees. We also explain the net-
worked nature of the game to the player: each player has a certain number of players
they can message directly, but there are other players in the game they cannot di-
rectly message. They players see a graph on their screen in the UI showing the names
of the players they can message as well as their own name.

The players have 10 rounds of message passing to reach consensus. There is an
initial messaging step where players have a limited number of time to send messages
to other players. There is a text box labeled with the name of each player they are
connected to so players can send different neighbors different messages. Next, there
is a second part of the round where the players receive the messages sent by their
neighbors. Each message is marked with the name of the player who sent it. There
is also a scratch area where players can type notes to persist across rounds. Players
are instructed that if they do not complete each part of the game within the time
limit, they may be dropped from the game for being idle. After the 10 rounds are
complete, the player will be presented with a final dropdown list to make their choice.
The participants are informed of the payment structure, and then may take a com-
prehension quiz to determine whether they understand the rules well enough to be
eligible to play the game. We limited the number of players to between 15 and 25.

We did our best to prevent repeat play, so once players have been paid either via
being dropped from the game or completing the game, they are not eligible to play
in the future. Players who failed the comprehension quiz were allowed to play again,
as well as players who were dropped due to over-recruitment or under-recruitment.
The questions used for the comprehension quiz are presented in Appendix A.3. Ide-
ally, players will be playing the actual game for the first time even if they have been
exposed to the instructions more than once. We were only able to filter players at
the Amazon Mechanical Turk account level, so if players have multiple accounts or
are working on tasks in a group, we were not able stop them. These are things that
Amazon tries to prevent on the platform but they have not been completely success-
ful. It is likely the impact of this is small.
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2.2.3 Coding

Messages were coded in 3 ways: "state", "protocol", and "confusion". "State" refers
to the 5-letter identifiers used in the message. As a first pass, exact matches to our
set of identifiers were extracted using string manipulation with common misspellings
corrected by hand. We did not consider whether or not players were actively encour-
aging other players to choose the states in question, so the messages "choose PISOF
or DOMIF" and "choose PISOF not DOMIF" would be coded the same. This is
because the player is presenting information about both states in their message and
indicates that they are considering those identifiers that round. For "protocol", it was
common for players to suggest and alphabetical strategy. There were multiple vari-
ants like: "Select the first name in the final drop-down list alphabetically" or "pass
around every identifier you see and pick the first alphabetically". Since adopting
the alphabetical protocol did not necessarily require passing an identifier, we coded
this separately. In our analysis, we considered players who adopted the alphabetical
strategy without passing any identifiers as occupying a separate state from any of the
identifiers. We also marked players as confused if did not play correctly like trying
to coordinate on player names instead of identifiers (using 4-letter words vs 5-letter
words), or behaving suspiciously, like typing gibberish over and over or repeating
greetings every round. This category was out best effort to identify low-effort players
(as well as any bots who made it through our attention checks and qualifications).

2.2.4 Outcomes of Interest

The two primary outcomes of interest are: (1) whether or not the group reaches global
consensus (wins the game), and (2) the discrete metric standard deviation in the final
set of votes. The discrete metric is defined as:

md(a, b) =

{
1, if a ̸= b.

0, if a = b.

Each of the identifiers in the final votes are words and thus non numeric, so there is
no defined mean over any of the words themselves. The discrete metric allows us to
quantify equivalences among the identifiers, to measure on a pairwise level if there
is consensus. For example, the discrete distance between the identifier HIDEP and
HIDEP is 0, while the discrete distance between HIDEP and CERIY is 1. Variance
and thus standard deviation, can only be calculated via applying the discrete metric
to the identifiers. Zhang et al. (2012) developed a way to calculate variance via only
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paired comparisons within the population:

s2 =
1

2N2

N∑
i

N∑
j

(xi − xj)
2

This formulation is equivalent to calculating variance under the euclidean metric for
scalars since the euclidean metric is:

me(a, b) =
√

(a− b)2

Inserting this into the variance formula yields:

me(xi, xj)
2 =

(√
(xi − xj)2

)2

= (xi − xj)
2

To calculate variance in this way using the discrete metric we can simply swap it for
the euclidean metric:

s2d =
1

2N2

N∑
i

N∑
j

md(xi, xj)
2

Since standard deviation is the square root of variance it can be calculated as:

sd =

√√√√ 1

2N2

N∑
i

N∑
j

md(xi, xj)2

This allows us to have a continuous measure of the degree which the group has reached
consensus. This way, we are able to see if the interventions bring groups closer to
consensus even when they do not reach it. This technique of variance calculation could
be potentially useful for other types of string comparison like Levenshtein distance
(Levenshtein, 1966) or Hamming distance (Hamming, 1950) at the population level.

2.3 Results

2.3.1 Basic Results

The following plots show the average levels of the two outcomes of interest by each
experimental condition (altering the fraction of odd vertices, or the vignettes used to
frame the challenge). Figure 2.3 shows the average win rate and discrete standard
deviation by fraction of odd vertices, and Figure 2.4 shows these results by Skin.
Figure 2.5 is a heat map which shows the average win rate and the discrete standard
deviation by each pair of experimental conditions. Figure 2.3 suggests a linear rela-
tionship between the fraction of odd vertices and consensus, with fewer odd vertices
being associated with better consensus prospects. This is the opposite of what we
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initially expected when designing this experiment. The results by, Skin as shown in
Figure 2.4, suggest that, with respect to achieving global consensus there is substan-
tial variation across skins, but the differences are much more modest when considering
final discrete variance. Figure 2.5 shows that within some skins there is considerable
variation across the fraction of odd vertices, like the election skin, while other like
the hiring skin do not show drastic changes. There are only about 7 replicates for
each skin - fraction of odd vertices pair, so it is difficult to interpret the results at this
level. While we test the statistical significance and robustness of these results later
using regressions, the following subsections explore possible mechanisms that could
generate this kind of difference.
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Figure 2.3

Figure 2.4
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Figure 2.5
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2.3.2 Gridlocks

One of the mechanisms we hypothesized for how the fraction of even and odd vertices
might influence game play is through gridlock. We define an agent as gridlocked if
the set of identifiers they receive that round all have equal votes. For example, if the
agent receives 1 vote for FARIW, 1 vote for LANOQ, and 1 vote for JUTUR they are
gridlocked. We define an agent as weakly gridlocked if the maximal set of identifiers
proposed that round all have equal votes. For example if the agent receives 2 votes for
FARIW, 2 votes for LANOQ and 1 vote for JUTUR, that agent is weakly gridlocked.
Every agent who is strongly gridlocked is also weakly gridlocked, as the total set of
identifiers is the set of identifiers with maximal votes.
For each type of gridlock, we can define the set of identifiers at each round as either
only being from messages from the agent’s neighbors or including their own messages
from that round. This can help distinguish between which types of gridlocks really
matter, and to what degree agents include their own state when making decisions.
Figure 2.6 shows the average gridlocks by round by fraction odd when agent’s own
states are considered, while Figure 2.7 shows the situation where only the neighbor’s
states are considered. Figure 2.8 shows this type of graph for weak gridlocks with the
agent’s own state included, while in Figure 2.9 there are only states from neighbors.
Across both strong and weak gridlocks, the core trend is similar; with a gradual de-
crease in gridlocks as time goes on, which is consistent with the consensus process
progressing. Sometimes, the average number of gridlocks increases from round 1 to
round 2. There also tends to be a difference in average gridlocks across the game
by fraction odd, with runs where the fraction of odd vertices is 0.8 tending to have
higher gridlock that the runs where the fraction of odd vertices is 0.2.

Gridlocks near the end of the game can serve as an indicator that the consensus
process is not going well, because if it was those gridlocks would not exist. To test
for end game differences, we pooled together the data for rounds 9 and 10 and tested
for differences in means using Welch’s T-test (Welch, 1947). We test whether the
means in the 0.2 fraction odd condition is less than the mean in the 0.5 fraction
odd condition, whether the means in the 0.5 fraction odd condition is less than the
mean in the 0.8 fraction odd condition, and whether the means in the 0.2 fraction
odd condition is less than the mean in the 0.8 fraction odd condition across the
different types of gridlocks. The results of these tests are presented in Table 2.1.
In all types of gridlocks, the mean in the 0.2 condition is lower than that of the
0.8 condition, and the mean in the 0.5 condition is less than the mean in the 0.8
condition. When comparing the means of the 0.2 condition to the 0.5 condition the
results are more ambiguous; the difference in means is statistically significant when
looking at neighbors only gridlocks, but not when the self state is included. This
suggests that however gridlocks are defined, having a higher fraction of odd vertices
is worse, and suggests that whatever mechanism is inhibiting consensus leads to an
increase in gridlocks at the end of the game.
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Figure 2.6

Figure 2.7

Welch’s t-test rounds 9 and 10, t (p) 0.2 < 0.5 0.5 < 0.8 0.2 < 0.8

Gridlocks Including Self -0.027 (0.488) -3.091 (0.001) -3.323 (0.000)
Gridlocks Neighbors Only -2.508 (0.006) -1.768 (0.0390) -4.473 (0.000)
Weak Gridlocks Including Self -0.238 (0.406) -3.026 (0.001) -3.346 (0.000)
Weak Gridlocks Neighbors Only -2.263 (0.012) -2.452 (0.007) -4.915 (0.000)

Table 2.1
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Figure 2.8

Figure 2.9
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2.3.3 State Changes

We measure State Changes among the players if they change their set of proposed
identifiers from time t to time t+1. This could mean include adding or subtracting
an identifier, as well as keeping to total number of identifiers proposed the same but
changing the specific identifiers proposed. One of the ways variations in gridlocks
could impact the outcomes is through changing the frequency that players change
states. Gridlocked players changed states at a higher rate than non-gridlocked play-
ers. Figures 2.10 and 2.11 show the average number of state changes per round by
gridlock status when calculating strong gridlocks when using self states or neighbors’
states only respectively. Generally, gridlocked players change state at a higher rate
than non-gridlocked players (the only exception is in round 2 when considering only
neighbors states). Figures 2.12 and 2.13 replicate these same graphs using weak grid-
locks and the results are similar.

This suggests that being gridlocked is an unstable state and the players do work
the resolve them. Another thing to consider is whether or not changing the fraction of
odd vertices impacts the rate at which players change states more generally. Figure
2.14 shows the average number of state changes at each round by fraction of odd
vertices and the differences are small. Similarly to the analysis for gridlocks, we
preformed Welch’s t-tests across the experimental conditions for end game values of
state changes. In this case, since state changes is not defined for round 10, we pool
round 8 and 9 together instead of 9 and 10. Table 2.2 shows the results of these
tests and only the difference between the 0.2 condition and the 0.8 condition are
statistically significant. This suggests that players in the 0.8 condition do change
their state more frequently at the end of the game than player in the 0.2 condition
do. This could also be an indicator of the difficulty in the consensus process, as closer
the players are to consensus the fewer times one would expect them to change their
state.
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Figure 2.10

Figure 2.11

Welch’s t-test rounds 8 and 9, t (p) 0.2 < 0.5 0.5 < 0.8 0.2 < 0.8

State Changes -0.875 (0.190) -1.082 (0.139) -1.994 (0.023)

Table 2.2
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Figure 2.12

Figure 2.13
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Figure 2.14
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2.3.4 Resolved Gridlocks

We define a gridlock as resolved if the player who is gridlocked at time t is no longer
gridlocked at time t+1. Gridlock resolution can be applied whichever way gridlocks
are calculated. Figure 2.15 shows the average number of resolved strong gridlocks
when the self state is included by round and fraction of odd vertices, and Figure 2.16
shows the average number of resolved gridlocks with only neighbors’ states by round
and fraction of odd vertices. Figures 2.17 and 2.18 show resolved weak gridlocks by
round and fraction of odd vertices when self state is included and neighbors only,
respectively.

The resolution of gridlocks can show how the consensus process is progressing. If
a high fraction of gridlocks are resolved that suggests that the group is moving closer
to consensus. Table 2.3 shows the Welch’s t-tests across comparing the different
conditions for rounds 8 and 9. Only one test was statistically significant, which
was resolved weak gridlocks when self is concluded for the hypothesis that the 0.2
condition has a smaller mean than the 0.5 condition. This suggests that gridlocks
are resolved comparably across the different experimental conditions, suggesting that
whatever process negatively impacts consensus, does not impact the ability of the
group to resolve gridlocks.
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Figure 2.15

Figure 2.16

Welch’s t-test rounds 8 and 9, t (p) 0.2 < 0.5 0.5 < 0.8 0.2 < 0.8

Resolved Gridlocks Including Self -1.192 (0.117) 0.830 (0.796) -0.382 (0.351)
Resolved Gridlocks Neighbors Only 0.519 (0.698) -1.013 (0.155) -0.472 (0.318)
Resolved Weak Gridlocks Including Self -1.674 (0.047) 1.807 (0.964) 0.086 (0.534)
Resolved Weak Gridlocks Neighbors Only 0.253 (0.600) -1.496 (0.067) -1.234 (0.109)

Table 2.3
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Figure 2.17

Figure 2.18
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2.3.5 Player Strategies

The players came up with a rich array of strategies to address this problem. Some
players came up with strategies to induce preferences over the identifiers, like the
alphabetical protocol, while others just simply told other players to vote for a specific
option, and still others tried to hold the rest of the group hostage claiming that they
would vote for their preferred choice regardless of what the other players did. Some
players attempted to deceive their neighbors about how many other players were truly
supporting their preferred choice, and some of those who claimed to unconditionally
vote for a specific identifier ended up voting with the group. In this sense, deception
was a valid method for trying to induce cooperation as many of the agents using such
strategies were still trying to win.

We also observed some malicious actions from the players, for example sometimes
players would get tired of playing the game or demoralized and just give up trying
to cooperate. There were also some players that stated that they were simply trying
to get the game over with as soon as possible and weren’t really trying to win. We
set up our payment structure to try and prevent this from happening, and luckily
this was not a common occurrence. Still, the fact that this happened suggests that
even in settings where people have incentives to cooperate, not everyone will do so.
A few players expected to see bots in this context and would some try to Turing
test the other players to determine whether or not they were human. Some players
would also banter with each other throughout the game talking about a wide variety
of topics such as the weather or current events; this also was not common as most of
the players were focused on trying to achieve consensus, especially since the amount
of time they had to type messages was constrained. While most players were cordial
some resorted to insults when they believed other players weren’t cooperative. It is
unclear what the ultimate impact of this was on the consensus process.

One of the reasons we gave the players unique names was so that they could
refer to each other using their names and sign their messages. This is not the same
as signed messages in the original formulation of the Byzantine Generals problem
(Lamport et al., 1982), since the players could forge each other’s signatures. The
signatures here are not definitive confirmation that the player did in fact send the
message claimed, but would allow players to group players and their votes into ledgers
to pass around. While players did not always refer to each other by their names or
pass ledgers, they sometimes did. An important example of this was querying their
neighbors to try to convince a specific player to go along with the vote. This kind of
strategy shows understanding of the networked structure of the game which in early
testing we had difficulty conveying to the players. Overall, the full text messages
allowed us to observe a much richer array of behavior then simply having the players
click buttons for votes. Table 2.4 shows examples of the types of messages mentioned
here.
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Strategy Player Message
Alphabetical Lets vote for the name thats higher in the alphabet, starting

with A. Pass it on!
Specific Identifier We all want the money tell everyone to pick COKUD!!!
Unconditional / Hostage
Taking

Alright to avoid confusion any further I will vote on Bexoh
no matter what it will be my final vote and we should work
to get that to be the worker we all decide on

Deception We need to be united. All other members are going for
FAHIJ. The bonus is the same...dont let us drag this please.
(This message was sent in round 2 and the group was not
close to consensus and the player was sent messages that
were not FAHIJ in the previous round.)

Giving Up I guess we will have to be happy with what we get, since no
one will agree on anything.

Low Effort Let’s pick one and get this over with.
Ledger Suggest we share all the candidate names and pick the first

name in alphabetic order. Don’t know how many names
there are total, so propagate the message out, add to the
list if you get new names.
Names: BESAM BEXOH BUMAF GIGOX HITEJ KOSOB
PADEB PESAM PIQEZ QOMAP

Mentioning a specific
player

Ok great! User OSIB is now trying to back out, I think?
What the heck! I’ll try to convince them otherwise.

Banter you crack me up, IWUQ XD
Turing Test GIGOX for the love of god. I’d swear some of you were bots

but even bots could use context clues and switch.
Insults You are an idiot. you will mess this up for everyone.

Table 2.4
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2.4 Analysis

2.4.1 Main Regressions

To account for the possibility that different structural factors in addition to the frac-
tion of odd vertices influences the consensus process we adjust for the graph’s diam-
eter, average path length, transitivity, and the fraction edges that are shortcuts. We
define an edge to be a shortcut if when the edge is dropped the shortest path between
the head and tail vertex is greater than two. Watts and Strogatz (1998) found that
shortcuts were responsible for some of the interesting properties of Watts-Strogatz
graphs. The diameter shows the worst scenario for perfect message passing (assum-
ing all agents pass all of the information they receive, which real players do not do).
However, the average path speaks to the average distance between players. Given
that that there are only 10 rounds, message passing on a graph with lower diameter
and lower average path length is likely easier than one with relatively higher diameter
or average path length. Transitivity could suggest the potential for feedback in the
information from messages. Since all of the ties are undirected it is possible for there
to be feedback on a cycle size of two, but feedback in larger size cycles has more
potential to obfuscated to the players. Although the graphs for each level of odd ver-
tices was drawn from the same distribution, there is still the possibility for random
variation on all of these factors. Unfortunately for various reasons such as random
disconnections, or player idleness the structure of the graph is not guaranteed to be
the same across the duration of the game. To account for this, we run regressions
considering structural variables at round 1, round 10 as well as the average of those
structural variables across the 10 rounds. This can help determine whether initial
conditions, final conditions or average conditions are more relevant for consensus. We
also parameterize the treatment of the initial fraction of odd vertices in two ways,
as dummies and as a continuous variable. Table 2.5 shows the regression on final
standard deviation for average values of the structural variables, when Dummies are
used for Fraction of Odd Vertices. In this regression only the coefficient for Fraction
of Odd Vertices = 0.2 is statistically significant at the 5% level. None of the dummies
for skins are statistically significant. In Table 2.6, instead of dummies for the skins
we use the four dimensions of each of the skins: Complexity, Familiarity, Stakes and
Emotionally Charged, but Fraction Odd is still a dummy and the structural variables
are averages. None of the skin dimensions are statistically significant. As before, only
Fraction of Odd Vertices = 0.2 is statistically significant tat the 5% level. Table 2.7
is the same type of model as Table 2.5, except that this time the outcome of interest
is win rate not discrete standard deviation. In this case, only Fraction Odd = 0.2 is
statistically significant at the 5% level. Table 2.8 is the same type of model as Table
2.6 when looking at the win rate and in this model once again, Fraction Odd = 0.2 is
the only coefficient significant at the 5% level. In Tables 2.9 through 2.12 show the
same type of models for average structural controls but in these models Fraction of
Odd Vertices is a continuous variable instead of dummies. The results are broadly
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similar to treating Fraction of Odd Vertices as a dummy variable. Tables 2.13 through
2.20 show the series of regressions but with structural controls taken from the first
round, while Tables 2.21 through 2.29 show the regressions with structural controls
from round 10. Across both round 1 models and round 10 models the coefficient for
fraction of odd vertices was always statistically significant. In the round 1 models
the fraction of odd coefficient was the only coefficient that was statistically significant
at the 5% level. In the round 10 models average path length was also statistically
significant at the 5% level. These results suggest that higher average path length is
associated with higher final standard deviation and lower probability of winning. The
signs of the coefficients for these variables were consistent across models, suggesting
that these effects are robust to changes over time.
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Dep. Variable: final_std R-squared: 0.246
Model: OLS Adj. R-squared: 0.181
Method: Least Squares F-statistic: 3.844
Date: Mon, 07 Mar 2022 Prob (F-statistic): 3.50e-06
Time: 22:57:37 Log-Likelihood: 47.812
No. Observations: 202 AIC: -61.62
Df Residuals: 185 BIC: -5.383
Df Model: 16

coef std err z P> |z| [0.025 0.975]

Intercept -0.1996 0.323 -0.618 0.537 -0.833 0.434
skin: fire -0.0145 0.077 -0.189 0.850 -0.165 0.136
skin: generals -0.0522 0.076 -0.690 0.490 -0.200 0.096
skin: hiring 0.0688 0.071 0.969 0.332 -0.070 0.208
skin: mascot -0.0160 0.076 -0.210 0.834 -0.165 0.133
skin: olympics -0.0187 0.067 -0.279 0.780 -0.151 0.113
skin: orchestra 0.0648 0.071 0.908 0.364 -0.075 0.205
skin: plant 0.0517 0.069 0.750 0.453 -0.083 0.187
skin: restaurant 0.0522 0.077 0.679 0.497 -0.098 0.203
skin: space 0.0065 0.073 0.089 0.929 -0.136 0.150
Fraction Odd 0.2 -0.1102 0.036 -3.076 0.002 -0.180 -0.040
Fraction Odd 0.5 -0.0426 0.035 -1.216 0.224 -0.111 0.026
frac_shortcut_avg 0.0184 0.313 0.059 0.953 -0.595 0.632
diameter_avg -0.0027 0.040 -0.066 0.947 -0.082 0.076
avg_path_length_avg 0.2567 0.176 1.460 0.144 -0.088 0.601
transitivity_avg -0.0875 0.740 -0.118 0.906 -1.538 1.363
count_avg 0.0048 0.007 0.644 0.520 -0.010 0.019

Omnibus: 22.116 Durbin-Watson: 2.072
Prob(Omnibus): 0.000 Jarque-Bera (JB): 18.346
Skew: -0.647 Prob(JB): 0.000104
Kurtosis: 2.288 Cond. No. 560.

Table 2.5
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Dep. Variable: final_std R-squared: 0.226
Model: OLS Adj. R-squared: 0.181
Method: Least Squares F-statistic: 5.159
Date: Mon, 07 Mar 2022 Prob (F-statistic): 4.49e-07
Time: 22:57:37 Log-Likelihood: 45.082
No. Observations: 202 AIC: -66.16
Df Residuals: 190 BIC: -26.47
Df Model: 11

coef std err z P> |z| [0.025 0.975]

Intercept -0.1909 0.326 -0.586 0.558 -0.829 0.448
Fraction Odd 0.2 -0.1091 0.035 -3.116 0.002 -0.178 -0.040
Fraction Odd 0.5 -0.0399 0.035 -1.143 0.253 -0.108 0.029
frac_shortcut_avg 0.0682 0.287 0.238 0.812 -0.494 0.631
diameter_avg -0.0043 0.039 -0.111 0.911 -0.081 0.072
avg_path_length_avg 0.2619 0.174 1.509 0.131 -0.078 0.602
transitivity_avg -0.0360 0.669 -0.054 0.957 -1.346 1.274
count_avg 0.0051 0.007 0.712 0.477 -0.009 0.019
Complex -3.638e-05 0.000 -0.356 0.722 -0.000 0.000
Familiar 1.032e-05 2.18e-05 0.473 0.636 -3.25e-05 5.31e-05
Stakes 1.667e-05 8.16e-05 0.204 0.838 -0.000 0.000
Emotionally_Charged -1.762e-05 3.14e-05 -0.561 0.575 -7.92e-05 4.39e-05

Omnibus: 25.071 Durbin-Watson: 2.005
Prob(Omnibus): 0.000 Jarque-Bera (JB): 19.116
Skew: -0.648 Prob(JB): 7.06e-05
Kurtosis: 2.230 Cond. No. 9.63e+04

Table 2.6
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Dep. Variable: win R-squared: 0.243
Model: OLS Adj. R-squared: 0.177
Method: Least Squares F-statistic: 2.819
Date: Mon, 07 Mar 2022 Prob (F-statistic): 0.000415
Time: 22:57:37 Log-Likelihood: -76.352
No. Observations: 202 AIC: 186.7
Df Residuals: 185 BIC: 242.9
Df Model: 16

coef std err z P> |z| [0.025 0.975]

Intercept 1.3860 0.714 1.943 0.052 -0.012 2.784
skin: fire -0.0350 0.139 -0.251 0.802 -0.308 0.238
skin: generals 0.0988 0.148 0.669 0.503 -0.191 0.388
skin: hiring -0.1271 0.129 -0.985 0.325 -0.380 0.126
skin: mascot -0.0054 0.144 -0.038 0.970 -0.287 0.276
skin: olympics -0.1043 0.118 -0.884 0.377 -0.336 0.127
skin: orchestra -0.0699 0.126 -0.554 0.579 -0.317 0.177
skin: plant -0.0930 0.126 -0.737 0.461 -0.341 0.154
skin: restaurant -0.0195 0.136 -0.144 0.886 -0.285 0.246
skin: space 0.0045 0.132 0.034 0.973 -0.255 0.264
Fraction Odd 0.2 0.1802 0.064 2.795 0.005 0.054 0.307
Fraction Odd 0.5 0.0442 0.063 0.701 0.483 -0.079 0.168
frac_shortcut_avg -0.0838 0.759 -0.110 0.912 -1.572 1.405
diameter_avg -5.928e-05 0.074 -0.001 0.999 -0.146 0.146
avg_path_length_avg -0.5738 0.349 -1.643 0.100 -1.258 0.111
transitivity_avg 0.3152 1.870 0.169 0.866 -3.350 3.980
count_avg 6.418e-06 0.015 0.000 1.000 -0.030 0.030

Omnibus: 26.800 Durbin-Watson: 2.036
Prob(Omnibus): 0.000 Jarque-Bera (JB): 34.510
Skew: 1.012 Prob(JB): 3.21e-08
Kurtosis: 3.011 Cond. No. 560.

Table 2.7
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Dep. Variable: win R-squared: 0.224
Model: OLS Adj. R-squared: 0.180
Method: Least Squares F-statistic: 4.077
Date: Mon, 07 Mar 2022 Prob (F-statistic): 2.23e-05
Time: 22:57:37 Log-Likelihood: -78.776
No. Observations: 202 AIC: 181.6
Df Residuals: 190 BIC: 221.3
Df Model: 11

coef std err z P> |z| [0.025 0.975]

Intercept 1.3858 0.705 1.965 0.049 0.004 2.768
Fraction Odd 0.2 0.1765 0.064 2.762 0.006 0.051 0.302
Fraction Odd 0.5 0.0408 0.063 0.652 0.514 -0.082 0.163
frac_shortcut_avg -0.1738 0.673 -0.258 0.796 -1.494 1.146
diameter_avg -0.0007 0.070 -0.010 0.992 -0.138 0.137
avg_path_length_avg -0.6276 0.336 -1.868 0.062 -1.286 0.031
transitivity_avg 0.1897 1.645 0.115 0.908 -3.035 3.415
count_avg 0.0026 0.014 0.182 0.856 -0.026 0.031
Complex 0.0002 0.000 0.756 0.450 -0.000 0.001
Familiar 8.568e-06 4e-05 0.214 0.830 -6.98e-05 8.69e-05
Stakes -8.015e-05 0.000 -0.511 0.610 -0.000 0.000
Emotionally_Charged -5.944e-07 5.83e-05 -0.010 0.992 -0.000 0.000

Omnibus: 29.383 Durbin-Watson: 1.977
Prob(Omnibus): 0.000 Jarque-Bera (JB): 38.860
Skew: 1.074 Prob(JB): 3.64e-09
Kurtosis: 3.059 Cond. No. 9.63e+04

Table 2.8
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Dep. Variable: final_std R-squared: 0.246
Model: OLS Adj. R-squared: 0.185
Method: Least Squares F-statistic: 4.079
Date: Mon, 07 Mar 2022 Prob (F-statistic): 2.02e-06
Time: 22:57:37 Log-Likelihood: 47.719
No. Observations: 202 AIC: -63.44
Df Residuals: 186 BIC: -10.51
Df Model: 15

coef std err z P> |z| [0.025 0.975]

Intercept -0.3326 0.325 -1.022 0.307 -0.970 0.305
skin: fire -0.0139 0.076 -0.182 0.855 -0.163 0.136
skin: generals -0.0522 0.075 -0.694 0.488 -0.200 0.095
skin: hiring 0.0690 0.071 0.976 0.329 -0.070 0.208
skin: mascot -0.0162 0.076 -0.213 0.831 -0.165 0.132
skin: olympics -0.0189 0.067 -0.282 0.778 -0.150 0.113
skin: orchestra 0.0652 0.071 0.913 0.361 -0.075 0.205
skin: plant 0.0519 0.069 0.754 0.451 -0.083 0.187
skin: restaurant 0.0517 0.076 0.676 0.499 -0.098 0.202
skin: space 0.0069 0.073 0.095 0.924 -0.136 0.150
frac_shortcut_avg 0.0132 0.315 0.042 0.967 -0.605 0.631
diameter_avg -0.0023 0.040 -0.057 0.954 -0.081 0.076
avg_path_length_avg 0.2565 0.175 1.462 0.144 -0.087 0.600
transitivity_avg -0.1027 0.748 -0.137 0.891 -1.568 1.363
count_avg 0.0044 0.007 0.603 0.547 -0.010 0.019
Fraction Odd 0.1835 0.059 3.085 0.002 0.067 0.300

Omnibus: 22.616 Durbin-Watson: 2.071
Prob(Omnibus): 0.000 Jarque-Bera (JB): 18.438
Skew: -0.646 Prob(JB): 9.91e-05
Kurtosis: 2.276 Cond. No. 556.

Table 2.9
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Dep. Variable: final_std R-squared: 0.225
Model: OLS Adj. R-squared: 0.184
Method: Least Squares F-statistic: 5.623
Date: Mon, 07 Mar 2022 Prob (F-statistic): 2.36e-07
Time: 22:57:37 Log-Likelihood: 44.959
No. Observations: 202 AIC: -67.92
Df Residuals: 191 BIC: -31.53
Df Model: 10

coef std err z P> |z| [0.025 0.975]

Intercept -0.3196 0.326 -0.981 0.327 -0.958 0.319
frac_shortcut_avg 0.0623 0.290 0.215 0.830 -0.506 0.631
diameter_avg -0.0039 0.039 -0.100 0.920 -0.080 0.072
avg_path_length_avg 0.2616 0.173 1.510 0.131 -0.078 0.601
transitivity_avg -0.0537 0.679 -0.079 0.937 -1.384 1.277
count_avg 0.0047 0.007 0.660 0.509 -0.009 0.019
Complex -3.68e-05 0.000 -0.361 0.718 -0.000 0.000
Familiar 1.007e-05 2.16e-05 0.465 0.642 -3.24e-05 5.25e-05
Stakes 1.675e-05 8.15e-05 0.206 0.837 -0.000 0.000
Emotionally_Charged -1.726e-05 3.11e-05 -0.555 0.579 -7.82e-05 4.37e-05
Fraction Odd 0.1816 0.058 3.126 0.002 0.068 0.295

Omnibus: 25.985 Durbin-Watson: 2.003
Prob(Omnibus): 0.000 Jarque-Bera (JB): 19.161
Skew: -0.643 Prob(JB): 6.91e-05
Kurtosis: 2.211 Cond. No. 9.56e+04

Table 2.10
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Dep. Variable: win R-squared: 0.240
Model: OLS Adj. R-squared: 0.179
Method: Least Squares F-statistic: 2.955
Date: Mon, 07 Mar 2022 Prob (F-statistic): 0.000307
Time: 22:57:37 Log-Likelihood: -76.716
No. Observations: 202 AIC: 185.4
Df Residuals: 186 BIC: 238.4
Df Model: 15

coef std err z P> |z| [0.025 0.975]

Intercept 1.5752 0.723 2.177 0.029 0.157 2.993
skin: fire -0.0372 0.139 -0.268 0.789 -0.310 0.235
skin: generals 0.0990 0.147 0.672 0.501 -0.190 0.388
skin: hiring -0.1280 0.129 -0.995 0.320 -0.380 0.124
skin: mascot -0.0048 0.143 -0.033 0.973 -0.285 0.276
skin: olympics -0.1036 0.119 -0.871 0.384 -0.337 0.130
skin: orchestra -0.0712 0.128 -0.558 0.577 -0.321 0.179
skin: plant -0.0936 0.126 -0.743 0.457 -0.341 0.153
skin: restaurant -0.0178 0.135 -0.131 0.895 -0.283 0.247
skin: space 0.0031 0.134 0.023 0.982 -0.260 0.266
frac_shortcut_avg -0.0645 0.772 -0.084 0.933 -1.578 1.449
diameter_avg -0.0014 0.074 -0.019 0.985 -0.147 0.145
avg_path_length_avg -0.5733 0.348 -1.646 0.100 -1.256 0.109
transitivity_avg 0.3710 1.908 0.194 0.846 -3.368 4.110
count_avg 0.0011 0.015 0.075 0.940 -0.029 0.031
Fraction Odd -0.2997 0.107 -2.804 0.005 -0.509 -0.090

Omnibus: 26.359 Durbin-Watson: 2.027
Prob(Omnibus): 0.000 Jarque-Bera (JB): 33.893
Skew: 1.003 Prob(JB): 4.37e-08
Kurtosis: 2.953 Cond. No. 556.

Table 2.11
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Dep. Variable: win R-squared: 0.222
Model: OLS Adj. R-squared: 0.181
Method: Least Squares F-statistic: 4.417
Date: Mon, 07 Mar 2022 Prob (F-statistic): 1.36e-05
Time: 22:57:38 Log-Likelihood: -79.157
No. Observations: 202 AIC: 180.3
Df Residuals: 191 BIC: 216.7
Df Model: 10

coef std err z P> |z| [0.025 0.975]

Intercept 1.5670 0.708 2.215 0.027 0.180 2.954
frac_shortcut_avg -0.1547 0.687 -0.225 0.822 -1.501 1.192
diameter_avg -0.0021 0.070 -0.030 0.976 -0.140 0.136
avg_path_length_avg -0.6267 0.335 -1.872 0.061 -1.283 0.030
transitivity_avg 0.2471 1.685 0.147 0.883 -3.055 3.549
count_avg 0.0038 0.014 0.263 0.793 -0.024 0.032
Complex 0.0002 0.000 0.763 0.445 -0.000 0.001
Familiar 9.404e-06 3.95e-05 0.238 0.812 -6.81e-05 8.69e-05
Stakes -8.041e-05 0.000 -0.509 0.610 -0.000 0.000
Emotionally_Charged -1.786e-06 5.78e-05 -0.031 0.975 -0.000 0.000
Fraction Odd -0.2935 0.106 -2.771 0.006 -0.501 -0.086

Omnibus: 28.924 Durbin-Watson: 1.968
Prob(Omnibus): 0.000 Jarque-Bera (JB): 38.229
Skew: 1.066 Prob(JB): 5.00e-09
Kurtosis: 2.996 Cond. No. 9.56e+04

Table 2.12
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Dep. Variable: final_std R-squared: 0.239
Model: OLS Adj. R-squared: 0.173
Method: Least Squares F-statistic: 3.560
Date: Mon, 07 Mar 2022 Prob (F-statistic): 1.33e-05
Time: 23:00:21 Log-Likelihood: 46.865
No. Observations: 202 AIC: -59.73
Df Residuals: 185 BIC: -3.490
Df Model: 16

coef std err z P> |z| [0.025 0.975]

Intercept -0.2695 0.487 -0.554 0.580 -1.224 0.685
skin: fire -0.0231 0.077 -0.298 0.766 -0.175 0.129
skin: generals -0.0645 0.075 -0.854 0.393 -0.212 0.083
skin: hiring 0.0764 0.077 0.992 0.321 -0.075 0.227
skin: mascot -0.0289 0.076 -0.380 0.704 -0.178 0.120
skin: olympics -0.0126 0.069 -0.181 0.856 -0.149 0.123
skin: orchestra 0.0564 0.071 0.792 0.428 -0.083 0.196
skin: plant 0.0514 0.071 0.721 0.471 -0.088 0.191
skin: restaurant 0.0580 0.079 0.732 0.464 -0.097 0.213
skin: space 0.0014 0.074 0.019 0.985 -0.143 0.146
Fraction Odd 0.2 -0.1139 0.038 -2.997 0.003 -0.188 -0.039
Fraction Odd 0.5 -0.0486 0.036 -1.354 0.176 -0.119 0.022
frac_shortcut_1 -0.0422 0.465 -0.091 0.928 -0.953 0.869
diameter_1 -0.0172 0.042 -0.411 0.681 -0.099 0.065
avg_path_length_1 0.3770 0.389 0.968 0.333 -0.386 1.140
transitivity_1 -0.1660 1.224 -0.136 0.892 -2.566 2.234
count_1 0.0012 0.019 0.064 0.949 -0.036 0.038

Omnibus: 21.009 Durbin-Watson: 2.099
Prob(Omnibus): 0.000 Jarque-Bera (JB): 19.728
Skew: -0.696 Prob(JB): 5.20e-05
Kurtosis: 2.363 Cond. No. 839.

Table 2.13

46



Dep. Variable: final_std R-squared: 0.215
Model: OLS Adj. R-squared: 0.169
Method: Least Squares F-statistic: 4.666
Date: Mon, 07 Mar 2022 Prob (F-statistic): 2.65e-06
Time: 23:00:21 Log-Likelihood: 43.670
No. Observations: 202 AIC: -63.34
Df Residuals: 190 BIC: -23.64
Df Model: 11

coef std err z P> |z| [0.025 0.975]

Intercept -0.1276 0.447 -0.285 0.775 -1.003 0.748
Fraction Odd 0.2 -0.1140 0.037 -3.111 0.002 -0.186 -0.042
Fraction Odd 0.5 -0.0465 0.036 -1.304 0.192 -0.116 0.023
frac_shortcut_1 -0.0130 0.422 -0.031 0.975 -0.840 0.814
diameter_1 -0.0093 0.040 -0.231 0.817 -0.088 0.070
avg_path_length_1 0.2769 0.345 0.802 0.422 -0.400 0.953
transitivity_1 -0.1723 1.094 -0.158 0.875 -2.316 1.971
count_1 0.0047 0.017 0.279 0.780 -0.028 0.038
Complex -4.769e-05 0.000 -0.469 0.639 -0.000 0.000
Familiar 1.635e-05 2.15e-05 0.760 0.447 -2.58e-05 5.85e-05
Stakes 3.093e-05 8.03e-05 0.385 0.700 -0.000 0.000
Emotionally_Charged -2.238e-05 3.02e-05 -0.741 0.459 -8.16e-05 3.68e-05

Omnibus: 23.205 Durbin-Watson: 2.034
Prob(Omnibus): 0.000 Jarque-Bera (JB): 20.493
Skew: -0.699 Prob(JB): 3.55e-05
Kurtosis: 2.306 Cond. No. 1.39e+05

Table 2.14
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Dep. Variable: win R-squared: 0.230
Model: OLS Adj. R-squared: 0.163
Method: Least Squares F-statistic: 2.458
Date: Mon, 07 Mar 2022 Prob (F-statistic): 0.00211
Time: 23:00:21 Log-Likelihood: -78.080
No. Observations: 202 AIC: 190.2
Df Residuals: 185 BIC: 246.4
Df Model: 16

coef std err z P> |z| [0.025 0.975]

Intercept 1.4977 0.957 1.564 0.118 -0.379 3.374
skin: fire -0.0182 0.141 -0.129 0.897 -0.295 0.258
skin: generals 0.1337 0.146 0.917 0.359 -0.152 0.419
skin: hiring -0.1443 0.143 -1.006 0.314 -0.425 0.137
skin: mascot 0.0266 0.146 0.182 0.855 -0.259 0.313
skin: olympics -0.1099 0.126 -0.869 0.385 -0.358 0.138
skin: orchestra -0.0438 0.125 -0.349 0.727 -0.289 0.202
skin: plant -0.0855 0.132 -0.646 0.518 -0.345 0.174
skin: restaurant -0.0273 0.142 -0.192 0.848 -0.307 0.252
skin: space 0.0192 0.137 0.140 0.888 -0.249 0.287
Fraction Odd 0.2 0.1958 0.070 2.803 0.005 0.059 0.333
Fraction Odd 0.5 0.0580 0.065 0.896 0.370 -0.069 0.185
frac_shortcut_1 0.1090 1.051 0.104 0.917 -1.950 2.168
diameter_1 0.0004 0.075 0.006 0.996 -0.146 0.147
avg_path_length_1 -0.7625 0.808 -0.944 0.345 -2.345 0.820
transitivity_1 0.4693 2.834 0.166 0.868 -5.085 6.023
count_1 0.0056 0.041 0.137 0.891 -0.074 0.085

Omnibus: 29.747 Durbin-Watson: 2.066
Prob(Omnibus): 0.000 Jarque-Bera (JB): 39.432
Skew: 1.081 Prob(JB): 2.74e-09
Kurtosis: 3.083 Cond. No. 839.

Table 2.15
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Dep. Variable: win R-squared: 0.203
Model: OLS Adj. R-squared: 0.157
Method: Least Squares F-statistic: 3.391
Date: Mon, 07 Mar 2022 Prob (F-statistic): 0.000263
Time: 23:00:21 Log-Likelihood: -81.521
No. Observations: 202 AIC: 187.0
Df Residuals: 190 BIC: 226.7
Df Model: 11

coef std err z P> |z| [0.025 0.975]

Intercept 1.2657 0.902 1.403 0.161 -0.503 3.034
Fraction Odd 0.2 0.1968 0.068 2.874 0.004 0.063 0.331
Fraction Odd 0.5 0.0556 0.064 0.872 0.383 -0.069 0.181
frac_shortcut_1 0.0420 0.916 0.046 0.963 -1.754 1.838
diameter_1 -0.0253 0.070 -0.362 0.717 -0.162 0.112
avg_path_length_1 -0.6007 0.701 -0.857 0.391 -1.975 0.773
transitivity_1 0.4256 2.435 0.175 0.861 -4.347 5.198
count_1 0.0017 0.035 0.049 0.961 -0.068 0.071
Complex 0.0002 0.000 0.900 0.368 -0.000 0.001
Familiar -6.069e-06 3.97e-05 -0.153 0.879 -8.39e-05 7.18e-05
Stakes -0.0001 0.000 -0.733 0.464 -0.000 0.000
Emotionally_Charged 5.818e-06 5.48e-05 0.106 0.916 -0.000 0.000

Omnibus: 32.489 Durbin-Watson: 2.000
Prob(Omnibus): 0.000 Jarque-Bera (JB): 44.435
Skew: 1.148 Prob(JB): 2.24e-10
Kurtosis: 3.095 Cond. No. 1.39e+05

Table 2.16
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Dep. Variable: final_std R-squared: 0.239
Model: OLS Adj. R-squared: 0.178
Method: Least Squares F-statistic: 3.816
Date: Mon, 07 Mar 2022 Prob (F-statistic): 6.59e-06
Time: 23:00:22 Log-Likelihood: 46.824
No. Observations: 202 AIC: -61.65
Df Residuals: 186 BIC: -8.716
Df Model: 15

coef std err z P> |z| [0.025 0.975]

Intercept -0.4169 0.497 -0.839 0.401 -1.390 0.556
skin: fire -0.0227 0.077 -0.295 0.768 -0.173 0.128
skin: generals -0.0647 0.075 -0.861 0.389 -0.212 0.082
skin: hiring 0.0764 0.077 0.996 0.319 -0.074 0.227
skin: mascot -0.0293 0.076 -0.387 0.699 -0.178 0.119
skin: olympics -0.0127 0.069 -0.183 0.855 -0.148 0.123
skin: orchestra 0.0565 0.071 0.794 0.427 -0.083 0.196
skin: plant 0.0515 0.071 0.725 0.469 -0.088 0.191
skin: restaurant 0.0577 0.079 0.733 0.464 -0.097 0.212
skin: space 0.0015 0.074 0.020 0.984 -0.143 0.146
frac_shortcut_1 -0.0437 0.464 -0.094 0.925 -0.954 0.866
diameter_1 -0.0175 0.042 -0.420 0.674 -0.099 0.064
avg_path_length_1 0.3807 0.385 0.988 0.323 -0.375 1.136
transitivity_1 -0.1747 1.220 -0.143 0.886 -2.566 2.217
count_1 0.0009 0.019 0.048 0.961 -0.036 0.038
Fraction Odd 0.1897 0.063 3.006 0.003 0.066 0.313

Omnibus: 21.165 Durbin-Watson: 2.099
Prob(Omnibus): 0.000 Jarque-Bera (JB): 19.754
Skew: -0.695 Prob(JB): 5.13e-05
Kurtosis: 2.358 Cond. No. 841.

Table 2.17

50



Dep. Variable: final_std R-squared: 0.214
Model: OLS Adj. R-squared: 0.173
Method: Least Squares F-statistic: 5.137
Date: Mon, 07 Mar 2022 Prob (F-statistic): 1.20e-06
Time: 23:00:21 Log-Likelihood: 43.606
No. Observations: 202 AIC: -65.21
Df Residuals: 191 BIC: -28.82
Df Model: 10

coef std err z P> |z| [0.025 0.975]

Intercept -0.2738 0.452 -0.606 0.545 -1.160 0.612
frac_shortcut_1 -0.0148 0.423 -0.035 0.972 -0.845 0.815
diameter_1 -0.0096 0.040 -0.240 0.811 -0.088 0.069
avg_path_length_1 0.2812 0.342 0.821 0.412 -0.390 0.952
transitivity_1 -0.1833 1.095 -0.167 0.867 -2.330 1.963
count_1 0.0043 0.017 0.259 0.795 -0.028 0.037
Complex -4.785e-05 0.000 -0.472 0.637 -0.000 0.000
Familiar 1.627e-05 2.14e-05 0.762 0.446 -2.56e-05 5.81e-05
Stakes 3.092e-05 8.01e-05 0.386 0.699 -0.000 0.000
Emotionally_Charged -2.21e-05 2.99e-05 -0.738 0.460 -8.08e-05 3.66e-05
Fraction Odd 0.1898 0.061 3.119 0.002 0.071 0.309

Omnibus: 23.505 Durbin-Watson: 2.033
Prob(Omnibus): 0.000 Jarque-Bera (JB): 20.462
Skew: -0.696 Prob(JB): 3.60e-05
Kurtosis: 2.296 Cond. No. 1.39e+05

Table 2.18
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Dep. Variable: win R-squared: 0.228
Model: OLS Adj. R-squared: 0.165
Method: Least Squares F-statistic: 2.599
Date: Mon, 07 Mar 2022 Prob (F-statistic): 0.00144
Time: 23:00:22 Log-Likelihood: -78.351
No. Observations: 202 AIC: 188.7
Df Residuals: 186 BIC: 241.6
Df Model: 15

coef std err z P> |z| [0.025 0.975]

Intercept 1.7374 0.979 1.774 0.076 -0.182 3.657
skin: fire -0.0201 0.140 -0.143 0.886 -0.295 0.255
skin: generals 0.1346 0.145 0.927 0.354 -0.150 0.419
skin: hiring -0.1444 0.143 -1.007 0.314 -0.425 0.137
skin: mascot 0.0283 0.145 0.195 0.845 -0.257 0.313
skin: olympics -0.1095 0.127 -0.861 0.390 -0.359 0.140
skin: orchestra -0.0440 0.126 -0.348 0.728 -0.291 0.203
skin: plant -0.0858 0.132 -0.649 0.516 -0.345 0.173
skin: restaurant -0.0262 0.142 -0.184 0.854 -0.304 0.252
skin: space 0.0188 0.138 0.136 0.892 -0.252 0.289
frac_shortcut_1 0.1161 1.062 0.109 0.913 -1.965 2.197
diameter_1 0.0017 0.074 0.023 0.982 -0.143 0.146
avg_path_length_1 -0.7802 0.804 -0.971 0.332 -2.356 0.795
transitivity_1 0.5109 2.860 0.179 0.858 -5.095 6.117
count_1 0.0071 0.040 0.175 0.861 -0.072 0.086
Fraction Odd -0.3257 0.116 -2.806 0.005 -0.553 -0.098

Omnibus: 29.366 Durbin-Watson: 2.059
Prob(Omnibus): 0.000 Jarque-Bera (JB): 38.884
Skew: 1.074 Prob(JB): 3.60e-09
Kurtosis: 3.042 Cond. No. 841.

Table 2.19
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Dep. Variable: win R-squared: 0.201
Model: OLS Adj. R-squared: 0.159
Method: Least Squares F-statistic: 3.703
Date: Mon, 07 Mar 2022 Prob (F-statistic): 0.000149
Time: 23:00:22 Log-Likelihood: -81.822
No. Observations: 202 AIC: 185.6
Df Residuals: 191 BIC: 222.0
Df Model: 10

coef std err z P> |z| [0.025 0.975]

Intercept 1.5045 0.913 1.647 0.100 -0.286 3.295
frac_shortcut_1 0.0493 0.930 0.053 0.958 -1.773 1.872
diameter_1 -0.0241 0.069 -0.349 0.727 -0.159 0.111
avg_path_length_1 -0.6184 0.699 -0.885 0.376 -1.989 0.752
transitivity_1 0.4702 2.471 0.190 0.849 -4.373 5.313
count_1 0.0033 0.035 0.094 0.925 -0.066 0.072
Complex 0.0002 0.000 0.903 0.367 -0.000 0.001
Familiar -5.733e-06 3.93e-05 -0.146 0.884 -8.27e-05 7.12e-05
Stakes -0.0001 0.000 -0.728 0.466 -0.000 0.000
Emotionally_Charged 4.686e-06 5.44e-05 0.086 0.931 -0.000 0.000
Fraction Odd -0.3273 0.114 -2.877 0.004 -0.550 -0.104

Omnibus: 32.153 Durbin-Watson: 1.992
Prob(Omnibus): 0.000 Jarque-Bera (JB): 43.966
Skew: 1.143 Prob(JB): 2.84e-10
Kurtosis: 3.049 Cond. No. 1.39e+05

Table 2.20

53



Dep. Variable: final_std R-squared: 0.255
Model: OLS Adj. R-squared: 0.191
Method: Least Squares F-statistic: 4.350
Date: Mon, 07 Mar 2022 Prob (F-statistic): 3.24e-07
Time: 23:00:45 Log-Likelihood: 49.027
No. Observations: 202 AIC: -64.05
Df Residuals: 185 BIC: -7.814
Df Model: 16

coef std err z P> |z| [0.025 0.975]

Intercept -0.2953 0.238 -1.241 0.214 -0.762 0.171
skin: fire -0.0025 0.076 -0.033 0.974 -0.152 0.147
skin: generals -0.0386 0.075 -0.518 0.604 -0.185 0.107
skin: hiring 0.0670 0.068 0.985 0.325 -0.066 0.200
skin: mascot -0.0099 0.074 -0.133 0.894 -0.156 0.136
skin: olympics -0.0232 0.065 -0.357 0.721 -0.151 0.104
skin: orchestra 0.0737 0.069 1.063 0.288 -0.062 0.210
skin: plant 0.0609 0.068 0.891 0.373 -0.073 0.195
skin: restaurant 0.0569 0.074 0.768 0.443 -0.088 0.202
skin: space 0.0090 0.071 0.126 0.899 -0.130 0.148
Fraction Odd 0.2 -0.1108 0.036 -3.089 0.002 -0.181 -0.040
Fraction Odd 0.5 -0.0376 0.035 -1.075 0.282 -0.106 0.031
frac_shortcut_10 0.0400 0.194 0.206 0.837 -0.340 0.420
diameter_10 -0.0154 0.033 -0.470 0.638 -0.079 0.049
avg_path_length_10 0.3175 0.134 2.371 0.018 0.055 0.580
transitivity_10 0.0051 0.411 0.012 0.990 -0.801 0.811
count_10 0.0034 0.005 0.634 0.526 -0.007 0.014

Omnibus: 22.402 Durbin-Watson: 2.040
Prob(Omnibus): 0.000 Jarque-Bera (JB): 17.352
Skew: -0.615 Prob(JB): 0.000171
Kurtosis: 2.259 Cond. No. 501.

Table 2.21
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Dep. Variable: final_std R-squared: 0.235
Model: OLS Adj. R-squared: 0.191
Method: Least Squares F-statistic: 5.713
Date: Mon, 07 Mar 2022 Prob (F-statistic): 6.17e-08
Time: 23:00:45 Log-Likelihood: 46.333
No. Observations: 202 AIC: -68.67
Df Residuals: 190 BIC: -28.97
Df Model: 11

coef std err z P> |z| [0.025 0.975]

Intercept -0.2672 0.234 -1.142 0.254 -0.726 0.191
Fraction Odd 0.2 -0.1103 0.035 -3.153 0.002 -0.179 -0.042
Fraction Odd 0.5 -0.0352 0.035 -1.013 0.311 -0.103 0.033
frac_shortcut_10 0.0817 0.179 0.457 0.648 -0.269 0.433
diameter_10 -0.0148 0.031 -0.471 0.638 -0.076 0.047
avg_path_length_10 0.3132 0.130 2.402 0.016 0.058 0.569
transitivity_10 0.0470 0.366 0.129 0.898 -0.670 0.764
count_10 0.0040 0.005 0.778 0.436 -0.006 0.014
Complex -1.604e-05 0.000 -0.156 0.876 -0.000 0.000
Familiar 7.838e-06 2.12e-05 0.370 0.711 -3.36e-05 4.93e-05
Stakes -5.161e-06 8.25e-05 -0.063 0.950 -0.000 0.000
Emotionally_Charged -1.225e-05 3.19e-05 -0.384 0.701 -7.47e-05 5.02e-05

Omnibus: 25.634 Durbin-Watson: 1.976
Prob(Omnibus): 0.000 Jarque-Bera (JB): 18.099
Skew: -0.615 Prob(JB): 0.000117
Kurtosis: 2.201 Cond. No. 8.95e+04

Table 2.22
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Dep. Variable: win R-squared: 0.252
Model: OLS Adj. R-squared: 0.187
Method: Least Squares F-statistic: 3.174
Date: Mon, 07 Mar 2022 Prob (F-statistic): 8.06e-05
Time: 23:00:45 Log-Likelihood: -75.127
No. Observations: 202 AIC: 184.3
Df Residuals: 185 BIC: 240.5
Df Model: 16

coef std err z P> |z| [0.025 0.975]

Intercept 1.4733 0.515 2.861 0.004 0.464 2.482
skin: fire -0.0571 0.137 -0.417 0.677 -0.326 0.212
skin: generals 0.0724 0.146 0.496 0.620 -0.214 0.359
skin: hiring -0.1223 0.123 -0.994 0.320 -0.363 0.119
skin: mascot -0.0143 0.139 -0.103 0.918 -0.287 0.258
skin: olympics -0.1004 0.113 -0.892 0.373 -0.321 0.120
skin: orchestra -0.0860 0.121 -0.709 0.478 -0.324 0.152
skin: plant -0.1097 0.123 -0.892 0.372 -0.351 0.131
skin: restaurant -0.0287 0.133 -0.215 0.829 -0.290 0.232
skin: space 0.0004 0.127 0.003 0.997 -0.248 0.249
Fraction Odd 0.2 0.1833 0.065 2.840 0.005 0.057 0.310
Fraction Odd 0.5 0.0333 0.063 0.529 0.597 -0.090 0.157
frac_shortcut_10 -0.1134 0.460 -0.246 0.805 -1.016 0.789
diameter_10 0.0281 0.058 0.483 0.629 -0.086 0.142
avg_path_length_10 -0.6306 0.253 -2.494 0.013 -1.126 -0.135
transitivity_10 0.1745 1.064 0.164 0.870 -1.911 2.260
count_10 -0.0005 0.010 -0.054 0.957 -0.020 0.019

Omnibus: 24.882 Durbin-Watson: 2.013
Prob(Omnibus): 0.000 Jarque-Bera (JB): 31.424
Skew: 0.966 Prob(JB): 1.50e-07
Kurtosis: 2.964 Cond. No. 501.

Table 2.23
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Dep. Variable: win R-squared: 0.236
Model: OLS Adj. R-squared: 0.192
Method: Least Squares F-statistic: 4.564
Date: Mon, 07 Mar 2022 Prob (F-statistic): 3.84e-06
Time: 23:00:45 Log-Likelihood: -77.234
No. Observations: 202 AIC: 178.5
Df Residuals: 190 BIC: 218.2
Df Model: 11

coef std err z P> |z| [0.025 0.975]

Intercept 1.4112 0.500 2.823 0.005 0.432 2.391
Fraction Odd 0.2 0.1803 0.064 2.830 0.005 0.055 0.305
Fraction Odd 0.5 0.0294 0.062 0.472 0.637 -0.093 0.151
frac_shortcut_10 -0.1755 0.415 -0.423 0.672 -0.989 0.638
diameter_10 0.0253 0.054 0.466 0.641 -0.081 0.132
avg_path_length_10 -0.6552 0.243 -2.699 0.007 -1.131 -0.179
transitivity_10 0.0936 0.939 0.100 0.921 -1.747 1.934
count_10 0.0008 0.010 0.085 0.932 -0.018 0.020
Complex 0.0001 0.000 0.567 0.571 -0.000 0.001
Familiar 1.234e-05 3.9e-05 0.317 0.752 -6.4e-05 8.87e-05
Stakes -4.009e-05 0.000 -0.257 0.797 -0.000 0.000
Emotionally_Charged -1.015e-05 5.81e-05 -0.175 0.861 -0.000 0.000

Omnibus: 27.120 Durbin-Watson: 1.964
Prob(Omnibus): 0.000 Jarque-Bera (JB): 35.050
Skew: 1.020 Prob(JB): 2.45e-08
Kurtosis: 3.012 Cond. No. 8.95e+04

Table 2.24
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Dep. Variable: final_std R-squared: 0.254
Model: OLS Adj. R-squared: 0.194
Method: Least Squares F-statistic: 4.598
Date: Mon, 07 Mar 2022 Prob (F-statistic): 1.96e-07
Time: 23:00:45 Log-Likelihood: 48.836
No. Observations: 202 AIC: -65.67
Df Residuals: 186 BIC: -12.74
Df Model: 15

coef std err z P> |z| [0.025 0.975]

Intercept -0.4196 0.241 -1.739 0.082 -0.893 0.053
skin: fire -0.0017 0.075 -0.022 0.982 -0.150 0.146
skin: generals -0.0389 0.074 -0.524 0.600 -0.184 0.107
skin: hiring 0.0674 0.068 0.994 0.320 -0.065 0.200
skin: mascot -0.0103 0.074 -0.139 0.889 -0.155 0.135
skin: olympics -0.0232 0.065 -0.358 0.720 -0.150 0.104
skin: orchestra 0.0742 0.069 1.067 0.286 -0.062 0.210
skin: plant 0.0611 0.068 0.896 0.370 -0.073 0.195
skin: restaurant 0.0564 0.074 0.763 0.445 -0.088 0.201
skin: space 0.0095 0.071 0.135 0.893 -0.130 0.149
frac_shortcut_10 0.0332 0.193 0.172 0.863 -0.345 0.412
diameter_10 -0.0147 0.033 -0.452 0.652 -0.078 0.049
avg_path_length_10 0.3133 0.133 2.358 0.018 0.053 0.574
transitivity_10 -0.0136 0.411 -0.033 0.974 -0.819 0.792
count_10 0.0031 0.005 0.586 0.558 -0.007 0.014
Fraction Odd 0.1845 0.060 3.096 0.002 0.068 0.301

Omnibus: 23.317 Durbin-Watson: 2.040
Prob(Omnibus): 0.000 Jarque-Bera (JB): 17.571
Skew: -0.615 Prob(JB): 0.000153
Kurtosis: 2.241 Cond. No. 498.

Table 2.25

58



Dep. Variable: final_std R-squared: 0.233
Model: OLS Adj. R-squared: 0.193
Method: Least Squares F-statistic: 6.204
Date: Mon, 07 Mar 2022 Prob (F-statistic): 3.42e-08
Time: 23:00:45 Log-Likelihood: 46.098
No. Observations: 202 AIC: -70.20
Df Residuals: 191 BIC: -33.81
Df Model: 10

coef std err z P> |z| [0.025 0.975]

Intercept -0.3877 0.234 -1.654 0.098 -0.847 0.072
frac_shortcut_10 0.0744 0.178 0.418 0.676 -0.275 0.424
diameter_10 -0.0140 0.031 -0.447 0.655 -0.075 0.047
avg_path_length_10 0.3084 0.129 2.386 0.017 0.055 0.562
transitivity_10 0.0263 0.365 0.072 0.943 -0.689 0.742
count_10 0.0037 0.005 0.723 0.470 -0.006 0.014
Complex -1.697e-05 0.000 -0.166 0.868 -0.000 0.000
Familiar 7.562e-06 2.1e-05 0.360 0.719 -3.36e-05 4.87e-05
Stakes -4.669e-06 8.24e-05 -0.057 0.955 -0.000 0.000
Emotionally_Charged -1.185e-05 3.15e-05 -0.376 0.707 -7.35e-05 4.98e-05
Fraction Odd 0.1838 0.058 3.160 0.002 0.070 0.298

Omnibus: 27.185 Durbin-Watson: 1.975
Prob(Omnibus): 0.000 Jarque-Bera (JB): 18.257
Skew: -0.610 Prob(JB): 0.000109
Kurtosis: 2.176 Cond. No. 8.89e+04

Table 2.26
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Dep. Variable: win R-squared: 0.248
Model: OLS Adj. R-squared: 0.187
Method: Least Squares F-statistic: 3.324
Date: Mon, 07 Mar 2022 Prob (F-statistic): 5.99e-05
Time: 23:00:45 Log-Likelihood: -75.725
No. Observations: 202 AIC: 183.4
Df Residuals: 186 BIC: 236.4
Df Model: 15

coef std err z P> |z| [0.025 0.975]

Intercept 1.6410 0.524 3.132 0.002 0.614 2.668
skin: fire -0.0599 0.136 -0.439 0.661 -0.327 0.208
skin: generals 0.0731 0.146 0.503 0.615 -0.212 0.358
skin: hiring -0.1236 0.122 -1.010 0.312 -0.363 0.116
skin: mascot -0.0131 0.139 -0.095 0.925 -0.285 0.258
skin: olympics -0.1005 0.114 -0.885 0.376 -0.323 0.122
skin: orchestra -0.0875 0.123 -0.712 0.477 -0.328 0.153
skin: plant -0.1104 0.123 -0.899 0.368 -0.351 0.130
skin: restaurant -0.0269 0.133 -0.203 0.839 -0.287 0.233
skin: space -0.0014 0.129 -0.011 0.991 -0.255 0.252
frac_shortcut_10 -0.0911 0.459 -0.199 0.843 -0.990 0.808
diameter_10 0.0258 0.058 0.443 0.658 -0.088 0.140
avg_path_length_10 -0.6169 0.249 -2.474 0.013 -1.106 -0.128
transitivity_10 0.2357 1.065 0.221 0.825 -1.852 2.324
count_10 0.0003 0.010 0.029 0.977 -0.019 0.020
Fraction Odd -0.3050 0.107 -2.846 0.004 -0.515 -0.095

Omnibus: 24.568 Durbin-Watson: 2.004
Prob(Omnibus): 0.000 Jarque-Bera (JB): 31.013
Skew: 0.958 Prob(JB): 1.84e-07
Kurtosis: 2.886 Cond. No. 498.

Table 2.27
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Dep. Variable: win R-squared: 0.231
Model: OLS Adj. R-squared: 0.191
Method: Least Squares F-statistic: 4.935
Date: Mon, 07 Mar 2022 Prob (F-statistic): 2.37e-06
Time: 23:00:45 Log-Likelihood: -77.868
No. Observations: 202 AIC: 177.7
Df Residuals: 191 BIC: 214.1
Df Model: 10

coef std err z P> |z| [0.025 0.975]

Intercept 1.5707 0.498 3.157 0.002 0.595 2.546
frac_shortcut_10 -0.1533 0.413 -0.371 0.711 -0.963 0.656
diameter_10 0.0229 0.055 0.420 0.675 -0.084 0.130
avg_path_length_10 -0.6406 0.239 -2.679 0.007 -1.109 -0.172
transitivity_10 0.1567 0.939 0.167 0.867 -1.684 1.997
count_10 0.0017 0.010 0.175 0.861 -0.017 0.021
Complex 0.0001 0.000 0.581 0.561 -0.000 0.001
Familiar 1.317e-05 3.85e-05 0.342 0.732 -6.23e-05 8.87e-05
Stakes -4.158e-05 0.000 -0.264 0.792 -0.000 0.000
Emotionally_Charged -1.137e-05 5.74e-05 -0.198 0.843 -0.000 0.000
Fraction Odd -0.2999 0.106 -2.837 0.005 -0.507 -0.093

Omnibus: 26.740 Durbin-Watson: 1.954
Prob(Omnibus): 0.000 Jarque-Bera (JB): 34.579
Skew: 1.013 Prob(JB): 3.10e-08
Kurtosis: 2.926 Cond. No. 8.89e+04

Table 2.28
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2.4.2 The Effect of Skins

The effects of the skins either by the 4 dimensions or skin dummies were not statis-
tically significant. In order to test whether or not the fraction of odd vertices was
overpowering any sort of effect from skins, Tables 2.29 through Table 2.32 show re-
gressions where the fraction of odd vertices is not included. This did not end up
making a difference as none of the skin variables were statistically significant in these
models. Average path length was statistically significant at the 10% level in all of
these models and statistically significant at the 5% level in Table 2.32. This suggests
that average path length and fraction of odd vertices may impact consensus through
similar mechanisms.

Another possibility is that the differences between the skins are small and thus
do not show up when all of the skin dummies are included in the regression. To test
for this, we sub sampled some skin pairs where we expected to find large differences.
Tables 2.33 through 2.36 show the regressions for the Hiring - Generals sub sample,
Tables 2.37 through 2.40 show the regressions for the Olympics - Orchestra, sub
sample and Tables 2.41 through 2.44 show the regressions for the Space Exploration
- Firing sub sample. The effect of the vignette in the hiring-generals sub sample
was statistically significant at the 5% level. None of the vignette effects across these
regressions in the other sub samples were statistically significant at the 5% level.
This suggests that across some pairs vignettes there may be some effect, but since
these sub samples have a greatly reduced sample size than the main regressions. This
means it may not be sensitive enough to detect an effect, and is more susceptible to
noise.
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Dep. Variable: final_std R-squared: 0.205
Model: OLS Adj. R-squared: 0.145
Method: Least Squares F-statistic: 3.672
Date: Mon, 07 Mar 2022 Prob (F-statistic): 2.04e-05
Time: 23:00:02 Log-Likelihood: 42.415
No. Observations: 202 AIC: -54.83
Df Residuals: 187 BIC: -5.207
Df Model: 14

coef std err z P> |z| [0.025 0.975]

Intercept -0.2911 0.327 -0.890 0.373 -0.932 0.350
skin: fire -0.0172 0.079 -0.217 0.828 -0.172 0.138
skin: generals -0.0502 0.078 -0.642 0.521 -0.204 0.103
skin: hiring 0.0668 0.074 0.907 0.364 -0.077 0.211
skin: mascot -0.0152 0.077 -0.197 0.844 -0.167 0.136
skin: olympics -0.0201 0.071 -0.283 0.777 -0.159 0.119
skin: orchestra 0.0644 0.075 0.864 0.387 -0.082 0.210
skin: plant 0.0518 0.072 0.718 0.473 -0.090 0.193
skin: restaurant 0.0529 0.081 0.655 0.512 -0.105 0.211
skin: space 0.0103 0.076 0.136 0.892 -0.138 0.158
frac_shortcut_avg 0.0342 0.312 0.110 0.913 -0.578 0.646
diameter_avg -0.0050 0.041 -0.124 0.901 -0.085 0.075
avg_path_length_avg 0.2990 0.177 1.691 0.091 -0.048 0.646
transitivity_avg -0.1346 0.733 -0.184 0.854 -1.571 1.301
count_avg 0.0025 0.007 0.340 0.734 -0.012 0.017

Omnibus: 24.332 Durbin-Watson: 1.993
Prob(Omnibus): 0.000 Jarque-Bera (JB): 19.955
Skew: -0.676 Prob(JB): 4.64e-05
Kurtosis: 2.262 Cond. No. 556.

Table 2.29
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Dep. Variable: final_std R-squared: 0.185
Model: OLS Adj. R-squared: 0.147
Method: Least Squares F-statistic: 5.140
Date: Mon, 07 Mar 2022 Prob (F-statistic): 3.04e-06
Time: 23:00:02 Log-Likelihood: 39.895
No. Observations: 202 AIC: -59.79
Df Residuals: 192 BIC: -26.71
Df Model: 9

coef std err z P> |z| [0.025 0.975]

Intercept -0.2753 0.329 -0.837 0.402 -0.920 0.369
frac_shortcut_avg 0.0809 0.288 0.281 0.779 -0.484 0.646
diameter_avg -0.0066 0.039 -0.168 0.866 -0.084 0.070
avg_path_length_avg 0.3023 0.175 1.725 0.085 -0.041 0.646
transitivity_avg -0.0888 0.667 -0.133 0.894 -1.396 1.218
count_avg 0.0029 0.007 0.400 0.689 -0.011 0.017
Complex -3.732e-05 0.000 -0.361 0.718 -0.000 0.000
Familiar 1.031e-05 2.23e-05 0.463 0.643 -3.33e-05 5.39e-05
Stakes 1.948e-05 8.35e-05 0.233 0.816 -0.000 0.000
Emotionally_Charged -1.971e-05 3.13e-05 -0.629 0.529 -8.11e-05 4.17e-05

Omnibus: 27.499 Durbin-Watson: 1.939
Prob(Omnibus): 0.000 Jarque-Bera (JB): 20.111
Skew: -0.660 Prob(JB): 4.29e-05
Kurtosis: 2.197 Cond. No. 9.55e+04

Table 2.30
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Dep. Variable: win R-squared: 0.208
Model: OLS Adj. R-squared: 0.149
Method: Least Squares F-statistic: 2.975
Date: Mon, 07 Mar 2022 Prob (F-statistic): 0.000395
Time: 23:00:02 Log-Likelihood: -80.866
No. Observations: 202 AIC: 191.7
Df Residuals: 187 BIC: 241.4
Df Model: 14

coef std err z P> |z| [0.025 0.975]

Intercept 1.5074 0.724 2.081 0.037 0.088 2.927
skin: fire -0.0319 0.145 -0.220 0.826 -0.315 0.251
skin: generals 0.0958 0.151 0.635 0.526 -0.200 0.391
skin: hiring -0.1243 0.132 -0.944 0.345 -0.383 0.134
skin: mascot -0.0063 0.146 -0.043 0.965 -0.292 0.279
skin: olympics -0.1017 0.125 -0.814 0.416 -0.347 0.143
skin: orchestra -0.0699 0.132 -0.528 0.597 -0.330 0.190
skin: plant -0.0935 0.132 -0.709 0.478 -0.352 0.165
skin: restaurant -0.0197 0.143 -0.138 0.891 -0.300 0.261
skin: space -0.0024 0.139 -0.017 0.986 -0.275 0.270
frac_shortcut_avg -0.0989 0.768 -0.129 0.898 -1.605 1.407
diameter_avg 0.0031 0.075 0.041 0.968 -0.144 0.151
avg_path_length_avg -0.6427 0.348 -1.844 0.065 -1.326 0.040
transitivity_avg 0.4231 1.881 0.225 0.822 -3.264 4.110
count_avg 0.0043 0.015 0.282 0.778 -0.026 0.034

Omnibus: 28.823 Durbin-Watson: 1.945
Prob(Omnibus): 0.000 Jarque-Bera (JB): 38.128
Skew: 1.064 Prob(JB): 5.26e-09
Kurtosis: 2.961 Cond. No. 556.
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Dep. Variable: win R-squared: 0.191
Model: OLS Adj. R-squared: 0.153
Method: Least Squares F-statistic: 4.360
Date: Mon, 07 Mar 2022 Prob (F-statistic): 3.45e-05
Time: 23:00:02 Log-Likelihood: -83.051
No. Observations: 202 AIC: 186.1
Df Residuals: 192 BIC: 219.2
Df Model: 9

coef std err z P> |z| [0.025 0.975]

Intercept 1.4953 0.708 2.112 0.035 0.108 2.883
frac_shortcut_avg -0.1847 0.684 -0.270 0.787 -1.525 1.156
diameter_avg 0.0023 0.070 0.032 0.974 -0.135 0.140
avg_path_length_avg -0.6923 0.334 -2.076 0.038 -1.346 -0.039
transitivity_avg 0.3039 1.664 0.183 0.855 -2.957 3.565
count_avg 0.0068 0.014 0.470 0.638 -0.021 0.035
Complex 0.0002 0.000 0.764 0.445 -0.000 0.001
Familiar 9.01e-06 4.07e-05 0.221 0.825 -7.08e-05 8.88e-05
Stakes -8.483e-05 0.000 -0.529 0.597 -0.000 0.000
Emotionally_Charged 2.178e-06 5.91e-05 0.037 0.971 -0.000 0.000

Omnibus: 30.711 Durbin-Watson: 1.898
Prob(Omnibus): 0.000 Jarque-Bera (JB): 41.394
Skew: 1.109 Prob(JB): 1.03e-09
Kurtosis: 3.015 Cond. No. 9.55e+04
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Dep. Variable: final_std R-squared: 0.395
Model: OLS Adj. R-squared: 0.248
Method: Least Squares F-statistic: 3.985
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.00214
Time: 00:29:02 Log-Likelihood: 14.084
No. Observations: 42 AIC: -10.17
Df Residuals: 33 BIC: 5.472
Df Model: 8

coef std err z P> |z| [0.025 0.975]

Intercept 0.7070 1.514 0.467 0.641 -2.261 3.675
skin: hiring 0.1656 0.073 2.274 0.023 0.023 0.308
Fraction Odd 0.2 -0.0386 0.081 -0.478 0.632 -0.197 0.120
Fraction Odd 0.5 -0.0438 0.108 -0.405 0.685 -0.255 0.168
frac_shortcut_avg -1.5208 0.927 -1.640 0.101 -3.338 0.296
diameter_avg -0.0832 0.101 -0.825 0.409 -0.281 0.115
avg_path_length_avg 0.6912 0.692 0.999 0.318 -0.665 2.047
transitivity_avg -3.0143 2.559 -1.178 0.239 -8.029 2.001
count_avg -0.0113 0.026 -0.427 0.670 -0.063 0.040

Omnibus: 2.630 Durbin-Watson: 2.247
Prob(Omnibus): 0.269 Jarque-Bera (JB): 2.126
Skew: -0.414 Prob(JB): 0.345
Kurtosis: 2.272 Cond. No. 926.

Table 2.33
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Dep. Variable: win R-squared: 0.433
Model: OLS Adj. R-squared: 0.296
Method: Least Squares F-statistic: 2.918
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.0141
Time: 00:29:02 Log-Likelihood: -11.816
No. Observations: 42 AIC: 41.63
Df Residuals: 33 BIC: 57.27
Df Model: 8

coef std err z P> |z| [0.025 0.975]

Intercept -0.6786 2.375 -0.286 0.775 -5.333 3.976
skin: hiring -0.3446 0.136 -2.525 0.012 -0.612 -0.077
Fraction Odd 0.2 -0.0442 0.138 -0.319 0.750 -0.315 0.227
Fraction Odd 0.5 0.0723 0.191 0.378 0.705 -0.302 0.447
frac_shortcut_avg 3.2067 1.508 2.126 0.033 0.251 6.162
diameter_avg 0.0880 0.184 0.478 0.632 -0.273 0.448
avg_path_length_avg -1.1126 1.158 -0.961 0.337 -3.382 1.157
transitivity_avg 6.1757 4.090 1.510 0.131 -1.840 14.192
count_avg 0.0186 0.044 0.419 0.676 -0.068 0.106

Omnibus: 1.037 Durbin-Watson: 2.089
Prob(Omnibus): 0.595 Jarque-Bera (JB): 1.078
Skew: 0.307 Prob(JB): 0.583
Kurtosis: 2.511 Cond. No. 926.

Table 2.34
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Dep. Variable: final_std R-squared: 0.393
Model: OLS Adj. R-squared: 0.268
Method: Least Squares F-statistic: 4.737
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.000853
Time: 00:29:02 Log-Likelihood: 14.005
No. Observations: 42 AIC: -12.01
Df Residuals: 34 BIC: 1.892
Df Model: 7

coef std err z P> |z| [0.025 0.975]

Intercept 0.6190 1.107 0.559 0.576 -1.551 2.789
skin: hiring 0.1669 0.071 2.367 0.018 0.029 0.305
frac_shortcut_avg -1.4863 0.684 -2.174 0.030 -2.826 -0.146
diameter_avg -0.0789 0.099 -0.793 0.427 -0.274 0.116
avg_path_length_avg 0.6595 0.616 1.071 0.284 -0.548 1.867
transitivity_avg -2.8752 1.750 -1.643 0.100 -6.304 0.554
count_avg -0.0094 0.025 -0.381 0.703 -0.058 0.039
Fraction Odd 0.0677 0.126 0.539 0.590 -0.179 0.314

Omnibus: 2.862 Durbin-Watson: 2.282
Prob(Omnibus): 0.239 Jarque-Bera (JB): 2.335
Skew: -0.449 Prob(JB): 0.311
Kurtosis: 2.274 Cond. No. 892.

Table 2.35
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Dep. Variable: win R-squared: 0.424
Model: OLS Adj. R-squared: 0.306
Method: Least Squares F-statistic: 3.630
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.00500
Time: 00:29:02 Log-Likelihood: -12.155
No. Observations: 42 AIC: 40.31
Df Residuals: 34 BIC: 54.21
Df Model: 7

coef std err z P> |z| [0.025 0.975]

Intercept -0.5965 1.620 -0.368 0.713 -3.772 2.579
skin: hiring -0.3495 0.134 -2.618 0.009 -0.611 -0.088
frac_shortcut_avg 3.0736 1.113 2.761 0.006 0.892 5.255
diameter_avg 0.0714 0.180 0.396 0.692 -0.282 0.425
avg_path_length_avg -0.9906 0.980 -1.011 0.312 -2.912 0.930
transitivity_avg 5.6393 2.802 2.013 0.044 0.147 11.131
count_avg 0.0114 0.039 0.292 0.771 -0.065 0.088
Fraction Odd 0.0607 0.217 0.279 0.780 -0.365 0.487

Omnibus: 1.231 Durbin-Watson: 2.180
Prob(Omnibus): 0.540 Jarque-Bera (JB): 1.223
Skew: 0.366 Prob(JB): 0.542
Kurtosis: 2.596 Cond. No. 892.

Table 2.36
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Dep. Variable: final_std R-squared: 0.354
Model: OLS Adj. R-squared: 0.197
Method: Least Squares F-statistic: 3.721
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.00337
Time: 00:29:15 Log-Likelihood: 17.905
No. Observations: 42 AIC: -17.81
Df Residuals: 33 BIC: -2.172
Df Model: 8

coef std err z P> |z| [0.025 0.975]

Intercept -0.6432 0.943 -0.682 0.495 -2.492 1.205
skin: orchestra 0.0822 0.072 1.144 0.253 -0.059 0.223
Fraction Odd 0.2 -0.1233 0.084 -1.472 0.141 -0.287 0.041
Fraction Odd 0.5 0.0023 0.080 0.029 0.977 -0.154 0.158
frac_shortcut_avg 0.5125 0.666 0.770 0.441 -0.793 1.818
diameter_avg 0.0475 0.077 0.620 0.535 -0.103 0.198
avg_path_length_avg 0.1570 0.299 0.525 0.599 -0.429 0.743
transitivity_avg 0.6994 1.661 0.421 0.674 -2.556 3.955
count_avg 0.0062 0.014 0.443 0.658 -0.021 0.034

Omnibus: 2.620 Durbin-Watson: 1.869
Prob(Omnibus): 0.270 Jarque-Bera (JB): 1.812
Skew: -0.499 Prob(JB): 0.404
Kurtosis: 3.197 Cond. No. 1.06e+03
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Dep. Variable: win R-squared: 0.582
Model: OLS Adj. R-squared: 0.480
Method: Least Squares F-statistic: 5.726
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.000136
Time: 00:29:15 Log-Likelihood: 2.8149
No. Observations: 42 AIC: 12.37
Df Residuals: 33 BIC: 28.01
Df Model: 8

coef std err z P> |z| [0.025 0.975]

Intercept 2.3221 1.222 1.901 0.057 -0.072 4.717
skin: orchestra 0.0497 0.097 0.512 0.609 -0.141 0.240
Fraction Odd 0.2 0.1892 0.122 1.549 0.121 -0.050 0.429
Fraction Odd 0.5 -0.1251 0.114 -1.094 0.274 -0.349 0.099
frac_shortcut_avg -1.2919 0.972 -1.329 0.184 -3.197 0.613
diameter_avg -0.1146 0.110 -1.043 0.297 -0.330 0.101
avg_path_length_avg -0.5160 0.445 -1.159 0.247 -1.389 0.357
transitivity_avg -0.7403 2.387 -0.310 0.756 -5.418 3.937
count_avg 0.0090 0.020 0.447 0.655 -0.030 0.048

Omnibus: 16.302 Durbin-Watson: 1.645
Prob(Omnibus): 0.000 Jarque-Bera (JB): 20.983
Skew: 1.223 Prob(JB): 2.78e-05
Kurtosis: 5.451 Cond. No. 1.06e+03

Table 2.38
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Dep. Variable: final_std R-squared: 0.332
Model: OLS Adj. R-squared: 0.195
Method: Least Squares F-statistic: 3.199
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.0103
Time: 00:29:15 Log-Likelihood: 17.202
No. Observations: 42 AIC: -18.40
Df Residuals: 34 BIC: -4.503
Df Model: 7

coef std err z P> |z| [0.025 0.975]

Intercept -0.7121 0.946 -0.753 0.452 -2.566 1.142
skin: orchestra 0.0838 0.072 1.157 0.247 -0.058 0.226
frac_shortcut_avg 0.5133 0.710 0.722 0.470 -0.879 1.906
diameter_avg 0.0486 0.076 0.636 0.525 -0.101 0.199
avg_path_length_avg 0.1228 0.297 0.413 0.680 -0.460 0.706
transitivity_avg 0.7007 1.738 0.403 0.687 -2.705 4.107
count_avg 0.0059 0.015 0.403 0.687 -0.023 0.035
Fraction Odd 0.2042 0.139 1.467 0.142 -0.069 0.477

Omnibus: 4.582 Durbin-Watson: 1.815
Prob(Omnibus): 0.101 Jarque-Bera (JB): 3.459
Skew: -0.674 Prob(JB): 0.177
Kurtosis: 3.398 Cond. No. 1.06e+03

Table 2.39
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Dep. Variable: win R-squared: 0.500
Model: OLS Adj. R-squared: 0.397
Method: Least Squares F-statistic: 3.602
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.00524
Time: 00:29:15 Log-Likelihood: -0.94642
No. Observations: 42 AIC: 17.89
Df Residuals: 34 BIC: 31.79
Df Model: 7

coef std err z P> |z| [0.025 0.975]

Intercept 2.2461 1.463 1.536 0.125 -0.621 5.113
skin: orchestra 0.0439 0.108 0.406 0.685 -0.168 0.256
frac_shortcut_avg -1.2946 1.183 -1.094 0.274 -3.614 1.025
diameter_avg -0.1186 0.115 -1.027 0.304 -0.345 0.108
avg_path_length_avg -0.3985 0.473 -0.842 0.400 -1.326 0.529
transitivity_avg -0.7449 2.855 -0.261 0.794 -6.341 4.851
count_avg 0.0100 0.022 0.451 0.652 -0.034 0.054
Fraction Odd -0.3109 0.210 -1.478 0.139 -0.723 0.101

Omnibus: 19.545 Durbin-Watson: 1.574
Prob(Omnibus): 0.000 Jarque-Bera (JB): 27.380
Skew: 1.430 Prob(JB): 1.13e-06
Kurtosis: 5.733 Cond. No. 1.06e+03

Table 2.40
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Dep. Variable: final_std R-squared: 0.477
Model: OLS Adj. R-squared: 0.333
Method: Least Squares F-statistic: 9.322
Date: Tue, 08 Mar 2022 Prob (F-statistic): 2.89e-06
Time: 00:30:21 Log-Likelihood: 14.849
No. Observations: 38 AIC: -11.70
Df Residuals: 29 BIC: 3.041
Df Model: 8

coef std err z P> |z| [0.025 0.975]

Intercept 0.9266 0.650 1.425 0.154 -0.348 2.201
skin: space 0.0403 0.076 0.527 0.598 -0.109 0.190
Fraction Odd 0.2 -0.0997 0.094 -1.066 0.286 -0.283 0.084
Fraction Odd 0.5 -0.0481 0.086 -0.561 0.575 -0.216 0.120
frac_shortcut_avg -0.4672 0.535 -0.872 0.383 -1.517 0.582
diameter_avg 0.0649 0.102 0.634 0.526 -0.136 0.266
avg_path_length_avg -0.2340 0.430 -0.544 0.586 -1.077 0.609
transitivity_avg -2.1733 1.036 -2.098 0.036 -4.203 -0.143
count_avg 0.0197 0.018 1.112 0.266 -0.015 0.054

Omnibus: 5.372 Durbin-Watson: 2.169
Prob(Omnibus): 0.068 Jarque-Bera (JB): 4.395
Skew: -0.825 Prob(JB): 0.111
Kurtosis: 3.233 Cond. No. 878.

Table 2.41
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Dep. Variable: win R-squared: 0.533
Model: OLS Adj. R-squared: 0.404
Method: Least Squares F-statistic: 14.96
Date: Tue, 08 Mar 2022 Prob (F-statistic): 2.07e-08
Time: 00:30:21 Log-Likelihood: -6.9652
No. Observations: 38 AIC: 31.93
Df Residuals: 29 BIC: 46.67
Df Model: 8

coef std err z P> |z| [0.025 0.975]

Intercept -0.4718 1.273 -0.371 0.711 -2.967 2.023
skin: space 0.0100 0.121 0.082 0.935 -0.228 0.248
Fraction Odd 0.2 0.2233 0.151 1.475 0.140 -0.073 0.520
Fraction Odd 0.5 -0.0377 0.157 -0.240 0.810 -0.345 0.270
frac_shortcut_avg 0.6103 1.061 0.575 0.565 -1.470 2.691
diameter_avg -0.0272 0.158 -0.173 0.863 -0.336 0.282
avg_path_length_avg 0.0274 0.995 0.027 0.978 -1.924 1.979
transitivity_avg 4.0777 2.040 1.999 0.046 0.079 8.076
count_avg -0.0223 0.044 -0.505 0.614 -0.109 0.064

Omnibus: 6.127 Durbin-Watson: 2.133
Prob(Omnibus): 0.047 Jarque-Bera (JB): 5.020
Skew: 0.871 Prob(JB): 0.0813
Kurtosis: 3.371 Cond. No. 878.

Table 2.42
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Dep. Variable: final_std R-squared: 0.477
Model: OLS Adj. R-squared: 0.355
Method: Least Squares F-statistic: 9.128
Date: Tue, 08 Mar 2022 Prob (F-statistic): 5.24e-06
Time: 00:30:21 Log-Likelihood: 14.848
No. Observations: 38 AIC: -13.70
Df Residuals: 30 BIC: -0.5956
Df Model: 7

coef std err z P> |z| [0.025 0.975]

Intercept 0.7959 0.599 1.329 0.184 -0.378 1.970
skin: space 0.0403 0.074 0.544 0.587 -0.105 0.186
frac_shortcut_avg -0.4700 0.480 -0.978 0.328 -1.412 0.472
diameter_avg 0.0653 0.100 0.652 0.514 -0.131 0.261
avg_path_length_avg -0.2329 0.427 -0.546 0.585 -1.069 0.603
transitivity_avg -2.1815 0.854 -2.555 0.011 -3.855 -0.508
count_avg 0.0196 0.017 1.145 0.252 -0.014 0.053
Fraction Odd 0.1660 0.154 1.081 0.280 -0.135 0.467

Omnibus: 5.433 Durbin-Watson: 2.169
Prob(Omnibus): 0.066 Jarque-Bera (JB): 4.448
Skew: -0.829 Prob(JB): 0.108
Kurtosis: 3.241 Cond. No. 852.

Table 2.43
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Dep. Variable: win R-squared: 0.510
Model: OLS Adj. R-squared: 0.395
Method: Least Squares F-statistic: 12.86
Date: Tue, 08 Mar 2022 Prob (F-statistic): 1.64e-07
Time: 00:30:21 Log-Likelihood: -7.8778
No. Observations: 38 AIC: 31.76
Df Residuals: 30 BIC: 44.86
Df Model: 7

coef std err z P> |z| [0.025 0.975]

Intercept -0.3686 1.169 -0.315 0.753 -2.660 1.923
skin: space 0.0053 0.123 0.044 0.965 -0.235 0.246
frac_shortcut_avg 0.8507 0.930 0.915 0.360 -0.971 2.673
diameter_avg -0.0575 0.153 -0.375 0.708 -0.358 0.243
avg_path_length_avg -0.0667 1.007 -0.066 0.947 -2.041 1.907
transitivity_avg 4.7731 1.638 2.914 0.004 1.563 7.983
count_avg -0.0104 0.042 -0.245 0.807 -0.093 0.073
Fraction Odd -0.3555 0.248 -1.432 0.152 -0.842 0.131

Omnibus: 7.056 Durbin-Watson: 2.064
Prob(Omnibus): 0.029 Jarque-Bera (JB): 5.709
Skew: 0.881 Prob(JB): 0.0576
Kurtosis: 3.707 Cond. No. 852.

Table 2.44
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2.4.3 The Alphabetical Protocol

By design, the difference between each of the identifiers was arbitrary, and in this
environment, it is reasonable to expect the players to come up their own methods of
discrimination. The Elo technique we describe in Chapter 3 ensures that each of the
identifiers are approximately equally attractive to the players, but some of the identi-
fiers start with different letters of the alphabet. The strategy of players proposing to
pick the first identifier in alphabetical order was incredibly common. In about 61.8%
of the games at least one player proposed a variant of the alphabetical protocol at
some point. As we mentioned when describing the coding scheme, there were a couple
of different variations of this protocol; some involved players sharing the identifiers
that they have seen to try and determine the first identifier alphabetically, while oth-
ers involved players instructing other players to select the first in alphabetical order
from the drop-down list at the end.

The pure alphabetical strategy, where no identifiers are passed, has some down-
sides compared other versions where identifiers are passed: player error in the final
choice and difficulty pivoting. When not coordinating on a specific identifier, the
players could accidentally pick different identifiers in the drop down causing them to
not reach consensus. It also more difficult to pivot away from as a strategy, as they
are not passing around identifiers, so it may be less clear to the players what the
space of identifiers is for that game. When identifiers are passed, the alphabetical
strategy can act as a dimensionality reduction, since identifiers with first letters not
near the beginning of the alphabet are not considered. This way, even if the players
are not able to commit to the alphabetical protocol throughout the entire game, its
presence early on can serve to winnow the field. Figure 2.20 shows the frequency of
the alphabetical protocol by round, and the alphabetical protocol peaks in frequency
early and decays as the game progresses.

Figure 2.19 shows the distribution of first letters in final votes for runs where the
alphabetical protocol was present, where it was not present, and the baseline distribu-
tion of our identifiers. In games where the alphabetical protocol is present, identifiers
starting with the letter b are much more common than when it is not present. Simi-
larly, identifiers starting with the letter q are much more common in runs where the
alphabetical protocol is not present, than when it is.

The alphabetical protocol had a negative impact on the consensus process. In or-
der to compare across runs we calculated an alphabetical score for each run: the sum
of the average fraction of alphabetical messages at each round. Tables 2.45 and 2.46
show the regressions final vote standard deviation and win rate respectively, with-
out any structural adjustments. In these regressions the coefficients for alphabetical
score were not statistically significant. The signs on the coefficients here did suggest
that they negatively impact consensus. On the other hand, Tables 2.47 and 2.48 do

79



have structural adjustments and for both final standard deviation and win rate the
coefficients on alphabetical score are statistically significant. This suggests that the
ability of the alphabetical protocol may be impacted by graphical structure. These
results show the alphabetical protocol having a small negative effect on the consensus
process.
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Figure 2.19

Figure 2.20

81



Dep. Variable: final_std R-squared: 0.009
Model: OLS Adj. R-squared: 0.004
Method: Least Squares F-statistic: 2.783
Date: Wed, 09 Mar 2022 Prob (F-statistic): 0.0968
Time: 02:35:14 Log-Likelihood: 20.190
No. Observations: 202 AIC: -36.38
Df Residuals: 200 BIC: -29.76
Df Model: 1

coef std err z P> |z| [0.025 0.975]

Intercept 0.3687 0.018 20.211 0.000 0.333 0.404
alphabetical_avg 0.0198 0.012 1.668 0.095 -0.003 0.043

Omnibus: 33.016 Durbin-Watson: 1.890
Prob(Omnibus): 0.000 Jarque-Bera (JB): 27.123
Skew: -0.801 Prob(JB): 1.29e-06
Kurtosis: 2.191 Cond. No. 1.93

Table 2.45

Dep. Variable: win R-squared: 0.006
Model: OLS Adj. R-squared: 0.001
Method: Least Squares F-statistic: 1.818
Date: Wed, 09 Mar 2022 Prob (F-statistic): 0.179
Time: 02:35:15 Log-Likelihood: -103.89
No. Observations: 202 AIC: 211.8
Df Residuals: 200 BIC: 218.4
Df Model: 1

coef std err z P> |z| [0.025 0.975]

Intercept 0.2274 0.034 6.673 0.000 0.161 0.294
alphabetical_avg -0.0283 0.021 -1.348 0.178 -0.069 0.013

Omnibus: 43.758 Durbin-Watson: 1.889
Prob(Omnibus): 0.000 Jarque-Bera (JB): 68.354
Skew: 1.425 Prob(JB): 1.44e-15
Kurtosis: 3.059 Cond. No. 1.93

Table 2.46
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Dep. Variable: final_std R-squared: 0.231
Model: OLS Adj. R-squared: 0.203
Method: Least Squares F-statistic: 8.364
Date: Wed, 09 Mar 2022 Prob (F-statistic): 6.37e-09
Time: 02:35:16 Log-Likelihood: 45.783
No. Observations: 202 AIC: -75.57
Df Residuals: 194 BIC: -49.10
Df Model: 7

coef std err z P> |z| [0.025 0.975]

Intercept -0.4870 0.307 -1.588 0.112 -1.088 0.114
alphabetical_avg 0.0282 0.012 2.425 0.015 0.005 0.051
frac_shortcut_avg 0.0769 0.286 0.269 0.788 -0.483 0.637
diameter_avg -0.0080 0.036 -0.218 0.827 -0.079 0.063
avg_path_length_avg 0.3231 0.166 1.944 0.052 -0.003 0.649
transitivity_avg 0.0025 0.675 0.004 0.997 -1.320 1.325
count_avg 0.0031 0.007 0.458 0.647 -0.010 0.016
Fraction Odd 0.1868 0.057 3.268 0.001 0.075 0.299

Omnibus: 22.189 Durbin-Watson: 1.935
Prob(Omnibus): 0.000 Jarque-Bera (JB): 18.384
Skew: -0.647 Prob(JB): 0.000102
Kurtosis: 2.287 Cond. No. 541.

Table 2.47
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Dep. Variable: win R-squared: 0.229
Model: OLS Adj. R-squared: 0.201
Method: Least Squares F-statistic: 7.236
Date: Wed, 09 Mar 2022 Prob (F-statistic): 1.06e-07
Time: 02:35:17 Log-Likelihood: -78.174
No. Observations: 202 AIC: 172.3
Df Residuals: 194 BIC: 198.8
Df Model: 7

coef std err z P> |z| [0.025 0.975]

Intercept 1.8754 0.650 2.887 0.004 0.602 3.149
alphabetical_avg -0.0446 0.022 -2.021 0.043 -0.088 -0.001
frac_shortcut_avg -0.1800 0.648 -0.278 0.781 -1.450 1.090
diameter_avg 0.0066 0.066 0.099 0.921 -0.124 0.137
avg_path_length_avg -0.7214 0.316 -2.279 0.023 -1.342 -0.101
transitivity_avg 0.1464 1.577 0.093 0.926 -2.945 3.237
count_avg 0.0058 0.013 0.437 0.662 -0.020 0.032
Fraction Odd -0.3004 0.104 -2.878 0.004 -0.505 -0.096

Omnibus: 30.029 Durbin-Watson: 1.939
Prob(Omnibus): 0.000 Jarque-Bera (JB): 40.014
Skew: 1.090 Prob(JB): 2.05e-09
Kurtosis: 3.060 Cond. No. 541.

Table 2.48
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2.4.4 Byzantine Faults

There are two primary sources of byzantine faults in our experiment: dropouts and
player actions. Dropouts can occur for a variety of reasons such as server-client clock
desynchronization, poor internet connection, power outages, and player inattention.
It is also a concern that the population of the players could have changed significantly
over the time the experiment ran for. The longer an experiment is out in the wild, the
more likely it is that new players will have exposure to the experiment, if for example,
the instructions were posted to an Amazon Mechanical Turk workers forum. It is also
possible that the players could be lower quality over time as not allowing repeat play
can exhaust the pool of potential players. These exogenous factors could influence
the likelihood of byzantine player action. We try to account for this by adjusting
for the rate at which players pass the comprehension quiz, as well as accounting for
the date the experiment took place (expressed as julian day). Additionally, we also
account for dropouts, since if players are more/less likely to dropout over time, that
could be problematic. Tables 2.49 and 2.50 address the impact of these variables on
the final game standard deviation. None of the variables were statistically significant
in these regressions other than fraction of odd vertices, suggesting that these factors
do not significantly impact the consensus process. Table 2.53 shows the results for the
regression of quiz pass rate versus julian day. The coefficient for julian day is statis-
tically significant, but the coefficient is also very small suggesting that the variation
in quiz pass rate over time is not practically significant. These results suggest that
there were not major shifts in the population over the run time of this experiment
and any changes that did happen did not meaningfully impact the results. The fact
that the fraction of players who drop out did not statistically significantly impact the
final vote standard deviation suggests that the human consensus process can tolerate
these kinds of faults.

The second type of byzantine faults present in our experiment is due to player
action. We coded this as confusion represented players who were playing improperly
like sending gibberish, repeated greetings, and trying to coordinate on invalid iden-
tifiers. An interesting example of this occurred in a run where the group achieved
consensus on the identifier: PESAM. PESAM was one of the words we generated
in other work (Sankaran et al., 2021), but we used this word in the tutorial as an
example, and, due to concerns about priming, we never assigned it to a player. This
is a great example of byzantine action, in the form of bullshit, or information that
appears like true information but is meaningless. From the perspective of a player,
PESAM appears to be a perfectly valid identifier because it has 5 letters and follows
the consonant - vowel - consonant - vowel - consonant pattern. Thus, other than
the initial player who proposed PESAM, none of the players were doing anything
unreasonable from their perspective. Unfortunately, since the players had no reason
to expect that PESAM would not appear in the drop-down list, they did not plan
for contingencies and ultimately lost. Thus, even if the mechanism the players use to
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achieve consensus are sound, if the data they are operating on is wrong they will reach
the wrong conclusion. In the case of 4-letter identifiers, the players were often able to
recover from this type of fault. Usually, another player would remind them that the
proper identifiers use were 5-letter identifiers, such as in this message a player sent:
"Four letter words are names of delegates, 5 letter are cities. Choose KOSOB." This
demonstrates some degree of tolerance to these kinds of faults.

Unfortunately, the players were not completely tolerant of confusion. Confusion
via 4-letter identifiers sometimes spreads to other players as seen by this message:
"both of you had chosen EPUB. so, i will choose EPUB too". They adopted a con-
fused state from their neighbors, even though they should know better. We aggregated
the level of confusion across games using the same method we used to aggregate the
alphabetical protocol. Tables 2.54 and 2.55 show the regressions final vote standard
deviation and win rate respectively, without any structural adjustments. In these
regressions the coefficients for confused score were statistically significant at the 5%
level for both outcome. The signs on the coefficients here did suggest that they nega-
tively impact consensus. On the other hand, Tables 2.56 and 2.57 do have structural
adjustments and for both final standard deviation and win rate the coefficients on
confused score are not statistically significant. Similar to alphabetical protocol, con-
fusion seems to have a small but negative effect on the consensus process. Notably
the coefficients for confused score and alphabetical score are similar, so their impact
on gameplay is similar.
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Dep. Variable: final_std R-squared: 0.049
Model: OLS Adj. R-squared: 0.028
Method: Least Squares F-statistic: 2.618
Date: Wed, 09 Mar 2022 Prob (F-statistic): 0.0366
Time: 03:30:23 Log-Likelihood: 26.050
No. Observations: 187 AIC: -42.10
Df Residuals: 182 BIC: -25.94
Df Model: 4

coef std err z P> |z| [0.025 0.975]

const 767.0080 677.330 1.132 0.257 -560.535 2094.551
Frac Odd 0.1750 0.067 2.614 0.009 0.044 0.306
Quiz Pass Rate 0.0805 0.188 0.428 0.669 -0.289 0.450
Fraction of Dropouts -0.1691 0.200 -0.845 0.398 -0.562 0.223
Julian Day -0.0003 0.000 -1.132 0.258 -0.001 0.000

Omnibus: 25.326 Durbin-Watson: 1.881
Prob(Omnibus): 0.000 Jarque-Bera (JB): 22.610
Skew: -0.769 Prob(JB): 1.23e-05
Kurtosis: 2.269 Cond. No. 9.79e+10

Table 2.49
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Dep. Variable: final_std R-squared: 0.185
Model: OLS Adj. R-squared: 0.143
Method: Least Squares F-statistic: 4.490
Date: Wed, 09 Mar 2022 Prob (F-statistic): 2.53e-05
Time: 03:30:24 Log-Likelihood: 40.452
No. Observations: 187 AIC: -60.90
Df Residuals: 177 BIC: -28.59
Df Model: 9

coef std err z P> |z| [0.025 0.975]

const -139.7280 658.970 -0.212 0.832 -1431.285 1151.829
Frac Odd 0.1550 0.064 2.429 0.015 0.030 0.280
Quiz Pass Rate -0.0878 0.195 -0.450 0.653 -0.470 0.295
Fraction of Dropouts 0.0114 0.220 0.052 0.959 -0.419 0.442
Julian Day 5.678e-05 0.000 0.212 0.832 -0.000 0.001
frac_shortcut_avg -0.2228 0.332 -0.671 0.502 -0.874 0.428
diameter_avg -0.0291 0.040 -0.723 0.470 -0.108 0.050
avg_path_length_avg 0.3653 0.186 1.961 0.050 0.000 0.730
transitivity_avg -0.8308 0.794 -1.046 0.295 -2.387 0.726
count_avg 0.0022 0.009 0.243 0.808 -0.015 0.020

Omnibus: 23.051 Durbin-Watson: 1.884
Prob(Omnibus): 0.000 Jarque-Bera (JB): 18.421
Skew: -0.670 Prob(JB): 0.000100
Kurtosis: 2.246 Cond. No. 1.07e+11

Table 2.50
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Dep. Variable: Number of Dropouts R-squared: 0.000
Model: OLS Adj. R-squared: -0.005
Method: Least Squares F-statistic: 0.002208
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.963
Time: 01:13:08 Log-Likelihood: -361.77
No. Observations: 187 AIC: 727.5
Df Residuals: 185 BIC: 734.0
Df Model: 1

coef std err z P> |z| [0.025 0.975]

const -190.5435 4122.062 -0.046 0.963 -8269.636 7888.549
Julian Day 7.877e-05 0.002 0.047 0.963 -0.003 0.003

Omnibus: 7.549 Durbin-Watson: 2.040
Prob(Omnibus): 0.023 Jarque-Bera (JB): 7.311
Skew: 0.465 Prob(JB): 0.0258
Kurtosis: 3.269 Cond. No. 8.49e+10

Table 2.51

Dep. Variable: Fraction of Dropouts R-squared: 0.024
Model: OLS Adj. R-squared: 0.019
Method: Least Squares F-statistic: 4.019
Date: Fri, 04 Feb 2022 Prob (F-statistic): 0.0465
Time: 03:43:51 Log-Likelihood: 202.62
No. Observations: 187 AIC: -401.2
Df Residuals: 185 BIC: -394.8
Df Model: 1

coef std err z P> |z| [0.025 0.975]

const -446.3521 222.728 -2.004 0.045 -882.890 -9.814
Julian Day 0.0002 9.06e-05 2.005 0.045 4.05e-06 0.000

Omnibus: 4.239 Durbin-Watson: 1.989
Prob(Omnibus): 0.120 Jarque-Bera (JB): 4.280
Skew: 0.342 Prob(JB): 0.118
Kurtosis: 2.713 Cond. No. 8.49e+10

Table 2.52
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Dep. Variable: Quiz Pass Rate R-squared: 0.231
Model: OLS Adj. R-squared: 0.227
Method: Least Squares F-statistic: 59.21
Date: Fri, 04 Feb 2022 Prob (F-statistic): 8.19e-13
Time: 03:43:07 Log-Likelihood: 185.15
No. Observations: 187 AIC: -366.3
Df Residuals: 185 BIC: -359.8
Df Model: 1

coef std err z P> |z| [0.025 0.975]

const -1701.8081 221.224 -7.693 0.000 -2135.399 -1268.217
Julian Day 0.0007 9e-05 7.695 0.000 0.001 0.001

Omnibus: 0.999 Durbin-Watson: 1.747
Prob(Omnibus): 0.607 Jarque-Bera (JB): 1.025
Skew: 0.063 Prob(JB): 0.599
Kurtosis: 2.660 Cond. No. 8.49e+10

Table 2.53

Dep. Variable: final_std R-squared: 0.015
Model: OLS Adj. R-squared: 0.010
Method: Least Squares F-statistic: 3.859
Date: Wed, 09 Mar 2022 Prob (F-statistic): 0.0509
Time: 02:35:15 Log-Likelihood: 20.754
No. Observations: 202 AIC: -37.51
Df Residuals: 200 BIC: -30.89
Df Model: 1

coef std err z P> |z| [0.025 0.975]

Intercept 0.3671 0.018 20.547 0.000 0.332 0.402
confused_avg 0.0328 0.017 1.964 0.049 7.49e-05 0.065

Omnibus: 34.343 Durbin-Watson: 1.934
Prob(Omnibus): 0.000 Jarque-Bera (JB): 27.390
Skew: -0.801 Prob(JB): 1.13e-06
Kurtosis: 2.171 Cond. No. 1.73

Table 2.54
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Dep. Variable: win R-squared: 0.011
Model: OLS Adj. R-squared: 0.006
Method: Least Squares F-statistic: 3.957
Date: Wed, 09 Mar 2022 Prob (F-statistic): 0.0480
Time: 02:35:15 Log-Likelihood: -103.32
No. Observations: 202 AIC: 210.6
Df Residuals: 200 BIC: 217.3
Df Model: 1

coef std err z P> |z| [0.025 0.975]

Intercept 0.2323 0.033 6.960 0.000 0.167 0.298
confused_avg -0.0525 0.026 -1.989 0.047 -0.104 -0.001

Omnibus: 43.119 Durbin-Watson: 1.929
Prob(Omnibus): 0.000 Jarque-Bera (JB): 66.964
Skew: 1.410 Prob(JB): 2.88e-15
Kurtosis: 3.037 Cond. No. 1.73

Table 2.55

Dep. Variable: final_std R-squared: 0.219
Model: OLS Adj. R-squared: 0.191
Method: Least Squares F-statistic: 7.760
Date: Wed, 09 Mar 2022 Prob (F-statistic): 2.85e-08
Time: 02:35:16 Log-Likelihood: 44.268
No. Observations: 202 AIC: -72.54
Df Residuals: 194 BIC: -46.07
Df Model: 7

coef std err z P> |z| [0.025 0.975]

Intercept -0.3558 0.307 -1.158 0.247 -0.958 0.246
confused_avg 0.0222 0.014 1.570 0.117 -0.006 0.050
frac_shortcut_avg 0.0437 0.290 0.150 0.880 -0.525 0.613
diameter_avg -0.0018 0.038 -0.048 0.961 -0.077 0.073
avg_path_length_avg 0.2616 0.169 1.552 0.121 -0.069 0.592
transitivity_avg -0.0874 0.685 -0.128 0.898 -1.430 1.255
count_avg 0.0046 0.007 0.672 0.502 -0.009 0.018
Fraction Odd 0.1715 0.058 2.939 0.003 0.057 0.286

Omnibus: 27.099 Durbin-Watson: 1.976
Prob(Omnibus): 0.000 Jarque-Bera (JB): 18.888
Skew: -0.629 Prob(JB): 7.92e-05
Kurtosis: 2.186 Cond. No. 534.

Table 2.56
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Dep. Variable: win R-squared: 0.220
Model: OLS Adj. R-squared: 0.192
Method: Least Squares F-statistic: 6.670
Date: Wed, 09 Mar 2022 Prob (F-statistic): 4.43e-07
Time: 02:35:19 Log-Likelihood: -79.377
No. Observations: 202 AIC: 174.8
Df Residuals: 194 BIC: 201.2
Df Model: 7

coef std err z P> |z| [0.025 0.975]

Intercept 1.6695 0.643 2.595 0.009 0.409 2.931
confused_avg -0.0324 0.023 -1.398 0.162 -0.078 0.013
frac_shortcut_avg -0.1288 0.654 -0.197 0.844 -1.410 1.152
diameter_avg -0.0026 0.068 -0.038 0.969 -0.136 0.131
avg_path_length_avg -0.6263 0.316 -1.984 0.047 -1.245 -0.008
transitivity_avg 0.2877 1.592 0.181 0.857 -2.832 3.408
count_avg 0.0034 0.013 0.258 0.797 -0.023 0.030
Fraction Odd -0.2775 0.106 -2.616 0.009 -0.485 -0.070

Omnibus: 29.294 Durbin-Watson: 1.965
Prob(Omnibus): 0.000 Jarque-Bera (JB): 38.921
Skew: 1.075 Prob(JB): 3.53e-09
Kurtosis: 2.981 Cond. No. 534.

Table 2.57
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2.5 Discussion

One way to assess the difficulty of this problem is to consider the probability that a
solution would occur by chance with actors playing randomly. If there are N players
with N distinct states, a player voting uniformly randomly has a 1

N
chance to choose

any particular state. Assuming each player chooses independently, the probability of
consensus is 1

NN . With 20 players and 20 states, which is a reasonable size for this
experiment, the probability of random consensus is 1

2020
, which is incredibly small.

Now consider a dimensionality reduction where the 20 players have managed to re-
duce the 20 states to 5 to choose randomly over; the probability of random consensus
is now 1

520
which, while being much better, is still very small. Comparing this to the

win probabilities observed in this game, which are about 1
10

with 0.8 fraction of odd
vertices, about 1

5
with fraction of 0.5 odd vertices, and about 1

3
when the fraction of

odd vertices is 0.2. Thus, even in the worst experimental condition the human players
are many orders of magnitude better than random play. While random play might
seem to be a low bar, this explains how problem difficulty can scale with the number
of players, and explains why the number of players alone was so strongly associated
the likelihood of consensus. This also suggests that, when referenced against random
play, reducing the number of states probably matters less than reducing the number
of players. Notably, we did not find a significant effect for the number of players but
average path length did sometimes have a significant effect. This suggests that the
structure of the network matters more than the size of the network over the range of
network sizes we considered.

We did not find strong evidence that the context of the vignettes mattered much
to the consensus process. We expected that would behave differently based on con-
text, and to some extent that was true. Some of the players would get into character;
for example, in the orchestra scenario some players would say the venue they were
voting for was made up positive qualities. Here is an example of a player doing this:
"Like IWUQ, I support HEDUL as the venue. You know it’s convenient and beauti-
ful and has many amenities.". This seems to suggest that players did internalize the
setting, but that it did not impact their strategy much. While we might expect the
consensus process to work differently in real life when you have generals planning an
attack versus friends going out to eat, it is likely that this game is too far removed
from that to really show the difference. Even if the players can rate the scenarios
as being different across the four dimensions, they do not seem to be acting like this
mattered.

We found that the structural manipulation of altering the fraction of even and
odd vertices in the initial graph did matter for the group to reach consensus. Un-
fortunately, the mechanism by which it does so is unclear. Our initial hypothesis
was that more odd vertices would be better, as it would help players break gridlocks.
There actually were slightly more gridlocks when the fraction of odd vertices was
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0.8 versus 0.2 and gridlocked players were more likely to change their state not less.
Additionally, the aggregate number of state changes across the different fraction of
odd vertices was quite small. This suggests that altering the fraction of even versus
odd vertices may be a fruitful intervention in different contexts.

2.6 Conclusion

We found that manipulating the Fraction of Odd vertices had a significant impact
on the ability of a group to reach consensus in a Byzantine setting. The mechanism
does not seem to be decision paralysis induced by gridlocks related to conflicting in-
formation. We found that gridlocked players were more likely to change their state
than non gridlocked players. Further research is needed to determine what exactly
about the fraction of odd vertices impacts the consensus process. Though, our results
do suggest that this process leads to more gridlocks near the end of the game. No-
tably gridlocks were higher in the 0.8 fraction odd condition regardless of the type,
so whether or not the players were considering their own state there were still more
gridlocks. If the mechanism is structural, then the fraction of odd vertices may be
relevant in other games on graphs. Alternatively, if the mechanism is psychological,
then this could have implications for optimal ways to communicate information to
foster agreement.

The human players preformed incredibly well when compared against the expected
results of random actors, the win rate was still low suggesting that this is a difficult
problem. However, we did find evidence of byzantine fault tolerance in this setting.
Player dropout did not have a significant effect on the outcomes of interest. Player
confusion did have a modest and negative effect on consensus, but this was overpow-
ered by the fraction of odd vertices. The size of this effect was similar to that of
the alphabetical protocol, suggesting that, in this setting choosing, a bad protocol is
comparable in effect to byzantine action.

An important aspect of this experiment is that we did not experimentally intro-
duce any byzantine faults into this experiment, they all occurred on their own. The
methodological implications of this are that online experiments are a byzantine set-
ting and that needs to be accounted for in experimental designs. The richness of the
messages also allowed us deeper insights into the motivations, strategies and under-
standings of the players. This allowed us to detect when players did not understand
the rule of the game, but in more limited settings these errors could have gone un-
noticed. Thus, we recommend incorporating some sort of full text input into online
experiments.

One advantage of this design is that the full text messages allow the players to both
communicate in a rich way but also one that is more similar to real communication
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given the prevalence of email and other online messaging. Thus, it is likely that these
results generalize better to online interactions better than in person interactions. In
many real scenarios the information is not as stratified as it is in our setting, with each
player being assigned a unique initial state with only the ability to communicate across
network ties. It is reasonable for people to encounter those with different information
sets than themselves. For example, people who consume liberal versus conservative
media might have different knowledge about a certain event, or scientific collaborators
who come from different fields could know different things about the same topic.
Even so, effect of the skins was not significant suggesting, that this experiment was
far enough removed from the stakes and complications of real consensus problems
to have a substantial effect. Nevertheless, these results are promising and suggest
avenues for further research in ecologically relevant settings.
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2.7 Robustness Checks

2.7.1 Final Voting Bug

In the post-experimental analysis, we detected a bug in the experimental software
that impacted some of the votes in the game. In an earlier version of this experiment,
we assigned each player a 4 digit code to serve as their player identifier composed
from their AMT ids. These include both letters and numbers. While these codes
were not supposed to be used, under certain conditions, these codes could make it
into the final drop-down list for voting, but were not assigned to any players. Since
these options were the wrong number of letters and sometimes contained numbers,
they were different enough from what they players were told to expect that we would
expect players who passed the comprehension quiz to not vote for these options. While
these incorrect choices appeared in the final drop-down lists in 139 out of our 202 runs,
63 runs were completely unaffected while players only voted for one of these options
in 9 runs. Since these identifiers didn’t appear until the final voting drop down, most
players were already going into this with an idea of what they wanted to vote for
already. This suggest that the vast majority of players were not impacted by this bug.
Interestingly, players only voted for this in games where the alphabetical protocol was
present suggesting that this and other strategies that coordinate on information in
the drop down may have been the motivation to vote for these options. Even though
the impact of this bug is minimal, Tables 2.58 through 2.85 show replications of some
of the main regressions done on the sub sample of unaffected runs. We did not do this
for skin paired comparisons because the sample size is already small. The coefficients
on the variables representing the Fraction of Odd vertices were the same sign in these
regressions even if they were not always statistically significant at the 5% level. Given
that these regressions were done on slightly less than one third of the sample, the loss
in power is not surprising this still suggests that these results are robust and were
broadly not impacted by this bug.
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Dep. Variable: final_std R-squared: 0.284
Model: OLS Adj. R-squared: 0.035
Method: Least Squares F-statistic: 1.100
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.383
Time: 00:28:09 Log-Likelihood: 22.275
No. Observations: 63 AIC: -10.55
Df Residuals: 46 BIC: 25.88
Df Model: 16

coef std err z P> |z| [0.025 0.975]

Intercept 0.2642 0.796 0.332 0.740 -1.297 1.825
skin: fire 0.0911 0.298 0.306 0.760 -0.493 0.675
skin: generals 0.2740 0.358 0.765 0.444 -0.428 0.976
skin: hiring 0.3037 0.309 0.983 0.326 -0.302 0.909
skin: mascot 0.3200 0.320 1.000 0.317 -0.307 0.947
skin: olympics 0.1153 0.293 0.393 0.694 -0.459 0.690
skin: orchestra 0.2133 0.294 0.725 0.468 -0.363 0.790
skin: plant 0.1992 0.298 0.668 0.504 -0.385 0.784
skin: restaurant 0.1842 0.307 0.600 0.549 -0.418 0.786
skin: space 0.1880 0.304 0.618 0.536 -0.408 0.784
Fraction Odd 0.2 -0.1683 0.087 -1.925 0.054 -0.340 0.003
Fraction Odd 0.5 -0.0675 0.076 -0.886 0.376 -0.217 0.082
frac_shortcut_avg -0.0221 0.716 -0.031 0.975 -1.426 1.382
diameter_avg 0.0093 0.083 0.112 0.911 -0.153 0.172
avg_path_length_avg 0.0460 0.400 0.115 0.909 -0.738 0.830
transitivity_avg -0.9074 1.928 -0.471 0.638 -4.686 2.871
count_avg 0.0042 0.018 0.232 0.816 -0.031 0.040

Omnibus: 4.448 Durbin-Watson: 2.429
Prob(Omnibus): 0.108 Jarque-Bera (JB): 4.385
Skew: -0.629 Prob(JB): 0.112
Kurtosis: 2.703 Cond. No. 1.28e+03

Table 2.58
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Dep. Variable: final_std R-squared: 0.211
Model: OLS Adj. R-squared: 0.041
Method: Least Squares F-statistic: 1.118
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.367
Time: 00:28:09 Log-Likelihood: 19.219
No. Observations: 63 AIC: -14.44
Df Residuals: 51 BIC: 11.28
Df Model: 11

coef std err z P> |z| [0.025 0.975]

Intercept 0.2841 0.792 0.359 0.720 -1.268 1.837
Fraction Odd 0.2 -0.1459 0.077 -1.905 0.057 -0.296 0.004
Fraction Odd 0.5 -0.0650 0.074 -0.884 0.376 -0.209 0.079
frac_shortcut_avg 0.0875 0.685 0.128 0.898 -1.254 1.429
diameter_avg -0.0092 0.077 -0.119 0.905 -0.160 0.142
avg_path_length_avg -0.0213 0.376 -0.057 0.955 -0.759 0.716
transitivity_avg -0.2091 1.876 -0.111 0.911 -3.885 3.467
count_avg 0.0192 0.015 1.288 0.198 -0.010 0.048
Complex 9.568e-06 0.000 0.035 0.972 -0.001 0.001
Familiar -3.418e-06 4.79e-05 -0.071 0.943 -9.73e-05 9.05e-05
Stakes -2.004e-05 0.000 -0.110 0.913 -0.000 0.000
Emotionally_Charged -2.815e-05 5.23e-05 -0.539 0.590 -0.000 7.43e-05

Omnibus: 5.187 Durbin-Watson: 2.245
Prob(Omnibus): 0.075 Jarque-Bera (JB): 5.083
Skew: -0.690 Prob(JB): 0.0787
Kurtosis: 2.827 Cond. No. 2.09e+05

Table 2.59
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Dep. Variable: win R-squared: 0.263
Model: OLS Adj. R-squared: 0.007
Method: Least Squares F-statistic: 0.5271
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.919
Time: 00:28:09 Log-Likelihood: -13.607
No. Observations: 63 AIC: 61.21
Df Residuals: 46 BIC: 97.65
Df Model: 16

coef std err z P> |z| [0.025 0.975]

Intercept 1.1636 1.419 0.820 0.412 -1.617 3.944
skin: fire -0.3487 0.688 -0.507 0.612 -1.696 0.999
skin: generals -0.5480 0.833 -0.658 0.511 -2.181 1.085
skin: hiring -0.5380 0.692 -0.777 0.437 -1.895 0.819
skin: mascot -0.5573 0.725 -0.768 0.442 -1.979 0.864
skin: olympics -0.4925 0.673 -0.732 0.464 -1.811 0.826
skin: orchestra -0.3643 0.683 -0.533 0.594 -1.704 0.975
skin: plant -0.3953 0.687 -0.576 0.565 -1.741 0.950
skin: restaurant -0.3427 0.697 -0.491 0.623 -1.710 1.024
skin: space -0.3674 0.696 -0.528 0.598 -1.732 0.997
Fraction Odd 0.2 0.2460 0.161 1.529 0.126 -0.069 0.561
Fraction Odd 0.5 0.1375 0.131 1.046 0.295 -0.120 0.395
frac_shortcut_avg -0.1258 1.324 -0.095 0.924 -2.721 2.470
diameter_avg -0.0531 0.148 -0.360 0.719 -0.342 0.236
avg_path_length_avg -0.3354 0.761 -0.441 0.659 -1.826 1.155
transitivity_avg 0.9526 3.383 0.282 0.778 -5.678 7.584
count_avg 0.0048 0.033 0.145 0.885 -0.059 0.069

Omnibus: 15.463 Durbin-Watson: 2.203
Prob(Omnibus): 0.000 Jarque-Bera (JB): 17.574
Skew: 1.236 Prob(JB): 0.000153
Kurtosis: 3.766 Cond. No. 1.28e+03

Table 2.60
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Dep. Variable: win R-squared: 0.187
Model: OLS Adj. R-squared: 0.012
Method: Least Squares F-statistic: 0.6696
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.760
Time: 00:28:09 Log-Likelihood: -16.721
No. Observations: 63 AIC: 57.44
Df Residuals: 51 BIC: 83.16
Df Model: 11

coef std err z P> |z| [0.025 0.975]

Intercept 1.0057 1.357 0.741 0.459 -1.654 3.666
Fraction Odd 0.2 0.2088 0.138 1.513 0.130 -0.062 0.479
Fraction Odd 0.5 0.1132 0.129 0.876 0.381 -0.140 0.366
frac_shortcut_avg -0.2731 1.283 -0.213 0.831 -2.788 2.242
diameter_avg -0.0489 0.140 -0.350 0.726 -0.322 0.225
avg_path_length_avg -0.2406 0.714 -0.337 0.736 -1.640 1.159
transitivity_avg 0.1042 3.270 0.032 0.975 -6.305 6.513
count_avg -0.0112 0.026 -0.430 0.667 -0.062 0.040
Complex 8.055e-05 0.001 0.149 0.881 -0.001 0.001
Familiar 1.299e-05 8.56e-05 0.152 0.879 -0.000 0.000
Stakes -5.086e-05 0.000 -0.146 0.884 -0.001 0.001
Emotionally_Charged 8.494e-06 9.66e-05 0.088 0.930 -0.000 0.000

Omnibus: 19.511 Durbin-Watson: 2.088
Prob(Omnibus): 0.000 Jarque-Bera (JB): 24.281
Skew: 1.402 Prob(JB): 5.34e-06
Kurtosis: 4.178 Cond. No. 2.09e+05

Table 2.61
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Dep. Variable: final_std R-squared: 0.283
Model: OLS Adj. R-squared: 0.054
Method: Least Squares F-statistic: 1.202
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.304
Time: 00:28:09 Log-Likelihood: 22.223
No. Observations: 63 AIC: -12.45
Df Residuals: 47 BIC: 21.84
Df Model: 15

coef std err z P> |z| [0.025 0.975]

Intercept 0.0044 0.794 0.006 0.996 -1.551 1.560
skin: fire 0.1023 0.295 0.347 0.729 -0.476 0.680
skin: generals 0.2814 0.340 0.827 0.408 -0.386 0.948
skin: hiring 0.3054 0.309 0.989 0.323 -0.300 0.911
skin: mascot 0.3179 0.319 0.995 0.320 -0.308 0.944
skin: olympics 0.1204 0.293 0.411 0.681 -0.454 0.695
skin: orchestra 0.2145 0.295 0.728 0.467 -0.363 0.792
skin: plant 0.2049 0.298 0.688 0.492 -0.379 0.789
skin: restaurant 0.1886 0.308 0.612 0.540 -0.415 0.792
skin: space 0.1942 0.303 0.641 0.522 -0.400 0.788
frac_shortcut_avg 0.0134 0.716 0.019 0.985 -1.390 1.417
diameter_avg 0.0092 0.082 0.112 0.911 -0.151 0.169
avg_path_length_avg 0.0458 0.388 0.118 0.906 -0.714 0.806
transitivity_avg -0.8135 1.891 -0.430 0.667 -4.519 2.892
count_avg 0.0044 0.018 0.249 0.804 -0.030 0.039
Fraction Odd 0.2767 0.141 1.963 0.050 0.000 0.553

Omnibus: 4.495 Durbin-Watson: 2.420
Prob(Omnibus): 0.106 Jarque-Bera (JB): 4.447
Skew: -0.629 Prob(JB): 0.108
Kurtosis: 2.668 Cond. No. 1.24e+03

Table 2.62
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Dep. Variable: final_std R-squared: 0.211
Model: OLS Adj. R-squared: 0.059
Method: Least Squares F-statistic: 1.256
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.279
Time: 00:28:09 Log-Likelihood: 19.207
No. Observations: 63 AIC: -16.41
Df Residuals: 52 BIC: 7.161
Df Model: 10

coef std err z P> |z| [0.025 0.975]

Intercept 0.0704 0.734 0.096 0.924 -1.368 1.509
frac_shortcut_avg 0.1030 0.672 0.153 0.878 -1.214 1.420
diameter_avg -0.0089 0.076 -0.117 0.907 -0.158 0.140
avg_path_length_avg -0.0202 0.363 -0.055 0.956 -0.732 0.692
transitivity_avg -0.1676 1.795 -0.093 0.926 -3.685 3.350
count_avg 0.0192 0.015 1.317 0.188 -0.009 0.048
Complex 1.331e-05 0.000 0.051 0.960 -0.001 0.001
Familiar -3.318e-06 4.63e-05 -0.072 0.943 -9.4e-05 8.74e-05
Stakes -2.273e-05 0.000 -0.129 0.897 -0.000 0.000
Emotionally_Charged -2.667e-05 4.9e-05 -0.544 0.586 -0.000 6.94e-05
Fraction Odd 0.2424 0.124 1.950 0.051 -0.001 0.486

Omnibus: 5.225 Durbin-Watson: 2.244
Prob(Omnibus): 0.073 Jarque-Bera (JB): 5.142
Skew: -0.693 Prob(JB): 0.0765
Kurtosis: 2.813 Cond. No. 2.04e+05

Table 2.63
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Dep. Variable: win R-squared: 0.263
Model: OLS Adj. R-squared: 0.028
Method: Least Squares F-statistic: 0.5541
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.894
Time: 00:28:09 Log-Likelihood: -13.620
No. Observations: 63 AIC: 59.24
Df Residuals: 47 BIC: 93.53
Df Model: 15

coef std err z P> |z| [0.025 0.975]

Intercept 1.4610 1.370 1.067 0.286 -1.223 4.145
skin: fire -0.3390 0.685 -0.495 0.621 -1.682 1.004
skin: generals -0.5415 0.818 -0.662 0.508 -2.145 1.062
skin: hiring -0.5365 0.689 -0.778 0.436 -1.887 0.814
skin: mascot -0.5591 0.721 -0.776 0.438 -1.972 0.854
skin: olympics -0.4881 0.670 -0.728 0.467 -1.802 0.826
skin: orchestra -0.3633 0.681 -0.534 0.594 -1.698 0.971
skin: plant -0.3903 0.684 -0.570 0.568 -1.731 0.951
skin: restaurant -0.3390 0.697 -0.486 0.627 -1.706 1.028
skin: space -0.3620 0.690 -0.525 0.600 -1.715 0.991
frac_shortcut_avg -0.0949 1.305 -0.073 0.942 -2.653 2.463
diameter_avg -0.0532 0.143 -0.372 0.710 -0.333 0.227
avg_path_length_avg -0.3355 0.740 -0.454 0.650 -1.785 1.114
transitivity_avg 1.0341 3.235 0.320 0.749 -5.307 7.375
count_avg 0.0049 0.032 0.154 0.878 -0.058 0.068
Fraction Odd -0.4134 0.259 -1.598 0.110 -0.921 0.094

Omnibus: 15.586 Durbin-Watson: 2.211
Prob(Omnibus): 0.000 Jarque-Bera (JB): 17.745
Skew: 1.239 Prob(JB): 0.000140
Kurtosis: 3.790 Cond. No. 1.24e+03

Table 2.64
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Dep. Variable: win R-squared: 0.187
Model: OLS Adj. R-squared: 0.030
Method: Least Squares F-statistic: 0.7606
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.665
Time: 00:28:09 Log-Likelihood: -16.725
No. Observations: 63 AIC: 55.45
Df Residuals: 52 BIC: 79.03
Df Model: 10

coef std err z P> |z| [0.025 0.975]

Intercept 1.2629 1.265 0.998 0.318 -1.217 3.743
frac_shortcut_avg -0.2560 1.261 -0.203 0.839 -2.727 2.215
diameter_avg -0.0486 0.138 -0.353 0.724 -0.319 0.221
avg_path_length_avg -0.2393 0.686 -0.349 0.727 -1.583 1.104
transitivity_avg 0.1503 3.148 0.048 0.962 -6.019 6.320
count_avg -0.0112 0.025 -0.441 0.659 -0.061 0.039
Complex 8.471e-05 0.001 0.164 0.870 -0.001 0.001
Familiar 1.31e-05 8.3e-05 0.158 0.875 -0.000 0.000
Stakes -5.385e-05 0.000 -0.160 0.873 -0.001 0.001
Emotionally_Charged 1.013e-05 9.55e-05 0.106 0.915 -0.000 0.000
Fraction Odd -0.3490 0.224 -1.558 0.119 -0.788 0.090

Omnibus: 19.509 Durbin-Watson: 2.092
Prob(Omnibus): 0.000 Jarque-Bera (JB): 24.276
Skew: 1.401 Prob(JB): 5.35e-06
Kurtosis: 4.184 Cond. No. 2.04e+05

Table 2.65
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Dep. Variable: final_std R-squared: 0.198
Model: OLS Adj. R-squared: -0.036
Method: Least Squares F-statistic: 0.8399
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.624
Time: 00:28:21 Log-Likelihood: 18.679
No. Observations: 63 AIC: -7.358
Df Residuals: 48 BIC: 24.79
Df Model: 14

coef std err z P> |z| [0.025 0.975]

Intercept 0.0344 0.808 0.043 0.966 -1.550 1.619
skin: fire 0.1382 0.385 0.359 0.719 -0.615 0.892
skin: generals 0.2533 0.390 0.650 0.516 -0.511 1.017
skin: hiring 0.3089 0.391 0.790 0.429 -0.457 1.075
skin: mascot 0.2405 0.398 0.604 0.546 -0.540 1.021
skin: olympics 0.1377 0.382 0.361 0.718 -0.611 0.886
skin: orchestra 0.2174 0.382 0.568 0.570 -0.532 0.967
skin: plant 0.1801 0.384 0.469 0.639 -0.572 0.933
skin: restaurant 0.2330 0.391 0.596 0.551 -0.533 0.999
skin: space 0.2271 0.394 0.576 0.565 -0.546 1.000
frac_shortcut_avg 0.2295 0.757 0.303 0.762 -1.255 1.714
diameter_avg -0.0062 0.087 -0.071 0.944 -0.177 0.165
avg_path_length_avg 0.0373 0.405 0.092 0.927 -0.757 0.831
transitivity_avg -0.3487 1.841 -0.189 0.850 -3.957 3.260
count_avg 0.0039 0.019 0.204 0.838 -0.033 0.041

Omnibus: 6.277 Durbin-Watson: 2.410
Prob(Omnibus): 0.043 Jarque-Bera (JB): 6.399
Skew: -0.753 Prob(JB): 0.0408
Kurtosis: 2.590 Cond. No. 1.23e+03

Table 2.66
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Dep. Variable: final_std R-squared: 0.138
Model: OLS Adj. R-squared: -0.009
Method: Least Squares F-statistic: 0.9839
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.464
Time: 00:28:21 Log-Likelihood: 16.416
No. Observations: 63 AIC: -12.83
Df Residuals: 53 BIC: 8.600
Df Model: 9

coef std err z P> |z| [0.025 0.975]

Intercept 0.0461 0.708 0.065 0.948 -1.342 1.434
frac_shortcut_avg 0.3265 0.691 0.472 0.637 -1.028 1.681
diameter_avg -0.0147 0.080 -0.183 0.855 -0.172 0.143
avg_path_length_avg -0.0354 0.371 -0.095 0.924 -0.763 0.692
transitivity_avg 0.2490 1.698 0.147 0.883 -3.079 3.577
count_avg 0.0172 0.015 1.143 0.253 -0.012 0.047
Complex -3.326e-05 0.000 -0.128 0.898 -0.001 0.000
Familiar 1.474e-05 4.07e-05 0.362 0.717 -6.5e-05 9.45e-05
Stakes 3.119e-05 0.000 0.167 0.867 -0.000 0.000
Emotionally_Charged -2.738e-05 5.58e-05 -0.491 0.623 -0.000 8.19e-05

Omnibus: 7.211 Durbin-Watson: 2.314
Prob(Omnibus): 0.027 Jarque-Bera (JB): 7.539
Skew: -0.829 Prob(JB): 0.0231
Kurtosis: 2.653 Cond. No. 2.03e+05

Table 2.67
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Dep. Variable: win R-squared: 0.200
Model: OLS Adj. R-squared: -0.033
Method: Least Squares F-statistic: 0.4909
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.927
Time: 00:28:21 Log-Likelihood: -16.195
No. Observations: 63 AIC: 62.39
Df Residuals: 48 BIC: 94.54
Df Model: 14

coef std err z P> |z| [0.025 0.975]

Intercept 1.4163 1.402 1.010 0.312 -1.331 4.163
skin: fire -0.3926 0.805 -0.488 0.626 -1.971 1.186
skin: generals -0.4995 0.863 -0.579 0.563 -2.190 1.191
skin: hiring -0.5418 0.803 -0.675 0.500 -2.115 1.032
skin: mascot -0.4436 0.828 -0.536 0.592 -2.067 1.180
skin: olympics -0.5140 0.792 -0.649 0.517 -2.067 1.039
skin: orchestra -0.3676 0.802 -0.458 0.647 -1.940 1.205
skin: plant -0.3532 0.802 -0.440 0.660 -1.926 1.219
skin: restaurant -0.4054 0.816 -0.497 0.619 -2.004 1.193
skin: space -0.4113 0.815 -0.505 0.614 -2.008 1.186
frac_shortcut_avg -0.4178 1.401 -0.298 0.766 -3.164 2.328
diameter_avg -0.0303 0.147 -0.206 0.837 -0.319 0.258
avg_path_length_avg -0.3228 0.750 -0.430 0.667 -1.793 1.147
transitivity_avg 0.3396 3.229 0.105 0.916 -5.989 6.668
count_avg 0.0058 0.034 0.169 0.866 -0.061 0.072

Omnibus: 17.111 Durbin-Watson: 2.260
Prob(Omnibus): 0.000 Jarque-Bera (JB): 20.209
Skew: 1.317 Prob(JB): 4.09e-05
Kurtosis: 3.874 Cond. No. 1.23e+03

Table 2.68
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Dep. Variable: win R-squared: 0.137
Model: OLS Adj. R-squared: -0.010
Method: Least Squares F-statistic: 0.8094
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.610
Time: 00:28:21 Log-Likelihood: -18.602
No. Observations: 63 AIC: 57.20
Df Residuals: 53 BIC: 78.64
Df Model: 9

coef std err z P> |z| [0.025 0.975]

Intercept 1.2980 1.208 1.075 0.283 -1.069 3.665
frac_shortcut_avg -0.5778 1.310 -0.441 0.659 -3.146 1.990
diameter_avg -0.0402 0.138 -0.291 0.771 -0.311 0.230
avg_path_length_avg -0.2173 0.672 -0.323 0.746 -1.534 1.100
transitivity_avg -0.4496 3.066 -0.147 0.883 -6.459 5.560
count_avg -0.0084 0.025 -0.340 0.734 -0.057 0.040
Complex 0.0002 0.001 0.303 0.762 -0.001 0.001
Familiar -1.289e-05 7.58e-05 -0.170 0.865 -0.000 0.000
Stakes -0.0001 0.000 -0.390 0.697 -0.001 0.001
Emotionally_Charged 1.115e-05 0.000 0.109 0.913 -0.000 0.000

Omnibus: 23.047 Durbin-Watson: 2.203
Prob(Omnibus): 0.000 Jarque-Bera (JB): 31.191
Skew: 1.584 Prob(JB): 1.69e-07
Kurtosis: 4.357 Cond. No. 2.03e+05

Table 2.69
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Dep. Variable: final_std R-squared: 0.352
Model: OLS Adj. R-squared: 0.126
Method: Least Squares F-statistic: 1.724
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.0758
Time: 00:28:42 Log-Likelihood: 25.392
No. Observations: 63 AIC: -16.78
Df Residuals: 46 BIC: 19.65
Df Model: 16

coef std err z P> |z| [0.025 0.975]

Intercept 2.0979 1.235 1.699 0.089 -0.323 4.519
skin: fire 0.0587 0.214 0.274 0.784 -0.362 0.479
skin: generals 0.2494 0.229 1.090 0.276 -0.199 0.698
skin: hiring 0.2596 0.225 1.156 0.248 -0.180 0.700
skin: mascot 0.2891 0.231 1.254 0.210 -0.163 0.741
skin: olympics 0.1039 0.210 0.494 0.621 -0.308 0.516
skin: orchestra 0.2032 0.203 1.001 0.317 -0.195 0.601
skin: plant 0.1982 0.217 0.911 0.362 -0.228 0.624
skin: restaurant 0.1991 0.217 0.917 0.359 -0.227 0.625
skin: space 0.1748 0.210 0.832 0.405 -0.237 0.587
Fraction Odd 0.2 -0.1936 0.086 -2.243 0.025 -0.363 -0.024
Fraction Odd 0.5 -0.0573 0.071 -0.806 0.420 -0.197 0.082
frac_shortcut_1 -0.6306 0.873 -0.722 0.470 -2.342 1.080
diameter_1 0.0411 0.082 0.502 0.616 -0.119 0.202
avg_path_length_1 -1.0388 0.835 -1.244 0.214 -2.676 0.598
transitivity_1 -2.2767 2.201 -1.035 0.301 -6.590 2.036
count_1 0.0518 0.038 1.350 0.177 -0.023 0.127

Omnibus: 2.127 Durbin-Watson: 2.341
Prob(Omnibus): 0.345 Jarque-Bera (JB): 1.967
Skew: -0.423 Prob(JB): 0.374
Kurtosis: 2.821 Cond. No. 1.63e+03

Table 2.70
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Dep. Variable: final_std R-squared: 0.292
Model: OLS Adj. R-squared: 0.139
Method: Least Squares F-statistic: 1.586
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.131
Time: 00:28:42 Log-Likelihood: 22.610
No. Observations: 63 AIC: -21.22
Df Residuals: 51 BIC: 4.498
Df Model: 11

coef std err z P> |z| [0.025 0.975]

Intercept 2.3814 1.144 2.082 0.037 0.140 4.623
0.2 Fraction Odd -0.1805 0.076 -2.374 0.018 -0.329 -0.031
0.5 Fraction Odd -0.0549 0.068 -0.808 0.419 -0.188 0.078
frac_shortcut_1 -0.6362 0.799 -0.796 0.426 -2.203 0.931
diameter_1 0.0329 0.069 0.478 0.633 -0.102 0.168
avg_path_length_1 -1.2021 0.748 -1.608 0.108 -2.667 0.263
transitivity_1 -1.8742 2.090 -0.897 0.370 -5.971 2.223
count_1 0.0669 0.036 1.876 0.061 -0.003 0.137
Complex -1.068e-05 0.000 -0.046 0.963 -0.000 0.000
Familiar -3.66e-06 3.93e-05 -0.093 0.926 -8.07e-05 7.34e-05
Stakes -6.896e-06 0.000 -0.042 0.966 -0.000 0.000
Emotionally_Charged -4.422e-05 5.6e-05 -0.790 0.429 -0.000 6.55e-05

Omnibus: 1.286 Durbin-Watson: 2.142
Prob(Omnibus): 0.526 Jarque-Bera (JB): 1.320
Skew: -0.312 Prob(JB): 0.517
Kurtosis: 2.665 Cond. No. 2.54e+05

Table 2.71
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Dep. Variable: win R-squared: 0.283
Model: OLS Adj. R-squared: 0.034
Method: Least Squares F-statistic: 0.5681
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.891
Time: 00:28:42 Log-Likelihood: -12.751
No. Observations: 63 AIC: 59.50
Df Residuals: 46 BIC: 95.94
Df Model: 16

coef std err z P> |z| [0.025 0.975]

Intercept -1.9174 2.416 -0.794 0.427 -6.652 2.818
skin: fire -0.2516 0.605 -0.416 0.678 -1.438 0.935
skin: generals -0.4310 0.642 -0.671 0.502 -1.690 0.828
skin: hiring -0.3784 0.603 -0.628 0.530 -1.560 0.803
skin: mascot -0.3988 0.629 -0.634 0.526 -1.632 0.835
skin: olympics -0.4298 0.586 -0.733 0.463 -1.579 0.719
skin: orchestra -0.2804 0.588 -0.477 0.633 -1.432 0.872
skin: plant -0.3427 0.599 -0.572 0.567 -1.517 0.831
skin: restaurant -0.3416 0.599 -0.570 0.569 -1.516 0.833
skin: space -0.2922 0.594 -0.492 0.622 -1.456 0.871
Fraction Odd 0.2 0.2910 0.168 1.730 0.084 -0.039 0.621
Fraction Odd 0.5 0.1159 0.125 0.928 0.353 -0.129 0.361
frac_shortcut_1 0.9535 1.680 0.568 0.570 -2.338 4.245
diameter_1 -0.1139 0.163 -0.699 0.485 -0.433 0.206
avg_path_length_1 1.7051 1.754 0.972 0.331 -1.732 5.142
transitivity_1 2.5391 4.044 0.628 0.530 -5.386 10.464
count_1 -0.0971 0.078 -1.249 0.212 -0.250 0.055

Omnibus: 13.807 Durbin-Watson: 2.031
Prob(Omnibus): 0.001 Jarque-Bera (JB): 15.044
Skew: 1.145 Prob(JB): 0.000541
Kurtosis: 3.696 Cond. No. 1.63e+03

Table 2.72
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Dep. Variable: win R-squared: 0.238
Model: OLS Adj. R-squared: 0.074
Method: Least Squares F-statistic: 0.8225
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.618
Time: 00:28:42 Log-Likelihood: -14.669
No. Observations: 63 AIC: 53.34
Df Residuals: 51 BIC: 79.06
Df Model: 11

coef std err z P> |z| [0.025 0.975]

Intercept -2.4624 2.143 -1.149 0.251 -6.663 1.738
Fraction Odd 0.2 0.2832 0.145 1.949 0.051 -0.002 0.568
Fraction Odd 0.5 0.0906 0.126 0.718 0.473 -0.157 0.338
frac_shortcut_1 0.8343 1.541 0.541 0.588 -2.186 3.854
diameter_1 -0.1561 0.129 -1.211 0.226 -0.409 0.097
avg_path_length_1 2.2019 1.489 1.479 0.139 -0.717 5.121
transitivity_1 1.7569 3.765 0.467 0.641 -5.623 9.137
count_1 -0.1223 0.071 -1.729 0.084 -0.261 0.016
Complex 5.09e-05 0.000 0.119 0.905 -0.001 0.001
Familiar -7.6e-06 7.37e-05 -0.103 0.918 -0.000 0.000
Stakes -5.169e-05 0.000 -0.176 0.860 -0.001 0.001
Emotionally_Charged 3.585e-05 0.000 0.329 0.742 -0.000 0.000

Omnibus: 13.594 Durbin-Watson: 1.950
Prob(Omnibus): 0.001 Jarque-Bera (JB): 14.810
Skew: 1.145 Prob(JB): 0.000608
Kurtosis: 3.631 Cond. No. 2.54e+05

Table 2.73
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Dep. Variable: final_std R-squared: 0.345
Model: OLS Adj. R-squared: 0.136
Method: Least Squares F-statistic: 1.743
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.0745
Time: 00:28:42 Log-Likelihood: 25.078
No. Observations: 63 AIC: -18.16
Df Residuals: 47 BIC: 16.13
Df Model: 15

coef std err z P> |z| [0.025 0.975]

Intercept 1.6863 1.172 1.438 0.150 -0.611 3.984
skin: fire 0.0843 0.216 0.390 0.696 -0.339 0.508
skin: generals 0.2686 0.220 1.223 0.221 -0.162 0.699
skin: hiring 0.2651 0.231 1.148 0.251 -0.187 0.718
skin: mascot 0.2842 0.238 1.192 0.233 -0.183 0.751
skin: olympics 0.1159 0.218 0.532 0.595 -0.311 0.543
skin: orchestra 0.2047 0.213 0.963 0.335 -0.212 0.621
skin: plant 0.2105 0.223 0.944 0.345 -0.227 0.648
skin: restaurant 0.2070 0.225 0.920 0.358 -0.234 0.648
skin: space 0.1890 0.216 0.875 0.382 -0.235 0.613
frac_shortcut_1 -0.5256 0.868 -0.606 0.545 -2.227 1.176
diameter_1 0.0360 0.080 0.452 0.651 -0.120 0.192
avg_path_length_1 -0.9798 0.796 -1.230 0.219 -2.541 0.581
transitivity_1 -2.0258 2.207 -0.918 0.359 -6.351 2.299
count_1 0.0497 0.037 1.356 0.175 -0.022 0.121
Fraction Odd 0.3139 0.139 2.256 0.024 0.041 0.586

Omnibus: 2.379 Durbin-Watson: 2.342
Prob(Omnibus): 0.304 Jarque-Bera (JB): 2.321
Skew: -0.441 Prob(JB): 0.313
Kurtosis: 2.675 Cond. No. 1.59e+03

Table 2.74
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Dep. Variable: final_std R-squared: 0.286
Model: OLS Adj. R-squared: 0.149
Method: Least Squares F-statistic: 1.676
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.112
Time: 00:28:42 Log-Likelihood: 22.358
No. Observations: 63 AIC: -22.72
Df Residuals: 52 BIC: 0.8585
Df Model: 10

coef std err z P> |z| [0.025 0.975]

Intercept 1.9668 1.023 1.923 0.055 -0.038 3.972
frac_shortcut_1 -0.5377 0.776 -0.693 0.488 -2.058 0.982
diameter_1 0.0281 0.068 0.415 0.678 -0.105 0.161
avg_path_length_1 -1.1328 0.699 -1.621 0.105 -2.502 0.237
transitivity_1 -1.6338 2.028 -0.806 0.420 -5.608 2.341
count_1 0.0643 0.034 1.898 0.058 -0.002 0.131
Complex 8.105e-06 0.000 0.036 0.971 -0.000 0.000
Familiar -2.791e-06 3.85e-05 -0.072 0.942 -7.83e-05 7.27e-05
Stakes -1.907e-05 0.000 -0.119 0.905 -0.000 0.000
Emotionally_Charged -3.767e-05 5.21e-05 -0.723 0.469 -0.000 6.44e-05
Fraction Odd 0.2957 0.123 2.409 0.016 0.055 0.536

Omnibus: 1.906 Durbin-Watson: 2.148
Prob(Omnibus): 0.386 Jarque-Bera (JB): 1.859
Skew: -0.349 Prob(JB): 0.395
Kurtosis: 2.530 Cond. No. 2.47e+05

Table 2.75
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Dep. Variable: win R-squared: 0.282
Model: OLS Adj. R-squared: 0.053
Method: Least Squares F-statistic: 0.6073
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.854
Time: 00:28:42 Log-Likelihood: -12.804
No. Observations: 63 AIC: 57.61
Df Residuals: 47 BIC: 91.90
Df Model: 15

coef std err z P> |z| [0.025 0.975]

Intercept -1.4143 2.269 -0.623 0.533 -5.861 3.033
skin: fire -0.2709 0.608 -0.446 0.656 -1.462 0.920
skin: generals -0.4454 0.629 -0.709 0.479 -1.678 0.787
skin: hiring -0.3824 0.605 -0.632 0.527 -1.568 0.803
skin: mascot -0.3952 0.632 -0.625 0.532 -1.634 0.844
skin: olympics -0.4388 0.588 -0.747 0.455 -1.591 0.713
skin: orchestra -0.2816 0.592 -0.476 0.634 -1.441 0.878
skin: plant -0.3520 0.600 -0.587 0.557 -1.527 0.823
skin: restaurant -0.3475 0.603 -0.576 0.564 -1.529 0.834
skin: space -0.3029 0.594 -0.510 0.610 -1.467 0.861
frac_shortcut_1 0.8748 1.659 0.527 0.598 -2.378 4.127
diameter_1 -0.1101 0.155 -0.711 0.477 -0.413 0.193
avg_path_length_1 1.6608 1.675 0.991 0.321 -1.622 4.944
transitivity_1 2.3509 3.987 0.590 0.555 -5.464 10.166
count_1 -0.0955 0.075 -1.274 0.203 -0.243 0.051
Fraction Odd -0.4784 0.270 -1.773 0.076 -1.007 0.051

Omnibus: 13.512 Durbin-Watson: 2.026
Prob(Omnibus): 0.001 Jarque-Bera (JB): 14.681
Skew: 1.139 Prob(JB): 0.000649
Kurtosis: 3.633 Cond. No. 1.59e+03

Table 2.76
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Dep. Variable: win R-squared: 0.234
Model: OLS Adj. R-squared: 0.087
Method: Least Squares F-statistic: 0.9179
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.524
Time: 00:28:42 Log-Likelihood: -14.830
No. Observations: 63 AIC: 51.66
Df Residuals: 52 BIC: 75.23
Df Model: 10

coef std err z P> |z| [0.025 0.975]

Intercept -1.8339 1.908 -0.961 0.336 -5.573 1.906
frac_shortcut_1 0.6922 1.502 0.461 0.645 -2.252 3.637
diameter_1 -0.1492 0.124 -1.199 0.230 -0.393 0.095
avg_path_length_1 2.1019 1.380 1.523 0.128 -0.603 4.806
transitivity_1 1.4101 3.693 0.382 0.703 -5.828 8.648
count_1 -0.1185 0.067 -1.775 0.076 -0.249 0.012
Complex 2.38e-05 0.000 0.058 0.954 -0.001 0.001
Familiar -8.853e-06 7.17e-05 -0.123 0.902 -0.000 0.000
Stakes -3.412e-05 0.000 -0.118 0.906 -0.001 0.001
Emotionally_Charged 2.64e-05 0.000 0.243 0.808 -0.000 0.000
condition_int -0.4646 0.236 -1.966 0.049 -0.928 -0.002

Omnibus: 13.401 Durbin-Watson: 1.937
Prob(Omnibus): 0.001 Jarque-Bera (JB): 14.661
Skew: 1.150 Prob(JB): 0.000655
Kurtosis: 3.544 Cond. No. 2.47e+05

Table 2.77
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Dep. Variable: final_std R-squared: 0.277
Model: OLS Adj. R-squared: 0.026
Method: Least Squares F-statistic: 1.106
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.377
Time: 02:22:21 Log-Likelihood: 21.975
No. Observations: 63 AIC: -9.950
Df Residuals: 46 BIC: 26.48
Df Model: 16

coef std err z P> |z| [0.025 0.975]

Intercept -0.1004 0.748 -0.134 0.893 -1.567 1.366
skin: fire 0.0970 0.295 0.328 0.743 -0.482 0.676
skin: generals 0.2876 0.349 0.823 0.410 -0.397 0.972
skin: hiring 0.2908 0.305 0.954 0.340 -0.307 0.888
skin: mascot 0.2991 0.320 0.936 0.349 -0.327 0.926
skin: olympics 0.1051 0.288 0.365 0.715 -0.460 0.670
skin: orchestra 0.2087 0.291 0.718 0.473 -0.361 0.778
skin: plant 0.1733 0.295 0.587 0.557 -0.406 0.752
skin: restaurant 0.1701 0.307 0.554 0.580 -0.432 0.772
skin: space 0.1784 0.303 0.588 0.556 -0.416 0.773
Fraction Odd 0.2 -0.1677 0.087 -1.938 0.053 -0.337 0.002
Fraction Odd 0.5 -0.0637 0.078 -0.817 0.414 -0.216 0.089
frac_shortcut_10 0.1021 0.614 0.166 0.868 -1.100 1.305
diameter_10 -0.0352 0.074 -0.478 0.633 -0.180 0.109
avg_path_length_10 0.2443 0.329 0.742 0.458 -0.401 0.889
transitivity_10 -0.3151 1.567 -0.201 0.841 -3.387 2.757
count_10 0.0015 0.014 0.107 0.915 -0.026 0.029

Omnibus: 4.714 Durbin-Watson: 2.442
Prob(Omnibus): 0.095 Jarque-Bera (JB): 4.659
Skew: -0.632 Prob(JB): 0.0973
Kurtosis: 2.580 Cond. No. 1.04e+03

Table 2.78
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Dep. Variable: final_std R-squared: 0.205
Model: OLS Adj. R-squared: 0.033
Method: Least Squares F-statistic: 1.006
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.454
Time: 02:22:21 Log-Likelihood: 18.959
No. Observations: 63 AIC: -13.92
Df Residuals: 51 BIC: 11.80
Df Model: 11

coef std err z P> |z| [0.025 0.975]

Intercept -0.0823 0.716 -0.115 0.908 -1.486 1.321
Fraction Odd 0.2 -0.1449 0.076 -1.911 0.056 -0.294 0.004
Fraction Odd 0.5 -0.0661 0.075 -0.880 0.379 -0.213 0.081
frac_shortcut_10 0.1801 0.571 0.315 0.752 -0.939 1.299
diameter_10 -0.0490 0.071 -0.690 0.490 -0.188 0.090
avg_path_length_10 0.2167 0.321 0.675 0.500 -0.413 0.846
transitivity_10 0.1839 1.490 0.123 0.902 -2.736 3.103
count_10 0.0131 0.012 1.128 0.259 -0.010 0.036
Complex 1.365e-05 0.000 0.048 0.961 -0.001 0.001
Familiar -3.388e-06 4.66e-05 -0.073 0.942 -9.47e-05 8.79e-05
Stakes -2.266e-05 0.000 -0.119 0.905 -0.000 0.000
Emotionally_Charged -2.23e-05 5.55e-05 -0.402 0.688 -0.000 8.65e-05

Omnibus: 5.442 Durbin-Watson: 2.257
Prob(Omnibus): 0.066 Jarque-Bera (JB): 5.474
Skew: -0.705 Prob(JB): 0.0648
Kurtosis: 2.687 Cond. No. 1.78e+05

Table 2.79
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Dep. Variable: win R-squared: 0.272
Model: OLS Adj. R-squared: 0.019
Method: Least Squares F-statistic: 0.5525
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.902
Time: 02:22:21 Log-Likelihood: -13.230
No. Observations: 63 AIC: 60.46
Df Residuals: 46 BIC: 96.89
Df Model: 16

coef std err z P> |z| [0.025 0.975]

Intercept 1.6980 1.314 1.292 0.196 -0.878 4.274
skin: fire -0.4030 0.673 -0.599 0.549 -1.721 0.915
skin: generals -0.6018 0.810 -0.743 0.458 -2.190 0.986
skin: hiring -0.5493 0.683 -0.805 0.421 -1.887 0.788
skin: mascot -0.5600 0.720 -0.778 0.437 -1.972 0.852
skin: olympics -0.5084 0.662 -0.768 0.442 -1.805 0.788
skin: orchestra -0.3860 0.673 -0.574 0.566 -1.705 0.933
skin: plant -0.3922 0.676 -0.580 0.562 -1.717 0.933
skin: restaurant -0.3559 0.696 -0.512 0.609 -1.719 1.007
skin: space -0.3884 0.687 -0.566 0.572 -1.734 0.958
Fraction Odd 0.2 0.2424 0.156 1.551 0.121 -0.064 0.549
Fraction Odd 0.5 0.1310 0.134 0.977 0.329 -0.132 0.394
frac_shortcut_10 -0.4347 1.081 -0.402 0.688 -2.554 1.685
diameter_10 0.0154 0.122 0.126 0.899 -0.224 0.255
avg_path_length_10 -0.5287 0.595 -0.889 0.374 -1.694 0.637
transitivity_10 -0.1624 2.657 -0.061 0.951 -5.370 5.045
count_10 0.0047 0.024 0.191 0.848 -0.043 0.053

Omnibus: 15.292 Durbin-Watson: 2.188
Prob(Omnibus): 0.000 Jarque-Bera (JB): 17.280
Skew: 1.222 Prob(JB): 0.000177
Kurtosis: 3.779 Cond. No. 1.04e+03

Table 2.80
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Dep. Variable: win R-squared: 0.194
Model: OLS Adj. R-squared: 0.020
Method: Least Squares F-statistic: 0.6246
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.799
Time: 02:22:21 Log-Likelihood: -16.453
No. Observations: 63 AIC: 56.91
Df Residuals: 51 BIC: 82.62
Df Model: 11

coef std err z P> |z| [0.025 0.975]

Intercept 1.5075 1.206 1.250 0.211 -0.856 3.871
Fraction Odd 0.2 0.2100 0.138 1.521 0.128 -0.061 0.481
Fraction Odd 0.5 0.1070 0.129 0.832 0.405 -0.145 0.359
frac_shortcut_10 -0.4374 1.029 -0.425 0.671 -2.454 1.579
diameter_10 0.0456 0.125 0.366 0.715 -0.199 0.290
avg_path_length_10 -0.5914 0.567 -1.043 0.297 -1.702 0.520
transitivity_10 -0.5992 2.554 -0.235 0.814 -5.605 4.406
count_10 -0.0053 0.019 -0.277 0.781 -0.043 0.032
Complex 7.974e-05 0.001 0.142 0.887 -0.001 0.001
Familiar 1.468e-05 8.56e-05 0.171 0.864 -0.000 0.000
Stakes -4.707e-05 0.000 -0.129 0.898 -0.001 0.001
Emotionally_Charged -7.578e-06 9.19e-05 -0.082 0.934 -0.000 0.000

Omnibus: 18.690 Durbin-Watson: 2.068
Prob(Omnibus): 0.000 Jarque-Bera (JB): 22.809
Skew: 1.367 Prob(JB): 1.11e-05
Kurtosis: 4.102 Cond. No. 1.78e+05

Table 2.81
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Dep. Variable: final_std R-squared: 0.276
Model: OLS Adj. R-squared: 0.044
Method: Least Squares F-statistic: 1.209
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.299
Time: 02:22:21 Log-Likelihood: 21.903
No. Observations: 63 AIC: -11.81
Df Residuals: 47 BIC: 22.48
Df Model: 15

coef std err z P> |z| [0.025 0.975]

Intercept -0.3605 0.760 -0.474 0.635 -1.851 1.130
skin: fire 0.1097 0.292 0.376 0.707 -0.462 0.682
skin: generals 0.2960 0.328 0.904 0.366 -0.346 0.938
skin: hiring 0.2926 0.304 0.962 0.336 -0.304 0.889
skin: mascot 0.2970 0.318 0.933 0.351 -0.327 0.921
skin: olympics 0.1117 0.288 0.388 0.698 -0.453 0.676
skin: orchestra 0.2099 0.291 0.722 0.470 -0.360 0.780
skin: plant 0.1809 0.294 0.615 0.539 -0.396 0.758
skin: restaurant 0.1762 0.307 0.574 0.566 -0.425 0.778
skin: space 0.1853 0.302 0.614 0.539 -0.406 0.777
frac_shortcut_10 0.1480 0.606 0.244 0.807 -1.040 1.336
diameter_10 -0.0327 0.074 -0.442 0.658 -0.178 0.112
avg_path_length_10 0.2321 0.325 0.715 0.475 -0.404 0.869
transitivity_10 -0.1982 1.515 -0.131 0.896 -3.168 2.772
count_10 0.0022 0.014 0.157 0.876 -0.025 0.029
Fraction Odd 0.2745 0.140 1.965 0.049 0.001 0.548

Omnibus: 4.879 Durbin-Watson: 2.430
Prob(Omnibus): 0.087 Jarque-Bera (JB): 4.814
Skew: -0.640 Prob(JB): 0.0901
Kurtosis: 2.557 Cond. No. 997.

Table 2.82
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Dep. Variable: final_std R-squared: 0.205
Model: OLS Adj. R-squared: 0.052
Method: Least Squares F-statistic: 1.139
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.352
Time: 02:22:21 Log-Likelihood: 18.952
No. Observations: 63 AIC: -15.90
Df Residuals: 52 BIC: 7.671
Df Model: 10

coef std err z P> |z| [0.025 0.975]

Intercept -0.2895 0.672 -0.431 0.667 -1.607 1.028
frac_shortcut_10 0.1938 0.556 0.348 0.728 -0.896 1.284
diameter_10 -0.0483 0.070 -0.689 0.491 -0.186 0.089
avg_path_length_10 0.2144 0.315 0.681 0.496 -0.402 0.831
transitivity_10 0.2203 1.396 0.158 0.875 -2.516 2.956
count_10 0.0132 0.011 1.171 0.242 -0.009 0.035
Complex 1.693e-05 0.000 0.064 0.949 -0.001 0.001
Familiar -3.204e-06 4.52e-05 -0.071 0.943 -9.17e-05 8.53e-05
Stakes -2.492e-05 0.000 -0.138 0.890 -0.000 0.000
Emotionally_Charged -2.124e-05 5.25e-05 -0.404 0.686 -0.000 8.17e-05
Fraction Odd 0.2407 0.123 1.956 0.050 -0.000 0.482

Omnibus: 5.495 Durbin-Watson: 2.256
Prob(Omnibus): 0.064 Jarque-Bera (JB): 5.534
Skew: -0.708 Prob(JB): 0.0628
Kurtosis: 2.680 Cond. No. 1.71e+05

Table 2.83
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Dep. Variable: win R-squared: 0.272
Model: OLS Adj. R-squared: 0.040
Method: Least Squares F-statistic: 0.5752
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.879
Time: 02:22:21 Log-Likelihood: -13.236
No. Observations: 63 AIC: 58.47
Df Residuals: 47 BIC: 92.76
Df Model: 15

coef std err z P> |z| [0.025 0.975]

Intercept 2.0033 1.316 1.522 0.128 -0.576 4.583
skin: fire -0.3968 0.673 -0.590 0.555 -1.716 0.922
skin: generals -0.5977 0.793 -0.754 0.451 -2.151 0.956
skin: hiring -0.5484 0.681 -0.805 0.421 -1.883 0.786
skin: mascot -0.5610 0.717 -0.783 0.434 -1.966 0.844
skin: olympics -0.5052 0.661 -0.764 0.445 -1.801 0.791
skin: orchestra -0.3854 0.672 -0.574 0.566 -1.702 0.931
skin: plant -0.3885 0.676 -0.575 0.565 -1.713 0.936
skin: restaurant -0.3529 0.697 -0.506 0.613 -1.719 1.014
skin: space -0.3849 0.683 -0.563 0.573 -1.724 0.955
frac_shortcut_10 -0.4123 1.054 -0.391 0.696 -2.478 1.653
diameter_10 0.0167 0.122 0.136 0.892 -0.223 0.256
avg_path_length_10 -0.5347 0.589 -0.908 0.364 -1.689 0.620
transitivity_10 -0.1053 2.469 -0.043 0.966 -4.944 4.733
count_10 0.0050 0.024 0.210 0.834 -0.042 0.052
Fraction Odd -0.4064 0.253 -1.604 0.109 -0.903 0.090

Omnibus: 15.308 Durbin-Watson: 2.194
Prob(Omnibus): 0.000 Jarque-Bera (JB): 17.293
Skew: 1.221 Prob(JB): 0.000176
Kurtosis: 3.789 Cond. No. 997.

Table 2.84
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Dep. Variable: win R-squared: 0.194
Model: OLS Adj. R-squared: 0.039
Method: Least Squares F-statistic: 0.7131
Date: Tue, 08 Mar 2022 Prob (F-statistic): 0.708
Time: 02:22:21 Log-Likelihood: -16.453
No. Observations: 63 AIC: 54.91
Df Residuals: 52 BIC: 78.48
Df Model: 10

coef std err z P> |z| [0.025 0.975]

Intercept 1.7830 1.171 1.522 0.128 -0.513 4.079
frac_shortcut_10 -0.4331 1.014 -0.427 0.669 -2.420 1.553
diameter_10 0.0459 0.124 0.371 0.710 -0.196 0.288
avg_path_length_10 -0.5921 0.556 -1.064 0.287 -1.683 0.498
transitivity_10 -0.5878 2.423 -0.243 0.808 -5.336 4.161
count_10 -0.0053 0.019 -0.280 0.779 -0.042 0.032
Complex 8.077e-05 0.001 0.153 0.879 -0.001 0.001
Familiar 1.474e-05 8.31e-05 0.177 0.859 -0.000 0.000
Stakes -4.778e-05 0.000 -0.137 0.891 -0.001 0.001
Emotionally_Charged -7.246e-06 9.05e-05 -0.080 0.936 -0.000 0.000
Fraction Odd -0.3502 0.224 -1.565 0.117 -0.789 0.088

Omnibus: 18.676 Durbin-Watson: 2.069
Prob(Omnibus): 0.000 Jarque-Bera (JB): 22.785
Skew: 1.366 Prob(JB): 1.13e-05
Kurtosis: 4.102 Cond. No. 1.71e+05

Table 2.85
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Chapter 3

Curmelo

3.1 Introduction

This research has already been published in PLOS ONE here: (Sankaran et al., 2021).

In this paper, we detail the theory and practice of CurmElo, a forced-choice based
approach to producing a preference ranking of an arbitrary set of objects. CurmElo
was originally designed for the purpose of producing sets of approximately preference-
indifferent identifiers, which we define as identifiers that are relatively equally pre-
ferred across a population of subjects. In our original use case, those identifiers were
sets of nonsense words of four and five letters.

This work has three motivations. The first motivation is that when eliciting pref-
erence, forced-choice based questions are preferable to Likert-style scales in a number
of circumstances. The second motivation is that confounding preference for identi-
fiers of various kinds rears its head in numerous unexpected places in social science
research, and that it is essential to use some explicit form of preference elicitation,
ideally using the population targeted by the research as raters, to control for these
effects. The third is that preference heterogeneity induced polarization in preferences
among raters and also intransitivity in preference rankings can render naive attempts
to control for identifier preference inadequate, and that some method for dealing with
these issues is necessary before the preference rankings can be used.

In the section below, we outline the three topics and detail our initial motivating
use case for CurmElo, the production of approximately preference-indifferent four-
letter and five-letter nonsense identifiers. In the rest of the paper, we use this mo-
tivating use case to demonstrate how CurmElo incorporates these insights into a
comprehensive method for preference elicitation.
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3.1.1 Motivations

Our motivating use case: four and five letter nonsense identifiers

In early pilot versions of the BFT experiment in Chapter 2, the vignette was only
Generals attacking a fort. We used sequences from the player’s Amazon Mechani-
cal Turk HIT ID as their player identifiers and the numbers 1-12 as our objects of
consensus. In this version of the vignette the players were told that these numbers
represented the time of day when the attack would be conducted instead of the lo-
cation of a fort out of many. We found strong preferences for the numbers 9, 1, and
5, which roughly correspond to a morning evening and lunchtime attack. It has been
found that when people are asked to pick a "random" number from an interval, there
is clumping around specific parts of interval, so this result is consistent with what is
already known Heywood (1972); Kubovy and Psotka (1976). It is also possible that
the players were bringing in their prior ideas about when a good time would be to
conduct a military operation, so it was possible that these choices were not truly arbi-
trary. It was around this time that we realized that if the number of players exceeded
the number of identifiers, whichever one that was seeded to more than one player via
the pigeonhole principle would be artificially more likely to succeed, also breaking the
parity between choices. Thus, it was necessary for us to choose an equal number of
arbitrary identifiers to the number of players. We next tried using sequences from
the AMT HIT IDs as objects of consensus. These identifiers were convenient to use
because they were unique across players and reasonably unlikely to reoccur from run
to run. One problem was because they were a random string of numbers and letters
like, 341AXM, they could be difficult to pronounce or remember versus a word like
‘30EJON’ (not a real example). Reading through the messages that the players were
sending, we observed players using similarity with real words as a mnemonic to help
remember the words as well as a justification for voting for it. Thus, even though the
identifiers were arbitrary we observed that the players had heterogeneous preferences
over them which is problematic for studying consensus in this context. To ensure
the least level of bias in the experiment we required identifiers that were easy for the
players to understand and that they were preference indifferent over.

To produce our preference-indifferent identifiers, we first generated two very large
sets of four and five-letter identifiers using formats based on the general rules of En-
glish phonology to ensure that they were reasonably pronounceable and memorable.
For each set, we removed any identifier that had (as of January 2018) been used
previously across the large and representative English-language Google Ngrams cor-
pus Michel et al. (2011). Then, we used a version of the Elo rating system, initially
formulated by Arpad Elo to rank chess players Elo (1978), to derive ratings for each
identifier from individual pairwise comparisons to form a population-level ranking.
After this, we applied a novel technique based on monotonicity breaks to remove
identifiers that might be polarizing but achieve middling values in Elo ratings. Fi-
nally, we extracted a set of similarly-rated identifiers from the middle of the ranking
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distribution. These are our preference-indifferent identifiers.
Our approach allows us both to make claims about which identifiers are equally

preferred by raters and also to make claims about which identifiers, overall, are more
or less preferred by the raters. For instance, the following pairs of identifiers are
equally preferred: (1) camaz and bumak; (2) lujaf and piqez; and (3) cixuq and
quhuq. But the first pair is much liked by the raters, the third pair much disliked,
and the middle pair has middling ratings (the subjects are neutral about neutral
choices, as it were). Finally, we also provide (in the appendix) a list of 1,000 4-letter
and 5-letter identifiers and their ratings, which might be useful to others, from social
scientists to fiction writers, facing similar objectives.

Why forced choice?

In many applications, preferences are elicited from raters using Likert-type ques-
tions or scales Likert (1932). Whether numerical (e.g., “rate your preference from
1-5”) or descriptive (e.g., ‘strongly disagree’-‘strongly agree’), the variance inherent
in individual perception of points in the scale and ordering effects with regard to
samples presented to each subject make it challenging to extract an accurate group-
level preference ranking from the data in aggregate. Normalization procedures used
to compensate for these issues run the risk of imposing arbitrary ordering based on
the specifics of the algorithm used – for example, it has been found that the effect of
question wording (positive vs. negative wording) does not generalize across different
scales Kam (2018). As a result, there is some controversy around the use of such
scales, especially single Likert questions as opposed to comparisons across multiple
questions, to measure preference and sentiment Jamieson et al. (2004); Gliem and
Gliem (2003); Carifio and Perla (2008). Additionally, within the Likert scale litera-
ture, there are significant inconsistencies about what the optimal size of the scale is.
Some empirical results suggest that, consistent with the predictions of information
theory, scales with greater numbers of points (1-7 vs 1-11 for example) are better
Alwin (1997), while other empirical results suggest precisely the opposite, that scales
with more points tended to be less reliable Revilla et al. (2014); Alwin and Krosnick
(1991). Moreover, the optimal parity – even or odd – of the scale used is also con-
tentious: while a sizeable number of deployments of Likert-type surveys appear to use
odd-parity scales, research into these instruments suggests that survey participants
will often times use a middle option, only available on an odd-parity scale, to express
that they don’t know or don’t have an opinion about the question instead of an actual
opinion corresponding with the middle value, even when an “I don’t know” option is
available, in many cases materially changing the final results Sturgis et al. (2014).

A diverse body of research Ray (1980); Jackson et al. (2000); Bartlett et al. (1960);
Bartram (2007) including publicly described but unpublished work within the tech-
nology industry Roettgers (2017) suggests that a series of forced-choice binary ques-
tions – yes or no, this one or that one – extracts more accurate information about
preferences than Likert scales when samples of questions and raters are suitably large.
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In our particular use case, a Likert-based preference elicitation method would
likely be even more unreliable due to the unfamiliarity of the raters with the identifiers
they are being asked to compare – unlike familiar objects like actual English words
or, say, human faces, they may have no solid internal baseline for preference for
these nonsense words, whereas comparing two identifiers requires no such preexisting
knowledge or baseline. CurmElo presents forced-choice questions to raters to avoid
these issues.

Why preference-rank identifiers?

CurmElo was originally designed for the purpose of producing sets of approximately
preference-indifferent identifiers, which we define as identifiers that are relatively
equally preferred across a population of subjects. In our original use case, those
identifiers were sets of nonsense words of four and five letters. While at first glance
it may seem reasonable to expect that preference across a set of nonsense words gen-
erated randomly will not differ significantly, it is well established that people have
innate preferences for particular numbers, letters, and strings of numbers and let-
ters – examples of this include the name-letter effect, where people prefer letters in
their own name over others Nuttin Jr (1985), and the people’s documented preference
for the number seven over other single-digit numbers Heywood (1972); Kubovy and
Psotka (1976). Research from cognitive science suggests that the map between the
form of a word and its meaning is not entirely arbitrary Dingemanse et al. (2015), and
that human raters impute category information to nonsense words in systematically
different ways Lupyan and Casasanto (2015). The existence of these preferences is
also illustrated by work on the passwords people choose for online services Riddle
et al. (1989); Bonneau (2012).

It seems likely that this sort of identifier preference extends not just to nonsense
words, but potentially to any class of object that might be used as an identifier:
images, sounds, physical objects, colours, etc. There is work in psychology that
suggests that novel and nonsense stimuli of many kinds can prime people just as much
as sensical and familiar stimuli Duckworth et al. (2002). This has serious implications
for the use of identifiers in experimental social science.

Here is non-exhaustive set of examples of experimental social science work where
we believe that identifier preference may be a confounder: work employing the Mini-
mal Group Paradigm Tajfel (1970); Diehl (1990); Billig and Tajfel (1973), and more
generally any work where groups need identifiers; work involving inter-subject in-
teraction where subjects have identifiers; work involving goals or target that need
identifiers (our motivating use case fits in this and the previous category); work in-
volving participants reading or listening to narratives where identifiers are used for
specific characters. In work of these kinds, we believe that identifier preference, if
left unaccounted for, might significantly skew results by heterogeneously changing
effect size on a per-identifier basis, as well as make replication difficult due to cross-
population preference heterogeneity. We suspect that identifier preference may be
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unacknowledged confounder for a large number of experiments in these areas.
As such, we believe that preference needs to be explicitly dealt with in some

fashion in any social science work where preference for identifiers can be a confounder.
This may take several forms. In certain experiments, such as in our motivating use
case, one might control for identifier preference by using approximately preference-
indifferent identifiers. In other settings, it might be useful to produce identifiers that
are quantifiably different, up to a specified tolerance, on some dimension of preference
for the raters, for example to measure interaction effects between identifier preference
and some other variable.

Preference-conscious identifier generation may also be of value in other empirical
or applied circumstances where the objective is to name people, objects or places in
such way as to accord them neutral or specific preference of some kind, such as in
game design, fiction writing, and bias training.

In this paper, we detail the motivation for the development of CurmElo for our
specific use case, that is, issues with identifier preference we observed in our network
science experiments, as well demonstrate that randomness in identifier generation
and selection do not sufficiently mitigate these effects. We then propose a workable
solution.

Why consider preference heterogeneity induced polarization and intransi-
tivity in preference rankings?

CurmElo uses a version of the Elo algorithm to convert a set of forced-choice binary
comparisons within a set of objects into ratings for each of those objects to form a
totally-ordered ranking of the set. Consider the case where we want to find preference-
indifferent objects of some kind. If we were to interpret these rankings naively, we
would extract a subset of objects from the middle of the ranking distribution that are
sufficiently similar in rating and call those objects preference-indifferent. It may be
the case, however, that some of these objects are not so much preference-indifferent as
‘polarizing’, that is, strongly preferred by one subset of the population and strongly
dispreferred by another. This sort of heterogeneity in preference may be the result
of some hard-to-detect form of population heterogeneity, and could be a significant
confounder if the objects are being used as identifiers in experiments, for example.

CurmElo uses a novel technique based on counting breaks in win-percentage mono-
tonicity in Elo rankings to detect latent heterogeneity and identify polarizing objects.
Crucially, this method is distinct from other formulations of the latent population
heterogeneity problem since we need to measure no identifying characteristics of the
populations other than their choices Pearl (2017), and as such this could be a valuable
method of measuring population-level heterogeneity via preference.

Transitivity is the property that given, some objects a, b, and c, where a is
preferred to and ranked above b, and b is ranked above and preferred to c, then a will
be preferred to c. To see why breaks in transitivity matter, consider a case where we
want to run an experiment to investigate the interaction between identifier preference
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and some other variable or test condition. Now imagine that our set of identifiers
is objects a, b, and c, except that now there is a transitivity break manifesting as
a preference cycle such that c is preferred to a. This would completely disrupt any
attempt to use preference as an independent variable in the experiment since the
ranking is no longer coherent – one cannot say, for example, that a is always most
preferred since in this case this is dependent on what it is being compared to – and
thus analysis of data collected using these identifiers can produce problematic results.
CurmElo uses a technique based on counting breaks in preference transitivity in Elo
rankings to identify sets of objects that break transitivity.

3.2 Materials and methods

This research was approved by the Yale Human Research Protection Program In-
stitutional Review Boards IRB Protocol ID: 2000023887 This research contains no
consent form as we did not collect personally identifying information.

Preference Data Collection

We first formulated two sets of candidate identifiers using phonological formats that
mimic name identifiers the English language Chomsky and Halle (1968).

For one set of identifiers, we generated all 4-character identifiers of the type:
vowel-consonant-vowel-consonant (VCVC).
For example: ayiz, erik.
There were 11025 of these four-letter identifiers in total.
For the second set of identifiers, we generated all 5-character identifiers of the

type:
consonant-vowel-consonant-vowel-consonant (CVCVC).
For example: yezak, roman.
There were 231525 of these five-letter identifiers in total.
We then implemented the following procedure: (1) we removed any identifier that

occurred once or more (as of January 2018) in the Google Ngram corpus of published
work in English Michel et al. (2011) (this left 118061 of the five-letter and 5969 of the
four-letter identifiers), then (2) we randomly selected 1000 of the remaining identifiers
from each of the sets.

These sets of 1000 identifiers were then randomly matched up against each other
(within and not across each set), in pairs on our custom-built CurmElo software
platform. For each of the two sets, we used 400 unique US-based raters on Amazon
Mechanical Turk to perform head-to-head preference comparisons of pairs of iden-
tifiers within the set. Note that these AMT raters were recruited from the same
population from which we recruit participants in the experiments in which we would
subsequently use the identifiers produced using this process, so we have high internal
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validity for the preference rankings. Each rater was shown 50 random pairs of non-
identical identifiers, one pair at a time, and asked the following each time: “Which of
the two names below do you prefer? Please do not answer randomly.”

Figure 3.1: A screenshot of the CurmElo interface with two candidate CVCVC
identifiers

There were 400 workers used for each set, and each worker was shown 50 pairs of
identifiers. Given that there are 1000 identifiers in total, each identifier ended up with
an average of 40 comparison data points. There is some variation in this number, but
no identifier ended up with significantly fewer than 30 comparisons.

Querying other features and dimensions of preference using CurmElo

While in this use case, we asked raters which name identifier they preferred in general,
one could use CurmElo to query any other specific feature or dimension of preference.
For example, one might as “Which name sounds better?” or “Which name makes you
happier?” or even “Which name seems reddest?”. If your objects are pictures of faces,
one might ask “Which face appears angriest?” or “Which face is sharpest?”. The
rankings created from the data thus collected would then correspond to the ranking
of the objects relative to that specific feature (redness, anger, sharpness) or dimension
of preference (sounds, happiness-of-feeling).

Using non-textual objects

CurmElo can be deployed for any set of objects that can practicably be exposed to
raters. In an online-only setting such as Amazon Mechanical Turk, anything dis-
playable on a webpage, including but not limited to audio, images, video, and inter-
active animations may be used. In a lab setting, physical objects may be used given
that they can be uniquely identified and randomized systematically.

3.2.1 Theory

The Elo Algorithm

The Elo algorithm produces a relative rating across a set of objects. The algorithm is
initialized by setting all objects to a some common initial rating, R0. Then, objects
are matched against each other, with some external input determining an outcome
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where one objects ‘wins’ and the other ‘loses’. In CurmElo, a match is simply a
comparison of two objects by a human participant (the external input) being asked
to choose a winner and loser among them. Different applications may use different
matching systems; for example, if Elo ratings are used for some sort of competitive
activity, it may make sense to match objects – in this case players – with similar
ratings. In our setting, we use random matching, as it allows the Elo ratings to
quickly converge to their stationary distributionJabin and Junca (2015). Consider
objects a and b along with their corresponding Elo ratings Ra and Rb. If a and b
are matched, and object a wins, the ratings are updated as followsElo (1978); Aldous
(2017):

R′
a = Ra + k

1

1 + e
Ra−Rb

RD

R′
b = Rb − k

1

1 + e
Ra−Rb

RD

If a and b are matched, and object b wins, the ratings are updated as followsElo
(1978); Aldous (2017):

R′
a = Ra − k

1

1 + e
Rb−Ra

RD

R′
b = Rb + k

1

1 + e
Rb−Ra

RD

In this setting, k and RD are free parameters, used to tune how sensitive that
rating is to the results of new matches. It is possible to use a broader class of update
functions other than k 1

1+e
Ra−Rb

RD

as long as it satisfies the conditions for a strong utility

distribution, which will be discussed in the next sectionBlock et al. (1959); Aldous
(2017). We use the logistic update function because it is commonly used for Elo
applications.

This process continues until all matches – in our case, comparisons – are complete,
and we refer to the Elo ratings after all matches have occurred to be the “final Elo
rating.” In contrast to applications in sports or gaming, where the number of matches
is exogenously built in to the structure of a tournament, in social scientific applications
the number of matches can be chosen by the researcher depending on how big a
sample of comparisons is needed. Jabin and Junca show that in settings with a large
number of objects and intrinsic win probabilities that are not time dependent (such
as our motivating example), the distribution of Elo ratings converges to a stationary
distribution that represents the underlying preferenceJabin and Junca (2015).
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Stochastic Preferences

Preference is a primitive that underlies many important social phenomena. In this
sections, we discuss the basic formalism of deterministic and stochastic preferences.

A preference ⪰ must be complete and transitive in order to admit a utility rep-
resentation . Let A be the finite set of objects. Completeness requires that ∀a, b ∈ A

either a ⪰ b or b ⪰ a. Transitivity requires that ∀a, b, c ∈ A if a ⪰ b and b ⪰ c then
a ⪰ c Mas-Colell et al. (1995).

In many real systems, choices are stochastic and not deterministic, so the defini-
tions of preferences and transitivity must be extended to accommodate the fact that,
in a choice between a and b, where a ⪰ b, b will still sometimes be chosen. Block and
Marschak extend the notion of preferences by stipulating that when choosing between
a and b, a ⪰ b if and only if a is chosen with probability greater than or equal to 50%
Block et al. (1959).
Cattelan shows three different ways to apply the definition of transitivity to stochas-
tic choice: Weak Stochastic Transitivity; Moderate Stochastic Transitivity; Strong
Stochastic Transitivity Cattelan (2012). Let πab be the probability that a is chosen
when the agent is presented with a choice between a and b. Consider ∀a, b, c ∈ A

when πab ≥ .5 and πbc ≥ .5 if πac ≥ .5; then ⪰ satisfies Weak Stochastic Transitiv-
ity; if πac ≥ min(πab, πbc), then ⪰ satisfies Moderate Stochastic Transitivity; or if
πac ≥ max(πab, πbc), then ⪰ satisfies Strong Stochastic Transitivity Cattelan (2012).
Let ua and ub be the utility representations for objects a and b respectively. The
stochastic definition of preferences also imposes requirements on the probabilities a
given object is chosen. Let πab = W (ua−ub), where W is the win probability function
Aldous (2017). W corresponds to the Block and Marschak strong utility distribution
and has the following properties: W : R → (0, 1), W is continuous, W is strictly
increasing, limu→∞W (u) = 1, and W (−u) + W (u) = 1∀u ∈ R Block et al. (1959);
Aldous (2017).

Heterogeneous Preference, Polarization, and Transitivity Breaks

As discussed in the motivation section, the rankings produced using the Elo algorithm
may be subject to the problem of ‘polarizing’ objects resulting from heterogeneous
preference. This is the situation where, for some given object, one subset of the
population has a strong preference for it and another subset has a strong dispreference
for it, and this is not accounted for in the Elo rating. This would manifest in the
object being chosen more or less often than its rating would suggest against certain
objects, and signals some unobserved heterogeneity within the population. We call
this the “polarization in ratings problem” and provide a method to detect when an
object is polarized, as well as latent heterogeneity in preference more generally. This
method is distinct from other formulations of the latent population heterogeneity
problem since we measure no identifying characteristics of the populations other than
their choices Pearl (2017).
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We also provide a method to detect whether an object induces intransitivity in
a preference ranking via calculating a normalized ‘transitivity breaks score’ of the
number of transitivity breaks in the ranking the object is involved in.

Our methods work on the basis that while, in theory, the Win Probability function
must be monotonically increasing and the ratings must satisfy stochastic transitivity
for stochastic preferences to be well defined, in practice this is not always the case.
Heterogeneity in preference can induce breaks in the monotonicity in the win rate
among objects and, intuitively speaking, we ‘count’ the number of these breaks to
estimate a normalized ‘polarization score’ (min of 0.0, max of 1.0) for a given object.
In addition, real preferences rankings of various kinds may well be truly intransitive
to some degree, and we similarly ‘count’ the number of transitivity breaks an object
is involved in to estimate a normalized ‘transitivity breaks score’ (min of 0.0, max of
1.0) for it.

For applications where a well-behaved preference ranking is essential, in particular
in order to rely on the predictions of much of the work referenced in the theory section,
it is necessary to remove polarizing and transitivity breaking objects.

We first present a Pairwise Polarization Estimator based on monotonicity breaks.

Pairwise Polarization Estimator

The monotonicity assumption of the Elo algorithm is that, for a given object, it
should have a higher win rate when compared against lower Elo objects than higher
Elo objects. Thus, for a given object, we assess its win rate when compared against
all other objects in the set. Next, we look at all pairs of these win rates to see if they
match up to the expectations of higher Elo win rates being smaller than lower Elo
win rates. We count all violations of this assumption normalized by the number of
possible ways this rule could be broken. The process is formalized below.

Assume that there are N total objects for agents to choose from and they are
presented in menus of size two. Thus, for each menu, the agent has a choice between
two objects, i and j. Let Wij represent the rate a which object i is chosen compared
against object j. Wijk refers to the kth sample of a Bernoulli random variable which is
1 if object i is chosen and 0 otherwise, when compared against object j. W̄ij represents
the sample estimator of Wij. Let Ri represent the final Elo rating of object i. N is
the total number of objects. N represents the normalization factor and represents
the total number of possible breaks in monotonicity implied by the Elo rating. P is
the estimator for pairwise polarization.

W̄ij =
1

n

n∑
k=0

Wijk

N =
N−1∑
l=0

(l − 1)
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Pi =
1

N
∑
j ̸=i

∑
k

Rk<Rj

1(W̄ij−W̄ik>0)

Use of Quantiles

In our use case, and in many practical applications where there are a reasonably large
number of objects, it would be prohibitively expensive to get enough data points
comparing any specific pair to use pairwise estimators with any degree of reliability.
Instead, we rely on dividing the objects in the ranking distribution into quantiles,
and perform comparisons between a single object and quantiles to estimate the po-
larization score of the object.

Quantile Polarization Estimator

Let { Q1,...,Qq} be the q-quantiles of the final Elo distribution R. By convention,
quantiles with higher integer values contain lower rated objects. So in a setting with
5 Quantiles, Q5 refers to the bottom 5th of the Elo distribution and Q1 refers to the
top 5th of the Elo distribution. Let WiQj represent the rate at which object i is chosen
compared against objects in Qj. WiQjk refers to the kth sample of a Bernoulli random
variable which is 1 if object i is chosen and 0 otherwise, when compared against an
object in Qj. By convention, we assume that there were a total of n comparisons of
object i against objects in Qj.

W̄iQj
=

1

n

n∑
k=0

WiQjk

N =

q∑
l=0

(l − 1)

Pi =
1

N
∑
j≤q

∑
k

j<k<q

1(W̄iQj
−W̄iQk

>0)

Quantile Transitivity Breaks Estimator

To count transitivity breaks, for all pairs of quantiles we count the number of times
the object is stochastically preferred to a given quantile, while simultaneously not
stochastically preferred to a lower quantile than the given quantile. We normalize
this count by the number of ways this is possible to produce a ‘transitivity breaks
score’ (min of 0.0, max of 1.0). We formalize this process below.
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Let WQiQj represent the rate a which objects in Qi is chosen compared against
objects in Qj. WQiQjk refers to the kth sample of a Bernoulli random variable which
is 1 if the object in Qi is chosen and 0 otherwise when compared against an object
in Qj. We call WQiQj the Inter Quantile Win Rate. If the Elo rating is behaving as
expected, one would expect that WQiQj

> .5 if i < j. This would imply that quantiles
with higher rated words tend to be preferred to quantiles with lower rated words. We
assume that WQiQj

> .5 if i < j as otherwise that implies that the ratings do not
represent the preference. We use the definition of weak stochastic transitivity for this
estimator.

W̄QiQj
=

1

n

n∑
k=0

WQiQjk

N =

q∑
l=0

(l − 1)

Ti =
1

N
∑
j≤q

∑
k

j<k<q

1[(W̄iQj
<.5)

∧
(W̄iQk

≥.5)]

3.3 Results

We analyzed the data using the following parameters: k= 20, R0 = 1000, RD = 400.
Table 3.1 shows the summary statistics for the Elo ratings. The mean Elo rating
for both identifiers are both close to R0. Additionally, this table shows that there
is significant variation in the final Elo ratings of both identifiers. Thus, the fact
that the identifiers are arbitrary and nonsensical by construction, then subsequently
randomly sampled to produce sets of 1000, does not imply that the identifiers are
equally preferred. Table 3.2 shows summary statistics for the Polarization of each
identifier. The summary statistics for polarization are quite similar for both the 4-
Letter and 5-Letter identifiers. Table 3.3 shows the summary statistics for Transitivity
breaks for the identifiers. It appears that there are about twice as many breaks in
win rate monotonicity as there are in transitivity.

Figures 3.2 and 3.3 show histograms of the number of identifiers for each Polar-
ization Score for the 4 and 5 character identifiers respectively. Figures 3.4 and 3.5
show histograms of the number of identifiers for each Transitivity Breaks Score for
the 4 and 5 character identifiers respectively.

For our final sets of approximately preference-indifferent identifiers of 4 and 5
characters, we looked for identifiers with Elo values between the range of about 990-
1010 and filtered out all identifiers with polarization values greater than 0.2. We
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Mean Standard Deviation Min Max

4-Letter Identifiers 1010.183524 89.31063206 777.725104 1396.567372
5-Letter Identifiers 1022.774282 118.8151442 767.036162 1614.585634

Table 3.1: Summary Statistics for Elo Ratings

Mean Standard Deviation Min Max

4-Letter Identifiers 0.2756 0.164047406 0 0.8
5-Letter Identifiers 0.2453 0.155634611 0 1

Table 3.2: Summary Statistics for Polarization

Mean Standard Deviation Min Max

4-Letter Identifiers 0.1016 0.127254209 0 0.6
5-Letter Identifiers 0.0658 0.104696329 0 0.5

Table 3.3: Summary Statistics for Transitivity Breaks

Figure 3.2: Histogram of 4-character Polarization Scores
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Figure 3.3: Histogram of 5-character Polarization Scores

Figure 3.4: Histogram of 4-character Transitivity Breaks Scores
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chose this band because the Elo algorithm was initialized at a value of 1000, so these
identifiers are very close to the center of the Elo distribution.
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Figure 3.5: Histogram of 5-character Transitivity Breaks Scores
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3.4 Discussion

3.4.1 Inter-Quantile Win Rates

One of the assumptions of the Quantile Polarization Estimator is that the Average
Win rates for the quantiles against each other satisfies monotonicity. If there are
monotonicity breaks at the quantile level, this indicates departure from the stationary
distribution. That could indicate either that the one is using too many quantiles, so
there are an insufficient number of samples per quantile, or that the overall number
of samples is too low. The Inter Quantile Win Rate Matrix is calculating the average
win rate of objects in the quantile represented by the rows against objects in the
quantile represented by the columns. For our own application, we used quintiles, so
the Inter Quantile Win Rate Matrix is a 5 × 5. Table 3.4 shows the Inter Quantile
Win Matrix for the Target 5-character identifiers and Table 5 shows the Inter Quantile
Win Matrix for the 4-character identifiers . These have the properties as expected:
values close to .5 along the diagonal and monotonicity in win rates.

3.4.2 Analysis of Polarization and Transitivity Breaks

For the 5-character identifiers we found that 92.1% of them had a nonzero polar-
ization score and for the 4-character identifiers 93.7% had a nonzero polarization
score. This suggests that some level of polarization is not uncommon in this kind
of preference data. This serves to underscore the importance of testing for polariza-
tion in preference data. Breaks in Transitivity were less common with 36% of the
5-character identifiers having a nonzero number of Transitivity breaks and 49.5% of
the 4-character identifiers having a nonzero number of Transitivity breaks. This sug-
gests that even in preferences over nonsense words, intransitivity in preference must
be accounted for.

We tested the distribution of polarization against the distribution of ratings. If
there are objects that are very likely to win against highly rated objects and lose
against low rated objects, we would expect their final rating to be in the middle of
the distribution. If this is the case, we would expect to find a statistically significant
and negative coefficient in a regression where centered Elo ratings are the explanatory
variable. Alternatively, if polarization is higher at the tails of the Elo distribution,
we would expect the coefficient in the quadratic model to be positive. If Elo rating is
not predictive of polarization, we would expect either non-statistically-significant or
precisely identified zeros in both linear and quadratic models.

Table 3.6 shows the results of the linear regression model for the 5-Letter Identi-
fiers. The coefficient on centered Elo ratings is small and not statistically significant.
Table 3.7 shows the results of the quadratic model for the 5-letter Target Identifiers.
The coefficient on centered Elo ratings squared is small, positive and not statistically
significant. Based on these results, there is no clear relationship between the Elo
ratings and the polarization scores. Table 3.8 shows the results of the linear model
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for the 4-letter Subject Identifiers. The coefficient on the centered Elo ratings is small
and not statistically significant. Table 3.9 shows the results of the quadratic model
for the Subject Identifiers. The coefficient on the centered Elo rating squared is nega-
tive, small and not statistically significant. These results are also consistent with the
hypothesis that whatever is causing the polarization is uniformly distributed across
rating. Based on our setting, it is likely that this is due to unobserved heterogeneity in
the population of raters used here. This finding may be relevant to other work using
populations of US-based Amazon Mechanical Turk workers, especially work involving
preference.
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5 4 3 2 1

5 0.495723 0.368918 0.300589 0.231730 0.190450
4 0.623822 0.499651 0.418548 0.350965 0.266467
3 0.697948 0.583093 0.503599 0.428252 0.309600
2 0.762648 0.654072 0.551350 0.494170 0.386135
1 0.814080 0.744856 0.679105 0.619651 0.498692

Table 3.4: Inter Quantile Win Rates for 5-Letter Identifiers

5 4 3 2 1

5 0.499399 0.401221 0.323861 0.282018 0.227306
4 0.599208 0.503693 0.435614 0.377869 0.292094
3 0.674439 0.549963 0.506442 0.428634 0.328867
2 0.720698 0.627391 0.555608 0.509095 0.388713
1 0.768008 0.706379 0.662835 0.610826 0.501591

Table 3.5: Inter Quantile Win Rates for 4-Letter Identifiers

Dep. Variable: rank_breaks R-squared: 0.000
Model: OLS Adj. R-squared: -0.001
Method: Least Squares F-statistic: 0.002043
Date: Fri, 11 May 2018 Prob (F-statistic): 0.964
Time: 16:51:59 Log-Likelihood: -1860.8
No. Observations: 1000 AIC: 3726.
Df Residuals: 998 BIC: 3735.
Df Model: 1

coef std err z P> |z| [0.025 0.975]

Intercept 2.4526 0.051 48.497 0.000 2.353 2.552
centered 1.826e-05 0.000 0.045 0.964 -0.001 0.001

Omnibus: 84.487 Durbin-Watson: 2.036
Prob(Omnibus): 0.000 Jarque-Bera (JB): 108.155
Skew: 0.714 Prob(JB): 3.27e-24
Kurtosis: 3.745 Cond. No. 123.

Table 3.6: 5-Letter Identifiers Linear Regression
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Dep. Variable: rank_breaks R-squared: 0.000
Model: OLS Adj. R-squared: -0.001
Method: Least Squares F-statistic: 0.1152
Date: Fri, 11 May 2018 Prob (F-statistic): 0.734
Time: 16:51:41 Log-Likelihood: -1860.7
No. Observations: 1000 AIC: 3725.
Df Residuals: 998 BIC: 3735.
Df Model: 1

coef std err z P> |z| [0.025 0.975]

Intercept 2.4444 0.056 43.648 0.000 2.335 2.554
np.power(centered, 2) 5.908e-07 1.74e-06 0.339 0.734 -2.82e-06 4e-06

Omnibus: 84.774 Durbin-Watson: 2.036
Prob(Omnibus): 0.000 Jarque-Bera (JB): 108.655
Skew: 0.715 Prob(JB): 2.55e-24
Kurtosis: 3.749 Cond. No. 3.59e+04

Table 3.7: 5-Letter Identifiers Quadratic Regression

Dep. Variable: rank_breaks R-squared: 0.000
Model: OLS Adj. R-squared: -0.001
Method: Least Squares F-statistic: 0.02374
Date: Fri, 11 May 2018 Prob (F-statistic): 0.878
Time: 16:52:06 Log-Likelihood: -1913.4
No. Observations: 1000 AIC: 3831.
Df Residuals: 998 BIC: 3841.
Df Model: 1

coef std err z P> |z| [0.025 0.975]

Intercept 2.7570 0.052 53.254 0.000 2.656 2.858
centered -9.626e-05 0.001 -0.154 0.878 -0.001 0.001

Omnibus: 44.566 Durbin-Watson: 1.921
Prob(Omnibus): 0.000 Jarque-Bera (JB): 49.735
Skew: 0.546 Prob(JB): 1.59e-11
Kurtosis: 3.053 Cond. No. 90.4

Table 3.8: 4-Letter Identifiers Linear Regression
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Dep. Variable: rank_breaks R-squared: 0.006
Model: OLS Adj. R-squared: 0.005
Method: Least Squares F-statistic: 4.120
Date: Fri, 11 May 2018 Prob (F-statistic): 0.0426
Time: 16:51:49 Log-Likelihood: -1910.5
No. Observations: 1000 AIC: 3825.
Df Residuals: 998 BIC: 3835.
Df Model: 1

coef std err z P> |z| [0.025 0.975]

Intercept 2.6811 0.062 43.107 0.000 2.559 2.803
np.power(centered, 2) 9.28e-06 4.57e-06 2.030 0.042 3.19e-07 1.82e-05

Omnibus: 42.909 Durbin-Watson: 1.932
Prob(Omnibus): 0.000 Jarque-Bera (JB): 47.692
Skew: 0.535 Prob(JB): 4.40e-11
Kurtosis: 3.040 Cond. No. 1.84e+04

Table 3.9: 4-Letter Identifiers Quadratic Regression
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3.5 Phonological Preference and Polarization: A Fur-
ther Illustrative Application

Preferences over the identifiers in our corpus could be due to phonological aspects
of the identifiers. For example, raters may prefer identifiers that more like a well
formed English word than not. Given these types preferences would operate at the
linguistic level, one would not expect them the contribute to polarization given that
all raters are expected to agree on the phonological conventions of English. Within
phonology, other experiments have been conducted using human raters evaluating
nonsense words, and have found that how the word is constructed influences how
acceptable raters find the word Ohala and Ohala (1986); Coleman and Pierrehum-
bert (1997); Frisch et al. (2000); Bailey and Hahn (2001); Hammond (2004); Albright
(2008). Importantly these studies were assessing how much like a real word the raters
thought the nonsense words were and presented the words aurally (Bailey and Hahn
also ran an experiment with only visual stimulus) Ohala and Ohala (1986); Coleman
and Pierrehumbert (1997); Frisch et al. (2000); Bailey and Hahn (2001); Albright
(2008). These results may not necessarily map onto preferences in affinity over non-
sense words. For example, one may recognize that "moist" is a proper English word
but that does not necessary imply that they like it.

Given our particular application, and just for completeness, we tested the im-
pact of the five following phonological constructions on both Elo Rating and Po-
larization: The first consonant in the word is a nasal (Initial Nasal); the last con-
sonant the word is a voiced obstruent (Terminal Voiced Obstruent); the last con-
sonant the word is voiceless (Terminal Voiceless); the last consonant the word is a
fricative (Terminal Fictive); and the last consonant the word is a stop (Terminal
Stop). We only use single letter vowels and consonants in our data set, so, for our
purposes, the nasals are: (’m’,’n’), the fricatives are: (’f’,’s’,’v’, ’z’), the stops are:
(’p’,’t’,’k’,’b’,’d’,’g’), the voiced obstruents are: (’b’,’d’,’g’,’v’,’z’), and the voiceless
consonants are: (’p’,’t’,’k’,’f’,’s’,’h’,’c’,’x’) Hammond (1999).
Phonological Cue Theory predicts that word terminal fricatives should be preferred,
word terminal stops should be dispreferred, nasals early in the word should be pre-
ferred, and voiced obstruent in the word terminal position should dispreferred Wright
(2004). Table 3.10 summarizes the results for our regressions of the phonological
constructions on Elo, and the individual models are detailed in S1 Appendix: Elo
Regression Models . Table 3.11 summarizes the results for our regressions of the
phonological constructions on Polarization, and the individual models are detailed in
S2 Appendix: Polarization Regression Models. The construction Initial Nasal has the
most robust effect on Elo, with a statistically significant and positive coefficient in all
models. This is consistent with what Phonological Cue Theory predicts. For the rest
of the constructions, the results were mixed and not entirely consistent with Phono-
logical Cue Theory. With respect to polarization, we find that only the constructions

146



Initial Nasal and Terminal Fricative have a statistically significant relationship. The
construction Initial Nasal was found to reduce polarization, which is in line with our
predictions, but Terminal Fricative was found to increase polarization, which was sur-
prising. The coefficients for Terminal Fricative in the Elo regression were consistent
with the predictions of Phonological Cue Theory, so we expected the presence of this
construction to reduce polarization. This suggests that the polarization process is
more complex than we expected, and that work in phonology may be unknowingly
affected by polarization problems.

It is important not to over-interpret our results given that this was not initially
designed as a phonology experiment. For example, we planned to test whether sibi-
lant fricatives in the word initial position impacted the elo ratings, but it turns out
none of the potential words in both the 4-letter and 5-letter survived our Google
Ngram filter. Since the Ngram filter involves a comparison to real English words, it is
possible that the corpora suffer from significant selection bias. In addition, phonolog-
ical experiments are typically conducted with aural stimuli, and here we have raters
visually reading the words. Nonetheless, we still see that our design and the CurmElo
system can be of use to experimental phonologists. Of the experiments we surveyed,
only Ohala and Ohala use forced choice paired comparison for ratings Ohala and
Ohala (1986), additionally Frisch, Large and Pisoni had a trial that used a binary
rating for words Frisch et al. (2000); and the rest of the studies use Likert Scales
Coleman and Pierrehumbert (1997); Bailey and Hahn (2001); Albright (2008). We
believe that, in this setting, forced choice will perform better than Likert scales for
rating applications. It is also worth noting that our number of raters is much larger
than those of the experiments we surveyed: Ohala and Ohala had 16 raters in one
experiment and 21 raters in a second experiments Ohala and Ohala (1986); Coleman
and Pierrehumbert had 6 raters Coleman and Pierrehumbert (1997); Frisch, Large
and Pisoni had two experiments with 24 raters in each arm; and Bailey and Hahn
had one experiment with 24 raters and a second experiment with 12 raters Bailey
and Hahn (2001). While some of these results have been shown to replicate, Ham-
mond (2004); Albright (2008) the number of raters per experiment is still quite low
and there may still be reproducibility and generalizability issues that have not been
uncovered. The CurmElo system can straightforwardly be adapted to accommodate
audio stimuli, so we believe it would be possible to design phonology experiments
using CurmElo with a large number of raters relatively easily.
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4-Letter 5-Letter

Initial Nasal
Statistically Significant All Models All Models
Sign + +
Consistent Yes Yes

Terminal Voiced Obstruent
Statistically Significant All Models No Models
Sign + Mixed
Consistent No No

Terminal Voiceless
Statistically Significant Some Models No Models
Sign + +
Consistent Yes Yes

Terminal Fricative
Statistically Significant All Models No Models
Sign + +
Consistent Yes Yes

Terminal Stop
Statistically Significant All Models No Models
Sign + +
Consistent No No

Table 3.10: Elo Linguistics Results Summary
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4-Letter 5-Letter

Initial Nasal
Statistically Significant Yes No
Sign - -

Terminal Voiced Obstruent
Statistically Significant No No
Sign + -

Terminal Voiceless
Statistically Significant No No
Sign + -

Terminal Fricative
Statistically Significant No Yes
Sign + +

Terminal Stop
Statistically Significant No No
Sign + -

Table 3.11: Polarization Linguistics Results Summary
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3.6 Sociocultural Preference

It is well known that preferences over identifiers can be socially mediated. For example
heterogeneous response has been documented in audit studies attempting to evaluate
ethnoracial bias based on randomly assigning names to putative applicants for jobs
Bertrand and Mullainathan (2004); Booth et al. (2012). Audit studies have also shown
that the name of the applicant can affect responses to rental applications Carpusor
and Loges (2006); Edelman et al. (2017). These naming preferences go both ways as
there is significant evidence that patterns of naming children vary based on education
and race Lieberson and Bell (1992); Lieberson and Mikelson (1995); Fryer Jr and
Levitt (2004). Thus, one might expect there to be heterogeneity in the preferences in
the identifiers in corpora of words such as ours based on these sociocultural factors.
It is not entirely straightforward to test this, but we believe a potentially informative
approach would be to use CurmElo to produce a ranking of words relative to the
features of ‘blackness’ or ‘whiteness’ (in the racial sense) or other axes. Such efforts
might be useful in future audit studies.

3.7 Conclusion

In this paper, we introduced CurmElo, a forced-choice approach to producing a pref-
erence ranking of an arbitrary set of object that combines the Elo algorithm with
a novel technique for detecting and correcting for heterogeneity and polarization in
preferences among raters.

We detailed the application of CurmElo to the problem of generating approxi-
mately preference-neutral identifiers, in this case four and five letter nonsense words
that are patterned on the phonological conventions of the English language. We pro-
vided evidence that human raters have significant preferences over even a randomly
selected set of identifiers that were arbitrary and nonsensical by construction, indi-
cating that some method of preference-ranking is necessary to control for preference.
We also demonstrate the existence of significant polarization in identifier preference
in our population of US-based Amazon Mechanical Turk raters, indicating both that
this heterogeneous preference could have been a significant and tricky confounder if
left unaddressed.

We further demonstrated that the preference ranking produced is only somewhat
consistent with the predictions of existing work in phonological preference, in par-
ticular that polarization appears to affect phonological features of words that are
predicted to increase preference by Phonological Cue Theory, suggesting that experi-
ments in phonology based on preference would benefit from using CurmElo to detect
and control for such polarization. While our CurmElo phonology experiments have
much larger subject populations and numbers of data points than the phonology work
we reference, our experiments were not originally designed for phonological analysis
and as such suffer from selection (real words removed) and presentation (visual versus
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aural) issues, so they are limited.
We believe that the polarization-corrected Elo framework we detail is a theo-

retically strong method for generating preference rankings. In particular, we see it
as superior to Likert scales for the purposes of extracting a population’s preference
ranking of a large number of objects. We believe that CurmElo could be deployed
confidently across a wide range of settings where there may be unobserved heterogene-
ity in the target population, and that it is a robust method for preference elicitation
generally, and identifier generation specifically, across a variety of domains.

We also believe that approximately preference-indifferent identifiers should be
used in any social science work where preference for identifiers can be a confounder,
for example for subject and group identifiers in work employing the Minimal Group
Paradigm or Vignette Studies involving arbitrary names. We believe that identifier
preference is an unacknowledged confounder for many experiments of this nature, in
particular in experiments in using Amazon Mechanical Turk populations, for which
we have already demonstrated significantly non-uniform identifier preference and pref-
erence polarization. CurmElo can be used to produce rankings of arbitrary features
or dimensions of preference of a set of objects relative to a population of raters.

3.8 Supporting information

S1 Appendix: Elo Regression Models Regressions for Phonological Con-
structions on Elo.

Dep. Variable: elo R-squared: 0.015
Model: OLS Adj. R-squared: 0.014
Method: Least Squares F-statistic: 15.07
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.000110
Time: 19:47:17 Log-Likelihood: -6188.3
No. Observations: 1000 AIC: 1.238e+04
Df Residuals: 998 BIC: 1.239e+04
Df Model: 1

coef std err z P> |z| [0.025 0.975]

const 1016.3492 4.059 250.385 0.000 1008.393 1024.305
initial_nasal 40.1567 10.343 3.883 0.000 19.885 60.428

Omnibus: 127.444 Durbin-Watson: 0.033
Prob(Omnibus): 0.000 Jarque-Bera (JB): 200.368
Skew: 0.864 Prob(JB): 3.09e-44
Kurtosis: 4.351 Cond. No. 2.81

Table 3.12: 5-Letter Identifiers Elo vs Initial Nasal
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Dep. Variable: elo R-squared: 0.001
Model: OLS Adj. R-squared: 0.000
Method: Least Squares F-statistic: 1.116
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.291
Time: 19:47:17 Log-Likelihood: -6195.5
No. Observations: 1000 AIC: 1.239e+04
Df Residuals: 998 BIC: 1.240e+04
Df Model: 1

coef std err z P> |z| [0.025 0.975]

const 1019.6074 5.003 203.814 0.000 1009.802 1029.412
terminal_voiceless 7.9770 7.552 1.056 0.291 -6.824 22.778

Omnibus: 124.464 Durbin-Watson: 0.003
Prob(Omnibus): 0.000 Jarque-Bera (JB): 189.968
Skew: 0.862 Prob(JB): 5.61e-42
Kurtosis: 4.261 Cond. No. 2.45

Table 3.13: 5-Letter Identifiers Elo vs Terminal Voiceless Consonant

Dep. Variable: elo R-squared: 0.000
Model: OLS Adj. R-squared: -0.001
Method: Least Squares F-statistic: 0.009826
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.921
Time: 19:47:17 Log-Likelihood: -6196.0
No. Observations: 1000 AIC: 1.240e+04
Df Residuals: 998 BIC: 1.241e+04
Df Model: 1

coef std err z P> |z| [0.025 0.975]

const 1022.9633 4.342 235.596 0.000 1014.453 1031.474
terminal_obstruents -0.8554 8.629 -0.099 0.921 -17.768 16.057

Omnibus: 121.775 Durbin-Watson: 0.001
Prob(Omnibus): 0.000 Jarque-Bera (JB): 183.882
Skew: 0.851 Prob(JB): 1.18e-40
Kurtosis: 4.230 Cond. No. 2.55

Table 3.14: 5-Letter Identifiers Elo vs Terminal Voiced Obstruent
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Dep. Variable: elo R-squared: 0.016
Model: OLS Adj. R-squared: 0.014
Method: Least Squares F-statistic: 8.151
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.000308
Time: 19:47:17 Log-Likelihood: -6187.9
No. Observations: 1000 AIC: 1.238e+04
Df Residuals: 997 BIC: 1.240e+04
Df Model: 2

coef std err z P> |z| [0.025 0.975]

const 1013.6635 5.129 197.632 0.000 1003.611 1023.716
initial_nasal 39.8241 10.388 3.834 0.000 19.464 60.184
terminal_voiceless 6.8990 7.528 0.916 0.359 -7.856 21.654

Omnibus: 129.467 Durbin-Watson: 0.036
Prob(Omnibus): 0.000 Jarque-Bera (JB): 205.081
Skew: 0.872 Prob(JB): 2.93e-45
Kurtosis: 4.372 Cond. No. 3.07

Table 3.15: 5-Letter Identifiers Elo vs Initial Nasal and Terminal Voiceless Con-
sonant
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Dep. Variable: elo R-squared: 0.016
Model: OLS Adj. R-squared: 0.013
Method: Least Squares F-statistic: 5.454
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.00101
Time: 19:47:17 Log-Likelihood: -6187.8
No. Observations: 1000 AIC: 1.238e+04
Df Residuals: 996 BIC: 1.240e+04
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 1012.2185 6.751 149.930 0.000 998.986 1025.451
initial_nasal 39.8237 10.384 3.835 0.000 19.472 60.175
terminal_voiceless 8.3442 8.710 0.958 0.338 -8.726 25.415
terminal_obstruents 3.9430 9.837 0.401 0.689 -15.337 23.223

Omnibus: 130.985 Durbin-Watson: 0.036
Prob(Omnibus): 0.000 Jarque-Bera (JB): 208.912
Skew: 0.877 Prob(JB): 4.32e-46
Kurtosis: 4.392 Cond. No. 3.67

Table 3.16: 5-Letter Identifiers Elo vs Initial Nasal,Terminal Voiceless Conso-
nant, and Terminal Voiced Obstruent

Dep. Variable: elo R-squared: 0.001
Model: OLS Adj. R-squared: -0.000
Method: Least Squares F-statistic: 1.033
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.310
Time: 19:47:17 Log-Likelihood: -6195.5
No. Observations: 1000 AIC: 1.240e+04
Df Residuals: 998 BIC: 1.240e+04
Df Model: 1

coef std err z P> |z| [0.025 0.975]

const 1021.0435 4.198 243.217 0.000 1012.815 1029.272
terminal_fricative 9.5621 9.408 1.016 0.309 -8.878 28.002

Omnibus: 123.381 Durbin-Watson: 0.003
Prob(Omnibus): 0.000 Jarque-Bera (JB): 187.486
Skew: 0.858 Prob(JB): 1.94e-41
Kurtosis: 4.248 Cond. No. 2.70

Table 3.17: 5-Letter Identifiers Elo vs Terminal Fricative
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Dep. Variable: elo R-squared: 0.001
Model: OLS Adj. R-squared: -0.000
Method: Least Squares F-statistic: 0.5403
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.462
Time: 19:47:17 Log-Likelihood: -6195.8
No. Observations: 1000 AIC: 1.240e+04
Df Residuals: 998 BIC: 1.241e+04
Df Model: 1

coef std err z P> |z| [0.025 0.975]

const 1021.1161 4.498 227.036 0.000 1012.301 1029.931
terminal_stop 6.0078 8.173 0.735 0.462 -10.011 22.026

Omnibus: 123.301 Durbin-Watson: 0.002
Prob(Omnibus): 0.000 Jarque-Bera (JB): 187.515
Skew: 0.857 Prob(JB): 1.91e-41
Kurtosis: 4.251 Cond. No. 2.45

Table 3.18: 5-Letter Identifiers Elo vs Terminal Stop

Dep. Variable: elo R-squared: 0.002
Model: OLS Adj. R-squared: 0.000
Method: Least Squares F-statistic: 1.042
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.353
Time: 19:47:17 Log-Likelihood: -6195.0
No. Observations: 1000 AIC: 1.240e+04
Df Residuals: 997 BIC: 1.241e+04
Df Model: 2

coef std err z P> |z| [0.025 0.975]

const 1017.9530 5.301 192.025 0.000 1007.563 1028.343
terminal_fricative 12.6527 9.949 1.272 0.203 -6.848 32.153
terminal_stop 9.1710 8.641 1.061 0.289 -7.766 26.107

Omnibus: 125.877 Durbin-Watson: 0.005
Prob(Omnibus): 0.000 Jarque-Bera (JB): 193.449
Skew: 0.866 Prob(JB): 9.84e-43
Kurtosis: 4.281 Cond. No. 3.24

Table 3.19: 5-Letter Identifiers Elo vs Terminal Fricative and Terminal Stop
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Dep. Variable: elo R-squared: 0.017
Model: OLS Adj. R-squared: 0.014
Method: Least Squares F-statistic: 5.872
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.000565
Time: 19:47:17 Log-Likelihood: -6187.3
No. Observations: 1000 AIC: 1.238e+04
Df Residuals: 996 BIC: 1.240e+04
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 1011.6812 5.443 185.867 0.000 1001.013 1022.349
terminal_fricative 12.7265 9.837 1.294 0.196 -6.554 32.007
terminal_stop 8.6200 8.615 1.001 0.317 -8.265 25.505
initial_nasal 40.0655 10.360 3.867 0.000 19.760 60.371

Omnibus: 131.246 Durbin-Watson: 0.037
Prob(Omnibus): 0.000 Jarque-Bera (JB): 209.601
Skew: 0.878 Prob(JB): 3.06e-46
Kurtosis: 4.396 Cond. No. 3.30

Table 3.20: 5-Letter Identifiers Elo vs Terminal Fricative,Terminal Stop, and Initial Nasal

Dep. Variable: elo R-squared: 0.014
Model: OLS Adj. R-squared: 0.013
Method: Least Squares F-statistic: 13.69
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.000228
Time: 19:47:17 Log-Likelihood: -5903.3
No. Observations: 1000 AIC: 1.181e+04
Df Residuals: 998 BIC: 1.182e+04
Df Model: 1

coef std err z P> |z| [0.025 0.975]

const 1007.3665 2.898 347.604 0.000 1001.686 1013.047
initial_nasal 43.3391 11.715 3.700 0.000 20.379 66.300

Omnibus: 61.410 Durbin-Watson: 0.030
Prob(Omnibus): 0.000 Jarque-Bera (JB): 74.083
Skew: 0.588 Prob(JB): 8.19e-17
Kurtosis: 3.627 Cond. No. 4.07

Table 3.21: 4-Letter Identifiers Elo vs Initial Nasal
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Dep. Variable: elo R-squared: 0.003
Model: OLS Adj. R-squared: 0.002
Method: Least Squares F-statistic: 2.694
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.101
Time: 19:47:17 Log-Likelihood: -5909.2
No. Observations: 1000 AIC: 1.182e+04
Df Residuals: 998 BIC: 1.183e+04
Df Model: 1

coef std err z P> |z| [0.025 0.975]

const 1006.6304 3.532 285.034 0.000 999.709 1013.552
terminal_voiceless 9.6553 5.882 1.641 0.101 -1.874 21.185

Omnibus: 59.339 Durbin-Watson: 0.006
Prob(Omnibus): 0.000 Jarque-Bera (JB): 70.363
Skew: 0.585 Prob(JB): 5.26e-16
Kurtosis: 3.565 Cond. No. 2.42

Table 3.22: 4-Letter Identifiers Elo vs Terminal Voiceless Consonant

Dep. Variable: elo R-squared: 0.011
Model: OLS Adj. R-squared: 0.010
Method: Least Squares F-statistic: 12.26
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.000484
Time: 19:47:17 Log-Likelihood: -5905.0
No. Observations: 1000 AIC: 1.181e+04
Df Residuals: 998 BIC: 1.182e+04
Df Model: 1

coef std err z P> |z| [0.025 0.975]

const 1004.3789 3.394 295.911 0.000 997.726 1011.031
terminal_obstruents 21.0314 6.007 3.501 0.000 9.257 32.806

Omnibus: 68.273 Durbin-Watson: 0.023
Prob(Omnibus): 0.000 Jarque-Bera (JB): 84.435
Skew: 0.622 Prob(JB): 4.63e-19
Kurtosis: 3.691 Cond. No. 2.45

Table 3.23: 4-Letter Identifiers Elo vs Terminal Voiced Obstruent
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Dep. Variable: elo R-squared: 0.018
Model: OLS Adj. R-squared: 0.016
Method: Least Squares F-statistic: 8.767
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.000168
Time: 19:47:17 Log-Likelihood: -5901.5
No. Observations: 1000 AIC: 1.181e+04
Df Residuals: 997 BIC: 1.182e+04
Df Model: 2

coef std err z P> |z| [0.025 0.975]

const 1003.1573 3.593 279.201 0.000 996.115 1010.199
initial_nasal 44.7962 11.742 3.815 0.000 21.781 67.811
terminal_voiceless 11.1807 5.858 1.909 0.056 -0.301 22.663

Omnibus: 60.388 Durbin-Watson: 0.037
Prob(Omnibus): 0.000 Jarque-Bera (JB): 72.137
Skew: 0.588 Prob(JB): 2.17e-16
Kurtosis: 3.592 Cond. No. 4.42

Table 3.24: 4-Letter Identifiers Elo vs Initial Nasal and Terminal Voiceless Consonant
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Dep. Variable: elo R-squared: 0.038
Model: OLS Adj. R-squared: 0.035
Method: Least Squares F-statistic: 12.44
Date: Wed, 29 Aug 2018 Prob (F-statistic): 5.44e-08
Time: 19:47:17 Log-Likelihood: -5891.0
No. Observations: 1000 AIC: 1.179e+04
Df Residuals: 996 BIC: 1.181e+04
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 989.1805 4.890 202.280 0.000 979.596 998.765
initial_nasal 42.8709 11.457 3.742 0.000 20.416 65.326
terminal_voiceless 25.2412 6.727 3.752 0.000 12.057 38.425
terminal_obstruents 32.3465 6.839 4.730 0.000 18.943 45.750

Omnibus: 72.454 Durbin-Watson: 0.081
Prob(Omnibus): 0.000 Jarque-Bera (JB): 90.873
Skew: 0.643 Prob(JB): 1.85e-20
Kurtosis: 3.726 Cond. No. 4.55

Table 3.25: 4-Letter Identifiers Elo vs Initial Nasal,Terminal Voiceless Consonant, and
Terminal Voiced Obstruent

Dep. Variable: elo R-squared: 0.003
Model: OLS Adj. R-squared: 0.002
Method: Least Squares F-statistic: 2.770
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.0964
Time: 19:47:17 Log-Likelihood: -5909.3
No. Observations: 1000 AIC: 1.182e+04
Df Residuals: 998 BIC: 1.183e+04
Df Model: 1

coef std err z P> |z| [0.025 0.975]

const 1007.9550 3.195 315.490 0.000 1001.693 1014.217
terminal_fricative 11.3121 6.797 1.664 0.096 -2.010 24.635

Omnibus: 62.066 Durbin-Watson: 0.006
Prob(Omnibus): 0.000 Jarque-Bera (JB): 74.614
Skew: 0.596 Prob(JB): 6.28e-17
Kurtosis: 3.609 Cond. No. 2.63

Table 3.26: 4-Letter Identifiers Elo vs Terminal Fricative
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Dep. Variable: elo R-squared: 0.013
Model: OLS Adj. R-squared: 0.012
Method: Least Squares F-statistic: 13.31
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.000278
Time: 19:47:17 Log-Likelihood: -5904.1
No. Observations: 1000 AIC: 1.181e+04
Df Residuals: 998 BIC: 1.182e+04
Df Model: 1

coef std err z P> |z| [0.025 0.975]

const 1003.6893 3.363 298.432 0.000 997.097 1010.281
terminal_stop 22.3171 6.117 3.648 0.000 10.328 34.307

Omnibus: 63.532 Durbin-Watson: 0.028
Prob(Omnibus): 0.000 Jarque-Bera (JB): 76.680
Skew: 0.604 Prob(JB): 2.23e-17
Kurtosis: 3.617 Cond. No. 2.43

Table 3.27: 4-Letter Identifiers Elo vs Terminal Stop

Dep. Variable: elo R-squared: 0.021
Model: OLS Adj. R-squared: 0.019
Method: Least Squares F-statistic: 10.74
Date: Wed, 29 Aug 2018 Prob (F-statistic): 2.44e-05
Time: 19:47:17 Log-Likelihood: -5899.8
No. Observations: 1000 AIC: 1.181e+04
Df Residuals: 997 BIC: 1.182e+04
Df Model: 2

coef std err z P> |z| [0.025 0.975]

const 997.6954 4.021 248.151 0.000 989.815 1005.575
terminal_fricative 21.5718 7.222 2.987 0.003 7.417 35.727
terminal_stop 28.3109 6.502 4.354 0.000 15.568 41.054

Omnibus: 68.137 Durbin-Watson: 0.046
Prob(Omnibus): 0.000 Jarque-Bera (JB): 83.539
Skew: 0.627 Prob(JB): 7.24e-19
Kurtosis: 3.657 Cond. No. 3.26

Table 3.28: 4-Letter Identifiers Elo vs Terminal Fricative and Terminal Stop
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Dep. Variable: elo R-squared: 0.036
Model: OLS Adj. R-squared: 0.033
Method: Least Squares F-statistic: 11.80
Date: Wed, 29 Aug 2018 Prob (F-statistic): 1.35e-07
Time: 19:47:17 Log-Likelihood: -5892.2
No. Observations: 1000 AIC: 1.179e+04
Df Residuals: 996 BIC: 1.181e+04
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 994.6756 4.073 244.231 0.000 986.693 1002.658
terminal_fricative 21.6764 7.167 3.025 0.002 7.630 35.723
terminal_stop 28.7500 6.468 4.445 0.000 16.073 41.427
initial_nasal 44.1755 11.624 3.800 0.000 21.393 66.958

Omnibus: 69.990 Durbin-Watson: 0.077
Prob(Omnibus): 0.000 Jarque-Bera (JB): 86.930
Skew: 0.632 Prob(JB): 1.33e-19
Kurtosis: 3.700 Cond. No. 4.35

Table 3.29: 4-Letter Identifiers Elo vs Terminal Fricative,Terminal Stop, and Initial Nasal
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S2 Appendix: Polarization Regression Models Regressions for Phonolog-
ical Constructions on Polarization.

Dep. Variable: rank_breaks R-squared: 0.002
Model: OLS Adj. R-squared: 0.000
Method: Least Squares F-statistic: 1.283
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.278
Time: 22:26:53 Log-Likelihood: -1859.6
No. Observations: 1000 AIC: 3725.
Df Residuals: 997 BIC: 3740.
Df Model: 2

coef std err z P> |z| [0.025 0.975]

const 2.4947 0.068 36.550 0.000 2.361 2.628
initial_nasal -0.2034 0.129 -1.578 0.115 -0.456 0.049
terminal_voiceless -0.0231 0.100 -0.232 0.817 -0.218 0.172

Omnibus: 83.175 Durbin-Watson: 2.034
Prob(Omnibus): 0.000 Jarque-Bera (JB): 105.922
Skew: 0.709 Prob(JB): 9.99e-24
Kurtosis: 3.730 Cond. No. 3.07

Table 3.30: 5-Letter Identifiers Polarization vs Initial Nasal and Terminal Voiceless Con-
sonant
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Dep. Variable: rank_breaks R-squared: 0.002
Model: OLS Adj. R-squared: -0.001
Method: Least Squares F-statistic: 0.8567
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.463
Time: 22:26:53 Log-Likelihood: -1859.6
No. Observations: 1000 AIC: 3727.
Df Residuals: 996 BIC: 3747.
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 2.4963 0.084 29.599 0.000 2.331 2.662
initial_nasal -0.2034 0.129 -1.576 0.115 -0.456 0.049
terminal_voiceless -0.0247 0.112 -0.221 0.825 -0.244 0.194
terminal_obstruents -0.0044 0.134 -0.033 0.974 -0.267 0.258

Omnibus: 83.181 Durbin-Watson: 2.034
Prob(Omnibus): 0.000 Jarque-Bera (JB): 105.940
Skew: 0.709 Prob(JB): 9.89e-24
Kurtosis: 3.730 Cond. No. 3.67

Table 3.31: 5-Letter Identifiers Polarization vs Initial Nasal,Terminal Voiceless Consonant,
and Terminal Voiced Obstruent
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Dep. Variable: rank_breaks R-squared: 0.007
Model: OLS Adj. R-squared: 0.004
Method: Least Squares F-statistic: 2.034
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.107
Time: 22:26:53 Log-Likelihood: -1857.5
No. Observations: 1000 AIC: 3723.
Df Residuals: 996 BIC: 3743.
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 2.4497 0.071 34.569 0.000 2.311 2.589
terminal_fricative 0.2501 0.140 1.784 0.074 -0.025 0.525
terminal_stop -0.0348 0.111 -0.314 0.753 -0.252 0.183
initial_nasal -0.2019 0.129 -1.566 0.117 -0.455 0.051

Omnibus: 81.069 Durbin-Watson: 2.040
Prob(Omnibus): 0.000 Jarque-Bera (JB): 102.251
Skew: 0.701 Prob(JB): 6.26e-23
Kurtosis: 3.699 Cond. No. 3.30

Table 3.32: 5-Letter Identifiers Polarization vs Terminal Fricative, Terminal Stop, and
Initial Nasal
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Dep. Variable: rank_breaks R-squared: 0.005
Model: OLS Adj. R-squared: 0.003
Method: Least Squares F-statistic: 2.715
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.0667
Time: 22:26:53 Log-Likelihood: -1910.7
No. Observations: 1000 AIC: 3827.
Df Residuals: 997 BIC: 3842.
Df Model: 2

coef std err z P> |z| [0.025 0.975]

const 2.7255 0.065 42.232 0.000 2.599 2.852
initial_nasal -0.3777 0.201 -1.881 0.060 -0.771 0.016
terminal_voiceless 0.1496 0.110 1.360 0.174 -0.066 0.365

Omnibus: 42.601 Durbin-Watson: 1.915
Prob(Omnibus): 0.000 Jarque-Bera (JB): 47.276
Skew: 0.532 Prob(JB): 5.42e-11
Kurtosis: 3.053 Cond. No. 4.42

Table 3.33: 4-Letter Identifiers Polarization vs Initial Nasal and Terminal Voiceless Con-
sonant
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Dep. Variable: rank_breaks R-squared: 0.006
Model: OLS Adj. R-squared: 0.003
Method: Least Squares F-statistic: 2.053
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.105
Time: 22:26:53 Log-Likelihood: -1910.4
No. Observations: 1000 AIC: 3829.
Df Residuals: 996 BIC: 3848.
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 2.6859 0.086 31.338 0.000 2.518 2.854
initial_nasal -0.3832 0.201 -1.907 0.056 -0.777 0.011
terminal_voiceless 0.1894 0.124 1.533 0.125 -0.053 0.432
terminal_obstruents 0.0915 0.127 0.723 0.470 -0.157 0.340

Omnibus: 42.704 Durbin-Watson: 1.914
Prob(Omnibus): 0.000 Jarque-Bera (JB): 47.399
Skew: 0.533 Prob(JB): 5.10e-11
Kurtosis: 3.055 Cond. No. 4.55

Table 3.34: 4-Letter Identifiers Polarization vs Initial Nasal,Terminal Voiceless Consonant,
and Terminal Voiced Obstruent
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Dep. Variable: rank_breaks R-squared: 0.005
Model: OLS Adj. R-squared: 0.002
Method: Least Squares F-statistic: 1.955
Date: Wed, 29 Aug 2018 Prob (F-statistic): 0.119
Time: 22:26:53 Log-Likelihood: -1910.7
No. Observations: 1000 AIC: 3829.
Df Residuals: 996 BIC: 3849.
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 2.7241 0.074 36.706 0.000 2.579 2.870
terminal_fricative 0.0480 0.136 0.354 0.724 -0.218 0.314
terminal_stop 0.1648 0.122 1.351 0.177 -0.074 0.404
initial_nasal -0.3922 0.202 -1.939 0.053 -0.789 0.004

Omnibus: 43.935 Durbin-Watson: 1.911
Prob(Omnibus): 0.000 Jarque-Bera (JB): 48.905
Skew: 0.541 Prob(JB): 2.40e-11
Kurtosis: 3.067 Cond. No. 4.35

Table 3.35: 4-Letter Identifiers Polarization vs Terminal Fricative, Terminal Stop, and
Initial Nasal
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S3 Appendix: List of Identifiers This table contains the complete list of
identifiers used.

4-Letter 5-Letter
ivek pesam
asiq jayor
avox kewos
ejon mavey
omog coyam
otif fexen
ojav pebel
ebud jupar
ufix cosop
anix lozir
awek koduk
epek kovaq
izus mazob
owek camaz
ozis bumak
azop kujol
ixel falom
emev poqit
opaw gosaw
uzus hosop
uzok madik
ovay jutah
axoy naroc
ozir lenim
imeg lelip
atux gomos
otiz nubul
uvap paqel
awax nuvis
izop kozec
okoy dajav
uboz hamok
ebak luwog
icoy korav
enud puzat
omaj coxar
oyek kehab
ebek gupac
ibuy hugum
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ezip nalaj
ovox jaxam
eviv nejix
ewop kayus
equm helad
ezub nawam
opaz neroy
enux maviz
ikab nipiq
ewoq cebis
axah gixan
emuv mibob
osaz banom
okap lilap
ubob nadog
evuz pizaz
uvaq pukap
oxef deneh
eluz melox
ufam nowan
uweg pefay
ovaq hazud
enub finoy
oliq qavan
oyix cazup
uzab mezed
emoc carir
ewiz moruz
ecox kisop
oxoh mideh
umeg bavez
etug peber
oxim jomic
abux kojeb
ageg dapup
ojay midux
ayom koyev
ewut laral
ipox luxos
ehoc cupun
ugot lobud
ezej neliz
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umaj luzaf
agud hawoh
udur kogas
azuc jusol
omeb mefer
ecup mavaz
eqiv maqet
uwan livud
izip mumek
ezot pixed
azod pagol
usiv jatet
awup dacoy
uzim jalav
ovax fozer
opeg leyah
upad casuk
oxaz hidar
obeq mikaw
ezac demox
ukiz hinaj
oniq ceyos
esoy mofex
ebaj gozik
ayug maqis
ihub bajoc
umaw kimoz
uqiz jezed
afav jufah
owat jolot
odiz mifun
udog humeg
uxal miroj
uraj panuf
olab cunim
uwos naroy
odaj fazos
edav kivam
oqal lezul
emix meqac
atez pedax
adug gupil
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aqan lohaw
ogix jareh
ataj povip
afab gudem
adez deyal
exaz mosiv
urib micax
esug luqem
ojep culah
owok panoc
ufom jawok
inaz jaluk
obuk gidem
adoy pimac
umix gemey
ovix fazov
onoq kuzac
eyab koriv
uvir defos
icaw bokac
iwid cufay
evev luciy
odip bageg
oqim fazip
ozec dafir
iwal levid
ezif nizaz
ucaw kehid
ehum diriv
ejav namuc
esok mogip
axog mekeb
omeq mepoh
imeq nayim
olaq kusit
oteq jecid
eraw bomav
umez nirab
upez hurod
oqos mutiz
oket hunaq
aqic meyir

171



osuk cudip
aqom qador
ozit korit
azij cinok
ohep kuyem
aqed maheg
azub pogok
avaw hodev
ojeb koyem
izax kenux
odab muvoc
idoz famoy
ofaj pemeg
aqac duzin
izig mivon
ojaw muvit
aduw gulac
ucog hikop
esuz miloc
urix legom
axeb davuk
atix dedow
ezeb pujom
uzid pocor
orob fabox
opaq jigas
uzif lulaq
ojad pizah
avux gawus
ubaz ganur
uqil gumad
atev pufun
owuk foraj
owol kadul
ozaw muluq
emoz lifix
uzev cofic
ajun hukar
ocuz jahaw
apaj mojaw
usay bejon
odid hisaf

172



ojex necuz
azuy payom
esiz gumon
ameq decek
ejox kebad
ebop kulem
okif nuxos
ijun geroz
oyok jixil
uleq gemud
uxir diroc
ewun mojic
icaj kuwis
axez neyus
ocaz jurib
atug jusev
ezog mafum
ubix jajoy
oyak bulem
arux bapas
oqey jexic
areq mafur
opup laxip
esog lamoz
oxux natap
onip kefoz
aqaq gunek
ozat kugos
oqon qetas
udiz pudew
ukul kegit
agug namot
exoc juzil
axuz bemaf
aqij finij
ovus negaz
uxer niwal
egev kedew
enex canof
ihol fanap
ayaf hopaf
uxix lugof
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ohiv lejag
osot cadej
acax melaq
ozej golug
aleq bacoy
izik hixit
ehuz bodof
uruq nidac
igak jukug
utiq kopip
eqob gaqon
azup cuzoy
ujok hadof
ataw cecig
ijex maded
ezoh hikas
uxim laqiz
ozov mumaf
iqex jufat
ejul jahev
ezup foxuy
ebaf butaz
eqon locun
ajag muhaz
ujen nofen
efob pamaq
eqot lipob
uqad mopot
acag baziq
osih lecuh
ozaj jedap
usex nisev
uqal doqor
ejom fawun
ulot busix
abej bizej
unuv bamuc
okof mufur
ulob nofiz
izot bozit
ogaf bobeh
ogaw cusud
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obuf buseq
apey boliy
ohuz hagac
esif dihet
osoy lajak
isuc cepoz
opef miseh
ateg luyak
aqad janoz
ibud fabix
afep jelag
apew pakih
oxap pevid
emiz nanic
idug babap
uboy hocun
omob forek
ubop nugeb
ogem bonij
obeg fehaz
esul husig
ujaj mexoh
izec galuv
imaw fajul
anuz payex
oxat fanuv
evaw jupel
imom camux
izep mabub
enib dodeg
odoh qehad
oxex firup
ipeq cusem
ejim japaf
ojug bewej
ekit lokip
azeh bizuq
ilox nejux
oxeb gufas
oyey luveh
efux fahah
ajav bafen
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oyoj butaf
ezex lidag
ozob dimal
egif qovel
ekux domav
iduh bajuw
ejiv bexod
eqoc gilox
opuf copox
epof lisiy
ucaz dutos
usuk loqen
emuj jewem
egur pomew
isuv hiwer
iwek lapaq
imif kisid
ewof dawos
akiy dowir
owef harok
ejem qesex
eneg ciriv
ajof kenuy
obiz jiwin
avew pibab
atey lofow
ikox lufim
osob faroq
oqaz dawom
ivip hikip
eruz jekoq
exeb qapor
uvub nobuq
akeb hayup
efay pucax
iwiz lijat
icev bamam
uqox gigig
izuj bavim
ubot godoh
ureh lofic
ekaf neqet
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oqet kujih
owik fekey
edup dizus
ojil dimuz
epum cetef
upuq juwac
aseg cimoz
uqaw jahuh
uzub mibom
ixoy kagat
izoc bijek
upaj gakaz
efaq ducoz
iwof kuroc
avuk bocut
umuy maxih
utiv fapod
ecuf manup
ivuz kuzaj
igab focom
efib hehum
ozuz jiroy
edih gupeq
idix neyat
obef jucin
iwoj husaw
ipob nalew
asiv qinik
ekat qenon
ihak buzaz
axak bibil
owet gemeh
ohax jizof
izex jeqon
amup fuxum
exuh qukum
ehaf kajip
uhip qimix
ekik biwuk
uzuf hokuj
ubox muhaf
usuq fijot
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awur dayip
owug hahek
ojon jirem
ofok mituh
ivaw hucaw
ukoz gitab
ubup nigis
ibek hizid
uziz moruv
ezuv boveq
opiw qayuk
ajif kafux
ogab qotey
udub micok
ixeb lepey
exoz nibat
ucah bilaq
umav dijeh
uwab bisup
ekew furub
uyox japoz
ufub deqeb
ehax dukup
ixak heyoz
oyis gipum
uvim gavuc
odod bucom
onuj capeb
owud kazuj
ozix nupub
otaj jekox
ayuf kawir
ujur noyat
ajeb niqin
aniw cuxur
asuh dijun
ibup bumuy
ucib bopad
ezuw nuyak
uteb kofup
evaj mifep
uwec ponum
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ehix gewom
iboq lovuj
ojix qaric
efif kakox
ocav cotoj
utaj jowog
okut dobot
ihoz kipoh
axaq bakux
ocox bumec
omoq nelit
eqin kuqoc
otof mibad
uxas febaq
oxop qacam
orud fojub
uhim gapib
aqux giqar
uyac pelub
uwap jinop
asiw lafec
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Chapter 4

Cascades in Capacity Constrained
Agents

4.1 Introduction

Diffusion processes are an important social phenomenon that has been studied across
multiple domains such as consumer goods (Bass, 1969), adoption of hybrid corn
(Griliches, 1957), the spread of disease (Kermack and McKendrick, 1927), informa-
tion on social media (Goel et al., 2015), revolutions (Kuran, 1991), as well as many
theoretical explorations (Boorman, 1974; Granovetter, 1978; Granovetter and Soong,
1983; Macy, 1991; Centola et al., 2007; Watts, 2011)

Cascades often do not occur in isolation, but exist in an environment with multiple
potential cascades that could occur simultaneously. One way to model multiple simul-
taneous cascades or contagions is through direct interaction between the contagions.
These models are typically used in an epidemiological setting where there is some sort
of infection that is spreading and a social behavior like vaccination or distancing also
spreads through the population, which modulates the spread of the infection but is
also driven by the infection (Epstein et al., 2008; Perra et al., 2011; Bauch and Gal-
vani, 2013; Fu et al., 2017). The interaction between multiple contagions can become
computationally challenging but in well mixed populations it has been shown that
these models are equivalent to complex contagion models (Hébert-Dufresne et al.,
2020).

Another way to model simultaneous cascades is to think of them as substitutes
for each other. For example, no matter how many washing machine brands are on
the market, I as a consumer only need one washing machine and would be unlikely
to buy two washing machines of different brands. Thus once my capacity for washing
machines is met, I have no need to buy any more washing machines. While products
that someone only needs one of can easily demonstrate the capacity constraint, the
capacity for other products could be greater than one. For example, one could reg-
ularly listen to a playlist of songs that lasts 1 hour, changing out the different songs
over time as their tastes change instead of adding new songs to the end. It is also
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reasonable that different people could have different capacities for the same product,
for example a family of four probably wants more spoons than an individual who lives
alone does. Given the similarities between this process and the types of congestion
White observed in human communication networks, it is reasonable to expect these
kinds of dynamics to influence a wide range of products (White, 1973).

Given that the music market regularly experiences multiple overlapping cascades,
the stylized characteristics of the market can be useful for understanding how mul-
ticascade processes empirically function. The music industry historically has expe-
rienced high levels of firm concentration and this concentration is associated with
a lower level musical diversity (Peterson and Berger, 1975, 1996). At the level of
artists the music industry also shows signs of concentration where a small number of
popular artists have out sized influence at any given time (Rosen, 1981; Hamlen Jr,
1991; Krueger, 2005). There are multiple mechanisms that may explain the features
of this market. Experimental evidence suggests that social influence and more typical
cascade dynamics are at play (Salganik et al., 2006; Salganik and Watts, 2008), but
more recent analysis suggests that these effects may only be temporary perturbations
from songs’ fundamental value (Van de Rijt, 2019). In their experiment (Salganik and
Watts, 2008) presented their participants with 48 different songs to potentially listen
to and download for free and found that they listened to only 7 songs on average only
downloaded 1 on average. This suggests that the their participants may be capacity
constrained in both their interest in listening to songs and downloading them.

4.2 Model

This model is a variation of the Threshold Cascade model as described in (Macy
and Evtushenko, 2020). There are N agents in the population who each have a cas-
cade capacity of C. This means that if that agent would adopt a cascading state
that would bring the number of states adopted greater than C, one of the currently
adopted states is randomly dropped. There are S total states that can cascade and
in order for the capacity constraint to be binding S > C. Agents can adopt a new
state through either Threshold Cascading or Random adoption. Threshold cascading
follows the process described in (Granovetter, 1978), each agent as a threshold Ti

and adopts the state if the number of agents who have already adopted the state is
greater than or equal to Ti. In this model the agents have the same threshold for each
state. As in (Granovetter, 1978), the thresholds drawn from a normal distribution
with mean µ and variance σ. Since the number of states adopted is discrete, the
values of output by the normal distribution were rounded. For Random adoption,
each agent is challenged each time step to adopt a random state. If the agent has
already adopted the state, nothing changes. If the agent has not already adopted
the state it adopts the state with probability p as defined by p = 1

1+emTi
. A similar

formulation for random adoption was used by (Macy and Evtushenko, 2020). At
each time step each agent first checks for threshold adoption, then random adop-
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tion and finally checks for capacity. Since states are randomly dropped at the end of
the round, it is possible for a state to be adopted and dropped within the same round.

The threshold contagion model is actually a form of complex contagion model.
What differentiates this model from the standard formulation that Centola and Macy
present is that in this setting all adoption and dropping actions are public, so the
graph is complete (Centola and Macy, 2007). Instead of focusing on spread between
individuals this model is better suited for describing population level phenomenon.
While it is true than individual and network level dynamics can matter, the presence
of small global signals can overpower local diffusion (Rossman and Fisher, 2021).

There have been some attempts to quantify thresholds at the individual and net-
work level (Valente, 1996; Romero et al., 2011) , but attempts to merge thresh-
old models with more classical diffusion models have also been successful Hedström
(1994); Braun (1995). This suggests that even while thresholds may be difficult to
empirically measure the results of these models can be compared to other classes of
diffusion models.

4.2.1 Parameter Space

This model has 7 parameters. N represents the total number of agents in the popula-
tion. T represents the total number of time steps. m represents the slope parameter
in the random adoption function. C represents the capacity of each agent. S repre-
sents the total number of states. µ represents the mean of the threshold distribution
and σ represents the variance of the threshold distribution. Table 4.1 shows the
ranges of each of the parameters contained in this experiment. There are 80000 dif-
ferent combinations in this parameter space and each unique parameter combination
was replicated 100 times so there were 8000000 total runs in this experiment. This
experiment was constructed using the python package AgentPy. (Foramitti, 2021)
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Range

N 100
T 100
m 0.2
C 3,4
S 5,10,15,20
µ 0-100
σ 0-100

Table 4.1: Parameter Space
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4.3 Analysis

4.3.1 Outcomes of Interest

The outcomes I tracked in this experiment can be split into those which track at-
tributes within a given state over time and those that measure properties across
states. These outcomes depend on the number of agents which are currently adopt-
ing the given state at a given time step. I will refer to this as counts going forward.
For the within state outcomes I track the average number of counts over time (aver-
age counts), variance in counts over time (variance in counts), the maximum count
reached (max counts), the time to reach the maximum (time to max), the sum of
counts over time (final counts), the minimum count after the maximum count was
reached (min after max), the time between the maximum and the minimum after
maximum (decay time), as well as the Shannon entropy (Shannon, 1948) in counts
(entropy counts). In order to aggregate these within state values to a per run level,
I look at the mean, median, variance, mean absolute deviation, maximum and range
(maximum - minimum) across states per run. The across state measures all depend
on the total sum of counts for each state over time, the final count. For the across
state outcomes I track, kurtosis in final count, number of states with final count of
zero and the Herfindahl-Hirschman Index (Herfindahl, 1950; Hirschman, 1945) for
final count. Table 4.2 shows the summary statistics for these outcomes.

Figure 4.1 shows the average counts averaged across states for each µ and σ value
grouped by number of excess states, while Figures 4.2 and 4.3 shows the same type
of plot for final counts and decay time respectively. These plots have similar fan
like shape across both excess states as well as the range of µ and σ combinations for
which there are interesting count values. Figures 4.4 and 4.5 show the Herfindahl
index and kurtosis respectively averaged by each µ and σ pair grouped by number
of excess states. Given the similarity between these groups of graphs, it suggests
that the Herfindahl index and kurtosis are both effectively functioning as measures
of concentration across the states. Notably both the Herfindahl index and kurtosis
reach high values in a band across the bottom right corner going from around µ = 40

to σ = 30.

Figure 4.6 shows the counts over time from four different runs with different con-
figurations of parameters. The lower left graph has µ = 41,σ = 5, and 2 excess states
putting it within the high concentration band. There are not many total counts in
this run, and since the high concentration bad overlaps with areas of low final and
average counts generally this suggest that in this high concentration there is minimal
adoption of any states. Thus, this region of the parameter space somewhat resembles
a natural monopoly, where it is difficult to successfully enter and those that do dom-
inate.
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Mean Min Max Standard Deviation

Final Counts 338.0956 0 9489 1067.4220
Max Counts 9.3467 0 100 14.7336
Time to Max 25.6855 0 99 29.9113
Average Counts 6.8460 0 94.89 10.7935
Variance in Counts 22.4925 0 2311.4848 117.7511
Min after Max 6.7575 0 100 11.6436
Decay Time 7.5308 0 98 14.6412
Entropy in Counts 4.5658 0 19 4.6644
Herfindahl Index 0.1544 0 1 0.1418
Kurtosis in Counts 0.7549 -3.3333 20.0000 3.0163
Number of Zero Counts 1.7832 0 20 4.6321

Table 4.2: Summary Statistics

Figure 4.1
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Figure 4.2

Figure 4.3
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Figure 4.4

Figure 4.5
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Figure 4.6
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4.3.2 Regressions

The primary independent variable of interest is excess states, which is S-C. The OLS
regressions follow the form: Y = β1ExcessStates + β2µ + β3σ + c. Tables 4.3 and
4.4 show the regression coefficients for the variable excess states for all outcomes of
interest. All coefficients listed in this table are statistically significant at the 1% level.
In Table 4.3 the columns Mean, Median, Standard Deviation,Mean Absolute Devia-
tion, Max, and Range refer to the method of aggregation across states within a run.
Given that the distribution of outcomes across states may be fat tailed differentiating
between the Mean and Median as well as the Standard Deviation and Mean Absolute
Deviation can signal whether the effects are driven by outliers across states. Aggre-
gating via the maximum demonstrates how the maximum is directly effected, since it
is expected to be an outlier, and the gap between the maximum and minimum shows
the full range of the extremes. As the results in Table 4.3 show there were no differ-
ences in sign between the regressions using the Mean vs Median as the aggregation
function and the signs are all negative. This suggests that increasing the number
of excess stats is associated with less overall adoption of states, smaller maximum
counts, shorter time to reach the maximum counts, smaller time averaged counts,
smaller time variance in counts, smaller mimima after the maximum is reached and
lower entropy.

Alternatively, the coefficient for the range aggregation has a positive coefficient
for all of the outcomes of interest. With the exception of Time to Maximum and
Variance in Counts, and Decay Time, the coefficients for the maximum aggregation
are negative. In these cases, given the coefficients for the means, medians, and the
range this implies that while the increase in excess states reduces the average and
maximum level, the impact disproportional effects the minimum since the range in-
creases. When looking at the number of zeros, the regression coefficient for excess
states is also positive, providing additional evidence for disproportionate effect of in-
creasing excess states on the minimum counts. For Time to Maximum and Variance
in Counts, it is possible that the positive effect of excess states on the range is due
to the increases in the maximum. The broadly suggests that increasing the number
of states can widen the disparities between the popularity of the states.

Similar to the range, the regression coefficients for the standard deviation aggrega-
tion are positive for all outcomes. Macy and Evtushenko (2020) use standard devia-
tion as a measure of unpredictability, but while they were measuring unpredictability
across runs this measures unpredictability across states. This suggests that increasing
the excess states makes all of the outcomes of interest less predictable. Mean absolute
deviation was used as an alternative measure of dispersion and with the exception of
variance in counts, minimum after maximum, and decay time the signs of the regres-
sion coefficients for excess states are the same as they are for standard deviation. It
is possible that outliers play a role in this difference, since mean absolute deviation
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is less outlier sensitive.

The full regression tables are listed in Appendix B
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Mean Median Standard
Deviation

Mean
Absolute
Deviation

Max Range

Final
Counts

-92.7826 -113.2765 5.7807 1.8463 -45.3861 31.9112

Max
Counts

-1.1052 -1.3967 0.1345 0.0734 -0.3916 0.6076

Time to
Max

-0.6973 -0.8792 0.3482 0.2892 0.4659 1.7882

Average
Counts

-0.9278 -1.1328 0.0578 0.0185 -0.4539 0.3191

Variance
in
Counts

-4.1909 -5.8243 0.2933 -0.2283 1.1350 3.1665

Min after
Max

-0.9768 -1.2578 0.0210 -0.0281 -0.4292 0.2506

Decay
Time

-0.1589 -0.2224 0.0115 -0.0518 0.7465 0.8525

Entropy
in
Counts

-0.0537 -0.0593 0.0194 0.0155 -0.0120 0.0759

Table 4.3: Excess States Regression Coefficient

Coefficient

Herfindahl Index -0.0064
Kurtosis in Counts 0.1312
Number of Zero Counts 0.1599

Table 4.4: Excess States Regression Coefficient For Global Variables

203



4.4 Discussion

The parameter configurations shown in Figure 4.6 demonstrated four different com-
petitive regimes. For example while both µ = 10, σ = 5, C = 3, S = 5 and
µ = 20, σ = 5, C = 3, S = 5 are both highly competitive, there is a clear losing state
in µ = 20, σ = 5, C = 3, S = 5. On the other hand µ = 30, σ = 40, C = 3, S = 10

is characterized by the emergence of a few clear winners with the rest of the states
struggling to compete. As I mentioned earlier, in µ = 41, σ = 5, C = 3, S = 5 adop-
tion is very difficult, so the three states that end up getting adopted are only adopted
once. This suggests that the threshold parameters do capture a rich enough space of
possible outcomes.

One way to think of these results is in terms of observed and unobserved cascades,
in the sense that we are more likely to observe cascades that succeed, but not those
that fizzle. In the context of music, consider that for every artist that becomes an
"overnight success" there may be many others toiling away in obscurity. In this sense
the given states that do not achieve popularity could be thought of counter factually
as ones that could have. Each of the cascading states was facing the same distribution
of thresholds as each other, with the only differences in their outcomes being due to
chance. This shows that large disparities in popularity can occur even without and
underlying differences in the "quality" of the cascading state, and purely arise from
structure. Due to the tradeoff between the different states imposed by the capac-
ity constraint, single cascade models and multicascade models without the capacity
constraint will miss the effect unpopular states have on successful states. This also
suggests that just because something is popular, that does not imply it is high quality.

Since the capacity constraint provides a mechanism for agents to regularly remove
states, this can help determine their behavior as they fade away. The decay time
results suggest that while on average increases excess states reduces the decay time,
it actually increases the maximum decay time. This suggests that the in more com-
petitive environments the most stable states are even more stable. A similar pattern
is shown with time to maximum, suggesting that in more competitive environments
even though the average peak is earlier, the maximum peak is delayed. It is possible
that this could be due to a sort of lock in effect, where once a state is adopted by a
certain threshold of agents there is a minimum level it can no longer dip below. The
analysis of minimum post maximum, suggest that this may not be the case as adding
excess states decreases the maximum minimum post maximum. If there is lock in,
this suggests that increasing excess states reduces the floor that states are locked in
above.
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4.5 Conclusion

These results suggest that the capacity constraint may play an important role in the
diffusion dynamics of environments with multiple states that could potentially cas-
cade. Increasing the number of total states in excess of capacity is associated with
increased concentration of popularity, larger disparities between popular and unpop-
ular states as well as greater unpredictability in which states will become popular,
even while the popularity of a given state over time tended to become more pre-
dictable. Unsurprisingly increased competition from greater excess states tended to
reduce average popularity overall, the heterogeneous impact suggests that capacity
constraints may play a role in driving the superstar phenomena that Rosen (1981)
describes. Since each of the states begin equally preferable, this suggests a mechanism
for how random chance and structure can drive popularity as opposed to underlying
value. Thus, more empirical work is needed to measure people’s capacities as well as
determine the influence of the capacity constraint on real systems.
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Appendix A

BFT Instructions and Quiz

A.1 Slides for the Generals Instructions

Below are images of the slides used for the generals skin. In the actual game this is
displayed to the player as an HTML slideshow and players can freely move back and
forth throughout the slide show. We programmaticly generated these slideshows and
Section A.2 shows the tables of the text that was swapped between skins.
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A.2 Skin Difference Tables

Tables A.1 through A.10 show the textual difference between the instructions for each
skin. Each row represents a point where the text is swapped. So in the restaurant
skin the title page is: Restaurant Game, while in the Olympics skin the title page is:
Olympic Host City Selection Game. The images in each set of instructions are also
modified for each skin to represent the players and the target of consensus. Players
are Generals in the generals skin, Friends in the restaurant skin, Delegates in the
olympics skin, etc. While in the generals skin the target is a Fort, in the restaurant
skin the target is a Restaurant, in the olympics skin the target is a Host City, etc.

General’s
Coordination Game
In this game, you are a General in an army.
The point of the game is to choose an enemy Fort for all of the
Generals to attack together.
Each General has been sent to scout out a different enemy Fort.
Each Fort has been judged to be equally strategically useful, but
only one is to be attacked.
At the start of the game, each General only knows the name of the
Fort they have initially been sent to.
You will see your General name and the name of the enemy Fort you
have been initially assigned on the right side of your screen when the
game begins.
Your objective is to get all of the Generals to agree on a single enemy
Fort to attack.
The enemy has large numbers of soldiers at each Fort, so all Gener-
als must choose the same Fort to attack in order for the attack to
succeed.
, and thus that Fort is successfully attacked,
, and thus no Fort is successfully attacked.
is chosen
equally strategically important
General
General’s Coordination game
Forts
Fort
to attack

Table A.1: Instruction Changes for Generals Skin
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Restaurant Game
In this game, you are a Friend in a friend group trying to plan a
group dinner.
The point of the game is to choose a Restaurant to eat at together.
Each Friend knows about one Restaurant.
Each Restaurant has been judged to be equally good, but only one
may be chosen to attend all together.
At the start of the game each Friend knows the name of only one
Restaurant they have been initially sent to.
You will see your Friend name and the name of the Restaurant you
have been initially assigned on the right side of your screen when
the game begins.
Your objective is to get all of your Friends to choose a single Restau-
rant to eat at.
Your Friend group decided long ago that all decisons must be unan-
imous, so all Friends must choose the same Restaurant, otherwise
the dinner will be cancelled.
, and thus that dinner happens.
, and thus the dinner does not happen,
is chosen
equally good
Friend
Restaurant game
Restaurants
Restaurant
to choose

Table A.2: Instruction Changes for Restaurant Skin
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Olympic Host City Selection Game
In this game, you are a Delegate on the Olympic Host City Selection
Committee.
The point of the game is to choose a Host City for the next Olympics.
Each Delegate has been given the name of one qualified potential
Host City.
Each Host City has been judged to be equally good, but only one is
to be chosen.
At the start of the game, each Delegate is given the name of one
Host City they have initially considered.
You will see your Delegate name and the name of the Host City you
have been initially given on the right side of your screen when the
game begins.
Your objective is to get all of the Delegates to choose a single Host
City for the next Olympics.
Due to allegations of corruption in the Olympic Host Selection Com-
mittee, all Delegates must choose the same Host City, otherwise the
Olympics will be cancelled.
and thus the Olympics will proceed as cheduled.
, and thus the Olympics do not happen,
is selected
equally good
Delegate
Host Selection game
Host Cities
Host City
to select

Table A.3: Instruction Changes for Olympics Skin
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Layoff Game
In this game, you are a Manager at a workplace.
The point of the game is to choose a Worker to fire during a round
of layoffs.
Each Manager has nominated one low-performing Worker to be fired.
Each low-performing Worker has been judged to be equally bad, but
only one is to be fired.
At the start of the game, each Manager only knows the name of the
Worker they have initially nominated.
You will see your Manager name and the name of the low-performing
Worker you have been initially assigned on the right side of your
screen when the game begins.
Your objective is to get all of the Managers to agree on a single low-
performing Worker to fire.
For liability reasons, all firing decisions must be unanimous, so all
Managers must choose to fire the same low-performing Worker, oth-
erwise they themselves will be fired by their bosses.
, and thus that Worker is fired.
, and thus all the Managers (including you) are fired,
is chosen
equally bad
Manager
Layoff Game
Workers
Worker
to choose

Table A.4: Instruction Changes for Firing Skin
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Hiring Game
In this game, you are a Manager at a workplace.
The point of the game is to choose a Candidate to hire to replace a
critically important employee who has left.
Each Manager has nominated one Candidate to be hired.
Each Candidate has been judged to be equally good, but only one
is to be hired.
At the start of the game, each Manager only knows the name of the
Candidate they have initially nominated.
You will see your Manager name and the name of the Candidate you
have been initially assigned on the right side of your screen when the
game begins.
Your objective is to get all of the Managers to agree on a single
Candidate to hire.
For liability reasons, all hiring decisions must be unanimous, so all
Managers must choose to hire the same Candidate, otherwise no hire
will be made and the company will shut down.
, and thus that Candidate is hired.
, and thus the company shuts down,
is chosen
equally good
Manager
Hiring game
Candidates
Candidate
to choose

Table A.5: Instruction Changes for Hiring Skin
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Mascot Selection Game
In this game, you are a Member of a city’s Council.
The point of the game is to choose a Mascot that all Members agree
on.
Each Member has nominated one Mascot.
Each Mascot has been judged to be equally good, but only one may
be selected.
At the start of the game, each Member only knows the name of one
Mascot they have been initally assigned.
You will see your Member name and the name of the Mascot you
have been initially assigned on the right side of your screen when
the game begins.
Your objective is to get all of the Members to agree on a single
Mascot to select.
Votes in the City Council must be unanimous, so all Members must
choose the same Mascot in order for it to be selected.
, and thus that Mascot is selected.
, and thus no Mascot is selected,
is selected
equally good
Member
Mascot Selection Game
Mascots
Mascot
to select

Table A.6: Instruction Changes for Mascot Skin
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Venue Choice Game
In this game, you are a Member of an Orchestra.
The point of the game is to choose a Venue for the Orchestra to
perform at during their scheduled tour stop in an unfamiliar country.
Each Member knows about one potential Venue in the country.
Each Venue has been judged to be equally good, but only one may
be chosen.
At the start of the game, each Member only knows the name of one
Venue, they have been initially assigned.
You will see your Member name and the name of the Venue you
have been initially assigned on the right side of your screen when
the game begins.
Your objective is to get all of the Members to agree on a single Venue
to choose for the performance.
Your Orchestra decided long ago that all decisions must be unani-
mous, so all Members must choose the same Venue, otherwise the
performance will be canceled.
, and thus that performance happens.
, and thus the performance is canceled,
is selected
equally good
Member
Venue Choice Game
Venues
Venue
to select

Table A.7: Instruction Changes for Orchestra Skin

231



Plant Naming Game
In this game, you are a Member of the International Horticultural
Society, which is a global organization of plant experts.
The point of the game is to select a Plant Name for an exciting new
species of plant that has just been discovered.
Each Member has shortlisted one potential Plant Name from a ran-
domly assigned region of the world they have been given responsi-
bility for.
Each Plant Name has been judged to be equally good, but only one
may be chosen.
Each Member starts the game knowing only the potential Plant
Name they shortlisted.
You will see your Member name and the Plant Name you have been
initially assigned on the right side of your screen when the game
begins.
Your objective is to get all of the Members to agree on a single Plant
Name.
By the code of the International Horticultural Society, all naming
decisions must be unanimous, so all Members must select the same
Plant Name or the plant will not be named at all, leaving it doomed
to be ignored in future research.
, and thus the plant is named.
, and thus the plant is not named,
is selected
equally good
Member
Plant Naming Game
Plant Names
Plant Name
to select

Table A.8: Instruction Changes for Plant Skin
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Space Exploration Game
In this game, you are an Astronaut on a large spaceship with a
mission to establish a base on a habitable Planet.
The point of this game is to choose a Planet to land on.
Each Astronaut has been sent out on an small space dinghy to ex-
plore a different potential Planet to land on.
Each Planet explored by the surviving Astronauts have been judged
to be equally habitable, but only one may be chosen to establish a
base on.
At the start of the game each Astronaut only knows the name of the
Planet they have been initially assigned.
You will see your Astronaut name and the Planet you have been
initially assigned on the right side of your screen when the game
begins.
Your objective is to get all of the Astronauts to agree on one Planet
to land on.
Under the Universal Code of Space Exploration, all landings must
be agreed upon unanimously. The large spaceship is running out of
food and fuel, so if a unanimous decision is not reached, the ship will
just drift in space and all passengers onboard will die from hunger.
, and thus the spaceship lands.
, and thus all the passengers on the spaceship die,
is chosen
equally habitable
Astronaut
Space Exploration Game
Planets
Planet
to land on

Table A.9: Instruction Changes for Space Skin
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Leader Election Game
In this game, you are a member of the Electoral Council of the
country Maximus Democraticus. Members of the Electoral Council
are known as Electors.
The point of the game is to elect a new Leader for the nation.
Each Elector has been given the name of one potential Leader.
Each Leader remaining at this stage has been judged to be equally
qualified, but only one may be elected.
At the start of the game, each Elector knows the name of one Leader.
You will see your Elector name and the name of the Leader you
have been initially assigned on the right side of your screen when
the game begins.
Your objective is to get all of the Electors to agree to elect a single
Leader.
Elections in Maximus Democraticus must be unanimous, so all Elec-
tors must choose the same Leader in order for them to be elected.
, and thus that Leader is elected.
, and thus no Leader is elected,
is elected
equally qualified
Elector
Leader Election game
Leaders
Leader
to elect

Table A.10: Instruction Changes for Election Skin
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A.3 Comprehension Quiz

This the comprehension quiz for the generals skin. The order of the questions is
randomized but the order of the multiple choice answers within the questions is not.
These questions assess core concepts of the game such that anyone who read an un-
derstood the instructions would be able to get all of these questions correct. Question
1 assessed whether or not the players understand that this game is a global consensus
game not a local consensus game. Question 2 ensures that the players understand the
timed nature of the game. Question 3 shows that the players understand that they
can send full text messages. Question 4 was the question that the players found the
trickiest, which demonstrates the difference between the 4-letter and 5-letter identi-
fiers as well as the networked structure of the game. Key words such as Generals and
Fort varied across skins to the appropriate word for that skin.
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Appendix B

Regressions for Capacity Constrained
Agent Models

B.1 Excess States Regressions

B.1.1 Average Counts
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Dep. Variable: avg_count_gap R-squared: 0.288
Model: OLS Adj. R-squared: 0.288
Method: Least Squares F-statistic: 9.447e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:58:02 Log-Likelihood: -3.4781e+07
No. Observations: 8160800 AIC: 6.956e+07
Df Residuals: 8160796 BIC: 6.956e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 32.6709 0.023 1400.572 0.000 32.625 32.717
mu -0.3600 0.000 -1662.594 0.000 -0.360 -0.360
sigma -0.0826 0.000 -427.090 0.000 -0.083 -0.082
excess_states 0.3159 0.001 302.717 0.000 0.314 0.318
Omnibus: 1631115.655 Durbin-Watson: 0.594
Prob(Omnibus): 0.000 Jarque-Bera (JB): 3071101.915
Skew: 1.243 Prob(JB): 0.00
Kurtosis: 4.689 Cond. No. 237.

Table B.1: Average Counts Range

Dep. Variable: avg_count_mad R-squared: 0.257
Model: OLS Adj. R-squared: 0.257
Method: Least Squares F-statistic: 7.881e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:58:00 Log-Likelihood: -2.6300e+07
No. Observations: 8160800 AIC: 5.260e+07
Df Residuals: 8160796 BIC: 5.260e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 11.5330 0.009 1295.548 0.000 11.516 11.550
mu -0.1178 7.77e-05 -1515.654 0.000 -0.118 -0.118
sigma -0.0335 6.81e-05 -491.900 0.000 -0.034 -0.033
excess_states 0.0168 0.000 49.073 0.000 0.016 0.017
Omnibus: 2517993.677 Durbin-Watson: 0.596
Prob(Omnibus): 0.000 Jarque-Bera (JB): 7577134.524
Skew: 1.616 Prob(JB): 0.00
Kurtosis: 6.441 Cond. No. 237.

Table B.2: Average Counts Mean Absolute Deviation
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Dep. Variable: avg_count_max R-squared: 0.429
Model: OLS Adj. R-squared: 0.429
Method: Least Squares F-statistic: 1.883e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:58:01 Log-Likelihood: -3.4933e+07
No. Observations: 8160800 AIC: 6.987e+07
Df Residuals: 8160796 BIC: 6.987e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 53.3927 0.023 2275.741 0.000 53.347 53.439
mu -0.4936 0.000 -2334.758 0.000 -0.494 -0.493
sigma -0.1396 0.000 -669.382 0.000 -0.140 -0.139
excess_states -0.4531 0.001 -406.037 0.000 -0.455 -0.451

Omnibus: 620131.537 Durbin-Watson: 0.504
Prob(Omnibus): 0.000 Jarque-Bera (JB): 770501.902
Skew: 0.736 Prob(JB): 0.00
Kurtosis: 3.316 Cond. No. 237.

Table B.3: Average Counts Max

Dep. Variable: avg_count_mean R-squared: 0.431
Model: OLS Adj. R-squared: 0.431
Method: Least Squares F-statistic: 1.057e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:57:56 Log-Likelihood: -3.1013e+07
No. Observations: 8160800 AIC: 6.203e+07
Df Residuals: 8160796 BIC: 6.203e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 34.2824 0.021 1642.613 0.000 34.242 34.323
mu -0.2554 0.000 -1768.630 0.000 -0.256 -0.255
sigma -0.0845 0.000 -635.295 0.000 -0.085 -0.084
excess_states -0.9259 0.001 -1116.350 0.000 -0.928 -0.924
Omnibus: 3145797.326 Durbin-Watson: 0.271
Prob(Omnibus): 0.000 Jarque-Bera (JB): 15543140.469
Skew: 1.825 Prob(JB): 0.00
Kurtosis: 8.691 Cond. No. 237.

Table B.4: Average Counts Mean
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Dep. Variable: avg_count_median R-squared: 0.358
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 6.461e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:57:57 Log-Likelihood: -3.1914e+07
No. Observations: 8160800 AIC: 6.383e+07
Df Residuals: 8160796 BIC: 6.383e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 31.6108 0.024 1343.327 0.000 31.565 31.657
mu -0.2092 0.000 -1290.013 0.000 -0.210 -0.209
sigma -0.0686 0.000 -483.950 0.000 -0.069 -0.068
excess_states -1.1305 0.001 -1219.789 0.000 -1.132 -1.129
Omnibus: 3558389.800 Durbin-Watson: 0.344
Prob(Omnibus): 0.000 Jarque-Bera (JB): 18037445.920
Skew: 2.102 Prob(JB): 0.00
Kurtosis: 8.948 Cond. No. 237.

Table B.5: Average Counts Median

Dep. Variable: avg_count_std R-squared: 0.269
Model: OLS Adj. R-squared: 0.269
Method: Least Squares F-statistic: 8.427e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:57:58 Log-Likelihood: -2.7203e+07
No. Observations: 8160800 AIC: 5.441e+07
Df Residuals: 8160796 BIC: 5.441e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 12.9439 0.010 1339.384 0.000 12.925 12.963
mu -0.1358 8.64e-05 -1571.864 0.000 -0.136 -0.136
sigma -0.0369 7.64e-05 -482.704 0.000 -0.037 -0.037
excess_states 0.0562 0.000 141.946 0.000 0.055 0.057
Omnibus: 2062722.073 Durbin-Watson: 0.594
Prob(Omnibus): 0.000 Jarque-Bera (JB): 4835154.987
Skew: 1.426 Prob(JB): 0.00
Kurtosis: 5.466 Cond. No. 237.

Table B.6: Average Counts Standard Deviation
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B.1.2 Herfindahl Index

241



Dep. Variable: counts_herfindahl_index R-squared: 0.084
Model: OLS Adj. R-squared: 0.084
Method: Least Squares F-statistic: 3.092e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:52:50 Log-Likelihood: 4.7133e+06
No. Observations: 8160800 AIC: -9.427e+06
Df Residuals: 8160796 BIC: -9.427e+06
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 0.2602 0.000 1865.669 0.000 0.260 0.260
mu -0.0004 1.52e-06 -288.290 0.000 -0.000 -0.000
sigma -0.0005 1.98e-06 -262.212 0.000 -0.001 -0.001
excess_states -0.0064 8.49e-06 -754.010 0.000 -0.006 -0.006
Omnibus: 6869240.495 Durbin-Watson: 1.343
Prob(Omnibus): 0.000 Jarque-Bera (JB): 189368993.012
Skew: 4.040 Prob(JB): 0.00
Kurtosis: 25.172 Cond. No. 237.

Table B.7: Herfindahl Index

B.1.3 Kurtosis in Counts

242



Dep. Variable: counts_kurtosis R-squared: 0.065
Model: OLS Adj. R-squared: 0.065
Method: Least Squares F-statistic: 1.489e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:52:24 Log-Likelihood: -2.0326e+07
No. Observations: 8160800 AIC: 4.065e+07
Df Residuals: 8160796 BIC: 4.065e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const -0.3005 0.003 -106.306 0.000 -0.306 -0.295
mu 0.0037 3.29e-05 112.506 0.000 0.004 0.004
sigma -0.0062 3.68e-05 -169.933 0.000 -0.006 -0.006
excess_states 0.1319 0.000 666.169 0.000 0.131 0.132
Omnibus: 4600457.530 Durbin-Watson: 1.582
Prob(Omnibus): 0.000 Jarque-Bera (JB): 42503178.768
Skew: 2.604 Prob(JB): 0.00
Kurtosis: 12.893 Cond. No. 237.

Table B.8: Kurtosis in Counts

B.1.4 Number of Zero Counts
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Dep. Variable: counts_zeros R-squared: 0.383
Model: OLS Adj. R-squared: 0.383
Method: Least Squares F-statistic: 9.160e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:52:02 Log-Likelihood: -2.2079e+07
No. Observations: 8160800 AIC: 4.416e+07
Df Residuals: 8160796 BIC: 4.416e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 1.4880 0.003 523.774 0.000 1.482 1.494
mu 0.0533 4.51e-05 1181.231 0.000 0.053 0.053
sigma -0.0763 5.18e-05 -1471.237 0.000 -0.076 -0.076
excess_states 0.1584 0.000 646.781 0.000 0.158 0.159
Omnibus: 2185557.836 Durbin-Watson: 0.225
Prob(Omnibus): 0.000 Jarque-Bera (JB): 5437351.853
Skew: 1.481 Prob(JB): 0.00
Kurtosis: 5.686 Cond. No. 237.

Table B.9: Number of Zero Counts

B.1.5 Decay Time
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Dep. Variable: decay_time_gap R-squared: 0.272
Model: OLS Adj. R-squared: 0.272
Method: Least Squares F-statistic: 1.051e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 06:01:47 Log-Likelihood: -3.6483e+07
No. Observations: 8160800 AIC: 7.297e+07
Df Residuals: 8160796 BIC: 7.297e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 36.2969 0.024 1499.280 0.000 36.249 36.344
mu -0.3008 0.000 -1137.571 0.000 -0.301 -0.300
sigma 0.2819 0.000 1046.671 0.000 0.281 0.282
excess_states 0.8525 0.001 645.696 0.000 0.850 0.855

Omnibus: 436487.112 Durbin-Watson: 1.083
Prob(Omnibus): 0.000 Jarque-Bera (JB): 198735.052
Skew: 0.172 Prob(JB): 0.00
Kurtosis: 2.318 Cond. No. 237.

Table B.10: Decay Time Range

Dep. Variable: decay_time_mad R-squared: 0.230
Model: OLS Adj. R-squared: 0.230
Method: Least Squares F-statistic: 7.933e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 06:01:45 Log-Likelihood: -2.5904e+07
No. Observations: 8160800 AIC: 5.181e+07
Df Residuals: 8160796 BIC: 5.181e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 12.1728 0.007 1670.044 0.000 12.159 12.187
mu -0.0824 7.35e-05 -1120.644 0.000 -0.083 -0.082
sigma 0.0696 7.33e-05 949.526 0.000 0.069 0.070
excess_states -0.0518 0.000 -139.938 0.000 -0.053 -0.051

Omnibus: 264340.764 Durbin-Watson: 1.128
Prob(Omnibus): 0.000 Jarque-Bera (JB): 290966.492
Skew: 0.462 Prob(JB): 0.00
Kurtosis: 3.038 Cond. No. 237.

Table B.11: Decay Time Mean Absolute Deviation
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Dep. Variable: decay_time_max R-squared: 0.268
Model: OLS Adj. R-squared: 0.268
Method: Least Squares F-statistic: 1.006e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 06:01:46 Log-Likelihood: -3.6569e+07
No. Observations: 8160800 AIC: 7.314e+07
Df Residuals: 8160796 BIC: 7.314e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 39.7249 0.025 1595.967 0.000 39.676 39.774
mu -0.3149 0.000 -1177.655 0.000 -0.315 -0.314
sigma 0.2771 0.000 1014.156 0.000 0.277 0.278
excess_states 0.7465 0.001 557.379 0.000 0.744 0.749

Omnibus: 474993.712 Durbin-Watson: 1.060
Prob(Omnibus): 0.000 Jarque-Bera (JB): 203284.835
Skew: 0.159 Prob(JB): 0.00
Kurtosis: 2.296 Cond. No. 237.

Table B.12: Decay Time Max

Dep. Variable: decay_time_mean R-squared: 0.253
Model: OLS Adj. R-squared: 0.253
Method: Least Squares F-statistic: 9.605e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 06:01:43 Log-Likelihood: -2.8655e+07
No. Observations: 8160800 AIC: 5.731e+07
Df Residuals: 8160796 BIC: 5.731e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 19.9590 0.012 1728.357 0.000 19.936 19.982
mu -0.1389 0.000 -1324.900 0.000 -0.139 -0.139
sigma 0.0774 0.000 743.095 0.000 0.077 0.078
excess_states -0.1589 0.001 -302.590 0.000 -0.160 -0.158
Omnibus: 831597.514 Durbin-Watson: 0.979
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1314284.788
Skew: 0.750 Prob(JB): 0.00
Kurtosis: 4.270 Cond. No. 237.

Table B.13: Decay Time Mean
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Dep. Variable: decay_time_median R-squared: 0.179
Model: OLS Adj. R-squared: 0.179
Method: Least Squares F-statistic: 6.471e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 06:01:44 Log-Likelihood: -2.9103e+07
No. Observations: 8160800 AIC: 5.821e+07
Df Residuals: 8160796 BIC: 5.821e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 17.1357 0.013 1333.955 0.000 17.110 17.161
mu -0.1213 0.000 -1093.740 0.000 -0.122 -0.121
sigma 0.0478 0.000 456.545 0.000 0.048 0.048
excess_states -0.2224 0.001 -390.717 0.000 -0.223 -0.221
Omnibus: 2661773.611 Durbin-Watson: 1.296
Prob(Omnibus): 0.000 Jarque-Bera (JB): 11243982.866
Skew: 1.566 Prob(JB): 0.00
Kurtosis: 7.822 Cond. No. 237.

Table B.14: Decay Time Median

Dep. Variable: decay_time_std R-squared: 0.235
Model: OLS Adj. R-squared: 0.235
Method: Least Squares F-statistic: 7.907e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 06:01:44 Log-Likelihood: -2.7231e+07
No. Observations: 8160800 AIC: 5.446e+07
Df Residuals: 8160796 BIC: 5.446e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 13.9582 0.008 1677.240 0.000 13.942 13.975
mu -0.0968 8.58e-05 -1128.497 0.000 -0.097 -0.097
sigma 0.0858 8.65e-05 992.582 0.000 0.086 0.086
excess_states 0.0115 0.000 26.390 0.000 0.011 0.012

Omnibus: 199176.875 Durbin-Watson: 1.110
Prob(Omnibus): 0.000 Jarque-Bera (JB): 178649.798
Skew: 0.310 Prob(JB): 0.00
Kurtosis: 2.623 Cond. No. 237.

Table B.15: Decay Time Standard Deviation
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B.1.6 Entropy in Counts
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Dep. Variable: entropy_gap R-squared: 0.476
Model: OLS Adj. R-squared: 0.476
Method: Least Squares F-statistic: 2.145e+06
Date: Sat, 26 Feb 2022 Prob (F-statistic): 0.00
Time: 00:15:25 Log-Likelihood: -4.3191e+06
No. Observations: 6707759 AIC: 8.638e+06
Df Residuals: 6707755 BIC: 8.638e+06
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 0.6471 0.001 1039.602 0.000 0.646 0.648
mu -0.0033 6.2e-06 -538.870 0.000 -0.003 -0.003
sigma -0.0001 7.4e-06 -15.385 0.000 -0.000 -9.93e-05
excess_states 0.0759 3.06e-05 2479.107 0.000 0.076 0.076

Omnibus: 72119.733 Durbin-Watson: 1.278
Prob(Omnibus): 0.000 Jarque-Bera (JB): 93015.772
Skew: 0.169 Prob(JB): 0.00
Kurtosis: 3.468 Cond. No. 241.

Table B.16: Entropy in Counts Range

Dep. Variable: entropy_mad R-squared: 0.277
Model: OLS Adj. R-squared: 0.277
Method: Least Squares F-statistic: 9.200e+05
Date: Sat, 26 Feb 2022 Prob (F-statistic): 0.00
Time: 00:15:21 Log-Likelihood: 2.9093e+06
No. Observations: 6707759 AIC: -5.819e+06
Df Residuals: 6707755 BIC: -5.819e+06
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 0.2600 0.000 1173.052 0.000 0.260 0.260
mu -0.0013 2.04e-06 -645.169 0.000 -0.001 -0.001
sigma -0.0005 2.49e-06 -193.504 0.000 -0.000 -0.000
excess_states 0.0154 9.97e-06 1548.365 0.000 0.015 0.015
Omnibus: 675794.693 Durbin-Watson: 1.170
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1057522.336
Skew: 0.748 Prob(JB): 0.00
Kurtosis: 4.244 Cond. No. 241.

Table B.17: Entropy in Counts Mean Absolute Deviation
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Dep. Variable: entropy_max R-squared: 0.517
Model: OLS Adj. R-squared: 0.517
Method: Least Squares F-statistic: 3.040e+06
Date: Sat, 26 Feb 2022 Prob (F-statistic): 0.00
Time: 00:15:23 Log-Likelihood: -4.2294e+06
No. Observations: 6707759 AIC: 8.459e+06
Df Residuals: 6707755 BIC: 8.459e+06
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 3.4132 0.001 6225.408 0.000 3.412 3.414
mu -0.0160 6.77e-06 -2369.912 0.000 -0.016 -0.016
sigma -0.0014 8.31e-06 -168.035 0.000 -0.001 -0.001
excess_states -0.0121 3.12e-05 -387.380 0.000 -0.012 -0.012

Omnibus: 396425.870 Durbin-Watson: 0.837
Prob(Omnibus): 0.000 Jarque-Bera (JB): 495429.858
Skew: -0.583 Prob(JB): 0.00
Kurtosis: 3.641 Cond. No. 241.

Table B.18: Entropy in Counts Max

Dep. Variable: entropy_mean R-squared: 0.587
Model: OLS Adj. R-squared: 0.587
Method: Least Squares F-statistic: 3.538e+06
Date: Sat, 26 Feb 2022 Prob (F-statistic): 0.00
Time: 00:15:15 Log-Likelihood: -3.5899e+06
No. Observations: 6707759 AIC: 7.180e+06
Df Residuals: 6707755 BIC: 7.180e+06
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 3.0888 0.001 5230.658 0.000 3.088 3.090
mu -0.0137 6.47e-06 -2118.855 0.000 -0.014 -0.014
sigma -0.0010 7.95e-06 -131.158 0.000 -0.001 -0.001
excess_states -0.0538 2.85e-05 -1891.351 0.000 -0.054 -0.054
Omnibus: 917679.346 Durbin-Watson: 0.644
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1828895.580
Skew: -0.857 Prob(JB): 0.00
Kurtosis: 4.899 Cond. No. 241.

Table B.19: Entropy in Counts Mean
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Dep. Variable: entropy_median R-squared: 0.547
Model: OLS Adj. R-squared: 0.547
Method: Least Squares F-statistic: 3.069e+06
Date: Sat, 26 Feb 2022 Prob (F-statistic): 0.00
Time: 00:15:17 Log-Likelihood: -4.1582e+06
No. Observations: 6707759 AIC: 8.316e+06
Df Residuals: 6707755 BIC: 8.316e+06
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 3.0734 0.001 4780.826 0.000 3.072 3.075
mu -0.0130 6.95e-06 -1864.723 0.000 -0.013 -0.013
sigma -0.0007 8.35e-06 -82.612 0.000 -0.001 -0.001
excess_states -0.0594 3.06e-05 -1940.723 0.000 -0.059 -0.059
Omnibus: 587417.206 Durbin-Watson: 0.757
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1150353.180
Skew: -0.595 Prob(JB): 0.00
Kurtosis: 4.643 Cond. No. 241.

Table B.20: Entropy in Counts Median

Dep. Variable: entropy_std R-squared: 0.328
Model: OLS Adj. R-squared: 0.328
Method: Least Squares F-statistic: 1.146e+06
Date: Sat, 26 Feb 2022 Prob (F-statistic): 0.00
Time: 00:15:19 Log-Likelihood: 2.4188e+06
No. Observations: 6707759 AIC: -4.838e+06
Df Residuals: 6707755 BIC: -4.837e+06
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 0.2839 0.000 1192.108 0.000 0.283 0.284
mu -0.0014 2.21e-06 -625.981 0.000 -0.001 -0.001
sigma -0.0004 2.69e-06 -162.652 0.000 -0.000 -0.000
excess_states 0.0194 1.1e-05 1764.293 0.000 0.019 0.019
Omnibus: 342185.716 Durbin-Watson: 1.170
Prob(Omnibus): 0.000 Jarque-Bera (JB): 449870.753
Skew: 0.503 Prob(JB): 0.00
Kurtosis: 3.774 Cond. No. 241.

Table B.21: Entropy in Counts Standard Deviation
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B.1.7 Final Counts
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Dep. Variable: final_counts_sums_gap R-squared: 0.288
Model: OLS Adj. R-squared: 0.288
Method: Least Squares F-statistic: 9.447e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:51:37 Log-Likelihood: -7.2362e+07
No. Observations: 8160800 AIC: 1.447e+08
Df Residuals: 8160796 BIC: 1.447e+08
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 3267.0891 2.333 1400.572 0.000 3262.517 3271.661
mu -35.9975 0.022 -1662.594 0.000 -36.040 -35.955
sigma -8.2631 0.019 -427.090 0.000 -8.301 -8.225
excess_states 31.5854 0.104 302.717 0.000 31.381 31.790

Omnibus: 1631115.655 Durbin-Watson: 0.594
Prob(Omnibus): 0.000 Jarque-Bera (JB): 3071101.915
Skew: 1.243 Prob(JB): 0.00
Kurtosis: 4.689 Cond. No. 237.

Table B.22: Final Counts Range

Dep. Variable: final_counts_sums_mad R-squared: 0.257
Model: OLS Adj. R-squared: 0.257
Method: Least Squares F-statistic: 7.881e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:51:34 Log-Likelihood: -6.3881e+07
No. Observations: 8160800 AIC: 1.278e+08
Df Residuals: 8160796 BIC: 1.278e+08
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 1153.2991 0.890 1295.548 0.000 1151.554 1155.044
mu -11.7792 0.008 -1515.654 0.000 -11.794 -11.764
sigma -3.3510 0.007 -491.900 0.000 -3.364 -3.338
excess_states 1.6823 0.034 49.073 0.000 1.615 1.750

Omnibus: 2517993.677 Durbin-Watson: 0.596
Prob(Omnibus): 0.000 Jarque-Bera (JB): 7577134.524
Skew: 1.616 Prob(JB): 0.00
Kurtosis: 6.441 Cond. No. 237.

Table B.23: Final Counts Mean Absolute Deviation
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Dep. Variable: final_counts_sums_max R-squared: 0.429
Model: OLS Adj. R-squared: 0.429
Method: Least Squares F-statistic: 1.883e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:51:36 Log-Likelihood: -7.2515e+07
No. Observations: 8160800 AIC: 1.450e+08
Df Residuals: 8160796 BIC: 1.450e+08
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 5339.2654 2.346 2275.741 0.000 5334.667 5343.864
mu -49.3608 0.021 -2334.758 0.000 -49.402 -49.319
sigma -13.9586 0.021 -669.382 0.000 -13.999 -13.918
excess_states -45.3142 0.112 -406.037 0.000 -45.533 -45.095

Omnibus: 620131.537 Durbin-Watson: 0.504
Prob(Omnibus): 0.000 Jarque-Bera (JB): 770501.902
Skew: 0.736 Prob(JB): 0.00
Kurtosis: 3.316 Cond. No. 237.

Table B.24: Final Counts Max

Dep. Variable: final_counts_sums_mean R-squared: 0.431
Model: OLS Adj. R-squared: 0.431
Method: Least Squares F-statistic: 1.057e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:51:30 Log-Likelihood: -6.8595e+07
No. Observations: 8160800 AIC: 1.372e+08
Df Residuals: 8160796 BIC: 1.372e+08
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 3428.2430 2.087 1642.613 0.000 3424.152 3432.334
mu -25.5423 0.014 -1768.630 0.000 -25.571 -25.514
sigma -8.4502 0.013 -635.295 0.000 -8.476 -8.424
excess_states -92.5901 0.083 -1116.350 0.000 -92.753 -92.428

Omnibus: 3145797.326 Durbin-Watson: 0.271
Prob(Omnibus): 0.000 Jarque-Bera (JB): 15543140.469
Skew: 1.825 Prob(JB): 0.00
Kurtosis: 8.691 Cond. No. 237.

Table B.25: Final Counts Mean
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Dep. Variable: final_counts_sums_median R-squared: 0.358
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 6.461e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:51:32 Log-Likelihood: -6.9496e+07
No. Observations: 8160800 AIC: 1.390e+08
Df Residuals: 8160796 BIC: 1.390e+08
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 3161.0797 2.353 1343.327 0.000 3156.468 3165.692
mu -20.9205 0.016 -1290.013 0.000 -20.952 -20.889
sigma -6.8616 0.014 -483.950 0.000 -6.889 -6.834
excess_states -113.0523 0.093 -1219.789 0.000 -113.234 -112.871

Omnibus: 3558389.800 Durbin-Watson: 0.344
Prob(Omnibus): 0.000 Jarque-Bera (JB): 18037445.920
Skew: 2.102 Prob(JB): 0.00
Kurtosis: 8.948 Cond. No. 237.

Table B.26: Final Counts Median

Dep. Variable: final_counts_sums_std R-squared: 0.269
Model: OLS Adj. R-squared: 0.269
Method: Least Squares F-statistic: 8.427e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:51:33 Log-Likelihood: -6.4785e+07
No. Observations: 8160800 AIC: 1.296e+08
Df Residuals: 8160796 BIC: 1.296e+08
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 1294.3946 0.966 1339.384 0.000 1292.500 1296.289
mu -13.5788 0.009 -1571.864 0.000 -13.596 -13.562
sigma -3.6877 0.008 -482.704 0.000 -3.703 -3.673
excess_states 5.6180 0.040 141.946 0.000 5.540 5.696

Omnibus: 2062722.073 Durbin-Watson: 0.594
Prob(Omnibus): 0.000 Jarque-Bera (JB): 4835154.987
Skew: 1.426 Prob(JB): 0.00
Kurtosis: 5.466 Cond. No. 237.

Table B.27: Final Counts Standard Deviation
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B.1.8 Max Counts
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Dep. Variable: max_count_gap R-squared: 0.330
Model: OLS Adj. R-squared: 0.330
Method: Least Squares F-statistic: 1.159e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:54:21 Log-Likelihood: -3.6894e+07
No. Observations: 8160800 AIC: 7.379e+07
Df Residuals: 8160796 BIC: 7.379e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 45.4376 0.030 1523.461 0.000 45.379 45.496
mu -0.5034 0.000 -1837.724 0.000 -0.504 -0.503
sigma -0.1389 0.000 -530.258 0.000 -0.139 -0.138
excess_states 0.6036 0.001 444.031 0.000 0.601 0.606
Omnibus: 1060741.770 Durbin-Watson: 0.595
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1531725.409
Skew: 0.999 Prob(JB): 0.00
Kurtosis: 3.715 Cond. No. 237.

Table B.28: Max Counts Range

Dep. Variable: max_count_mad R-squared: 0.279
Model: OLS Adj. R-squared: 0.279
Method: Least Squares F-statistic: 9.162e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:54:18 Log-Likelihood: -2.8726e+07
No. Observations: 8160800 AIC: 5.745e+07
Df Residuals: 8160796 BIC: 5.745e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 16.1317 0.012 1363.978 0.000 16.109 16.155
mu -0.1658 0.000 -1628.004 0.000 -0.166 -0.166
sigma -0.0522 9.41e-05 -554.483 0.000 -0.052 -0.052
excess_states 0.0716 0.000 153.835 0.000 0.071 0.073
Omnibus: 2172230.256 Durbin-Watson: 0.606
Prob(Omnibus): 0.000 Jarque-Bera (JB): 5312313.363
Skew: 1.481 Prob(JB): 0.00
Kurtosis: 5.617 Cond. No. 237.

Table B.29: Mac Counts Mean Absolute Deviation

257



Dep. Variable: max_count_max R-squared: 0.463
Model: OLS Adj. R-squared: 0.463
Method: Least Squares F-statistic: 2.335e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:54:19 Log-Likelihood: -3.7099e+07
No. Observations: 8160800 AIC: 7.420e+07
Df Residuals: 8160796 BIC: 7.420e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 74.0974 0.029 2518.700 0.000 74.040 74.155
mu -0.6955 0.000 -2600.316 0.000 -0.696 -0.695
sigma -0.1942 0.000 -679.942 0.000 -0.195 -0.194
excess_states -0.3916 0.001 -273.990 0.000 -0.394 -0.389

Omnibus: 286063.586 Durbin-Watson: 0.492
Prob(Omnibus): 0.000 Jarque-Bera (JB): 302636.579
Skew: 0.453 Prob(JB): 0.00
Kurtosis: 2.735 Cond. No. 237.

Table B.30: Max Counts Max

Dep. Variable: max_count_mean R-squared: 0.467
Model: OLS Adj. R-squared: 0.467
Method: Least Squares F-statistic: 1.519e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:54:14 Log-Likelihood: -3.2945e+07
No. Observations: 8160800 AIC: 6.589e+07
Df Residuals: 8160796 BIC: 6.589e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 47.9440 0.025 1921.333 0.000 47.895 47.993
mu -0.3726 0.000 -2118.329 0.000 -0.373 -0.372
sigma -0.0998 0.000 -573.077 0.000 -0.100 -0.099
excess_states -1.1035 0.001 -1091.627 0.000 -1.106 -1.102
Omnibus: 1891976.014 Durbin-Watson: 0.286
Prob(Omnibus): 0.000 Jarque-Bera (JB): 5223094.631
Skew: 1.235 Prob(JB): 0.00
Kurtosis: 6.042 Cond. No. 237.

Table B.31: Max Counts Mean
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Dep. Variable: max_count_median R-squared: 0.384
Model: OLS Adj. R-squared: 0.384
Method: Least Squares F-statistic: 8.783e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:54:15 Log-Likelihood: -3.3940e+07
No. Observations: 8160800 AIC: 6.788e+07
Df Residuals: 8160796 BIC: 6.788e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 44.6282 0.029 1542.931 0.000 44.572 44.685
mu -0.3131 0.000 -1564.284 0.000 -0.313 -0.313
sigma -0.0761 0.000 -408.042 0.000 -0.076 -0.076
excess_states -1.3947 0.001 -1205.997 0.000 -1.397 -1.392
Omnibus: 2914052.157 Durbin-Watson: 0.397
Prob(Omnibus): 0.000 Jarque-Bera (JB): 10925182.194
Skew: 1.786 Prob(JB): 0.00
Kurtosis: 7.401 Cond. No. 237.

Table B.32: Max Counts Median

Dep. Variable: max_count_std R-squared: 0.295
Model: OLS Adj. R-squared: 0.295
Method: Least Squares F-statistic: 9.936e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:54:17 Log-Likelihood: -2.9580e+07
No. Observations: 8160800 AIC: 5.916e+07
Df Residuals: 8160796 BIC: 5.916e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 18.1492 0.013 1423.465 0.000 18.124 18.174
mu -0.1911 0.000 -1702.789 0.000 -0.191 -0.191
sigma -0.0588 0.000 -558.386 0.000 -0.059 -0.059
excess_states 0.1327 0.001 248.591 0.000 0.132 0.134
Omnibus: 1651457.151 Durbin-Watson: 0.603
Prob(Omnibus): 0.000 Jarque-Bera (JB): 3084298.882
Skew: 1.265 Prob(JB): 0.00
Kurtosis: 4.635 Cond. No. 237.

Table B.33: Max Counts Standard Deviation
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B.1.9 Time of Max
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Dep. Variable: max_time_gap R-squared: 0.343
Model: OLS Adj. R-squared: 0.343
Method: Least Squares F-statistic: 1.342e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:56:53 Log-Likelihood: -3.7189e+07
No. Observations: 8160800 AIC: 7.438e+07
Df Residuals: 8160796 BIC: 7.438e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 49.0413 0.023 2098.208 0.000 48.996 49.087
mu -0.2766 0.000 -955.829 0.000 -0.277 -0.276
sigma 0.3614 0.000 1117.858 0.000 0.361 0.362
excess_states 1.7915 0.001 1227.237 0.000 1.789 1.794
Omnibus: 547411.149 Durbin-Watson: 0.763
Prob(Omnibus): 0.000 Jarque-Bera (JB): 663689.163
Skew: -0.685 Prob(JB): 0.00
Kurtosis: 3.277 Cond. No. 237.

Table B.34: Time of Max Range

Dep. Variable: max_time_mad R-squared: 0.259
Model: OLS Adj. R-squared: 0.259
Method: Least Squares F-statistic: 7.456e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:56:50 Log-Likelihood: -2.7872e+07
No. Observations: 8160800 AIC: 5.574e+07
Df Residuals: 8160796 BIC: 5.574e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 16.3502 0.008 2023.008 0.000 16.334 16.366
mu -0.0887 9.12e-05 -972.564 0.000 -0.089 -0.088
sigma 0.1066 9.96e-05 1069.460 0.000 0.106 0.107
excess_states 0.2898 0.000 614.288 0.000 0.289 0.291

Omnibus: 21842.995 Durbin-Watson: 0.943
Prob(Omnibus): 0.000 Jarque-Bera (JB): 21934.665
Skew: -0.124 Prob(JB): 0.00
Kurtosis: 2.943 Cond. No. 237.

Table B.35: Time of Max Mean Absolute Deviation
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Dep. Variable: max_time_max R-squared: 0.358
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 8.452e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:56:51 Log-Likelihood: -3.7308e+07
No. Observations: 8160800 AIC: 7.462e+07
Df Residuals: 8160796 BIC: 7.462e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 68.3824 0.024 2825.602 0.000 68.335 68.430
mu -0.3068 0.000 -1042.190 0.000 -0.307 -0.306
sigma 0.5075 0.000 1513.458 0.000 0.507 0.508
excess_states 0.4646 0.001 314.834 0.000 0.462 0.467
Omnibus: 973106.179 Durbin-Watson: 0.520
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1357568.967
Skew: -0.974 Prob(JB): 0.00
Kurtosis: 3.442 Cond. No. 237.

Table B.36: Time of Max Max

Dep. Variable: max_time_mean R-squared: 0.398
Model: OLS Adj. R-squared: 0.398
Method: Least Squares F-statistic: 1.518e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:56:46 Log-Likelihood: -3.4478e+07
No. Observations: 8160800 AIC: 6.896e+07
Df Residuals: 8160796 BIC: 6.896e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 38.7235 0.020 1946.830 0.000 38.685 38.762
mu -0.1420 0.000 -749.685 0.000 -0.142 -0.142
sigma 0.4177 0.000 1899.202 0.000 0.417 0.418
excess_states -0.7001 0.001 -651.268 0.000 -0.702 -0.698

Omnibus: 55935.690 Durbin-Watson: 0.664
Prob(Omnibus): 0.000 Jarque-Bera (JB): 57097.878
Skew: 0.204 Prob(JB): 0.00
Kurtosis: 3.045 Cond. No. 237.

Table B.37: Time of Max Mean
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Dep. Variable: max_time_median R-squared: 0.358
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 1.467e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:56:47 Log-Likelihood: -3.6053e+07
No. Observations: 8160800 AIC: 7.211e+07
Df Residuals: 8160796 BIC: 7.211e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 35.3592 0.025 1424.551 0.000 35.311 35.408
mu -0.1167 0.000 -512.103 0.000 -0.117 -0.116
sigma 0.4704 0.000 1850.346 0.000 0.470 0.471
excess_states -0.8824 0.001 -680.563 0.000 -0.885 -0.880
Omnibus: 153774.387 Durbin-Watson: 0.918
Prob(Omnibus): 0.000 Jarque-Bera (JB): 157750.010
Skew: 0.326 Prob(JB): 0.00
Kurtosis: 2.803 Cond. No. 237.

Table B.38: Time of Max Median

Dep. Variable: max_time_std R-squared: 0.266
Model: OLS Adj. R-squared: 0.266
Method: Least Squares F-statistic: 7.406e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:56:48 Log-Likelihood: -2.8650e+07
No. Observations: 8160800 AIC: 5.730e+07
Df Residuals: 8160796 BIC: 5.730e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 19.0580 0.009 2169.535 0.000 19.041 19.075
mu -0.0994 0.000 -984.158 0.000 -0.100 -0.099
sigma 0.1163 0.000 1039.725 0.000 0.116 0.117
excess_states 0.3489 0.001 671.351 0.000 0.348 0.350
Omnibus: 160390.258 Durbin-Watson: 0.878
Prob(Omnibus): 0.000 Jarque-Bera (JB): 170070.247
Skew: -0.354 Prob(JB): 0.00
Kurtosis: 3.008 Cond. No. 237.

Table B.39: Time of Max Standard Deviation
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B.1.10 Min after Max
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Dep. Variable: min_post_max_gap R-squared: 0.281
Model: OLS Adj. R-squared: 0.281
Method: Least Squares F-statistic: 1.071e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 06:00:38 Log-Likelihood: -3.6014e+07
No. Observations: 8160800 AIC: 7.203e+07
Df Residuals: 8160796 BIC: 7.203e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 39.4390 0.027 1459.286 0.000 39.386 39.492
mu -0.4185 0.000 -1768.852 0.000 -0.419 -0.418
sigma -0.0748 0.000 -325.779 0.000 -0.075 -0.074
excess_states 0.2486 0.001 201.727 0.000 0.246 0.251
Omnibus: 2059957.091 Durbin-Watson: 0.709
Prob(Omnibus): 0.000 Jarque-Bera (JB): 4674290.947
Skew: 1.444 Prob(JB): 0.00
Kurtosis: 5.326 Cond. No. 237.

Table B.40: Min after Max Range

Dep. Variable: min_post_max_mad R-squared: 0.249
Model: OLS Adj. R-squared: 0.249
Method: Least Squares F-statistic: 8.798e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 06:00:35 Log-Likelihood: -2.7920e+07
No. Observations: 8160800 AIC: 5.584e+07
Df Residuals: 8160796 BIC: 5.584e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 14.4527 0.011 1324.095 0.000 14.431 14.474
mu -0.1424 8.92e-05 -1596.242 0.000 -0.143 -0.142
sigma -0.0326 8.35e-05 -390.256 0.000 -0.033 -0.032
excess_states -0.0294 0.000 -68.779 0.000 -0.030 -0.029
Omnibus: 2936185.546 Durbin-Watson: 0.695
Prob(Omnibus): 0.000 Jarque-Bera (JB): 10939134.176
Skew: 1.805 Prob(JB): 0.00
Kurtosis: 7.376 Cond. No. 237.

Table B.41: Min after Max Mean Absolute Deviation
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Dep. Variable: min_post_max_max R-squared: 0.393
Model: OLS Adj. R-squared: 0.393
Method: Least Squares F-statistic: 1.838e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 06:00:37 Log-Likelihood: -3.5887e+07
No. Observations: 8160800 AIC: 7.177e+07
Df Residuals: 8160796 BIC: 7.177e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 56.2682 0.025 2212.667 0.000 56.218 56.318
mu -0.5212 0.000 -2296.112 0.000 -0.522 -0.521
sigma -0.1260 0.000 -535.022 0.000 -0.127 -0.126
excess_states -0.4277 0.001 -346.597 0.000 -0.430 -0.425
Omnibus: 1261804.705 Durbin-Watson: 0.648
Prob(Omnibus): 0.000 Jarque-Bera (JB): 2049320.354
Skew: 1.059 Prob(JB): 0.00
Kurtosis: 4.243 Cond. No. 237.

Table B.42: Min after Max Max

Dep. Variable: min_post_max_mean R-squared: 0.432
Model: OLS Adj. R-squared: 0.432
Method: Least Squares F-statistic: 1.096e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 06:00:32 Log-Likelihood: -3.0893e+07
No. Observations: 8160800 AIC: 6.179e+07
Df Residuals: 8160796 BIC: 6.179e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 33.8827 0.020 1708.976 0.000 33.844 33.922
mu -0.2455 0.000 -1809.436 0.000 -0.246 -0.245
sigma -0.0784 0.000 -610.539 0.000 -0.079 -0.078
excess_states -0.9753 0.001 -1189.031 0.000 -0.977 -0.974
Omnibus: 3074832.478 Durbin-Watson: 0.352
Prob(Omnibus): 0.000 Jarque-Bera (JB): 14189321.999
Skew: 1.805 Prob(JB): 0.00
Kurtosis: 8.357 Cond. No. 237.

Table B.43: Min after Max Mean
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Dep. Variable: min_post_max_median R-squared: 0.342
Model: OLS Adj. R-squared: 0.342
Method: Least Squares F-statistic: 6.281e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 06:00:33 Log-Likelihood: -3.2356e+07
No. Observations: 8160800 AIC: 6.471e+07
Df Residuals: 8160796 BIC: 6.471e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 31.1906 0.024 1301.461 0.000 31.144 31.238
mu -0.1917 0.000 -1190.411 0.000 -0.192 -0.191
sigma -0.0644 0.000 -443.935 0.000 -0.065 -0.064
excess_states -1.2564 0.001 -1275.759 0.000 -1.258 -1.255
Omnibus: 4217736.035 Durbin-Watson: 0.465
Prob(Omnibus): 0.000 Jarque-Bera (JB): 31157913.730
Skew: 2.414 Prob(JB): 0.00
Kurtosis: 11.266 Cond. No. 237.

Table B.44: Min after Max Median

Dep. Variable: min_post_max_std R-squared: 0.259
Model: OLS Adj. R-squared: 0.259
Method: Least Squares F-statistic: 9.364e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 06:00:34 Log-Likelihood: -2.8838e+07
No. Observations: 8160800 AIC: 5.768e+07
Df Residuals: 8160796 BIC: 5.768e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 16.1835 0.012 1371.374 0.000 16.160 16.207
mu -0.1641 9.92e-05 -1654.089 0.000 -0.164 -0.164
sigma -0.0358 9.42e-05 -380.607 0.000 -0.036 -0.036
excess_states 0.0199 0.000 40.402 0.000 0.019 0.021
Omnibus: 2462173.981 Durbin-Watson: 0.698
Prob(Omnibus): 0.000 Jarque-Bera (JB): 6941368.668
Skew: 1.610 Prob(JB): 0.00
Kurtosis: 6.169 Cond. No. 237.

Table B.45: Min after Max Standard Deviation
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B.1.11 Variance in Counts
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Dep. Variable: var_count_gap R-squared: 0.165
Model: OLS Adj. R-squared: 0.165
Method: Least Squares F-statistic: 4.638e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:59:21 Log-Likelihood: -5.8717e+07
No. Observations: 8160800 AIC: 1.174e+08
Df Residuals: 8160796 BIC: 1.174e+08
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 439.3987 0.452 971.164 0.000 438.512 440.286
mu -4.3727 0.004 -1175.160 0.000 -4.380 -4.365
sigma -2.1788 0.004 -563.467 0.000 -2.186 -2.171
excess_states 3.1709 0.020 160.128 0.000 3.132 3.210
Omnibus: 5038252.415 Durbin-Watson: 0.856
Prob(Omnibus): 0.000 Jarque-Bera (JB): 47858967.966
Skew: 2.938 Prob(JB): 0.00
Kurtosis: 13.307 Cond. No. 237.

Table B.46: Variance in Counts Range

Dep. Variable: var_count_mad R-squared: 0.151
Model: OLS Adj. R-squared: 0.151
Method: Least Squares F-statistic: 4.327e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:59:18 Log-Likelihood: -4.9113e+07
No. Observations: 8160800 AIC: 9.823e+07
Df Residuals: 8160796 BIC: 9.823e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 139.4918 0.157 889.147 0.000 139.184 139.799
mu -1.2778 0.001 -1121.610 0.000 -1.280 -1.276
sigma -0.6559 0.001 -539.639 0.000 -0.658 -0.653
excess_states -0.2293 0.006 -39.764 0.000 -0.241 -0.218
Omnibus: 6140055.056 Durbin-Watson: 0.853
Prob(Omnibus): 0.000 Jarque-Bera (JB): 114729588.508
Skew: 3.553 Prob(JB): 0.00
Kurtosis: 19.938 Cond. No. 237.

Table B.47: Variance in Counts Mean Absolute Deviation
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Dep. Variable: var_count_max R-squared: 0.187
Model: OLS Adj. R-squared: 0.187
Method: Least Squares F-statistic: 5.588e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:59:19 Log-Likelihood: -5.8674e+07
No. Observations: 8160800 AIC: 1.173e+08
Df Residuals: 8160796 BIC: 1.173e+08
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 493.5251 0.445 1108.024 0.000 492.652 494.398
mu -4.7189 0.004 -1283.593 0.000 -4.726 -4.712
sigma -2.3584 0.004 -609.915 0.000 -2.366 -2.351
excess_states 1.1493 0.020 58.312 0.000 1.111 1.188
Omnibus: 4927957.896 Durbin-Watson: 0.844
Prob(Omnibus): 0.000 Jarque-Bera (JB): 44833727.079
Skew: 2.869 Prob(JB): 0.00
Kurtosis: 12.946 Cond. No. 237.

Table B.48: Variance in Counts Max

Dep. Variable: var_count_mean R-squared: 0.216
Model: OLS Adj. R-squared: 0.216
Method: Least Squares F-statistic: 6.336e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:59:14 Log-Likelihood: -4.9640e+07
No. Observations: 8160800 AIC: 9.928e+07
Df Residuals: 8160796 BIC: 9.928e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 202.6695 0.200 1015.254 0.000 202.278 203.061
mu -1.5385 0.001 -1323.153 0.000 -1.541 -1.536
sigma -0.7981 0.001 -586.395 0.000 -0.801 -0.795
excess_states -4.1815 0.008 -535.340 0.000 -4.197 -4.166
Omnibus: 8187080.499 Durbin-Watson: 0.738
Prob(Omnibus): 0.000 Jarque-Bera (JB): 585613279.121
Skew: 4.924 Prob(JB): 0.00
Kurtosis: 43.314 Cond. No. 237.

Table B.49: Variance in Counts Mean

270



Dep. Variable: var_count_median R-squared: 0.136
Model: OLS Adj. R-squared: 0.136
Method: Least Squares F-statistic: 2.104e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:59:16 Log-Likelihood: -5.0332e+07
No. Observations: 8160800 AIC: 1.007e+08
Df Residuals: 8160796 BIC: 1.007e+08
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 157.4870 0.238 661.011 0.000 157.020 157.954
mu -0.9675 0.001 -777.412 0.000 -0.970 -0.965
sigma -0.5254 0.001 -350.710 0.000 -0.528 -0.522
excess_states -5.8125 0.009 -617.744 0.000 -5.831 -5.794
Omnibus: 11440162.164 Durbin-Watson: 0.822
Prob(Omnibus): 0.000 Jarque-Bera (JB): 3247985551.636
Skew: 8.376 Prob(JB): 0.00
Kurtosis: 99.288 Cond. No. 237.

Table B.50: Variance in Counts Median

Dep. Variable: var_count_std R-squared: 0.156
Model: OLS Adj. R-squared: 0.156
Method: Least Squares F-statistic: 4.436e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 05:59:17 Log-Likelihood: -5.0438e+07
No. Observations: 8160800 AIC: 1.009e+08
Df Residuals: 8160796 BIC: 1.009e+08
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 162.4830 0.177 919.148 0.000 162.137 162.829
mu -1.5358 0.001 -1144.108 0.000 -1.538 -1.533
sigma -0.7831 0.001 -549.759 0.000 -0.786 -0.780
excess_states 0.2940 0.007 42.241 0.000 0.280 0.308
Omnibus: 5563347.461 Durbin-Watson: 0.849
Prob(Omnibus): 0.000 Jarque-Bera (JB): 72840227.319
Skew: 3.220 Prob(JB): 0.00
Kurtosis: 16.143 Cond. No. 237.

Table B.51: Variance in Counts Standard Deviation
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B.2 Capacity 3 Regressions

B.2.1 Average Counts
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Dep. Variable: avg_count_gap R-squared: 0.303
Model: OLS Adj. R-squared: 0.303
Method: Least Squares F-statistic: 5.055e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:45 Log-Likelihood: -1.7445e+07
No. Observations: 4080400 AIC: 3.489e+07
Df Residuals: 4080396 BIC: 3.489e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 35.4688 0.037 970.107 0.000 35.397 35.541
mu -0.3806 0.000 -1224.678 0.000 -0.381 -0.380
sigma -0.0943 0.000 -336.773 0.000 -0.095 -0.094
num_cascade 0.1678 0.002 109.901 0.000 0.165 0.171
Omnibus: 722582.883 Durbin-Watson: 0.590
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1261698.351
Skew: 1.151 Prob(JB): 0.00
Kurtosis: 4.455 Cond. No. 267.

Table B.52: Average Counts Range Capacity 3

Dep. Variable: avg_count_mad R-squared: 0.277
Model: OLS Adj. R-squared: 0.277
Method: Least Squares F-statistic: 4.292e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:42 Log-Likelihood: -1.3115e+07
No. Observations: 4080400 AIC: 2.623e+07
Df Residuals: 4080396 BIC: 2.623e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 12.9902 0.014 905.365 0.000 12.962 13.018
mu -0.1220 0.000 -1122.877 0.000 -0.122 -0.122
sigma -0.0362 9.72e-05 -372.226 0.000 -0.036 -0.036
num_cascade -0.0701 0.001 -136.727 0.000 -0.071 -0.069
Omnibus: 1165865.220 Durbin-Watson: 0.617
Prob(Omnibus): 0.000 Jarque-Bera (JB): 3333348.709
Skew: 1.512 Prob(JB): 0.00
Kurtosis: 6.234 Cond. No. 267.

Table B.53: Average Counts Mean Absolute Deviation Capacity 3
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Dep. Variable: avg_count_max R-squared: 0.418
Model: OLS Adj. R-squared: 0.418
Method: Least Squares F-statistic: 9.193e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:43 Log-Likelihood: -1.7392e+07
No. Observations: 4080400 AIC: 3.478e+07
Df Residuals: 4080396 BIC: 3.478e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 51.9389 0.034 1527.429 0.000 51.872 52.006
mu -0.4748 0.000 -1618.062 0.000 -0.475 -0.474
sigma -0.1368 0.000 -478.355 0.000 -0.137 -0.136
num_cascade -0.3575 0.002 -234.878 0.000 -0.360 -0.354

Omnibus: 392509.681 Durbin-Watson: 0.532
Prob(Omnibus): 0.000 Jarque-Bera (JB): 518726.846
Skew: 0.825 Prob(JB): 0.00
Kurtosis: 3.570 Cond. No. 267.

Table B.54: Average Counts Max Capacity 3

Dep. Variable: avg_count_mean R-squared: 0.442
Model: OLS Adj. R-squared: 0.442
Method: Least Squares F-statistic: 5.532e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:38 Log-Likelihood: -1.4672e+07
No. Observations: 4080400 AIC: 2.934e+07
Df Residuals: 4080396 BIC: 2.934e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 31.4504 0.027 1160.800 0.000 31.397 31.503
mu -0.2146 0.000 -1282.733 0.000 -0.215 -0.214
sigma -0.0710 0.000 -454.404 0.000 -0.071 -0.071
num_cascade -0.7632 0.001 -815.666 0.000 -0.765 -0.761
Omnibus: 1355354.608 Durbin-Watson: 0.275
Prob(Omnibus): 0.000 Jarque-Bera (JB): 5144653.244
Skew: 1.642 Prob(JB): 0.00
Kurtosis: 7.414 Cond. No. 267.

Table B.55: Average Counts Mean Capacity 3
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Dep. Variable: avg_count_median R-squared: 0.335
Model: OLS Adj. R-squared: 0.335
Method: Least Squares F-statistic: 2.948e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:40 Log-Likelihood: -1.5444e+07
No. Observations: 4080400 AIC: 3.089e+07
Df Residuals: 4080396 BIC: 3.089e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 29.7906 0.033 894.542 0.000 29.725 29.856
mu -0.1705 0.000 -849.094 0.000 -0.171 -0.170
sigma -0.0537 0.000 -307.533 0.000 -0.054 -0.053
num_cascade -0.9808 0.001 -843.290 0.000 -0.983 -0.979
Omnibus: 2072003.138 Durbin-Watson: 0.393
Prob(Omnibus): 0.000 Jarque-Bera (JB): 13991714.020
Skew: 2.400 Prob(JB): 0.00
Kurtosis: 10.698 Cond. No. 267.

Table B.56: Average Counts Median Capacity 3

Dep. Variable: avg_count_std R-squared: 0.287
Model: OLS Adj. R-squared: 0.287
Method: Least Squares F-statistic: 4.568e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:41 Log-Likelihood: -1.3618e+07
No. Observations: 4080400 AIC: 2.724e+07
Df Residuals: 4080396 BIC: 2.724e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 14.4049 0.015 933.616 0.000 14.375 14.435
mu -0.1425 0.000 -1162.948 0.000 -0.143 -0.142
sigma -0.0407 0.000 -370.421 0.000 -0.041 -0.041
num_cascade -0.0224 0.001 -38.304 0.000 -0.024 -0.021
Omnibus: 926891.395 Durbin-Watson: 0.601
Prob(Omnibus): 0.000 Jarque-Bera (JB): 2011073.392
Skew: 1.320 Prob(JB): 0.00
Kurtosis: 5.205 Cond. No. 267.

Table B.57: Average Counts Standard Deviation Capacity 3

275



B.2.2 Herfindahl Index
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Dep. Variable: counts_herfindahl_index R-squared: 0.093
Model: OLS Adj. R-squared: 0.093
Method: Least Squares F-statistic: 1.835e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:49:12 Log-Likelihood: 2.3168e+06
No. Observations: 4080400 AIC: -4.634e+06
Df Residuals: 4080396 BIC: -4.634e+06
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 0.3015 0.000 1342.002 0.000 0.301 0.302
mu -0.0006 2.18e-06 -274.211 0.000 -0.001 -0.001
sigma -0.0005 2.81e-06 -193.038 0.000 -0.001 -0.001
num_cascade -0.0066 1.22e-05 -544.736 0.000 -0.007 -0.007
Omnibus: 3312873.047 Durbin-Watson: 1.343
Prob(Omnibus): 0.000 Jarque-Bera (JB): 83610037.878
Skew: 3.854 Prob(JB): 0.00
Kurtosis: 23.794 Cond. No. 267.

Table B.58: Herfindahl Index Capacity 3

B.2.3 Kurtosis in Counts
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Dep. Variable: counts_kurtosis R-squared: 0.116
Model: OLS Adj. R-squared: 0.116
Method: Least Squares F-statistic: 1.510e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:49:11 Log-Likelihood: -1.0246e+07
No. Observations: 4080400 AIC: 2.049e+07
Df Residuals: 4080396 BIC: 2.049e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const -1.3523 0.004 -302.697 0.000 -1.361 -1.344
mu 0.0024 4.77e-05 50.281 0.000 0.002 0.002
sigma -0.0055 5.31e-05 -104.159 0.000 -0.006 -0.005
num_cascade 0.1901 0.000 669.438 0.000 0.190 0.191
Omnibus: 2145007.226 Durbin-Watson: 1.625
Prob(Omnibus): 0.000 Jarque-Bera (JB): 16751242.641
Skew: 2.444 Prob(JB): 0.00
Kurtosis: 11.640 Cond. No. 267.

Table B.59: Kurtosis in Counts Capacity 3

B.2.4 Number of Zero Counts
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Dep. Variable: counts_zeros R-squared: 0.384
Model: OLS Adj. R-squared: 0.384
Method: Least Squares F-statistic: 4.595e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:49:10 Log-Likelihood: -1.1039e+07
No. Observations: 4080400 AIC: 2.208e+07
Df Residuals: 4080396 BIC: 2.208e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 0.9184 0.005 201.964 0.000 0.910 0.927
mu 0.0533 6.38e-05 835.520 0.000 0.053 0.053
sigma -0.0763 7.33e-05 -1040.786 0.000 -0.076 -0.076
num_cascade 0.1597 0.000 458.887 0.000 0.159 0.160
Omnibus: 1089305.938 Durbin-Watson: 0.225
Prob(Omnibus): 0.000 Jarque-Bera (JB): 2701324.330
Skew: 1.478 Prob(JB): 0.00
Kurtosis: 5.674 Cond. No. 267.

Table B.60: Number of Zero Counts Capacity 3

B.2.5 Decay Time
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Dep. Variable: decay_time_gap R-squared: 0.261
Model: OLS Adj. R-squared: 0.261
Method: Least Squares F-statistic: 4.838e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:49:08 Log-Likelihood: -1.8180e+07
No. Observations: 4080400 AIC: 3.636e+07
Df Residuals: 4080396 BIC: 3.636e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 34.1305 0.037 913.904 0.000 34.057 34.204
mu -0.2870 0.000 -776.229 0.000 -0.288 -0.286
sigma 0.2827 0.000 753.744 0.000 0.282 0.283
num_cascade 0.7051 0.002 382.658 0.000 0.701 0.709
Omnibus: 214408.146 Durbin-Watson: 1.110
Prob(Omnibus): 0.000 Jarque-Bera (JB): 104811.825
Skew: 0.205 Prob(JB): 0.00
Kurtosis: 2.330 Cond. No. 267.

Table B.61: Decay Time Range Capacity 3

Dep. Variable: decay_time_mad R-squared: 0.234
Model: OLS Adj. R-squared: 0.234
Method: Least Squares F-statistic: 4.081e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:49:06 Log-Likelihood: -1.2857e+07
No. Observations: 4080400 AIC: 2.571e+07
Df Residuals: 4080396 BIC: 2.571e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 12.6516 0.011 1118.942 0.000 12.629 12.674
mu -0.0776 0.000 -762.171 0.000 -0.078 -0.077
sigma 0.0706 0.000 695.188 0.000 0.070 0.071
num_cascade -0.1091 0.001 -211.718 0.000 -0.110 -0.108
Omnibus: 149708.195 Durbin-Watson: 1.151
Prob(Omnibus): 0.000 Jarque-Bera (JB): 166676.557
Skew: 0.491 Prob(JB): 0.00
Kurtosis: 3.128 Cond. No. 267.

Table B.62: Decay Time Mean Absolute Deviation Capacity 3
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Dep. Variable: decay_time_max R-squared: 0.258
Model: OLS Adj. R-squared: 0.258
Method: Least Squares F-statistic: 4.653e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:49:07 Log-Likelihood: -1.8216e+07
No. Observations: 4080400 AIC: 3.643e+07
Df Residuals: 4080396 BIC: 3.643e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 37.9136 0.038 988.846 0.000 37.838 37.989
mu -0.3000 0.000 -803.101 0.000 -0.301 -0.299
sigma 0.2788 0.000 734.000 0.000 0.278 0.280
num_cascade 0.5940 0.002 318.493 0.000 0.590 0.598
Omnibus: 231072.892 Durbin-Watson: 1.084
Prob(Omnibus): 0.000 Jarque-Bera (JB): 106294.872
Skew: 0.192 Prob(JB): 0.00
Kurtosis: 2.309 Cond. No. 267.

Table B.63: Decay Time Max Capacity 3

Dep. Variable: decay_time_mean R-squared: 0.264
Model: OLS Adj. R-squared: 0.264
Method: Least Squares F-statistic: 5.094e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:49:02 Log-Likelihood: -1.4131e+07
No. Observations: 4080400 AIC: 2.826e+07
Df Residuals: 4080396 BIC: 2.826e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 20.5466 0.017 1177.314 0.000 20.512 20.581
mu -0.1266 0.000 -887.954 0.000 -0.127 -0.126
sigma 0.0830 0.000 586.934 0.000 0.083 0.083
num_cascade -0.2466 0.001 -345.306 0.000 -0.248 -0.245
Omnibus: 437381.827 Durbin-Watson: 0.986
Prob(Omnibus): 0.000 Jarque-Bera (JB): 728437.999
Skew: 0.760 Prob(JB): 0.00
Kurtosis: 4.405 Cond. No. 267.

Table B.64: Decay Time Mean Capacity 3
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Dep. Variable: decay_time_median R-squared: 0.185
Model: OLS Adj. R-squared: 0.185
Method: Least Squares F-statistic: 3.334e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:49:03 Log-Likelihood: -1.4357e+07
No. Observations: 4080400 AIC: 2.871e+07
Df Residuals: 4080396 BIC: 2.871e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 17.6320 0.020 900.404 0.000 17.594 17.670
mu -0.1070 0.000 -710.385 0.000 -0.107 -0.107
sigma 0.0551 0.000 387.913 0.000 0.055 0.055
num_cascade -0.2985 0.001 -380.932 0.000 -0.300 -0.297
Omnibus: 1370658.511 Durbin-Watson: 1.318
Prob(Omnibus): 0.000 Jarque-Bera (JB): 6355956.000
Skew: 1.582 Prob(JB): 0.00
Kurtosis: 8.232 Cond. No. 267.

Table B.65: Decay Time Median Capacity 3

Dep. Variable: decay_time_std R-squared: 0.234
Model: OLS Adj. R-squared: 0.234
Method: Least Squares F-statistic: 3.925e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:49:04 Log-Likelihood: -1.3535e+07
No. Observations: 4080400 AIC: 2.707e+07
Df Residuals: 4080396 BIC: 2.707e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 14.2624 0.013 1103.530 0.000 14.237 14.288
mu -0.0921 0.000 -771.154 0.000 -0.092 -0.092
sigma 0.0863 0.000 719.056 0.000 0.086 0.087
num_cascade -0.0471 0.001 -77.927 0.000 -0.048 -0.046

Omnibus: 101153.845 Durbin-Watson: 1.131
Prob(Omnibus): 0.000 Jarque-Bera (JB): 95621.576
Skew: 0.334 Prob(JB): 0.00
Kurtosis: 2.658 Cond. No. 267.

Table B.66: Decay Time Standard Deviation Capacity 3
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B.2.6 Final Counts
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Dep. Variable: final_counts_sums_gap R-squared: 0.303
Model: OLS Adj. R-squared: 0.303
Method: Least Squares F-statistic: 5.055e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:21 Log-Likelihood: -3.6236e+07
No. Observations: 4080400 AIC: 7.247e+07
Df Residuals: 4080396 BIC: 7.247e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 3546.8850 3.656 970.107 0.000 3539.719 3554.051
mu -38.0608 0.031 -1224.678 0.000 -38.122 -38.000
sigma -9.4334 0.028 -336.773 0.000 -9.488 -9.378
num_cascade 16.7753 0.153 109.901 0.000 16.476 17.075

Omnibus: 722582.883 Durbin-Watson: 0.590
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1261698.351
Skew: 1.151 Prob(JB): 0.00
Kurtosis: 4.455 Cond. No. 267.

Table B.67: Final Counts Range Capacity 3

Dep. Variable: final_counts_sums_mad R-squared: 0.277
Model: OLS Adj. R-squared: 0.277
Method: Least Squares F-statistic: 4.292e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:18 Log-Likelihood: -3.1906e+07
No. Observations: 4080400 AIC: 6.381e+07
Df Residuals: 4080396 BIC: 6.381e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 1299.0193 1.435 905.365 0.000 1296.207 1301.832
mu -12.2017 0.011 -1122.877 0.000 -12.223 -12.180
sigma -3.6174 0.010 -372.226 0.000 -3.636 -3.598
num_cascade -7.0134 0.051 -136.727 0.000 -7.114 -6.913

Omnibus: 1165865.220 Durbin-Watson: 0.617
Prob(Omnibus): 0.000 Jarque-Bera (JB): 3333348.709
Skew: 1.512 Prob(JB): 0.00
Kurtosis: 6.234 Cond. No. 267.

Table B.68: Final Counts Mean Absolute Deviation Capacity 3
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Dep. Variable: final_counts_sums_max R-squared: 0.418
Model: OLS Adj. R-squared: 0.418
Method: Least Squares F-statistic: 9.193e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:20 Log-Likelihood: -3.6183e+07
No. Observations: 4080400 AIC: 7.237e+07
Df Residuals: 4080396 BIC: 7.237e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 5193.8928 3.400 1527.429 0.000 5187.228 5200.558
mu -47.4794 0.029 -1618.062 0.000 -47.537 -47.422
sigma -13.6790 0.029 -478.355 0.000 -13.735 -13.623
num_cascade -35.7455 0.152 -234.878 0.000 -36.044 -35.447

Omnibus: 392509.681 Durbin-Watson: 0.532
Prob(Omnibus): 0.000 Jarque-Bera (JB): 518726.846
Skew: 0.825 Prob(JB): 0.00
Kurtosis: 3.570 Cond. No. 267.

Table B.69: Final Counts Max Capacity 3

Dep. Variable: final_counts_sums_mean R-squared: 0.442
Model: OLS Adj. R-squared: 0.442
Method: Least Squares F-statistic: 5.532e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:15 Log-Likelihood: -3.3463e+07
No. Observations: 4080400 AIC: 6.693e+07
Df Residuals: 4080396 BIC: 6.693e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 3145.0382 2.709 1160.800 0.000 3139.728 3150.349
mu -21.4596 0.017 -1282.733 0.000 -21.492 -21.427
sigma -7.1042 0.016 -454.404 0.000 -7.135 -7.074
num_cascade -76.3159 0.094 -815.666 0.000 -76.499 -76.133

Omnibus: 1355354.608 Durbin-Watson: 0.275
Prob(Omnibus): 0.000 Jarque-Bera (JB): 5144653.244
Skew: 1.642 Prob(JB): 0.00
Kurtosis: 7.414 Cond. No. 267.

Table B.70: Final Counts Mean Capacity 3
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Dep. Variable: final_counts_sums_median R-squared: 0.335
Model: OLS Adj. R-squared: 0.335
Method: Least Squares F-statistic: 2.948e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:16 Log-Likelihood: -3.4235e+07
No. Observations: 4080400 AIC: 6.847e+07
Df Residuals: 4080396 BIC: 6.847e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 2979.0619 3.330 894.542 0.000 2972.535 2985.589
mu -17.0455 0.020 -849.094 0.000 -17.085 -17.006
sigma -5.3661 0.017 -307.533 0.000 -5.400 -5.332
num_cascade -98.0805 0.116 -843.290 0.000 -98.308 -97.853

Omnibus: 2072003.138 Durbin-Watson: 0.393
Prob(Omnibus): 0.000 Jarque-Bera (JB): 13991714.020
Skew: 2.400 Prob(JB): 0.00
Kurtosis: 10.698 Cond. No. 267.

Table B.71: Final Counts Median Capacity 3

Dep. Variable: final_counts_sums_std R-squared: 0.287
Model: OLS Adj. R-squared: 0.287
Method: Least Squares F-statistic: 4.568e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:17 Log-Likelihood: -3.2409e+07
No. Observations: 4080400 AIC: 6.482e+07
Df Residuals: 4080396 BIC: 6.482e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 1440.4935 1.543 933.616 0.000 1437.469 1443.518
mu -14.2517 0.012 -1162.948 0.000 -14.276 -14.228
sigma -4.0728 0.011 -370.421 0.000 -4.094 -4.051
num_cascade -2.2412 0.059 -38.304 0.000 -2.356 -2.127

Omnibus: 926891.395 Durbin-Watson: 0.601
Prob(Omnibus): 0.000 Jarque-Bera (JB): 2011073.392
Skew: 1.320 Prob(JB): 0.00
Kurtosis: 5.205 Cond. No. 267.

Table B.72: Final Counts Standard Deviation Capacity 3
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B.2.7 Max Counts
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Dep. Variable: max_count_gap R-squared: 0.345
Model: OLS Adj. R-squared: 0.345
Method: Least Squares F-statistic: 6.237e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:29 Log-Likelihood: -1.8492e+07
No. Observations: 4080400 AIC: 3.698e+07
Df Residuals: 4080396 BIC: 3.698e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 48.6908 0.046 1054.654 0.000 48.600 48.781
mu -0.5331 0.000 -1360.558 0.000 -0.534 -0.532
sigma -0.1516 0.000 -401.567 0.000 -0.152 -0.151
num_cascade 0.4059 0.002 205.994 0.000 0.402 0.410

Omnibus: 433749.392 Durbin-Watson: 0.591
Prob(Omnibus): 0.000 Jarque-Bera (JB): 585252.222
Skew: 0.895 Prob(JB): 0.00
Kurtosis: 3.491 Cond. No. 267.

Table B.73: Max Counts Range Capacity 3

Dep. Variable: max_count_mad R-squared: 0.300
Model: OLS Adj. R-squared: 0.300
Method: Least Squares F-statistic: 5.047e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:26 Log-Likelihood: -1.4289e+07
No. Observations: 4080400 AIC: 2.858e+07
Df Residuals: 4080396 BIC: 2.858e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 17.8984 0.019 954.842 0.000 17.862 17.935
mu -0.1716 0.000 -1214.453 0.000 -0.172 -0.171
sigma -0.0548 0.000 -412.499 0.000 -0.055 -0.054
num_cascade -0.0446 0.001 -65.352 0.000 -0.046 -0.043
Omnibus: 952679.673 Durbin-Watson: 0.617
Prob(Omnibus): 0.000 Jarque-Bera (JB): 2103282.665
Skew: 1.347 Prob(JB): 0.00
Kurtosis: 5.261 Cond. No. 267.

Table B.74: Max Counts Mean Absolute Deviation Capacity 3
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Dep. Variable: max_count_max R-squared: 0.453
Model: OLS Adj. R-squared: 0.453
Method: Least Squares F-statistic: 1.125e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:28 Log-Likelihood: -1.8529e+07
No. Observations: 4080400 AIC: 3.706e+07
Df Residuals: 4080396 BIC: 3.706e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 73.0914 0.044 1655.633 0.000 73.005 73.178
mu -0.6793 0.000 -1801.261 0.000 -0.680 -0.679
sigma -0.1908 0.000 -478.655 0.000 -0.192 -0.190
num_cascade -0.3299 0.002 -164.826 0.000 -0.334 -0.326

Omnibus: 168079.315 Durbin-Watson: 0.512
Prob(Omnibus): 0.000 Jarque-Bera (JB): 187507.874
Skew: 0.518 Prob(JB): 0.00
Kurtosis: 2.833 Cond. No. 267.

Table B.75: Max Counts Max Capacity 3

Dep. Variable: max_count_mean R-squared: 0.474
Model: OLS Adj. R-squared: 0.474
Method: Least Squares F-statistic: 7.702e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:22 Log-Likelihood: -1.5852e+07
No. Observations: 4080400 AIC: 3.170e+07
Df Residuals: 4080396 BIC: 3.170e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 45.3930 0.034 1323.018 0.000 45.326 45.460
mu -0.3256 0.000 -1511.609 0.000 -0.326 -0.325
sigma -0.0836 0.000 -388.670 0.000 -0.084 -0.083
num_cascade -0.9631 0.001 -793.858 0.000 -0.966 -0.961
Omnibus: 874882.403 Durbin-Watson: 0.285
Prob(Omnibus): 0.000 Jarque-Bera (JB): 2234756.346
Skew: 1.174 Prob(JB): 0.00
Kurtosis: 5.762 Cond. No. 267.

Table B.76: Max Counts Mean Capacity 3
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Dep. Variable: max_count_median R-squared: 0.361
Model: OLS Adj. R-squared: 0.361
Method: Least Squares F-statistic: 3.915e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:24 Log-Likelihood: -1.6652e+07
No. Observations: 4080400 AIC: 3.330e+07
Df Residuals: 4080396 BIC: 3.330e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 43.6662 0.043 1008.505 0.000 43.581 43.751
mu -0.2687 0.000 -1033.531 0.000 -0.269 -0.268
sigma -0.0588 0.000 -244.622 0.000 -0.059 -0.058
num_cascade -1.2837 0.002 -830.734 0.000 -1.287 -1.281
Omnibus: 1869888.366 Durbin-Watson: 0.438
Prob(Omnibus): 0.000 Jarque-Bera (JB): 10723795.729
Skew: 2.176 Prob(JB): 0.00
Kurtosis: 9.643 Cond. No. 267.

Table B.77: Max Counts Median Capacity 3

Dep. Variable: max_count_std R-squared: 0.315
Model: OLS Adj. R-squared: 0.315
Method: Least Squares F-statistic: 5.437e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:25 Log-Likelihood: -1.4776e+07
No. Observations: 4080400 AIC: 2.955e+07
Df Residuals: 4080396 BIC: 2.955e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 19.9176 0.020 993.640 0.000 19.878 19.957
mu -0.2005 0.000 -1267.478 0.000 -0.201 -0.200
sigma -0.0628 0.000 -418.547 0.000 -0.063 -0.062
num_cascade 0.0271 0.001 34.847 0.000 0.026 0.029
Omnibus: 690305.065 Durbin-Watson: 0.604
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1155243.195
Skew: 1.132 Prob(JB): 0.00
Kurtosis: 4.290 Cond. No. 267.

Table B.78: Max Counts Standard Deviation Capacity 3
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B.2.8 Time of Max
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Dep. Variable: max_time_gap R-squared: 0.342
Model: OLS Adj. R-squared: 0.342
Method: Least Squares F-statistic: 6.318e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:37 Log-Likelihood: -1.8556e+07
No. Observations: 4080400 AIC: 3.711e+07
Df Residuals: 4080396 BIC: 3.711e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 45.1581 0.037 1218.642 0.000 45.085 45.231
mu -0.2809 0.000 -692.041 0.000 -0.282 -0.280
sigma 0.3749 0.000 824.736 0.000 0.374 0.376
num_cascade 1.6463 0.002 806.129 0.000 1.642 1.650
Omnibus: 291142.566 Durbin-Watson: 0.746
Prob(Omnibus): 0.000 Jarque-Bera (JB): 357152.115
Skew: -0.711 Prob(JB): 0.00
Kurtosis: 3.285 Cond. No. 267.

Table B.79: Time of Max Range Capacity 3

Dep. Variable: max_time_mad R-squared: 0.263
Model: OLS Adj. R-squared: 0.263
Method: Least Squares F-statistic: 3.555e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:34 Log-Likelihood: -1.3903e+07
No. Observations: 4080400 AIC: 2.781e+07
Df Residuals: 4080396 BIC: 2.781e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 16.2491 0.013 1267.422 0.000 16.224 16.274
mu -0.0900 0.000 -702.630 0.000 -0.090 -0.090
sigma 0.1110 0.000 791.022 0.000 0.111 0.111
num_cascade 0.2320 0.001 350.135 0.000 0.231 0.233

Omnibus: 15914.735 Durbin-Watson: 0.933
Prob(Omnibus): 0.000 Jarque-Bera (JB): 15968.661
Skew: -0.148 Prob(JB): 0.00
Kurtosis: 2.917 Cond. No. 267.

Table B.80: Time of Max Mean Absolute Deviation Capacity 3
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Dep. Variable: max_time_max R-squared: 0.359
Model: OLS Adj. R-squared: 0.359
Method: Least Squares F-statistic: 4.190e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:36 Log-Likelihood: -1.8638e+07
No. Observations: 4080400 AIC: 3.728e+07
Df Residuals: 4080396 BIC: 3.728e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 67.4736 0.039 1749.289 0.000 67.398 67.549
mu -0.3116 0.000 -750.807 0.000 -0.312 -0.311
sigma 0.5044 0.000 1065.852 0.000 0.504 0.505
num_cascade 0.4379 0.002 210.468 0.000 0.434 0.442
Omnibus: 488326.075 Durbin-Watson: 0.515
Prob(Omnibus): 0.000 Jarque-Bera (JB): 682007.092
Skew: -0.976 Prob(JB): 0.00
Kurtosis: 3.449 Cond. No. 267.

Table B.81: Time of Max Max Capacity 3

Dep. Variable: max_time_mean R-squared: 0.397
Model: OLS Adj. R-squared: 0.397
Method: Least Squares F-statistic: 7.510e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:30 Log-Likelihood: -1.7130e+07
No. Observations: 4080400 AIC: 3.426e+07
Df Residuals: 4080396 BIC: 3.426e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 41.4900 0.031 1348.773 0.000 41.430 41.550
mu -0.1492 0.000 -570.396 0.000 -0.150 -0.149
sigma 0.4008 0.000 1313.876 0.000 0.400 0.401
num_cascade -0.6914 0.001 -467.160 0.000 -0.694 -0.689

Omnibus: 26783.373 Durbin-Watson: 0.656
Prob(Omnibus): 0.000 Jarque-Bera (JB): 27336.360
Skew: 0.198 Prob(JB): 0.00
Kurtosis: 3.068 Cond. No. 267.

Table B.82: Time of Max Mean Capacity 3
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Dep. Variable: max_time_median R-squared: 0.354
Model: OLS Adj. R-squared: 0.354
Method: Least Squares F-statistic: 7.261e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:32 Log-Likelihood: -1.7936e+07
No. Observations: 4080400 AIC: 3.587e+07
Df Residuals: 4080396 BIC: 3.587e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 39.3779 0.039 1020.523 0.000 39.302 39.454
mu -0.1276 0.000 -404.081 0.000 -0.128 -0.127
sigma 0.4495 0.000 1271.386 0.000 0.449 0.450
num_cascade -0.9015 0.002 -499.879 0.000 -0.905 -0.898

Omnibus: 79827.052 Durbin-Watson: 0.926
Prob(Omnibus): 0.000 Jarque-Bera (JB): 82664.959
Skew: 0.337 Prob(JB): 0.00
Kurtosis: 2.819 Cond. No. 267.

Table B.83: Time of Max Median Capacity 3

Dep. Variable: max_time_std R-squared: 0.269
Model: OLS Adj. R-squared: 0.269
Method: Least Squares F-statistic: 3.509e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:33 Log-Likelihood: -1.4286e+07
No. Observations: 4080400 AIC: 2.857e+07
Df Residuals: 4080396 BIC: 2.857e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 18.7831 0.014 1347.660 0.000 18.756 18.810
mu -0.1006 0.000 -710.182 0.000 -0.101 -0.100
sigma 0.1213 0.000 770.560 0.000 0.121 0.122
num_cascade 0.2881 0.001 395.942 0.000 0.287 0.290

Omnibus: 92302.166 Durbin-Watson: 0.863
Prob(Omnibus): 0.000 Jarque-Bera (JB): 98738.031
Skew: -0.381 Prob(JB): 0.00
Kurtosis: 3.002 Cond. No. 267.

Table B.84: Time of Max Standard Deviation Capacity 3
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B.2.9 Min after Max
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Dep. Variable: min_post_max_gap R-squared: 0.296
Model: OLS Adj. R-squared: 0.296
Method: Least Squares F-statistic: 5.700e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:49:00 Log-Likelihood: -1.8079e+07
No. Observations: 4080400 AIC: 3.616e+07
Df Residuals: 4080396 BIC: 3.616e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 43.2681 0.042 1019.606 0.000 43.185 43.351
mu -0.4439 0.000 -1298.859 0.000 -0.445 -0.443
sigma -0.0853 0.000 -257.011 0.000 -0.086 -0.085
num_cascade 0.0648 0.002 36.005 0.000 0.061 0.068
Omnibus: 917342.224 Durbin-Watson: 0.697
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1882238.866
Skew: 1.340 Prob(JB): 0.00
Kurtosis: 4.972 Cond. No. 267.

Table B.85: Min after Max Range Capacity 3

Dep. Variable: min_post_max_mad R-squared: 0.272
Model: OLS Adj. R-squared: 0.272
Method: Least Squares F-statistic: 4.762e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:58 Log-Likelihood: -1.3935e+07
No. Observations: 4080400 AIC: 2.787e+07
Df Residuals: 4080396 BIC: 2.787e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 16.5112 0.018 927.906 0.000 16.476 16.546
mu -0.1476 0.000 -1180.784 0.000 -0.148 -0.147
sigma -0.0349 0.000 -293.421 0.000 -0.035 -0.035
num_cascade -0.1459 0.001 -225.965 0.000 -0.147 -0.145
Omnibus: 1395185.642 Durbin-Watson: 0.711
Prob(Omnibus): 0.000 Jarque-Bera (JB): 5029951.006
Skew: 1.718 Prob(JB): 0.00
Kurtosis: 7.216 Cond. No. 267.

Table B.86: Min after Max Mean Absolute Deviation Capacity 3
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Dep. Variable: min_post_max_max R-squared: 0.377
Model: OLS Adj. R-squared: 0.377
Method: Least Squares F-statistic: 8.721e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:59 Log-Likelihood: -1.7953e+07
No. Observations: 4080400 AIC: 3.591e+07
Df Residuals: 4080396 BIC: 3.591e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 55.0374 0.038 1451.013 0.000 54.963 55.112
mu -0.5074 0.000 -1577.507 0.000 -0.508 -0.507
sigma -0.1233 0.000 -375.061 0.000 -0.124 -0.123
num_cascade -0.3271 0.002 -189.083 0.000 -0.330 -0.324
Omnibus: 740031.785 Durbin-Watson: 0.676
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1316676.442
Skew: 1.165 Prob(JB): 0.00
Kurtosis: 4.521 Cond. No. 267.

Table B.87: Min after Max Max Capacity 3

Dep. Variable: min_post_max_mean R-squared: 0.443
Model: OLS Adj. R-squared: 0.443
Method: Least Squares F-statistic: 5.972e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:54 Log-Likelihood: -1.4571e+07
No. Observations: 4080400 AIC: 2.914e+07
Df Residuals: 4080396 BIC: 2.914e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 30.8609 0.025 1227.564 0.000 30.812 30.910
mu -0.2047 0.000 -1334.988 0.000 -0.205 -0.204
sigma -0.0657 0.000 -446.045 0.000 -0.066 -0.065
num_cascade -0.7888 0.001 -863.913 0.000 -0.791 -0.787
Omnibus: 1283793.239 Durbin-Watson: 0.389
Prob(Omnibus): 0.000 Jarque-Bera (JB): 4388106.506
Skew: 1.591 Prob(JB): 0.00
Kurtosis: 6.961 Cond. No. 267.

Table B.88: Min after Max Mean Capacity 3
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Dep. Variable: min_post_max_median R-squared: 0.303
Model: OLS Adj. R-squared: 0.303
Method: Least Squares F-statistic: 2.634e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:55 Log-Likelihood: -1.5852e+07
No. Observations: 4080400 AIC: 3.170e+07
Df Residuals: 4080396 BIC: 3.170e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 29.8461 0.035 843.549 0.000 29.777 29.915
mu -0.1552 0.000 -755.945 0.000 -0.156 -0.155
sigma -0.0501 0.000 -274.095 0.000 -0.050 -0.050
num_cascade -1.0985 0.001 -843.329 0.000 -1.101 -1.096
Omnibus: 2649468.629 Durbin-Watson: 0.542
Prob(Omnibus): 0.000 Jarque-Bera (JB): 34307113.018
Skew: 3.006 Prob(JB): 0.00
Kurtosis: 15.870 Cond. No. 267.

Table B.89: Min after Max Median Capacity 3

Dep. Variable: min_post_max_std R-squared: 0.279
Model: OLS Adj. R-squared: 0.279
Method: Least Squares F-statistic: 5.051e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:56 Log-Likelihood: -1.4441e+07
No. Observations: 4080400 AIC: 2.888e+07
Df Residuals: 4080396 BIC: 2.888e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 18.2046 0.019 961.306 0.000 18.167 18.242
mu -0.1725 0.000 -1222.273 0.000 -0.173 -0.172
sigma -0.0392 0.000 -291.015 0.000 -0.040 -0.039
num_cascade -0.0836 0.001 -114.776 0.000 -0.085 -0.082
Omnibus: 1123888.943 Durbin-Watson: 0.698
Prob(Omnibus): 0.000 Jarque-Bera (JB): 2915120.190
Skew: 1.503 Prob(JB): 0.00
Kurtosis: 5.849 Cond. No. 267.

Table B.90: Min after Max Standard Deviation Capacity 3
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B.2.10 Variance in Counts
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Dep. Variable: var_count_gap R-squared: 0.171
Model: OLS Adj. R-squared: 0.171
Method: Least Squares F-statistic: 2.402e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:52 Log-Likelihood: -2.9422e+07
No. Observations: 4080400 AIC: 5.884e+07
Df Residuals: 4080396 BIC: 5.884e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 453.7000 0.690 657.613 0.000 452.348 455.052
mu -4.5650 0.005 -846.843 0.000 -4.576 -4.554
sigma -2.2448 0.005 -408.882 0.000 -2.256 -2.234
num_cascade 2.5361 0.029 88.405 0.000 2.480 2.592
Omnibus: 2394877.088 Durbin-Watson: 0.850
Prob(Omnibus): 0.000 Jarque-Bera (JB): 20119897.467
Skew: 2.796 Prob(JB): 0.00
Kurtosis: 12.331 Cond. No. 267.

Table B.91: Variance in Counts Range Capacity 3

Dep. Variable: var_count_mad R-squared: 0.158
Model: OLS Adj. R-squared: 0.158
Method: Least Squares F-statistic: 2.291e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:50 Log-Likelihood: -2.4540e+07
No. Observations: 4080400 AIC: 4.908e+07
Df Residuals: 4080396 BIC: 4.908e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 150.2494 0.253 593.348 0.000 149.753 150.746
mu -1.3017 0.002 -810.861 0.000 -1.305 -1.299
sigma -0.6607 0.002 -387.389 0.000 -0.664 -0.657
num_cascade -0.8756 0.009 -100.391 0.000 -0.893 -0.858
Omnibus: 3035126.103 Durbin-Watson: 0.851
Prob(Omnibus): 0.000 Jarque-Bera (JB): 56356062.900
Skew: 3.495 Prob(JB): 0.00
Kurtosis: 19.811 Cond. No. 267.

Table B.92: Variance in Counts Mean Absolute Deviation Capacity 3
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Dep. Variable: var_count_max R-squared: 0.185
Model: OLS Adj. R-squared: 0.185
Method: Least Squares F-statistic: 2.699e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:51 Log-Likelihood: -2.9392e+07
No. Observations: 4080400 AIC: 5.878e+07
Df Residuals: 4080396 BIC: 5.878e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 487.4694 0.674 722.758 0.000 486.148 488.791
mu -4.7619 0.005 -895.288 0.000 -4.772 -4.751
sigma -2.3563 0.005 -431.053 0.000 -2.367 -2.346
num_cascade 1.4979 0.028 52.795 0.000 1.442 1.554
Omnibus: 2394684.646 Durbin-Watson: 0.850
Prob(Omnibus): 0.000 Jarque-Bera (JB): 20131554.986
Skew: 2.796 Prob(JB): 0.00
Kurtosis: 12.335 Cond. No. 267.

Table B.93: Variance in Counts Max Capacity 3

Dep. Variable: var_count_mean R-squared: 0.215
Model: OLS Adj. R-squared: 0.215
Method: Least Squares F-statistic: 3.189e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:46 Log-Likelihood: -2.4236e+07
No. Observations: 4080400 AIC: 4.847e+07
Df Residuals: 4080396 BIC: 4.847e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 186.8592 0.271 688.955 0.000 186.328 187.391
mu -1.3396 0.001 -934.930 0.000 -1.342 -1.337
sigma -0.6874 0.002 -420.500 0.000 -0.691 -0.684
num_cascade -3.4859 0.009 -367.829 0.000 -3.505 -3.467
Omnibus: 3913067.874 Durbin-Watson: 0.776
Prob(Omnibus): 0.000 Jarque-Bera (JB): 217404570.685
Skew: 4.662 Prob(JB): 0.00
Kurtosis: 37.522 Cond. No. 267.

Table B.94: Variance in Counts Mean Capacity 3
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Dep. Variable: var_count_median R-squared: 0.114
Model: OLS Adj. R-squared: 0.114
Method: Least Squares F-statistic: 7.996e+04
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:47 Log-Likelihood: -2.4923e+07
No. Observations: 4080400 AIC: 4.985e+07
Df Residuals: 4080396 BIC: 4.985e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 151.2859 0.361 418.941 0.000 150.578 151.994
mu -0.7993 0.002 -479.425 0.000 -0.803 -0.796
sigma -0.4313 0.002 -220.622 0.000 -0.435 -0.427
num_cascade -5.1348 0.013 -405.848 0.000 -5.160 -5.110
Omnibus: 5883263.806 Durbin-Watson: 0.876
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1857171242.211
Skew: 8.817 Prob(JB): 0.00
Kurtosis: 106.017 Cond. No. 267.

Table B.95: Variance in Counts Median Capacity 3

Dep. Variable: var_count_std R-squared: 0.163
Model: OLS Adj. R-squared: 0.163
Method: Least Squares F-statistic: 2.327e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:48:49 Log-Likelihood: -2.5241e+07
No. Observations: 4080400 AIC: 5.048e+07
Df Residuals: 4080396 BIC: 5.048e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 172.5303 0.279 618.826 0.000 171.984 173.077
mu -1.5891 0.002 -828.774 0.000 -1.593 -1.585
sigma -0.7991 0.002 -398.130 0.000 -0.803 -0.795
num_cascade -0.2163 0.010 -21.079 0.000 -0.236 -0.196
Omnibus: 2677892.151 Durbin-Watson: 0.844
Prob(Omnibus): 0.000 Jarque-Bera (JB): 32069157.179
Skew: 3.089 Prob(JB): 0.00
Kurtosis: 15.267 Cond. No. 267.

Table B.96: Variance in Counts Standard Deviation Capacity 3
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B.3 Capacity 4 Regressions

B.3.1 Average Counts

303



Dep. Variable: avg_count_gap R-squared: 0.276
Model: OLS Adj. R-squared: 0.276
Method: Least Squares F-statistic: 4.459e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:04 Log-Likelihood: -1.7317e+07
No. Observations: 4080400 AIC: 3.463e+07
Df Residuals: 4080396 BIC: 3.463e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 27.7729 0.033 832.742 0.000 27.708 27.838
mu -0.3393 0.000 -1131.287 0.000 -0.340 -0.339
sigma -0.0709 0.000 -265.813 0.000 -0.071 -0.070
num_cascade 0.4551 0.001 317.759 0.000 0.452 0.458
Omnibus: 912925.944 Durbin-Watson: 0.603
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1865088.908
Skew: 1.336 Prob(JB): 0.00
Kurtosis: 4.957 Cond. No. 267.

Table B.97: Average Counts Range Capacity 4

Dep. Variable: avg_count_mad R-squared: 0.246
Model: OLS Adj. R-squared: 0.246
Method: Least Squares F-statistic: 3.663e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:01 Log-Likelihood: -1.3156e+07
No. Observations: 4080400 AIC: 2.631e+07
Df Residuals: 4080396 BIC: 2.631e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 9.9885 0.012 806.638 0.000 9.964 10.013
mu -0.1136 0.000 -1029.392 0.000 -0.114 -0.113
sigma -0.0308 9.54e-05 -323.306 0.000 -0.031 -0.031
num_cascade 0.1013 0.000 217.159 0.000 0.100 0.102
Omnibus: 1308941.848 Durbin-Watson: 0.586
Prob(Omnibus): 0.000 Jarque-Bera (JB): 4003549.587
Skew: 1.678 Prob(JB): 0.00
Kurtosis: 6.505 Cond. No. 267.

Table B.98: Average Counts Mean Absolute Deviation Capacity 4
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Dep. Variable: avg_count_max R-squared: 0.442
Model: OLS Adj. R-squared: 0.442
Method: Least Squares F-statistic: 9.787e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:03 Log-Likelihood: -1.7528e+07
No. Observations: 4080400 AIC: 3.506e+07
Df Residuals: 4080396 BIC: 3.506e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 57.8037 0.038 1535.201 0.000 57.730 57.878
mu -0.5124 0.000 -1690.638 0.000 -0.513 -0.512
sigma -0.1424 0.000 -469.925 0.000 -0.143 -0.142
num_cascade -0.5317 0.002 -327.795 0.000 -0.535 -0.528

Omnibus: 237372.593 Durbin-Watson: 0.480
Prob(Omnibus): 0.000 Jarque-Bera (JB): 281462.356
Skew: 0.642 Prob(JB): 0.00
Kurtosis: 3.085 Cond. No. 267.

Table B.99: Average Counts Max Capacity 4

Dep. Variable: avg_count_mean R-squared: 0.440
Model: OLS Adj. R-squared: 0.440
Method: Least Squares F-statistic: 5.620e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:58 Log-Likelihood: -1.6017e+07
No. Observations: 4080400 AIC: 3.203e+07
Df Residuals: 4080396 BIC: 3.203e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 43.2513 0.037 1164.495 0.000 43.179 43.324
mu -0.2962 0.000 -1290.551 0.000 -0.297 -0.296
sigma -0.0980 0.000 -459.623 0.000 -0.098 -0.098
num_cascade -1.0611 0.001 -812.744 0.000 -1.064 -1.059
Omnibus: 1264458.488 Durbin-Watson: 0.277
Prob(Omnibus): 0.000 Jarque-Bera (JB): 4310526.661
Skew: 1.566 Prob(JB): 0.00
Kurtosis: 6.943 Cond. No. 267.

Table B.100: Average Counts Mean Capacity 4
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Dep. Variable: avg_count_median R-squared: 0.383
Model: OLS Adj. R-squared: 0.383
Method: Least Squares F-statistic: 3.686e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:59 Log-Likelihood: -1.6308e+07
No. Observations: 4080400 AIC: 3.262e+07
Df Residuals: 4080396 BIC: 3.262e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 41.0826 0.040 1019.550 0.000 41.004 41.162
mu -0.2480 0.000 -992.688 0.000 -0.248 -0.247
sigma -0.0836 0.000 -377.184 0.000 -0.084 -0.083
num_cascade -1.2593 0.001 -897.304 0.000 -1.262 -1.257
Omnibus: 1436502.569 Durbin-Watson: 0.321
Prob(Omnibus): 0.000 Jarque-Bera (JB): 5118737.317
Skew: 1.782 Prob(JB): 0.00
Kurtosis: 7.173 Cond. No. 267.

Table B.101: Average Counts Median Capacity 4

Dep. Variable: avg_count_std R-squared: 0.257
Model: OLS Adj. R-squared: 0.257
Method: Least Squares F-statistic: 3.918e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:00 Log-Likelihood: -1.3563e+07
No. Observations: 4080400 AIC: 2.713e+07
Df Residuals: 4080396 BIC: 2.713e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 11.1370 0.014 820.868 0.000 11.110 11.164
mu -0.1291 0.000 -1066.317 0.000 -0.129 -0.129
sigma -0.0330 0.000 -311.496 0.000 -0.033 -0.033
num_cascade 0.1310 0.001 241.517 0.000 0.130 0.132
Omnibus: 1116378.535 Durbin-Watson: 0.594
Prob(Omnibus): 0.000 Jarque-Bera (JB): 2778532.032
Skew: 1.515 Prob(JB): 0.00
Kurtosis: 5.677 Cond. No. 267.

Table B.102: Average Counts Standard Deviation Capacity 4
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B.3.2 Herfinhdahl Index
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Dep. Variable: counts_herfindahl_index R-squared: 0.082
Model: OLS Adj. R-squared: 0.082
Method: Least Squares F-statistic: 1.398e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:32 Log-Likelihood: 2.4252e+06
No. Observations: 4080400 AIC: -4.850e+06
Df Residuals: 4080396 BIC: -4.850e+06
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 0.2678 0.000 1226.770 0.000 0.267 0.268
mu -0.0003 2.1e-06 -132.349 0.000 -0.000 -0.000
sigma -0.0005 2.78e-06 -178.060 0.000 -0.001 -0.000
num_cascade -0.0065 1.18e-05 -548.068 0.000 -0.007 -0.006
Omnibus: 3607326.568 Durbin-Watson: 1.360
Prob(Omnibus): 0.000 Jarque-Bera (JB): 113885487.517
Skew: 4.310 Prob(JB): 0.00
Kurtosis: 27.404 Cond. No. 267.

Table B.103: Herfindahl Index Capacity 4

B.3.3 Kurtosis in Counts
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Dep. Variable: counts_kurtosis R-squared: 0.028
Model: OLS Adj. R-squared: 0.028
Method: Least Squares F-statistic: 2.614e+04
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:31 Log-Likelihood: -1.0019e+07
No. Observations: 4080400 AIC: 2.004e+07
Df Residuals: 4080396 BIC: 2.004e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const -0.1546 0.004 -35.955 0.000 -0.163 -0.146
mu 0.0050 4.47e-05 111.927 0.000 0.005 0.005
sigma -0.0070 5.07e-05 -137.539 0.000 -0.007 -0.007
num_cascade 0.0722 0.000 268.779 0.000 0.072 0.073
Omnibus: 2513046.552 Durbin-Watson: 1.580
Prob(Omnibus): 0.000 Jarque-Bera (JB): 29656596.912
Skew: 2.828 Prob(JB): 0.00
Kurtosis: 14.935 Cond. No. 267.

Table B.104: Kurtosis in Counts Capacity 4

B.3.4 Number of Zero Counts
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Dep. Variable: counts_zeros R-squared: 0.384
Model: OLS Adj. R-squared: 0.384
Method: Least Squares F-statistic: 4.593e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:30 Log-Likelihood: -1.1039e+07
No. Observations: 4080400 AIC: 2.208e+07
Df Residuals: 4080396 BIC: 2.208e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 0.9168 0.005 201.639 0.000 0.908 0.926
mu 0.0533 6.38e-05 835.433 0.000 0.053 0.053
sigma -0.0762 7.33e-05 -1040.668 0.000 -0.076 -0.076
num_cascade 0.1597 0.000 459.066 0.000 0.159 0.160
Omnibus: 1090276.559 Durbin-Watson: 0.226
Prob(Omnibus): 0.000 Jarque-Bera (JB): 2706233.955
Skew: 1.479 Prob(JB): 0.00
Kurtosis: 5.678 Cond. No. 267.

Table B.105: Number of Zero Counts Capacity 4

B.3.5 Decay Time
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Dep. Variable: decay_time_gap R-squared: 0.287
Model: OLS Adj. R-squared: 0.287
Method: Least Squares F-statistic: 5.835e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:28 Log-Likelihood: -1.8289e+07
No. Observations: 4080400 AIC: 3.658e+07
Df Residuals: 4080396 BIC: 3.658e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 32.2058 0.038 854.502 0.000 32.132 32.280
mu -0.3146 0.000 -835.077 0.000 -0.315 -0.314
sigma 0.2812 0.000 727.666 0.000 0.280 0.282
num_cascade 1.0231 0.002 539.618 0.000 1.019 1.027

Omnibus: 209083.954 Durbin-Watson: 1.063
Prob(Omnibus): 0.000 Jarque-Bera (JB): 92099.473
Skew: 0.141 Prob(JB): 0.00
Kurtosis: 2.320 Cond. No. 267.

Table B.106: Decay Time Range Capacity 4

Dep. Variable: decay_time_mad R-squared: 0.231
Model: OLS Adj. R-squared: 0.231
Method: Least Squares F-statistic: 3.999e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:25 Log-Likelihood: -1.3026e+07
No. Observations: 4080400 AIC: 2.605e+07
Df Residuals: 4080396 BIC: 2.605e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 12.0139 0.011 1057.030 0.000 11.992 12.036
mu -0.0871 0.000 -825.408 0.000 -0.087 -0.087
sigma 0.0686 0.000 649.872 0.000 0.068 0.069
num_cascade 0.0089 0.001 16.732 0.000 0.008 0.010
Omnibus: 119259.942 Durbin-Watson: 1.116
Prob(Omnibus): 0.000 Jarque-Bera (JB): 130050.741
Skew: 0.437 Prob(JB): 0.00
Kurtosis: 2.968 Cond. No. 267.

Table B.107: Decay Time Mean Absolute Deviation Capacity 4
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Dep. Variable: decay_time_max R-squared: 0.281
Model: OLS Adj. R-squared: 0.281
Method: Least Squares F-statistic: 5.563e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:27 Log-Likelihood: -1.8338e+07
No. Observations: 4080400 AIC: 3.668e+07
Df Residuals: 4080396 BIC: 3.668e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 36.0515 0.039 926.718 0.000 35.975 36.128
mu -0.3298 0.000 -864.781 0.000 -0.331 -0.329
sigma 0.2753 0.000 701.542 0.000 0.275 0.276
num_cascade 0.9198 0.002 477.388 0.000 0.916 0.924

Omnibus: 230746.481 Durbin-Watson: 1.044
Prob(Omnibus): 0.000 Jarque-Bera (JB): 95478.335
Skew: 0.129 Prob(JB): 0.00
Kurtosis: 2.296 Cond. No. 267.

Table B.108: Decay Time Max Capacity 4

Dep. Variable: decay_time_mean R-squared: 0.253
Model: OLS Adj. R-squared: 0.253
Method: Least Squares F-statistic: 4.828e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:21 Log-Likelihood: -1.4483e+07
No. Observations: 4080400 AIC: 2.897e+07
Df Residuals: 4080396 BIC: 2.897e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 20.4481 0.018 1115.063 0.000 20.412 20.484
mu -0.1512 0.000 -990.205 0.000 -0.151 -0.151
sigma 0.0718 0.000 470.604 0.000 0.071 0.072
num_cascade -0.0683 0.001 -89.050 0.000 -0.070 -0.067
Omnibus: 397635.306 Durbin-Watson: 0.985
Prob(Omnibus): 0.000 Jarque-Bera (JB): 603215.384
Skew: 0.741 Prob(JB): 0.00
Kurtosis: 4.162 Cond. No. 267.

Table B.109: Decay Time Mean Capacity 4
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Dep. Variable: decay_time_median R-squared: 0.183
Model: OLS Adj. R-squared: 0.183
Method: Least Squares F-statistic: 3.345e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:22 Log-Likelihood: -1.4708e+07
No. Observations: 4080400 AIC: 2.942e+07
Df Residuals: 4080396 BIC: 2.942e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 18.1801 0.020 887.066 0.000 18.140 18.220
mu -0.1357 0.000 -838.159 0.000 -0.136 -0.135
sigma 0.0405 0.000 264.031 0.000 0.040 0.041
num_cascade -0.1449 0.001 -175.561 0.000 -0.147 -0.143
Omnibus: 1298332.090 Durbin-Watson: 1.291
Prob(Omnibus): 0.000 Jarque-Bera (JB): 5105793.515
Skew: 1.552 Prob(JB): 0.00
Kurtosis: 7.517 Cond. No. 267.

Table B.110: Decay Time Median Capacity 4

Dep. Variable: decay_time_std R-squared: 0.240
Model: OLS Adj. R-squared: 0.240
Method: Least Squares F-statistic: 4.104e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:24 Log-Likelihood: -1.3680e+07
No. Observations: 4080400 AIC: 2.736e+07
Df Residuals: 4080396 BIC: 2.736e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 13.5215 0.013 1038.779 0.000 13.496 13.547
mu -0.1016 0.000 -826.995 0.000 -0.102 -0.101
sigma 0.0853 0.000 686.240 0.000 0.085 0.086
num_cascade 0.0743 0.001 118.555 0.000 0.073 0.076

Omnibus: 97882.648 Durbin-Watson: 1.098
Prob(Omnibus): 0.000 Jarque-Bera (JB): 84237.667
Skew: 0.290 Prob(JB): 0.00
Kurtosis: 2.602 Cond. No. 267.

Table B.111: Decay Time Standard Deviation Capacity 4
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B.3.6 Final Counts
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Dep. Variable: final_counts_sums_gap R-squared: 0.276
Model: OLS Adj. R-squared: 0.276
Method: Least Squares F-statistic: 4.459e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:41 Log-Likelihood: -3.6108e+07
No. Observations: 4080400 AIC: 7.222e+07
Df Residuals: 4080396 BIC: 7.222e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 2777.2949 3.335 832.742 0.000 2770.758 2783.832
mu -33.9341 0.030 -1131.287 0.000 -33.993 -33.875
sigma -7.0929 0.027 -265.813 0.000 -7.145 -7.041
num_cascade 45.5075 0.143 317.759 0.000 45.227 45.788

Omnibus: 912925.944 Durbin-Watson: 0.603
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1865088.908
Skew: 1.336 Prob(JB): 0.00
Kurtosis: 4.957 Cond. No. 267.

Table B.112: Final Counts Range Capacity 4

Dep. Variable: final_counts_sums_mad R-squared: 0.246
Model: OLS Adj. R-squared: 0.246
Method: Least Squares F-statistic: 3.663e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:39 Log-Likelihood: -3.1946e+07
No. Observations: 4080400 AIC: 6.389e+07
Df Residuals: 4080396 BIC: 6.389e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 998.8514 1.238 806.638 0.000 996.424 1001.278
mu -11.3566 0.011 -1029.392 0.000 -11.378 -11.335
sigma -3.0846 0.010 -323.306 0.000 -3.103 -3.066
num_cascade 10.1341 0.047 217.159 0.000 10.043 10.226

Omnibus: 1308941.848 Durbin-Watson: 0.586
Prob(Omnibus): 0.000 Jarque-Bera (JB): 4003549.587
Skew: 1.678 Prob(JB): 0.00
Kurtosis: 6.505 Cond. No. 267.

Table B.113: Final Counts Mean Absolute Deviation Capacity 4
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Dep. Variable: final_counts_sums_max R-squared: 0.442
Model: OLS Adj. R-squared: 0.442
Method: Least Squares F-statistic: 9.787e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:40 Log-Likelihood: -3.6319e+07
No. Observations: 4080400 AIC: 7.264e+07
Df Residuals: 4080396 BIC: 7.264e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 5780.3750 3.765 1535.201 0.000 5772.995 5787.755
mu -51.2421 0.030 -1690.638 0.000 -51.302 -51.183
sigma -14.2383 0.030 -469.925 0.000 -14.298 -14.179
num_cascade -53.1660 0.162 -327.795 0.000 -53.484 -52.848

Omnibus: 237372.593 Durbin-Watson: 0.480
Prob(Omnibus): 0.000 Jarque-Bera (JB): 281462.356
Skew: 0.642 Prob(JB): 0.00
Kurtosis: 3.085 Cond. No. 267.

Table B.114: Final Counts Max Capacity 4

Dep. Variable: final_counts_sums_mean R-squared: 0.440
Model: OLS Adj. R-squared: 0.440
Method: Least Squares F-statistic: 5.620e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:35 Log-Likelihood: -3.4808e+07
No. Observations: 4080400 AIC: 6.962e+07
Df Residuals: 4080396 BIC: 6.962e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 4325.1324 3.714 1164.495 0.000 4317.853 4332.412
mu -29.6249 0.023 -1290.551 0.000 -29.670 -29.580
sigma -9.7962 0.021 -459.623 0.000 -9.838 -9.754
num_cascade -106.1086 0.131 -812.744 0.000 -106.364 -105.853

Omnibus: 1264458.488 Durbin-Watson: 0.277
Prob(Omnibus): 0.000 Jarque-Bera (JB): 4310526.661
Skew: 1.566 Prob(JB): 0.00
Kurtosis: 6.943 Cond. No. 267.

Table B.115: Final Counts Mean Capacity 4
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Dep. Variable: final_counts_sums_median R-squared: 0.383
Model: OLS Adj. R-squared: 0.383
Method: Least Squares F-statistic: 3.686e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:36 Log-Likelihood: -3.5099e+07
No. Observations: 4080400 AIC: 7.020e+07
Df Residuals: 4080396 BIC: 7.020e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 4108.2625 4.029 1019.550 0.000 4100.365 4116.160
mu -24.7955 0.025 -992.688 0.000 -24.844 -24.747
sigma -8.3571 0.022 -377.184 0.000 -8.400 -8.314
num_cascade -125.9280 0.140 -897.304 0.000 -126.203 -125.653

Omnibus: 1436502.569 Durbin-Watson: 0.321
Prob(Omnibus): 0.000 Jarque-Bera (JB): 5118737.317
Skew: 1.782 Prob(JB): 0.00
Kurtosis: 7.173 Cond. No. 267.

Table B.116: Final Counts Median Capacity 4

Dep. Variable: final_counts_sums_std R-squared: 0.257
Model: OLS Adj. R-squared: 0.257
Method: Least Squares F-statistic: 3.918e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:37 Log-Likelihood: -3.2354e+07
No. Observations: 4080400 AIC: 6.471e+07
Df Residuals: 4080396 BIC: 6.471e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 1113.6953 1.357 820.868 0.000 1111.036 1116.354
mu -12.9060 0.012 -1066.317 0.000 -12.930 -12.882
sigma -3.3026 0.011 -311.496 0.000 -3.323 -3.282
num_cascade 13.0992 0.054 241.517 0.000 12.993 13.205

Omnibus: 1116378.535 Durbin-Watson: 0.594
Prob(Omnibus): 0.000 Jarque-Bera (JB): 2778532.032
Skew: 1.515 Prob(JB): 0.00
Kurtosis: 5.677 Cond. No. 267.

Table B.117: Final Counts Standard Deviation Capacity 4
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B.3.7 Max Counts
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Dep. Variable: max_count_gap R-squared: 0.318
Model: OLS Adj. R-squared: 0.318
Method: Least Squares F-statistic: 5.437e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:49 Log-Likelihood: -1.8382e+07
No. Observations: 4080400 AIC: 3.676e+07
Df Residuals: 4080396 BIC: 3.676e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 38.1467 0.043 886.425 0.000 38.062 38.231
mu -0.4737 0.000 -1244.434 0.000 -0.474 -0.473
sigma -0.1261 0.000 -347.632 0.000 -0.127 -0.125
num_cascade 0.7864 0.002 418.728 0.000 0.783 0.790
Omnibus: 639910.110 Durbin-Watson: 0.604
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1002753.770
Skew: 1.110 Prob(JB): 0.00
Kurtosis: 3.985 Cond. No. 267.

Table B.118: Max Counts Range Capacity 4

Dep. Variable: max_count_mad R-squared: 0.267
Model: OLS Adj. R-squared: 0.267
Method: Least Squares F-statistic: 4.207e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:46 Log-Likelihood: -1.4407e+07
No. Observations: 4080400 AIC: 2.881e+07
Df Residuals: 4080396 BIC: 2.881e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 13.9072 0.017 828.625 0.000 13.874 13.940
mu -0.1600 0.000 -1098.593 0.000 -0.160 -0.160
sigma -0.0496 0.000 -372.135 0.000 -0.050 -0.049
num_cascade 0.1844 0.001 285.322 0.000 0.183 0.186
Omnibus: 1177030.472 Durbin-Watson: 0.606
Prob(Omnibus): 0.000 Jarque-Bera (JB): 3070504.664
Skew: 1.576 Prob(JB): 0.00
Kurtosis: 5.851 Cond. No. 267.

Table B.119: Max Counts Mean Absolute Deviation Capacity 4
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Dep. Variable: max_count_max R-squared: 0.473
Model: OLS Adj. R-squared: 0.473
Method: Least Squares F-statistic: 1.216e+06
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:47 Log-Likelihood: -1.8565e+07
No. Observations: 4080400 AIC: 3.713e+07
Df Residuals: 4080396 BIC: 3.713e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 77.6734 0.046 1698.588 0.000 77.584 77.763
mu -0.7117 0.000 -1879.463 0.000 -0.712 -0.711
sigma -0.1977 0.000 -483.321 0.000 -0.199 -0.197
num_cascade -0.4396 0.002 -214.948 0.000 -0.444 -0.436

Omnibus: 126051.266 Durbin-Watson: 0.475
Prob(Omnibus): 0.000 Jarque-Bera (JB): 122723.732
Skew: 0.387 Prob(JB): 0.00
Kurtosis: 2.650 Cond. No. 267.

Table B.120: Max Counts Max Capacity 4

Dep. Variable: max_count_mean R-squared: 0.474
Model: OLS Adj. R-squared: 0.474
Method: Least Squares F-statistic: 8.045e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:42 Log-Likelihood: -1.6887e+07
No. Observations: 4080400 AIC: 3.377e+07
Df Residuals: 4080396 BIC: 3.377e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 57.8406 0.043 1336.468 0.000 57.756 57.925
mu -0.4197 0.000 -1539.585 0.000 -0.420 -0.419
sigma -0.1160 0.000 -426.368 0.000 -0.116 -0.115
num_cascade -1.2136 0.002 -776.957 0.000 -1.217 -1.211
Omnibus: 731194.199 Durbin-Watson: 0.293
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1547731.005
Skew: 1.062 Prob(JB): 0.00
Kurtosis: 5.143 Cond. No. 267.

Table B.121: Max Counts Mean Capacity 4
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Dep. Variable: max_count_median R-squared: 0.407
Model: OLS Adj. R-squared: 0.407
Method: Least Squares F-statistic: 4.992e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:44 Log-Likelihood: -1.7204e+07
No. Observations: 4080400 AIC: 3.441e+07
Df Residuals: 4080396 BIC: 3.441e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 55.0846 0.048 1148.564 0.000 54.991 55.179
mu -0.3575 0.000 -1192.133 0.000 -0.358 -0.357
sigma -0.0934 0.000 -329.362 0.000 -0.094 -0.093
num_cascade -1.4842 0.002 -872.683 0.000 -1.488 -1.481
Omnibus: 1099767.957 Durbin-Watson: 0.373
Prob(Omnibus): 0.000 Jarque-Bera (JB): 2873593.055
Skew: 1.465 Prob(JB): 0.00
Kurtosis: 5.884 Cond. No. 267.

Table B.122: Max Counts Median Capacity 4

Dep. Variable: max_count_std R-squared: 0.282
Model: OLS Adj. R-squared: 0.282
Method: Least Squares F-statistic: 4.571e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:45 Log-Likelihood: -1.4782e+07
No. Observations: 4080400 AIC: 2.956e+07
Df Residuals: 4080396 BIC: 2.956e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 15.5223 0.018 851.609 0.000 15.487 15.558
mu -0.1817 0.000 -1148.408 0.000 -0.182 -0.181
sigma -0.0547 0.000 -371.062 0.000 -0.055 -0.054
num_cascade 0.2327 0.001 313.623 0.000 0.231 0.234
Omnibus: 947679.939 Durbin-Watson: 0.610
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1952246.606
Skew: 1.384 Prob(JB): 0.00
Kurtosis: 4.956 Cond. No. 267.

Table B.123: Max Counts Standard Deviation Capacity 4
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B.3.8 Time of Max
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Dep. Variable: max_time_gap R-squared: 0.343
Model: OLS Adj. R-squared: 0.343
Method: Least Squares F-statistic: 7.091e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:56 Log-Likelihood: -1.8626e+07
No. Observations: 4080400 AIC: 3.725e+07
Df Residuals: 4080396 BIC: 3.725e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 40.4393 0.038 1064.509 0.000 40.365 40.514
mu -0.2723 0.000 -660.756 0.000 -0.273 -0.271
sigma 0.3478 0.000 757.286 0.000 0.347 0.349
num_cascade 1.9322 0.002 925.157 0.000 1.928 1.936
Omnibus: 255049.070 Durbin-Watson: 0.782
Prob(Omnibus): 0.000 Jarque-Bera (JB): 305353.539
Skew: -0.657 Prob(JB): 0.00
Kurtosis: 3.266 Cond. No. 267.

Table B.124: Time of Max Range Capacity 4

Dep. Variable: max_time_mad R-squared: 0.257
Model: OLS Adj. R-squared: 0.257
Method: Least Squares F-statistic: 3.905e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:54 Log-Likelihood: -1.3956e+07
No. Observations: 4080400 AIC: 2.791e+07
Df Residuals: 4080396 BIC: 2.791e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 14.5035 0.013 1117.808 0.000 14.478 14.529
mu -0.0873 0.000 -674.429 0.000 -0.088 -0.087
sigma 0.1021 0.000 722.960 0.000 0.102 0.102
num_cascade 0.3411 0.001 507.284 0.000 0.340 0.342

Omnibus: 6581.486 Durbin-Watson: 0.958
Prob(Omnibus): 0.000 Jarque-Bera (JB): 6607.787
Skew: -0.098 Prob(JB): 0.00
Kurtosis: 2.971 Cond. No. 267.

Table B.125: Time of Max Mean Absolute Deviation Capacity 4
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Dep. Variable: max_time_max R-squared: 0.358
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.270e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:55 Log-Likelihood: -1.8669e+07
No. Observations: 4080400 AIC: 3.734e+07
Df Residuals: 4080396 BIC: 3.734e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 65.9427 0.039 1675.032 0.000 65.866 66.020
mu -0.3020 0.000 -723.323 0.000 -0.303 -0.301
sigma 0.5105 0.000 1074.603 0.000 0.510 0.511
num_cascade 0.4990 0.002 236.903 0.000 0.495 0.503
Omnibus: 485168.584 Durbin-Watson: 0.526
Prob(Omnibus): 0.000 Jarque-Bera (JB): 676268.502
Skew: -0.973 Prob(JB): 0.00
Kurtosis: 3.437 Cond. No. 267.

Table B.126: Time of Max Max Capacity 4

Dep. Variable: max_time_mean R-squared: 0.400
Model: OLS Adj. R-squared: 0.400
Method: Least Squares F-statistic: 7.666e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:50 Log-Likelihood: -1.7336e+07
No. Observations: 4080400 AIC: 3.467e+07
Df Residuals: 4080396 BIC: 3.467e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 40.6855 0.032 1257.208 0.000 40.622 40.749
mu -0.1348 0.000 -492.887 0.000 -0.135 -0.134
sigma 0.4346 0.000 1373.573 0.000 0.434 0.435
num_cascade -0.6950 0.002 -444.646 0.000 -0.698 -0.692

Omnibus: 29082.825 Durbin-Watson: 0.675
Prob(Omnibus): 0.000 Jarque-Bera (JB): 29707.917
Skew: 0.209 Prob(JB): 0.00
Kurtosis: 3.028 Cond. No. 267.

Table B.127: Time of Max Mean Capacity 4
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Dep. Variable: max_time_median R-squared: 0.362
Model: OLS Adj. R-squared: 0.362
Method: Least Squares F-statistic: 7.405e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:51 Log-Likelihood: -1.8107e+07
No. Observations: 4080400 AIC: 3.621e+07
Df Residuals: 4080396 BIC: 3.621e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 37.3336 0.040 937.197 0.000 37.256 37.412
mu -0.1058 0.000 -322.558 0.000 -0.106 -0.105
sigma 0.4913 0.000 1346.768 0.000 0.491 0.492
num_cascade -0.8486 0.002 -453.090 0.000 -0.852 -0.845

Omnibus: 74988.236 Durbin-Watson: 0.914
Prob(Omnibus): 0.000 Jarque-Bera (JB): 76491.381
Skew: 0.319 Prob(JB): 0.00
Kurtosis: 2.795 Cond. No. 267.

Table B.128: Time of Max Median Capacity 4

Dep. Variable: max_time_std R-squared: 0.264
Model: OLS Adj. R-squared: 0.264
Method: Least Squares F-statistic: 3.897e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:50:53 Log-Likelihood: -1.4353e+07
No. Observations: 4080400 AIC: 2.871e+07
Df Residuals: 4080396 BIC: 2.871e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 16.9699 0.014 1195.235 0.000 16.942 16.998
mu -0.0981 0.000 -683.158 0.000 -0.098 -0.098
sigma 0.1113 0.000 701.267 0.000 0.111 0.112
num_cascade 0.4033 0.001 543.096 0.000 0.402 0.405

Omnibus: 67893.933 Durbin-Watson: 0.897
Prob(Omnibus): 0.000 Jarque-Bera (JB): 71347.342
Skew: -0.324 Prob(JB): 0.00
Kurtosis: 3.016 Cond. No. 267.

Table B.129: Time of Max Standard Deviation Capacity 4
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B.3.9 Min after Max
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Dep. Variable: min_post_max_gap R-squared: 0.269
Model: OLS Adj. R-squared: 0.269
Method: Least Squares F-statistic: 5.107e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:20 Log-Likelihood: -1.7912e+07
No. Observations: 4080400 AIC: 3.582e+07
Df Residuals: 4080396 BIC: 3.582e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 34.0628 0.039 864.432 0.000 33.986 34.140
mu -0.3931 0.000 -1208.292 0.000 -0.394 -0.392
sigma -0.0644 0.000 -202.615 0.000 -0.065 -0.064
num_cascade 0.4169 0.002 247.151 0.000 0.414 0.420
Omnibus: 1155525.611 Durbin-Watson: 0.730
Prob(Omnibus): 0.000 Jarque-Bera (JB): 2946701.786
Skew: 1.558 Prob(JB): 0.00
Kurtosis: 5.762 Cond. No. 267.

Table B.130: Min after Max Range Capacity 4

Dep. Variable: min_post_max_mad R-squared: 0.237
Model: OLS Adj. R-squared: 0.237
Method: Least Squares F-statistic: 4.121e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:17 Log-Likelihood: -1.3951e+07
No. Observations: 4080400 AIC: 2.790e+07
Df Residuals: 4080396 BIC: 2.790e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 12.6543 0.015 820.514 0.000 12.624 12.685
mu -0.1371 0.000 -1087.075 0.000 -0.137 -0.137
sigma -0.0303 0.000 -258.545 0.000 -0.031 -0.030
num_cascade 0.0828 0.001 144.448 0.000 0.082 0.084
Omnibus: 1500022.408 Durbin-Watson: 0.694
Prob(Omnibus): 0.000 Jarque-Bera (JB): 5574731.310
Skew: 1.851 Prob(JB): 0.00
Kurtosis: 7.369 Cond. No. 267.

Table B.131: Min after Max Mean Absolute Deviation Capacity 4

327



Dep. Variable: min_post_max_max R-squared: 0.409
Model: OLS Adj. R-squared: 0.409
Method: Least Squares F-statistic: 9.744e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:18 Log-Likelihood: -1.7927e+07
No. Observations: 4080400 AIC: 3.585e+07
Df Residuals: 4080396 BIC: 3.585e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 60.3208 0.040 1523.374 0.000 60.243 60.398
mu -0.5350 0.000 -1675.637 0.000 -0.536 -0.534
sigma -0.1287 0.000 -382.207 0.000 -0.129 -0.128
num_cascade -0.5145 0.002 -292.899 0.000 -0.518 -0.511

Omnibus: 526205.783 Durbin-Watson: 0.622
Prob(Omnibus): 0.000 Jarque-Bera (JB): 784796.255
Skew: 0.952 Prob(JB): 0.00
Kurtosis: 3.996 Cond. No. 267.

Table B.132: Min after Max Max Capacity 4

Dep. Variable: min_post_max_mean R-squared: 0.443
Model: OLS Adj. R-squared: 0.443
Method: Least Squares F-statistic: 5.807e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:13 Log-Likelihood: -1.5966e+07
No. Observations: 4080400 AIC: 3.193e+07
Df Residuals: 4080396 BIC: 3.193e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 43.3572 0.036 1214.908 0.000 43.287 43.427
mu -0.2864 0.000 -1317.839 0.000 -0.287 -0.286
sigma -0.0912 0.000 -438.857 0.000 -0.092 -0.091
num_cascade -1.1319 0.001 -875.750 0.000 -1.134 -1.129
Omnibus: 1208872.097 Durbin-Watson: 0.345
Prob(Omnibus): 0.000 Jarque-Bera (JB): 3751364.540
Skew: 1.532 Prob(JB): 0.00
Kurtosis: 6.560 Cond. No. 267.

Table B.133: Min after Max Mean Capacity 4
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Dep. Variable: min_post_max_median R-squared: 0.377
Model: OLS Adj. R-squared: 0.377
Method: Least Squares F-statistic: 3.736e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:14 Log-Likelihood: -1.6407e+07
No. Observations: 4080400 AIC: 3.281e+07
Df Residuals: 4080396 BIC: 3.281e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 41.0901 0.040 1016.549 0.000 41.011 41.169
mu -0.2282 0.000 -937.884 0.000 -0.229 -0.228
sigma -0.0787 0.000 -352.635 0.000 -0.079 -0.078
num_cascade -1.3951 0.001 -961.826 0.000 -1.398 -1.392
Omnibus: 1651099.514 Durbin-Watson: 0.417
Prob(Omnibus): 0.000 Jarque-Bera (JB): 7618581.026
Skew: 1.962 Prob(JB): 0.00
Kurtosis: 8.423 Cond. No. 267.

Table B.134: Min after Max Median Capacity 4

Dep. Variable: min_post_max_std R-squared: 0.246
Model: OLS Adj. R-squared: 0.246
Method: Least Squares F-statistic: 4.385e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:16 Log-Likelihood: -1.4371e+07
No. Observations: 4080400 AIC: 2.874e+07
Df Residuals: 4080396 BIC: 2.874e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 14.1015 0.017 834.170 0.000 14.068 14.135
mu -0.1557 0.000 -1124.288 0.000 -0.156 -0.155
sigma -0.0324 0.000 -246.822 0.000 -0.033 -0.032
num_cascade 0.1171 0.001 174.506 0.000 0.116 0.118
Omnibus: 1323213.367 Durbin-Watson: 0.709
Prob(Omnibus): 0.000 Jarque-Bera (JB): 3995900.650
Skew: 1.705 Prob(JB): 0.00
Kurtosis: 6.445 Cond. No. 267.

Table B.135: Min after Max Standard Deviation Capacity 4
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B.3.10 Variance in Counts
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Dep. Variable: var_count_gap R-squared: 0.159
Model: OLS Adj. R-squared: 0.159
Method: Least Squares F-statistic: 2.242e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:12 Log-Likelihood: -2.9291e+07
No. Observations: 4080400 AIC: 5.858e+07
Df Residuals: 4080396 BIC: 5.858e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 404.0840 0.662 609.944 0.000 402.786 405.382
mu -4.1803 0.005 -815.444 0.000 -4.190 -4.170
sigma -2.1127 0.005 -387.790 0.000 -2.123 -2.102
num_cascade 3.7112 0.028 134.673 0.000 3.657 3.765
Omnibus: 2649253.981 Durbin-Watson: 0.864
Prob(Omnibus): 0.000 Jarque-Bera (JB): 28630731.817
Skew: 3.090 Prob(JB): 0.00
Kurtosis: 14.411 Cond. No. 267.

Table B.136: Variance in Counts Range Capacity 4

Dep. Variable: var_count_mad R-squared: 0.146
Model: OLS Adj. R-squared: 0.146
Method: Least Squares F-statistic: 2.056e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:09 Log-Likelihood: -2.4567e+07
No. Observations: 4080400 AIC: 4.913e+07
Df Residuals: 4080396 BIC: 4.913e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 130.5630 0.224 581.728 0.000 130.123 131.003
mu -1.2540 0.002 -776.617 0.000 -1.257 -1.251
sigma -0.6511 0.002 -375.953 0.000 -0.654 -0.648
num_cascade 0.3990 0.008 50.792 0.000 0.384 0.414
Omnibus: 3090826.499 Durbin-Watson: 0.858
Prob(Omnibus): 0.000 Jarque-Bera (JB): 57528545.565
Skew: 3.592 Prob(JB): 0.00
Kurtosis: 19.934 Cond. No. 267.

Table B.137: Variance in Counts Mean Absolute Deviation Capacity 4
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Dep. Variable: var_count_max R-squared: 0.189
Model: OLS Adj. R-squared: 0.189
Method: Least Squares F-statistic: 2.902e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:11 Log-Likelihood: -2.9280e+07
No. Observations: 4080400 AIC: 5.856e+07
Df Residuals: 4080396 BIC: 5.856e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 491.4161 0.657 748.086 0.000 490.129 492.704
mu -4.6759 0.005 -921.196 0.000 -4.686 -4.666
sigma -2.3604 0.005 -431.491 0.000 -2.371 -2.350
num_cascade 0.8102 0.028 29.364 0.000 0.756 0.864
Omnibus: 2535958.142 Durbin-Watson: 0.839
Prob(Omnibus): 0.000 Jarque-Bera (JB): 25033310.289
Skew: 2.946 Prob(JB): 0.00
Kurtosis: 13.607 Cond. No. 267.

Table B.138: Variance in Counts Max Capacity 4

Dep. Variable: var_count_mean R-squared: 0.222
Model: OLS Adj. R-squared: 0.222
Method: Least Squares F-statistic: 3.268e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:05 Log-Likelihood: -2.5252e+07
No. Observations: 4080400 AIC: 5.050e+07
Df Residuals: 4080396 BIC: 5.050e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 246.0784 0.351 701.850 0.000 245.391 246.766
mu -1.7374 0.002 -955.487 0.000 -1.741 -1.734
sigma -0.9089 0.002 -419.026 0.000 -0.913 -0.905
num_cascade -4.7433 0.012 -390.394 0.000 -4.767 -4.719
Omnibus: 4031959.224 Durbin-Watson: 0.723
Prob(Omnibus): 0.000 Jarque-Bera (JB): 266027967.358
Skew: 4.831 Prob(JB): 0.00
Kurtosis: 41.358 Cond. No. 267.

Table B.139: Variance in Counts Mean Capacity 4
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Dep. Variable: var_count_median R-squared: 0.156
Model: OLS Adj. R-squared: 0.156
Method: Least Squares F-statistic: 1.334e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:07 Log-Likelihood: -2.5370e+07
No. Observations: 4080400 AIC: 5.074e+07
Df Residuals: 4080396 BIC: 5.074e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 203.5536 0.400 509.129 0.000 202.770 204.337
mu -1.1356 0.002 -617.995 0.000 -1.139 -1.132
sigma -0.6194 0.002 -273.384 0.000 -0.624 -0.615
num_cascade -6.4245 0.014 -463.501 0.000 -6.452 -6.397
Omnibus: 5583841.535 Durbin-Watson: 0.784
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1434596063.767
Skew: 8.025 Prob(JB): 0.00
Kurtosis: 93.445 Cond. No. 267.

Table B.140: Variance in Counts Median Capacity 4

Dep. Variable: var_count_std R-squared: 0.150
Model: OLS Adj. R-squared: 0.150
Method: Least Squares F-statistic: 2.116e+05
Date: Fri, 25 Feb 2022 Prob (F-statistic): 0.00
Time: 23:51:08 Log-Likelihood: -2.5194e+07
No. Observations: 4080400 AIC: 5.039e+07
Df Residuals: 4080396 BIC: 5.039e+07
Df Model: 3

coef std err z P> |z| [0.025 0.975]

const 150.8106 0.256 588.836 0.000 150.309 151.313
mu -1.4824 0.002 -789.721 0.000 -1.486 -1.479
sigma -0.7670 0.002 -379.370 0.000 -0.771 -0.763
num_cascade 0.7696 0.010 79.823 0.000 0.751 0.789
Omnibus: 2881259.717 Durbin-Watson: 0.856
Prob(Omnibus): 0.000 Jarque-Bera (JB): 41093818.883
Skew: 3.350 Prob(JB): 0.00
Kurtosis: 17.029 Cond. No. 267.

Table B.141: Variance in Counts Capacity 4
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