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Abstract

Archival Phonetics & Prosodic Typology in Sixteen Australian Languages

Sarah Babinski

2022

In naturalistic speech, the phonetic instantiation of phonological categories is often

highly variable (Cohn & Renwick 2021). Speakers have been observed to converge on pat

terns of phonetic variation that are consistent within languages but variable crosslinguistically

for the same phonological phenomenon (Kakadelis 2018). Speakers are evidently sensitive

to these sorts of patterns and learn the phonetic variation in a consistent way. Furthermore,

the systematicity of this variation suggests that these patterns should change over time sys

tematically as well. Most Australian languages assign lexical stress consistently on the first

syllable of the word (Fletcher & Butcher 2014), raising the question of how the phonetics

of stress varies across languages with this phonologically stable pattern.

This dissertation presents an investigation into structured variation of the acoustic cor

relates of stress and prosody in sixteen Indigenous languages of Australia that all have

consistent initial stress placement, with a focus on the source(s) of variation in these fac

tors crosslinguistically. Acoustic correlates of stress, despite the phonological uniformity

present among these languages, show significant crosslinguistic variation, both in the pres

ence or absence of a particular cue to stress, as well as the size of these effects. The phono

logical uniformity of stress assignment allows for a more controlled comparison of the

acoustic correlates of stress across these languages, since the placement of stress mark

ing remains constant. Acoustic correlates investigated are vowel duration, pretonic and

posttonic consonant duration, intensity, f0 (maximum and range), and vowel peripheral

ity. These cues are identified using a series of mixed effects linear regression models.



To identify the source(s) of variation in acoustic correlates to stress, the population

genetics tool Analysis of Molecular Variance (AMOVA) is used. This is a statistical tool

created for analysis of genetic variance that has been applied to cultural evolution topics

such as music (Rzeszutek, Savage & Brown 2012) and folktales (Ross, Greenhill & Atkin

son 2013). This model finds significant variation across languages, as well as substantial

intraspeaker variation, similarly to the findings for both biological and cultural evolution,

but no significant intralanguage variation across speakers. These results are also supported

by the investigation of inter and intralanguage variation using regresssion modeling.

Another population genetics measure, fixation index or FST, is used to create a network

model of language relationships based on the phonetic correlates of lexical stress. This

network shows clear relationships between the Pama Nyungan languages in this sample, as

well as some Gunwinyguan languages, supporting the claim that the phonetic cues to stress

are stable within language families and change according to the principles of diachronic

language change. Smaller groupings in this network also indicate some contactinduced

change or areal effects in these phonetic markers.

Phrasal prosody is also investigated in this dissertation, using a toolkit for automated

phrasal contour clustering fromKaland (2021). For each language, f0 is measured at regular

intervals across the word, which is used as input to a completelinkage clustering algorithm

to identify major categories of phrasal contours. Results of this sort of automatic clustering

provide testable hypotheses about phrasal types in each language, while avoiding some

common pitfalls of impressionistic analyses of prosodic phrases. As with the investigation

into lexical stress, this sort of automated typological work serves as a crucial complement to

more detailed languagespecific studies for the creation of wellrounded and wellsupported

theories.

The data used in this dissertation are narrative speech recordings sourced from language

archives, collected in varying field settings. In processing these data I have created a large



corpus of these recordings force aligned at the segment level and have worked out posthoc

methods for controlling noise and variation in fieldcollected audio to create a comparable

set of language data. I include in the dissertation a lengthy discussion of these methods,

with the aim of providing a practical toolkit for the use of archival materials to address novel

phonetic questions, as well as to aid in the creation of language revitalization resources.
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Chapter 1

Introduction

This dissertation’s analytical focus is on the phonetics of prosodic phenomena, primarily

lexical stress, in sixteen Indigenous languages of Australia. The contribution of this aspect

of the dissertation is threefold: (1) increasing accessibility of prosodic research, (2) pro

viding the first study of this kind for many of the languages under investigation, and (3)

advancing the study of the typology and diachrony of prosodic phenomena generally, as

well as that of Australian languages specifically. It contributes to the further documenta

tion of many Australian languages’ prosody, an area of study that is often overlooked in

underresourced languages (Macaulay 2021). I hope that this project will help fellow re

searchers, as well as community language members and teachers, to better understand the

lexical stress system, phonetic variation, and phonology more broadly, of their languages

of interest.

Studies on the prosody of words and phrases has often required the creation of targeted

experiments and the collection of novel data, making such studies less accessible for many

languages with few or no speakers. Likewise, the nature of the methodologies used and

language knowledge needed for these types of experiments reduces the accessibility of such

work for researchers who do not specialize in phonetics or phonology, or those who are not
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highly knowledgeable in the language of interest. This dissertation addresses this issue by

demonstratingmethods that are largely automated using open source software, removing the

barrier of advanced language knowledge, and making use of existing spontaneous speech

audio to eliminate the need (at least at first) for novel data collection.

This project makes the case for using natural speech audio from archival sources in

doing work on underresearched languages. Establishing best practices for this sort of re

search, aside from being useful for the community of academic linguists, also contributes

to development of automatic speech recognition including speechtotext technologies, for

underresourced languages with only small data sets. Automatic transcriptions of natural

speech data can contribute to communityoriented efforts for captioned videos, spoken

word phrasebooks, and other pedagogical materials in a quick and costeffective way. This

capability could be a vital resource in endangered language communities’ revitalization

efforts.

To analyze the acoustics of stress and prosody in these languages, I create timealigned

transcripts of natural speech archival audiomaterials using automatic forced alignment tech

niques, offering a practical example of the utility of such tools when used on fieldbased

audio that is noisy, i.e. includes background noise, variable sound quality, and utterances

in several languages. As a result of this work, I have made the archival materials from

AIATSIS (https://aiatsis.gov.au), ELAR (https://elar.soas.ac.uk), and PAR

ADISEC (https://paradisec.org.au) more accessible by providing these entries with

addenda containing timealigned segmentbysegment TextGrids. This will minimize pro

cessing time for future researchers and will allow for these archival materials to be investi

gated for years to come.

In order to look at lexical stress comparatively across languages, individual analyses

are conducted for each of the sixteen languages investigated to maintain consistent methods

for comparison. Most of these languages have had little, if any, prosodic description in
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previous published work. This dissertation therefore presents the first substantial study

of prosody in these languages, opening up many avenues of further research which are

discussed along with the results. Comparative studies of stress, especially the phonetics of

stress, are uncommon, as are studies of phoneticprosodic change (cf. Whalen, DiCanio &

Dockum 2020, Macaulay 2021). This project provides such a study by investigating the

acoustic correlates of lexical stress, as well as the major phrasal pitch contours. The results

are analyzed for their crosslinguistic variation as well as potential pathways of diachronic

change of stress marking.

This chapter is structured as follows. First, the definition of stress and other prosodic

phenomena as they are conceptualized in this dissertation is discussed in §1.1. The main

claims of the dissertation are outlined in §1.3, followed by some background on phonetic

precursors to sound change in §1.2. Then, a brief overview of the languages of Australia

generally is presented in §1.4. A discussion of archival phonetic methods is presented in

§1.5. The chapter ends with a summary of the dissertation structure (§1.6).

1.1 Conceptualization of stress and prosody

The term stress is used in this dissertation to mean the particular subset of prominence

phenomena that apply at the level of the word. Thus, stress is a type of prominence, one

variety of prosody along with higherlevel phenomena that apply at the level of the phrase or

utterance. Both stress and phrasal prosody are investigated in this dissertation, although the

depth of study that falls within the scope of this project differ between them, as is discussed

later in this section. Greater focus is placed here, as overall, on stress.

1.1.1 Stress is relative

Linguistic prominence as a general category is defined purely in relative terms—prominent

syllables may be longer, louder, more peripheral, etc. all in relation to their nonprominent
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counterparts (Gordon 2011). Prominence is a unique phenomenon in that the phonetic fac

tors used in prominence marking differ across languages to the point where two languages

may have entirely nonoverlapping phonetic definitions of it; these factors are usually some

combination of a limited set — duration, intensity, pitch, peripherality, spectral tilt, and

few others (Gordon & Roettger 2017, Van Heuven 2018). This differs from other linguis

tic contrasts which are cued by a more constrained set of phonetic factors, such as Voice

Onset Time for laryngeal features (Abramson &Whalen 2017), formants for vowel quality

(Garellek 2019), and so on.

Despite this heterogeneity in the phonetic markers to the phenomenon we call stress,

each language treats its phonetic correlates of stress just like the phonetic markers of any

other phenomenon. For example, the English stop voicing contrast consists of two sets of

overlapping allophones, such as voiceless /ph p/ and voiced /p b/. Aspiration is lost on the

voiceless stop in certain phonological contexts (e.g. in CC clusters like spark), as is true

voicing in another context (e.g. wordinitially, as in bark). This can lead to phonetically

very similar stop segments, but there is no true stop neutralization because of the differing

phonological contexts in which these allophones occur. Likewise, stress can be consid

ered part of the set of suprasegmental ‘phonemes’ along with phrasal prosody, phonemic

vowel length, lexical tone, boundary lengthening phenomena, and more. While phonet

ically speaking these elements may be quite similar, the context in which they occur can

help us to disambiguate. A stressed syllable may not be the longest syllable in the word, be

cause of the presence of boundary lengthening, or because the stressed syllable happens to

fall on a phonemically short vowel. But duration may still be a correlate of stress because of

its length relative to unstressed short vowels of the same type, and not necessarily because

stressed syllables are globally the longest elements in a given language. Thus the phonetic

cues to stress are also defined in relative terms, as it is only the contrast between stressed

and unstressed phonetic markers that matters, instead of some quantitative threshold.
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1.1.2 Phonological factors

The phonological conceptualization of stress is largely focused on the patterns of stress

placement a language employs. The phonological stress literature in linguistics began with

Metrical Stress Theory in the 1970s (Hayes 1995, Prince 1990), and has been brought into

Optimality Theoretic frameworks from the beginning (Kager 1999, McCarthy & Prince

1993). The main focus of the theoretical work on stress phonology is on rhythmic stress

assignment rules, regardless of the phonetic realization of stress in the language.

A phonological typology of stress systems can be encapsulated via the interaction of

a few dimensions. First, rhythmic feet are binary (twosyllable) and either headed on the

left (trochees) or the right (iambs) (Hayes 1985, Gordon 2011). These feet are then usually

attached to either the left or right edges of words, which generates initial, peninitial, penul

timate, and final stress assignment patterns. Constraints preferring stress to fall on heavy

syllables, as well as constraints against edgealigned feet, are usually employed to generate

stress assignment patterns further from the word edge (McCarthy & Prince 1993).

In most Australian languages, stress has been described as trochaic, leftaligned, and

quantity insensitive (Baker 2014, Fletcher & Butcher 2014, Goedemans 2010). Stress falls

on the initial syllable of the word, or perhaps the stem, although these two are equivalent

most of the time. There are some cases, especially in prefixing nonPama Nyungan lan

guages, of stress being attached to the root leaving prefixes unstressed (cf. Baker 2014:

156). A small number of Australian languages spoken in Arnhem Land have been reported

to have rightaligned trochees (penultimate stress), though this pattern is rare (Goedemans

2010: 72).
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1.1.3 Phonetic factors

Duration, intensity, and fundamental frequency (f0) have been identified as potential cor

relates of stress since at least Fry (1958), whose experiments on English isolated each of

these as salient stress cues. Since then, a number of other phonetic factors have been found

to mark stress in some languages, including: onset consonant duration; posttonic conso

nant duration; peripherality of vowels; spectral tilt; and others (Lehiste 1970, Van Heuven

2018).

Less typological work has been done looking at crosslinguistic variation in the pho

netic correlates of stress than has been done for the phonological assignment of it. However,

Gordon & Roettger (2017) is a notable example of this type of study, looking at acoustic

stress correlates identified in 110 published studies of 75 languages. The authors find in

their survey that measurements of duration, f0, intensity, vowel formants, and spectral tilt

correlate with stress in between 70 to 85% of the studies that measure them. However, there

is a marked difference in the number of studies that look at each of these measures, which

could be a confound of this finding; for example, duration is measured in 100 of the studies

Gordon and Roettger consider, while spectral tilt is only measured in 22. In addition to this,

the ways that each of these factors were measured in the different studies varied, making it

less clear how to compare these results directly.

The acoustic measurement that is most often found to correlate with stress in Australian

languages is f0 (Goedemans 2010, Fletcher & Butcher 2014). However, many Australian

languages have no phonetic description of stress, so whether this observation generalizes

across Australia is certainly an open question. In addition to f0, acoustic dimensions that

have been found to correlate with stress in at least some Australian languages include du

ration, intensity, onset duration, posttonic consonant duration, vowel quality, and spectral

tilt (cf. Fletcher et al. 2015, Jepson, Fletcher & Stoakes 2019, Simard 2010, Bishop 2003,
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Fletcher & Evans 2002).

1.1.4 Phraselevel prosody

Layered over wordlevel stress marking is phraselevel prosody, which is marked by into

national patterns and most often correlated with f0. It is used to indicate “paralinguistic

meanings” such as the type of speech act, e.g. declarative versus interrogative, discourse

functions such as introduction of a new topic, or holding the floor in a conversation (Xu

2019). Prosodic typology has been the subject of significant work, but the exact patterns

and contour types can vary widely, made up of different combinations of high and low

tones, falls and rises.

Prosodic phenomena above the word have been studied systematically in linguistics

since at least Pierrehumbert (1980), which looked at phrase structure in English. A seminal

work connecting intonation patterns with syntactic phrase rules came from Nespor & Vogel

(1986), which established the commonlyused terms of the phonological word, phonologi

cal phrase, and intonational phrase. The analysis of these phenomena have been instantiated

in a number of ways, including Autosegmental Metrical Theory (Ladd 1996). A standard

transcription system for prosodic units, ToBI, exists for English and a handful of other

commonlyresearched languages (Beckman, Hirschberg & ShattuckHufnagel 2005).

Phraselevel prosodic description in Australian languages is even more rare than word

level stress descriptions, reflective of the broader trend of this type across language doc

umentation work in all areas of the world (Fletcher & Butcher 2014, Whalen, DiCanio

& Dockum 2020, Macaulay 2021). However, some work exists for languages such as Ka

yardild (Fletcher, Evans&Round 2002), Arrernte (Tabain 2016), Jaminjung (Simard 2010),

Bininj Gunwok (Bishop 2003), Djambarrpuyngu (Jepson 2019), andDalabon (Ross, Fletcher

&Nordlinger 2016), among others. Fletcher, Evans &Round (2002) note that while phrasal

prosody in Bininj Gunwok has been found to function exclusively as a way to demarcate
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the edges of phrasal units (Bishop 2003), Kayardild seems to use phrasal prosody for both

this demarcative function as well as phrasal prominence functions such as focus marking.

While subsequent work on phrasal prosody in individual Australian languages has since

been published, to my knowledge any comprehensive typology of Australian prosody has

yet to be written.

1.2 Phonetic precursors to sound change

Ohala (1993) characterizes phonetic influence on sound change as instances of mispercep

tion (hypercorrection and hypocorrection). These usually result in the phonologization of

chance phonetic distinctions that were previously byproducts of some other phonological

contrast, e.g. confusion of coarticulatory effects resulting in a change from /anpa/ to /ampa/.

Further work has since been published on the role of the speaker in these sorts of changes,

finding that some speakers are more likely to be innovators and early adopters of change due

to a high social awareness, while other speakers’ cognitive styles make them more closely

attuned to coarticulatory effects in the speech signal and thus less likely to make percep

tual mistakes (Garrett & Johnson 2013, Yu et al. 2011, A. C. L. Yu 2010). This work has

led others to propose overarching models of sound change that take these individual differ

ences into account. Blevins (2004), Wedel (2006), and others have laid out models of sound

change with a perspective borrowed and modified from research on biological change. This

work conceptualizes sound change as an evolutionary system, in which the inherent noise

and variation in language serve as the seeds of linguistic change. As language is transmitted

across generations as well as in everyday communicative interactions, the innovators and

early adopters drive a slow shift in a particular linguistic phenomenon that is eventually

phonologized and recognized as a change.

This dissertation explores the influence of phonetic variation, specifically acoustic vari

ation correlated with stress and other types of prominence, on sound change. The crucial
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distinction between this work and the cases Ohala (1993) focuses on is that this type of pho

netic variation is already phonologized in one domain, namely the domain of stress. The

basic theory of change used will be the evolutionary models of Blevins (2004) and Wedel

(2006), by assuming that change essentially draws from a pool of synchronic phonetic vari

ation. Certain phonological and phonetic factors surrounding lexical stress in a language

may ‘tip the scales,’ making it more likely for some changes to happen over others. For this

reason, a typological study of phonetic variation is crucial to this project. Variation across

languages is presented in Chapter 4, while withinlanguage speaker variation is discussed

in Chapter 5.

This project has much to contribute to current research on language change and lan

guage contact, particularly to the study of sound change. The relative uniformity of stress

assignment systems in Australian languages make them an ideal group of languages to study

for insights into the role(s) the phonetics of stress play in language change. Through this

largescale comparison of many Australian languages, variation is explored both within and

across languages, and this variation is quantified in Chapter 6. This sort of study has not

been performed in any previous research, and there are no existing theories of which I am

aware that propose any principles by which lexical stress or the acoustic cues that mark it

undergo diachronic changes. This is a clear gap in linguistic research that this dissertation

will begin to fill, drawing on literature concerning the phonetics of lexical stress as well as

existing research concerning the phonetic precursors of sound change.

1.3 The current study: Claims

(1.1) The phonetic factors that cue linguistic prominence are linguistically heritable,

meaning that they vary and change in similar ways to phonemes. They vary in

a structured way within a language and will remain relatively stable until a change

occurs, in a way that is analogous to phonological change. For this claim to be true,
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the following must hold:

a. Prominence cues are consistent across speakers of the same language. Speakers

converge on the same cues to prominence and use these to the exclusion of other

potential cues. (This point already has lots of evidence.)

b. Closely related languages will be more likely to share cues to prominence than

languages that are more distantly related. This should be the most clearly ob

served when languages have the same pattern of stress assignment, as changes

in stress position will increase the likelihood of cue changes.

c. Study of population structure will show that significant variation exists across

languages, separately from any withinlanguage or withinspeaker variation.

(1.2) Just like all other linguistically variable phenomena, the phonetic cues to stress can

also vary along sociolinguistic lines within a language. In order for this to hold, the

following must be true:

a. Some cues to stress within a language may only be cues for some speakers, and

not for others. Similarly, speakers may vary in their use of these cues based on

the social situation.

b. This variation falls along defineable social lines, such as gender identity, dialect,

social status, register, etc. (This cannot be studied well with these data)

c. Study of population structure will show that significant variation exists across

speakers within a language, separately from any crosslinguistic or within

speaker variation.

(1.3) Different prominence cues may cooccur with one another, marking the same type

of prominence with multiple acoustic factors. However, the presence of multiple

cues may make each individual factor more unstable in the system, as the crucial

contrast would not be lost with the loss of one cue. Some cues may hold for all
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speakers in the language, while others may be sociolinguistically variable.

1.4 Australian languages

1.4.1 Overview

Bowern (2011) estimates 363 languages were spoken in Australia at the time of European

contact. Out of these languages, 275 (about 75%) are members of the Pama Nyungan lan

guage family (see Figure 1.1). PamaNyungan is the major family of the continent, while the

remaining languages are either part of very small families or are language isolates. How

ever, even most languages that are outside Pama Nyungan in Australia share several lin

guistic traits that make these languages look similar. For example, phonemic inventories

across Australian languages are largely uniform (Fletcher & Butcher 2014, Gasser & Bow

ern 2014). Vowel inventories are usually sparse, stops do not have voicing distinctions,

and retroflex consonants are common across these languages, regardless of whether they

are historically related. These facts, among others, have led researchers to claim that traits

only directly observed in a handful of Australian languages apply to all languages on the

continent, leading to overgeneralizations that ignore clear variation that would be found if

these languages were all studied on their own terms.

Despite surfacelevel similarity in the phoneme inventories of Australian languages,

previous work suggests that this does not preclude the existence of rich phonetic variation.

Gasser & Bowern (2014) found considerable variation in the phonotactics of Australian

languages, e.g. differences in phoneme frequencies and minimal word length requirements.

Similarly, Kakadelis (2018) conducted a phonetic study of three unrelated languages with

out a stop voicing distinction (Bardi, Arapaho, and Nahuatl). She found that while these

languages have the superficial phonemic similarity of ‘no stop voicing distinction,’ they

actually vary substantially in average oral stop segment duration, lenition, and voice on
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set time (VOT). These languages differed in many nonphonologized patterns of phonetic

variation in statistically significant ways. For example, Bardi showed a tendency toward

phonetically voiced stops in intervocalic and intersonorant contexts, while Nahuatl showed

the opposite effect, with more phonetically devoiced stops in these contexts.

Figure 1.1: Map of Australian languages,

from Chirila database (Bowern 2016).

Most Australian languages (about 80%)

have consistent initial lexical stress (Fletcher

& Butcher 2014, Goedemans 2010). How

ever, as has been found in other cases of su

perficial uniformity, the phonetic variation

in the correlates of lexical stress in these

languages is substantial. The claim that is

often made about Australian languages is

that the primary acoustic correlate of ini

tial stress is f0 (pitch), based on a handful

of studies of individual languages: Simard

(2010) for Jaminjung; Bishop (2003) for

Bininj Gunwok; Fletcher & Evans (2002)

for Dalabon and Bininj Gunwok; among others. Not only is this unsubstantiated in the

many Australian languages that lack rigorous acoustic analyses, but work on the likelihood

of stress correlates to be the same across related languages is sparse to nonexistent: there

is no empirical basis for such a claim. One of the outcomes of this project is that it adds

to existing work to more accurately construct a typology of stress correlates in Australian

languages.

One motivation for this project is to use suprasegmental variation in our reconstruc

tions of protoPama Nyungan. This language family is known for its surprising dearth of

phonological variation among the modern languages, but recent work has found that sub
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stantial variation exists in phonotactics and other phonetic factors (Gasser & Bowern 2014,

Bowern 2018b). By defining some principles of suprasegmental change, its influence on

segments, and describing suprasegmental variation across Australia, perhaps sound change

can become a more informative player in subgrouping and reconstruction of Pama Nyun

gan.

1.4.2 The Pama Nyungan family

The existence of a Pama Nyungan language family was first proposed in O’Grady, Voegelin

& Voegelin (1966). While the proposed makeup of this family in terms of subgrouping and

membership has changed over the years, most Australianists accept this language family

as valid (Dixon (2001, 2002) does not). The general consensus is that Pama Nyungan is

a large family of languages spoken in Australia, comprising roughly 75% of all languages

spoken in Australia before European contact (Bowern 2011).

A landmark study in the reconstruction and subgrouping of Pama Nyungan is Bowern

& Atkinson (2012) (revised in Bouckaert, Bowern & Atkinson (2018)). This study utilizes

Bayesian phylogenetic methods to determine the statistical probability of genetic relation

ships between all languages proposed to be part of Pama Nyungan. The authors compiled

data from 194Australian languages, coding for 189 cognate sets across these, and calculated

the most probable subgroups and split relations in the family. Their results found four ma

jor splits in the family which roughly correspond to geographical regions— Southeastern,

Northern, Central, and Western. Similarly, 25 of the 28 subgroups that had been proposed

in previous literature were reconstructed in the Bayesian tree, with the missing subgroups

likely being confounded by missing data.

The phonological similarity of Australian languages is what has led some scholars to

doubt the historical reconstructability of these languages. Oneway of identifying loanwords

in a language is to determine whether observed historical sound changes have operated on
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Figure 1.2: From Evans (2003b). Map of nonPama Nyungan language subgroups.

them or not. When phonological variation, and therefore described sound changes, are

scarce, it becomes more difficult to identify loans. However, as Bowern & Atkinson (2012)

argue, the presence of loanwords in a phylogenetic data set does not affect results unless

loaning is extremely frequent, which only applies to a handful of Australian languages.

1.4.3 NonPama Nyungan languages

While the majority of historical linguistics work and reconstruction has been done on the

large Pama Nyungan family, there are many languages, concentrated in the northcentral

region of the Australian continent, which are nonPama Nyungan. These are mapped out in

Evans (2003b), reproduced as Figure 1.2 here. These languages are all Australian, i.e. pro

posed to have descended from protoAustralian, but they belong to branches of the Aus

tralian language family that were not as fruitful as Pama Nyungan. Twentyeight language

groups have been proposed for these languages, all of which are laid out in Figure 1.2.

These families often consist of only a handful of languages, and in most cases the phyloge

netic relations between these families in the greater Australian family structure is unclear.

Some groups, such as Tangkic, show some evidence of belonging to the Pama Nyungan
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family but this evidence is not entirely clear (cf. Bowern 2020). Some languages are more

clearly distinct from this major family, but their relationship to other nonPama Nyungan

languages is tenuous at best; some of the groups in Fig. 1.2 may only be groups of geo

graphically close languages that are not in fact linguistically related. Other languages are

likely isolates, such as Tiwi, Gaagudju, and Giimbiyu (Evans 2003b).

1.4.4 Language endangerment

Fewer than half of the languages spoken in Australia before European contact continue to

be spoken. Among these, only around 20 languages are still actively spoken and passed

down to children, and the other hundred or so are primarily spoken by older people and no

longer being passed down (Commonwealth of Australia 2005). This is a dire situation for

indigenous Australian languages, and many communities have revitalization programs in

place to help combat this; there are around fifty active language reclamation programs in

Australia at time of writing (p.c. Claire Bowern). For the purposes of linguistic research,

the fact of the matter is that most Australian languages today only survive in archival ma

terials. This dissertation makes the case for using such materials, which were generally not

collected with modern phonetic analysis in mind, as a fruitful source of acoustic data.

1.5 Archival phonetics

For fieldworkers, archiving collected data to preserve it for future use is a critical part

of research. There are now decades of archived linguistic data from many, often under

researched, endangered, and sometimes extinct, languages of the world. And while these

archival deposits often require some additional processing before they are ready for phonetic

analysis (Babinski & Bowern 2021, Babinski 2021a) the data available here is invaluable,

especially for comparative work and when a language is no longer spoken.

Linguists and other field researchers often spend many years, sometimes their entire
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careers, building relationships with the communities in which they work. This relationship

building is crucial for ethical fieldwork, and allows for both the researcher(s) and the com

munity to achieve their goals in a mutually beneficial manner. It therefore becomes un

tenable for one researcher to collect their own linguistic data for a large comparative study

without perpetuating harmful practices such as ‘helicopter research.’ Only in rare scenarios

would one researcher be able to personally gather data from over a dozen languages without

perpetuating such harmful and unethical research practices.

Archival resources, then, become vitally important for conducting ethical typological

and otherwise multilingual linguistic work. However, the field of phonetics is still largely

based on the assumption that the researcher can and should collect their own data that is

carefully controlled in an experimental setup. Less focus has been placed on how to glean

meaningful insights from natural language data that was not collected for the purpose of

one’s specific research question. However, a body of recent work has made use of archival

materials for phonetic study; these studies and other practical considerations of working

with this type of data are discussed in Chapter 8.

1.6 Chapter summary

There are nine chapters in this dissertation. This is the end of the introductory chapter.

Chapters 2 and 3 provide background information for the results presented in Chapters 4

7, Chapter 8 provides discussion of the practical use of archival materials in linguistics

research, and Chapter 9 presents an overall discussion and conclusion to the dissertation.

Information on the data sources used in this project, including a review of the relevant

background on each of the 16 languages in this study, can be found in Chapter 2. Back

ground on data processing and analytical methods is outlined in Chapter 3. This chapter

provides discussion of the process of force aligning the archival materials using the Mon

treal Forced Aligner (McAuliffe et al. 2017), extracting acoustic information from Praat
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(Boersma&Weenink 2018), and analyzing measurements in R (R Core Development Team

2020).

There are four chapters presenting results of different types. Chapter 4 presents the

results of an acoustic study of stress for each language; the focus is on crosslinguistic re

sults and implications for theories of suprasegmental change. Detail on interspeaker (intra

language) results are discussed in Chapter 5 for each language with more than one speaker’s

audio available. Chapter 6 synthesizes these two sets of results, presenting a quantitative

analysis of the variation in stress cues both within and across languages using phylogenetic

methods. Chapter 7 presents the results of an automated method to hypothesize major cat

egories of phrasal contours in each language, using the methods first put forth by Kaland

(2021).

Chapter 8 provides an indepth discussion of using existing archival materials for lin

guistics research, specifically phonetics work. This chapter is meant to serve as a practical

discussion of the methods used in this dissertation and elsewhere, to benefit those wishing

to conduct similar work in the future. Finally, an overall discussion of the results and in

sights of this project can be found in Chapter 9, which also concludes the dissertation. [See

the Table of Contents for information on appendices.]
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Chapter 2

Data

Asmentioned in Chapter 1, the type of audio data used for the analysis of stress and prosody

in this dissertation was natural, spontaneous speech in the forms of narratives or conver

sations. These were identified within archival collections made by researchers in the past,

resulting in a corpus consisting of spontaneous speech recordings that vary in size and in the

date of recording. In this chapter, the sources of data used in this dissertation are described

in detail.

Section 2.1 describes the methodology used in identifying and downloading audio data

from online language archives. Sixteen languages are included in this project, and each

of these is described in the remainder of this chapter, grouped by historical relatedness.

Languages of the PamaNyungan family are discussed first, in §2.2.1, followed by non

Pama Nyungan langauges in §2.2.2. For each language, there is description of both the

existing documentation of the language, with a focus on prosodic documentation of any sort,

as well as a description of the particular archival collection that is used in the analysis here.

An overview of each archival collection used in this project can be found in Appendix A.
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2.1 Sources of Data

This study makes use of archived audio narratives from three archives: the Australian Insti

tute of Aboriginal and Torres Strait Islander Studies (AIATSIS, https://aiatsis.gov.

au), the Endangered Languages Archive (ELAR, https://elar.soas.ac.uk), and the

Pacific and Regional Archive for Digital Sources in Endangered Cultures (PARADISEC,

https://paradisec.org.au). Access to these archival deposits, in most cases, required

a request to be sent to the archive, and usually approval by the depositors themselves. A

small group of deposits on ELAR and PARADISEC were available for direct download

without consultation with the archive or with the depositor(s). Beyond the data acquired

through archival requests, a small set of language data in the present study was acquired

personally from the researchers who had collected the recordings themselves. The sources

of each language data set, along with depositors and method of acquisition, are given in

Appendix A.

Archival deposits were screened for recordings of narratives, conversations, and other

types of natural, running speech. Recordings of word or sentence elicitations were excluded

from the present study, in order to avoid potential confounds such as list intonation and

potentially unnatural prosody in ungrammatical or otherwise nonnaturalistic utterances.

Archival deposits with utterancelevel transcriptions as ELAN (2018) files were preferred

over fully unaligned transcripts.

Because of the nature of the present data set, the conditions of recording and record

ing devices used for each language in this study were unable to be controlled for. This fact

distinguishes the present study frommost other acoustic studies of stress, which tend to col

lect new, highly controlled experimental data to analyze (cf. Fry 1958, Gordon & Roettger

2017). This approach is infeasible for a study of this sort for a number of reasons. First,

collecting substantial amounts of highquality experimental data for each language in this
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study would be timeconsuming beyond the limits of a dissertation. The recordings that are

used in the present study were made by researchers who spent many months or even years

working on these languages, and have close relationships with the communities of speakers

who participated in them. Fostering such relationships is extremely valuable and crucial to

ethical data collection in linguistics. Second, conducting the types of phonetic experiments

that are often used in studies of lexical stress is a much more difficult task when working

in a remote community, often with elderly individuals and no access to an environment as

truly silent as a phonetics booth or lab setting. And finally, using archival data allows the

researcher to access languages that are no longer spoken, a fact that is true of a large propor

tion of the languages in the present study. Including these languages adds rich information

about the variation that has existed in Australia, even if there are not current speakers to

participate in a new experiment.

2.2 Languages

This section provides some relevant background information about the languages in the

present study, and details about the archival deposit when possible. Information about the

identity of speakers, recording conditions, equipment used, and other relevant information

about each deposit were not always available directly from the archival entry, so some of

this information may be missing. A map of all the languages in this sample is given in

Figure 2.1.

2.2.1 PamaNyungan Languages

This dissertation project includes data from five languages in the Pama Nyungan family.

Four of these are part of the major Western subgroup, while one (Yidiny) is part of the

Northern subgroup. Two of the Western languages (Warlpiri and Wanyjirra) are members

of the NgumpinYapa subgroup within the Western designation. This section provides a
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Figure 2.1: Map of all languages in sample.

brief discussion of each of these languages.

Northern: Yidiny

One language, Yidiny, represents the Northern subgroup of PamaNyungan in this project.

Yidiny [yii] is a PamaNyungan language in the Paman subgroup, spoken in the Cape

York Peninsula in Queensland, Australia. It is closely related to Djabugay [dyy], though

there is some disagreement as to whether this grouping constitutes an independent subgroup

of PamaNyungan (Dixon 2002) or a clade within the larger Paman subgroup (Bouckaert,

Bowern & Atkinson 2018). It was first described in Dixon (1977a,b), who suggested that

its system of stress assignment was variable according to a complex set of rules, including

stresstoweight. This idea was challenged by Bowern, Alpher & Round (2013) using the

same audio data used by Dixon, concluding that Yidiny in fact has consistent initial stress.

Recordings used for this project were made and transcribed at the utterance level by

R.M.W. Dixon sometime between 1963 and 1975 with contributions from two Yidiny

speakers, Tilly Fuller and Dick Moses (Dixon 1977a: xv). At the time of writing the
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grammar, Dixon (1977a) estimated there were around 2,000 Yidiny speakers in northern

Queensland; according to a 2016 census, there are only 19 speakers of the language today

(Eberhard, Simons & Fenning 2021).

The audio used in this dissertation project were digitized from the original tape record

ings and are deposited with AIATSIS. Materials were acquired by Claire Bowern and have

been used in a previous study of Yidiny stress placement (Bowern, Alpher & Round 2013)

and a study comparing the performance of various forced alignment programs on low

resource language data (Babinski et al. 2019). There are around 45 minutes of audio con

sisting of around 25,000 word tokens combined from speakers Tilly Fuller (F) and Dick

Moses (M). This audio was force aligned with the Montreal Forced Aligner (McAuliffe et

al. 2017) and manually corrected for the (Babinski et al. 2019) project; these files are the

ones used in the analysis of Yidiny in this dissertation.

Western: Wanyjirra, Warlpiri, Warnman, Yannhangu

The western grouping of Pama Nyungan languages consists largely of those languages spo

ken in the large state of Western Australia. The outgroups of this branch are the YolNgu and

Ngarna subgroups, with the main group of Western languages being part of the Nyungic

branch. Four of the languages described below are members of this Nyungic branch, specif

ically NgumpinYapa and Wati subgroups, and Yannhangu is a YolNu language.

Wanyjirra

Wanyjirra is a NgumpinYapa language and a member of the Ngumpin dialect continuum

(Senge 2016: 6). This language has been classified by many as a dialect of Gurindji [gue],

including in the Ethnologue (Eberhard, Simons & Fenning 2021). However, Senge (2016)

presents arguments that Wanyjirra is a language in its own right that is very closely related

to Gurindji, Jaru, Malngin and other languages in the Ngumpin dialect chain. It was once
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spoken in the Victoria River District of Northern Territory in Australia, but no Aboriginal

people live in this region today (Senge 2016: 5).

The language has been described in Senge (2016) based in part on the field recordings

in the ELAR deposit sourced for this project. Stress is described briefly in the grammar as

being found consistently on the first syllable of theword andmarked by “increased loudness,

and sometimes, length although it is not phonologically contrastive” (Senge 2016: 101).

Data for this language come from Chikako Senge, who collected the materials in 2011

and deposited the materials on ELAR. Access to the deposit was requested by me and

granted via ELAR in 2019. The recordings were made at the Kimberley Language Re

source Centre in Halls Creek, Western Australia. All of the audio used for analysis in this

project come from one speaker, Tiny McCale (F), who was around 83 years old at the time

of recording. All recordings were made using a Zoom H4n recorder, sometimes with an

external condenser microphone, and utterancelevel transcriptions were made in ELAN by

Senge.

Warlpiri

Warlpiri was first described comprehensively in Nash (1980), which includes substantial

remarks on stress in the language. The basic description given is that “primary stress is uni

formly on the initial syllable of the word” (Nash 1980: 100). Further discussion of the stress

patterns ofWarlpiri concerns the placement of secondary stress, which is not included in the

analyses in this dissertation and so will not be discussed here. The impressionistic descrip

tion of the correlates of stress made by Nash are: increased intensity, increased duration,

and higher pitch.

This is the only language where the data used did not already have timealigned ut

terance alignments. Instead, I had the audio and a text transcription, for which I aligned

utterances based on my judgment and the presence of pauses in speech. Recordings were
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made by David Nash and are not part of an archival deposit, instead being shared personally

with Claire Bowern and given to me for this project.

Warnman

Warnman [wbt] is a language in theWati subgroup and originates near Jigalong inWestern

Australia. According to a 2016 census, there may be no remaining Warnman speakers

(Eberhard, Simons & Fenning 2021).

The data for this project come from a PARADISEC deposit made by Nick Thieberger,

of recordings made in 1984. Among other documentary audio materials, this deposit in

cludes traditional stories that can be used for this sort of project. Data come from about 30

minutes of audio from only one speaker.

Yannhangu

Yannhangu is a YolNgu language spoken in Arnhem Land in north central Australia. This

is a largely multilingual region, with Yannhangu specifically having notable contact with

Burarra, a nonPama Nyungan language also included in this dissertation project (Bowern

& James 2005). While documentation materials were being collected around 2007, there

were only six remaining Yannhangu speakers. Documentation of this language is sparse,

with the notable exception of a learner’s guide (Bowern 2006) published as part of a general

documentation project that also included the recording of the materials used here. Audio

was recorded by Bowern between 2004 and 2006 and deposited at ELAR (Bowern 2007).

2.2.2 NonPamaNyungan Languages

The remaining eleven languages in this survey have not been found to be a member of

the Pama Nyungan family. These are described here, grouped together into their smaller

families when relevant.
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Nyulnyulan: Bardi

Bardi [bcj] is a language of the Nyulnyulan family in the Kimberley region. The audio

data used in this project was recorded on tape between 1990 and 2008 and then digitized

by Claire Bowern. There are five fluent Bardi speakers who contributed to the recordings:

Bessie Ejai (F), Tudor Ejai (M), Nancy Isaac (F), Jessie Sampi (F), and David Wiggan (M).

All were over 70 years of age at time of recording.

Primary stress in Bardi has been described in both Bowern (2012) and Bowern, Mc

Donough & Kelliher (2012) as demarcative, occurring consistently on the first syllable of

the word. Every word has this initial stress pattern, including pronouns, adverbs, preverbs,

and loanwords (Bowern 2012: 112). The acoustic correlates of stress in Bardi have been

observed to be increased vowel duration, higher intensity, and potentially vowel periph

eralization and pitch, though this latter correlate may occur as a function of higherlevel

prosody rather than wordlevel stress per se.

Bardi has a complex system for assigning secondary stress, although this is not at issue

in this dissertation. Secondary stress assignment is sensitive to morphological structure,

prosodic vowel deletion, and syllable weight, all of which add surface complexity to what

seems to be basically a rightward aligning trochaic system of secondary stress (Bowern

2012: 113).

A preliminary analysis of lexical stress in Bardi has been presented in Bowern, Mc

Donough & Kelliher (2012) and Bowern (2012). The correlates of stress in Bardi were

identified as increased vowel duration and intensity. Increases in pitch are hypothesized to

be correlates of phraselevel prosody instead of wordlevel stress, and stressed vowels are

found to be slightly more peripheral than unstressed ones (Bowern, McDonough &Kelliher

2012: 344).
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Maningrida: Burarra/Gunnartpa

Burarra [bvr] is generally considered part of the small Maningrida family, spoken in Arn

hem Land in northern Australia (Evans 2003b). It has some grammatical description (R.

Green 1987) and is proposed to have consistent initial stress (Glasgow 1981). Gunnartpa

is one of the three dialects of Burarra, spoken in the area of the Cadell River. Two Bu

rarra sources were available for the present study, both of which focused on speakers of the

Gunnartpa dialect. One of these data sources is a collection of digitized tape recordings in

the PARADISEC archive (Carew 1993). This audio was collected between 19931996 in

Arnhem Land by Margaret Carew. Recordings were originally made on casette tape and

digitized to .wav files in 2010. The other source is from ELAR, which also contains nar

rative recordings collected by Margaret Carew, all of which are transcribed and aligned at

the utterance level. These materials were collected between 1995 and 2012.

The Burarra sources contain audio from 13 speakers: Rose Darcy, Betty Warnduk,

Margie West, Jeannie Brown, Laurie Miyaga, Crusoe Baterra England, Margaret Nulla,

Katy Fry, England Bangala, Harry Gamarrang Litchfield, Michael Borrorrbuma, Rosie Jin

mujinggul, and Terry Gela Ngamandara. Speakers’ ages were not listed in the metadata for

the archival deposit.

The acoustic correlates of stress in Burarra/Gunnartpa have been analyzed for the first

time in this dissertation and will be submitted as part of a more general phonetic sketch to

Illustrations of the IPA (Babinski et al. in prep.).

Jarrakan: Gija

Gija [gia] is a member of the Jarrakan language group along with two other languages,

Miriwoong [mep] and Gajirrabeng [gdh]. It is spoken in the eastern Kimberley region

but is no longer learned by children. All current Gija speakers are over eighty years of age
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in a community of about 800 (Kofod 2013, de Dear, Possemato & Blythe 2020). Data for

this project comes from an ELAR deposit made by Frances Kofod in 2013. The deposit is

meant to document cultural and historical Gija knowledge, as well as the language used to

talk about forms of artistic expression such as painting and dance. The recordings used for

this project feature five speakers: Mabel Jawalji, Madigan Thomas, Peggy Patrick, Rusty

Peters, and Paddy Springvale. Most recordings were made between 20082011, with a

smaller portion of the materials collected in 1988.

A short description of Gija stress was presented in Taylor & Taylor (1971: 108), who

note that stress in “normal intonation” falls on the initial syllable of the word.

Gunwinyguan: Dalabon, Gunwinggu, Kunbarlang

The Gunwinyguan family is a small group of related languages spoken in Arnhem Land

in north central Australia. In addition to the languages included here, the family consists

of Jawoyn, Mangarrayi, Ngalakgan, Ngandi, Nunggubuyu, and Warray. Reconstruction of

ProtoGunwinyguan has been presented in a few published works including Harvey et al.

(2003), Alpher, Evans, Harvey, et al. (2003), and Evans (2003a). The three languages from

the Gunwinyguan family used in this dissertation are all part of the marne group, in the

center of the tree in Figure 2.2.

Dalabon

Dalabon is a Gunwinyguan language spoken in southwestern Arnhem Land in Northern

Territory, Australia. At the time the Dalabon collection was deposited to ELAR (2011), it

had fewer than ten speakers. It is classified as a Central Gunwinyguan language along with

varieties of Bininj Gunwok (cf. Fig. 2.2). The prosody of Dalabon has been investigated

in Ross (2011) and Ross, Fletcher & Nordlinger (2016).
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Figure 2.2: ProtoGunwinyguan language family (Evans 2003a, Ross 2011).

Data for Dalabon were sourced from Maia Ponsonnet’s ELAR deposit, which con

tains recordings from 20102012. The narrative recordings selected for this project contain

speech from five speakers: June Jolly Ashley (F), Lily Bennett (F), Maggie Tukumba (F),

Nikibini Darluk (F), and Philip Ashley (M). Speaker ages ranged from around 40 to around

70 years old at time of recording.

Gunwinggu

Gunwinggu [gup], a variety of Bininj GunWok, and is spoken in Arnhem Land and is

described in Evans (2003a). It is more closely related to Dalabon as another Central Gun

winyguan language, than to Kunbarlang (cf. Fig. 2.2).

Data come from a PARADISEC audio collection (Si 2014). Recordings were taken as a

linguistic fieldwork project (some elicitation, some narrative) by Aung Si near Maningrida

in the Northern Territory. Three speakers are represented in the data used for this disserta

tion: Jill Yirrindili, Charlie Brian, and another speaker whose name was not recoverable in
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the deposit, referred to by the initial “A” in transcription documents.

Kunbarlang

Kunbarlang is the outgroup language in the marne group of the Gunwinyguan family

(cf. Fig.2.2) and is the only coastal Gunwinyguan language (see the map in Fig. 2.1).

O’Keeffe et al. (2017) mentions that Kunbarlang’s place in the family is uncertain, however,

likely due to contact influences with Iwaidjan and Maningridan languages that are spoken

in the area.

Materials for Kunbarlang come from the ELAR deposit O’Keeffe et al. (2017). At the

time of deposit, there were fewer than 50 Kunbarlang speakers. Two speakers are repre

sented in the data used for this project, Frank Ambidjambidj and Sandra Makurlngu.

Tangkic: Kayardild

Kayardild [gyd] is a Tangkic language spoken on Bentinck andMornington Islands, part of

the South Wellesley Islands in Queensland, Australia. It is listed here as a nonPama Nyun

gan language, although recent work has considered whether Tangkic should be considered

a subgroup of Pama Nyungan (Bowern 2020).

At the time of data collection in 20042005, depositor Erich Round documented the

speech of the eight remaining fluent speakers of Kayardild, all of whom were over the age

of 60 (Round 2015). The narrative audio data used for this project includes speech from five

of these speakers, all of whom are female. They are Amy Loogatha, May Moodoonuthi,

Dawn Naranatjil, Paula Paul, and Ethel Thomas.

Northern Daly: Malak Malak

MalakMalak [mpb] has been classified by Nordlinger (2017) as a Northern Daly language,

a small grouping that consists of MalakMalak and one other language, Kuwema [woa].
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As other languages in the Daly subgroups, it is spoken in the Daly river region of Arnhem

Land. Data for this language come from an ELAR deposit made by Dorothea Hoffmann.

At the time of deposit, 20122013, there were eleven fluent native speakers of MalakMalak

remaining. All of these speakers primarily communicate with others in either Kriol or En

glish, and almost all of them also knowMatngala [zml] (Hoffmann 2015). The two speak

ers represented in the Malak Malak data used here are Thommy Wurra and Karrangan.

Southern Daly Languages: Murrinhpatha, Ngan’gi

Murrinhpatha [mwf] and Ngan’gityemerri [nam], of which Ngan’gi is a dialect, were once

considered language isolates; however, it has been proposed by I. Green (1995) that these

two languages are related to one another in the Southern Daly subgroup. The evidence

Green presents in favor of this subgrouping are largely based on similarities in verbal mor

phology, although the two languages do not have a high degree of lexical similarity.

Murrinhpatha [mwf] is spoken in the Daly River region in the Northern Territory of

Australia. It was described by Walsh (1976) as a PhD thesis, and in a learner’s gram

mar (Street 1987); there is also a MurrinhpathaEnglish dictionary (Street 2012). The lan

guage has since been the subject of a number of studies, including a comprehensive mor

phophonological sketch (Mansfield 2019) from which my assumptions about Murrinhpatha

prominence come. Audio recordings were made by John Mansfield and come from a PAR

ADISEC collection archived by Danielle Barth (Barth 2009). Recordings were made as

part of a structured social cognition task, where speakers were asked to create or retell a

narrative. Only one speaker, Gerald Mardinga, is included in this project.

The presence and placement of stress in Murrinhpatha has been a point of contention

in the literature (cf. especially Mansfield (2019)). Most accounts have been based on the

assumption that Murrinhpatha is typical among Australian languages in this respect, but the

phonetic facts of the language clearly deviate from this assumption, thus confounding these
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explanations.

Ngan’ki [nam] is also spoken in the Daly River region in the Northern Territory of

Australia. It is one of two major dialects of the language Ngan’gityemerri, which is the

proposed sister to MurrinhPatha in the Southern Daly subgroup. A grammar of this lan

guage was written by Reid (1990). Audio was extracted from video recordings available

from PARADISEC (Reid 2013), collected by Nicholas Reid in the community Nauiyu in

the Northern Territory. There are nine Ngan’gi speakers who are represented in this collec

tion, but only first names were recoverable in deposit metadata. The speakers’ names are

Benigna, Christina, Kinbi, Louise, Anne, Molly, Monica, John, and Agnes.

2.3 Summary: Relationships between languages

There are both historically related and areally related languages in the data sets described in

this chapter. They have been introduced here grouped by historical affiliation; these groups,

especially the Pama Nyungan languages, should be noted for potential signs of historical

stability and change. Some groups, especially the Daly langauges, are more regional group

ings than definitive phylogenetic groups, and should be noted for potential areal patterns.

Finally, the languages of Arnhem Land— Yannhangu, Burarra/Gunnartpa, Kunbarlang,

Gunwinggu, Malak Malak, Dalabon, Ngan’gi, and Murrinh Patha— are spoken in a dense

linguistic area in the Northern Territory, and thus are in contact with languages from many

different historically related groups. These languages should be noted for potential effects

of language contact on the phonetics of prosodic phenomena going forward.
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Chapter 3

Methodology

Before any sort of linguistic analysis, one’s data set must be cleaned to check for errors;

this is especially true for projects like this one, which use spontaneous speech recordings

made in variable field conditions. Beginning with the archival data described in Chapter 2,

audio files were associated with utterancelevel transcripts from the depositors themselves.

However, in order to conduct this study of stress, word and segmentlevel alignments were

also needed. These were achieved using forced alignment, as discussed in §3.1.

After alignment, further processing was required to extract acoustic measurements,

normalize thosemeasurements, and conduct statistical modeling to analyze the cues to stress

in all of these languages; all of these methods are described in §3.2. These methods are

especially relevant for the results presented in Chapters 4 and 5. Methods for the analyses

in Chapters 6 and 7 are discussed separately within these chapters. Finally, §3.3 presents a

brief discussion of the quality of the data being processed and analyzed in this dissertation.

3.1 Forced Alignment

Forced alignment algorithms offer an automatic way to align segment labels to spoken lan

guage audio. The Montreal Forced Aligner (McAuliffe et al. 2017) was used in this dis
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sertation project to add segmentlevel alignments given manually created utterance level

transcripts. The automatic alignments allowed for much more data to be processed than

if it were to be done manually, and required relatively minimal manual correction post

alignment. This section introduces the technical details of forced alignment, and the specific

process used to prepare and align the languages in this sample.

3.1.1 What is forced alignment?

There are two major Automatic Speech Recognition (ASR) toolkits on which a handful of

forced alignment programs are based. One is the HTK algorithm, or HiddenMarkovModel

(HMM) Toolkit, on which many popular aligners are based, such as the University of Penn

sylvania Phonetics Lab Aligner (P2FA) (Evanini, Isard & Liberman 2009), the Prosodylab

Aligner (Gorman, Howell &Wagner 2011), FAVE align (Rosenfelder et al. 2011), andWeb

MAUS (Kisler, Schiel & Sloetjes 2012), among others. HTK uses a Hidden Markov Model

to identify speech segments. HMMs are probabilistic models that, in the context of ASR,

can identify the boundaries of a speech segment based on its acoustic features. The model

is first trained on some amount of segmented audio, from which the HMM can construct

probabilistic acoustic models of the features of each phone included in the data. The HMM

can then be used to predict where these boundaries are in new audio data.

The other major ASR toolkit used for forced alignment is the Kaldi Automatic Speech

Recognition toolkit, which the Montreal Forced Aligner (MFA) (McAuliffe et al. 2017),

DARLA (Reddy & Stanford 2015), Gentle (Ochshorn & Hawkins 2017), and others are

based on. The Kaldi ASR Toolkit is based on a Hidden Markov ModelGaussian Mixture

Model (HMMGMM). A GMM is a way of identifying whether a particular data point is

part of some category, where each category is defined as a Gaussian distribution. Speech

segments in this sort of model are represented as a Gaussian distribution of relevant acoustic

features.
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Regardless of the alignment algorithm used, forced alignment works in the same basic

way. The algorithm must first be trained on some amount of manually segmented mate

rial. This creates a languagespecific model of segments that allows the algorithm to match

transcribed segments to acoustic features. Words need to be transcribed into sequences of

phones in some standardized transcription alphabet; here, the ARPABET phones are used,

as described in more detail in §3.1.4. The training model consists of acoustic models for

each phone in the data, which are then used as standards for identifying the boundaries of

those phones in the new data being aligned. Ideally, the training model would consist of

segmented material from the language being studied; however, as discussed in §3.1.2, the

realities of endangered language research can make this infeasible and can necessitate the

use of a model trained on a different language with appropriate manual checking of outputs.

Forced alignment algorithms may be constrained or unconstrained in nature. Con

strained forced alignment requires that transcripts be aligned at the level of the utterance or

breath group for the aligner to work, while unconstrained forced alignment does not require

this. While unconstrained forced alignment is saves time in preprocessing, the risks of

compounding errors in alignment tilt the scales in favor of constrained forced alignment.

Compounding errors can occur when a mistake is made early on in a sound file, which re

sults in a ripple effect for all following alignments in that file. With existing utterancelevel

alignments, a mistake in alignment can only have compounding effects on the remaining

segments in that utterance, instead of most or all of a long sound recording. This limits

the ripple effects of such errors and more easily deals with anomalies such as long pauses,

stretches of speech in another language, or nonspeech background noise that are especially

common when working with natural language recordings made in the field.
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3.1.2 Forced alignment for underresourced languages

Many forced alignment algorithms require large amounts of data to create a language

specific training model. When conducting research on endangered or underresearched

languages, this amount of aligned audio is often nonexistent and would require a massive

time investment on the part of the researcher(s) in order to do by hand. For this reason,

a growing body of work has investigated the usability and accuracy of forced aligners in

endangered and underresearched language work. Using a forced alignment algorithm with

a model trained on a language that differs from the target language results in higher rates

of error in the resulting alignment, but with manual correction it can offer a way of greatly

reducing segmentation time and facilitating not just linguistic research but also language

reclamation projects (cf. CotoSolano et al. (2022)).

DiCanio et al. (2015) compares the performance of the P2FA and HMAlign alignment

models on Yoloxchitl Mixtec language data. The data consisted of elicited word lists that

were constructed to collect words of varying lengths. They found that HMAlign made

fewer errors in alignment than P2FA, and that certain types of segments had higher error

rates than others. The authors attribute the differences in performance primarily to the

fact that HMAlign uses an allophonic English phone set, allowing for a greater phonetic

specificity than P2FA, which uses a contextfree phonemic English set of phones. When

using Englishtrained models on nonEnglish language data, the availability of a wider set

of phones for transcription can only increase the accuracy of forced alignment results.

Another study investigating the feasibility of forced alignment for aligning endangered

language recordings is Johnson, Di Paolo & Bell (2018), who look at the performance of the

Prosodylab Aligner on Tongan field data. The recordings used in this test were word lists in

Tongan, although the authors note that they planned to run forced alignment on connected

speech in the future. Recordings were made in a field setting with all the requisite back
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ground noise that that environment entails. The authors considered both the raw recorded

audio (‘dirty’ files) as well as audio that had been cleaned of ambient noise (‘clean’ files).

Results were fairly accurate for both types of files, as long as the aligner was trained only on

cleaned data. Furthermore, when compared to two different humans’ manual alignments of

a subset of the data, the Prosodylab Aligner’s results did not differ from manual alignment

any more than one human’s alignment might differ from another. The authors conclude

that using forced alignment in this way, even with manual corrections postalignment, is a

viable timesaving option for those looking to align their field recordings.

Babinski et al. (2019) considered the performance of forced alignment specifically for

Australian languages, using around 45 minutes of running Yidiny speech as the test data.

The data were collected in a field setting and transcribed at the utterance level. The aligners

compared in this study were P2FA, DARLA, and MFA. Of particular interest here were the

various potential approximations in transcription using the ARPABET transcription system.

Because ARPABETwas created to transcribe English phones, someYidiny sounds were not

available and needed to be approximated in some way. Specifically, alternatives were con

sidered for the transcription of stops, which need to be specified for voicing in ARPABET

despite having no voicing contrast in Yidiny; the palatal nasal, which was transcribed alter

nately as N, Y, and N+Y; and the trill, tap, and retroflex rhotic, which are separate phonemes

in Yidiny but have very different distributions in English. The optimal transcriptions for

these sets of phones were: stops transcribed as voiceless P T K; the palatal nasal transcribed

as N; and the rhotics as R (trill and retroflex, as they are allophonic), D (tap). These are

the standards used in transcribing language data in this dissertation; more details on the

ARPABET transcription are presented in §3.1.4.

The P2FA and MFA aligners performed similarly to one another in terms of prosodic

alignment, vowel measurements, and consonant durations, and were fairly accurate to the

gold standard manual alignments. The unconstrained version of DARLAwas used, and this
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model performed significantly worse than the other aligners tested. Both of these models

can save the researcher time in segmentation of audio even with manual correction. This

dissertation uses the Montreal Forced Aligner, which is described in the following section.

3.1.3 The Montreal Forced Aligner

The Montreal Forced Aligner (MFA) is an open source forced aligner first released with

McAuliffe et al. (2017) as an update to the Prosodylab aligner. In contrast to the Prosodylab

aligner, however, MFA is based on the Kaldi ASR toolkit. For alignment, MFA uses a

Hidden Markov ModelGaussian Mixture Model (HMMGMM) and passes over the data

three times to create the phones in the trained languagemodel. First, each phone is modelled

independent of phonological context (the monophone models stage). Then, phones are

modelled in their various contexts, considering one phone on either side of the target; this

stage creates the triphone models. And finally, speaker differences are taken into account

to create speakeradapted triphone models. All monophones in the input to the aligner must

be present in the training model, but this does not hold for all triphones.

MFA uses constrained alignment, requiring utterancelevel transcriptions as input. It

takes as input the following files: WAV format sound files sampled at least at 16kHz; Praat

TextGrids (*.TextGrid), or Prosodylab (*.lab) files, with utterancelevel transcription; and

a dictionary file, which lists each word in the transcript and associates it with a string of

phones. It is optional to specify a languagespecific training model, either from the existing

pretrained models (of which there are 26 at the time of writing), or from one’s own training

model created from manually segmented audio. While the inclusion of the training model

is optional, including it greatly increases the accuracy of the resulting alignments, even if

the training model was trained on a language that does not match the input language. This is

why, for the data in this dissertation, the pretrained English model was used in the alignment

of the Australian language data.
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Phone transcriptions for nonEnglish MFA training models use the GlobalPhone (GP)

corpora and phone sets for model training. GP standards are established in a language spe

cific way for each language, and in some cases come with a languagespecific graphemeto

phoneme transliteration algorithm. The Englishtrained model, however, uses the ARPA

BET transcription system, a phone set that was created specifically to transliterate English

phones. As none of the pretrained MFA models are specific to any Australian languages,

it is reasonable to suspect that using any of these on Australian language data comes with

some amount of error. The decision to use the English pretrained model instead of another

option was made for convenience and in light of the knowledge that any MFA output would

be checked manually for errors in alignment.

3.1.4 Data preparation

Audio files

The Montreal Forced Aligner requires that audio files be in WAV format and have a sam

pling rate of at least 16kHz. Archival deposits were identified as having WAV format audio

files before requesting access, and none of them had a sampling rate below this threshold.

In order to run MFA on a group of audio files, they must all have the same sampling rate. In

some cases, the audio files as obtained from the archive had different sampling rates from

one another, e.g. 16kHz and 44.1kHz. In these cases, those files with the higher sampling

rate were downsampled to match the lower rate.

Utterancelevel transcriptions

Utterancelevel transcriptions were created by the archival depositors for each language in

the sample. In most cases, these transcriptions came in the form of ELAN files. These

files varied in their structure and in the amount of detail included. Only the highest level of

38



transcription was extracted from ELAN to the TextGrids that were used as input to MFA,

i.e. morphemelevel transcriptions and syntactic information were not included. Usually,

audio including speech from multiple speakers had the transcriptions for each speaker in

a separate tier, and these tiers were preserved in the TextGrids and resulting alignments.

Some language deposits included information about the speakers such as name, age, and

other demographic and personal history information, but some only included the initials of

the speakers that served as the titles of the ELAN tiers.

Usually, ELAN transcriptions were made in the orthography for the language that

is considered standard either by the language communities or by researchers. Transcrip

tions into ARPABET were modulated to account for any crosslinguistic variation in or

thographic conventions. These transcriptions were extracted from ELAN in two forms: as

Praat TextGrids, to be used as direct input to MFA, and as a list of words, which was used

to construct the dictionary file for MFA input.

Some language materials did not come as ELAN transcription. The Bardi transcrip

tions were done manually by Claire Bowern before ELAN software was widely used. The

Warlpiri transcriptions were present in a plain text (.txt) file instead of an ELAN (.eaf) file.

In this case, the author of this dissertation created the utterancelevel boundaries manually

and pasted the transcript at the appropriate place in the TextGrid. Yidiny utterancelevel

transcriptions were aligned using P2FA from text transcripts made by R.M.W. Dixon, and

manually corrected.

Dictionary files

A .txt dictionary file is required input to MFA. This file was created by extracting ELAN

transcriptions as a list of words in the ELAN export menu. The lists of words for each file in

a languagewere combined inNotepad++, where thewordswere alphabetized and duplicates

removed. Each line in the dictionary file was structured as the example in (3.1), with the
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word as it appears in the transcript followed by the transcription, with each ARPABET

character separated with a space. Because the orthographies of the languages in the sample

are fairly transparent, the transcription into ARPABET characters was easily achieved using

the Find & Replace function in the text editor.

(3.1) slipped S L IH1 P T

ARPABET Transcriptions

The ARPABET was created by the Advanced Research Projects Agency (ARPA) in the

1970s to transcribe English phonemes. Now known as the Defense Advanced Research

Projects Agency, DARPA is an agency within the US Department of Defense dedicated

to research and innovation that has existed since 1958. Among many other things, ARPA

created ARPANET, the earliest predecessor to the Internet, and had a strong focus on com

puter technologies and language processing systems during the Cold War. The ARPABET

is capable of encoding the phonemes and allophones of English, as well as stress marking

and morpheme, word, and utterance boundaries.

Because ARPABET characters were created to transcribe English phones only, some

approximations were necessary to fit the available characters to the phonemes in Australian

languages. Most of these decisions were necessary for the Yidiny forced alignment in

Babinski et al. (2019), where multiple transcription options were considered in some cases

and evaluated for accuracy in automatic alignment. This section provides descriptions of

the transcription conventions settled upon, partly as a result of these comparisons.

An inclusive phoneme inventories of the Australian languages in the present sample are

given in Tables 3.1 and 3.2. The major ARPABET approximations needed to accommodate

this sort of phoneme inventory include: vowel qualities, phonemic vowel length distinc

tions, (lack of) stop voicing, retroflex and palatal stops, retroflex and palatal laterals, and
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the alveolar trill. All transcription conventions, including the more transparent decisions,

are described here. An overview of the transcription conventions, with IPA, orthographic,

and ARPABET equivalents, is given in Appendix B.

front central back
close i i: u u:

e e: o o:

open a a:

Table 3.1: Inclusive vowel inventory of sample languages.

ARPABET: Vowels

Many Australian languages have a 3vowel inventory described phonemically as /i a u/.

A smaller number of languages have a fivevowel system /i e a o u/, and many languages

additionally have phonemic vowel length distinctions.

In contrast to these relatively sparse inventories, ARPABET offers characters for 19

distinct vowel qualities, as well as primary, secondary, or tertiary stress marking. Stress

in English is marked by increased duration and intensity, as well as vowel decentralization

(Fry 1958). In order to avoid any errors caused by differences in the Englishtrained model

of vowel stress, every vowel in the Australian dictionary files wasmarked as having primary

stress, indicated by a numeral “1” after the vowel phone.

Phonemic vowel length distinctions are not present in most varieties of English and

are not represented in ARPABET characters, nor are monophthongal /e a o/ vowels. In

the case of short and long /i u/ phonemes, the length distinction was approximated as a

tenselax distinction. Long vowels were transcribed as tense /i/ and /u/, ARPABET “IY1”

and “UW1,” and short vowels were transcribed as lax /I/ “IH1” and /U/ “UH1.” Long mid

vowels were transcribed as diphthongal /eI/ “EY1” and /oU/ “OW1,” while mid short vowels

were written as lax mid vowels /E/ “EH1” and /O/ “AO1.” Finally, the long and short low

41



central vowels were transcribed as /A/ “AA1” and /2/ “AH1,” respectively.

bilabial dental alveolar retroflex palatal velar
plosive p t” t ú c k
nasal m n” n ï ñ N

trill/tap r, R

lateral l í ń

approximant w õ j

Table 3.2: Inclusive consonant inventory of sample languages.

ARPABET: Stop voicing

None of the languages in the present sample have a phonemic stop voicing distinction, in

keeping with the vast majority of Australian languages. While allophonic variation in this

respect abounds (cf. Kakadelis (2018)), for the purposes of forced alignment transcription

in ARPABET either the voiced or voiceless English stops must be decided upon. Babinski

et al. (2019) found that using voiceless ARPABET stops in transcription yielded slightly

more accurate segmentation results than using voiced ARPABET stops. For this reason, all

stops in the sample languages were transcribed as voiceless.

ARPABET: Bilabial consonants

The bilabial consonants in the sample languages all have equivalents in English and are

transcribed as such, “P” “M” “W.”

ARPABET: Dental consonants

Some Australian languages have dental stops /t”/ and /n”/. These are transcribed in ARPA

BET as “T” and “N” respectively. These stops were important to identify in the process

of creating the pronunciation dictionary because they are usually written in orthography as

‘th’ and ‘nh’ but have no relation to the glottal fricative.
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ARPABET: Alveolar consonants

The alveolar consonants /t/, /n/, and /l/ are all present in English and were straightforwardly

transcribed in ARPABET characters. Many Australian languages additionally have an alve

olar trill /r/, which is not present in English. This phone was transcribed as “R” in ARPA

BET, which corresponds to the retroflex approximant but indicates the rhotic quality of this

phone and encodes the allophonic alternation that sometimes exists between /r/ and /õ/ in

these languages. The trill also often exists in contrast to a tap /R/, which in English is an

allophonic realization of alveolar oral stops. As the voiced stops are not used to transcribe

Australian stops here, the tap was transcribed as “D” in ARPABET. These were usually

written orthographically as ‘rr’ /r/ and ‘r’ /R/ and were distinguished in transcription in this

way.

ARPABET: Retroflex consonants

Most Australian languages have retroflex consonants, as shown in Table 3.2. As English

has the retroflex approximant /õ/, this phone is used to color the aligner’s expectations of

a stop or lateral. This is achieved by collocating ARPABET characters “R” and the rel

evant alveolar stop or lateral. This results in transcription of the retroflex stop /ú/ as “R

T” in ARPABET. In cases such as these, measures of segment duration are calculated by

recombining these two phones in postprocessing.

ARPABET: Palatal consonants

Many Australian languages have a set of palatal consonants. The glide /j/ is also present

in English and is transcribed in ARPABET as “Y”. The palatal stop /c/ often exhibits some

amount of frication on release and is transcribed as ARPABET “CH,” the English /tS/. The

palatal nasal is present in Yidiny and was tested with three different transcription conven
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tions in Babinski et al. (2019): as plain “N,” plain “Y,” and combined “N Y.” It was found

that plain “N” resulted in sufficiently accurate alignments and had the advantage over “N

Y” of being one character to notate one phone. The aligner did not recognize /ñ/ well when

transcribed as “Y” because of the lack of nasality in this notation. Thus, the “N” convention

is used for the palatal nasal. Additionally, while Yidiny does not have a palatal lateral, the

same convention was extended to those languages with /ń/ by transcribing these as “L.”

ARPABET: Velar consonants

Both velar stops are present in English and are available characters in ARPABET, “K” and

“NG.”

3.1.5 Postalignment

The TextGrids resulting from MFA alignment were checked manually by either the author

or one of the following Yale undergraduate research assistants: Jeremiah Jewell, Shayley

Martin, and Ronnie Rodriguez. These students all had some coursework in phonetics and

were familiar with Praat and spectrogram reading before working on this project. In the

case of Yidiny alignments, the TextGrids were checked by one of the authors of Babinski

et al. (2019).

Conceding that even humanmade alignments are likely to vary across individuals, RAs

were asked to look specifically for errors that looked particularly unlike a decision a human

would make. For example, automatic alignments sometimes produce very long initial stops

because the beginning of the closure cannot be located, while a human would have an idea

of a reasonable boundary to place here. Another common issue comes about in vowelglide

sequences where the boundary is difficult to determine. An automatic system will often

make the first segment in this sequence quite long, as it does not find a reason to place an

end boundary, leaving the second segment to be very short. In contrast, a human aligner
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would be able to better approximate these boundaries using audio cues and common sense.

MFA is particularly good at locating clear consonantvowel transitions, and the RAs

were able to doublecheck these to ensure that there were not systematic mistakes in the

alignments. As this dissertation places a particular focus on vowel acoustics, RAs were

asked to look closely at vowel segmentation and ensure that the TextGrid boundaries accu

rately captured vocalic periodicity in the waveform. The corrected files were reviewed by

the author, who also addressed any issues that came up in the process of TextGrid review.

3.2 Statistical Methods

This section outlines the way that acoustic measurements are taken and how they are ex

tracted (§3.2.1) and the statistical methods by which stress correlates are identified (§3.2.2).

Five acoustic measurements with potential correlation to stress are the focus of this disser

tation: vowel duration, consonant duration, intensity, f0, and vowel space. In what follows,

each of these measurements is considered in turn.

3.2.1 Acoustic measurements

Potential acoustic correlates of stress were extracted from audio data using Praat scripts,

and in some cases were normalized in R (Boersma & Weenink 2018, R Core Development

Team 2020). Praat scripts were modified from original scripts by Dicanio (2017), Lennes

(2018), and McCloy (2012). This section describes how each measurement was taken and

how the measurements were manipulated in the analysis.

Duration

Duration measurements were extracted in milliseconds (ms) from Praat using the Dicanio

script. They were determined by the alignments at word and segment level as produced

by the MFA and checked manually. In Chapter 4, all duration measurements are reported
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as lognormalized from the original measurements. For measurements of vowel duration,

outliers shorter than 50 ms and longer than 200 ms were excluded. This amounted to the

exclusion of 5,835 vowel tokens out of 87,222 total in the corpus (about 6%). Other mea

surements of these outlier vowels are also excluded from analysis.

Intensity

Maximum and minimum intensity measurements were taken, in decibels (dB), using the

Dicanio script. Maxima and minima were extracted for each segment as well as each word.

These measurements of intensity were highly variable as a direct result of the variability

of the recording conditions in each set of language data. Amount of background noise,

location of recording (e.g. indoors or outdoors), and distance between the speaker and the

microphone all affect intensitymeasurements. For this reason, intensitymeasurements were

normalized relative to the intensity of the following vowel, thus creating values that were

comparable across recordings and languages.

Irel = Ia − Ib

The equation for this relative intensity measure (Irel) is the difference between the max

imum intensity of the target vowel (Ia) and the maximum intensity of the vowel following

the target (Ib). As a result, the relative intensity measure is a positive number when the tar

get vowel has a relatively higher intensity than the vowel than follows, and it is a negative

number when the target vowel has relatively lower intensity. Chapter 4 reports distributions

and statistical analyses using this relative measure.

Fundamental frequency (f0)

Fundamental frequency (f0) is used as the acoustic correlate of pitch in this dissertation.

Both average f0 measures for each segment and pitch tracks over each word are used in the

46



analysis, as described here.

Maximum and minimum f0 measurements were taken for each segment in the data

using the Dicanio script. These measurements were normalized in semitones computed

using each speaker’s average pitch reading at the reference. Measures used in the modeling

for stress correlates include the average of the minimum and maximum, as well as the

pitch range (difference between maximum and minimum f0). Zhang (2018) found that

this method was optimal in a comparison of sixteen f0 normalization methods, finding that

it performed the best in preserving talker differences in a case study of tone in Wu dialects

while normalizing over the effects of physiological differences on f0. Descriptive statistics

and stress correlation results are reported using this normalized measure in Chapter 4.

F0 is also used in the investigation into prosodic phrase categories, presented in Chapter

7. For this portion of the dissertation, scripts from Kaland (2021) are used; see Chapter 7

for detailed discussion of these methods.

Vowel formants

First and second formant measurements were taken in Praat using the Dicanio script at

the midpoint of the vowel. These measurements were then normalized using the average

spacing ∆F normalization method (Johnson 2020). This is a type of vowel normalization

that is vowel extrinsic, speaker intrinsic, and formant extrinsic. This method normalizes

vowel formant measures to an estimated vocal tract for each speaker, using the following

formula (from Johnson (2020: 57)):

∆F =
1

mn

m

∑
j

n

∑
i

[
Fi j

i−0.5

]
This value is used to normalize each individual formant measurement, as below:

F1′ =
F1
∆F
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The ∆F method was chosen for this project because of its crosslinguistic consistency.

This method provides vowel extrinsic normalization that, unlike other methods of this sort,

does not rely on ‘point’ vowels that are not uniform across languages and make it difficult

to compare normalized values in a typological study such as this one (cf. Fabricius, Watt &

Johnson (2009), Lobanov (2005), Nearey (1978)). The values produced using this method

are on the same measurement scale no matter the language, which makes differences across

languages more directly comparable than they would be using other methods.

3.2.2 Determining stress correlates

Stress correlates were determined for each language and each measurement individually,

and then compared to one another. Mixed effects linear regression models were run in R

using the lmerTest package (Kuznetsova, Brockhoff & Christensen 2017) with the de

pendent variable being the acoustic measurement in question. This results in five separate

models for each language. The maximum model for each measurement is given in (3.2).

Depending on the nature of the data, some of these variables were excluded from individ

ual language models. For example, some of the data used for this project only includes one

speaker of the language, so the random effect of speaker was excluded from those models.

Likewise, languages that do not have a phonemic vowel length contrast did not have vowel

length included as a fixed factor in these models.

For any individual model, one or more of the factors in the maximum model may not

contribute any explanatory power to the model. For each model in each language, the max

imummodel was cut down when needed, using the step() function in the lmerTest pack

age (Kuznetsova, Brockhoff & Christensen 2017). In some cases, the ‘stress’ factor was

eliminated using this function, but the nonsignificant results are reported in the following

chapter for thoroughness. Full model results are reported in Appendix C.
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(3.2) a. Regression Model A: vowel duration

lmer(vowel.duration ∼ (1|word) + (1|seg.identity)

+ (1|speaker) + phonemic.length + word.finality + stress

b. Regression Model B: consonant duration

lmer(consonant.duration ∼ (1|word) + (1|seg.identity)

+ (1|speaker) + stress

c. Regression Model C: intensity

lmer(rel.intensity ∼ (1|word) + (1|seg.identity)

+ (1|speaker) + phonemic.length + word.finality + stress

d. Regression Model D: f0

lmer(avg.f0 ∼ (1|word) + (1|seg.identity) + (1|speaker)

+ word.finality + stress

e. Regression Model E: vowel peripherality

lmer(Euclidean.dist ∼ (1|word) + (1|seg.identity)

+ (1|speaker) + word.finality + stress

Using this method, as opposed to a logistic regression model with ‘stress’ as the de

pendent variable and continuous measurements as fixed factors, allows for more control

over the other (nonstress) factors that may influence each measurement. For example, in a

duration model, phonemic vowel length and word finality can be included in the regression,

in order to tease apart the effect of stress from these other factors. A logistic model inves

tigating the same question (i.e. the relationship between stress and vowel duration) cannot

easily handle many control variables, which are especially crucial with naturalistic data that

was not collected in highly controlled carrier sentences.
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3.3 Data Quality

As discussed in the previous chapter, the data for this project were collected in a variety of

circumstances that cannot be controlled for when using archival materials. Many recordings

were made outside or in otherwise noisy conditions; factors such as speakers’ distance from

the microphone will likely vary across language samples; and different audio recorders and

audio processing tools were used across samples, among any number of other factors that

make these language samples variable in ways that highly controlled experimental data

would not be. Because of the nature of the data being used, I performed some quality checks

on each data set to determine the nonlinguistic variability present in the data. These checks

are summarized here.

Data quality was measured by looking at signaltonoise ratio across all the audio for

each language. This measurement is a way of measuring how loud periods of speech are

compared to periods of nonspeech, thus estimating the amount of background noise in a

recording. The formula for the signaltonoise ratio (SNR) is given in Equation (3.1), where

P = power.

SNR = 10log10

(
Psignal

Pnoise

)
= 10log10(Psignal)−10log10(Pnoise) (3.1)

It is important to note here that the standard way of measuring intensity in acoustic

analysis, decibels (dB), is already a logarithmic transformation of the power of a signal.

Because of this, the way of calculating SNR for the language data in this project only re

quired subtracting the average intensity in dB of untranscribed segments of the recording

from the average intensity in dB of segments of transcribed speaking. Calculations were

done using averages across each file in each archival collection, and then averaging those

ratios to get the final value as shown in Figure 3.3.

A positive SNR value indicates that the signal (in this case, transcribed speech) is louder
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and therefore more distinct that the background noise (any periods of silence, background

noise, and untranscribed speech). All of the language collections in Figure 3.3 have posi

tive SNR values. However, the standard SNR for high quality audio is generally considered

to be 50 dB (Sanker et al. 2021), which only one collection, Warlpiri, approaches. These

collections are consistently noisier than audio collected in laboratory conditions, as is ex

pected given the uncontrolled nature of the recording conditions. However, I also suggest

that these values may be artificially deflated because of the nature of transcription, rather

than recording conditions and background noise. That is, the transcribed speech in these

recordings are not necessarily the only speech sounds present in the audio. The files will

often include speech from the researcher (usually in English), and may additionally include

speech from other targetlanguage speakers that happens to remain untranscribed. So, what

is measured here as a signaltonoise ratio may include signal in the noise portion and ar

tificially deflate the measure. With such a general measurement as SNR, it is difficult to

determine to what extent this confounding factor applies for each collection and each file.

But it is very likely that there is a lot of speech in the recordings that is classified as “noise”

due to its being untranscribed, that inflates the average intensity of noise segments without

actually indicating noisy audio. Some of this speech would be the speech of the researcher

collecting the audio; their questions, explanations, and conversational turns are not neces

sarily transcribed in these materials, especially when they are not in the target language.

The other major source of untranscribed speech could be contributions from other speak

ers in a group who did not agree to contribute officially, or who happen to be visiting the

recording location while the audio is being collected. Untranscribed speech may also come

from children playing in the background and other sources, which may more conceivably

be considered background noise for the purposes of determining audio quality because this

speech may overlap with the intended speech audio and interfere with the integrity of the

signal.
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The methods used for measurement normalization were outlined in §3.2. It is impor

tant to note, given the variability in data quality summarized here, that the normalization

methods chosen for these measurements, especially intensity, were chosen with this vari

ability in audio quality in mind, in order to eliminate audio quality as a confounding factor

to the greatest extent possible.
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Chapter 4

Results: Crosslinguistic variation

The best evidence in support of Claim (9.1), that cues to stress are linguistically heritable,

is to establish that (a) each language uses a certain set of prominence cues in a consistent

way, and (b) that these cues vary across languages, with more closely related languages

being more similar in their use of stress cues than more distantly related ones. This requires

first establishing what the cues to stress are in each of the languages in this study, and then

comparing these crosslinguistically. This chapter presents the results1 of languageby

language investigations into the acoustic correlates of stress, with a focus on crosslinguistic

variation.

In what follows, I delve into the results of the acoustic study outlined in Chapter 3 with

a focus on crosslinguistic variation in the acoustic correlates of lexical stress. Variation

in these correlates across speakers of the same language is discussed in Chapter 5. Here, I

present the descriptive facts about each acoustic measurement investigated in the disserta

tion, along with each of these factors’ contribution to stress marking in all languages. These

measurements are: vowel duration (§4.1), onset and coda consonant durations (§4.2), in

1. Full R markdown output with all model results is available online at https://doi.org/10.5281/
zenodo.6354645.
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tensity (§4.3), f0 (§4.4), and vowel space (§4.5). A summary of acoustic stress correlates

across each language in this study is given in §4.6; overall, much variation is observed

across languages. While f0 and vowel duration are the most common correlates of stress in

these languages, all of the tested acoustic factors correlate with stress in at least one of the

languages in this study.

4.1 Vowel Duration

Measurements of vowel duration have been binned into four categories based on stress

status and phonemic vowel length. All vowels shorter than 50 ms and longer than 200 ms

were excluded, and these measurements were then log transformed. Vowel duration is a

significant correlate of stress in six of the languages in this study.

The distribution of durations in the short vowels for each language are shown in Fig

ure 4.1, binned into ‘stressed’ and ‘unstressed’ categories. These distributions have long

right tails, with some languages showing a more defined peak at the leftward edge, roughly

between 3.0 (around 50 ms) and 2.3 (around 100 ms).

Not all Australian languages have phonemically long vowels, and they are often infre

quent when present. As can be seen in Fig. 4.2, only 3 of 16 study languages have at least

5% long vowel tokens in their respective corpora: Bardi, Kayardild, and Yidiny. In these

languages, long vowels occur in both stressed and unstressed contexts. The languages with

under 5% long vowels fall into one of two categories. In one category, the infrequent long

vowels are distributed in this same way, with long vowels in both stressed and unstressed

syllables (cf. Dalabon, Burarra). In the other category, the small number of long vowels

are exclusively or almost exclusively stressed (cf. Warnman, Warlpiri, Murrinh Patha). In

these cases the total number of long vowels in the corpus is under 10.

With the relative proportions of long vowels in mind, the distribution of long vowel

durations are given in Fig. 4.3, grouped into stressed and unstressed groups. In many
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languages (e.g. Malak Malak, Burarra) the numbers of long vowels are so low that the

smoothed distributions have a strange looking shape. The numbers of long vowels are only

large enough in three languages to show some reliable distribution that looks somewhat

normal: Bardi, Kayardild, and Yidiny. For this reason, these languages will be discussed

specifically and the remaining languages’ distributions will not be investigated in much

detail.

Both Kayardild and Yidiny long vowels have a normallooking distribution with long

left tails, adding a complement to their short vowel distributions which were roughly normal

with long right tails. In Bardi, the distribution of long vowels looks much flatter, and this

again matches with the language’s short vowels which also have a very distributed spread

of duration measurements.

When the number of long vowels in a language is very low, this factor was left out of the

statistical analysis as the models could not make predictions based on so little data. Figure

4.4 summarizes the effect of stress on vowel duration in each language, as determined using

the method for Regression Model A, described in Chapter 3.
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Duration is a common correlate of stress, as shown in Figure 4.4. Each dot in this plot

shows the regression model estimate value for duration when stressed, relative to duration

when unstressed, and each line shows the standard error of this value. When the line does

not cross the zero mark (the dark dotted line), the effect is significant at α = 0.05, while

lines that do cross the zero mark are not. The unit of measure is logarithmic, as is the

duration measure input as the dependent variable for Regression Model A. This means that

an effect of+0.1 represents a roughly 6.7% increase in duration, since the range of duration

measurements is about 1.5 logarithmic units. Gunnartpa, Yidiny, Bardi, Wanyjirra, and

Malak Malak all have significant effects of about this size. For the purposes of categorizing

relative size of effects here, I consider an effect at or above +0.1 to be a ‘large’ effect of

stress on duration. The other languages with significant effects, Kayardild, Warlpiri, Yan

nhangu, Ngan’gi, and Gija show what I will consider a ‘moderate’ effect size. The models

for these languages predict stressed syllables to be around 3% longer than unstressed ones.

The remaining five languages in Figure 4.4 did not have a significant effect of stress.

Another factor included in Regression Model A that is generally of interest for studies

of wordlevel prosody is word finality. Languages often show increased duration in word

final syllables, often as a marker of word boundaries. As shown in Figure 4.5, fourteen of

the languages in this study have some significant effect of word finality on vowel duration.

In fact, in the cases of Gunnartpa, Yannhangu, and Yidiny, wordfinal vowels are around

10% longer than nonfinal vowels. Only Kunbarlang and Gunwinggu have no wordfinal

lengthening effect, with the remaining languages lengthening final vowels 3−7% over their

nonfinal counterparts.

These wordfinal lengthening effects underscore the many uses of vowel duration in

these languages. Along with lengthening final vowels to mark word boundaries, many of

these languages also use duration differences in their phonologies, as they have phonemic

length distinctions. As shown in Figure 4.4, many of these languages additionally use dura
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tion to some extent in marking stress. It is possible that the use of vowel duration differences

to mark a phonemic contrast in vowel quality in these languages increases the salience of

duration differences in all contexts, thus making further meaningful uses of duration differ

ences more probable than average.

These observations seemingly run counter to the Functional Load Hypothesis of Berin

stein (1979). This hypothesis, and this particular use of the term ‘functional load,’ refers

back to an argument in Berinstein’s thesis (quoted here in (4.1)) to explain why duration is

not a perceptual correlate of stress in K’ekchi, a finding which seemingly ran counter to the

prevailing idea of a universal hierarchy of stress correlates as put forth in Hyman (1977).

(4.1) “Change in F0, increased duration, and increased intensity, in that order, consti

tute the unmarked universal hierarchy for perception of stress in languages with no

phonetic contrasts in tone or vowel length; in languages with such contrasts the per

ceptual cue correlated with that contrast (i.e. F0 with tone and duration with length)

will be superseded by the other cues in the hierarchy.” (Berinstein 1979: 2)

This hypothesis predicts that the presence of phonemic vowel length in a language inhibits

the meaningful use of vowel duration differences elsewhere; similarly, the presence of

phonemic tonal distinctions should inhibit the use of f0 to mark stress, and so on.

Recent work testing the predictions of Berinstein’s Functional Load Hypothesis (FLH)

has produced mixed results. It was more or less upheld by Vogel, Athanasopoulou & Pin

cus (2016), which considered a survey of prominence cues in Greek, Hungarian, Spanish,

and Turkish. In Hungarian, the only language of this group with phonemic vowel length,

duration was not used to mark stress. Evidence is also found in this study for an exten

sion of Berinstein’s FLH predicting that stress and focus marking should not use the same

acoustic cues, though Hungarian serves as a counterexample to this point (Vogel, Athana

sopoulou & Pincus 2016: 37). However, Lunden et al. (2017) find no relationship between
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the presence of phonemic length contrasts and use of duration as a cue to lexical stress in

a larger study of stress correlates that sources information from published theses and other

academic works. Out of 82 languages in this study that do have contrastive vowel length,

45 (54.9%) use duration as a stress correlate. This is only slightly less frequent than among

the 58 languages that lack contrastive vowel length; 38 of these (65.5%) use duration as a

cue to stress. This difference in frequency is not found to be statistically significant and the

authors conclude that Berinstein’s FLH is not supported (Lunden et al. 2017: 573574).

While the FLH may hold and even have some cognitive reality in some languages, the

results just presented for Australian languages provides more evidence problematizing the

universality of this claim and provides an argument for including a more diverse array of

languages in studies of this kind.

4.2 Consonant Duration

4.2.1 Posttonic lengthening

Posttonic consonant lengthening has been noted as a common correlate of stress in Aus

tralian languages (Fletcher & Butcher 2014, Fletcher et al. 2015). This lengthening occurs

after a stressed vowel, regardless of the consonant’s syllable membership (i.e. both codas

and onsets of the following syllable are affected). Fletcher & Butcher (2014) have claimed

that posttonic lengthening is present in most if not all Australian languages. However,

evidence from some languages suggests that this is not a universal across the continent.

Some of these refuting studies are Jepson, Fletcher & Stoakes (2019) for Djambarrpuyngu,

Fletcher et al. (2015) for Mawng, and Pentland (2004) for Warlpiri, among others.

Based on the findings in previous work on the posttonic consonant lengthening phe

nomenon, consonants were binned into three categories; stops, nasals, and glides were in

vestigated for this effect separately. As the following results demonstrate, some languages
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only show this effect in one of the categories, and only one language (Kayardild) has an

effect in all three categories.

Stop consonants are the category most likely to show an effect of this posttonic length

ening phenomenon. Four languages— Kayardild, Warlpiri, Yidiny, and Murrinh Patha—

have significantly longer stops posttonically than otherwise (see Fig. 4.7). As the range of

consonant durations is around 2 logarithmic units (cf. Fig. 4.6), an effect of 0.1 units indi

cates a difference in duration of about 5%. Yidiny and Murrinh Patha both have significant

effects over +0.2, meaning that stressed vowels are associated with posttonic lengthening

of over 10% on average.

Only two languages have an effect of the stress factor on posttonic nasal duration:

Kayardild and Gunwinggu (Fig. 4.8). These effects are both around about+0.1, indicating

an increase in duration of about 5% on average. While Kayardild shows this effect for all

posttonic consonant groups, for Gunwinggu this effect is only seen in the posttonic nasals.

Three languages — Kayardild, Gija, and Warlpiri — have a significant effect of stress

status on the duration of posttonic glide consonants, as shown in Fig. 4.9. These effects

are again around +0.1 or about 5% longer on average after stressed vowels compared to

following unstressed ones. Kayardild shows this effect in all consonant groups. Warlpiri

shows this effect in the stop and glide groupings only; and for Gija the glide consonants are

the only group where a posttonic lengthening effect is seen.

The correlation of stress with posttonic consonant lengthening is not especially com

mon in the languages surveyed in this dissertation. This is further evidence against the

generalization of posttonic lengthening as extremely common across languages of Aus

tralia. However, as has been seen, posttonic consonant lengthening does occur in six of

these 16 languages for at least one grouping of consonant types.
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Figure 4.7: Model effect of the fixed binary factor ‘stress’ on duration of the following stop
consonant.
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Figure 4.8: Model effect of the fixed binary factor ‘stress’ on duration of the following
nasal consonant.
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Figure 4.9: Model effect of the fixed binary factor ‘stress’ on duration of the following glide
consonant.

4.2.2 Onset duration

Fletcher & Butcher (2014) and others have noted that duration of the pretonic onset conso

nant is often lengthened in Australian languages. Similarly to posttonic lengthening, this

effect may differ across the consonant categories stop, nasal, and glide, and these groups

are considered separately in the results reported here. The distribution of onset consonant

durations is presented in Figure 4.10, which colorcodes each consonant segment into one

of these three categories, and splits duration distributions by stress.

More languages have a correlation of onset stop duration and stress than either on

set nasal or onset glide duration and stress. Nine of sixteen languages in Fig. 4.11 show

significantly longer stop duration in onset position of stressed syllables when compared to

unstressed syllables. These effects are often larger than any of the effects seen for posttonic

lengthening as well. Again assuming a distributional range of roughly 2 logarithmic units,
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Figure 4.11: Model effect of the fixed binary factor ‘stress’ on duration of the onset stop
consonant.

the range of effect sizes in Fig. 4.11 ranges from 5% (+0.1) to 17.5% (+0.35) longer onset

consonants in stressed syllables when compared to unstressed ones. The largest effect is

observed for Yannhangu with an effect size of+0.35; this language also shows significant

and rather large effects for the other consonant categories.

Five languages show an effect of stress on the duration of onset nasal consonants in

Fig. 4.12. These languages— Gunnartpa, Yannhangu, Ngan’gi, Gija, and Wanyjirra—

also have significant effects of stress on the duration of onset stop consonants. The effect

sizes here range from around +0.1 to +0.25, or around 512% longer nasal consonants in

the onsets of stressed versus unstressed syllables.

Finally, seven languages in this data set show significantly longer glides in the on

sets of stressed versus unstressed syllables. Four of these languages— Gunnartpa, Gija,

Wanyjirra, and Yannhangu— have effects here along with the other consonant categories.
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Figure 4.12: Model effect of the fixed binary factor ‘stress’ on duration of the onset nasal
consonant.

Malak Malak has an effect for glides and stops but not nasals, and the other languages with

significant effects here, Yidiny and Dalabon, only have an effect of onset lengthening in the

glide consonants.

Overall, 11 of the 16 languages in this sample have an effect of onset lengthening in

stressed syllables for at least one of these consonant groupings. This is the same number

of languages that use vowel duration as a correlate of stress, although these are not entirely

overlapping groups, and it is almost twice as many languages that show some amount of

posttonic lengthening.
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Figure 4.13: Model effect of the fixed binary factor ‘stress’ on duration of the onset glide
consonant.

4.3 Intensity

Measures of intensity are highly variable, especially given that the data sources used in this

project were recorded at different times, in different locations, and in different recording

situations. For this reason, intensity measurements were normalized relative to the intensity

of the following vowel. The equation for this relative intensity measure (Irel) is the differ

ence between the maximum intensity of the target vowel (Ia) and the maximum intensity of

the vowel following the target (Ib).

Irel = Ia − Ib

As a result, the relative intensity measure is a positive number when the target vowel

has a relatively higher intensity than the vowel than follows, and it is a negative number

when the target vowel has relatively lower intensity.
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Figure 4.14: Distributions of relative intensity measure, grouped by stress status. Stressed
vowels shown in dark blue.

Figure 4.14 shows the distributions of this relative intensity measure for each language,

for both stressed and unstressed vowels. These distributions can be interpreted as follows.

When intensity tends to lessen gradually over the course of the word, both stressed and

unstressed vowels will have a distributional mean above zero, as each syllable will be more

intense than the following one. When both stressed and unstressed vowels have means

around zero, there is no variation in intensity based on stress or syllable position. When

only stressed vowels have a distributional mean above zero, and unstressed vowels have a

mean close to zero, we may expect that intensity is a correlate of stress in that language.

Such a distribution indicates that stressed syllables are consistently higher than the ones that

follow it, while consecutive unstressed syllables tend to hold a steady intensity, i.e. there is

not a positional effect. A potential correlation of intensity with stress based on this metric

is observed in six languages: Gija, Bardi, Yannhangu, Warnman, Ngan’gi, and Yidiny.

Despite these apparent trends in the data distributions, the regression model results in

Figure 4.15 do not show intensity and stress to be correlated in all of these languages. Bardi,

Yidiny, and Ngan’gi do show significant effects of stress here, along with Malak Malak,
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Figure 4.15: Results of regression model C; model estimate and standard error values for
binary factor ‘stress’ shown.

Gunwinggu, and Kayardild. All of these effects are small, with estimated values for stressed

vowels being between 0.5 and 2 dB more intense than unstressed vowels. Given that the

range of relative intensity values in Figure 4.14 ranges something like 25 dB, this amounts

to an increase in intensity in the range of 2 to 8%. This effect may well be perceptually

salient for some speakers, especially speakers of Yidiny which is on the high end of this

range, but followup study would be needed to test this.

All other languages besides Kunbarlang have significant effects in the opposite direc

tion; stressed syllables are significantly less intense than unstressed ones. It is important in

these cases to remember that the stressed syllables in this case are all wordinitial as well.

As there is not an argument for stress or any sort of prominence to be marked by a quieter

vowel, I conclude from the results in Figure 4.15 that intensity is not a salient marker of

stress in any of these languages with significant negative effects. Perhaps another factor is

driving these effects, such as a nonword initial high phrasal tone that increases intensity

elsewhere and results in these negative effects initially. A solution to this issue could be

71



resolved by including information about phrasal prosody in the regression models. This is

beyond the scope of the current thesis but is an avenue of future research; for some inves

tigation into phrasal contours, see Chapter 7.

4.4 F0

As discussed in Chapter 3, increased f0 is often cited as the primary correlate of initial stress

in Australian languages as a whole. Using f0 to mark consistent initial stress may function

not just as a stress correlate, but also as a prosodic marker of phonological word and phrase

boundaries. This section considers both the distributions and correlation with stress of f0,

as in previous sections, and the findings from an investigation into the anchoring of the

pitch gesture to various landmarks at the beginning of the word.

4.4.1 F0 maximum

The distributions of normalized f0 measurements are given in Figure 4.16. Some clear

distributional differences in stressed versus unstressed vowels are present in these data.

For example, the stressed distributions for Yidiny, Yannhangu, and Warlpiri are clearly

centered at a higher value than the corresponding unstressed distributions. These suggest a

correlation with stress as has been noted to be common among Australian languages.

These distributional trends hold up in the regression model results shown in Figure

4.17. Yidiny, Yannhangu, and Warlpiri all have correlations predicting stressed syllables

to have f0 values about 1 semitone higher than unstressed ones. As the range of distribu

tions in Figure 4.16 is about 20 semitones, this amounts to stressed syllables being about

5% higher than unstressed. This size of effect is also seen for Malak Malak, and slightly

smaller effects of about 2.5% are found for Wanyjirra, Bardi, Gunwinggu, and Kayardild.

Gija shows a very small effect of stress, but no significant effect is found for Burarra, Dal

abon, Kunbarlang, or Gunnartpa. Finally, Ngan’gi and Murrinh Patha both have small but
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Figure 4.16: Distribution of normalized f0 measurements (in semitones) for each language,
grouped by stress status.

significant negative effects, predicting stressed (initial) syllables to be slightly lower in pitch

than unstressed ones. In these cases, and similarly to the conclusion drawn in §4.3, I do not

propose that this effect has to do with stress. Instead, the effect may be due to some other

factor, especially if there are higherlevel phrasal contours that move the maximum f0 to

another location in the word, and f0 maximum does not correlate with stress at all.

It is particularly notable that all of the Pama Nyungan languages in this study show

significant effects of stress on f0measurements. Generally speaking, and partially as a result

of the family’s large size, the Pama Nyungan family has been studied more extensively by

linguists than nonPama Nyungan languages have been. As these results suggest that f0

is in fact a very common and strong correlate of stress in Pama Nyungan languages, it

stands to reason that a generalization would be made regarding all languages of Australia

that f0 is the most common correlate of stress. However, these results suggest that this is

not a universally true fact about Australian languages, and that f0 may be a less common

correlate of stress particularly outside of the Pama Nyungan family.
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Figure 4.17: Results of regression model D; model estimate and standard error values for
binary factor ‘stress’ shown.

4.4.2 F0 range

Some languages may not correlate especially high f0 with stress, instead using steeper f0

contours on stressed syllables when compared to unstressed ones. This phenomenon would

be reflected in a greater f0 range across the vowel, which this section investigates. The

distributions of f0 range across languages are presented in Fig. 4.18, grouped by stress

category. While these range values are often smaller than 2 semitones, they can be quite

large, up to around 10 st. Some languages, especially Bardi, Gija, and Kunbarlang, visibly

have higher mean f0 range values in stressed vowels compared to unstressed.

The results of regression modeling with f0 range as the dependent variable are shown

in Fig. 4.19. As observed in the distributional data, Bardi, Gija, and Kunbarlang all have

significant positive effects of the binary ‘stress’ factor on f0 range, along with Kayardild as

well. The sizes of these effects are around +0.25 semitones (around +0.35 for Kunbarlang),

which is an increase in f0 range of around 2.5% given the distributional range.

74



●● ● ● ●●● ● ●● ● ●● ●● ● ●● ●● ● ●● ●● ●●●●● ● ●●● ● ●●● ●● ●●●● ●●● ●●●●●● ● ●● ● ●●● ●●● ● ●●●● ● ●● ● ● ●● ●●● ●●● ●● ●● ● ●●●● ●●● ●● ● ●●● ●● ●●● ●●● ● ●●● ● ● ●● ●● ● ● ● ● ●●●● ●● ●●● ●● ● ●●● ●●●● ●● ● ●● ●●● ●●● ●●● ●●● ● ● ●● ● ●● ● ●● ●● ●● ●●● ●●●● ●● ●● ●● ●● ●●● ●● ● ●● ●● ● ●●● ●●● ●●●● ●●● ●●● ● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●● ● ●●● ●●●●● ●●●● ●●● ●●● ●● ●● ●●● ● ●● ●● ●●●●●● ● ●● ●● ●● ● ●● ●● ●● ●● ●●● ● ●● ● ●● ● ●●● ● ●● ●●●● ● ● ● ● ●●● ●● ●●● ● ●● ● ●● ●●●● ●● ●●●● ●● ● ● ●●● ● ●●●● ●● ●● ●● ● ●● ● ●● ●● ●● ●●●● ●●●● ●● ●●● ●● ●● ● ●●● ●● ●●●● ● ●● ● ● ● ●● ● ●●● ●●● ●● ● ●●●● ●● ● ●●●● ● ●● ●● ●● ● ●● ●● ● ● ●● ● ●● ● ●●●●●● ●●● ●● ●●● ● ●●● ●●● ●●●●● ● ●●●● ●● ● ●●● ●● ●● ●●● ● ●●● ●●● ●● ●● ●●● ●●● ● ●●● ●●●●●●● ● ●● ● ● ●●● ●● ● ●●● ●● ●●●●● ●● ●● ●● ●● ●● ●● ● ● ●●●● ●●● ●● ● ●●●●●● ● ● ●● ●●● ●● ●● ●● ●●● ●● ●● ●●●●● ● ●● ●● ●●● ● ●● ●● ● ●●● ●●●● ● ● ●●●●● ● ●●●● ●● ●● ●● ●● ●● ●●● ● ●● ●● ●●● ● ●● ●● ●● ●● ●● ●●●●● ●

● ●● ●● ●●● ● ●●● ●●●● ●● ●● ● ●●● ● ●● ● ●●●● ●●●●● ●● ●●● ●●● ● ●●● ●● ●● ●●●● ●● ● ●●● ●● ●● ● ●● ●●● ● ●● ●● ● ●●● ● ●● ●● ●● ● ● ●●● ●● ● ●● ● ●●● ●● ●● ●● ●●● ● ●● ●● ●● ● ●●● ● ●● ●● ●●● ●● ● ●●● ● ●● ●●●● ● ●●●●●●● ● ● ● ● ●● ●● ●● ● ●● ●● ●● ● ●● ●● ● ●●● ●●●● ● ●● ● ●●● ● ●●● ●● ●●● ● ●● ●● ●●● ●● ●● ●● ●●● ●● ●● ● ●●● ● ●● ●● ●●● ●● ●● ●●● ●● ● ●●● ● ●● ●●● ● ●●● ●●● ● ●● ●● ●● ●●● ● ●●● ●● ●● ● ● ●● ● ● ●● ●● ● ●●● ● ●●● ● ●●● ●● ●● ●●●● ●●●●● ● ●●● ●●

●● ●● ● ●●●● ●● ●●● ●● ●● ● ●● ●● ● ●●●● ● ●●●● ●● ● ●● ●●● ●●● ●● ● ●● ●●● ●●●● ● ● ●● ● ●● ●●●● ● ●● ●●● ● ●●● ● ●● ●●● ● ●● ● ●●● ● ●● ● ●●● ● ●● ●● ● ●●● ●● ●● ● ●● ● ●●● ●●●● ●●● ● ●● ● ●● ● ●● ●●● ●●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●●● ● ●●●●●●●● ● ● ●●● ●●● ●●● ●● ●●● ●● ●● ● ●● ● ●● ● ● ●●●● ● ●●● ●●● ●●● ●● ● ●

●● ● ●● ●● ●● ●●● ●●● ●●●● ●●● ●● ●● ● ●● ●● ●● ●●● ● ●● ●●● ● ●●● ● ●●● ●●● ●●●● ●● ●● ● ●●● ●● ●● ●●● ● ●●● ● ●● ●●●●●●● ●●● ●● ●● ●● ● ● ●●●● ●● ●●● ●●● ●● ●● ●● ● ●● ●● ● ●●● ●

● ● ●●●● ●● ●● ●● ●●● ●● ● ●●●● ● ● ●●● ●● ●● ●● ●●●●● ●●●●●● ●● ●● ●●●● ● ●● ● ●●● ●● ●● ●●● ●●● ●● ●●●●● ● ●● ●● ●● ●● ●●●● ●● ● ●●● ●●● ●●● ●● ●● ●●● ●●●● ● ●●● ● ● ●●● ●● ●●● ●●● ● ●● ● ●● ●● ●●● ●● ●● ●● ●● ● ●●●●● ● ●● ●● ● ●●●●● ●●● ● ●● ●●● ● ●●●● ●● ● ● ●● ●● ●● ●● ●● ● ●● ●●● ●● ● ● ●● ●●● ● ● ●● ●● ●●● ●●● ●● ●● ●● ● ● ● ●● ● ●● ●● ● ●● ●● ● ● ● ●●●● ● ●● ●● ●● ●● ●● ●●● ●● ●● ● ●●● ● ●●● ●●●● ● ● ●● ●●●● ●●● ●● ●●●● ●●● ● ● ●●● ●● ●● ●●● ●●● ●●● ● ●●●●●● ●●● ● ●●● ●● ●●● ●● ●● ●● ● ●● ● ●●●● ● ●●● ●●●●●● ● ●● ●● ●● ●●●●● ●● ●● ●●● ●● ●● ● ●● ●● ●● ●● ●●● ●●●● ●● ●● ●●● ●● ●● ● ●● ● ●●●● ● ●●● ● ●● ● ●●● ● ●●● ●●●●● ● ●● ●● ●● ●●●●●●● ●● ●●● ●● ● ●●● ● ● ●● ●● ●● ● ●●● ●● ●● ●● ● ●● ● ● ●● ● ●●●● ●● ●●● ●●●

●●● ● ●● ●●● ● ● ●●● ●● ● ●● ●● ● ●●● ● ●● ● ●●●● ● ●● ●●● ● ●●●● ●●●● ●●● ● ●● ●● ● ●●● ●●● ● ●● ●● ● ●●●● ●● ●● ●● ●● ●● ●● ●●● ● ● ● ●●● ●● ● ● ● ●●● ●●● ● ● ●●● ●● ●● ● ●● ●● ●●● ●●●●● ● ●●●● ● ●●● ●●● ●●●●● ●●●● ●● ●● ●● ● ●● ● ●● ●●● ●●● ● ●● ●● ●● ●●●●● ● ●●● ●● ● ●●● ● ● ●●●●● ●● ●●●●● ●●● ● ●●● ● ● ●●● ● ●●● ● ●● ●● ●●● ●● ●● ●●●● ● ● ●●●● ●●● ●● ●● ●● ●● ●● ●● ● ●● ● ●●●● ●●● ●●● ●● ● ●

●● ●● ●● ● ●●●● ● ●●●●● ●● ● ●●● ● ●● ●● ●●●● ●● ●● ●● ● ●● ● ●●● ● ●●●●● ●● ●● ● ●● ● ●● ●● ●● ●● ●●● ●● ● ● ●●● ●●● ●●● ● ●● ●● ●●● ●●●● ●●● ● ● ● ●● ●●● ● ●● ●● ●●●● ●● ●● ● ● ●● ● ●●●● ● ●●●● ●●● ●●● ●● ●●● ●●● ●● ● ●●● ●● ● ●●● ●●● ●●● ●● ●●● ●● ●●●●● ● ● ● ● ● ●●●●● ● ●●●●●●● ●● ● ●● ●● ●● ●●● ●● ●● ● ●●●● ● ●●● ● ● ● ●● ●●●● ●●● ●● ● ●●● ● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●●●● ●● ●● ●● ● ●●● ●● ●●● ● ●●● ● ●● ●●● ●● ●● ●● ●● ●●● ●● ●● ● ●● ●●●● ● ● ●● ●● ●●●●●●● ● ●● ●● ●● ● ●● ●●● ●●●● ●●●● ●● ●●●● ●●●● ●● ● ●● ● ●●● ●● ●● ● ●● ●● ● ●● ●● ● ● ●● ●●●● ●● ●●● ●●●● ● ● ●● ● ● ●●●● ●● ●●●●● ●●●●●●●● ● ●● ● ● ●● ●●● ● ● ●● ●● ●● ● ●●● ●● ●● ●●● ●●● ●●● ●● ●● ●● ● ● ●● ● ● ●● ●●●● ● ● ●●●● ●● ●● ● ●● ●● ●● ● ●● ●●● ● ● ●● ●● ●●● ●●● ●●● ●● ●● ●● ●● ●●● ●● ●● ●● ● ●●● ●●●● ●●● ●● ●●● ●● ●● ● ●●●● ● ●● ●●● ●● ● ● ●● ●● ●●● ●● ● ●● ● ●●●● ● ● ●● ●●● ●●●● ● ●● ●● ●● ●●● ● ● ●● ●●● ● ● ●● ●● ●● ●● ● ●●● ● ●● ● ●● ●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ●● ● ●●● ●● ●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●●●● ●● ● ●●●● ●● ●●● ● ●● ● ●● ● ●●●● ●● ●● ● ●●● ●●● ●● ●●● ● ●● ●●● ●● ●● ●● ●● ●●● ● ●●● ● ●●● ●● ●● ●● ●●●● ● ●● ● ●● ●● ●●● ●●● ● ●● ●● ● ●● ●●●● ● ●● ●●●● ● ●● ●●●●● ● ●● ●● ●●● ● ●● ●● ● ●●● ●● ●● ● ●●● ● ● ●●●● ●● ●● ●● ●●● ●● ●●● ●● ● ●●● ●● ●● ●● ●● ● ●● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ●● ●● ● ●●● ● ●● ● ●● ●●● ●● ●●● ●●

●● ●● ●●●●● ●● ●●● ●● ● ● ●●● ●●● ●●● ● ●● ●● ● ●● ●● ● ●● ● ●● ●● ●● ●●● ●● ●● ●●●● ●●● ●●● ● ●●● ●●● ● ● ●●● ●●● ●●● ●●● ●●●● ●●●● ●●●●● ●● ●●● ● ●● ●●●●● ●● ●● ●● ● ●●● ●● ● ●●●●● ● ● ●●●● ●●●● ● ● ●● ● ●●● ●●● ● ●●●● ●●● ●● ● ●●● ●● ● ● ●● ● ●●● ● ●● ●●●● ●● ●● ● ●● ●● ●●●● ●● ●● ●●● ●● ●● ●● ●●● ●●●●● ●● ● ●● ●● ● ●● ●● ●●●●●● ●● ●● ●●● ●● ●● ●● ● ● ●●●● ●● ●●●● ● ●● ●● ●●● ●●● ● ● ● ●●● ● ●● ●● ● ●● ●●● ● ●● ● ● ●● ● ●●●●● ●● ●● ●●● ●●●●● ●● ●●●● ●● ●●● ● ●●● ●● ● ●●●●● ●● ●● ●●●● ●●●● ●● ●●●● ●●● ●● ●● ●●● ●● ●●● ● ● ●● ●● ●●●●●●●●● ● ●●● ● ●● ●●● ● ● ● ●●

●●● ●●● ●● ●●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ● ● ●●●● ●● ● ●● ●●● ●

●● ●●● ●● ●● ● ●●●● ● ●●●● ●● ●●● ●● ●● ●●● ●●● ●●●

●● ● ●● ●● ● ●●● ●● ● ●● ● ● ●●● ● ●●

● ● ●● ●● ●●● ● ●●● ●● ●● ●● ●● ●● ●●● ●●●

● ●● ●● ●● ●● ● ●● ●● ●●● ● ●●● ●● ● ●● ●●● ●● ● ●●● ●● ● ●●● ● ●● ● ●● ●● ●● ●● ●●● ●●● ●●● ●●●●● ●● ●● ●● ●● ●●● ●●● ●● ●●● ● ●●●● ● ●●● ● ●● ●● ●●● ●● ●●● ●●● ● ●●●● ● ●● ●● ●●● ●●● ●● ● ● ●● ●● ●● ● ●● ● ●● ●●●● ●● ● ●●● ●● ●●●● ●● ●●●●● ● ●●●● ● ●● ●● ●●●● ●● ● ●●● ● ●● ●● ●●● ●●●●● ●●● ● ● ● ●●● ●● ●●● ● ●●●● ● ●● ●● ●●● ● ●● ●● ●●● ● ●●● ●●● ● ●●● ● ●● ●●● ●● ●● ●● ●● ● ●● ●●● ●● ●●● ●●● ● ● ●● ● ●● ● ●● ● ● ●● ●● ●● ● ●●● ● ●● ●●● ●● ● ●● ● ● ● ●●● ●● ● ● ● ● ●●● ●●● ●●●● ● ●● ●● ● ●●●● ●● ●● ● ●●● ●●● ●● ●● ●● ● ● ● ●●● ●●● ● ●●● ● ●● ●●●● ● ●● ●● ●●●● ●●●● ●●● ● ●●●● ●● ●● ● ●●● ● ● ●● ●●●● ●● ●●● ●● ● ● ●● ● ●● ● ●●●● ●● ●● ● ●● ● ● ●●●● ● ●● ●● ●● ●●● ●●●● ● ●●● ●● ●● ● ●●●●● ●●● ●● ● ●● ● ● ●● ●●● ●● ●● ● ●● ●● ●●● ●● ●●● ●●● ●●● ●●● ●●●● ● ●● ● ●●●●● ●●● ●● ●●● ●● ● ● ●●●● ● ●●● ● ● ●● ●●● ● ●● ●● ● ●● ●● ●● ● ● ●●● ●● ●● ●●● ● ●●● ● ●● ●● ● ●●●● ● ●● ●●● ●● ●●● ● ●● ●●● ● ●● ●● ●●●● ● ●● ●● ●●● ●● ● ●●● ●● ●● ● ●● ● ● ● ●● ● ●● ●●● ●●● ●●●●● ● ●● ●● ●● ●● ●● ●● ● ●●● ●●●● ● ● ●● ●● ●● ● ●●● ●● ●●● ●● ●●●● ●●● ● ●● ●●● ●● ●●● ● ●●● ●●●● ● ●● ● ●●● ● ●● ●● ● ●●● ● ●●● ●●● ●● ●● ●●● ●● ●● ● ●●● ●● ●● ●● ● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ● ●● ● ●●● ● ●●●● ● ●● ●●●● ●● ● ● ●●● ● ● ●● ●●●●●● ●● ●●● ●●● ●●● ●●● ●● ● ●●●● ● ●● ●● ● ●● ●● ● ●● ●●● ●● ● ●● ●● ● ●●●● ●●●● ●● ●● ● ●●●●●● ● ● ● ● ●●● ●●● ●● ● ● ●● ●● ●● ●●● ●● ●●●●● ●●●● ●● ●● ●● ●● ●●● ●● ●●● ● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●●●● ●●●● ●●● ●● ●● ● ●●● ●●● ●●● ● ●● ● ●● ●● ●●● ●●● ● ●● ●●● ●● ●●● ● ●● ●●● ●● ●● ●●● ●●● ●●● ●● ●● ● ●● ● ●● ●●●● ●●●

●● ●●● ●● ●●●● ●● ●●● ●● ●●● ●● ●● ●●● ● ●● ●● ● ●● ●●● ● ● ● ●● ●●●● ● ●● ●● ●● ●●● ●● ● ●●● ● ●●● ●●● ● ●● ●●● ●● ● ●●● ●● ● ● ●●● ● ● ●● ● ●●● ●● ● ●●● ● ●●● ●● ●● ●● ●● ●●● ●● ●●●● ●● ● ●●● ●● ● ● ●● ●● ●●● ●● ● ●●● ●● ● ●● ● ●● ●● ●● ●● ●● ● ●● ●● ●● ● ●● ●●● ●●● ● ●● ● ●●● ●●●●● ● ●● ●● ●● ●●●● ●● ● ●●● ● ●●● ●●● ●● ●● ●● ● ●●● ●● ● ●● ●● ●●●● ●● ●●● ●● ● ●● ● ●● ● ●● ●●●● ●● ●● ●● ● ●● ●●● ●●● ●● ●● ● ●● ● ●● ●● ●●● ● ●●●●● ●●●● ●●●● ●● ●● ●● ● ● ● ●●● ●●● ● ●● ● ●● ●●●●● ●● ● ●● ● ● ●●● ● ●●● ● ●●●●● ●● ● ●●●● ●● ●● ●● ●● ●● ●● ●●● ● ●● ●● ●●● ● ●●● ● ●● ●● ●● ●● ●● ●●●● ●●● ●● ● ●● ●●●●● ●● ●● ●● ●● ●● ● ● ● ● ●●● ● ●●● ● ●● ●● ● ●● ●●● ●● ●●● ●●● ●●●● ●●● ●● ● ● ●● ● ●●● ●● ●● ●●● ● ●● ● ●● ●● ● ●●●● ●●● ●● ● ●● ● ●●●● ●● ●●● ●●● ●●● ●●● ●● ● ●● ●● ●●● ● ●●●● ●●●●

●●● ● ●● ●●●● ● ●● ●● ●● ●●● ● ●●● ● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ● ● ●● ●●● ● ● ● ●●●● ●● ●● ●●●● ● ● ●●●●●● ●●●● ●●● ●●● ●● ● ●●● ●●● ●● ●● ● ●● ●●● ● ●● ● ● ●● ● ●

●●●● ●● ●● ● ●●●● ●● ●● ● ●● ● ●●● ● ●●● ● ● ●●● ●●●● ●●● ●● ● ●●

0.Bardi

1.Bardi

0.Burarra

1.Burarra

0.Dalabon

1.Dalabon

0.Gija

1.Gija

0.Gunnarpta

1.Gunnarpta

0.Gunwinggu

1.Gunwinggu

0.Kayardild

1.Kayardild

0.Kunbarlang

1.Kunbarlang

0.0 2.5 5.0 7.5 10.0

f0 range (st)

La
ng

ua
ge

●● ● ●● ●● ●● ●● ●●●● ●●●●●●● ●●● ● ●●●● ●● ● ●● ● ●●●●● ● ●●● ● ●● ●● ●●●●●● ●● ●●● ●● ●●● ● ●●●●● ● ●●●● ●● ● ● ●●●●● ●● ●●● ●● ● ●● ● ●●●●● ●● ●● ● ●● ●● ●●●● ●●● ●● ● ● ●● ●●●● ●● ●

● ●● ●● ●● ●●●●● ● ●●● ●●● ●●●● ●●●● ● ●●● ●●●● ● ●●● ● ● ● ●● ● ●● ●● ● ●● ●●● ●● ●● ●●● ●●● ●●● ●●● ●● ● ●●● ●● ●●● ●● ●●●● ●● ● ●● ●● ●●●● ●● ●● ● ●●●● ●●

●● ●●● ● ●●●●● ● ●● ●●● ● ●● ● ●● ● ●● ●●●● ●● ●●●● ● ●● ●●● ●●● ●●● ●●● ●

●●●●●●● ●● ●● ●● ● ● ●●●● ●● ●●●● ●● ● ●●●● ● ●●● ● ●●● ● ●●●●●● ●●● ●● ● ● ●● ●●●● ●● ●● ●●

●● ●● ● ●●● ●●● ●●● ● ●●● ● ●●● ●● ●● ●●● ●● ● ●●● ●● ●●● ● ●● ●● ● ●● ●●●●● ● ●● ●● ● ●●● ●●●● ●●●●● ●●● ● ●●● ●●● ● ● ●● ● ●● ●●● ●● ●● ●● ●● ● ●● ● ●● ●● ●● ●●● ●●● ●● ●●● ●●● ● ●●● ●● ●● ●●●●●● ●●●●● ●●● ● ●● ●●● ●● ●● ●●● ●●●● ●● ●● ●● ●● ● ●●● ●● ●● ● ●●● ●● ●●● ●● ● ●●●● ●● ●● ●●● ●●● ●● ● ●● ●●● ●● ●●●●● ● ● ●●● ●●● ●● ●● ● ●●● ●● ●●●●● ● ●●●● ●●● ●● ● ●● ●●● ●● ● ●●● ●●●●●● ●●● ●● ●● ● ●●●● ●●●● ●●● ● ● ●● ●● ●● ●● ●● ●●● ● ● ●● ●●● ● ●● ●●● ● ● ● ●● ●● ●● ●● ● ●● ●●● ●●● ●●● ●●● ●● ●●● ● ●●● ●●● ●●

●●●●● ●● ● ●● ●● ●● ●● ●●●● ●●● ●●●● ●● ● ● ●●●● ●● ●● ●●● ● ●●●● ●●●● ●●● ● ●● ● ●●●● ●● ●● ●● ●● ●● ●●● ●● ●●●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●●●●● ●●● ●● ●●● ●● ● ●● ●● ●● ●●●● ●●● ● ●●● ●● ●●●●●● ●● ●● ●●● ●●●●●● ●● ●● ●● ● ●● ●● ●●● ●● ●●● ●●● ●●●● ●● ●● ● ●● ●●● ●●● ●● ● ●●● ● ●● ●● ● ● ● ●●●● ●●●● ●● ● ● ●● ●● ● ●● ● ●● ●● ●● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●●● ●● ● ●●●● ●●● ●●● ●● ●●●● ●●● ●● ●●● ●● ●● ●● ●● ●● ● ●● ● ●● ●●● ●● ●● ●● ●●●● ●●●● ● ●●●● ●● ● ●● ●● ● ●● ●● ● ●●● ● ● ●● ● ●●● ● ●● ●● ●● ● ●●● ● ●●● ● ● ● ●●● ● ●●●● ●● ●

● ● ●● ●●● ●●● ● ● ● ●● ● ●● ●● ●● ●● ● ●●●● ● ●● ●● ●●● ●●● ●● ● ●●●●● ●● ●● ●●●●● ●● ● ●●● ● ●● ●●● ●●● ● ● ●● ● ●● ● ●● ● ●●● ●●●● ● ● ●● ●●●●● ●● ● ●● ● ● ●● ● ●●● ●● ● ●●● ● ●● ●● ●●● ●● ● ●●● ●●● ● ●● ●● ●● ● ●● ●●●●●●

●●● ●●● ●● ● ●●●● ●● ● ●●●●●●● ● ●●● ●● ●● ●●● ●● ● ● ●●● ●● ●●● ● ●● ●● ●●●● ●● ● ● ●● ●●● ● ●●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●●

● ● ●● ●● ●●●● ●● ● ● ● ●● ●●●●● ● ●●● ●● ●●●●●●●● ●●● ● ● ●● ●● ● ●● ●● ● ●● ●●● ●●●● ●● ●● ●●● ●●● ●● ●● ●● ●●● ●● ●●●● ●●●●● ●● ●●●● ●●● ●

● ●●●● ●● ●●●● ● ●●● ●●● ●●●●● ● ●●● ●● ●● ● ●● ●● ●●● ●● ●●

●●

●●● ●● ●● ●●●● ●●●●● ● ●●● ● ● ●● ●● ●● ● ●●● ●● ●●●●●● ● ●●● ●● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●● ● ●●● ●● ●●● ●● ●● ● ●● ●● ●●● ● ●● ●● ●● ●● ●● ●● ●● ●●● ● ●● ●● ●●● ● ●● ●● ●● ● ●●● ●●● ● ●●● ● ●●● ● ●●● ● ● ● ●●● ●● ● ● ●● ●● ●● ●● ●●●●●● ●●● ● ●● ●● ●● ●● ● ●● ● ●● ● ● ●● ● ●● ●●● ●●●● ●●●● ●●●●● ●● ●● ●● ●●● ●●●●● ● ● ●● ●● ●● ●●● ●● ●●●● ●●● ●●● ●●● ●● ●●● ●● ●● ●● ●●●●● ●● ●●● ●●● ●●● ●● ●●●● ●● ●● ●● ●● ● ●●● ● ●●● ●● ●● ● ●●● ●●● ● ●● ●● ●● ●● ● ●● ● ●●●● ●●● ●● ●● ● ●●● ●● ●● ●● ●●●● ●●● ●●●● ●●● ● ● ●●● ● ●● ●● ●● ●●● ● ●● ●●● ●● ●●●● ● ●●●● ●●● ●●● ● ●●● ●● ●● ●●● ●● ●●●● ● ●● ●●● ●●● ●●● ● ●● ●●● ●● ●● ● ●● ●●● ● ●● ●●●● ●● ●●● ● ● ●●● ●●● ● ●● ●● ● ●● ● ●● ●●●● ●● ●● ● ●●●● ●●● ●●● ● ●● ● ●●●● ●●● ●●●●● ●● ●● ●●● ● ●● ●●● ● ●●● ● ●●● ● ●● ●● ●●● ●● ●● ● ● ●● ● ●● ●●●●● ●● ●● ● ●● ●● ●● ●●●● ●● ● ● ●●● ● ●●●● ●●● ●● ●●● ● ●● ●● ● ●●●● ●● ●● ●● ●● ● ●● ● ● ●●● ●● ●● ●● ● ●●●● ●●● ●●● ● ●● ●● ●● ●● ● ●●●● ●● ●● ●● ●●●●●●● ●● ●● ● ●●● ● ●● ● ●● ●● ● ● ●● ●●● ●● ●●●● ●● ●● ●●● ●● ● ●● ●● ●●● ●● ● ●● ●● ●●● ●●● ● ●●●● ● ●●●● ●●● ● ●● ●● ●●● ● ● ●●●● ● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●●● ●●●● ● ●● ●● ●● ●● ●● ●●●● ●●● ● ●● ● ●● ●● ● ● ●● ●● ●● ●●●●●●● ● ●●●● ● ●●● ●●●●● ● ●●● ●●● ●● ● ●●●● ● ●● ●●● ●●● ●●● ● ●●● ●●●● ●● ● ● ●●● ●● ●● ●● ●●● ●●● ●● ●●● ●●● ●● ● ● ●● ●● ●● ● ● ●● ●●●● ●● ●● ●●●● ● ●● ● ●●●● ● ●● ●● ●● ●● ● ●●● ●●●●● ●●● ● ●● ●● ●●● ● ●● ●● ●●● ● ●●● ●● ●●● ● ●●● ●●●● ● ● ●●● ●●● ● ●●●● ● ●● ●●●● ● ●● ●● ● ● ●● ● ●●● ● ●●●● ● ●●●● ●●● ●

●●● ● ●● ●● ●●● ●●● ●●● ●●●●● ●● ●●● ●● ●●● ●● ●●● ● ●●● ● ●● ●●●● ●●● ● ●● ●●● ●●●● ● ●● ●● ●● ●● ●●●●● ●●● ●●●●●●●●● ●● ●● ●● ●● ●● ● ●● ●● ●● ● ●●● ● ● ●●● ●● ●● ●● ●● ●● ●●●●●●●● ●● ●●● ●● ●●● ●●●●● ●●●●● ● ●● ● ●●● ●● ● ● ●●●● ●● ●●● ● ●● ●●●● ●●● ● ●●● ●● ●●● ● ●● ●●●● ●● ●●● ●●● ●●●● ● ●●● ●●●● ● ●●●●● ● ●● ●● ●● ● ●●● ●●● ●●● ●● ●●●● ●● ●●●● ●●● ●● ● ●●●● ●●● ●● ●● ● ●● ●● ●●● ●● ●● ● ●●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●● ● ●●● ● ●● ●● ●● ● ●● ● ●● ●●● ●● ● ●●● ●● ●● ●● ● ●● ●● ●●● ● ● ●● ●● ●●● ●● ●● ● ●● ●● ●●● ● ●●● ●●●● ●● ●● ●●● ●●● ● ●●● ●● ●● ● ●● ●● ●● ●●● ●●● ●● ●●● ● ●●● ● ●● ●● ●● ● ●● ● ●●● ● ●●●●●● ●● ● ●●●●● ●● ● ●●●● ● ● ●● ●●●●● ●●●● ●●●● ●●● ●● ● ●●●● ●● ●● ● ●●● ● ●● ●●● ● ●● ●●● ● ●●● ● ●● ●● ●● ●● ●● ● ●●● ●● ●● ●● ●●● ●● ● ●●● ●● ●●●● ●● ●●● ●●● ● ●●●● ● ●● ●●● ●●● ● ●● ●● ●● ● ●● ●● ● ●● ●●● ●●● ●● ●●●●● ● ●● ●● ●●● ●●● ●●●● ●●● ●●●●● ●●● ●●●● ● ●●●●● ● ●● ●● ● ●●● ●● ●● ● ● ●●● ● ●● ●●●● ●● ●●●● ●● ●● ● ●●●●● ● ●● ● ●● ●● ● ●● ● ●●● ●● ●● ●●● ●●●●●● ●● ●● ●●● ●●●● ●● ●● ●● ●● ●●● ●●●● ●● ● ●●● ● ●● ● ●● ● ●●● ●● ●●● ●● ● ●● ●● ●● ●● ● ●

● ●● ●● ● ● ●●● ●●● ●● ●●●● ●● ●●●● ●● ●●●● ●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ●●● ● ● ●●● ● ● ●●● ●●● ●● ●●●●● ●●● ●● ●● ●● ● ●● ●●●● ●●●● ●●● ●●● ●● ●● ● ●●●● ●● ●●● ●● ●● ● ●●● ● ● ●● ● ●● ●●● ● ●●●●● ●●●● ● ●●● ● ● ●● ● ●● ●●●●●● ●● ●●● ●●● ●● ●● ●●●● ●●● ● ●● ●●●● ● ● ● ●●● ●● ●●●● ●● ● ●●●● ● ●● ●● ●● ●● ●●● ● ●● ●● ● ●

●● ●●● ●● ●● ●● ● ●● ● ●●●●●●● ●● ●●●●●● ●● ● ●● ●● ●● ●●● ●●● ● ●● ●●● ●●●●●● ●● ●● ● ●●●● ● ●● ●●●● ● ●●●● ●● ● ●●● ● ●●●●●● ●● ●● ●● ●●

0.MalakMalak

1.MalakMalak

0.MurrinhPatha

1.MurrinhPatha

0.Nangikurrunggurr

1.Nangikurrunggurr

0.Wanyjirra

1.Wanyjirra

0.Warlpiri

1.Warlpiri

0.Warnman

1.Warnman

0.Yannhangu

1.Yannhangu

0.Yidiny

1.Yidiny

0.0 2.5 5.0 7.5 10.0

f0 range (st)

La
ng

ua
ge stress

unstressed
stressed

Figure 4.18: Distribution of normalized f0 range (in semitones), grouped by stress status.
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It is important to note that Bardi, Gija, and Kayardild also have significant positive

effects of stress on f0 maximum, as just discussed in the previous section. It stands to

reason that this relatively small effect of f0 range may serve as a secondary correlate of

the high f0 stress cue, reflecting a steep f0 fall as a result of the high f0 maximum, so a

large f0 range may not be a major cue to stress here but a secondary correlate of what we

have already seen. Kunbarlang, on the other hand, does not have an effect of stress on f0

maximum, and has the largest effect in Fig. 4.19, suggesting that f0 range may be a more

salient cue to stress in this language. Again, this is likely indicating a steep f0 fall, but in

this case the fall does not necessarily coincide with an especially high f0 maximum.

Four languages— Yidiny, Burarra, Warlpiri, and Ngan’gi— have significant negative

effects of stress on f0 range. This may mean one of two things. It is possible that stress

is marked with a high f0 that is held steady over the syllable, so that f0 range is smaller

in these syllables than in unstressed ones. This may be the case in Yidiny and Warlpiri,

for example, as we see a confluence of f0 maximum and lower f0 range as correlates to

stress. In the case of Burarra, which has no significant effect of f0 maximum, and Ngan’gi,

which has a significant negative effect of f0 maximum, this is likely not a stress correlate

at all. Instead, this may again be an effect of some phrasal f0 peak occurring elsewhere in

words with both high f0 maximum and high f0 range. Future work will focus on integrating

phrasal contours with lexical stress in order to tease these two apart.

4.5 Vowel space

Vowels in some Australian languages have been found in some cases to be more peripheral

when stressed, and in other cases to be more centralized (Fletcher & Evans 2002, Fletcher &

Butcher 2003, 2014)Normalized vowelmeasurements for each language are given in Figure

4.20 for the purposes of comparing the general shape of vowel spaces crosslinguistically;

the sidebyside plots are too small to investigate them in great detail. Larger versions of
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these plots are available in Appendix C.

Vowel peripheralization is not a straightforward phonetic factor to measure. More pe

ripheral high vowels have a lower F1, while more peripheral low vowels have higher F1, for

example, and a similar tradeoff relationship exists for F2 between front and back vowels.

To determine a measure that can indicate a vowel’s distance from the center of the vowel

space regardless of the direction of the distance (higher or lower, fronter or backer), I cal

culated the Euclidean distance d of each vowel token from the mean of the vowel space

for each speaker in each language, using the normalized F1′ and F2′ values as described in

§3.2.

d (µ(F ′),F ′) =
√
(F1′−µ(F1′))2 +(F2′−µ(F2′))2

The result of the above formula is an absolute value that is agnostic to the direction

of the deviation from the center of the vowel space. Along with this generalized measure,

vowel quality must also be considered to account for average peripherality of each indi

vidual vowel in a language. This factor is included in the regression models as a random

intercept of segment identity.

Figure 4.21 shows the distribution of Euclidean distance vowels for the three vowel

phonemes shared by all the languages included in this dissertation: /a/, /i/, and /u/. Themean

values are often around 0.2 units on the ∆F normalization scale, although some individual

vowel tokens have Euclidean distances up to 1.5 units, especially for the /i/ vowel which is

canonically further from the center of the vowel space than /a/ or /u/.

Most of the languages in this study do not show a significant effect of stress on vowel

peripheralization. Only five languages have significant effects of stress in regression model

E as shown in Figure 4.22, and the estimate values are very small, from about 0.005 to 0.03

from the intercept. Given that average Euclidean distance values tend to be around 0.5 (as

in Fig. 4.21), stressed vowels in these languages are around 1−6% more or less peripheral
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Figure 4.20: Normalized vowel spaces for each language, with polygon for each speaker.
The yaxis represents normalized F1 (F1/∆F), and xaxis represents normalized F2
(F2/∆F).
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Figure 4.23: Warlpiri vowel space, with stressed and unstressed vowel phonemes separate.

than their unstressed counterparts.

The languages with any significant effect of stress on vowel peripheralization are

Warlpiri, Kayardild, Gija, Yannhangu, and Bardi. Warlpiri has the largest estimate value

at about−0.03, with the negative value indicating that stressed vowels should be more cen

tralized than unstressed vowels. However, this effect is very small, with stressed vowels

estimated to be about 6% more centralized than unstressed ones. As shown in Figure 4.23,

the effect found by the model seems to reflect the slight centralization of the phonemes /e/,

/u/, and /o/, but /i/ seems slightly more peripheral and /a/ is very similar regardless of stress

status.

As the other four languages with significant effects have much smaller effect estimates,

it stands to reason that these effects will be similarly unclear. While further research may

find more robust evidence for these vowel space effects as a correlate of stress, strong con

clusions cannot be drawn from the results here.
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Language V. Dur. Onset Dur. PostT. Dur. Inten. F0 Max. F0 Rng. Vowel
Bardi + + + + + +
Burarra +

Gunnartpa + +++
Gija + +++ + + +

Dalabon +
Gunwinggu + + +
Kunbarlang + +
Kayardild + +++ + + + +

Malak Malak + ++ + +
Murrinh Patha +

Ngan’gi + ++ +
Wanyjirra +++ +
Warlpiri + + ++ + +
Warnman +
Yannhangu + +++ + +
Yidiny + + + + +

Table 4.1: Summary of results for overall language models; + indicates some statistically
significant effect that may be attributable to stress. Languages grouped by historical affili
ation.

4.6 Summary

Table 4.1 gives a summary of the stress correlate results presented in this chapter for each

language. The cells indicate the presence of a significant effect that is likely to indicate

a correlation of stress with each acoustic parameter. These effects are only the overall

language effects as discussed in this chapter, but in Chapter 5 these effects will be further

teased apart based on whether all speakers of the language show the effect, or only some of

the speakers.

There is clearly some degree of variation in the correlates of lexical stress across these

languages. However, the results summarized in Table 4.1 do not provide a way to measure

the degree of difference between languages quantitatively. In order to do this, we need

a method of measuring variation at different levels: across languages, within languages

across speakers, and within speakers. This method is outlined in Chapter 6.
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None of the historically related groups in Table 4.1 have exactly the same correlates

found in this investigation. There is, however, some overlap. The Burarra and Gunnartpa

data sets share vowel duration as a correlate but not onset consonant duration. As will

be discussed in the following chapter, onset consonant duration shows considerable inter

speaker variation, which explains this difference. The Gunwinyguan languages (Dalabon,

Gunwinggu, and Kunbarlang) do not share much. Dalabon and Kunbarlang both have ef

fects of onset consonant duration for one consonant group, but for Dalabon it is the glides

while in Kunbarlang it is the stop consonants. Gunwinggu has an effect of posttonic nasal

lengthening, as well as f0 maximum, which the other languages in this group do not share.

Kunbarlang has an effect of f0 range, but not f0 maximum. Murrinh Patha and Ngan’gi also

do not share any correlations with each other, which is not surprising given the idiosyncra

cies of stress in Murrinh Patha.

The PamaNyungan languages have considerable overlap in their stress correlates. All

but Wanyjirra has vowel duration as a correlate of stress, and all but Warnman has f0 maxi

mum. All of the PamaNyungan languages except Warnman have some effect of onset con

sonant lengthening, although only Wanyjirra and Yannhangu have this effect in all three

consonant categories. These two languages are also the only languages to have effects of

vowel space on stress. Warlpiri only has an onset lengthening effect for stop consonants,

while Yidiny only has an effect for glides. Warlpiri and Yidiny also share an effect of post

tonic lengthening of stop consonants, while Warlpiri additionally has an effect of posttonic

glides.

Ten of the 16 languages in this survey have a correlation of f0maximum and stress. This

provides some supporting evidence for the claim that f0 is an extremely common correlate

of stress in Australian languages (Fletcher & Butcher 2014). However, both vowel duration

and onset consonant duration are similarly common in this set of languages. Vowel duration

correlates with stress in 11 of sixteen languages, while onset consonant duration for at least
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one consonant category correlates with stress in eleven languages as well. However, this

set of languages is a sample of convenience and not a balanced selection of Australian

languages from across the continent. These observations provide interesting evidence for

the prevalence of these stress correlates, but further typological work would be needed to

draw definitive conclusions.

The results presented in this chapter binned together all speakers of each language in

order to look at overall language results and to compare across languages. However, con

sidering the speech of each speaker separately reveals substantial variation in some cases;

these results are discussed in the following chapter (Chapter 5).
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Chapter 5

Results: Withinlanguage variation

The previous chapter addressed Claim (9.1) of this dissertation by establishing the correlates

of stress in each language and discussing the variation across them. Here, withinlanguage

crossspeaker variation is examined for the languages in this dissertation, beginning to ad

dress Claim (9.2), that the cues to stress will vary across speakers of the same language. A

full and detailed investigation of this claim would require both the acoustic analyses pre

sented here as well as separate studies of the sources of sociolinguistic variation in these

cues by spending time in each of the individual communities in which these languages are

spoken. This type of work was not possible within the scope of the current thesis, and in

some cases is not possible at all because some of these languages are no longer spoken. Be

cause of this, only the acoustic studies are presented in this chapter, and any sociolinguistic

study of variation in stress cues is left for future research.

In what follows, each of these languages is discussed in turn, except when the data

I have for a language only includes speech from one individual; these languages are not

included here. For information about all languages in this dissertation and their speakers,

see Chapter 2.

As will become clear as each language is discussed in turn, the nature of the data used
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in this dissertation project means that not all speakers are equally represented for a given

language’s data set. In fact, in most cases one speaker has a clear plurality or majority

of the data points (measured as number of vowel tokens), while the other speakers have

comparatively very little representation. Thus, it is especially important to consider by

speaker variation in light of this sort of skewed data.

5.1 Bardi

There are five speakers in the Bardi data used in this project. Almost half of the data was

spoken by speaker DW, while the remaining four each represent less than 20% of the data.

This is a common skew of speakers and data, as will be seen in subsequent sections.

Bardi has quite a large effect of stress on vowel duration, as shown on the far right in

Figure 5.1. This overall effect overlooks some variation among Bardi speakers, although

all five have significant, positive effects of stress on vowel duration. Speaker 3/JS shows

an effect almost twice that of the average, while speaker 5/TE has an effect about half the

size. As might be expected, the speaker with the highest share of the data (2/DW) has close

to the average effect. Since 2/DW accounts for almost half of the data in the full language

model, their effects will drive the overall effects more than the other speakers’ will.

Bardi was found to have a small but significant effect of stress on vowel intensity. When

looking at speakers individually in Figure 5.2, two speakers are clearly driving this overall

effect while the other three do not have a significant effect of stress on intensity. Speaker

2/DW is one of the speakers with a significant effect, which explains why the overall effect

is significant because of this speaker’s share of the data.

Speaker 1/BE 2/DW 3/JS 4/NI 5/TE
Share of data 17.0% 45.4% 14.1% 9.5% 14.0%
Vowel tokens 1527 4060 1262 851 1249

Table 5.1: Share of total data for each Bardi speaker.
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Figure 5.1: Model effect of the fixed binary factor ‘stress’ on duration of vowels in Bardi.
In legend, topmost labels correspond to leftmost dotwhiskers. Lines that cross the zero
mark (dark dashed line) represent nonsignificant model results.
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Figure 5.2: Model effect of the fixed binary factor ‘stress’ on intensity of vowels in Bardi.
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mark (dark dashed line) represent nonsignificant model results.
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Figure 5.3: Model effect of the fixed binary factor ‘stress’ on f0 of vowels in Bardi.

The byspeaker effects of stress on f0 are shown in Figure 5.3. Four of five speakers

show significant and positive effects in these models, as the overall effect reflects as well.

Two speakers, 3/JS and 4/NI, have effect sizes almost twice as large as the overall effect,

which again is dominated by data from speaker 2/DW. Speaker 5/TE does not have a sig

nificant effect of stress on f0 in this model. It is unclear what the cause of this variation is;

without a large population of Bardi speakers, this sort of variation cannot easily be iden

tified as either a substantial speech variant employed by certain groups of speakers, or an

anomaly only employed by one or a few. Likewise, it is difficult to know whether this is

the sort of variation that is the result of some phonological reanalysis of stress in the mind

of the speaker, or the result of language attrition.
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Speaker 1/EB 2/HL 3/MB 4/RJ 5/TN 6/01 7/CE 8/JBB
Share of data 47.8% 1.9% 16.3% 7.5% 3.0% 6.1% 4.3% 13.1%

Table 5.2: Share of total data for each Burarra speaker.

5.2 Burarra/Gunnartpa

The Burarra and Gunnartpa datasets (from PARADISEC and ELAR, respectively) are com

bined here as they include audio from the same language, Burarra, of which Gunnartpa is a

dialect. There are eight speakers total in the Burarra data; their shares of the data are given

in Table 5.2. Almost half of the data comes from EB, while the remaining speakers account

for less than 15% of the data each. Similarly to Bardi, we will expect that speaker 1/EB will

largely drive the overall effects in the general language model, and variation will be seen

in the other speakers.

Most of the potential correlates to stress investigated in Chapter 4 were not found to be

significant in Burarra/Gunnartpa, whether looked at as separate collections or combined as

here. As shown in Figure 5.4, most speakers of Burarra/Gunnartpa do not show a significant

effect of stress on vowel duration, as the overall effect shows. One speaker (8/JBB) has a

significant and positive effect here.

Unlike Bardi, which has very few fluent speakers, the byspeaker variation seen in Bu

rarra/Gunnartpa may be grounds for followup study, as the language community is quite

robust. Perhaps a variant seen in one speaker in this project is emblematic of a larger soci

olinguistic trend that is beyond the scope of a typological study such as this one.

Results are similar for the intensity models. Figure 5.5 shows that most speakers have

no significant effect here, but speaker 2/HL has a significant and positive effect. Again, the

source(s) of this variation are well suited for future study.

Burarra/Gunnartpa does have an overall effect of stress on f0, in contrast to the factors

already considered here. However, as can be seen in Figure 5.6, this overall effect is driven
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Figure 5.4: Model effect of the fixed binary factor ‘stress’ on duration of vowels in Bu
rarra/Gunnartpa.
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Figure 5.5: Model effect of the fixed binary factor ‘stress’ on intensity of vowels in Bu
rarra/Gunnartpa.
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Figure 5.6: Model effect of the fixed binary factor ‘stress’ on f0 of vowels in Bu
rarra/Gunnartpa.

primarily by the speaker who accounts for themajority of the data, 1/EB. Two other speakers

(2/HL and 6/01) share this significant and positive effect, but the other five speakers do not

have significant effects here. In this case especially, where there are two multispeaker

groups with differing effects, we want to consider whether sociolinguistic or related factors

are at play here.

In the previous chapter (Ch. 4), where the ELAR and PARADISEC archival deposits

were considered separately, there were effects of onset consonant duration found for Gun

nartpa across all three consonant categories, but in Burarra this was not found for any con

sonants. These are broken up by speaker for the joined dataset for stops in Fig. 5.7; nasals

in Fig. 5.8; and glides in Fig. 5.9.

The interspeaker results for onset stop consonants only show a significant correlation

with stress for one speaker, 8/JBB. The combined data set does not have an overall effect
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Figure 5.7: Model effect of the fixed binary factor ‘stress’ on onset stop duration in Bu
rarra/Gunnartpa.

of stress on stop duration. Speaker 8/JBB, while a smaller proportion of the combined data

here, accounts for a large proportion of the ELAR Gunnartpa deposit, which likely explains

the effect that was seen for Gunnartpa alone. The same situation is observed for nasal onsets

in Figure 5.8. Only speaker 8/JBB has a significant effect of stress here, and this is certainly

the source of the ELAR Gunnartpa results where the overall effect is not significant.

The effect of onset glide duration does hold for the combined data set. This is carried

by significant effects for three speakers: 6/01, 7/CE, and 8/JBB. These are the only three

speakers included in the ELARGunnartpa data set, while the five speakers without a signifi

cant effect are the ones in the PARADISECBurarra deposit. So, with all the data considered

together, Burarra/Gunnartpa has an effect of onset glide lengthening, but not lengthening

of other onset consonants. The glide lengthening is a point of interspeaker variation.
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Figure 5.8: Model effect of the fixed binary factor ‘stress’ on onset nasal duration in Bu
rarra/Gunnartpa.
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Figure 5.9: Model effect of the fixed binary factor ‘stress’ on onset glide duration in Bu
rarra/Gunnartpa.
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5.3 Dalabon

While the Dalabon data contains audio from five speakers, the share of data held by each

speaker is heavily skewed. Table 5.3 gives these shares; speakerMT/3 is the speaker in 79%

of the Dalabon audio, and the other four speakers split the remaining 21%. The smallest

share is held by speaker JJA/1, who only has 86 vowel tokens in the data used here.

As would be expected given the skewness of the data, the model estimates for Dalabon

overall and for speaker MT/3 in Figures 5.10, 5.11, and 5.12 are extremely similar. While

individual speakers sometimes vary from this overall measure, such as speaker LB/2 in Fig

ure 5.11, speakerMT/3 is always close to the overall measure because of their predominance

in the overall data.

Speaker JJA/1 consistently has very large standard error values. This is because, as

shown in Table 5.3, only 86 vowel tokens are present in these data for speaker JJA/1. This

is clearly not enough data to draw meaningful conclusions from the regression model, re

sulting in the standard error values as well as the lack of any significant effects in the models

shown.

Keeping these trends in mind, speakers are relatively cohesive in their nonsignificant

results for vowel duration in Figure 5.10 and f0 in Figure 5.12. A split is seen for vowel

intensity in Figure 5.11, where three speakers have significant and negative effects as the

overall result suggests, while two speakers have no significant effect. However, as discussed

in §4.3, a negative effect of intensity is not taken to be a correlation with stress, but likely

a wordpositional effect instead.

Speaker 1/JJA 2/LB 3/MT 4/ND 5/PA
Share of data 1.2% 6.2% 79.0% 10.7% 2.9%
Vowel tokens 86 432 5459 737 199

Table 5.3: Share of total data for each Dalabon speaker.

94



●

●

●

●

●

●

−0.4

−0.2

0.0

0.2

Effect of stress on vowel duration (log)

M
od

el
 E

st
im

at
e 

+
 S

td
. E

rr
or

Dalabon Speaker

●

●

●

●

●

●

1

4

2

3

5

(Overall)

Figure 5.10: Model effect of the fixed binary factor ‘stress’ on duration of vowels in Dal
abon.
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Figure 5.11: Model effect of the fixed binary factor ‘stress’ on intensity of vowels in Dal
abon.
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Figure 5.12: Model effect of the fixed binary factor ‘stress’ on f0 of vowels in Dalabon.

5.4 Gija

There are five speakers included in the Gija data used in this dissertation. The vast majority

of the data comes from speaker 2/MT, as shown in Table 5.4, with the other four speakers

accounting for 10% or less of the data each. As expected given this skew, the overall model

results largely reflect speaker 2/MT’s speech, and are less influenced by the speech of the

others.

Only two speakers show significant, positive effects of stress on vowel duration, as

shown in Figure 5.13. These are speaker 2/MT and speaker 3/PP, the latter of which has

Speaker 1/MJ 2/MT 3/PP 4/RP 5/Y
Share of data 8.2% 68.0% 10.8% 6.8% 6.2%
Vowel tokens 902 7491 1186 747 683

Table 5.4: Share of total data for each Gija speaker.
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Figure 5.13: Model effect of the fixed binary factor ‘stress’ on duration of vowels in Gija.

quite a large effect here. The other three speakers do not have a significant effect in their

duration models.

The overall effect of stress on intensity in Gija, as most languages in this study, were

not found to correlate; instead, some other factor such as word position is likely at play

here. Each speaker varies in their intensity models. Three speakers have a significant and

negative effect, as the overall result, while the other two do not have significant effects.

F0 is a significant correlate of stress in Gija. The overall effect is that stressed syllables

are almost 1 semitone higher than unstressed ones, and all speakers are clusters closely

around this point. Speakers 1, 2, and 4 have effects closer to 0.5 semitones, while speakers

5 and 3 have effects just above 1.0 semitone.

The results of these byspeaker investigations reveal that in Gija, f0 is likely the main

correlate to lexical stress, while some speakers may additionally use duration to cue promi

nence. This point is discussed more broadly at the end of this chapter.
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Figure 5.14: Model effect of the fixed binary factor ‘stress’ on intensity of vowels in Gija.
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Figure 5.15: Model effect of the fixed binary factor ‘stress’ on f0 of vowels in Gija.
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5.5 Gunwinggu

There are three Gunwinggu speakers included in the data used for this project. The data is

similarly skewed as in other languages. However, it is important to note that speaker 3/CB,

despite representing 11.5% of the data here, only has 79 vowel tokens because the overall

Gunwinggu corpus is smaller than many of the other languages. This speaker has very large

standard error values in the following model results because of this.

Duration is not an overall correlate with stress in Gunwinggu. This is borne out across

speakers as well, though speaker 3/CB trends more positively than the others. This is not

meaningful because of the small amount of data for this speaker.

The slight positive effect seen in the intensity model for Gunwinggu overall is heavily

influenced by speaker 1/01, who holds 60.5% of the data. The other two speakers in the

corpus do not have a significant effect here.

Finally, f0 results for Gunwinggu overall give a significant and positive correlation

with stress with an effect close to one semitone. Speakers 1/01 and 2/A both show very

similar effect sizes here. Speaker 3/CB does not, but again because of the small amount of

data spoken by this speaker no clear conclusions can be drawn. Overall, it seems that f0

might be a consistent correlate with stress across speakers of Gunwinggu.

Speaker 1/01 2/A 3/CB
Share of data 60.5% 28.0% 11.5%
Vowel tokens 417 193 79

Table 5.5: Share of total data for each Gunwinggu speaker.

99



●

●

●

●

−0.25

0.00

0.25

Effect of stress on vowel duration (log)

M
od

el
 E

st
im

at
e 

+
 S

td
. E

rr
or

Gunwinggu Speaker

●

●

●

●

2

1

3

(Overall)

Figure 5.16: Model effect of the fixed binary factor ‘stress’ on duration of vowels in Gun
winggu.

●

●

●

●

−4

−2

0

2

Effect of stress on vowel intensity (rel)

M
od

el
 E

st
im

at
e 

+
 S

td
. E

rr
or

Gunwinggu Speaker
●

●

●

●

3

2

1

(Overall)

Figure 5.17: Model effect of the fixed binary factor ‘stress’ on intensity of vowels in Gun
winggu.

100



●

●

●

●

−1

0

1

2

Effect of stress on vowel f0 (st)

M
od

el
 E

st
im

at
e 

+
 S

td
. E

rr
or

Gunwinggu Speaker
●

●

●

●

3

2

1

(Overall)

Figure 5.18: Model effect of the fixed binary factor ‘stress’ on f0 of vowels in Gunwinggu.

5.6 Kayardild

The Kayardild data includes four speakers, but their proportions of the data is massively

skewed, as can be seen in Table 5.6. Speaker 2/DN represents 91.6% of the Kayardild data.

This has a clear impact on the byspeaker results reported below. In fact, speaker 4/MM is

excluded from the following graphs because there are only 18 vowel tokens for this speaker

and results cannot be reliable with so little data.

Byspeaker duration results are shown in Figure 5.19. Overall, Kayardild has a sig

nificant and positive effect of stress on duration, and this is borne out for speakers 1 and 2

Speaker 1/AL 2/DN 3/ET 4/MM
Share of data 7.4% 91.6% 0.8% 0.1%
Vowel tokens 1276 15786 145 18

Table 5.6: Share of total data for each Kayardild speaker.
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Figure 5.19: Model effect of the fixed binary factor ‘stress’ on duration of vowels in Ka
yardild.

here. Speaker 3’s estimate value is similar to these other speakers’, but with a large standard

error and lack of significance as a result. Of course, speaker 3 only has 145 vowel tokens,

so these results cannot be interpreted strongly.

Kayardild also has an overall effect of intensity. However, this effect seems to be

heavily influenced by speaker 2, and the other two speakers do not have significant results

here. As already discussed for intensity, these results are difficult to interpret.

Finally, Kayardild also has an overall effect of stress on f0. This effect is seen for both

speakers 2 and 1, suggesting that this would be a consistent effect across more Kayardild

speakers. Speaker 3 again has no significant effect, likely influenced by the small set of

data available for this speaker’s speech.
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Figure 5.20: Model effect of the fixed binary factor ‘stress’ on intensity of vowels in Ka
yardild.
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Figure 5.21: Model effect of the fixed binary factor ‘stress’ on f0 of vowels in Kayardild.
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5.7 Kunbarlang

There are two Kunbarlang speakers represented in the data used for this dissertation, SM

and FA. The vast majority (84%) of the data come from speaker FA, while the remaining

16% come from SM.While most of the other languages with large skews like this also have

more speaker variation in the lessrepresented speakers, both speakers of Kunbarlang have

similar estimate values in all cases. However, because speaker FA/1 has so little speech

data, their error values are often much larger than speaker SM/2.

In the case of the duration results in Figure 5.22, speaker FA/1 does have a slightly

negative estimate value in comparison to speaker SM/2, who has an estimate near zero.

However, in both cases and in the overall result, stress is not a significant predictor of

vowel duration.

The overall effect of stress on vowel intensity (Figure 5.23) is significant and slightly

negative. However, each speaker’s individual results is not significant, although the esti

mate values are similar to the overall result.

Again, estimate values are similar for both Kunbarlang speakers in their effects of stress

on f0 in Figure 5.24. However, the larger error values for speaker FA/1 yield an insignificant

effect here, while the other speaker and the overall effect are both significant. While it

seems likely that more data from this speaker would yield a significant effect with a similar

magnitude as that for speaker SM/2, no definite conclusions can be drawn from these results.
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Figure 5.22: Model effect of the fixed binary factor ‘stress’ on duration of vowels in Kun
barlang.
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Figure 5.23: Model effect of the fixed binary factor ‘stress’ on intensity of vowels in Kun
barlang.
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Figure 5.24: Model effect of the fixed binary factor ‘stress’ on f0 of vowels in Kunbarlang.

5.8 Malak Malak

MalakMalak also has two speakers in the data, K and TW. Speaker K/1 accounts for around

62% of the data in this language, while TW/2 accounts for the remaining 38%, a relatively

more equitable split than we have seen in the other languages. Malak Malak shows a signif

icant effect of stress on all of the factors duration, intensity, and f0, and these are also seen

in both speakers individually, though in some cases there is more variation than in others.

Figure 5.25 shows the effect of stress on vowel duration for both speakers. Speaker

TW/2 has a slightly higher estimate value than speaker K/1, but both of these effects are

rather close to one another and the error ranges overlap substantially.

The effects for both speakers of stress on vowel intensity are almost identical. These

are shown in Figure 5.26. Both speakers have a slightly positive significant effect here,

although see §4.3 for discussion of the interpretation of these results.
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Figure 5.25: Model effect of the fixed binary factor ‘stress’ on duration of vowels in Malak
Malak.
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Figure 5.26: Model effect of the fixed binary factor ‘stress’ on intensity of vowels in Malak
Malak.
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Figure 5.27: Model effect of the fixed binary factor ‘stress’ on f0 of vowels inMalakMalak.

The two Malak Malak speakers show a bit more variation in their effect sizes of stress

on f0 than for the previous phonetic factors (Fig. 5.27). Both speakers have positive and

significant effects, but speaker K/1 has an effect of stressed syllables being about 1 semi

tone higher than unstressed ones, while speaker TW/2 has about twice this effect size, with

stressed vowels having over 2 semitones higher f0 than unstressed vowels. Both of these are

rather strong effects, but as there are only two speakers here it is not possible to draw broader

conclusions as to the nature of this variation. Unfortunately there are very few speakers of

Malak Malak remaining, so further study into this question may not be possible.

5.9 Ngan’gi

Nine speakers are represented in the Ngan’gi data. Below is a breakdown of the relative

amounts of data for each speaker. The speakers’ shares of the data are relatively more

equitable than has been seen in many of the other languages in this dissertation. Speakers
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Speaker 1 2 3 4 5 6 7 8 9
Share of data 8.7% 17.8% 22.8% 1.9% 6.2% 21.0% 9.4% 6.6% 5.6%

Table 5.7: Share of total data for each Ngan’gi speaker.
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Figure 5.28: Model effect of the fixed binary factor ‘stress’ on duration of vowels in
Ngan’gi.

account for somewhere between 2 and 20% of the data each, and no single speaker has a

clear dominance over the dataset in this respect.

As there are so many Ngan’gi speakers included in this study, we can see quite a bit

of interspeaker variation in these results. For vowel duration, as in Fig. 5.28, five of nine

speakers (4, 7, 1, 2, and 3) have significant effects, as is the overall effect. The other

speakers (5, 6, 8, and 9) do not have significant effects of duration, however. As laid out

in Figure 5.28, speakers vary along what seems like a gradual cline of difference, although

there is a clear difference between those with significant versus nonsignificant effects.

All Ngan’gi speakers have a significant effect of stress on vowel intensity, as shown

in Figure 5.29. Again, there is a clinal progression of effect sizes, from around 1 dB to
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Figure 5.29: Model effect of the fixed binary factor ‘stress’ on intensity of vowels in
Ngan’gi.

around 2.5 dB. These are not especially large effects, however, and as discussed in §4.3 it

is difficult to draw strong conclusions about the intensity results in general.

Most Ngan’gi speakers have a positive effect of stress on normalized f0. Three speakers

do not have a significant effect here (Speakers 1, 5, and 9). Speaker 8 has the largest effect

size at around 1.5 st, and speaker 4 has an effect of about 1 semitone. All other speakers

are under a 1 st effect size and have effect sizes that are relatively close to one another.

The Ngan’gi language community numbers in the low hundreds (cf. Chapter 2), and it

is likely from these results that there is some sociolinguistic variation in the realization of

stress within this community. Further research is needed to determine the sources of this

variation.
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Figure 5.30: Model effect of the fixed binary factor ‘stress’ on f0 of vowels in Ngan’gi.

5.10 Yidiny

There are two Yidiny speakers in the data for this project, DM and TF. DM accounts for

around 62% of the Yidiny data, while TF accounts for the remaining 38%. Both speakers

are very close in their effects for each of the three factors looked at here, despite the fact

that they speak different dialects.

The effect of stress on duration for both Yidiny speakers is significant. Effect sizes do

not differ greatly from the overall effect of 0.1 normalized duration units for either speaker.

Intensity is positive and significant in Yidiny, and both speakers have effect sizes very

close to the overall effect of about 2 dB. These results are shown in Figure 5.32.

Finally, the effect of stress on f0 is significant and positive for both Yidiny speakers.

The effect for DW/1 is around 1.2 semitones, while speaker TF/2 is closer to 1.6 semitones.

Both of these are relatively large effects and indicate a strong correlation of f0 with stress
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Figure 5.31: Model effect of the fixed binary factor ‘stress’ on duration of vowels in Yidiny.
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Figure 5.32: Model effect of the fixed binary factor ‘stress’ on intensity of vowels in Yidiny.
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Figure 5.33: Model effect of the fixed binary factor ‘stress’ on f0 of vowels in Yidiny.

in the language.
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5.11 Summary

The interspeaker results presented in this chapter have demonstrated that, like all other lin

guistic processes, the acoustic correlates of stress are not always consistent across speakers

of a language. In some cases speakers are consistent with one another in this regard, but

some correlates tested show a clear grouping where some speakers use a correlate and others

do not. Some correlates also show some interspeaker variation, but the greater proportion

of one speaker over the others can sometimes influence the overall language effect dispro

portionately. Others show a more even split among speakers that are clear indicators of

some sort of principled variation within the language. These results address the claim made

in (1.2a) in Chapter 1: variation in the cues to stress across speakers is indeed found. How

ever, a more controlled investigation into these data may provide stronger evidence to this

point. The data for each speaker as presented here is different, i.e. there are different word

types and differing numbers of word tokens from each speaker. A more controlled study,

which I leave for future research, would look specifically at word types that are shared by

all speakers and compare these directly, thus controlling for environment and frequency ef

fects that are not completely controlled for here. In addition, while some speculation about

the sources of this variation has been noted, addressing claim (1.2b), that this interspeaker

variation will fall along sociolinguistic lines, is not possible within the scope of this disser

tation. However, specific areas to look at in this regard have been pointed out and could be

a fruitful area of future study.

The results presented in this chapter, along with results that were not explicitly dis

cussed here but can be found in Appendix C, are merged with the overall language results

fromChapter 4 in Table 5.8 for those languages that havemore than one speaker in their data

set. Broadly, we can see in this summary table that while all acoustic factors may be subject

to interspeaker variation in these languages, certain measures such as vowel duration, in
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Language V. Dur. Onset Dur. PostT. Dur. Inten. F0 Max. F0 Rng. Vowel
Bardi + + ∼ ∼ + +
Burarra ∼ ∼

Gunnartpa ∼ ∼
Gija ∼ ∼∼∼ + + +

Dalabon ∼
Gunwinggu + + ∼
Kunbarlang + ∼
Kayardild + +∼∼ ∼ + + +

Malak Malak + +∼ + +
Ngan’gi + ∼∼ + ∼
Yidiny + + + + +

Table 5.8: Summary of results;+ indicates a statistically significant effect overall in the lan
guage that may be attributable to stress; ∼ indicates a statistically significant effect among
some (but not all) speakers in the language that may be attributable to stress. Languages
grouped by historical affiliation.

tensity, and f0 maximum are consistent across speakers in at least half of the languages for

which interspeaker variation could be investigated. The consonant duration measures (on

set and posttonic) tended to have more interspeaker variation, although some languages

do show this effect consistently across speakers. The interaction of crosslinguistic and

interspeaker results addresses claim (1.3) in Chapter 1: some stress correlates hold for all

speakers, while others are apparently less stable and exhibit speaker variation.

One factor to consider with these results is that these languages vary in the number

of speakers they have. A language with only two speakers, such as Yidiny for example,

may more easily have effects that are consistent across speakers than a language with more

speakers. However, this is not the only factor in determining whether a language has con

sistent or variable patterns here. In Ngan’gi, for example, there are nine speakers, and there

is variability in these speakers’ use of onset lengthening and f0 maximum, but vowel du

ration and intensity are fully consistent across speakers. Likewise, in Kunbarlang there are

only two speakers, but we still see variability in their use of f0 maximum.

A full understanding of any linguistic phenomenon requires not just looking at lan
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guages as a whole, but also considering the variation across speakers. Including speaker

variation in any phonetic study can reveal interesting patterns that might be glossed over

when binning all speakers together (Cohn & Renwick 2021). Considering speaker varia

tion in this dissertation is especially important considering the variance in each speaker’s

proportion of a language’s data set; the speaker with the largest proportion of the data is

likely to overshadow other speakers’ effects.

Now that individual models have been presented both across languages and across

speakers within each language, the question arises of how to quantify the variation we have

observed. In the following chapter, methods borrowed from the study of genetics are used

to address this.
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Chapter 6

Quantifying variation with phylogenetic

methods

The previous two chapters have presented the results of investigations into the phonetic

correlates of lexical stress in each of the sixteen languages investigated here, and for each

speaker within each of these languages. This has begun to provide evidence for Claims

(9.1), that there is crosslinguistic variation in the cues to stress, and (9.2), that there is inter

speaker variation. However, only broad and qualitative differences have been discussed so

far in Chapters 4 and 5; we still want to know whether this observed variation is structured

such that we can propose that stress cues undergo regular sound change, as stated in part (c)

of Claims (9.19.2). In this chapter, a method for quantifying both inter and intralanguage

variation in stress correlates is presented: Analysis of Molecular Variance, or AMOVA.

This is a model wellestablished for use in biological phylogenetics, and also used more

recently to model types of cultural evolution as well. The model quantifies the sources of

variation in the data at three levels: within speakers, across speakers within language, and

across languages. Some background on this method is presented in §6.1, and details on the

implementation of this model is given in §6.2. The AMOVA results presented in §6.3 find
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each of these sources to account for significant portions of the variation.

Using another phylogenetic measure of variation, this chapter also considers pairwise

variation across speakers and languages using fixation index, or FST (6.4). This measure

represents the amount of overall variation between each pair of speakers; this information

then serves as input to a Neighbor Net network model to visualize relationships between

languages based on the acoustics of stress, where close relationships are found between all

the Pama Nyungan languages in this study, and some other historical and areal groupings

are identified. The chapter ends with some discussion of these results in §6.5.

6.1 Background

6.1.1 The use of phylogenetic methods in linguistics

It has been a longstanding observation that biological and linguistic change seem to fol

low similar evolutionary principles (Darwin 1871, Croft 2000, Atkinson & Gray 2005).

Phylogenetic methods, originally used to model biological evolution, became established

as a way of modeling linguistic structure around the turn of the 21st century (Gray & Jor

dan 2000, Ben Hamed 2015). Phylogenetic models have been applied to historical studies

of many language families, including PamaNyungan (Bowern & Atkinson 2012), Bantu

(Holden &Mace 2003), Semitic (Kitchen et al. 2009), Turkic (Savelyev & Robbeets 2020),

IndoEuropean (Gray & Atkinson 2003), and many others. The focus has largely been on

the creation of tree models using Bayesian inference to determine likely historical relation

ships between groups of languages, but work has also looked at the contribution of specific

linguistic phenomena to a model of language relatedness (Bowern 2018a, MacklinCordes,

Bowern & Round 2021).
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6.1.2 Analysis of Molecular Variance

The quantification of variation across all languages is calculated here using the phyloge

netic modeling tool Analysis of Molecular Variance (AMOVA), which is used in the field

of biology to measure variation among and within genetic population groups. The model

output gives the percentage of variation in the data that comes from (a) within populations

(for our purposes, within speakers); (b) across populations within groups (across speakers

within languages); and (c) across groups (here, groups are languages). Another way of mea

suring amount of variation across languages is the FST statistic, which gives the percentage

of difference between each pairwise grouping of speakers/languages.

The Analysis of Molecular Variance was first presented in Excoffier, Smouse & Quat

tro (1992) for studying variance among DNA haplotypes within a single biological species

(479). The method is similar to an analysis of variance (ANOVA), with modifications

made to be tailored to genetic population variation and to consider variation at three levels:

within populations, across populations within larger groupings, and finally across group

ings. In this initial demonstration, Excoffier, Smouse & Quattro (1992) looked at groups

of ten human genetic populations, grouped in pairs into five geographical regions. The

withinpopulation variance was thus variation within one genetic population of humans;

the crosspopulation, withingrouping variation was the variation across each pair of pop

ulations within their region; and the crossgrouping variation was the variation across the

regional groupings. Most of the variation (about 75%) was found within populations, about

20%was found to be attributable to differences across groupings, and around 3% of the vari

ation was attributable to differences across populations within larger groupings (Excoffier,

Smouse & Quattro 1992: 486).

Excoffier, Smouse & Quattro (1992) are quick to note that AMOVA can be a useful

tool for studies of variation beyond just DNA haplotypic variation within biological species,
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calling it a “coherent and flexible framework for the statistical analysis of molecular data”

(479). This model was soon used for studying variance in other types of biological genetic

data (Michalakis&Excoffier 1996). More recently, thismodel has been applied to studies of

variance in aspects of human culture, specificallymusic (Rzeszutek, Savage&Brown 2012)

and folktales (Ross, Greenhill & Atkinson 2013). It has not to my knowledge been used for

linguistic data in any published work. This is because of the focus on treebased modeling

for groups of related languages using linguistic factors that have been established to undergo

regular historical change. In this project, I want to first establish that stress variation exists

in a systematic way such that we can expect it to undergo regular change, thus motivating an

investigation into the structure of this variation, which AMOVA is particularly wellsuited

for.

For the purposes of using this tool from biology on linguistic data, an analogy from

biological to linguistic data must be established. We will use the example of AMOVA data

for determining variation among colonies of bacteria for this exercise. In biology, each

population is essentially one colony of bacteria, e.g. in a Petri dish; each coded line within

the population is a genetic sequence for one bacterium from this colony. In language, one

population is taken to be all speech coming from one individual; that is, the collection of

each speaker’s utterances is taken to be a ‘colony.’ Each coded member of the sample is

taken to be a relatively short utterance of 100 words (see the following section for more

discussion on this point). These populations are then grouped together into what in biology

may be colonies of bacteria that are the same species; for language, we will group together

speakers (our samples) into languages. Thus we have a similar stratification of within

population variation (variation across utterances); crosspopulation withingroup variation

(crossspeaker withinlanguage); and crossgroup variation (crosslinguistic).
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6.2 How AMOVA is implemented

Analysis of Molecular Variance can be implemented using the phylogenetics program Ar

lequin (Excoffier, Laval & Schneider 2005). This program takes a specific type of project

file with a .arp extension. The structure of this input file is similar to other file structures

used for phylogenetic modeling programs. There are two mandatory sections, ‘Profile’ and

‘Data — Samples’, with optional sections specifying a distance matrix, a list of haplotypes,

genetic structure, and Mantel tests. Arlequin will generate this information automatically

unless these sections are specified; for the present implementation of AMOVA, the auto

matic generation option for the distance matrix was chosen, while genetic structure was

specified in order to define speakers as part of a language group.

In the ‘Profile’ section, formatting characters are specified such as the locus separa

tor, which is usually whitespace, and the character to indicate missing data, usually ‘?’.

This section also requires specifying the number of samples and the type of data; for this

implementation of AMOVA, the data type was set as ‘standard’ haplotype data, meaning

the Arlequin program was expecting multistate coded characters, i.e. groups binned into

categories notated ‘0’, ‘1’, ‘2’, etc.

The ‘Data’ section includes all other required and optional sections of the input file.

The one mandatory section here is ‘Samples,’ which is the main data portion of the file. For

biological implementations of this model, a sample would consist of the genetic sequences

of the members of different biological populations. For my purposes here, each sample

is a speaker, and each line in the sample represents a 100word utterance sampled from

that speaker’s audio data. It is important to have multiple coded lines in each sample for

two reasons. First, withinspeaker variation will be measured based on the variation in the

members of each sample, so having one line per sample would gloss over withinspeaker

variation and artificially inflate crossspeaker and crosslanguage results. Second, binning
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Figure 6.1: Example of one sample in an Arlequin input file using raw data measurements.

all word tokens together for each speaker would not be very informative; across time and

especially across audio files, the environment in which the speaker is speaking may change

substantially, including their distance from the microphone as well as levels of background

noise. By breaking up each speaker’s data into smaller chunks, the likelihood that conditions

will change to a large degree is reduced. The decision to use 100word utterances (instead

of 50 or 200, for example) was arbitrary on my part; I leave an investigation into the optimal

size of utterances for this type of modeling to further research.

There were a total of 472 of these utterance chunks in the input file, across 50 speakers

of 16 languages. As an example of what these data look like, Figure 6.1 shows the coded

sample for Dalabon speaker ND. This speaker has around 400 word tokens in their audio

data, which were split up into four lines in the sample coding. Each character on the line

represents the arithmetic difference between the average X measurement of stressed Y syl

lables and the average X measurement of unstressed Y syllables, where X is one of the

acoustic measurements listed in (1) that was investigated as a potential correlate of stress,

and Y is one of the vowel qualities /a/, /i/, or /u/, or a consonant category ‘stop’, ‘nasal’, or

‘glide’, depending on X.

1. Measurements included in Arlequin input file:

(a) DUR: vowel duration

(b) INT: vowel intensity
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/a/ /i/ /u/
DUR DURA DURI DURU
INT INTA INTI INTU

F0MAX F0MAXA F0MAXI F0MAXU
F0MIN F0MINA F0MINI F0MINU
F0RNG F0RNGA F0RNGI F0RNGU

F1 F1A F1I F1U
F2 F2A F2I F2U
EU EUA EUI EUU

Table 6.1: Vowel characters coded for AMOVA model input.

(c) F0MAX: f0 maximum

(d) F0MIN: f0 minimum

(e) F0RNG: f0 range

(f) F1: first formant

(g) F2: second formant

(h) EU: Euclidean distance for vowel space

(i) OD: onset consonant duration

(j) PTD: post tonic consonant duration

The first eight measurements listed in (1), all of which are vowel measurements, were

crossed with the vowels /a/, /i/, and /u/, to get a total of 24 vowelrelated characters in the

Arlequin input file, as enumerated in Table 6.1. These three vowels are the only ones con

sidered here because they are the three vowels that are shared by all sixteen languages being

analyzed. Including vowels that are not in all of these languages would cause problems for

the AMOVA results, because there would be large amounts of missing data in the input file.

The last twomeasurements listed in (1) are durations of onset consonants and posttonic

consonants respectively. These were crossed with the three categories that consonants were

binned into when investigating consonant durations as correlates of stress: stops, nasals, and
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STOP NASAL GLIDE
OD ODSTOP ODNASAL ODGLIDE
PTD PTDSTOP PTDNASAL PTDGLIDE

Table 6.2: Consonant characters coded for AMOVA model input.

glides. This results in six characters as listed in Table 6.2. There is a total of 30 characters

listed for each 100word sample for each speaker in each language in this study.

The differences in stressed versus unstressed vowels for each of these characters will

usually be a positive number when the stressed vowels are more prominent on average than

the unstressed ones for a particular utterance. Theywill usually be zero or a negative number

when there is no stressrelated difference for that character. To highlight this generalization

in themodel, and also for ease of use with the Arlequin program, multistate character coding

was used. Positive numbers, which correspond to stress correlation, were coded as ‘2’;

negative numbers were coded as ‘1’; and zero values were coded as ‘0’. True zeroes were

rare, with fewer than 200 coded for in the input file with over 14,000 individual items coded

across all speakers and languages. Figure 6.2 shows the same sample for Dalabon speaker

ND as in Fig. 6.1, now with this multistate character coding.

In some cases, especially for the consonantrelated characters, there may not be a value

for a certain character. This is because some 100word chunks may not have nasals in onset

position in both stressed and unstressed syllables, for example. These instances are marked

as missing data with a ‘?’ symbol, as can be seen in a few instances in Fig. 6.2. No coded

character had greater than 25% missing data across all speakers, and 27 of 30 characters

Figure 6.2: Example of one sample in an Arlequin input file using multistate coded char
acters.
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had less than 5% missing data.

Finally, the ‘Genetic Structure’ section of the Arlequin input file was also specified.

This section allows for specification of each speaker into a group, in this case a language, so

that the AMOVA results can also include crosslinguistic variation. There were 50 speakers

across 16 languages, as already described in Chapter 2. Other optional sections, including

the distance matrix, were calculated automatically in Arlequin in order to run the AMOVA.

The final coded Arlequin input file is available in full online at https://doi.org/

10.5281/zenodo.6354656.

6.3 AMOVA Results

The results of the AMOVAmodeling are given in Table 6.3. The variation at all three levels

the model considers is significant. The largest proportion of the variation is within speak

ers (87.2%), crosslinguistic variation accounts for 7.6% of the variation, and interspeaker

withinlanguage variation for 5.3% of the variation in the data. These sorts of numbers are

typical for AMOVA results in both genetic and cultural populations to which it has been ap

plied (e.g. 2.06% between populations (music) in Rzeszutek, Savage&Brown (2012); 9.1%

between populations (folktales) in Ross, Greenhill & Atkinson (2013); also see Lewontin

(1972), Rosenberg et al. (2002) for summaries of human genetic variation). However, the

question naturally arises why so much of the variation is intraspeaker, and whether the

small numbers for interspeaker and crosslinguistic variation are in fact meaningful for the

quantification of linguistic difference in the phonetic correlates of stress. I argue that these

Source of variation d.f. Sum squares Var. components % of var. pvalue
Across languages 14 369.48 0.49 7.55% < 0.001
Across speakers,
Within language 35 261.99 0.34 5.26% < 0.001
Within speakers 422 2390.35 5.66 87.19% < 0.001

Table 6.3: AMOVA results.
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results are meaningful for the following reasons. First, and probably most important, vari

ation in any of these phonetic factors is likely to be highest when a factor is not a correlate

of stress, and that variation should be seated comfortably within speaker. For example,

Ngan’gi has no effects of stress on posttonic consonant duration. Thus, we would expect

that the coding for all three posttonic consonant duration characters should vary essentially

at random; thus, the measure of variance in all three of these characters will be quite high.

Subsequent work could potentially address this issue by coding all nonsignificant corre

lates as ‘0’. Second, it is unlikely that all the correlates found in the regression results (cf.

Table 4.1) would be considered the primary correlates of stress in the minds of speakers;

however, with perception experiments being unavailable for the current study, we do not

have a way to identify these except by picking out correlates with significant but small ef

fect sizes. If a stress correlate is secondary in the mind of a speaker, the obligatoriness of

the correlation holding for any given 100word span of utterance may vary, thus increasing

the withinspeaker variation further. Thus we can expect that any results of this type will

have large amounts of withinspeaker variation, but that does not discount the statistical

significance of the other levels of variation.

The acrossspeaker withinlanguage results indicate that about 5.2% of the variation

in the data comes from interspeaker variation. This result is more or less borne out in the

discussions of speaker variation in Chapter 5. There are clearly interspeaker effects in the

use of certain stress correlates in the languages in this study, just as there are interspeaker

effects in any other linguistic phenomenon (cf. Cohn & Renwick (2021)). This source of

variation could be a sign of changes in progress, or of stable sociolinguistic variation within

the language community.

Finally, crosslinguistic variation is found to account for about 7.6% of the variation in

the data. This source of variation can be the result of historical changes, or of significant

crosslinguistic differences between unrelated languages. While the AMOVA model does
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not point out the specific sites of variation that contribute to this overall number, it does

indicate that the languages in this study are varying with respect to their stress correlates

separately from the variation that comes from intra and interspeaker sources. In order to

look more specifically at the differences between each pair of languages, we can look at the

FST statistic, which is discussed in the following section.

6.4 Pairwise fixation index

Another way of looking at differences between and within languages is a pairwise fixa

tion index, or FST. This is a measure of genetic distance between populations that ranges

from 0 to 1. Values closer to 0 indicate that genetic distance is smaller and the populations

being compared are more similar. A value of 0 means that the populations are identical,

while a value of 1 indicates no similarities whatsoever between populations. In biology,

values between 0 and 0.25 are expected between two populations that have some amount

of interbreeding and thus are genetically quite similar (Ecology Disrupted 2021).

Pairwise FST values were calculated in Arlequin for each population in the AMOVA

input file; that is, these values were calculated for each speakerspeaker pair both within and

across languages. Our expectations for FST values does not match up completely with the

expectations for these values in biology. In biology, a value over 0.25 likely indicates that

there is little contact and little genetic mixture between populations, but we may not expect

the same standard cutoff point to be meaningful for language data. All of the similarity

values are likely to be on the lower end of the FST scale, because there is likely to be a lot

of overlap between speakers, especially when neither speaker is using some acoustic factor

to mark stress and there is randomlike variation. The fixation indices will then need to be

evaluated on a smaller scale than biological data might.

Figure 6.3 gives a visualization of all the speakerspeaker pairwise FST values across

all languages. The histogram plot shows that these values do indeed trend low, and most
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Figure 6.3: Histograms showing the distribution of pairwise FST values across all languages
(n=2500). On left: raw FST values. On right: Slatkincorrected FST values where all nega
tive numbers go to zero.

values are close to 0.2. Some of the values generated by Arlequin are negative, but for the

purposes of interpreting FST a negative number is equivalent to zero. In the two plots in

Figure 6.3, the left shows all the raw values, while the right shows the corrected FST values

corrected using Slatkin (1995)’s linearized FST measure.

The pairwise fixation index values were used as an input to a Neighbor Net network

plot. All nonsignificant values were excluded and coded as ‘0’. Remaining Slatkin lin

earized FST values were binned into ten 0.1sized bins plus one bin for zero values. This

allows for the R package phangorn (Schliep 2011) to recognize the coding and create a

distance matrix for input into the network model. For readability and to more easily com

pare across languages, all speakers of a language were averaged together for this part. The

distance matrix was calculated as Hamming distances (Hamming 1950) between the char

acters.

The output of the Neighbor Net is shown in Figure 6.4. The structure of these languages

does not look treelike as one might expect from clearly historically determined phenomena,
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Figure 6.4: Neighbor Net based on Slatkin linearized FST values.
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but of course not all of these languages are thought to be historically related to one another.

However, there are some notable groupings of languages in this network. The bottom of

the NeighborNet shows a clear grouping of the Pama Nyungan languages (the red box in

Fig. 6.4). Wanyjirra seems to be an outgroup here, but Warlpiri, Yidiny, Yannhangu, and

Warnman all group together more closely and separately from the other languages here. An

other historically related group that shows some clustering here is Gunwinyguan, although

only Kunbarlang and Gunwinggu are close together in Fig. 6.4 (the green triangle). Dalabon

is not close to the other Gunwinyguan langauges, instead forming a group with Burarra in

the blue box on the upper left. These languages are both spoken in Arnhem Land, so the

connection may be areal here; however, many other languages here are also spoken in Arn

hem Land, so it is not a completely straightforward connection. Finally, Bardi and Gija

are close together in Fig. 6.4, in the purple oval. These languages are both spoken in the

Kimberley region, in this case the only two languages from this region. It is possible that

this grouping results from some areal effects on the phonetic cues to stress. The remaining

languages in Fig. 6.4— Kayardild, Malak Malak, Ngan’gi, and Murrinh Patha— are not

clearly grouped with any other languages in the NeighborNet.

6.5 Summary

This chapter has presented an investigation into the population structure of the dissertation

languages based on the acoustic factors related to lexical stress. The language data used in

this project was broken up into many 100word samples in order to create the appropriate

data type for the modeling and to ensure that comparison is done with samples of the same

size. Using Analysis of Molecular Variance, we were able to identify the sources of this

variation. Most of the variation we see in these data comes from within each speaker; as

discussed, we expect this to be the case because of the nature of the data being investigated.

The AMOVA model also found significant amount of variation attributable to both cross
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speaker, within language variation, and crosslinguistic variation.

The AMOVA results presented here address claims (1.1c) and (1.2c) from Chapter 1.

Through this study of population structure, we have seen that there is significant varia

tion that is attributable to crosslinguistic variation (claim (1.1c)) to the exclusion of other

sources of variation; and that there is significant variation across speakers of the same lan

guage (claim (1.2c)) to the exclusion of other sources.

This variation was investigated further using fixation indices, or FST. This gave us pair

wise values for each speaker pair indicating the similarities in the data between them. These

values were generally small, most values falling in the lower 50% of the value range. The

results were used as input to a Neighbor Net visualization of the relationships between lan

guages. The result showed some interesting relationships between some languages. Most

strikingly, the Pama Nyungan languages all grouped together in the network (Fig. 6.4).

Furthermore, we saw two of three Gunwinyguan languages grouped together as well, and

potential areal patterns seen in the Kimberley region and in a subset of the languages spoken

in Arnhem Land.

The FST results address claim (1.1b) from Ch. 1: “closely related languages will be

more likely to share cues to prominence than languages that are more distantly related.” The

grouping of PamaNyungan and Gunwinyguan languages here support this claim. However,

we also observe some apparent areal patterns as well, suggesting there may be contact

induced change in some cases in the phonetic cues to stress.

The results presented in this chapter indicate that variation in the phonetic correlates of

lexical stress is structured similarly to other types of principled linguistic change. Signifi

cant variation is found between languages as well as across speakers of the same language,

and similar patterning is found between historically related languages as well as unrelated

languages that are in contact with one another. These findings are promising for the pur

suit of research in prosodicphonetic change in Australian languages and more generally as
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well.
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Chapter 7

Phrasal prosody

In this chapter, we turn to a topic not yet investigated in this dissertation: phrasal prosody.

While the processing and analysis of lexical stress correlates in Chapters 36 was simplified

by the fact that most Australian languages have consistent initial stress placement (Goede

mans 2010, Fletcher & Butcher 2014), this is not the case for categories of phrasal contours

in these languages. For this reason we must first create hypotheses about what these con

tour categories are before folding them into a broader analysis of prosodic change. This is

not a simple task, especially without close knowledge of the languages at hand. This chap

ter presents a case study in using an automated method for prosodic contour identification,

first proposed by Kaland (2021), but this is only the first step in a strong theory of prosodic

contours in these languages, and further work is required to test the hypotheses established

here. The larger question of including phrasal contours and other higherlevel prosody in

a model of prosodic change goes beyond the scope of this dissertation, and I leave it for

future research, but I present the results of this automatic analysis of prosody as a proof of

concept for conducting such analyses on archival audio.

Identifying types of phrasal prosody is a particularly difficult problem in language doc

umentation work for two reasons. First, prosodic work requires specialized data collection
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methods and command of the prosodic literature (Gussenhoven 2004, Himmelmann 2008).

For this reason prosodic documentation has not historically been a focus of general language

documentation efforts; it is not until recent decades that recording equipment and analysis

tools have become accessible and portable enough for this to be the case (Macaulay 2021).

Second, prosodic work usually requires deep knowledge of the language’s syntax and dis

course structure. Intuitive analyses are subject to error based on perceptual biases of non

native speakers (Kaland 2021, Xu 2011). All of this is even more difficult when working

with archival materials without access to native speakers’ intuitions and judgments about

the meaning that prosodic structures encode (Simard & SchultzeBerndt 2011). As a result,

detailed intonational studies for endangered languages are rare.

Phraselevel prosodic description in Australian languages is even more rare than word

level stress descriptions, reflective of the broader trend of this type across language docu

mentation work in all areas of the world (Fletcher & Butcher 2014, Macaulay 2021). How

ever, some work exists for languages such as Kayardild (Fletcher, Evans & Round 2002),

Arrernte (Tabain 2016), Jaminjung (Simard 2010), Bininj Gunwok (Bishop 2003), Djam

barrpuyngu (Jepson 2019), and Dalabon (Ross, Fletcher & Nordlinger 2016), among oth

ers. Fletcher, Evans &Round (2002) note that while phrasal prosody in Bininj Gunwok has

been found to function exclusively as a way to demarcate the edges of phrasal units (Bishop

2003), Kayardild seems to use phrasal prosody for both this demarcative function as well

as phrasal prominence functions such as focus marking. This finding underscores the im

portance of looking at phrasal prosody in more Australian languages, as there is clearly

variation that has yet to be surveyed in a comprehensive way.

Prosodic phenomena are as important an aspect of a language as any other linguis

tic phenomenon, one of many crucial topics to create a full understanding of a language’s

phonological system. However, prosodic description has not become a standard aspect

of language documentation in the same way that segmental description is (Himmelmann
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2008, Macaulay 2021). A major roadblock to describing the prosody of a language is the

formation of initial hypotheses. With initial ideas about what prosodic contours to look out

for, along with some knowledge of the language, it becomes easier to construct targeted

sentences and texts to get more examples of a particular phrase type, and to get multiple

speakers to say the same sentences in the same context to study prosodic contours more

carefully (Himmelmann 2008). One possibility to create these initial hypotheses without

investing a lot of one’s own research time, which is often limited due to funding constraints,

is to first run a bottomup, automatic categorization algorithm to identify phrasal contours.

Besides saving time for the researcher to identify likely phrase types, an automatic cate

gorization algorithm has the notable benefit of sidestepping nonnative speaker biases in

identifying prosodic phenomena.

This chapter presents results of an automatic analysis of phrasal prosody in the Aus

tralian languages included in this dissertation. To maximize comparability across lan

guages, the process is kept as automatic as possible, only considering existing phonological

accounts of phrasal prosody in late stages of analysis, whenever such accounts exist. In

what follows, each of the sixteen languages in this study is considered in turn.

These results are just the beginnings of an analysis of phrasal prosody in the project

languages— further work would be needed to test the hypothesized f0 contour patterns

directly, ideally with targeted perceptual experiments, in order to draw more definitive

conclusions. The following analyses contribute a first look at the phrasal prosody of the

dissertation languages, in many cases the first analysis of this type for the language. A

cluster analysis is run, using the methods laid out in Kaland (2021) for automatic prosodic

categorization.
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7.1 Background

A small body of recent work has explored the capabilities of automatic methods in identify

ing prosodic phenomena such as tone and phrasal prosody. This includes Dockum (2017)

andGrabowski &McPherson (2019), who have testedmethods for automatic categorization

of tone contrasts in a variety of languages. Cole & ShattuckHufnagel (2016) present Rapid

Prosodic Transcription (RPT), which is a fast and easy way of identifying basic prosodic

features. This is not the best method for all types of language data and research situations, as

it requires training native speakers of the language to do the transcriptions. For my purposes

in this dissertation, for example, native speakers are not readily available for this kind of

task, and in some cases no native speakers remain for the language, so we require a method

that identifies prosodic contours based only on audio data.

Relatively little work has considered methods for automatic categorization of f0 con

tours used in phrasal prosody, with the notable exception of Kaland (2021), whose toolkit

is used for the analysis in this chapter. Using automatic tools for categorization of phrase

types, Kaland argues, eliminates effects of nonnative impressionistic categorizations and

facilitates the identification of subtle contour categories that nonnative researchers are

likely to miss. While a full and detailed description of phrasal prosody in a given language

would be best supported by targeted perceptual experiments, such work is best performed

only after a preliminary analysis to establish hypotheses to test, and these hypotheses could

be formed without the interference of nonnative speaker biases via the use of automatic

methods.

Kaland (2021) presents two case studies to demonstrate the performance of the contour

clustering toolkit: tone contours in Zhagawa elicited speech, and phrase contours in Papuan

Malay spontaneous speech field recordings. The data used for the Papuan Malay case stud

ies consisted of natural speech recordings made in a field setting, with intonational phrases
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segmented by a researcher familiar with the language. This is exactly the type of data that I

have in this dissertation project, as I am working with archival materials with transcriptions

made by the researcher who recorded the audio, often in consultation with native speakers

of the language.

7.2 Methods

The contour clustering toolkit described in Kaland (2021) is available at the following

URL: https://constantijnkaland.github.io/contourclustering/. The scripts

included in the toolkit were used for this analysis without anymodification to the underlying

script, with settings as noted in this section.

This analysis was performed as automatically as possible. One consequence of this

is that phrase boundaries were defined as any period of speech between two pauses, as

indicated in the original transcripts in the archival materials. This is certainly an imperfect

metric for phrasehood; however, I have no reason to believe that this should preclude using

it for preliminary analysis, as a timesaving way of investigating phrasal phenomena in this

large multilingual corpus. This allows the method to bemaximally applicable to research on

any language and comparable across languages with varying amounts of prosodic research

already done on them.

The scripts available in the toolkit fromKaland (2021) were used with minimal modifi

cations. First I ran the ‘timeseries f0 measurements’ Praat script, which takes f0 measure

ments at 20 regular intervals across each phrase (Boersma & Weenink 2018). The script

defines a ‘phrase’ as any interval containing text in the specified TextGrid tier, and I define

these intervals as an utterance with silence or nonspeech intervals before and after it. These

intervals were (in most cases; see language descriptions in Chapter 2) set by the researchers

who made each language deposit while doing their transcriptions of audio in ELAN. The

default settings from Kaland (2021) were kept the same, except that minimum duration was
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set to 100 ms instead of 0.1 ms, because these intervals were too short for Praat to take 20

measurements. Pitch minimum was set at 75 Hz, and pitch maximum at 600 Hz, time step

was 0.01, and stylization resolution was 2 st.

The clustering method used for this analysis is completelinkage clustering. This is an

agglomerative method with iterative pairwise clustering, similar to another common clus

tering method, UPGMA (unweighted pair group method with arithmetic mean) (Sokal &

Michener 1958). Clusters are formed by grouping elements together that have the mini

mum distance between them. This is done in an iterative fashion to build up larger clusters,

which means that a new distance value needs to be calculated for the smaller clusters in

order to continue the method. For completelinkage clustering, this new distance is calcu

lated as the maximum distance between elements of the cluster. For example, if the first

cluster has elements (a,b) and we want to determine the distance between this cluster and a

new element c, we choose the larger of the distances between a and c and between b and c.

This is what distinguishes completelinkage clustering from other agglomerative clustering

methods; UPGMA clustering calculates this new value as the mean distance between ele

ments of the cluster, and singlelinkage clustering uses the minimum distance of the cluster

elements.

Contour clustering analysis was run in R using Kaland (2021)’s graphical user interface

clustering script. Data was pruned based on the automatic suggestions for subsetting when

the number of clusters was set at n = 25, as was done in Kaland (2021). After pruning, the

number of clusters was set at n = 2, and then investigated at each n+1 until I judged that

additional clusters were uninformative. This was usually because the cluster added when

looking at n+1 clusters had a contour that was extremely similar to a contour in an existing

cluster. This is the same sort of judgment recommended in Kaland (2021) to settle on the

number of clusters in a relatively objective way apart from knowledge of other work on

prosody of the language.
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F0 measurements were standardized by speaker. Each file was normalized by subtract

ing the mean f0 from each measurement; therefore, in the results that follow, the zero mark

indicates average f0 and positive and negative numbers are higher or lower deviations from

that mean.

7.3 Results by language

7.3.1 Bardi

The Bardi data was normalized by filename (the proxy for speaker used in the contour

clustering script) by subtracting the mean, thus centering all measurements around zero.

Data was subsetted based on the automatic subsetting at 25 clusters, as recommended in

Kaland (2021). After subsetting, one notable cluster with n = 5 remained, and clusters

were explored both with and without this cluster because of its small size. After subsetting,

the original n = 1940 contours (utterances) was cut down to n = 1852 (95.5%) with the

small cluster, or n = 1847 (95.2%) without it. There were nine rounds of data subsetting

before no automaticallydetected subsets remained.

The cluster dendrogram for Bardi is shown in Figure 7.1. The branching here shows

a major split separating roughly one third of the data from the rest, a split that corresponds

to the two major clusters in Figure 7.2. The larger of the two clusters (on the right in

Fig. 7.2) corresponds to a mid tone that falls over the utterance, while the smaller cluster

(left in Fig. 7.2) corresponds to a higherthanaverage tone that falls over the course of the

utterance.

The contours in Figure 7.2 show the major split at the top of this dendrogram. The

more common contour (Cluster 2 in the figure) shows a relatively flat contour, beginning at

average f0 and lowering a bit over the course of the phrase. The smaller cluster (Cluster 1)

shows a higherthanaverage f0 at the beginning of the phrase, which lowers to average by
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Figure 7.1: Cluster dendrogram for Bardi, after subsetting of data.

the end.

Figure 7.2: Two major contour clusters in Bardi.

However, looking at a twoway split in contour clusters misses a lot of meaningful

variation in Bardi phrases. Figure 7.3 shows the contour clusters detected when there are

eight clusters specified, and more distinct phrase types make themselves clear. The flat

contour with average f0 remains (Cluster 3 in the figure), now one of three relatively flat

contours along with a lowf0 and highf0 contour (Clusters 4 and 3 respectively). These are

joined by two falling contours, one midtolow (Cluster 5) and one a more dramatic (but

much less frequent) hightolow contour (Cluster 6). Cluster 7 shows a high f0 gesture that

is maintained throughout the phrase, followed by the low boundary tone at the end, while

Cluster 8 shows an extrahigh contour that seems relatively stable across the phrase, though

this cluster seems to have more variation than the others. The only rising tone is seen in

Cluster 2, where a slightly above average f0 rises at the end of the phrase.
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Figure 7.3: Eight contour clusters in Bardi.

7.3.2 Burarra

The Burarra audio files included 1565 segmented utterances. After data subsetting, 1484

utterances (94.8%) remained in the clustering analysis. The dendrogram for Burarra is

given in Figure 7.4; there are some clear outliers near the top of this dendrogram, which are

among the utterances that were excluded in data subsetting.

In some cases, such as in the AMOVA analysis presented in Chapter 6, I have combined

Burarra and Gunnartpa data sets, as these are both from the same language, despite being

deposited in different archives and being recorded in different settings at different times.

For the purposes of this phrasal contour analysis, I have not done this. This is only because

the phrasal contour script has a file size limit of 5 MB, and combining these two data sets

would require first pruning the data extensively myself before input into the script. When

needed for other languages, I have done this, but for the BurarraGunnartpa case there is a

reasonable grouping of data into two groups that I have taken advantage of.

Nine clusters were settled upon, shown in Figure 7.5. Most of these clusters involve a
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Figure 7.4: Dendrogram for Burarra.

phrasefinal decline of differing degrees. Clusters (1) and (2) in Figure 7.5 seem to show a

declarative phrase type, with the difference between them being that (1) begins with a slight

high tone while (2) begins at about average f0. Cluster (3) shows a flat contour with a small

f0 rise at the end of the phrase. Likewise, cluster (6) also has a rise in f0, in this case at

the very beginning of the phrase, with f0 remaining stable at an aboveaverage tone for the

remainder of the phrase.
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Figure 7.5: Phrasal clusters for Burarra.

The remaining five clusters all show a more dramatic f0 fall at the end of the phrase.

Cluster (4) shows a steady decline over the phrase, which begins at about average f0 and

ends quite low. Cluster (5), on the other hand, stays at average pitch until about halfway

through the phrase, with the last half showing a steep decline in f0. Clusters (7), (8), and

(9), in contrast, all begin with high f0. The contour of cluster (9) is similar to that of (5),
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with f0 remaining stable until a fall about halfway through the phrase; the distinction here

is that (9) begins high and falls to about average f0. Finally, cluster (7) begins with a high

tone that falls to a low pitch steadily over the phrase, while cluster (8) shows a high tone that

peaks midphrase and then similarly falls to a low f0. These clusters may both represent

phrases with a focused element at different positions in the phrase.

7.3.3 Gunnartpa

The Gunnartpa data set was smaller than the Burarra data, with only 216 phrasal contours

before subsetting and 208 (96.3%) after subsetting. The dendrogram is given in Fig. 7.6.

Figure 7.6: Gunnartpa dendrogram.

Eight clusters were identified, shown here in Figure 7.7. These clusters are smaller

than the clusters of other languages looked at here, because the overall data set is smaller.

The largest cluster is (2), which shows a likely declarative phrase type with about average f0
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and a slight decline over the course of the phrase. Cluster (5) is similar, but shows a stable

(low) f0 for the first half of the phrase, with a decline after that; this is similar to cluster (5)

in the Burarra data set (Fig. 7.5). The Gunnartpa data set also has a small cluster in (6) that

shows somewhat steady pitch for half of the phrase followed by the f0 rise. Cluster (7) also

has a rise, peaking in the middle of the phrase, with f0 starting and ending at about average

on either side. Cluster (8) begins with a high tone, with a fall by about halfway through the

phrase and remaining steady for the remainder of the phrase.

Figure 7.7: Phrasal clusters for Gunnartpa.

The remaining three clusters in Gunnartpa have a pitch fall over the phrase. Cluster

(1) in Figure 7.7 begins with a high tone and falls to a low tone at the end, while cluster (3)
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begins with about average pitch or perhaps a slight rise, also ending with a low tone. And

finally, cluster (4) has high f0 for the first half of the phrase, with a fall to about average f0

at the end.

7.3.4 Dalabon

The Dalabon dataset (cf. §2.2) is very large, and required some pruning before running the

cluster analysis script to meet the 5 MB file size maximum. The CSV file generated with

Kaland’s Praat script was trimmed first for ‘jump kill effect’ values between 0.9 and 1.1,

which is how the data would have been trimmed using the script anyway. Also excluded

were singleword phrases; while a single word can be a phonological and syntactic phrase

in Dalabon, it is likely not the case for all singleword phrases in the transcriptions used,

so it was decided that this was a reasonable group of phrases to exclude for the sake of

shrinking the file size. After these exclusions, the resulting data file was 4.997 MB and

contour analysis was run.

Figure 7.8: Cluster dendrogram for Dalabon.

The uploaded Dalabon data included 2,176 contours, with 2,123 (97.6%) left after sub

setting within the GUI script. The dendrogram of clusters, shown in Figure 7.8 is heavily

skewed. Because of this, the largest cluster of around n = 1700 did not split until the num

ber of clusters was n = 10. This major split, clusters (1) and (2) in Figure 7.9, reflects a
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contour that starts mid and falls toward the end, and a phrase that remains level throughout,

respectively.

The remaining clusters are substantially smaller than these two large clusters, with

numbers falling from n > 800 to n < 150. The next largest cluster is (4), which shows a

level, low contour across the phrase. This is very similar to cluster (7), which is also low and

level, but with average f0 hovering at around 100 Hz below average in contrast to cluster

(4)’s 50 Hz below.

Figure 7.9: Cluster plots for Dalabon where n = 10.

Three of the smaller contours— (3), (6), and (10)— begin with high f0. In cluster (10),

this high tone falls immediately after phrase onset, likely representing a boundary tone or a

pitch reset from a previous phrase. Cluster (3) starts off very high and drops steadily across

the phrase, ending at about average f0. And cluster (6) shows a steadier high contour, with
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f0 remaining relatively level until a slight lowering at the end of the phrase.

The remaining clusters— (5), (8), and (9)— begin at about average f0. In cluster (9)

this average f0 falls steadily starting about onethird of the way into the phrase. Clusters

(5) and (8) rise by the end of the phrase, but in (5) this is a more gradual rise, while cluster

(8) has a sharp rise right at the end. This latter contour likely reflects an uptick in f0 leading

up to the following phrase. It is unlikely that this pitch rise reflects a boundary tone, given

that this particular cluster is extremely small at n = 10.

7.3.5 Gija

There were 889 phrasal contours in the Gija data, and 864 of these (97.2%) remained after

data subsetting. Four clusters were settled on, shown in Figure 7.10. The first two clusters—

(1) and (2)—make up the vast majority of the phrases, and both seem to represent a standard

declarative phrase type. Cluster (1) begins with about average f0 and falls to a low tone

phrase finally. Cluster (2), on the other hand, begins slightly above average f0 and falls to

slightly below average, with the overall linear slope being flatter than in cluster (1). Cluster

(2) is the larger with n = 520. Cluster (1) may represent a stronger low boundary tone

indicating the end of a group of phrases or something similar.

Cluster (3) also has a phrase final low tone, but the contour begins with high tone that

falls steeply to average f0 about a quarter of the way through the phrase. Cluster (4) shows

a pitch rise, with steady f0 at about average for the first threefourths of the phrase, and a

steep rise at the end.

7.3.6 Gunwinggu

The Gunwinggu data is small relative to the other languages here. There are 186 contours in

the data, with 149 (80.1%) left after subsetting. Presumably as a consequence of fewer data

points, the clusters were smaller and more variable than for other languages in this chapter.
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Figure 7.10: Phrasal clusters for Gija.

Four clusters were settled upon, shown in Figure 7.11.

Clusters (1) and (2) are by far the largest clusters and are both declarative type contours.

Cluster (1) starts off at average f0 and has a fall at the end of the phrase, while cluster (2)

is more stable throughout, with a less extreme fall near the end. Clusters (3) and (4) have

much steeper declinations in pitch and also start off with high tones. Cluster (3) seems to

maintain the high f0 until the very end, while in cluster (4) this declination is steadier across

the phrase. However, these clusters are both quite small (n < 10), so it is difficult with so

little data to determine if these clusters are truly meaningful and would be more frequent in

a larger data set, or if they are simply flukes.

7.3.7 Kayardild

The Kayardild data set is very large and required substantial preinput subsetting. After

upload, there were 2,603 phrase contours in the data, and 2,390 of these (91.8%) were left

after inscript subsetting. There were twelve phrase clusters that were determined to be

worth discussion, as shown here in Figure 7.12. The largest of these clusters is (1) with
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Figure 7.11: Phrasal clusters for Gunwinggu.

n = 620, which seems to represent a standard declarative phrase type, with average f0 that

falls slightly by the end of the phrase. This is a similar contour to cluster (3), which has a

smaller f0 fall over the phrase and also tends to have just belowaverage f0. Cluster (9) also

shows this kind of contour, but f0 is substantially below average here. These contours can

likely be grouped together as declarative phrases at different points in the utterance, along

with cluster (10), which has steady and high f0 until a steeper fall at the end of the phrase.
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Figure 7.12: Phrasal clusters for Kayardild.
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Cluster (2) starts off with a slight high tone that falls to a steady, aboutaverage f0 for

the remainder of the phrase. This kind of contour is not seen in the other clusters except

perhaps in cluster (11), which has higher f0 overall than (2) and also has a steeper fall at the

beginning of the phrase. Cluster (5) is perhaps this inverse of this contour, beginning with

relatively lower f0 with a rise, then evening out to steady and high pitch for the remainder

of the phrase.

The remaining clusters all show steeper falls phrase finally than the ones already men

tioned. Cluster (6) is the largest of these with n = 373. The contour begins with average f0

and falls to a low tone by the end of the phrase. The other remaining clusters begin with

a higher f0 and end with a low tone, like cluster (7), which falls quite steeply across the

phrase. This is similar to the contour in (12), which shows some sort of intermediate low

point after the initial fall. This is a substantial cluster with n = 100 and would certainly be

worth further investigation in Kayardild.

Clusters (4) and (8) both have intermediate high f0 peaks after the start of the phrase.

Both then have a fall throughout the phrase, but cluster (4) ends with a substantially lower

f0 than cluster (8) does.

7.3.8 Kunbarlang

Kunbarlang had 259 contours in the input data, with 95% (246) left after subsetting. Simi

larly to Gunwinggu, clusters were quite small because of the small number of contours. The

largest cluster in Figure 7.13 is cluster (2), which shows a slightly belowaverage f0 that

declines a bit over the phrase, likely a declarative phrase type. The secondlargest cluster

is (3), which has a slight rise halfway through the phrase and a subsequent pitch fall at the

end. A similar contour exists in cluster (4), with the distinction being that (4) starts off low

and falls even lower, while (3) starts off at about average f0.

The remaining three clusters for Kunbarlang are small, but were judged to indicate
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Figure 7.13: Phrasal clusters for Kunbarlang.

distinct contour types that are worth discussing and investigating further in Kunbarlang if

the opportunity arises. Cluster (1) shows a similar contour to (3) and (4), with a slight rise

followed by a fall, but the f0 level begins quite high and falls to about average. Cluster (6)

also shows a fall, in this case from a high tone at the very beginning of the phrase that falls

to belowaverage f0 by the end. Cluster (5) shows the only pitch rise in these clusters, going

from average f0 to a high pitch about halfway through the phrase.

7.3.9 Malak Malak

The Malak Malak data consists of 748 contours, most of which (99.1%, n = 741) remained

after initial subsetting out the small clusters. The dendrogram in Figure 7.14 is quite skewed

near the root, but begins to show more evenly split clusters lower down in the structure.

Even so, almost half of the phrases (49.3%, n = 365) are contained in one cluster, Cluster
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1 in Figure 7.15. This large cluster did not break up until the number of clusters was quite

high, at which point there were more small clusters than I judged to be reasonable. For this

reason, the number of clusters I settled on for Malak Malak was n = 6.

Figure 7.14: Cluster dendrogram for Malak Malak.

The largest cluster in Figure 7.15, Cluster (1), shows a steady pitch level at around

average f0 across the phrase, with only a slight lowering toward the end of the phrase.

Cluster (3) is about half the size of (1), and it shows a contour that starts off with level f0

as the former does, but with a sharper lowering of pitch in the last fourth of the phrase.

This cluster may consist of phrases with final low boundary tones, in contrast to Cluster

(1) which does not have this boundary tone. Likewise, Cluster (2) in Malak Malak starts

the contour with high f0 that falls steadily to the end of the phrase, which may indicate an

initial boundary tone.

The remaining Clusters (4), (5), and (6) are much smaller than the first three (n = 16,

n = 21, and n = 31, respectively). However, these were chosen to be included in the final

cluster results because of their distinctness from the clusters already discussed. Cluster (4),

for instance, shows a contour with low f0 throughout, with a slight fall toward the end of

the phrase. This type of contour may indicate a particular discourse function or something

similar. Cluster (5) shows a phrase type with a rising intonation. And Cluster (4), the

smallest here, seems more variable than the others, but seems to be clustering together a
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Figure 7.15: Cluster analysis for Malak Malak (n = 6).

group of phrases that have low tone that rises at some noninitial point in the phrase— in

some cases this seems to be medial, in other cases final.

7.3.10 Murrinh Patha

There were 257 contours in the Murrinh Patha data, with 242 (94.2%) left after subsetting.

The dendrogram, shown in Figure 7.16, is perhaps themost evenly split that we have seen so

far. Apart from some clear outliers that were excluded via data subsetting, there is a close

toeven split near the top of the structure. It is possible that Murrinh Patha speakers happen

to use a wider variety of phrase types in their speech, but I do not think this is the most likely

explanation. The Murrinh Patha audio data from the PARADISEC deposit used here was

collected as part of a structured task for the Social Cognition Project, which is geared toward

“gathering enriched language data for descriptive, comparative and documentary purposes”

(Barth 2009). This involves speech situations like retelling of stories and conversational

problemsolving, but the content, and therefore the types of phrases, are influenced by the

task.
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Figure 7.16: Dendrogram for Murrinh Patha.

There are phrasal contours with both rises and falls in the clustering results shown in

Figure 7.17. Clusters (2) and (4) seem most like to be declarative phrase types, as they are

the most frequent and have the least dramatic pitch excursions. Cluster (2) has low pitch

throughout, with a slight rise in the middle of the phrase that falls again at the end. Cluster

(4), on the other hand, holds steady at about average f0 until the end, where there is a fall.

Clusters (1) and (3) also have a fall, but both start off with slightly aboveaverage pitch.

Cluster (1) seems like it may have two high f0 peaks through the phrase, ending with a fall.

Cluster (3) has a steady fall, starting with aboveaverage f0 and falling to a low pitch at the

end.

Pitch rises are seen in the remaining two clusters. Cluster (5) seems to start at average

pitch, with a low tone close to the beginning of the phrase. This then rises at the end of
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Figure 7.17: Phrasal clusters for Murrinh Patha.

the phrase to slightly above average f0. Cluster (6) does not have this low tone, showing a

steadier rise from average f0 at the beginning to the high tone at the end of the phrase.

The data forMurrinh Patha, while still spontaneous speech, was structuredmore closely

than the other language data included here, and this has clearly impacted the structure of the

clustering results in this prosodic analysis. This makes a case for structuring data collection

for phrasal phenomena in order to see a variety of phrase types more clearly; however, as

the other results in this chapter demonstrate, the bottomup clustering method can and does

detect different phrase types in more skewed data, as long as the researcher is aware that

the skew is expected.
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7.3.11 Ngan’gi

The Ngan’gi data set was quite large and needed to be trimmed before inputting into the

clustering script. To reduce the file size to 5 MB, the ‘jump kill effect’ cutoff was changed

from 10% (0.91.1) to 8% (0.81.08). After preinput trimming, there were 2,526 contours

uploaded. After subsetting smaller clusters out, 91.6% (2,315) remained.

Ten clusters were settled on (see Figure 7.18). The vast majority of phrases (n = 1198)

have a standard declarativetype contour in (1), beginning a little above average f0 and

falling throughout the phrase to end a little below average. The secondlargest cluster is (2)

with n = 357, and this contour shows a slight rising intonation over the phrase, beginning at

average f0 and only rising a little by the end. Because of the higher numbers in this cluster

relative to the remaining eight, it seems likely that this is a major phrase type contour, such

as a question, or introducing a new topic in the discourse.

Most of the remaining clusters in Fig. 7.18 end with a falling tone: (3), (4), (5), (6),

(8), and (10). Clusters (3) and (8) show a steady decline over the phrase, but in (3) the

contour starts off high and falls to slightly below average f0, while in (8) pitch starts off

about average and falls quite low. Clusters (4), (5), and (6) all have some medial f0 peak

in the phrase, followed by a pitch fall. Cluster (6) has the earliest of these peaks, right at

the beginning of the phrase. Cluster (5)’s medial peak is a bit later, and cluster (4) has a

peak right in the middle of the phrase. These peaks may represent focal words at different

positions in the phrase, or similar sorts of contours at the beginning for phrases of differing

lengths, since duration is normalized for the purposes of this clustering. Cluster (10) also

has some sort of medial rise in f0, but it is not altogether clear that this is the same kind of

contour as these other three.
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Figure 7.18: Phrasal clusters for Ngan’gi.

7.3.12 Wanyjirra

There were 230 contours in the Wanyjirra data, and 89.6% (206) were left after subsetting.

Six clusters were settled upon, shown here in Figure 7.19.

Cluster (1) is the largest here with n = 57, and it shows a basic declarative phrase type
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Figure 7.19: Phrasal clusters for Wanyjirra.

with generally steady and average f0 across the entire phrase. Clusters (5) and (6) also show

likely declarative phrases, both with low starting f0 which may indicate that these phrases

occur later on in the course of an utterance. Cluster (5) starts off just below average f0, with

a slight fall, while Cluster (6) begins with quite low f0 and falls even lower throughout.

Clusters (2) and (3) also have a phrasefinal fall, but both start off with aboveaverage

f0. Cluster (2) seems to have a pitch rise after the beginning of the phrase, with f0 falling

back to about average by the end. Cluster (3), on the other hand, starts off with above

average f0, and falls steadily through the phrase, ending with a low tone.

Finally, cluster (4) is the one contour that has a final pitch rise. Pitch starts off at about

average, and rises throughout, with perhaps a slight rise in the middle of the phrase. This

is the smallest of the clusters with n = 13, but the distinctiveness of the contour relative to

the others in Fig. 7.19 is likely to indicate a specific phrase type in Wanyjirra.
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7.3.13 Warlpiri

There were 250 contours in the uploadedWarlpiri data, with 235 (94%) left after subsetting.

Five clusters were settled upon, as shown in Figure 7.20. Phrase types were skewed in the

expected way based on the type of speech, as is reflected in the skewed cluster sizes here.

Figure 7.20: Phrasal clusters for Warlpiri.

The largest cluster is (2) with n = 133. This contour seems to be a declarative phrase

type, which begins with f0 slightly above average and has a fall to low f0 by the end of the

phrase. Cluster (4) also has a falling f0 like this, but the pitch excursion is larger and the

phrase ends with much lower f0 than this larger cluster. Cluster (4) also seems to have a

pitch rise right before this phrasefinal fall.

Cluster (3) also has a phrasefinal fall, which comes after a somewhat steady high tone

for the first threefourths of the phrase (although note the variability in the contour here).
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The last fourth of the phrase has a steep pitch fall from above average to low f0.

Clusters (1) and (5) have phrasefinal rises. In cluster (1), pitch starts off at above

average, followed by a slight fall in the middle, ending with quite high f0. Cluster (5), on

the other hand, starts off with high f0. This is followed by a low tone about threefourths

through the phrase, ending with a rise that ends the contour at about average f0. While

this is a smaller cluster with n = 10, the contour is distinct enough that I judged it worth

discussing here.

7.3.14 Warnman

Figure 7.21: Dendrogram for Warnman phrase contours.

There were only 91 phrases in the uploaded Warnman data, the smallest data set of

these languages. This is less of an issue when looking at wordlevel phenomena, as 91

phrases still amounts to hundreds of words, but for this clustering analysis the number is
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likely not sufficient. The clustering algorithm did not work well on such a small data set,

leaving many very small clusters that were excluded using the script’s automatic subsetting.

Only 65.9% of the uploaded contours (60 phrases) remained after data subsetting. These

small clusters can be seen fairly clearly in the dendrogram in Figure 7.21, which has many

outliers and small cluster groups.

Because of this small set of data, the results for Warnman are unlikely to be reliable;

for thoroughness, two Warnman phrasal clusters are given in Figure 7.22. Both of these

contours seem to show a relatively steady f0 at about average level throughout the phrase.

It seems from this small amount of data that both of these clusters represent the declarative

sentences, which we expect to be most frequent in natural speech data.

Figure 7.22: Two Warnman contour clusters.

7.3.15 Yannhangu

Yannhangu had 623 contours identified by Kaland’s Praat script, and 91% (n = 567) were

left after the initial subsetting of small clusters. The dendrogram shows the expected skew

toward declarative phrase types (Figure 7.23).
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Figure 7.23: Dendrogram for Yannhangu phrase contours.

Figure 7.24: Cluster analysis for Yannhangu (n=6).

Six clusters was determined to be the most informative number of contour types; these

are shown in Figure 7.24. Clusters (1) through (4) are fairly similar, with a few differences

between them. Cluster (1) starts at average pitch and declines a little across the phrase.
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Cluster (2) starts a bit below average but then has a contour similar to cluster (1). Cluster

(3) starts with a high tone and declines through the phrase, while Cluster (4) starts near

average or a little higher, and then raises at the end.

Clusters (5) and (6) show more dramatic pitch excursions. Cluster (5) captures phrase

types that may be a bit variable in the first part of the phrase, sometimes with a higher pitch

about one quarter through, and a steep decline at the end. Cluster (6), on the other hand,

begins with a high tone and also has a steep fall at the end of the phrase.

7.3.16 Yidiny

There were 659 contours in the uploaded Yidiny data, with 91.2% of these (601) left after

subsetting. There were five clusters settled on, as shown in Figure 7.25.

All but one of these clusters shows a falling intonation. The largest cluster is (2) with

n= 268; this cluster starts off with about average f0 and falls steadily throughout the phrase.

The same basic contour is seen in clusters (4) and (5) as well, but cluster (4) starts off with

slightly below average f0, and cluster (5) with quite low f0. We can hypothesize that these

all represent the basic declarative phrase type, but at different points in the narrative.

Cluster (1) also has a phrasefinal falling tone, but the pitch throughout the phrase seems

to remain almost stable at aboveaverage f0 for most of the phrase, only falling toward the

end, so this seems to be a different contour than the ones already discussed.

Finally, cluster (3) shows a rising tone. This phrase contour begins at just below

average f0, rising throughout the phrase and ending slightly above average. It is likely

that this is a different phrase type, such as an interrogative, in contrast to the other phrase

contours picked out by the clustering algorithm.
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Figure 7.25: Phrasal clusters for Yidiny.

7.4 Summary & Discussion

Phrasal prosody is a complex subject that requires close investigation into a language’s nar

rative and discourse structures. While a detailed investigation into phrasal prosody in these

languages lies beyond the scope of this dissertation, the preliminary analysis using auto

mated clustering methods just presented provides an idea of the types of phrasal contours

that make up each language’s data, and provides a test case for using the methods put forth

by Kaland (2021) to establish initial hypotheses about phrase types.

One commonality across all of these languages is that the largest proportion of the

data consisted of what looks like a declarative phrase type, with a phrasefinal fall. In some

cases, multiple clusters of this type were identified, differentiated by the beginning f0— this

is likely because of a general pitch declination over the course of a larger utterance or breath

group. This phrase type was by far the most frequent across all of these languages, even

in Murrinh Patha, where the data collection methods were more structured and balanced in
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phrase types than the others. These results suggest perhaps a reassuring fact about studying

phonetics with spontaneous speech data: the vast majority of phrases are likely to be the

basic, declarative type, because of the nature of narrative speech as being mostly declarative

storytelling and informing.

Other phrase types, such as those indicating questions or introducing new topics, are

less frequent than declarative phrases but are still picked up in the contour clustering anal

ysis. The use conditions and detailed descriptions of these contours especially requires

followup investigations into the language by someone who has detailed knowledge of the

language, ideally a native speaker or at least an experienced researcher and/or learner of the

language. These are the cases where the automated analysis of phrasal contours can serve as

a source of initial hypotheses about phrase types, which can then be followed up with more

structured data collection to test those hypotheses. Conversely, a language that already has

some prosodic analysis done in the traditional way, using a combination of impressionistic

hypotheses and native speaker intuitions, can make use of this automatic analysis to look

at frequencies of these phrase types in different types of speech, and potentially find less

common phrase types that are not as readily available to the researcher’s ear or the native

speaker’s intuitions.

The results presented here add important information about these languages’ prosodic

structure and speak to the typological questions posed by Fletcher, Evans & Round (2002),

who identified a distinction among Australian languages that use phrasal prosody mainly to

demarcate boundaries versus those that use phrasal prosody for other focusmarking func

tions and thus have pitch events at various locations within the phrase rather than only at

the left or right edges. The most frequent phrase types did in fact show boundarymarking

pitch events— mainly final falls or rises, and initial high tones. In some of these languages

the boundarymarking phrase types are the only ones detected by the clustering algorithm.

However, in other languages (see as an example Ngan’gi) pitch peaks seem to occur at
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more varying positions within the phrase, suggesting that prosodic contours are serving

more than just a demarcative function in these languages. Further work is still needed to

synthesize these observations of prosodic variation into a comprehensive typology of Aus

tralian phrasal prosody, but this chapter certainly supports the claim that phrasal prosody is

not uniform across the continent.
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Chapter 8

Archival phonetics

Traditional phonetics training focuses heavily on the availability of highly controlled ex

periments and quiet recording locations, but such settings are difficult, if not impossible,

to come by when working in the field. Recordings collected in the field are inherently

noisier than those made in a phonetics booth; fieldwork materials tend to consist of natu

ral speech rather than careful experimental setups, and field locations are often outdoors

or in other environments with a lot of background noise. Increasingly, however, linguists

have had success using field recordings to investigate a variety of phonetic questions. Re

cent work using archival field recordings has investigated a variety of acoustic measures,

including durationbased contrasts such as voice onset time and phonemic vowel length

(A. C. Yu 2008, DiCanio & Whalen 2015, Lawyer 2015, DiCanio et al. 2015); f0 contrasts

such as tone, stress, and other prosodic phenomena (Tuttle 2003, Coombs 2013, Gordon

2015, Babinski 2021b); vowel space and quality (Blankenship 2002, de Carvalho 2010, Es

posito 2010, Keating et al. 2010, Garellek &Keating 2011); among others (Kakadelis 2018,

Tang & Bennett 2018, Hall et al. 2019, Whalen & McDonough 2019). While using noisy

audio and/or natural speech recordings may yield somewhat different results than highly

controlled labcollected data, both data collection methods come with a set of potential bi
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ases. Fieldwork materials often show higher variation because of the collection setting, but

labcollected materials might show too little variation resulting from unnatural, overly for

mal speech production. Despite these biases, neither situation should preclude the use of

such data to draw meaningful conclusions (cf. Beckman 1997, Xu 2011, Anand, Chung &

Wagers 2011).

This chapter provides a discussion of the use of archival materials in phonetics, in

particular materials consisting of mostly spontaneous speech and collected in a wide variety

of field conditions. The skills involved in accessing and processing materials available in

language archives are important and will only becomemore in demand as language archives

grow and languages cease to be spoken. What follows is meant to serve as a practical guide

for those looking to do archival phonetic work; its structure is based in part on a symposium

talk given at the Linguistic Society of America Annual Meeting in January 2022 (Babinski

2022).

The entirety of this dissertation could be considered a case study in using archival ma

terials for research on prosody, phonetics, typology, etc. This chapter boils down the most

relevant methodological points, with reference to other areas of this work that provide more

specific detail. This dissertation project has required data processing methods to mitigate

the effects of background noise and differences in recording setup on relevant phonetic

information. The variation in the state of these materials reflects the oftenuncontrollable

nature of recording audio in the field, but careful collection practices combined with post

hoc digital signal processing techniques can mitigate data loss substantially.

8.1 Background

Naturalistic speech and experimental speech obviously differ alongmany dimensions. How

ever, both types of data provide crucial information about language. Cohn & Renwick

(2021) emphasize the complementarity of these two types of data for approaching a research
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Figure 8.1: Schematic of aspects of phonological study from Cohn&Renwick (2021: 103).

question. The schematic in Figure 8.1 shows the aspects that go into understanding of any

phonological phenomenon. Study of naturalistic speech data, which has been the focus of

this dissertation, can serve as input to determining testable hypotheses, constructing exper

imental studies, and creating theoretical models; likewise, all of these aspects of research

can themselves serve as input to a naturalistic study. This is all to say that one should not

shy away from using natural speech data for phonetic and phonological research, as this is

a crucial component to full understanding of a linguistic phenomenon and can yield impor

tant results that lead to testable hypotheses, followup experiments, or even full theoretical

models.

8.1.1 Two types of ‘noise’

It is important for this discussion to distinguish between two types of what we might call

‘noise’ in natural speech audio. One of these is background noise, while the other may
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more accurately be called variability in linguistic conditions. The first of these, background

noise, is the kind of extraneous sound that recording devices pick up on but that obscure

the linguistic signal and that we want to eliminate altogether. While of course making clean

recordings without background noise is the ideal, it is often unavoidable especially in field

settings. Solutions for dealing with this type of noise require methods of cleaning up our

recordings so that the linguistic signal is clearer.

The other type of noise, variability in linguistic conditions, results from the inherent

multidimensionality of language and will be present in any type of natural speech. Experi

mental conditions are usually constructed in order to keep all other linguistic phenomena the

same, only varying the factor(s) that are of research interest for the study. When working

with natural narrative and conversational speech recordings, utterances are not controlled

in this way. Methods for dealing with this type of noise include isolating the linguistic

phenomena that we want to look at through data normalization and statistical methods.

8.1.2 Archives and endangered languages

Establishing best practices for the use of archival language data is especially relevant for

workwith endangered languages, for which any source of audio recording is highly valuable

and for which collecting new audio ismuchmore difficult than it is for wellresourced global

languages. Additionally, languages that are no longer spoken may be documented only via

archival materials, as is the case for many of the languages in this dissertation.

Since it is the focus of this dissertation, research in phonetic typology is the focus of

this guide. However, it is important to note that these same methods are extremely useful in

the creation of language learning materials in language reclamation projects. Specifically,

the creation of word and segmentaligned transcriptions can serve as the basis for language

textbooks and dictionaries, and utterancealigned transcripts can be used for the creation of

multimedia stories and oral histories. One example of archival materials being used in this
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way is the Kullili Dictionary mobile app, which is based on archival language recordings

from Kullili elders in the 1960s or earlier. This language is no longer spoken and these

resources are being used as a part of a broader language reclamation effort.

8.2 Data acquisition

The gold standard for making good language recordings requires a highquality recorder

such as the Zoom H4n; a quiet and controlled recording location; and strict control over

the speaker’s distance from the microphone. This will produce maximally consistent and

quality recordings. However, these conditions can really only be met when one has access

to lablike conditions in a university building or something similar. Collecting linguistic

data in a fieldwork setting rarely lends itself to the highly controlled, labbased settings

of data collection at an academic institution such as sounddampening booths or otherwise

quiet locations. Furthermore, travelling to a field location may not be possible, whether

because of a lack of funding or health concerns, especially in light of the recent COVID19

pandemic and the tendency for endangered language communities to be skewed toward an

older age demographic that may be at increased risk.

Data acquisition from nonlab based sources present their own caveats, but none of

the sources discussed here should be excluded as a potential source of data as long as the

proper considerations and controls are taken into account. Recording audio remotely, for

example, prevents the use of highquality recorders such as the ZoomH4n. However, recent

work has tested the quality of various remote recording methods and laid out expectations

in terms of the accuracy of the acoustic measurements from such recordings. Furthermore,

this may be a good option when travel to a field location is not possible, especially if one

already has existing community relationships. A working remoterecording protocol with

community contacts can serve as a way of collecting recordings that is efficient in terms of

time, funding, carbon footprint, and potential health risks. Remote recording is discussed
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in §8.2.1.

Another potential data source for language recordings is the language archive, which

is discussed in §8.2.2 below. The deposits made by language researchers over the years

to these repositories can be a great resource especially for those interested in comparative

and typological language work, since audio frommany languages can be accessed relatively

quickly. The recordings available from these sources potentially have the same problems as

data collected in the field oneself, except that the recording conditions cannot be controlled

for and cannot be changed, since all the recordings have already been made. Thus it is even

more crucial to make use of posthoc digital signal processing methods to clean and control

the phonetic signal in these data.

While most of this discussion focuses on acquiring audio materials for academic re

search purposes, the samemethods can be hugely beneficial in language reclamation projects

as well. Using one of these methods of data collection can save time and be more cost effec

tive for thoseworkingwithin language communities to create digital dictionaries, textbooks,

storybooks, and mobile language apps. Remote recording is an especially useful tool for

these purposes, as finegrained phonetic reliability may not be as much of a priority for

these sorts of projects.

8.2.1 Remote recording methods

Recording language remotely can be a costsaving way of conducting fieldwork, and it is es

pecially relevant in the wake of the COVID19 pandemic that brought on widespread travel

restrictions and health concerns for those hoping to work with language communities in

remote locations or with a large proportion of older speakers. However, this usually means

that recordings will be made on a phone, tablet, or computer, rather than with gold standard

recording equipment, a particular concern for those conducting phonetics research. Recent

work (Freeman & De Decker 2021, Sanker et al. 2021, Zhang et al. 2021) has investigated
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Figure 8.2: Figure from Sanker et al. (2021: e372).

the viability of different remote recording methods for various types of phonetic inquiry,

making the process of selecting a remote recording method more straightforward. This sec

tion discusses specifically the results found in the Sanker et al. (2021) paper, although all

of these works draw similar conclusions.

Sanker et al. (2021) tested ten different remote recording methods: Android recording,

external microphone, internal laptop microphone, iPad, iPhone, Skype, Zoom Meetings,

Facebook Messenger, Cleanfeed, and Audacity. These were compared against a gold stan

dard Zoom H4n recording of the same reallife utterances to determine potential issues in

that recording method.

One of the differences between remote and goldstandard recording methods was a

discrepancy in the segmentation boundaries placed by a forced alignment algorithm. An

example of this issue is shown in Figure 8.2, where the same audio recording is segmented

differently when recorded on Skype (the top tier) versus using the gold standard Zoom H4n

recorder (bottom tier). In this case, the difference stems from the fact that Skype record
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ings (similarly to some of the other recording methods tested) are compressed in a way

that changes the signal slightly and results in these differences, which could cause errors in

measurements on specific phones, or measures of duration. Other recording methods, such

as iPad recordings, allow for more background noise in the recording itself, obscuring pho

netic cues to consonantvowel transitions, for example. The forced aligner then has a more

difficult time finding these cues in the signal and places the segment boundary incorrectly.

While all methods had some digital artefacts of recording, as discussed via this exam

ple, broadly they performed well outside of some small effects of segment duration, vowel

formants, and signaltonoise ratios, as well as large discrepancies in center of gravity mea

surements. Crucially, however, recording methods always maintained contrasts between

phonemes, despite potentially having all measurements shifted from the gold standard.

Only one recording method, Facebook Messenger, was so problematic that the authors rec

ommend it be avoided, especially since there are fewer customizable settings available to

the user. Cleanfeed gave the best results (closest to the gold standard), but Skype and Zoom

Meetings have the advantage of having a video option and also likely being more familiar

to language consultants. The major takeaway from this work, however, is that document

ing your recording setup, in all cases but especially when recording remotely, is extremely

important for others to understand potential confounds of your results.

8.2.2 Using archival materials

Another option other than collecting one’s own field data is to make use of existing linguis

tic data that has been deposited into a language archive. There are many digital language

archives with deposits of language materials, including ELAR, PARADISEC, AILLA,

CLA, AIATSIS, PARADISEC, and more. These repositories are a great resource, espe

cially for those looking at multiple languages at once for a comparative or typological

project. They are all relatively accessible, but each archive, and each collection in that
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archive, will have its own idiosyncrasies that can take some work to figure out. This sec

tion lays out some of the main points from an audit of language archives considering their

usability and accessibility (Lake et al. 2022); and one considering the usability of specific

archive collections within archives (Babinski et al. 2022).

Archive use and usability

Digital language archives differ in their web structures and site organization. They may

have different search functions and capability, different protocols for accessing collections,

and different accessibility of the site and collections overall. Lake et al. (2022) conducted

an audit of about 50 digital language archives to investigate their performance with respect

to their accessibility, discoverability, and functionality. One important finding in terms of

archive accessibility is that most of the digital archives surveyed had few or no site inter

face languages besides English and perhaps a few other major world languages. This is a

problem especially for endangered language collections, where communitymembers in par

ticular may not be able to access the materials on their own language because of this issue.

Running the websites through Google Translate is not a satisfactory alternative to having

full site translations available, because the automatic translations are often incomplete and

can remove functionality of certain links and lists on the website.

The discoverability of materials in digital language archives varies widely, which is an

important consideration when beginning to search for archival materials to use. Archives

vary as to the search parameters available, e.g. whether a user can search for specific file

types (like ELAN files), specific types of recording such as narrative or elicitation, or

whether search functions within a collection were available at all. Metadata is also of

ten sparse or missing in the web interface; while there is often a text file within a collection

laying out the collection’s contents, when this information is not available on the website

itself it can be difficult to find out what materials exist in the collection and whether it is
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appropriate for the user’s purposes or not.

One final issue I will mention with respect to digital language archives is that there

is very rarely an option to download an entire archival collection as once as a bulk down

load. Usually, after identifying which files are most likely to be useful, they will need to be

downloaded one at a time from the archive website. While this does not prevent the use of

archival collections, it is an initial timeconsuming step that one might not factor into plans

for working with these materials.

Accessing and using archival collections

Just as each archive is structured differently, each individual language collection may

be structured differently as well. Standards and recommendations for the organization

of archival collections have cropped up over the years, but none of these have become

widespread enough to standardize language collections across the board. Babinski et al.

(2022) conducted a survey of 20 archival collections to investigate the structure of these

materials and found wide variation in all aspects of the organization of archival deposits.

Sometimes, archives collapse existing file structures when collections are deposited.

This can make navigating the collection overall less streamlined, and issues arise especially

when not all corresponding files (e.g. audio WAV file, video of the same speech event,

transcription of the speech) have the same file name. Corresponding metadata files can

often be hard to find in the collection, i.e. the archive website does not highlight or tag this

file and it is not always clearly labeled as ‘metadata’ or something similar. A compounding

issue here is that metadata files sometimes refer to older versions of files that were named

differently, which can cause confusion for the user as well as for any potential scripts one

might want to run on the files to extract transcriptions or the like.

Constructing and depositing one’s language materials into an archive is not a standard

ized process by any means, and depositors often have very little guidance available as to the
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most usable way to organize their files. Babinski et al. (2022) provide some recommenda

tions for those looking to archive their materials in order to make it clear what practices are

helpful and which can cause confusion or complete lack of usability from the perspective

of the archive user.

Archival collections will differ along multiple dimensions. They will vary in the time

of recording, from the earliest recordings of the 1960s and earlier to present day. The im

pact of this fact is that recording qualities of a given collection may not be up to current

standards, and the equipment used will likely not be the modern gold standard. Detailed

information about the equipment used is not always available, but this can impact certain

phonetic measurements one may want to study. A second way language collections will

differ is in the environment in which the recording took place. Archival materials of this

type were usually collected in a field setting, which means recordings may have been made

outside or otherwise in locations with substantial background noise. There may be multiple

speakers at different distances from the recording device, or a group of speakers having a

conversation. Finally, archival collections will differ as to the types of language that are

recorded. Some will have full narratives and conversations, while others may have primar

ily traditional elicitation of isolated words and sentences. Most will have both, and many

archives have the capability to tag the type of recording in their web interface so that each

type will be easily searchable.

8.3 Postprocessing techniques

All of the data acquisition methods discussed in the previous section— remote recording,

archival materials, and fieldcollected audio— all pose their own issues in terms of back

ground noise and linguistic variability. While variation and noise in audio recordings is all

but inevitable, a variety of posthoc digital signal processing methods can help to mitigate

the negative effects of it. This section outlines some of the major tools and techniques that
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can be used to help clean data and speed up processing time, especially when working with

audio data collected outside of lab settings.

Whenworking with more than one archival deposit at once for comparative/typological

purposes, these processing methods are important for making the recordings as comparable

as possible. They may have been collected using different equipment, and certainly were

collected in different places, at different times, in different settings. Eliminating the extra

variation introduced by all of these factors is crucial for having comparable audio corpora

for each language.

8.3.1 Forced alignment

Automatic speechtotext alignment can greatly reduce processing time and can be used

even with small amounts of data using a pretrained model from another language. The

resulting alignments will need manual adjustment, but overall time to align is cut down

substantially by first using the automatic algorithm.

Many forced alignment algorithms require large amounts of data to create a language

specific training model. When conducting research on endangered or underresearched

languages, this amount of aligned audio is often nonexistent and would require a massive

time investment on the part of the researcher(s) in order to do by hand. For this reason, a

growing body of work has investigated the usability and accuracy of forced aligners in en

dangered and underresearched language work. Using a forced alignment algorithm trained

on amodel that differs from the target language results in higher rates of error in the resulting

alignment, but with manual correction it can offer a way of greatly reducing segmentation

time.

DiCanio et al. (2015) compares the performance of the P2FA and HMAlign alignment

models on Yoloxchitl Mixtec language data. The data consisted of elicited word lists that

were constructed to collect words of varying lengths. They found that HMAlign made
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fewer errors in alignment than P2FA, and that certain types of segments had higher error

rates than others. The authors attribute the differences in performance primarily to the

fact that HMAlign uses an allophonic English phone set, allowing for a greater phonetic

specificity than P2FA, which uses a contextfree phonemic English set of phones. When

using Englishtrained models on nonEnglish language data, the availability of a wider set

of phones for transcription can only increase the accuracy of forced alignment results.

Another study investigating the feasibility of forced alignment for aligning endangered

language recordings is Johnson, Di Paolo & Bell (2018), who look at the performance of the

Prosodylab Aligner on Tongan field data. The recordings used in this test were word lists in

Tongan, although the authors note that they planned to run forced alignment on connected

speech in the future. Recordings were made in a field setting with all the requisite back

ground noise that that environment entails. The authors considered both the raw recorded

audio (‘dirty’ files) as well as audio that had been cleaned of ambient noise (‘clean’ files).

Results were fairly accurate for both types of files, as long as the aligner was trained only on

cleaned data. Furthermore, when compared to two different humans’ manual alignments of

a subset of the data, the Prosodylab Aligner’s results did not differ from manual alignment

any more than one human’s alignment might differ from another. The authors conclude

that using forced alignment in this way, even with manual corrections postalignment, is a

viable timesaving option for those looking to align their field recordings.

Babinski et al. (2019) considered the performance of forced alignment specifically for

Australian languages, using around 45 minutes of running Yidiny speech as the test data.

The data were collected in a field setting and transcribed at the utterance level. The aligners

compared in this study were P2FA, DARLA, and MFA. Of particular interest here were the

various potential approximations in transcription using the ARPABET transcription system.

Because ARPABETwas created to transcribe English phones, someYidiny sounds were not

available and needed to be approximated in some way. Specifically, alternatives were con
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sidered for the transcription of stops, which need to be specified for voicing in ARPABET

despite having no voicing contrast in Yidiny; the palatal nasal, which was transcribed alter

nately as N, Y, and N+Y; and the trill, tap, and retroflex rhotic, which are separate phonemes

in Yidiny but have very different distributions in English. The optimal transcriptions for

these sets of phones were: stops transcribed as voiceless P T K; the palatal nasal transcribed

as N; and the rhotics as R (trill), D (tap), and R (retroflex). These are the standards used

in transcribing language data in this dissertation. In some cases, this results in apparent

neutralization of phonemic contrasts that do exist in the language; however, these are all

recoverable neutralizations that were judged acceptable for the purposes of this study focus

ing mainly on vowel acoustics. Single sounds represented with two ARPABET characters,

such as N+Y for the palatal nasal, can be combined after forced alignment in Praat, while in

the case where it is transcribed as N reference needs to be made to the orthographic word,

which is retained in the output TextGrids. Those looking to do this kind of work should be

aware of potential neutralizations and determine the best way to transcribe in ARPABET in

a way that retains the most crucial contrasts for the object of study.

The P2FA and MFA aligners performed similarly to one another in terms of prosodic

alignment, vowel measurements, and consonant durations, and were fairly accurate to the

gold standard manual alignments. The unconstrained version of DARLAwas used, and this

model performed significantly worse than the other aligners tested. There is no particular

reason why we should expect Englishtrained models such as these to perform well on non

English data, as that is not what theywere created to do. However, it is useful for endangered

language work to know that some of these algorithms have fairly high accuracy that can

substantially cut down on processing time.

Forced alignment models can save the researcher time in segmentation of audio even

with manual correction and can reduce the variability introduced by having multiple human

segmenters, as all of the mistakes that the automatic alignment will make will at least be
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internally consistent with the particular algorithm. This can help ease the burden of the

‘transcription bottleneck,’ where the time to align materials collected can be many times

longer than the time it takes to record them. The processing of data for this dissertation is

a case study in the potential to save time in creating segmented transcripts, as the time it

would take to segment sixteen language collections by hand would likely greatly exceed

the time of an average PhD program. More details about how forced alignment is used in

this dissertation can be found in §3.1.

8.3.2 Data normalization

Even if you are able to collect novel recordings in the field yourself, there may be resid

ual background noise as well as structured sources of uncontrolled variation in your data.

Normalization of data is always important, but it is even more so when working with more

highly variable data that were collected in field conditions, remotely, or from archives.

Here, two types of normalization will be discussed, to deal with the two types of data

noise. To deal with background noise and variability in recording conditions, considera

tions when normalizing intensity are discussed. Then, vowel space normalization methods

are discussed; this type of normalization is used to control for linguistic factors that natu

rally affect vowel formants but that may not be the object of an investigation into vowel

space variability.

Perhaps the most relevant acoustic measure that will be affected by levels of back

ground noise is intensity. Intensity can be affected by recording device used, distance of

the speaker from the microphone, levels of white noise or other interference in the back

ground, as well as linguistically variable factors such as individual speaker, speech style,

and random variation in the loudness of speech. Because many of these factors may differ

across different instances of recording— e.g. the speaker may be a different distance from

the microphone on a different day, or after taking a break— it is best to use locally relative
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normalization methods. Normalizing intensity relative to the following syllable (as was

done in this dissertation, cf. §3.2.1), or to the word or utterance average, is ideal to account

for the local variability in this measure.

Another important type of data normalization is vowel space normalization, which is

used to isolate the aspects of vowel space variability that is relevant for your particular re

search purposes; for this reason, the appropriate method to use will differ depending on

the aspects of vowel articulation you are interested in. In this dissertation, I used Johnson

(2020)’s ΔF method, which is a good method for crosslinguistic consistency in normal

ization (cf. §3.2.1). However, the needs of a specific project will vary; there are methods

that will be more appropriate for isolating sociolinguistic variation within one language, for

example, or for doing more general language documentation work and normalizing across

speakers.

8.3.3 Controlling for noise with statistics

Certain statistical models can mitigate the effects of recording variability to an extent in

addition to the data normalization methods already discussed. Here I will mention specif

ically regression models, which have been used extensively in this dissertation, especially

in Chapters 4 and 5. Regression models allow for the inclusion of random intercepts and

slopes, as well as additional fixed factors that can help to tease out your linguistic factor(s)

of interest from other sources of natural language variation.

Let us take Regression Model A (the duration model, from (3.2) in §3.2.2) as an exam

ple:

(8.1) Regression Model A: vowel duration

lmer(vowel.duration ∼ (1|word) + (1|seg.identity)

+ (1|speaker) + phonemic.length + word.finality + stress
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By using the continuous variable, in this case vowel duration, as the dependent variable, the

model is able to be tailored to include factors that have to do with the dependent variable,

without including factors that are not hypothesized to be relevant for this specific acoustic

measure. Here, we can include phonemic vowel length as a fixed factor, as well as word

finality, in addition to the fixed factor of research interest, stress. And indeed, in Chapter 4

we found that word finality is a significant predictor of vowel duration in many languages,

and phonemic vowel length is important for languages that make such a distinction. These

effects are found in themodel results separately from the effects found for the stress variable,

meaning that the effects found for stress do not include the confound that stress is never final

and final vowels are often quite long.

Statistical methods such as regression modeling can help to isolate one’s variables of

interest when working with natural speech data that do not isolate these variables already,

as we might expect from a targeted experiment. In addition, these models allow for the

discovery of other effects related to the dependent variable, that may be tangential to the

research question but could reveal interesting interactions and effects that would not be

revealed using a highly controlled experimental setup.

8.4 Conclusion

There are many ways of conducting good acoustic phonetic research, and recent innova

tions in remote communication and computational processing of language materials have

made these methods more accessible than ever. It is important to keep in mind, however,

that all recording settings and methods have their pros and cons, so documentation of data

collection and processing methods is crucial.

Another result of recent technological innovations is that data collection does not al

ways need to take place in person with a dedicated recorder. Remote recording methods

are a good option for those who have existing community relationships, and who are lim
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ited in terms of funding, time, or health restrictions and concerns about travel. In addition,

language archives are a great resource for working with languages that are endangered or

are no longer spoken, as the materials have already been collected and can usually be ac

cessed via download from the Internet. Per the discussion above about the idiosyncrasies of

accessing and using archival materials, those who do collect their own audio recordings in

the field should be aware of potential user experiences with their collections while they are

organizing them for depositing. One’s own field recordings can be paid forward for future

researchers, especially in cases where the language in question is already severely endan

gered, since your materials may be some of the few resources remaining for the language

in the near future.

When working with natural speech data, proper data cleaning and processing methods

are crucial, as have been discussed in this chapter. However, this should not preclude the

use of these materials for phonetic study; natural speech materials have been prioritized in

sociolinguistic data collection methods for a long time (cf. Beckman (1997)) and are be

coming more highly valued in phonetics and phonology more generally (Cohn & Renwick

2021). There is clear value to the ability to see a phonetic or phonological phenomenon

existing ‘in the wild’ of natural speech, to more fully understand how it is realized in every

day language use and how it interacts with other phenomena in the language. Experimental

methods can more clearly isolate a phenomenon of research interest, and measure its ef

fects separately from other aspects of language, but this is only one way to understand the

totality of a linguistic process. Spending more time with natural speech data can help us to

understand how all of the many linguistic processes occur simultaneously with one another

to create all the nuances that languages encode.
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Chapter 9

Conclusion

This dissertation has presented a study of the structured variation present in the acoustic cor

relates to lexical stress, using spontaneous speech data from sixteen Indigenous languages

of Australia. The correlates to stress in each language were identified using regression

modeling in Chapter 4, and qualitative comparison of the observed crosslinguistic varia

tion was discussed. The phonetic cues to stress were also found to vary across speakers of

the same language in some cases, as presented in Chapter 5, resulting in a more nuanced

view of the languagewide effects. The structure of this variation was investigated more

systematically in Chapter 6, which presented results of two phylogenetic tools, AMOVA

and FST, to determine that there is indeed significant variation in the cues to stress both

across languages and across speakers within the same language and to create a network

model of language relationships that were identified using only this acoustic data. These

results provide evidence that the acoustic correlates of lexical stress can be considered to

undergo regular sound change and can be studied as such.

Lexical stress is not the only prosodic phenomenon that I propose to undergo regu

lar sound change; the same principle should generalize across prosodic levels into phrasal

and sentential prosody as well. However, the Australian languages in this study were
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particularly wellsuited to an investigation of lexical stress, because most Australian lan

guages have consistent initial stress placement (Goedemans 2010, Fletcher & Butcher

2014). Phrasal prosody in these languages varies, however, so hypotheses about what these

phrasal contours are was necessary. Chapter 7 presents an automated categorization of

phrasal contours using the methods put forth by Kaland (2021) to establish initial hypothe

ses about phrasal categories in these languages. Automatic prosodic analyses such as this

are very useful tools for fieldworkers hoping to provide some prosodic description of a

language, which is sorely needed in language documentation work (Whalen, DiCanio &

Dockum 2020, Macaulay 2021). Prosody has yet to be integrated into the models of lex

ical stress variation and change presented earlier in this thesis; this is an avenue of future

research.

Chapter 8 provided some practical discussion concerning the acquisition and process

ing of archival language materials for language research and documentation. The tools and

skills involved in accessing and processing materials available in language archives are

vitally important and will only increase in demand as archives grow and more and more

languages cease to be spoken. This dissertation project provides a case study in ways to

work with this type of data to answer novel research questions.

What follows is the final chapter of this dissertation. The main claims of this study

are presented in light of the results in §9.1 along with a summary table. There is a brief

discussion of endangered language phonetics in §9.2, and §9.3 discusses implications of

this work and concludes the dissertation.

9.1 Revisiting the Claims

Below are the claims put forth in §1.3 of this dissertation. The scope of these questions

easily extends beyond what has been done here, but each claim has been addressed to the

extent possible in a work of this size.
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Claim (9.1) concerns the linguistic heritability of the phonetic cues to stress. The main

points of evidence for this claim are withinlanguage consistency across speakers (9.1a),

variation across languages and shared cues in closely related languages (9.1b), and the ex

istence of significant crosslinguistic variation in the population structure analysis (9.1c).

Point (9.1a) was addressed in Chapter 5, when the speakers of a language are consistent in

their use of an acoustic cue. Point (9.1b) was investigated in the crosslinguistic results of

Chapter 4, and in the FST values and resulting NeighborNet diagram in Chapter 6. While

further study will be able to quantify the amount of shared stress cues among related lan

guages versus unrelated languages, similarities among related languages were observed,

along with similarities between areally related languages in some cases as well. Finally,

point (9.1c) was addressed in the population structure analysis in Chapter 6 using Analysis

of Molecular Variance (AMOVA). Crosslinguistic variation in the data was found to be

significant separately from withinlanguage and withinspeaker variation.

(9.1) The phonetic factors that cue linguistic prominence are linguistically heritable,

meaning that they vary and change in similar ways to phonemes. They vary in

a structured way within a language and will remain relatively stable until a change

occurs, in a way that is analogous to phonological change. For this claim to be true,

the following must hold:

a. Prominence cues are consistent across speakers of the same language. Speakers

converge on the same cues to prominence and use these to the exclusion of other

potential cues.

b. Closely related languages will be more likely to share cues to prominence than

languages that are more distantly related. This should be the most clearly ob

served when languages have the same pattern of stress assignment, as changes

in stress position will increase the likelihood of cue changes.
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c. Study of population structure will show that significant variation exists across

languages, separately from any withinlanguage or withinspeaker variation.

Claim (9.2) concerns withinlanguage sociolinguistic variation in the acoustic corre

lates of stress. The main focus of Chapter 5 was interspeaker, withinlanguage variation,

which addresses point (9.2a) here. The presence of interspeaker variation for many of the

acoustic cues investigated implies that this variation is socially conditioned in some way

(point 9.2b). While this point is a logical extension of point (9.2a), it is not an answerable

question using the data set in this dissertation, because direct speaker consultation and ob

servation of social structure was not possible. In some cases this is a fruitful area of future

research, but in other cases there are no longer speakers of a language and further study

is not possible. Finally, point (9.2c) refers to population structure, which was addressed in

Chapter 6. The results of the AMOVAmodeling found significant variation across speakers

of the same language, providing support for this point.

(9.2) Just like all other linguistically variable phenomena, the phonetic cues to stress can

also vary along sociolinguistic lines within a language. In order for this to hold, the

following must be true:

a. Some cues to stress within a language may only be cues for some speakers, and

not for others. Similarly, speakers may vary in their use of these cues based on

the social situation.

b. This variation falls along defineable social lines, such as gender identity, dialect,

social status, register, etc. (This cannot be studied well with these data)

c. Study of population structure will show that significant variation exists across

speakers within a language, separately from any crosslinguistic or within

speaker variation.

Claim (9.3) is addressed in investigations of crosslinguistic and interspeaker varia
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tion. Almost all of the languages in the study (summarized again in Table 9.1) have multiple

acoustic factors that correlate with lexical stress. Likewise, in all languages that have more

than one speaker, at least one of these factors showed interspeaker variation. These results

show that stress is often marked bymultiple cues, and not all of these cues are only doing the

work of marking the stress contrast. Some factors that show interspeaker variation are ad

ditionally conveying some information about the speaker, be it age, gender, or social status.

This sociolinguistic variation could potentially be an example of change in progress, where

one group has taken up the change and another has not yet. It could also be an example of

stable sociolinguistic variation that is not moving in one particular direction.

(9.3) Different prominence cues may cooccur with one another, marking the same type

of prominence with multiple acoustic factors. However, the presence of multiple

cues may make each individual factor more unstable in the system, as the crucial

contrast would not be lost with the loss of one cue. Some cues may hold for all

speakers in the language, while others may be sociolinguistically variable.
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Language V. Dur. Onset Dur. PostT. Dur. Inten. F0 Max. F0 Rng. Vowel
Bardi + + ∼ ∼ + +
Burarra ∼ ∼

Gunnartpa ∼ ∼
Gija ∼ ∼∼∼ + + +

Dalabon ∼
Gunwinggu + + ∼
Kunbarlang + ∼
Kayardild + +∼∼ ∼ + + +

Malak Malak + +∼ + +
MurrinhPatha* +

Ngan’gi + ∼∼ + ∼
Wanyjirra* +++ +
Warlpiri* + + ++ + +
Warnman* +
Yannhangu* + +++ + +

Yidiny + + + + +

Table 9.1: Summary of regression model results from Chapters 4 and 5; + indicates an
overall effect of stress in the language; ∼ indicates an effect of stress among some (but not
all) speakers in the language. Languages grouped by historical affiliation. Those languages
with only one speaker are marked with an asterisk (*).
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9.2 Endangered language phonetics

One of the major goals of this dissertation is to demonstrate the practical implementa

tion of corpus phonetic methods on endangered language materials sourced from language

archives. It accomplishes this goal in two ways. First, the process of acquiring and pro

cessing archival materials before the main analyses is documented in detail, both in the

presentation of data and methods in Chapters 23 and in the specific discussion of archival

phonetic methods in Chapter 8. Second, this dissertation presents a case study in the use

of archival materials to address novel research questions in phonetics. The audio that was

recorded in these languages was not created with this type of study in mind, but through

forced alignment and data normalization meaningful analysis can be done to learn more

about variation and change in prosodic phenomena.

Work on prosody and stress in endangered languages is not as common as other types of

phonetic documentation (Whalen, DiCanio & Dockum 2020, Macaulay 2021). This disser

tation presents a broad typological study of lexical stress in sixteen Australian languages,

considering both crosslinguistic and interspeaker variation in the phonetic correlates of

stress, as well as an automated identification of prosodic contours in these languages. The

methods used for these analyses was kept maximally automated in order to provide practi

cal tools for conducting such typological studies in any group of languages with available

narrative speech data. The wider use of largely automated processing and analysis methods

can serve to increase the number of languages with some prosodic description.

9.3 Implications

This dissertation has presented a typological study of lexical stress and prosody in sixteen

Indigenous languages of Australia. Through this investigation, variation has been observed

both across languages, and across speakers within languages. This is not just a qualitative
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difference in stress correlates, but has been quantified using phylogenetic methods in Chap

ter 6. In fact, these methods have revealed that the phonetic cues to stress can be shared

strongly between historically related languages, as well as between geographically close

languages.

These results support the claim that the phonetic markers of a prosodic phenomenon

such as lexical stress varies in structured ways that indicate these markers vary and change

in a principled way, and thus can be studied similarly to linguistic studies of segmental

change. Despite the fact that the acoustic correlates to stress— phonetic factors such as

duration, intensity, f0— all serve to mark the same type of phonological event, in this case

initial lexical stress, the phonetic variation in this marking is still structured in the way that

a phonologized phonetic factor such as phonemic stop voicing might be. The results pre

sented in this dissertation indicate that the phonetic correlates of stress are shared among

related languages, although changes can apparently be diachronic or contactbased, simi

larly to many types of segmental change. Change can also occur within subpopulations of a

language, creating variation along sociolinguistic lines. Further work is required to under

stand the level of awareness speakers have about this sort of speaker variation, but it does

exist at least in some cases.

These results are in keeping with the findings of e.g. Kakadelis (2018), who found

structured variation in voice onset time among languages that do not make a phonemic

voice onset time distinction. Such observations speak to the nature of the language faculty

and the cognitive organization of language, even below the abstract level of the phoneme,

and to our theories of phonetic change and the phonetic precursors to phonological change.

Hypothesizing that variation is structured and change is regular at this subphonemic level

is in keeping with exemplartheoretic models of language change, which hold that fine

grained phonetic changes are what drive the higherlevel phonemic changes in language

(Pierrehumbert 2001, Wedel 2006, Cohn & Renwick 2021).
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This work is the beginning of what I hope to be a larger research program looking at

variation and change in the phonetic correlates of stress and other types of prosody. While

these historical and areal relationships have been detected in this set of languages, where

stress is always placed on the initial syllable of the word, the question arises of what these

phonetic factors look like when stress placement is variable across a group of languages,

or when one language has variable stress assignment itself. Perhaps a change in the cor

relates of stress can result in a reanalysis of stress placement altogether, changing from a

weight insensitive to a weight sensitive system, for example. On the other hand, a change

in stress placement patterns may result in a reanalysis of the phonetic cues to stress, or per

haps variation and change in stress placement versus phonetic stress marking are entirely

unrelated. While these questions could not be addressed here because of the stability in

stress placement, what has been presented in this dissertation builds a foundation on which

more complex patterns and interactions can be studied.
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Appendix A

Archival Collections

This appendix includes information about the archival deposits sourced for audio materials

for this project, as discussed in Chapter 2.
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Appendix B

ARPABET transcriptions

This appendix includes all of the graphemetoARPABET conversions used when preparing

transcripts for forced alignment, as discussed in §3.1.4.
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IPA Orthography ARPABET English equivalent
/i/ i IH1 [I]
/i:/ ii; i: IY1 [i]
/e/ e EH1 [E]
/e:/ ee; e: EY1 [eI]
/a/ a AH1 [2]
/a:/ aa; a: AA1 [A]
/o/ o AO1 [O]
/o:/ oo; o: OW1 [oU]
/u/ u UH1 [U]
/u:/ uu; u: UW1 [u]

/p/∼/b/ p; b P [p]
/t”/∼/d”/ th; dh T [t]
/t/∼/d/ t; d T [t]
/ú/∼/ã/ rt; rd R T [õt]
/c/∼/tS/ j; dy CH [tS]
/k/∼/g/ k; g K [k]
/m/ m M [m]
/n”/ nh N [n]
/n/ n N [n]
/ï/ rn R N [õn]
/ñ/ ny N [n]
/N/ ng NG [N]
/w/ w W [w]
/j/ y Y [j]
/l/ l L [l]
/ń/ ly L [l]
/í/ rl R L [õl]
/õ/ r R [õ]
/R/ rr D [d]

Table B.1: ARPABET transcription conventions
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Appendix C

Vowel plots

The vowel plots in Chapter 4 were very small and hard to read in order to get a sense of the

crosslinguistic variation. Here (Figures C.1C.16) are those same plots in a larger format.

Polygons represent vowel spaces for each speaker, and labels represent each speaker’s mean

vowel quality.
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Figure C.1: Bardi vowel space.
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Figure C.2: Burarra vowel space.
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Dalabon
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Figure C.3: Dalabon vowel space.
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Figure C.4: Gija vowel space.
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Gunnarpta
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Figure C.5: Gunnartpa vowel space.
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Figure C.6: Gunwinggu vowel space.
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Kayardild
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Figure C.7: Kayardild vowel space.
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Figure C.8: Kunbarlang vowel space.
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Malak Malak
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Figure C.9: Malak Malak vowel space.
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Figure C.10: Murrinh Patha vowel space.
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Ngan'gi
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Figure C.11: Ngan’gi vowel space.
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Figure C.12: Wanyjirra vowel space.
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Warnman
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Figure C.13: Warnman vowel space.
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Figure C.14: Warlpiri vowel space.
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Yannhangu
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Figure C.15: Yannhangu vowel space.

Yidiny

3.0 2.5 2.0 1.5 1.0 0.5

2.0

1.5

1.0

0.5

0.0

i u

aa:

u:i:
i u

a
a:

u:i:

Figure C.16: Yidiny vowel space.

208



Bibliography

Abramson, Arthur S. & D. H. Whalen. 2017. Voice Onset Time (VOT) at 50: Theoretical

and practical issues in measuring voicing distinctions. Journal of Phonetics 63. 75–86.

https://doi.org/10.1016/j.wocn.2017.05.002. (9 March, 2022).

Alpher, Barry, Nicholas Evans,MarkHarvey, et al. 2003. ProtoGunwinyguan verb suffixes.

In The nonPamaNyungan languages of northern Australia: Comparative studies of the

continent’s most linguistically complex region. Pacific Linguistics.

Anand, Pranav, Sandra Chung & Matthew Wagers. 2011. Widening the net: Challenges

for gathering linguistic data in the digital age. NSF SBE 2020. Rebuilding the mosaic:

Future research in the social, behavioral and economic sciences at the National Science

Foundation in the next decade.

Atkinson, QuentinD.&Russell D. Gray. 2005. Curious Parallels andCurious Connections—

Phylogenetic Thinking in Biology and Historical Linguistics. Systematic Biology 54(4).

513–526. https://doi.org/10.1080/10635150590950317. (28 December, 2021).

Babinski, Sarah. 2021a. Forced Alignment and the Archive. Talk. online.

Babinski, Sarah. 2021b. Intrinsic F0 and Sound Change: Evidence from Australian Lan

guages. In Proceedings of the Annual Meeting on Phonology, vol. 9.

Babinski, Sarah. 2022. Best practices in the collection and analysis of “noisy” audio in

phonetics. Talk. Washington, D.C.

209

https://doi.org/10.1016/j.wocn.2017.05.002
https://doi.org/10.1080/10635150590950317


Babinski, Sarah&Claire Bowern. 2021.Contemporary Digital Linguistics and the Archive:

An Urgent Review. Talk. online.

Babinski, Sarah, Rikker Dockum, J. Hunter Craft, Anelisa Fergus, Dolly Goldenberg &

Claire Bowern. 2019. A Robin Hood approach to forced alignment: Englishtrained

algorithms and their use on Australian languages. Proceedings of the Linguistic Society

of America 4(1). 3. https://doi.org/10.3765/plsa.v4i1.4468. (29 April, 2020).

Babinski, Sarah, Jeremiah Jewell, Kassandra Haakman, Juhyae Kim, Amelia Lake & Claire

Bowern. 2022.How usable are digital collections for endangered languages? A review.

Talk. Washington, D.C.

Baker, Brett. 2014.Word Structure inAustralian languages. InH.Koch&Rachel Nordlinger

(eds.), The Languages and Linguistics of Australia (The World of Linguistics), 76. De

Gruyter.

Barth, Danielle. 2009. Social Cognition Project. Digital collectionmanaged by PARADISEC

SoCog.

Beckman, Mary E. 1997. A typology of spontaneous speech. Computing prosody. 7–26.

Beckman, Mary E., Julia Hirschberg & Stefanie ShattuckHufnagel. 2005. The Original

ToBI System and the Evolution of the ToBI Framework. In SunAh Jun (ed.), Prosodic

Typology: The Phonology of Intonation and Phrasing, 9–54. Oxford: Oxford University

Press.

BenHamed,Mahé. 2015. Phylolinguistics: EnactingDarwin’s Linguistic Image. In Thomas

Heams, Philippe Huneman, Guillaume Lecointre & Marc Silberstein (eds.), Handbook

of Evolutionary Thinking in the Sciences, 825–852. Dordrecht: Springer Netherlands.

https://doi.org/10.1007/978-94-017-9014-7_39. (28 December, 2021).

Berinstein, Ava E. 1979. A crosslinguistic study on the perception and production of stress.

UCLA Working Papers in Phonetics 47.

210

https://doi.org/10.3765/plsa.v4i1.4468
https://doi.org/10.1007/978-94-017-9014-7_39


Bishop, Judith. 2003.Aspects of intonation and prosody in Bininj Gunwok: an autosegmental

metrical analysis. University of Melbourne PhD Dissertation.

Blankenship, Barbara. 2002. The timing of nonmodal phonation in vowels. Journal of Pho

netics 30(2). 163–191.

Blevins, Juliette. 2004. Evolutionary phonology: The emergence of sound patterns. Cam

bridge University Press.

Boersma, Paul & David Weenink. 2018. Praat: doing phonetics by computer. Version

6.0.43. www.praat.org.

Bouckaert, Remco R., Claire Bowern & Quentin D. Atkinson. 2018. The origin and expan

sion of Pama–Nyungan languages across Australia. Nature Ecology & Evolution 2(4).

741–749. https://doi.org/10.1038/s41559-018-0489-3. (30 January, 2019).

Bowern, Claire. 2007. Yannhaŋu Language Documentation 1. http://hdl.handle.

net/2196/00-0000-0000-0001-5178-5.

Bowern, Claire. 2011. How many languages were spoken in Australia? Publication Title:

Anggarrgoon:Australian languages on thewebType:Wordpress. https://anggarrgoon.

wordpress.com/2011/12/.

Bowern, Claire. 2012. A Grammar of Bardi (Mouton Grammar Library 57). De Gruyter

Mouton.

Bowern, Claire. 2016. Chirila: Contemporary and Historical Resources for the Indigenous

Languages of Australia. Language Documentation and Conservation 10.

Bowern, Claire. 2018a. Computational Phylogenetics. Annual Review of Linguistics 4(1).

281–296. https://doi.org/10.1146/annurev-linguistics-011516-034142.

(26 December, 2021).

Bowern, Claire. 2018b. Language, culture, and Australian exceptionalism. Type: Invited

talk. University of Arizona.

211

www.praat.org
https://doi.org/10.1038/s41559-018-0489-3
http://hdl.handle.net/2196/00-0000-0000-0001-5178-5
http://hdl.handle.net/2196/00-0000-0000-0001-5178-5
https://anggarrgoon.wordpress.com/2011/12/
https://anggarrgoon.wordpress.com/2011/12/
https://doi.org/10.1146/annurev-linguistics-011516-034142


Bowern, Claire. 2020. Tangkic and PamaNyungan: Sister or Subgroup? Talk. Online.

https://campuspress.yale.edu/clairebowern/australian- linguistic-

society-talk/.

Bowern, Claire, Barry Alpher & Erich Round. 2013. Yidiny stress, length, and truncation

reconsidered. Poster. UConn.

Bowern, Claire & Quentin Atkinson. 2012. Computational phylogenetics and the internal

structure of PamaNyungan. Language 88(4). 817–845. https://doi.org/10.1353/

lan.2012.0081. (29 May, 2019).

Bowern, Claire & Bentley James. 2005. Yannhaŋu revitalization: Aims and accomplish

ments. In Proceedings from the Annual Meeting of the Chicago Linguistic Society,

vol. 41, 61–70. Issue: 2. Chicago Linguistic Society.

Bowern, Claire, Joyce McDonough & Katherine Kelliher. 2012. Bardi. Journal of the In

ternational Phonetic Association 42(3). 333–351. https : / / doi . org / 10 . 1017 /

S0025100312000217. (9 June, 2021).

Carew, Margaret. 1993. Gunnartpa and Burarra audio recordings from Gochan Jinyjirra

and Maningrida. Digital collection managed by PARADISEC MLC1.

de Carvalho, Fernando O. 2010. Vowel acoustics in Pirahã. Revista de Estudos da Lin

guagem 18(1).

Cohn, Abigail C. & Margaret E. L. Renwick. 2021. Embracing multidimensionality in

phonological analysis. The Linguistic Review 38(1). 101–139. https://doi.org/

10.1515/tlr-2021-2060. (29 October, 2021).

Cole, Jennifer & Stefanie ShattuckHufnagel. 2016. New methods for prosodic transcrip

tion: Capturing variability as a source of information. Laboratory Phonology: Journal

of the Association for Laboratory Phonology 7(1). Publisher: Ubiquity Press.

Coombs, Afton L. 2013. High tone processes in Ibibio. In Proceedings of the Meeting on

Acoustics, vol. 19.

212

https://campuspress.yale.edu/clairebowern/australian-linguistic-society-talk/
https://campuspress.yale.edu/clairebowern/australian-linguistic-society-talk/
https://doi.org/10.1353/lan.2012.0081
https://doi.org/10.1353/lan.2012.0081
https://doi.org/10.1017/S0025100312000217
https://doi.org/10.1017/S0025100312000217
https://doi.org/10.1515/tlr-2021-2060
https://doi.org/10.1515/tlr-2021-2060


CotoSolano, Rolando, Sally Akevai Nicholas, Brittany Hoback &Gregorio Tiburcio Cano.

2022.Data Management in Untrained Forced Alignment for Phonetic Research: Exam

ples from Costa Rica, Mexico, the Cook Islands and Vanuatu. Poster. Washington, D.C.

https://lsa.slidespiel.com/event/lsa-2022-01-06/poster/0a96204d-

9e58-416b-9cd1-5498e5448ef5.

Croft, William. 2000. Explaining language change: An evolutionary approach. Pearson

Education.

Darwin, Charles. 1871. The descent of man, and selection in relation to sex. Publisher: John

Murray.

de Dear, Caroline, Francesco Possemato & Joe Blythe. 2020. Gija (East Kimberley,Western

Australia)–language snapshot. Language Documentation and Description 17. 134–141.

Dicanio, Christian. 2017.Praat scripts. http://www.acsu.buffalo.edu/%20cdicanio/

scripts.html.

DiCanio, Christian, Hosung Nam, Jonathan D Amith, Rey Castillo García & Douglas H

Whalen. 2015. Vowel variability in elicited versus spontaneous speech: Evidence from

Mixtec. Journal of Phonetics 48. Publisher: Elsevier, 45–59.

DiCanio, Christian & D HWhalen. 2015. The interaction of vowel length and speech style

in an Arapaho speech corpus. In Proceedings of the 18th Congress of Phonetic Sciences,

5. Glasgow, UK: University of Glasgow.

Dixon, R.M.W. 1977a. A Grammar of Yidiny. Cambridge: Cambridge University Press.

Dixon, R.M.W. 1977b. Some phonological rules in Yidiny. Linguistic Inquiry 8. 1–34.

Dixon, R.M.W. 2001. The Austrlian linguistic area. In Alexandra Y. Aikhenvald & R.M.W.

Dixon (eds.), 64–104.

Dixon, R.M.W. 2002. Australian Languages: their nature and development. Vol. 1. Cam

bridge: Cambridge University Press.

213

https://lsa.slidespiel.com/event/lsa-2022-01-06/poster/0a96204d-9e58-416b-9cd1-5498e5448ef5
https://lsa.slidespiel.com/event/lsa-2022-01-06/poster/0a96204d-9e58-416b-9cd1-5498e5448ef5
http://www.acsu.buffalo.edu/%20cdicanio/scripts.html
http://www.acsu.buffalo.edu/%20cdicanio/scripts.html


Dockum, Rikker. 2017. Computational modeling of tone in language documentation: ci

tation tones vs. running speech in Chindwin Khamti. Proceedings of the 43rd Annual

Meeting of the Berkeley Linguistics Society. Publisher: Zenodo. https://doi.org/

10.5281/ZENODO.2575294. (12 April, 2021).

Eberhard, David M., Gary F. Simons & Charles D. Fenning (eds.). 2021. Ethnologue:

Languages of the World. 24th edn. Dallas, Texas: SIL International. http://www.

ethnologue.com.yale.idm.oclc.org.

Ecology Disrupted. 2021. Ecology Disupted: Genetic Distance Values. American Museum

of Natural History.

ELAN. 2018. Njimegen: Max Planck Institute for Psycholinguistics.

Esposito, ChristinaM. 2010. The effects of linguistic experience on the perception of phona

tion. Journal of Phonetics 38(2). 306–316. https://doi.org/10.1016/j.wocn.

2010.02.002. (17 May, 2021).

Evanini, Keelan, Stephen Isard & Mark Liberman. 2009. Automatic formant extraction for

sociolinguistic analysis of large corpora. In Tenth Annual Conference of the Interna

tional Speech Communication Association.

Evans, Nicholas. 2003a. Bininj Gunwok: a pandialectal grammar of Mayali, Kunwinjku

and Kune. Canberra: Australian National University.

Evans, Nicholas (ed.). 2003b. The NonPamaNyungan Languages of Northern Australia:

comparative studies of the continent’s most linguistically complex region (Studies in

Language Change). Pacific Linguistics.

Excoffier, L, P E Smouse& JMQuattro. 1992. Analysis ofmolecular variance inferred from

metric distances among DNA haplotypes: application to human mitochondrial DNA

restriction data. Genetics 131(2). 479–491. https://doi.org/10.1093/genetics/

131.2.479. (26 December, 2021).

214

https://doi.org/10.5281/ZENODO.2575294
https://doi.org/10.5281/ZENODO.2575294
http://www.ethnologue.com.yale.idm.oclc.org
http://www.ethnologue.com.yale.idm.oclc.org
https://doi.org/10.1016/j.wocn.2010.02.002
https://doi.org/10.1016/j.wocn.2010.02.002
https://doi.org/10.1093/genetics/131.2.479
https://doi.org/10.1093/genetics/131.2.479


Excoffier, Laurent, G. Laval & S. Schneider. 2005. Arlequin ver. 3.0: An integrated software

package for population genetics data analysis. Evolutionary Bioinformatics Online 1.

47–50.

Fabricius, Anne H., Dominic Watt & Daniel Ezra Johnson. 2009. A comparison of three

speakerintrinsic vowel formant frequency normalization algorithms for sociophonetics.

Language Variation and Change 21(3). 413–435. https : / / doi . org / 10 . 1017 /

S0954394509990160. (31 August, 2021).

Fletcher, Janet & Andrew R. Butcher. 2003. Local and global influences on vowel formants

in three Australian languages. English. In 15th ICPhS Barcelona, 905–908. OCLC:

781074463. Barcelona: Universitat Autónoma de Barcelona.

Fletcher, Janet & Andrew R. Butcher. 2014. Sound patterns of Australian languages. In

Rachel Nordlinger & H. Koch (eds.), The Languages and Linguistics of Australia: A

Comprehensive Guide (The World of Linguistics). De Gruyter.

Fletcher, Janet & Nicholas Evans. 2002. An acoustic phonetic analysis of intonational

prominence in two Australian languages. Journal of the International Phonetic Associ

ation 32(2). 123–140. https://doi.org/10.1017/S0025100302001019. (7 June,

2019).

Fletcher, Janet, Nicholas Evans & Erich Round. 2002. Leftedge tonal events in Kayardild

(Australian)a typological perspective. In Speech Prosody 2002, International Confer

ence.

Fletcher, Janet, Hywel Stoakes, Deborah Loakes & Ruth Singer. 2015. Accentual promi

nence and consonant lengthening and strengthening in Mawng. ICPhS. https://doi.

org/10.1080/07268602.2015.1023169. (27 October, 2021).

Freeman, Valerie & Paul De Decker. 2021. Remote sociophonetic data collection: Vowels

and nasalization over video conferencing apps. The Journal of the Acoustical Society of

215

https://doi.org/10.1017/S0954394509990160
https://doi.org/10.1017/S0954394509990160
https://doi.org/10.1017/S0025100302001019
https://doi.org/10.1080/07268602.2015.1023169
https://doi.org/10.1080/07268602.2015.1023169


America 149(2). 1211–1223. https://doi.org/10.1121/10.0003529. (19 Decem

ber, 2021).

Fry, Dennis B. 1958. Experiments in the perception of stress. Language and speech 1(2).

126–152.

Garellek, Marc. 2019. The phonetics of voice. Routledge Handbooks Online. https://

doi.org/10.4324/9780429056253-5. (9 March, 2022).

Garellek, Marc & Patricia Keating. 2011. The acoustic consequences of phonation and tone

interactions in Jalapa Mazatec. Journal of the International Phonetic Association 41(2).

185–205. https://doi.org/10.1017/S0025100311000193. (17 May, 2021).

Garrett, Andrew & Keith Johnson. 2013. Phonetic bias in sound change. In Alan C. L.

Yu (ed.), Origins of sound change: Approaches to phonologization. Oxford: Oxford

University Press.

Gasser, Emily & Claire Bowern. 2014. Revisiting Phonological Generalizations in Aus

tralian Languages. In, 11.

Glasgow, K. 1981. Burarra phonemes. In Bruce Waters (ed.), Australian phonologies: col

lected papers, vol. 15 (Working papers of SILAAB A), 63–89.

Goedemans, Rob. 2010. An overview of word stress in Australian Aboriginal languages. In

Harry van der Hulst, Rob Goedemans & Ellen van Zanten (eds.), A Survey of Word Ac

centual Patterns in the Languages of the World. Berlin, New York: De Gruyter Mouton.

https://doi.org/10.1515/9783110198966.1.55. (23 March, 2021).

Gordon, Matthew. 2011. Stress systems. In John Goldsmith, Jason Riggle & Alan CL Yu

(eds.), The New Handbook of Phonology, 141–163. WileyBlackwell. (14 April, 2017).

Gordon, Matthew. 2015. Consonanttone interactions: A phonetic study of four indigenous

languages of the Americas. In Heriberto Avelino, Matt Coler & Leo Wetzels (eds.),

The Phonetics and Phonology of Laryngeal Features in Native American Languages.

Leiden/Boston: Brill.

216

https://doi.org/10.1121/10.0003529
https://doi.org/10.4324/9780429056253-5
https://doi.org/10.4324/9780429056253-5
https://doi.org/10.1017/S0025100311000193
https://doi.org/10.1515/9783110198966.1.55


Gordon, Matthew & Timo Roettger. 2017. Acoustic correlates of word stress: A cross

linguistic survey. Linguistics Vanguard 3(1).

Gorman, Kyle, Jonathan Howell & Michael Wagner. 2011. Prosodylabaligner: A tool for

forced alignment of laboratory speech. Canadian Acoustics 39(3). 192–193.

Grabowski, Emily & Laura McPherson. 2019. DAPPr: A (semi)automated tool for pitch

annotation. In Proceedings of the 19th International Congress of the Phonetic Sciences,

5.

Gray, RD & FM Jordan. 2000. Language trees support the expresstrain sequence of Aus

tronesian expansion, 2000. Nature 405. 1052.

Gray, Russell D. & Quentin D. Atkinson. 2003. Languagetree divergence times support

the Anatolian theory of IndoEuropean origin. Nature 426(6965). Bandiera_abtest: a

Cg_type: Nature Research Journals Number: 6965 Primary_atype: Research Publisher:

Nature Publishing Group, 435–439. https://doi.org/10.1038/nature02029.

(28 December, 2021).

Green, Ian. 1995. The Daly language family: a reassessment. Australian National Univer

sity, Canberra.

Green, Rebecca. 1987. A sketch grammar of Burarra. Canberra: Australian National Uni

versity Honors Thesis.

Gussenhoven, Carlos. 2004. The phonology of tone and intonation. Publisher: Cambridge

University Press.

Hall, Nancy, Andie Niederecker, Elica Sue & Irene Orellana. 2019. Annotating Archival

Recordings of Hocank (Winnebago).Proceedings of the AnnualMeetings on Phonology

7. https://doi.org/10.3765/amp.v7i0.4489. (8 March, 2022).

Hamming, Richard W. 1950. Error detecting and error correcting codes. The Bell system

technical journal 29(2). Publisher: Nokia Bell Labs, 147–160.

217

https://doi.org/10.1038/nature02029
https://doi.org/10.3765/amp.v7i0.4489


Harvey, Mark et al. 2003. An initial reconstruction of Proto Gunwinyguan phonology. In

The NonPamaNyungan languages of northern Australia: Comparative studies of the

continents most linguistically complex region. Pacific Linguistics.

Hayes, Bruce. 1985. Iambic and trochaic rhythm in stress rules. Proceedings of the XIth

Annual Meeting of the Berkeley Linguistics Society. 429–466.

Hayes, Bruce. 1995. Metrical Stress theory. University of Chicago Press.

Himmelmann, Nikolaus P. 2008. Prosody in language documentation. In Essentials of lan

guage documentation, 163–182. De Gruyter Mouton.

Hoffmann, Dorothea. 2015. Documenting MalakMalak, an endangered language of North

ern Australia. http://hdl.handle.net/2196/00-0000-0000-000F-4832-4.

Holden, Clare Janaki & Ruth Mace. 2003. Spread of cattle led to the loss of matrilineal

descent in Africa: a coevolutionary analysis. Proceedings of the Royal Society of Lon

don. Series B: Biological Sciences 270(1532). Publisher: Royal Society, 2425–2433.

https://doi.org/10.1098/rspb.2003.2535. (28 December, 2021).

Hyman, Larry. 1977. On the nature of linguistic stress. In Larry M. Hyman (ed.), Stud

ies in stress and accent, 37–82. Los Angeles: Department of Linguistics, University of

Southern California.

Jepson, Kathleen, Janet Fletcher & Hywel Stoakes. 2019. Prosodically Conditioned Con

sonant Duration in Djambarrpuyŋu. Language and Speech. 002383091982660. https:

//doi.org/10.1177/0023830919826607. (23 March, 2021).

Jepson, Kathleen Margaret. 2019. Prosody, prominence and segments in Djambarrpuyŋu

PhD Thesis.

Johnson, Keith. 2020. The ∆F method of vocal tract length normalization for vowels. Lab

oratory Phonology: Journal of the Association for Laboratory Phonology 11(1). 10.

https://doi.org/10.5334/labphon.196. (31 August, 2021).

218

http://hdl.handle.net/2196/00-0000-0000-000F-4832-4
https://doi.org/10.1098/rspb.2003.2535
https://doi.org/10.1177/0023830919826607
https://doi.org/10.1177/0023830919826607
https://doi.org/10.5334/labphon.196


Johnson, Lisa M, Marianna Di Paolo & Adrian Bell. 2018. Forced alignment for under

studied language varieties: Testing ProsodylabAligner with Tongan data. Publisher:

University of Hawaii Press.

Kager, Rene. 1999. Optimality Theory (Cambridge Textbooks in Linguistics). Cambridge

University Press.

Kakadelis, Stephanie M. 2018. Phonetic Properties of Oral Stops in Three Languages with

No Voicing Distinction. CUNY PhD.

Kaland, Constantijn. 2021. Contour clustering: A fielddatadriven approach for document

ing and analysing prototypical f0 contours. Journal of the International Phonetic Asso

ciation. 1–30. https://doi.org/10.1017/S0025100321000049. (19 April, 2021).

Keating, Patricia, Christina M. Esposito, Marc Garellek, Sameer ud Dowla Khan & Jian

jing Kuang. 2010. Phonation Contrasts Across Languages. UCLA Working Papers in

Phonetics (108). 188–202.

Kisler, Thomas, Florian Schiel & Han Sloetjes. 2012. Signal processing via web services:

the use case WebMAUS. In Digital Humanities Conference 2012.

Kitchen, Andrew, Christopher Ehret, ShiferawAssefa&Connie J.Mulligan. 2009. Bayesian

phylogenetic analysis of Semitic languages identifies an Early Bronze Age origin of

Semitic in the Near East. Proceedings of the Royal Society B: Biological Sciences

276(1668). Publisher: Royal Society, 2703–2710. https : / / doi . org / 10 . 1098 /

rspb.2009.0408. (28 December, 2021).

Kofod, Frances. 2013. The painter’s eye, the painter’s voice: language, art and landscape

in the Gija world. http://hdl.handle.net/2196/00-0000-0000-0001-D032-0.

Kuznetsova, Alexandra, Per B Brockhoff & Rune HBChristensen. 2017. lmerTest package:

tests in linear mixed effects models. Journal of statistical software 82(1). 1–26.

Ladd, D. R. 1996. Intonational Phonology. Cambridge: Cambridge University Press.

219

https://doi.org/10.1017/S0025100321000049
https://doi.org/10.1098/rspb.2009.0408
https://doi.org/10.1098/rspb.2009.0408
http://hdl.handle.net/2196/00-0000-0000-0001-D032-0


Lake, Amelia, Juhyae Kim, Kassandra Haakman, Jeremiah Jewell, Sarah Babinski & Claire

Bowern. 2022.Accessibility, discoverability, and functionality of digital language archives.

Talk. Washington, D.C.

Lawyer, Lewis C. 2015. Patwin Phonemics, Phonetics, and Phonotactics. International

Journal of American Linguistics 81(2). 221–260. https : / / doi . org / 10 . 1086 /

680310. (17 May, 2021).

Lehiste, Ilse. 1970. Suprasegmentals. Publisher: Massachusetts Inst. of Technology P. Cam

bridge, MA: The MIT Press.

Lennes, Mietta. 2018. Praat script. http : / / phonetics . linguistics . ucla . edu /

facilities/acoustic/praat.html.

Lewontin, R. C. 1972. The Apportionment of Human Diversity. In Theodosius Dobzhan

sky, Max K. Hecht & William C. Steere (eds.), Evolutionary Biology, 381–398. New

York, NY: Springer US. https://doi.org/10.1007/978-1-4684-9063-3_14.

(26 December, 2021).

Lobanov, B. M. 2005. Classification of Russian Vowels Spoken by Different Speakers. The

Journal of the Acoustical Society of America 49(2B). Publisher: Acoustical Society of

AmericaASA, 606. https://doi.org/10.1121/1.1912396. (31 August, 2021).

Lunden, Anya, Jessica Campbell, Mark Hutchens & Nick Kalivoda. 2017. Vowellength

contrasts and phonetic cues to stress: an investigation of their relation. Phonology 34(3).

565–580. https://doi.org/10.1017/S0952675717000288. (4 March, 2022).

Macaulay, Ben. 2021. The Race to Document Endangered Languages, Now That We Have

the Technology. Gizmodo. https : / / gizmodo . com / the - race - to - document -

endangered-languages-now-that-we-1847883858.

MacklinCordes, Jayden L., Claire Bowern & Erich R. Round. 2021. Phylogenetic signal

in phonotactics. Diachronica 38(2). Publisher: John Benjamins, 210–258. https://

doi.org/10.1075/dia.20004.mac. (28 December, 2021).

220

https://doi.org/10.1086/680310
https://doi.org/10.1086/680310
http://phonetics.linguistics.ucla.edu/facilities/acoustic/praat.html
http://phonetics.linguistics.ucla.edu/facilities/acoustic/praat.html
https://doi.org/10.1007/978-1-4684-9063-3_14
https://doi.org/10.1121/1.1912396
https://doi.org/10.1017/S0952675717000288
https://gizmodo.com/the-race-to-document-endangered-languages-now-that-we-1847883858
https://gizmodo.com/the-race-to-document-endangered-languages-now-that-we-1847883858
https://doi.org/10.1075/dia.20004.mac
https://doi.org/10.1075/dia.20004.mac


Mansfield, John. 2019. Murrinhpatha morphology and phonology. Vol. 653. Walter de

Gruyter GmbH & Co KG.

McAuliffe, Michael, Michaela Socolof, Sarah Mihuc, Michael Wagner & Morgan Son

deregger. 2017. Montreal Forced Aligner: Trainable TextSpeech Alignment Using

Kaldi. In Interspeech 2017, 498–502. ISCA. https : / / doi . org / 10 . 21437 /

Interspeech.2017-1386. (24 April, 2020).

McCarthy, John J. & Alan Prince. 1993. Generalized alignment. In Yearbook of morphology

1993, 79–153. Springer. (9 May, 2017).

McCloy, Daniel. 2012. SemiAuto Pitch Extractor.

Michalakis, Yannis & Laurent Excoffier. 1996. A Generic Estimation of Population Subdi

vision Using Distances Between AllelesWith Special Reference forMicrosatellite Loci.

Genetics 142(3). 1061–1064. https://doi.org/10.1093/genetics/142.3.1061.

(26 December, 2021).

Nash, David George. 1980. Topics in Warlpiri grammar. Massachusetts Institute of Tech

nology PhD Thesis.

Nearey, Terrance Michael. 1978. Phonetic Feature Systems for Vowels. Bloomington, Indi

ana: Indiana University Linguistics Club dissertation.

Nespor, Marina & Irene Vogel. 1986. Prosodic Phonology (Studies in Generative Gram

mar). Dordrecht: Foris Publications.

Nordlinger, Rachel. 2017. The languages of theDaly region (NorthernAustralia). Publisher:

Oxford University Press.

O’Grady, Geoffrey N., C.F. Voegelin & F.M. Voegelin. 1966. Languages of the world: Indo

Pacific fascicle 6. Anthropological Linguistics 8(2). 1–199.

O’Keeffe, Isabel, C. Coleman, Ruth Singer, Linda Barwick, J. Mardbinda & T. Wilton.

2017. Documentation of Kunbarlang. http://hdl.handle.net/2196/00-0000-

0000-000F-BF4E-0.

221

https://doi.org/10.21437/Interspeech.2017-1386
https://doi.org/10.21437/Interspeech.2017-1386
https://doi.org/10.1093/genetics/142.3.1061
http://hdl.handle.net/2196/00-0000-0000-000F-BF4E-0
http://hdl.handle.net/2196/00-0000-0000-000F-BF4E-0


Ochshorn, RM&MaxHawkins. 2017. Gentle forced aligner. github. com/lowerquality/gentle.

Ohala, John J. 1993. The phonetics of sound change. In Charles Jones (ed.), Historical

Linguistics: Problems and Perspectives, 237–278. London: Longman.

Pentland, Christina. 2004. Stress in Warlpiri: Stress domains and wordlevel prosody.

Pierrehumbert, Janet B. 1980. The Phonology and Phonetics of English Intonation. Cam

bridge, MA: MIT PhD Dissertation.

Pierrehumbert, Janet B. 2001. Exemplar dynamics: Word frequency, lenition and contrast.

In J.L. Bybee & P. Hopper (eds.), Frequency and the emergence of linguistic structure,

137–158. John Benjamins.

Prince, Alan. 1990. Quantitative consequences of rhythmic organization. Cls 26(2). 355–

398. (2 May, 2017).

R Core Development Team. 2020.R: A language and environment for statistical computing.

Version 4.0.0. www.r-project.org.

Reddy, Sravana & James Stanford. 2015. A web application for automated dialect analysis.

In Proceedings of the 2015 Conference of the North American Chapter of the Associa

tion for Computational Linguistics: Demonstrations, 71–75.

Reid, Nicholas J. 1990. Ngangityemerri: A Language of the Daly River Region, Northern

territory of Australia. Australian National University PhD Dissertation.

Reid, Nicholas J. 2013. Talking Ngan’gi. Digital collection managed by PARADISEC

NR01. University of New England.

Rosenberg, Noah A., Jonathan K. Pritchard, James L. Weber, HowardM. Cann, Kenneth K.

Kidd, Lev A. Zhivotovsky & Marcus W. Feldman. 2002. Genetic Structure of Human

Populations. Science 298(5602). 2381–2385. https://doi.org/10.1126/science.

1078311. (26 December, 2021).

Rosenfelder, Ingrid, Josef Fruehwald, Keelan Evanini & Jiahong Yuan. 2011. FAVE (forced

alignment and vowel extraction) program suite. URL http://fave. ling. upenn. edu.

222

www.r-project.org
https://doi.org/10.1126/science.1078311
https://doi.org/10.1126/science.1078311


Ross, Belinda Britt. 2011. Prosody and grammar in Dalabon and Kayardild PhD Thesis.

Ross, Bella, Janet Fletcher & Rachel Nordlinger. 2016. The alignment of prosody and

clausal structure in Dalabon. Australian Journal of Linguistics 36(1). Publisher: Tay

lor & Francis, 52–78.

Ross, Robert M., Simon J. Greenhill & Quentin D. Atkinson. 2013. Population structure

and cultural geography of a folktale in Europe. Proceedings of the Royal Society B:

Biological Sciences 280(1756). 20123065. https://doi.org/10.1098/rspb.2012.

3065. (28 October, 2021).

Round, Erich. 2015. Documentation of Kayardild. http://hdl.handle.net/2196/00-

0000-0000-0001-39A4-C.

Rzeszutek, Tom, Patrick E. Savage & Steven Brown. 2012. The structure of crosscultural

musical diversity. Proceedings of the Royal Society B: Biological Sciences 279(1733).

1606–1612. https://doi.org/10.1098/rspb.2011.1750. (28 October, 2021).

Sanker, Chelsea, Sarah Babinski, Roslyn Burns, Marisha Evans, Juhyae Kim, Slater Smith,

NatalieWeber &Claire Bowern. 2021. (Don’t) try this at home! The effects of recording

devices and software on phonetic analysis. Language 97(4). lingbuzz/005748.

Savelyev, Alexander & Martine Robbeets. 2020. Bayesian phylolinguistics infers the inter

nal structure and the timedepth of the Turkic language family. Journal of Language

Evolution 5(1). 39–53. https://doi.org/10.1093/jole/lzz010. (28 December,

2021).

Schliep, Klaus Peter. 2011. Phangorn: phylogenetic analysis in R. Bioinformatics 27(4).

Publisher: Oxford University Press, 592–593.

Senge, Chikako. 2016. A Grammar of Wanyjirra, a language of Northern Australia. 757.

Si, Aung. 2014. Kune. Digital collection managed by PARADISEC SI1. University of Mel

bourne.

223

https://doi.org/10.1098/rspb.2012.3065
https://doi.org/10.1098/rspb.2012.3065
http://hdl.handle.net/2196/00-0000-0000-0001-39A4-C
http://hdl.handle.net/2196/00-0000-0000-0001-39A4-C
https://doi.org/10.1098/rspb.2011.1750
lingbuzz/005748
https://doi.org/10.1093/jole/lzz010


Simard, Candide. 2010. The prosodic contours of Jaminjung, a Northern Australian lan

guage. University of Manchester PhD Dissertation.

Simard, Candide & Eva SchultzeBerndt. 2011. Documentary linguistics and prosodic evi

dence for the syntax of spoken language. InDocumenting Endangered Languages, 151–

176. De Gruyter Mouton.

Slatkin, Montgomery. 1995. A measure of population subdivision based on microsatellite

allele frequencies. Genetics 139(1). Publisher: Oxford University Press, 457–462.

Sokal, Robert R. & Charles D. Michener. 1958. A statistical method for evaluating system

atic relationships. The University of Kansas Science Bulletin 38. 1409–1438.

Street, Chester. 1987. An introduction to the language and culture of the MurrinhPatha.

Darwin: Summer Institute of Linguistics.

Street, Chester. 2012. Murrinhpatha to English dictionary. Wadeye, Australia.

Tabain, Marija. 2016. Aspects of Arrernte prosody. Journal of Phonetics 59. Publisher:

Elsevier, 1–22.

Tang, Kevin & Ryan Bennett. 2018. Contextual predictability influences word and mor

pheme duration in a morphologically complex language (Kaqchikel Mayan). The Jour

nal of the Acoustical Society of America 144(2). 997–1017. https://doi.org/10.

1121/1.5046095. (17 May, 2021).

Taylor, Peter & Joy Taylor. 1971. A tentative statement of Kitja phonology. In Papers on

the languages of Australian Aboriginals, 100–109. AIAS.

Tuttle, Siri. 2003. Archival phonetics: Tone and stress in Tanana Athabaskan. Anthropolog

ical Linguistics 45. 316–336.

Van Heuven, Vincent J. 2018. Acoustic Correlates and Perceptual Cues of Word and Sen

tence Stress. In Rob Goedemans, Jeffrey Heinz & Harry Van der Hulst (eds.), The Study

of Word Stress and Accent: Theories, Methods, and Data. Cambridge University Press.

224

https://doi.org/10.1121/1.5046095
https://doi.org/10.1121/1.5046095


Vogel, Irene, Angeliki Athanasopoulou & Nadya Pincus. 2016. Prominence, contrast, and

the functional load hypothesis: An acoustic investigation. Dimensions of phonological

stress. Publisher: Cambridge University Press Cambridge, England), 123–167.

Walsh,Michael J. 1976. TheMurinypata Language of NorthWest Australia. Canberra: Aus

tralian National University PhD Dissertation.

Wedel, Andrew B. 2006. Exemplar models, evolution and language change. The Linguistic

Review 23(3). https://doi.org/10.1515/TLR.2006.010. (23 February, 2017).

Whalen, D. H., Christian DiCanio & Rikker Dockum. 2020. Phonetic documentation in

three collections: Topics and evolution. Journal of the International Phonetic Associa

tion. 1–27. https://doi.org/10.1017/S0025100320000079. (9 March, 2022).

Whalen, Douglas H. & Joyce M. McDonough. 2019. Underresearched languages: Pho

netic results from language archives. In William F. Katz & Peter F. Assmann (eds.),

The Routledge Handbook of Phonetics, 51–71. London/New York: Routledge.

Xu, Yi. 2011. Speech prosody: A methodological review.

Xu, Yi. 2019. Prosody, tone, and intonation. In The Routledge handbook of phonetics, 314–

356. Routledge.

Yu, Alan C. L. 2010. Perceptual Compensation Is Correlated with Individuals’ “Autistic”

Traits: Implications for Models of Sound Change. PLoS ONE 5(8). e11950. https:

//doi.org/10.1371/journal.pone.0011950. (6 June, 2019).

Yu, Alan C.L. 2008. The phonetics of quantity alternation in Washo. Journal of Phonetics

36(3). 508–520. https://doi.org/10.1016/j.wocn.2007.10.004. (17 May,

2021).

Yu, Alan CL, Julian Grove, Martina Martinovic & Morgan Sonderegger. 2011. Effects of

working memory capacity and “autistic” traits on phonotactic effects in speech per

ception. In Proceedings of the International Congress of the Phonetic Sciences XVII,

225

https://doi.org/10.1515/TLR.2006.010
https://doi.org/10.1017/S0025100320000079
https://doi.org/10.1371/journal.pone.0011950
https://doi.org/10.1371/journal.pone.0011950
https://doi.org/10.1016/j.wocn.2007.10.004


Hong Kong: International Congress of the Phonetic Sciences, 2236–2239. (16 Febru

ary, 2017).

Zhang, Cong, Kathleen Jepson, Georg Lohfink&Amalia Arvaniti. 2021. Comparing acous

tic analyses of speech data collected remotely. LingBuzz preprint. lingbuzz/005790.

Zhang, Jingwei. 2018. A Comparison of Tone Normalization Methods for Language Vari

ation Research. Information and Computation. 9.

226

lingbuzz/005790

	Archival Phonetics & Prosodic Typology in Sixteen Australian Languages
	Recommended Citation

	List of Figures
	Acknowledgements
	Introduction
	Conceptualization of stress and prosody
	Stress is relative
	Phonological factors
	Phonetic factors
	Phrase-level prosody

	Phonetic precursors to sound change
	The current study: Claims
	Australian languages
	Overview
	The Pama Nyungan family
	Non-Pama Nyungan languages
	Language endangerment

	Archival phonetics
	Chapter summary

	Data
	Sources of Data
	Languages
	Pama-Nyungan Languages
	Non-Pama-Nyungan Languages

	Summary: Relationships between languages

	Methodology
	Forced Alignment
	What is forced alignment?
	Forced alignment for under-resourced languages
	The Montreal Forced Aligner
	Data preparation
	Post-alignment

	Statistical Methods
	Acoustic measurements
	Determining stress correlates

	Data Quality

	Results: Cross-linguistic variation
	Vowel Duration
	Consonant Duration
	Post-tonic lengthening
	Onset duration

	Intensity
	F0
	F0 maximum
	F0 range

	Vowel space
	Summary

	Results: Within-language variation
	Bardi
	Burarra/Gunnartpa
	Dalabon
	Gija
	Gunwinggu
	Kayardild
	Kunbarlang
	Malak Malak
	Ngan'gi
	Yidiny
	Summary

	Quantifying variation with phylogenetic methods
	Background
	The use of phylogenetic methods in linguistics
	Analysis of Molecular Variance

	How AMOVA is implemented
	AMOVA Results
	Pairwise fixation index
	Summary

	Phrasal prosody
	Background
	Methods
	Results by language
	Bardi
	Burarra
	Gunnartpa
	Dalabon
	Gija
	Gunwinggu
	Kayardild
	Kunbarlang
	Malak Malak
	Murrinh Patha
	Ngan'gi
	Wanyjirra
	Warlpiri
	Warnman
	Yannhangu
	Yidiny

	Summary & Discussion

	Archival phonetics
	Background
	Two types of `noise'
	Archives and endangered languages

	Data acquisition
	Remote recording methods
	Using archival materials

	Post-processing techniques
	Forced alignment
	Data normalization
	Controlling for noise with statistics

	Conclusion

	Conclusion
	Revisiting the Claims
	Endangered language phonetics
	Implications

	Archival Collections
	ARPABET transcriptions
	Vowel plots
	References

