
Yale University Yale University

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Graduate School of Arts and Sciences Dissertations

Spring 2022

Deep Learning for Embedding and Integrating Multimodal Deep Learning for Embedding and Integrating Multimodal

Biomedical Data Biomedical Data

Matthew Amodio
Yale University Graduate School of Arts and Sciences, matthew.amodio@yale.edu

Follow this and additional works at: https://elischolar.library.yale.edu/gsas_dissertations

Recommended Citation Recommended Citation
Amodio, Matthew, "Deep Learning for Embedding and Integrating Multimodal Biomedical Data" (2022).
Yale Graduate School of Arts and Sciences Dissertations. 550.
https://elischolar.library.yale.edu/gsas_dissertations/550

This Dissertation is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Graduate School of Arts and Sciences Dissertations
by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more
information, please contact elischolar@yale.edu.

https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/gsas_dissertations
https://elischolar.library.yale.edu/gsas_dissertations?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/gsas_dissertations/550?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

Abstract

Deep Learning for Embedding and Integrating Multimodal Biomedical Data

Matthew Amodio

2022

Biomedical data is being generated in extremely high throughput and high dimension by

technologies in areas ranging from single-cell genomics, proteomics, and transcriptomics

(cytometry, single-cell RNA and ATAC sequencing) to neuroscience and cognition (fMRI and

PET) to pharmaceuticals (drug perturbations and interactions). These new and emerging

technologies and the datasets they create give an unprecedented view into the workings of

their respective biological entities. However, there is a large gap between the information

contained in these datasets and the insights that current machine learning methods can

extract from them.

This is especially the case when multiple technologies can measure the same underlying

biological entity or system. By separately analyzing the same system but from different

views gathered by different data modalities, patterns are left unobserved if they only emerge

from the multi-dimensional joint representation of all of the modalities together. Through an

interdisciplinary approach that emphasizes active collaboration with data domain experts,

my research has developed models for data integration, extracting important insights

through the joint analysis of varied data sources.

In this thesis, I discuss models that address this task of multi-modal data integration,

especially generative adversarial networks (GANs) and autoencoders (AEs). My research

has been focused on using both of these models in a generative way for concrete problems

in cutting-edge scientific applications rather than the exclusive focus on the generation of

high-resolution natural images. The research in this thesis is united around ideas of building

models that can extract new knowledge from scientific data inaccessible to currently existing

methods.

Deep Learning for Embedding and Integrating Multimodal Biomedical

Data

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Matthew Amodio

Dissertation Director: Smita Krishnaswamy

May 2022

Copyright © 2022 by Matthew Amodio

All rights reserved.

ii

Contents

Acknowledgements xviii

1 Introduction 1

2 Background 6

2.1 Generative Adversarial Networks (GANs) 6

2.1.1 The Manifold Assumption . 7

2.1.2 Conditional GANs . 8

2.1.3 Cycle-consistent GANs . 9

2.2 Autoencoders . 10

2.3 Deep Learning . 11

2.3.1 Optimizers . 12

2.3.2 Invariance-inducing layers . 13

I Multi-sample alignment with Generative Adversarial Networks 15

3 Manifold Aligning GAN (MAGAN) 16

3.1 Introduction . 16

3.2 Model . 19

3.2.1 Architecture . 19

3.2.2 Correspondence Loss . 21

3.2.3 Manifold Data Augmentation . 23

3.3 Experiments . 23

iii

3.3.1 Artificial Data . 24

3.3.2 MNIST . 24

3.3.3 Correspondence: CyTOF Replicates 26

3.3.4 Correspondence: Different CyTOF Panels 28

3.3.5 Correspondence: Cytometry and scRNA-seq 30

3.4 Discussion . 32

3.5 Conclusion . 32

4 Transformation Vector Learning GAN (TraVeLGAN) 34

4.1 Introduction . 34

4.2 Model . 40

4.3 Experiments . 44

4.3.1 Similar domains . 45

4.3.2 Imagenet: diverse domains . 47

4.3.3 Discussion . 51

4.4 Final notes . 58

5 Feature Mapping GAN (FMGAN) 63

5.1 Introduction . 63

5.2 Related Work . 66

5.2.1 Conditional GANs . 66

5.2.2 Biological applications of conditional GANs 67

5.2.3 Learning embeddings of biological data manifolds 67

5.3 Results . 68

5.3.1 FMGAN . 68

5.3.2 Condition-Embedding Network . 68

5.3.3 Modeling drug perturbation experiments 70

5.3.4 Predicting flow cytometry data on COVID-19 patients 80

5.4 Experimental Procedures . 82

5.4.1 Conditional Generative Adversarial Networks 82

5.4.2 Chemical Structure and SMILES Strings 83

iv

5.4.3 FMGAN Architecture . 84

5.5 Discussion . 86

5.6 Supplemental Experimental Procedures . 87

5.6.1 Generative Adversarial Networks . 87

5.6.2 Conditional Generative Adversarial Networks 88

5.6.3 Optimization . 88

5.6.4 Maximum Mean Discrepancy . 91

5.6.5 Raw and Embedded Condition Space Correlation Experiment 92

5.6.6 COVID-19 Clinical data . 92

II Multi-sample alignment with Autoencoders 94

6 SAUCIE 95

6.1 Introduction . 95

6.2 Results . 97

6.2.1 The SAUCIE Architecture and Layer Regularizations 97

6.2.2 Comparison to other methods . 101

6.2.3 Analysis of immune response to dengue infection with SAUCIE . . . 117

6.3 Discussion . 122

6.4 Methods . 125

6.4.1 Computational Methods . 125

6.4.2 Experimental methods . 139

7 Neuron Editing 141

7.1 Introduction . 141

7.2 Model . 144

7.3 Experiments . 148

7.3.1 CelebA Hair Color Transformation 150

7.3.2 Batch correction by out-of-sample extension from spike-in samples . 151

7.3.3 Combinatorial drug treatment prediction on single-cell data 155

v

7.4 Discussion . 156

8 Discussion and Future Work 157

8.1 Applications of models . 157

8.2 Improvements of models . 158

8.3 New frameworks of models . 159

vi

List of Figures

3.1 There are exponentially many mappings that superimpose the two manifolds,

fooling a GAN’s discriminator. By aligning the manifolds, we maintain

pointwise correspondences. 17

3.2 MAGAN’s architecture with two generators, two discriminators, reconstruc-

tion loss, and correspondence loss. Domain 1 comprises upright images of 3’s

and 7’s, Domain 2 comprises rotated images of 3’s and 7’s. 17

3.3 Both models superimpose the manifolds, meaning the first domain (X1)

is mapped to the second domain (X2) such that the dataset of the first

domain after mapping (G12(X1)) matches the second domain. Without

the correspondence loss, though, this mapping is arbitrary and thus the

relationships found vary. With the correspondence loss, the relationships

found are coherent. This is confirmed with (a) a GAN without correspondence

loss on artificial data (b) MAGAN on artificial data (c) a GAN without

correspondence loss on MNIST and (d) MAGAN on MNIST. 22

3.4 In simulations of 100 complete training runs of each model, without corre-

spondence loss the resulting relationships learned varied randomly in both

the (a) toy and (c) MNIST datasets. With correspondence loss, the most

coherent relationship was found repeatedly for both (b) toy and (d) MNIST

datasets. 25

3.5 Selected markers illustrating large batch effects that separate the two data

manifolds. 25

vii

3.6 Two distinct populations of T-cells (CD45RA+CD45RO- and CD45RA-

CD45RO+) with severe dropout in the CD45RA marker that causes a differ-

ence between that between the (a) first batch and (b) second batch. 27

3.7 (a) Without correspondence loss, the GAN corrects the batch effect but

subpopulations are reversed. (b) MAGAN still corrects the batch effect and

subpopulations are preserved. 27

3.8 Using MAGAN’s correspondence loss, measurements from each experiment

can be combined. Their true values are known because they are measured in

both experiments. Performing cross-validation by holding each out from the

first experiment, we can measure the correlation between the predicted value

and the real, correct value. 30

4.1 The TraVeLGAN architecture, which adds a siamese network S to the traditional

generator G and discriminator D and trains to preserve vector arithmetic between

points in the latent space of S. 35

4.2 Examples of TraVeLGAN generated output on Imagenet domains that are too

different and diverse for cycle-consistent GANs to map between. The TraVeLGAN

successfully generates images that are both fully realistic in the output domain (shape

of object, color, background) and have preserved semantics learned by the siamese

network. 36

4.3 Examples of TraVeLGAN generated output on traditional datasets for unsupervised

domain transfer with cycle-consistent GANs. Little change to the original image is

necessary in these problems, and TraVeLGAN generates the expected, minimally

changed image in the other domain. 39

viii

4.4 It is hard to learn mappings between domains that are each other’s inverse when

the domains are asymmetric (e.g. crossword configurations are more complex than

abacus configurations). (a) G1 can change the background (red selection) or black

beads (orange circles) in hard-to-invert ways. (b) The cycle-consistency assumption

forced every black bead to a white crossword square and every blank space to a black

crossword square, even though the result is not a realistic crossword pattern. The

background is also not fully changed because it could not learn that more complicated

inverse function. 43

4.5 (a) A real crossword image artificially manipulated to move a white square around

the frame. (b) The TraVeLGAN, which has not seen any of these images during

training, has learned a semantic mapping between the domains that moves an abacus

bead appropriately with the crossword square. 48

4.6 The CycleGAN generates images such that pairwise L2-distances in pixel space are

strongly preserved. The TraVeLGAN generated images are virtually uncorrelated in

pixel space, but the siamese network learns a latent space where pairwise distances

are preserved. 49

4.7 Learning to map between two CIFAR domains: (a) horse to bird (b) bird to

horse. 52

4.8 Learning to map between two imagenet domains: (a) crossword to abacus (b)

abacus to crossword. 53

4.9 Learning to map between two imagenet domains: (a) rock beauty to toucan

(b) toucan to rock beauty. 54

4.10 Learning to map between two imagenet domains: (a) clock to hourglass (b)

hourglass to clock. 55

4.11 Learning to map between two imagenet domains: (a) jack-o-lantern to volcano

(b) volcano to jack-o-lantern. 56

4.12 Learning to map between two imagenet domains: (a) cd to cassette (b)

cassette to cd. 57

ix

4.13 Having access to the siamese space output by S provides an interpretability

of the TraVeLGAN’s domain mapping that other networks lack. PCA visual-

izations on the CIFAR example indicate S has indeed learned a meaningfully

organized space for G to preserve transformation vectors within. 61

4.14 A salience analysis exploring how the TraVeLGAN’s objective loosens the

restriction of cycle-consistency and allows it more flexibility in changing the

image during domain transfer. The TraVeL loss requires significantly less mem-

orization of the input pixels, and as a result, more complex transformations

can be learned. 62

5.1 (a) The measurements on data are separated into “easy-to-collect information” (EI) and

“hard-to-collect information” (HI). The easy-to-collect measurements are available on all

data, while the hard-to-collect measurements are only available on some data. (b) With

a Conditional GAN, we can learn to model the relationship between these two categories

of measurements. The conditions go through the condition-embedding network to find

manifold structure for the generator to utilize even if it is not initially present in the conditions. 65

5.2 The formation of easy-to-collect (red columns) and hard-to-collect (white columns) data for

each experiment with drug perturbation data. (a) in the held-out genes experiment, the

easy-to-collect measurements are taken from held-out genes (b) in the PHATE coordinate

experiment, they are the result of running on the genes matrix (c) in the SMILES string

experiment, the easy-to-collect data is an embedding from processing this representation

with a CNN (d) in the structure diagram experiment, it is the same as in the SMILES

string experiment except run on the structure diagrams. 72

x

5.3 (a) Visualization of the embedding of cells in the held-out genes experiment, colored by

each held-out gene. The network has inferred the structure of the space from these genes.

(b) The raw data, colored by the expression of gene EIF4G2, separated into the three

most abundant drugs: BRD-K60230970, BRD-K50691590, and BRD-K79090631. (c) The

generator’s embedding space of drugs from the SMILES strings experiment, with the same

three drugs highlighted. The embedding shows that the drugs with similar distributions

have been embedded into similar locations in the learned embedding space. (d) The same

as in (c) but with the structure diagram experiment. (e) The conditions are more correlated

to the generated data after they have been embedded. 75

5.4 FACS data generated from clinical measurements in the COVID-19 data. Top row: for

all 26 held-out patients in the first fold, the real FACS measurements. Second row: for

all 26 held-out patients, generated FACS measurements from the FMGAN. Third row: a

single patient’s real FACS measurements. Bottom row: a single patient’s generated FACS

measurements. 81

6.1 The neural network framework of SAUCIE 98

6.2 Regularizations and architecture choices in SAUCIE. A) the ID

regularization applied on the sparse encoding layer produces digital codes for

clustering B) the informational bottleneck, i.e. a smaller embedding layer,

uses dimensionality reduction to produce denoised data at the output C) the

MMD regularization removes batch artifacts D) the within cluster distance

regularization applied to the denoised data provides coherent clusters. . . . 102

6.3 A comparison of the different analysis tasks performed by SAUCIE

against other methods. A) A comparison of clustering performance on the

data from Shekhar et al (top) and Zeisel et al (bottom) with samples of size

27499 and 3005, respectively. B) A comparison of SAUCIE’s visualization on

the same datasets as part (A). C) A comparison of imputation on the 10x

mouse dataset subset of size 4142. 103

xi

6.4 A comparison of the SAUCIE clustering to other clustering methods on

artificial and real data. Rows show the different datasets. Along with the

first artificial dataset, there are two CyTOF datasets and three scRNA-seq

datasets. Columns show the different clustering methods. From left to right:

True “ground truth” labels, SAUCIE, kmeans, Phenograph, scVI. In (b) and

(c), we add the scores for the modularity and silhouette heuristics from Table

6.1, respectively. 104

6.5 Demonstration of SAUCIE’s batch correction abilities. A) SAUCIE

batch correction balances perfect reconstruction (which would leave the

batches uncorrected) with perfect blending (which would remove all of the

original structure in the data) to remove the technical variation while pre-

serving the biological variation. B) The effect of increasing the magnitude of

the MMD regularization on the dengue data of size 41721. Sufficient MMD

regularization is capable of fully removing batch effect. C) Results of batch

correction on the synthetic GMM data (of size 2000) (top) and the dengue

data (bottom) shows that SAUCIE better removes batch effects than MNN

and better preserves the structure of the data than CCA. 106

6.6 A comparison of batch correction with SAUCIE to other methods on an

artificial dataset, two technical replicates from the dengue CyTOF data, non-

technical replicates on scRNA-seq batches from mouse cortex, and then public

data from Chevrier et al, Azizi et al, and Setty et al. Rows show the different

datasets. Columns show the different batch correction methods. From left to

right: The original data prior to batch correction, SAUCIE, mutual nearest

neighbors (MNN), canonical correlation analysis (CCA). In (b) and (c), we

add graphs of the mixing score and shape preserving score results from Table

6.2 for quantitative evaluation, respectively. 107

xii

6.7 A comparison of the SAUCIE visualization to other methods on a number

of artificial and real datasets. The columns show the different methods.

From left to right: SAUCIE, PCA, Monocle2, Diffusion Maps, UMAP, tSNE,

PHATE. The rows show the different datasets. From top to bottom: Artifi-

cially generated trees with varying amounts of noise, random tree generated

with diffusion limited aggregation (DLA), intersecting half circles, Gaussian

mixture model, scRNA-seq hematopoiesis from Paul et al [126], CyTOF T

cell development from Setty et al [140], CyTOF ipsc from Zunder at al [190],

scRNA-seq retinal bipolar cells from Shekhar et al [143], scRNA-seq mouse

cortex from Zeisel et al [182]. In (b), we add a graph of the precision-recall

metric results from Table 6.3 for quantitative evaluation. 110

6.8 A comparison of imputation methods including SAUCIE. Several gene-gene

associations are shown from the 10x mouse cortex dataset. From left to right:

The original (sparse) data, data after imputation with SAUCIE, MAGIC,

scImpute, and nearest neighbor completion. 112

6.9 A comparison of imputation with SAUCIE to other methods on the simulated

dropout experiment. Increasing amounts of dropout are along the horizontal

axis from left to right, and the accuracy of each method as measured by R2

is along the vertical axis. The time each method took to complete is in the

legend in seconds. 114

6.10 Comparison of runtimes on an increasing number of points. The number

of points is represented on the horizontal axis and the time in seconds the

method took to complete is on the vertical axis. If a method ran out of

resources and could not complete a run for a certain number of points, that

is demarcated with an ‘x’ and no further time points were attempted for that

method. SAUCIE is the fastest method besides PCA and kmeans. 115

xiii

6.11 SAUCIE identifies and characterizes cellular clusters, whose pro-

portions can be used to compare patients. SAUCIE on the entire

dengue dataset of 11228838 cells. A) The cell manifolds identified by the

two-dimensional SAUCIE embedding layer for the T lymphocyte subsets from

acute, healthy, and convalescent subjects. B) A heatmap showing clusters

along the horizontal axis and markers along the vertical axis. Cluster sizes

are represented as a color bar beneath the heatmap. C) Cluster proportions

for acute, convalescent, and healthy patients. 119

6.12 The granularity of the clustering, as measured by the total number of clusters

found. Each line represents a fixed value of λd as λc increases from left to right.120

6.13 SAUCIE produces patient manifolds from single-cell cluster signa-

tures. SAUCIE on the entire dengue dataset of 11228838 cells. Top row)

The patient manifold identified by SAUCIE cluster proportions, visualized by

kernel PCA with acute, healthy, convalescent, and all subjects combined from

left to right. The healthy manifold overlaps with the convalescent manifold

to a much higher degree than the acute manifold. Middle row) The same

patient manifold shown colored by each patient’s cluster proportion. Cluster

1 is more prevalent in acute, cluster 3 in healthy, cluster 5 is ubiquitous, and

cluster 9 is rare and in acute patients. Bottom row) A comparison of the

cluster proportion for acute (X-axis) versus convalescent (Y-axis) for patients

that have matched samples. 123

6.14 Four select marker abundances with samples grouped by day they were run

on the cytometry instrument, with each day having fourteen distinct samples

in the group. For each marker, the fourteen samples before batch correction

are shown to the left of the same fourteen samples after batch correction. . 133

6.15 Histograms of marker expression (top: IL-6, bottom: CD86) of samples run

together on the cytometry instrument on day two, separated by sample. The

values for each sample and marker are shown before SAUCIE batch correction

(left) and after SAUCIE batch correction (right). 134

xiv

6.16 An illustration of the metaclustering process on the dengue dataset. Top

left: cluster centroids embedded by tSNE and colored by metacluster, sized

according to the number of cells in each cluster. Top right: cluster centroids

colored by sample, also sized according to the number of cells in each cluster.

Bottom left: a cell-level heatmap of expression grouped by metacluster.

Bottom right: the composition of each metacluster by sample. 136

6.17 An illustration of the SAUCIE pipeline on the dengue dataset. Left: cell-

level heatmap of expression grouped by cluster. Top right: cluster centroids

embedded by tSNE, sized according to the number of cells in each cluster.

Bottom right: the composition of each cluster by sample. 137

7.1 (a) Neuron editing interrupts the standard feedforward process, editing the

neurons of a trained encoder/decoder to include the source-to-target variation,

and letting the trained decoder cascade the resulting transformation back into

the original data space. (b) The neuron editing process. The transformation

is learned on the distribution of neuron activations for the source and applied

to the distribution of neuron activations for the extrapolation data. 145

7.2 Data from CelebA where the source data consists of males with black hair

and the target data consists of males with blond hair. The extrapolation is

then applied to females with black hair. (a) A comparison of neuron editing

against other models. Only neuron editing successfully applies the blond hair

transformation. (b) An illustration that neuron editing must be applied to

the neurons of a deep network, as opposed to principle components. 149

7.3 Additional CelebA transformations. 151

7.4 Neuron editing corrects the variation in IFNg while preserving the variation

in CCR6 and correctly predicting the effect of combining two drugs. 153

7.5 (a) The global shift in the two controls (light blue to red) is isolated and

this variation is edited into the sample (dark blue to red), with all other

variation preserved. (b) The median change in the sample in each dimension

corresponds accurately with the evidence in each dimension in the controls. 154

xv

List of Tables

3.1 With MAGAN’s correspondence loss, the accuracy of the learned mapping

is dramatically improved, as measured by the MSE between the known real

point x and the predicted point G(x) after mapping. 31

4.1 Real/generated SSIM on the similar-domains datasets. 47

4.2 Per-pixel MSE on the shoes-to-sketch dataset. 47

4.3 FID scores for each of the models on each of the Imagenet datasets. Column labels

correspond to Figure 4.2. 50

4.4 Discriminator scores for each of the models on each of the Imagenet datasets. Column

labels correspond to Figure 4.2. 50

5.1 MMD scores (lower is better) across all datasets for the drug data for all

models with mean and standard deviation reported across five independent

runs. The full FMGAN with all of its components most accurately predicts the

distribution from each condition for all methods of forming the condition space,

although the datasets that require more advanced convolutional processing

benefit the most. 73

5.2 Pairwise correlation of the distance between two conditions and the MMD

between their generated distribution. For distances in raw condition space,

they are substantially uncorrelated. After being processed by the condition-

embedding network, the distances in the embedded space are highly correlated

with the difference in their generated data. 78

xvi

5.3 MMD distance between real and generated data (lower is better) on the

COVID-19 data, with mean and standard deviation across the 26 held-out

patients in each fold in the cross-evaluation. The FMGAN outperforms the

baselines significantly in all cases. 87

6.1 A comparison of modularity (left) and silhouette (right) scores of each of the

clustering algorithms on each dataset. 105

6.2 A comparison of mixing (left) and Procrustes (right) scores of each of the

batch correction algorithms on each dataset. 108

6.3 A comparison of precision-recall area-under-the-curves (AUCs) for each of

the visualization algorithms on each dataset. 109

7.1 FID scores on the CelebA extrapolation task. 149

7.2 Correlation between observed change in spike-ins and applied change to

samples. Neuron editing most accurately applies just the transformation

observed as batch effect and not true biological variation. 153

7.3 Correlation between real and predicted means/variances on the combinatorial

drug prediction data. The GANs generate data that is less accurate (means

are off) and less diverse (variances are smaller) than the real data, while

neuron editing best models the true distribution. 154

xvii

Acknowledgements

I wish to express sincere gratitude for all of the support I have received during my PhD.

While my name will be the only one on the diploma, my accomplishments represent a group

effort, with support in various forms provided to me by a number of kind and helpful people.

Most significantly, I want to thank my advisor Dr. Smita Krishnaswamy, who has

transformed me from a naive researcher with limited perspective into the mature researcher

I am now. She has taught me much both in terms of specific technical knowledge and more

qualitative advice for navigating the world of academia. She has also given me the latitude

to explore my own thoughts and ideas, which has given me tremendous confidence as I

progress further into my academic career.

I also want to thank Dr. Guy Wolf, who in his time at Yale and since, has been a strong

mentor both personally and professionally. He has lent his technical expertise (not least of

which being LaTex wizardry the likes of which I have never seen) and a grounded perspective

on how to guide a particular research project from its initial stage over the finish line to

publication.

The lab environment in the Krishnaswamy Lab has been a fantastic learning experience,

both in terms of productivity and my enjoyment of spending time with the other members of

the lab. To fellow PhD students Alex Tong, Dan Burkhardt, Scott Gigante, Manik Kuchroo,

Jay Stanley, Egbert Castro, and Aarthi Venkat, senior researchers David van Dijk, Dennis

Shung, Ofir Lindenbaum, Jessie Huang, and Feng Gao, and the many undergrads who have

spent a brief sojourn in the lab (and all of those I am sure I am unintentionally omitting

that I owe a debt of gratitude to): thank you all, you have been an integral part of this

experience.

xviii

While Yale is the setting for my highest academic achievement, it is not the beginning of

my academic journey. I wish to thank my teachers, from my childhood days in the public

school system of Medina, Ohio, to my teachers at the Ohio State University, to those at the

University of Wisconsin-Madison. I have learned so much at each level of my journey, and

that is only with all of your help.

Last but in no way least, I want to thank my family. My parents, James and Bonnie, and

my brothers, Steve, Dan, and Mike, as well as my grandparents, aunts and uncles, cousins,

and all of my extended family have been my rocks through the ups and downs of my years

workings towards this degree. Thank you for all of your help.

xix

Chapter 1

Introduction

Generative modeling is one of the fastest growing fields of deep learning currently. Just in

the time between when I started my graduate research and the time when I’m finishing it,

they have gone from generating text that at least made sense at the sentence level or basic

images that look realistic if you do not look too closely, to generating whole articles that

would fool a reader into thinking it was written by a human and high-resolution images with

high fidelity to a real image.

One use of these advances in generative models has been that of data alignment, or the

combination of multiple different datasets into a single unified representation, by learning to

map between them. Existing work along these lines has focused extensively on mapping

between image domains, like pictures of human faces with brown hair and pictures of human

faces with blond hair.

This dissertation instead targets applications in biological and medicinal fields, as I

believe these to be more promising areas for both broader societal benefits and computational

development. The broader societal benefits are likely evident, as increased biological

understanding has the opportunity to improve life outcomes rather directly by guiding

diagnoses and treatments. The promise in terms of computational development may be less

easily seen. The problem lies in the fact that obsessive focus on images when designing

models runs the risk of not seeing assumptions and biases built into their design simply

because canonical image datasets satisfy the assumptions. By working on new biological

datasets, we expose these models to a more varied set of tests and thus can come out with

1

stronger frameworks as a result.

Data alignment in biological applications has grown in importance especially because of

the invention of new technologies that can view a system from different perspectives, but that

have trade-offs motivating alignments that can unite all of the different datasets generated

from these technologies. In this dissertation I discuss various methods for alignment of these

datasets, and I highlight how these are useful for discovering underlying aspects about them.

In Chapter 3, I introduce the first method for data alignment that I developed based on

GANs, called the Manifold Alignment GAN (MAGAN) [4]. Broadly speaking, one theme

recurring throughout this dissertation will be that of taking under-regularized alignment

methods that are only used in specific cases where their assumptions are met and adding

constraints that render them capable of producing meaningful alignments in a wider array

of applications. In the case of MAGAN, it builds upon the framework of a cycle-consistent

GAN by adding a correspondence loss to the total objective, which directly enforces a

notion of alignment between all of the representations of a point in each distribution (from

each domain). The previously existing cycle-consistent networks assume that any invertible

mapping (one that does not lose information) produces a good alignment. With MAGAN,

I demonstrate that this is evidently not true, and that the added correspondence loss is

necessary in the biological applications considered to produce meaningful alignment.

In Chapter 4, I further generalize the notion of paired GANs by introducing the Trans-

formation Vector Learning GAN (TraVeLGAN) [5]. In this chapter, I discuss the drawbacks

to using a cycle-consistency loss at all in this context. The first of these is the dependency

on a mean squared error distance metric to measure information retention (which in some

application domains, such as images, bias information retention towards low frequency

patterns that exist over large numbers of pixels but are less important to the content of the

image, at the expense of high frequency patterns that cover fewer pixels but drive the content

of the image). The second of which is that invertibility is not necessarily a good indicator

of whether a pair of mappings between two domains is meaningful, and it may restrict the

types of domains that can be considered unnecessarily. The TraVeLGAN sidesteps the need

for cycle-consistency entirely by utilizing a third network that is introduced to learn a latent

space in which the two representations of each point (in each domain) are aligned via data

2

geometry.

In Chapter 5, I move to a new framework of relating different data domains for alignment

with the use of a conditional GAN called the Feature Mapping GAN (FMGAN) [9]. In

this application, heavily focused on use cases in drug discovery, one domain contains

pharmaceutical drugs represented by metadata such as their chemical structures, and the

second domain contains transcriptomic measurements of cell populations perturbed by these

drugs. This situation is especially challenging because the domains are of drastically different

cardinality: each drug is a single point in drug space, but each one corresponds to an entire

distribution of many cells in the cell space. This situation requires a different solution than

the cycle-consistent GANs of the previous chapters. The FMGAN approaches this with a

conditional GAN where the conditions are the drugs and the data conditioned upon the

drug is the cell transcriptomic distributions. With conditions as complex as images of drug

structures, the FMGAN relies upon the addition of a condition embedding network that

processes the conditions prior to them being given to the generator, as in the case of a

traditional conditional GAN.

In Chapter 6, I change paradigms and propose an autoencoder based framework for

aligning samples rather than the previously discussed GAN based frameworks for the task,

beginning with the Sparse Autoencoder for Unsupervised Clustering, Imputation, and

Embedding (SAUCIE) [7]. Autoencoders benefit from the stability and ease of training and

the inherent automatic information retention that GANs lack. Thus, using manipulations

of the latent layers of autoencoders to perform generation offers significant advantages

over alternative methods. SAUCIE uses regularizations of internal layers motivated by

information theoretic principles to perform various tasks important to the applications of

single-cell analysis. One of these tasks is batch correction, which corrects technical differences

in distributions of cells from separate independent measurements (such as different runs

of the sequencer or from different subjects). SAUCIE utilizes a novel maximum mean

discrepancy regularization in a latent layer to align distributions from each batch so that its

output can be interpreted in one unified analysis.

In Chapter 7, I contribute another autoencoder-based framework for data alignment called

neuron editing [8]. While the previously discussed autoencoder uses regularizations during

3

training of the network to align samples, this method is based on the observation that this

constrains alignment to only areas of the data space that are in the training sample, because

autoencoders draw points towards the data manifold. The goal of alignment sometimes

requires producing points that are different from those in the training set, though. In

biological applications, there may be a rare cell type that exists in one subject in the healthy

population but none in the diseased population. We would be forced to generate a prediction

that this cell type disappears when a subject becomes diseased rather than predicting the

disease does to it. Neuron editing avoids this problem by training an autoencoder on the

full dataset and then performing a defined transformation over the learned feature space.

Due to the transformation being performed offline (after training), it is capable of accurate

out-of-sample extrapolation in a way that traditional autoencoder methods cannot perform.

In this dissertation, the chapters are based on research published in conferences and

journals important to the community. The full publications are available for access in their

respective original sources. The correspondence between chapter and publication is as follows

(* † Denote equal contribution):

• Chapter 3: Amodio, M. and Krishnaswamy, S. MAGAN: Aligning biological manifolds.

International Conference on Machine Learning, 2018.

• Chapter 4: Amodio, M. and Krishnaswamy, S. TraVeLGAN: Image-to-image translation

by transformation vector learning. Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2019.

• Chapter 5: Amodio, M, Shung, D, Burkhardt, D B, Wong, P, Simonov, M, Yamamoto,

Y, van Dijk, D, Wilson, F P, Iwasaki, A, Krishnaswamy, S. Generating hard-to-obtain

information from easy-to-obtain information: applications in drug discovery and clinical

inference. Patterns (Cell Press), 2021.

• Chapter 6: Amodio, M*, van Dijk, D*, Srinivasan, K*, Chen, W, Mohsen, H, Moon,

K, Campbell, A, Zhao, Y, Wang, X, Venkataswamy, M, Desai, A, Ravi, V, Kumar,

P, Montgomery, R, Wolf†, G, Krishnaswamy, S†. Exploring single-cell data with deep

multitasking neural networks. Nature Methods, 2019.

4

• Chapter 7: Amodio, M, van Dijk, D, Wolf, G, Krishnaswamy, S. Learning general trans-

formations of Data for out-of-sample extensions. Proceedings of the IEEE International

Workshop on Machine Learning for Signal Processing (MLSP), 2020.

5

Chapter 2

Background

In this chapter, I discuss important fundamental topics that my research, discussed in detail

later in the dissertation, will build upon.

2.1 Generative Adversarial Networks (GANs)

The GAN framework trains a generator network G along with a discriminator network D

such that G learns to produce samples from the unknown data distribution implied by the

training data set. Consider X ∼ PX , xi ∈ Rd, i = 1...Nx, a Nx-point sample from PX , a

d-dimensional distribution. The goal is for the generator G to learn to approximately sample

from PX by mapping input from a noise distribution Z ∼ PZ . G is guided toward this

goal by gradient signals from the discriminator D that is trained with G in an adversarial

framework, alternatively optimizing the objective function:

min
G

max
D

LGAN =Ex∼Px [log(D(x))] +

Ez∼Pz [log(1−D(G(z)))]

where this objective is attempted to be minimized by G and maximized by D[52, 53, 137].

GANs have shown tremendous ability to generate hyper-realistic samples in even ex-

tremely complex data domains, such as images and text [23, 40]. They are able to do

so because they benefit from several advantages. Formulating the generator’s loss as a

6

function of another network D allows the GAN to benefit from advances in neural network

designs. As a result, the loss function for an image dataset can easily incorporate spatial

invariance by using a convolutional neural network, or the loss function for a text dataset

can be given sequential regularity by parameterizing the discriminator as a recurrent neural

network [114, 174].

One cost of these advantages that have facilitated great generative performances, though,

is a marked instability of training. Attempts to study the dynamics of GAN training

have struggled to find a foundational footing in theory that convincingly explains observed

behaviors in real data [113, 84]. This has motivated many variations on the original GAN

paradigm that are intended to stabilize training in practice [173, 186]. While these have

achieved varying levels of success, many of the most recent significant advances have come

from stabilizing training techniques [23].

The GAN framework is built on foundational work in many related sub-topics, which we

discuss here.

2.1.1 The Manifold Assumption

A commonly used notion in mathematical data analysis is that of the manifold assumption.

The manifold assumption states that data points that exist natively in a high-dimensional,

arbitrarily complex ambient space in fact lie on or close to a low-dimensional, locally

Euclidean manifold. Since in practice points never lie exactly on such a manifold, it is

necessary to allow the use of the lax condition of merely being near the manifold (and

the magnitude of deviation can actually be key for analysis techniques such as anomaly

detection).

This assumption is important in data analysis in general because low-dimensional,

Euclidean spaces are easier to work with for several reasons. Often, analysis techniques

rely on the ability to measure distances accurately. In the ambient space of these data

points, often an accurate distance metric is unavailable because the coordinates of the

space are encoding complex, non-monotonic latent variables. Traditional distance metrics

like mean squared error or cross entropy are meaningless when dealing with text data or

image data, especially with reference to important transformations like translations or shifts

7

that we are interested in studying. An accurate distance metric in the ambient space of

transformations like these is analytically intractable. Another property that makes locally

Euclidean manifolds attractive for data analysis methods is the ability to move around in

the space meaningfully by taking small steps (for example, following the gradient of some

target function). That is, if we take one point in the ambient space xi and its location in

the manifold space mi, where

xi ∼ X ∈ Rd

mi ∼ M ∈ Rn

such that n ≤ d, then mi+ ϵ also is on or near the support of X for small ϵ. This is essential

as exploring the space by moving around in small steps without straying from the data

distribution is impossible for any non-trivial ambient data space under analyis.

The manifold assumption plays a crucial role in the study of GANs. As mentioned

previously, GANs train a generator network G that maps from a noise sample z ∼ Z to

a point that cannot be distinguished from a point x ∼ X that is drawn from the data

distribution. The generator is guided throughout training by minimizing its objective

function informed by the direction of the gradient with respect to z. This is possible because

as we have discussed, we can take small steps around the manifold and stay on or near

the manifold and as training proceeds, the sample manifold Z approaches the true data

manifold M . Training a GAN on a reduced, low-dimensional space leverages the manifold

assumption in a way other generative models like diffusion models [138, 67, 86] or normalizing

flows [105, 70, 85] lack.

2.1.2 Conditional GANs

One early augmentation of the original GAN framework was that of the conditional GAN

(cGAN). The cGAN modifies the original GAN by making the generator network mapping

from the noise sample z conditioned upon a condition c, aka G(z|c), with an analogous

conditioning of the discriminator network D(x|c). Coupled with the sample from the noise

distribution, the generator then gives a full distribution of samples for each condition.

8

Applications of conditional GANs include conditioning images on natural language text,

generating as a function of an auxiliary variable like time, image colorization and super-

resolution, and data augmentation [42, 20, 128, 63, 125]. Conditional GANs benefit from

the sharing of information, weights, and gradients across the classes by virtue of using the

same network for different classes, while adding flexibility through the input of different

conditions and gaining controllability, i.e. a desired output can be generated with greater

ease by inputting a particular condition as compared to generating a desired output with a

traditional GAN.

2.1.3 Cycle-consistent GANs

A later development in the GAN paradigm is related to the conditional GAN in general

construct. The formal setting considers a pair of domains for data, X and Y . Each domain

is sampled from, yielding a finite dataset of {xi}Nx
i=1 ∈ X and {yi}

Ny

i=1 ∈ Y . Crucially, these

points are unpaired, in that while there is a correspondence between the domains at a

distribution level, we do not have pairs of points (xi, yi) where xi ∈ X corresponds to the

same underlying latent identity as yi ∈ Y . The goal in this task, termed unsupervised

domain mapping, is to learn functions GXY : X → Y and GY X : Y → X that map between

the two domains. These generators are guided by discriminators DX and DY for domains X

and Y respectively, which try to distinguish between real samples from its domain and the

generated samples from the generator in that direction. Note that the generators receive a

point from one domain as input, while being trained to produce a point in the other domain

as output. In this way, these generators resemble the generators in the conditional GAN

framework discussed previously.

While the naive solution would be to just train these as completely distinct and separate

GANs, drastic improvements in mapping quality, both in terms of the realism of the generated

samples and the quality of matching of the generated sample and the real sample at a

distribution level, were available through a slightly more complicated framework. This

framework leveraged the information theoretic principle of information retention. The cycle-

consistency loss did this, first introduced in the DiscoGAN model and then later popularized

by the CycleGAN model [80, 189]. The cycle-consistency loss enforces the principle that

9

the mapping in one direction must not lose any information contained in the input point by

requiring that the other generator be able to invert the mapping and reconstruct the original

point. That is, for example if the mean squared error loss is used to measure reconstruction,

the generators are trained to minimize ||GY X(GXY (X))−X||2 and ||GXY (GY X(Y))− Y ||2.

In addition to producing meaningful mappings, this produces stable training, as only the

space of invertible functions is explored. Since their advent, cycle-consistent GANs have

dominated the space of unsupervised domain mapping [3, 78, 65, 176].

2.2 Autoencoders

Autoencoders are models originally used for representation learning, by pairing a dimensionality-

reducing encoder E and a dimensionality-increasing decoder that when paired can reconstruct

the original point, with an objective minimizing the loss over a data set X often using

the mean squared error metric ||X −D(E(X))||2. As originally formulated, they are not

productive as generative models because they can only be used to reproduce a point that is

already available and given as input. However, they can also be used for generation in a

variety of ways:

Variational autoencoders A modification of the autoencoder framework that places it in

a probabilistic generative framework is the variational autoencoder (VAE) [82]. In the VAE,

the latent layer that is output from the encoder l = E(x) and fed to the decoder such that

x ≈ D(l) is viewed probabilistically. The decoder D is a prior distribution over l giving the

likelihood of the data D(x|l). The encoder E meanwhile is a posterior distribution E(l|x).

The loss function is

L = −E[logD(x|l)] +KL(E(l|x)||p(z))

where KL is the Kullback-Leibler divergence and p(z) is a tractable, easy-to-sample-from

distribution usually chosen to be an isotropic Gaussian. The two components of the loss

are: maximizing the likelihood of the data under the decoder conditioned upon the latent

variable plus the divergence between the output of the encoder conditioned upon the data

10

as input and the chosen form of random distribution to represent the latent variables.

This loss encourages the encoder to output points that approximate the latent variable

distribution when fed a training data point, and the decoder to output a training data point

when fed a sample from the latent variable distribution. A key to training this function,

which relies on being able to backpropagate gradients from the last layer of the decoder all

the way back to the first layer of the encoder, is the so-called “re-parameterization trick”.

This approximates a sample from the latent variable distribution (which must be isotropic

Gaussian for this trick to work) by taking samples from l ∼ N(0, 1) and transforming

them with the µl, σl that is output by the encoder by simply taking l′ = σl · (l + µl). This

facilitates backpropagation through µl, σl while channeling the non-differentiability through

the randomness of the sample l. VAEs have proven to be popular in both theoretical and

practical studies due to their analytic tractability and relatively ease of understanding and

interpretability [41, 24, 104, 136].

Adversarial autoencoders Adversarial autoencoders mix ideas from the autoencoder

and GAN frameworks [109, 77]. They replace the Kullback-Leibler divergence enforcing

that the output of the encoder resembles the chosen noise distribution with a discriminator

(“adversary”) that is trained with the standard GAN loss discussed above. The adversarial

autoencoder benefits from the stability of training of the standard autoencoder because the

loss function tied to the data is the reconstruction mean squared error loss. The benefits

over VAEs include the flexibility of choosing non-standard latent distributions because they

do not need to rely on the analytic usage of the re-parameterization trick. However, they

also suffer from some of the same disadvantages: due to the use of the reconstruction loss,

they suffer from limited ability to extrapolate outside of the training set, like autoencoders.

2.3 Deep Learning

Some topics are important to virtually every type of deep learning method, agnostic of

whether the particular framework is a GAN or autoencoder or any other type of model.

11

2.3.1 Optimizers

Virtually all deep learning models rely on a standard off-the-shelf optimizer that is model

agnostic to train the weights of all models involved. Perhaps surprisingly, one optimizer has

been demonstrated to be the most effective in cases ranging across drastically different types

of layers, architectures, and loss functions: the adam optimizer [185, 157]. This optimizer

builds off of the standard stochastic gradient descent by adding a momentum-based adaptive

per-parameter learning rate update to get the new updated weight wnew from the old weight

wold as follows:

wnew = wold − η · m̂√
v̂ + ϵ

where after initializing m0 = v0 = 0, then for training step t and gradient g:

mt = β1 ·mt−1 + (1− β1) · g

vt = β2 · vt−1 + (1− β2) · g2

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

β1, β2 are hyperparameters usually chosen to be 0.9, 0.999, respectively, η is the learning

rate, and ϵ is a small normalizing constant. As the value of t increases, m̂ and v̂ become

better approximations of the first and second moment of g. Scaling the universal learning

rate η, which is only a single scalar chosen to be used in every weight in the network, with

the per-parameter moments allows each weight to get its own learning rate based on its own

gradient history. This facilitates hyperparameter choice by making the range of reasonable

values for the learning rate much smaller and consistent across architectures and training

regimes.

12

2.3.2 Invariance-inducing layers

Another topic used extensively in a wide variety of deep learning applications is designing

types of layers that induce desired invariances with respect to particular transformations.

Notably, those include convolutional neural networks (CNNs) and recurrent neural

networks (RNNs).

In CNNs, primarily used in the processing of images, induces translational invariance

with respect to shifts between certain dimensions. Unlike tabular data, where columns

are independent and our networks should treat information contained in each completely

separately, in images we usually want the network to be insensitive to whether an object

is centered at pixel (ri, cj) or three pixels over. CNNs induce this kind of translational

invariance by applying a number of filters with learned weights, which is performed over a

defined set of dimensions interpreting the pixels in their true underlying grid formation.

RNNs, on the other hand, induce not translational invariance but temporal invariance

over discrete time steps. RNNs are frequently used in text data to be able to process long

sequences of words or characters by conditioning its output on a state vector from the

previous time step and then altering the state before passing it to the next step. The RNN

function can be trained stably because it is learning a single function for all time steps, but

gets different output at different times through the changing state vector that is passed

through the RNN.

RNNs have become increasingly complicated to deal with the some of the problems

they have in practice. For example, while the state vector being passed from time t to

t+ 1, theoretically information can be passed forward across an arbitrarily large number of

time steps, as is necessary for a particular learning task. However, in practice, the chain

rule dictates the gradient signal gets smaller and smaller because the recurrent weight

multiplication is performed sequentially. Thus, RNNs suffer from this decay of the gradient

signal, what is called the vanishing gradient problem. To rectify this, complex formulations

like the long short-term memory network (LSTM) and gated recurrent unit (GRU) units

have been built off of the foundation of the RNN unit. While they differ in their details,

the LSTM and GRU both further decompose the state vector that is being passed forward

13

to the next time step of the recurrent unit. By making the change to the state vector an

additive change, and passed through so-called “gates” which are [0, 1] scalars that can either

let new information in or perform the identity function to keep the old information.

14

Part I

Multi-sample alignment with

Generative Adversarial Networks

15

Chapter 3

Manifold Aligning GAN (MAGAN)

3.1 Introduction

It is increasingly common in many types of natural and physical systems (especially biological

systems) to have different types of measurements performed on the same underlying system.

In such settings, it is important to align the manifolds arising from each measurement in

order to integrate such data and gain an improved picture of the system; we tackle this

problem using generative adversarial networks (GANs). Recent attempts to use GANs to

find correspondences between sets of samples do not explicitly perform proper alignment of

manifolds. We present the new Manifold Aligning GAN (MAGAN) that aligns two manifolds

such that related points in each measurement space are aligned. We demonstrate applications

of MAGAN in single-cell biology in integrating two different measurement types together:

cells from the same tissue are measured with both genomic (single-cell RNA-sequencing)

and proteomic (mass cytometry) technologies. We show that MAGAN successfully aligns

manifolds such that known correlations between measured markers are improved compared

to other recently proposed models.

We commonly have samples from a pair of related domains and want to ask the natural

question of how samples from one relate to samples from the other. Our motivational

system for this is two types of measurements on cells sampled from the same population in a

biological system. It is important for the discovery of new biology to integrate these datasets,

which are often generated at great cost and expense. However, a fundamental challenge is

16

Figure 3.1: There are exponentially many mappings that superimpose the two manifolds,
fooling a GAN’s discriminator. By aligning the manifolds, we maintain pointwise correspon-
dences.

Figure 3.2: MAGAN’s architecture with two generators, two discriminators, reconstruction
loss, and correspondence loss. Domain 1 comprises upright images of 3’s and 7’s, Domain 2
comprises rotated images of 3’s and 7’s.

that there are exponentially many possible relationships that could exist between the two

domains of measurement and the system must learn a logical way to map between them.

One way to approach this task to use dual GANs mapping between each domain. The first

of these approaches required supervised paired examples from each domain, an impractical

demand for many applications [73]. Recently, there have been attempts at performing the

same task without the supervision of paired data [189, 181, 80, 94]. Like these previous

models, MAGAN learns to map between distinct domains from unsupervised, unpaired data

without pretraining. However, unlike them, MAGAN aligns rather than superimposes the

manifolds of the two domains.

17

We draw the connection between unsupervised domain mapping with dual GANs and

the alignment of the domain manifolds [44]. Much work has framed the generation problem

of GANs as sampling points from this manifold [124, 188]. In the dual GAN framework,

each domain’s GAN learns a mapping that fools a discriminator by generating a point on

the other domain’s manifold when given a point on its manifold. There are exponentially

many mappings that produce the same distribution of outputs from the same distribution of

inputs but do so by mapping different individual input points to different individual output

points. To the GAN’s discriminator, these mappings are identical. But when we interpret

the generator as finding correspondences between domains, we instead have preferences

amongst them.

We motivate our preference for some mappings between domain manifolds by differ-

entiating between aligning manifolds and superimposing manifolds3.1. A mapping that

superimposes two manifolds would make the two indistinguishable by making their supports

and densities identical. However, in our setting, we have produced each domain by measuring

cells from the same underlying tissue twice. The two manifolds could be superimposed

without aligning the two observations of each latent cell. To consider the two manifolds

aligned rather than just superimposed, we require that a cell’s representation in one manifold

be aligned with that same cell’s representation on the other manifold.

In this paper we propose the novel concept of using adversarial neural networks for

alignment of manifolds arising from different biological experimental data measurement

types. Single-cell biological experiments create many situations where manifold alignment

problems are of interest. New technologies allow for measurements to be made at the

granularity of each cell, rather than older technologies which could only acquire aggregate

summary statistics for whole populations of cells. While these instruments allow us to

discover biological phenomena that were not apparent before, it is a challenge to integrate

and analyze this information in a unified fashion for biological discovery. Further, even for

the same technology, experiments run on different days or in different batches can show

variations even on the same populations, possibly due to calibration differences. In such

cases even replicate experiments need alignment before comparison. Two such technologies

that we examine are single-cell RNA sequencing which measures cells in thousands of gene

18

(mRNA) dimensions and mass cytometry which measures protein abundances in several

dozen dimensions [19, 83].

In all of these examples we have two data manifolds with a latent physical cell being

measured analogously in each manifold. In some applications it might be adequate to simply

superimpose these manifolds in any way. In many applications though, including the ones

demonstrated here, we would like to be able to align them such that the two representations

of each latent cell are aligned. MAGAN improves upon neural models for manifold alignment

by finding the mapping between the manifolds (correspondence) that models these latent

points by penalizing differences in each point’s representation in the two manifolds.

We summarize the contributions of this paper as follows:

1. The introduction of a novel GAN architecture that aligns rather than superimposes

manifolds to find relationships between points in two distinct domains

2. The demonstration of novel applications made possible by the new architecture in the

analysis of single-cell biological data

The rest of this paper is organized as follows. First, there is a detailed description of the

MAGAN architecture. Next, there is a validation of its performance on artificial data and

the standard MNIST dataset. Then, there are demonstrations on three real-world biological

applications: mapping between two replicate cytometry domains, mapping between two

different cytometry domains, and mapping between one cytometry domain and a single-cell

RNA sequencing domain.

3.2 Model

3.2.1 Architecture

MAGAN (Figure 3.2) is composed of two GANs, each with a generator network G that takes

as input X and outputs a target dataset X ′. We refer to each generator as a mapping from

the input domain to the output domain. Each generator attempts to make its output G(X)

indistinguishable by D from X ′. Denote the two datasets X1 and X2. Let the generator

mapping from X1 to X2 be G12 and the generator mapping from X2 to X1 be G21. The

19

discriminator that tries to separate true points from mapped ones for the first domain is D1

and the discriminator doing so for the second domain is D2.

The loss for G1 on minibatches x1 and x2 is:

x12 = G12(x1)

x121 = G21(x12)

Lr = Lreconstruction = L(x1, x121)

Ld = Ldiscriminator = −Ex1∼PX1
[logD2(x12)]

Lc = Lcorrespondence = L(x1, x12)

LG1 = Lr + Ld + Lc

where L is any loss function, here mean-squared error (MSE).

Similarly, the loss for G2 is:

x21 = G21(x2)

x212 = G12(x21)

Lr = L(x2, x212)

Ld = −Ex2∼PX2
[logD1(x21)]

Lc = L(x2, x21)

LG2 = Lr + Ld + Lc

The losses for D1 and D2 are:

LD1 = −Ex1∼PX1
[logD1(x1) + logD1(x121)]

−Ex2∼PX2
[log(1−D1(x21))]

LD2 = −Ex2∼PX2
[logD2(x2) + logD2(x212)]

−Ex1∼PX1
[log(1−D2(x12))]

20

3.2.2 Correspondence Loss

Previous models included only two restrictions: (1) that the two generators be able to recon-

struct a point after it moves to the other domain and back, and (2) that the discriminators

not be able to distinguish batches of true and mapped points. To do this, the generators

could learn arbitrarily complex mappings as long as they superimpose the two manifolds.

To instead enforce the manifolds be fully aligned, MAGAN includes a correspondence loss

between a point in its original domain and that point’s representation after being mapped

to the other domain. This correspondence loss needs to be chosen appropriately for the

manifolds in any particular problem. We propose two such formulations: one unsupervised

and one supervised.

Unsupervised Correspondence

In the biological domains considered here, we measure the same physical system in two

different experiments where a subset of the dimensions in each experiment are shared. For

example, in Section 3.3.4, we measure the amount of 35 proteins in a physical tissue in the

first experiment and then the amount of 31 proteins in the same physical tissue in a second

experiment. Sixteen of the proteins (CD4 for example) are measured in both experiments.

Thus, the pre-mapping amount of CD4 in the first domain should equal the post-mapping

amount of CD4 in the second domain. This leverages the information from the domains

partially overlapping while generating a point in the full space (i.e. the generator maps a

first domain point to the full 31-dimensional second domain by preserving the values of the

16 shared dimensions and then filling in the values of the 15 unique dimensions to make a

plausible second domain point).

Formally, for each shared dimension pair (i, j), the correspondence loss is:

Lc = MSE(G12(x1)j , (x1)i) +MSE(G21(x2)i, (x2)j)

We note that there are many types of relationships between a dimension in the first domain

and a dimension in the second domain that could define the unsupervised correspondence

loss in other experimental settings. For example, rather than knowing that two dimensions

21

Figure 3.3: Both models superimpose the manifolds, meaning the first domain (X1) is
mapped to the second domain (X2) such that the dataset of the first domain after mapping
(G12(X1)) matches the second domain. Without the correspondence loss, though, this
mapping is arbitrary and thus the relationships found vary. With the correspondence
loss, the relationships found are coherent. This is confirmed with (a) a GAN without
correspondence loss on artificial data (b) MAGAN on artificial data (c) a GAN without
correspondence loss on MNIST and (d) MAGAN on MNIST.

of the experiment are identical, we might know that two markers are negatively correlated.

A cell in one domain high in a T cell identifier like CD8 should not be mapped to a cell in

the other domain high in a B cell identifier like CD19. The unsupervised correspondence

loss can be formulated to enforce this by penalizing deviations from this known relationship.

Semi-supervised Correspondence

In the case where no known relationship between the domains is known, the correspondence

loss could alternatively be formulated as a semi-supervised learning setting. Of course, if

each point in X1 already had a known correspondence with a point in X2, no framework of

dual GANs would be necessary to discover relationships. In some domains, though, it is easy

to acquire a very small number of labeled pairs. We would like a model that learns from

unsupervised data but can improve with any small number of labels that can be acquired.

In those situations, we want to leverage both (1) the information that the unsupervised

model has learned on all of the data and (2) incorporate the information the labels provide

where they exist.

Here we choose the loss function to be nonzero only at the paired points in each domain.

22

Its value is then the sum of the losses on each labeled pair, where the loss for a particular

labeled pair (x1i, x2j), x1i ∈ X1, x2j ∈ X2 is:

Lc = MSE(G12(x1i), x2j) +MSE(G21(x2j), x1i)

3.2.3 Manifold Data Augmentation

MAGAN also utilizes a novel technique for data augmentation, leveraging the imperfect

reconstructions each generator produces within its domain. It has been well established that

autoencoders model and reconstruct from the data manifold [66, 166]. We note that the

dual GANs within each domain function as an autoencoder, meaning their reconstruction x′i

of a sample xi is another point near the underlying manifold, but importantly x′i ̸= xi. By

letting each discriminator see the reconstructions as true samples from the real domain, we

both (1) augment the original data with new samples from the manifold and (2) prevent the

discriminators from learning to separate real from generated examples by modeling the noise

around the manifold, which differs between X1 and G21(X2) and between X2 and G12(X1).

This is especially important in biological settings, where the number of measurements per

cell dwarfs the number of cells measured and dropout in the measuring process produces

sparsity.

3.3 Experiments

All experiments were performed with the MAGAN framework with discriminators of five

layers each and generators of three layers each. Layer sizes depended on the dataset, while

Leaky ReLU activations were used on all layers except the output layers of the discriminators

(which were sigmoid) and the generators (which were linear). Dropout of 0.9 was applied

during training and for images convolutional layers were used. Optimization was performed

on 100,000 iterations of batches of size 256 by the ADAM optimizer with learning rate 0.001.

As with other GANs, the generators and discriminators are trained alternatively, so

they each must get progressively better as their adversaries make their tasks harder and

harder. One known difficulty in the adversarial training process is preventing a collapse of

23

the generator into mapping all inputs to one point, chasing the minimum probability region

of the discriminator as it moves. To combat this, MAGAN includes the approach outlined

in [137]. This involves giving the discriminator access to minibatch information by having a

subset of the network process a rotation of the original data matrix.

3.3.1 Artificial Data

We first test MAGAN on a generated example of points sampled from Gaussian distributions

with varying means. Figure 3.3a shows the three subpopulations in the first domain X1 in

blue and the three in the second domain X2 in red with an example mapping where, without

the correspondence loss, each subpopulation in X1 is mapped to a subpopulation in X2, but

not to the closest one. Even though the distribution of G12(X1) matches the distribution of

X2, for an individual point x1i ∈ X1, G12(x1i) is not the member of X2 that is most closely

analogous to it. MAGAN finds a mapping that fools the discriminator, too: the one that

least alters the original input (Figure 3.3b).

Without the correspondence loss, not only is a less-preferred manifold superimposition

chosen, but the one chosen varies from run to run of the model. We compare the variability

of the learned mappings across multiple runs of each model with 100 independent trials.

In each trial we evaluate the relationships by calculating G12(x1i) for each x1i ∈ X1 and

calculating its nearest neighbor x2j in the real X2. Then, this is repeated for the other

domain. Figure 3.4a confirms that for the GAN without the correspondence loss, the learned

manifold superimposition (and thus the correspondences) varies with repeated training the

model. Figure 3.4b confirms MAGAN instead aligns the manifolds and finds the same

correspondence every time.

3.3.2 MNIST

Next we test a subset of the MNIST handwritten digit data by taking only 3’s and 7’s as

the first domain X1, and a 120 degree rotation of each image as the second domain X2.

Without the correspondence loss (Figure 3.3c), each subpopulation in X1 maps to one of

the subpopulations in X2, but the original 3’s go to the rotated 7’s and vice versa. There is

no term in the objective function to create a preference for the mapping that sends original

24

Figure 3.4: In simulations of 100 complete training runs of each model, without corre-
spondence loss the resulting relationships learned varied randomly in both the (a) toy and
(c) MNIST datasets. With correspondence loss, the most coherent relationship was found
repeatedly for both (b) toy and (d) MNIST datasets.

Figure 3.5: Selected markers illustrating large batch effects that separate the two data
manifolds.

3’s to rotated 3’s. It would be difficult to define a distance measure that captures the

notion of alignment with these manifolds, but it is a natural place where a small number

of labeled pairs could be easily acquired. The semi-supervised correspondence loss with

just a single labeled pair of points finds the desired manifold alignment and gets the correct

correspondences for all of the other points that are unlabeled (Figure 3.3d).

Using the same simulation design as in the previous section, we can test the robustness

of the models in finding these particular mappings. The GAN without the correspondence

loss discovers either relationship with roughly even probability (Figure 3.4c). Remarkably,

MAGAN is able to use the single labeled example to learn that (except for a few sloppily

written 3’s that in fact look more like 7’s) the original 3’s correspond to the rotated 3’s and

that the original 7’s correspond to the rotated 7’s every time (Figure 3.4d).

25

3.3.3 Correspondence: CyTOF Replicates

We now test MAGAN on real biological data from single-cell time-of-flight mass cytometry

(CyTOF) measurements of protein abundance. Each protein, also referred to as a marker, is

measured individually for each cell, allowing for more granular analysis than processes that

only measure population totals for the cells in a given sample. Here the same sample was run

twice in different batches (replicates), but due to machine calibration and other experimental

details that are impossible to reproduce precisely each time, there are distortions between

the batches. Thus, even though the same physical blood sample is being measured, the data

manifold of each batch is different. The type of noise introduced by these distortions is not

known a priori, need not fit any parametric assumption, and is likely to be highly nonlinear.

To analyze these two batches together, we need to know which cells in the first batch

correspond to which cells in the second batch. To do this, we learn a mapping with MAGAN

between the batches, each of which contains 75,000 cells with 34 individual markers measured.

Figure 3.5 shows that the two batches indeed contain distinct differences in both the values

of each marker and their distribution. For example, the mean value of HLA-DR in the

second batch is higher than the maximum value in the first batch.

We demonstrate that MAGAN with its correspondence loss preserves crucial information

that is lost with the mapping from the GAN without the correspondence loss. Often, analysis

starts by identifying subpopulations of interest. For example, naive T-cells and central

memory T-cells serve distinct functions and can be identified by looking at two isoforms

of the CD45 marker, CD45RA and CD45RO [28]. In naive T-cells, CD45RA is present

while CD45RO is not (CD45RA+CD45RO-), and in central memory T-cells CD45RA is

not present while CD45RO is (CD45RA-CD45RO+). Figure 3.6a shows that very few cells

had any CD45RA readings in the first batch, a typical case of instrument-induced dropout.

Figure 3.6b shows proper readings for CD45RA in the second batch, where the two distinct

subpopulations are clearly seen.

Both models learn a mapping for the first batch of cells x1 such that G12(x1) fools their

discriminators by looking like the second batch of cells x2. However, in the GAN without

the correspondence loss (Figure 3.7a), naive T-cells in the first batch are mapped to central

26

Figure 3.6: Two distinct populations of T-cells (CD45RA+CD45RO- and
CD45RA-CD45RO+) with severe dropout in the CD45RA marker that
causes a difference between that between the (a) first batch and (b) second
batch.

Figure 3.7: (a) Without correspondence loss, the GAN corrects the batch
effect but subpopulations are reversed. (b) MAGAN still corrects the
batch effect and subpopulations are preserved.

27

memory T-cells in the second batch and vice versa. If we went through the manual process

of gating (selecting cells by manually looking at relative marker expression) central memory

T-cells in the first batch and wanted to know whether their expression was similar in the

second batch, we would be led to believe incorrectly that either there are none of these cells

in the second batch or their expression profile is radically different.

MAGAN learns a different mapping (Figure 3.6b), the one in which subpopulation

correspondences are preserved. Notably, the resulting mapped dataset G12(x1) is not

negatively affected by the correspondence loss. Instead, out of the two mappings that have

similar results at the aggregate level, the one that maintains pointwise correspondences is

learned. With the cell correspondences from other manifold superimpositions, the wrong

biological conclusions could be made. This application necessitates MAGAN’s manifold

alignment.

3.3.4 Correspondence: Different CyTOF Panels

Next we demonstrate MAGAN’s ability to align two manifolds in domains whose dimen-

sionality only partly overlap. Despite the other advantages of CyTOF instruments, one

disadvantage is that CyTOF experiments can only measure the expression of 30-40 markers

per cell. Each experiment chooses which 30-40 markers to measure and refers to this set as

the panel. Even though each panel has a limited capacity, different panels can be run on

different samples from the same physical blood or tissue. MAGAN provides the opportunity

to combine the results from these multiple panels and effectively increase the number of

expression measurements acquired for each cell.

To test this, we use the datasets from two experiments published in [140] where each

experiment had a different panel that was run on samples from the same population of cells.

The first panel measured 35 markers, the second panel measured 31 markers, and 16 of those

were measured in both. Without any advanced methods, all we would be able to do across

experiments is compare population summary statistics — and lose all of the information at

a single-cell resolution that motivated these experiments being done in the first place.

If we can identify points in each panel that measure the same cell, we can combine the

measurements and have an augmented 50-dimensional dataset. To accomplish this, we take

28

the first experiment’s panel as one domain and the second experiment’s panel as the other

domain and use MAGAN to learn a mapping between the two. We then combine the original

35 dimensions of a cell in the first experiment x1i with the 15 dimensions unique to the

second experiment from that cell after mapping G12(x1i).

For combining the measurements from each experiment to be meaningful, the mapped

point G12(x1i) must correspond accurately to the true point x2i. This notion can be captured

by taking the correspondence loss function to be the MSE across the 16 dimensions that

are shared between the experiments. In other words, MAGAN should use the shared

measurements to match cells between experiments, and then learn the required mapping for

all of the measurements that are not shared. Without incorporating this correspondence

measure into the model, x1i need not be analogous to G12(x1i) in any way, and their

information could not be combined.

We evaluate the accuracy of each model’s learned correspondence by removing one of

the markers measured in both experiments, CD3, from the first experiment. Then, we

map points from the first experiment to the second experiment and evaluate how well the

discovered CD3 values correspond with the true, held-out CD3 values for each cell from the

first experiment.

Figure 3.8a shows that the GAN without the correspondence loss finds a manifold super-

imposition that does not preserve the values of CD3 for each cell accurately. Quantitatively,

we can evaluate this with the correlation coefficient between the real, held-out CD3 values

and the CD3 values predicted after mapping each point to the other domain. For the GAN

without the correspondence loss (Figure 3.8a), the correlation is -.275, while for MAGAN

(Figure 3.8b) it is .801. The negative correlation means that without the correspondence

loss, the GAN will systematically map cells in one panel to different cells in the other panel.

We perform cross-validation by repeating this test with each of the 16 shared markers in

turn for the GAN without correspondence loss (Figure 3.8c) and MAGAN (Figure 3.8d).

While some of the markers have more shared information than others and are recovered

more accurately, in all cases the correlation is better with the MAGAN.

If we had not measured one of these in the first experiment, we would have been able to

use the learned value from the mapping in its place with remarkable accuracy. MAGAN can

29

Figure 3.8: Using MAGAN’s correspondence loss, measurements from each experiment can
be combined. Their true values are known because they are measured in both experiments.
Performing cross-validation by holding each out from the first experiment, we can measure
the correlation between the predicted value and the real, correct value.

powerfully increase the impact of CyTOF experiments by expanding their limited capacity

of markers that can be measured at any one time.

3.3.5 Correspondence: Cytometry and scRNA-seq

To demonstrate MAGAN aligning manifolds of domains with radically different dimensionality

and underlying structure, we use it to find correspondences between flow cytometry (FACS-

sorted) and scRNA-seq measurements made on the same set of cells. These two types of

measurements have advantages and disadvantages, including the throughput, quality, and

amount of information acquired from each. Being able to combine their information offers

the possibility of getting the best from each and finding insights that might not otherwise

be obtainable. In order to do this, though, it is crucial for pointwise correspondences to be

accurate, or else features of a data point in the scRNA-seq domain will be ascribed to the

incorrect point in the cytometry domain and the relationships will be meaningless.

To test MAGAN in this setting, we use a dataset consisting of 2830 measurements,

where the dimensionality of each domain is 12 and 12496 for cytometry and scRNA-seq,

respectively [165]. The scRNA-seq data was normalized with the inverse hyperbolic sine

transform and preprocessed with MAGIC [163]. Here we know the true correspondences of

30

Table 3.1: With MAGAN’s correspondence loss, the accuracy of the learned mapping is
dramatically improved, as measured by the MSE between the known real point x and the
predicted point G(x) after mapping.

Paired Cytometry
& scRNA-seq

GAN MAGAN
Modified
LLE

MSE(x1, G21(x2)) 99.3 22.0 10.5

MSE(x2, G12(x1)) 33.7 7.1 2.4

which points in the two domains are the same cell. In this setting we use the semi-supervised

correspondence loss and show the impact of providing the pairing of just 10 cells, which can

easily be acquired via inspection.

We evaluate the quality of the correspondences learned by calculating the correspondence

error, or MSE between the true known value x1i ∈ X1 and the predicted correspondence

G21(x2i). In this semi-supervised setting where we have some known labels, we compare

MAGAN to both the GAN without correspondence loss and the method of [61] which

uses a modification of locally linear embeddings for manifold alignment. We first find

equal-sized manifolds for each domain separately. Then, for two observations we know to be

corresponding, we constrain the point on each manifold to be identical. This aligns the two

manifolds as anchored by the ground truth corresponding points. Then, in order to obtain

correspondences in the original space rather than the manifold space, we interpolate between

points in the original space based on a point’s nearest neighbors in the latent manifold space.

We note that not only is this method only defined in the semi-supervised setting, it

also requires finding the eigenvectors of a square matrix of size n = 2830, so cannot scale

to the dataset sizes that neural network approaches like MAGAN can. Table 3.1 shows

the correspondence error for the correspondences mapping to and from each domain. The

LLE approach achieves the best error, showing that for small datasets with some ground

truth labels, this method is preferable. We see that the correspondence loss is necessary for

the GAN framework to perform manifold alignment, as MAGAN comes much closer to the

performance of the baseline while the GAN is off by an order of magnitude.

31

3.4 Discussion

The use of GANs for manifold alignment is well motivated. By virtue of being parallelizable

deep learning models trained with minibatch gradient descent, GANs can work with massive

datasets. In contrast, other methods are graph-based and involve eigen decomposition

of matrices that scale with the number of data points. Additionally, manifold alignment

methods themselves are not inherently generative. They align points in the latent space and

need to be augmented with original space interpolation (meaningful interpolation may not

be achievable in all domains), while GANs explicitly generate points in the original space.

Furthermore, GANs learn a general non-linear mapping between manifolds that is not

limited to any specific assumptions such as a linear latent dimension of correspondence [26]

or that correlation distance is preserved across manifolds [58].

Outside of GANs, much previous work has been devoted to the field of manifold alignment.

In [61, 62], semi-supervised approaches are used, but the learned alignments are only defined

on the training points, unlike MAGAN which learns a universal mapping guided by its

semi-supervised loss. In [167], Procrustes alignment is used to provide extension beyond

the training points. This is still a two-step alignment process, though, which first finds

a manifold for each domain and then separately aligns them. As such, information from

the original space lost in the reduction to the estimated manifold is lost and not used in

alignment. MAGAN jointly learns the manifolds and aligns them, allowing each to inform

the other. In [168], they learn the manifolds and perform alignment jointly and do so

without semi-supervised correspondences. They do this by matching the local geometry

(thus requiring a meaningful distance metric in the original space), as opposed to MAGAN’s

unsupervised correspondence loss which can be an arbitrary function defined over the original

spaces.

3.5 Conclusion

MAGAN discovers relationships between domains by aligning their manifolds rather than

just superimposing them. Crucially, this can be used when one system is measured in two

different ways and thus forms two different manifolds. In this case, the point in each manifold

32

for one object in the underlying system are linked. This preserves information at a pointwise

(rather than just population aggregate) level.

MAGAN facilitates integration of datasets from multiple biological modalities. As each

type of experiment captures different information with different strengths and weaknesses,

combining them makes possible discoveries that could not be found otherwise.

33

Chapter 4

Transformation Vector Learning

GAN (TraVeLGAN)

4.1 Introduction

Interest in image-to-image translation has grown substantially in recent years with the success

of unsupervised models based on the cycle-consistency assumption. The achievements of

these models have been limited to a particular subset of domains where this assumption

yields good results, namely homogeneous domains that are characterized by style or texture

differences. We tackle the challenging problem of image-to-image translation where the

domains are defined by high-level shapes and contexts, as well as including significant

clutter and heterogeneity. For this purpose, we introduce a novel GAN based on preserving

intra-domain vector transformations in a latent space learned by a siamese network. The

traditional GAN system introduced a discriminator network to guide the generator into

generating images in the target domain. To this two-network system we add a third: a

siamese network that guides the generator so that each original image shares semantics with

its generated version. With this new three-network system, we no longer need to constrain

the generators with the ubiquitous cycle-consistency restraint. As a result, the generators

can learn mappings between more complex domains that differ from each other by large

differences - not just style or texture.

34

Figure 4.1: The TraVeLGAN architecture, which adds a siamese network S to the traditional
generator G and discriminator D and trains to preserve vector arithmetic between points in the
latent space of S.

35

Figure 4.2: Examples of TraVeLGAN generated output on Imagenet domains that are too different
and diverse for cycle-consistent GANs to map between. The TraVeLGAN successfully generates
images that are both fully realistic in the output domain (shape of object, color, background) and
have preserved semantics learned by the siamese network.

36

Learning to translate an image from one domain to another has been a much studied

task in recent years [178, 72, 68, 184, 50]. The task is intuitively defined when we have

paired examples of an image in each domain, but unfortunately these are not available in

many interesting cases. Enthusiasm has grown as the field has moved towards unsupervised

methods that match the distributions of the two domains with generative adversarial networks

(GANs) [74, 45, 135, 151, 97]. However, there are infinitely many mappings between the

two domains [96], and there is no guarantee that an individual image in one domain will

share any characteristics with its representation in the other domain after mapping.

Other methods have addressed this non-identifiability problem by regularizing the family

of generators in various ways, including employing cross-domain weight-coupling in some

layers [97] and decoding from a shared embedding space [98]. By far the most common

regularization, first introduced by the CycleGAN and the DiscoGAN, has been forcing the

generators to be each other’s inverse, known as the cycle-consistency property [69, 189, 80,

134, 102, 3, 35, 12, 181]. Recent findings have shown that being able to invert a mapping at

the entire dataset level does not necessarily lead to the generation of related real-generated

image pairs [94, 4, 45].

Not only do these dataset-level regularizations on the generator not provide individual

image-level matching, but also by restricting the generator, they prevent us from learning

mappings that may be necessary for some domains. Previous work continues to pile up

regularization after regularization, adding restrictions on top of the generators needing to

be inverses of each other. These include forcing the generator to be close to the identity

function [189], matching population statistics of discriminator activations [80], weight

sharing [97], penalizing distances in the latent space [134], perceptual loss on a previously

trained model [98], or more commonly, multiple of these.

Instead of searching for yet another regularization on the generator itself, we introduce

an entirely novel approach to the task of unsupervised domain mapping: the Transformation

Vector Learning GAN (TraVeLGAN).

The TraVeLGAN uses a third network, a siamese network, in addition to the generator

and discriminator to produce a latent space of the data to capture high-level semantics

characterizing the domains. This space guides the generator during training, by forcing

37

the generator to preserve vector arithmetic between points in this space. The vector that

transforms one image to another in the original domain must be the same vector that

transforms the generated version of that image into the generated version of the other image.

Inspired by word2vec embeddings [51] in the natural language space, if we need to transform

one original image into another original image by moving a foreground object from the

top-left corner to the bottom-right corner, then the generator must generate two points in

the target domain separated by the same transformation vector.

In word2vec, semantic vector transformations are a property of learning a latent space

from known word contexts. In TraVeLGAN, we train to produce these vectors while learning

the space.

Domain mapping consists of two aspects: (a) transfer the given image to the other domain

and (b) make the translated image similar to the original image in some way. Previous work

has achieved (a) with a separate adversarial discriminator network, but attempted (b) by

just restricting the class of generator functions. We propose the natural extension to instead

achieve (b) with a separate network, too.

The TraVeLGAN differs from previous work in several substantial ways.

1. It completely eliminates the need for training on cycle-consistency or coupling generator

weights or otherwise restricting the generator architecture in any way.

2. It introduces a separate network whose output space is used to score similarity between

original and generated images. Other work has used a shared latent embedding space,

but differs in two essential ways: (a) their representations are forced to overlap (instead

of preserving vector arithmetic) and (b) the decoder must be able to decode out of

the embedding space in an autoencoder fashion [98, 134] ([98] shows this is in fact

equivalent to the cycle consistency constraint.

3. It is entirely parameterized by neural networks: nowhere are Euclidean distances

between images assumed to be meaningful by using mean-squared error.

4. It adds interpetability to the unsupervised domain transfer task through its latent

space, which explains what aspects of any particular image were used to generate its

paired image.

38

Figure 4.3: Examples of TraVeLGAN generated output on traditional datasets for unsupervised
domain transfer with cycle-consistent GANs. Little change to the original image is necessary in these
problems, and TraVeLGAN generates the expected, minimally changed image in the other domain.

As a consequence of these differences, the TraVeLGAN is better able to handle mappings

between complex, heterogeneous domains that require significant and diverse shape changing.

By avoiding direct regularization of the generators, the TraVeLGAN also avoids problems

that these regularizations cause. For example, cycle-consistency can unnecessarily prefer an

easily invertible function to a possibly more coherent one that is slightly harder to invert (or

preventing us from mapping to a domain if the inverse is hard to learn). Not only must each

generator learn invertible mappings, but it further requires that the two invertible mappings

be each other’s inverses. Furthermore, cycle-consistency is enforced with a pixel-wise MSE

between the original and reconstructed image: other work has identified the problems caused

by using pixelwise MSE, such as the tendency to bias towards the mean images [22].

Our approach bears a resemblance to that of the DistanceGAN [18], which preserves

pairwise distances between images after mapping. However, they calculate distance directly

on the pixel space, while also not preserving any notion of directionality in the space between

39

images. In this paper, we demonstrate the importance of not performing this arithmetic in

the pixel space.

Many of these previous attempts have been developed specifically for the task of style

transfer, explicitly assuming the domains are characterized by low-level pixel differences

(color, resolution, lines) as opposed to high-level semantic differences (shapes and types

of specific objects, composition) [22, 181, 50]. We demonstrate that these models do not

perform as well at the latter case, while the TraVeLGAN does.

4.2 Model

We denote two data domains X and Y , consisting of finite (unpaired) training points

{xi}Nx
i=1 ∈ X and {yi}

Ny

i=1 ∈ Y , respectively. We seek to learn two mappings, GXY : X → Y

and GY X : Y → X, that map between the domains. Moreover, we want the generators

to do more than just mimic the domains at an aggregate level. We want there to be a

meaningful and identifiable relationship between the two representations of each point. We

claim that this task of unsupervised domain mapping consists of two components: domain

membership and individuality. Without loss of generality, we define these terms with

respect to GXY here, with GY X being the same everywhere but with opposite domains.

Domain membership The generator should output points in the target domain, i.e.

GXY (X) ∈ Y . To enforce this, we use the standard GAN framework of having a discriminator

DY that tries to distinguish the generator’s synthetic output from real samples in Y . This

yields the typical adversarial loss term Ladv:

Ladv = EX [DY (GXY (X))]

Individuality In addition, our task has a further requirement than just two different

points in X each looking like they belong to Y . Given xi, xj ∈ X, i ̸= j, we want there to be

some relationship between xi and GXY (xi) that justifies why GXY (xi) is the representation

in domain Y for xi and not for xj . Without this requirement, the generator could satisfy its

objective by ignoring anything substantive about its input and producing arbitrary members

40

of the other domain.

While other methods try to address this by regularizing GXY (by forcing it to be close

to the identity or to be inverted by GY X), this limits the ability to map between domains

that are too different. So instead of enforcing similarity between the point xi and the point

GXY (xi) directly in this way, we do so implicitly by matching the relationship between the

xi’s and the relationship between the corresponding GXY (xi)’s.

We introduce the notion of a transformation vector between two points. In previous

natural language processing applications [51], there is a space where the vector that would

transform the word man to the word woman is similar to the vector that would transform

king to queen. In our applications, rather than changing the gender of the word, the

transformation vector could change the background color, size, or shape of an image. The

crucial idea, though, is that whatever transformation is necessary to turn one original image

into another original image, an analogous transformation must separate the two generated

versions of these images.

Formally, given xi, xj ∈ X, define the transformation vector between them ν(xi, xj) =

xj − xi. The generator must learn a mapping such that ν(xi, xj) = ν(GXY (xi), GXY (xj)).

This is a more powerful property than even preserving distances between points, as it requires

the space to be organized such that the directions of the vectors as well as the magnitudes

be preserved. This property requires that the vector that takes xi to xj , be the same vector

that takes GXY (xi) to GXY (xj).

As stated so far, this framework would only be able to define simple transformations,

as it is looking directly at the input space. By analogy, the word-gender-changing vector

transformation does not hold over the original one-hot encodings of the words, but instead

holds in some reduced semantic latent space. So we instead redefine the transformation vector

to be ν(xi, xj) = S(xj)− S(xi), where S is a function that gives a representation of each

point in some latent space. Given an S that learns high-level semantic representations of each

image, we can use our notion of preserving the transformation vectors to guide generation.

We propose to learn such a space with an analogue to the adversarial discriminator D from

the traditional GAN framework: a cooperative siamese network S.

The goal of S is to map images to some space where the relationship between original

41

images is the same as the relationship between their generated versions in the target domain:

LTraV eL = ΣΣi ̸=jDist(νij , ν
′
ij)

νij = S(xi)− S(xj)

ν ′ij = S(GXY (xi))− S(GXY (xj))

where Dist is a distance metric, such as cosine similarity. Note this term involves the

parameters of G, but G needs this space to learn its generative function in the first place.

Thus, these two networks depend on each other to achieve their goals. However, unlike in

the case of G and D, the goals of G and S are not opposed, but cooperative. They both

want LTraV eL to be minimized, but G will not learn a trivial function to satisfy this goal,

because it also is trying to fool the discriminator. S could still learn a trivial function

(such as always outputting zero), so to avoid this we add one further requirement and make

its objective multi-task. It must satisfy the standard siamese margin-based contrastive

objective [112, 122] LSc , that every point is at least δ away from every other point in the

latent space:

LSc = ΣΣi ̸=jmax(0, (δ − ||νij ||2))

This term incentivizes S to learn a latent space that identifies some differences between

images, while LTraV eL incentivizes S to organize it. Thus, the final objective terms of S

and G are:

LS = LSc + LTraV eL

LG = Ladv + LTraV eL

G and S are cooperative in the sense that each is trying to minimize LTraV eL, but each has

an additional goal specific to its task as well. We jointly train these networks such that

together G learns to generate images that S can look at and map to some space where the

relationships between original and generated images are preserved.

42

Figure 4.4: It is hard to learn mappings between domains that are each other’s inverse when the
domains are asymmetric (e.g. crossword configurations are more complex than abacus configurations).
(a) G1 can change the background (red selection) or black beads (orange circles) in hard-to-invert
ways. (b) The cycle-consistency assumption forced every black bead to a white crossword square and
every blank space to a black crossword square, even though the result is not a realistic crossword
pattern. The background is also not fully changed because it could not learn that more complicated
inverse function.

43

4.3 Experiments

Our experiments are designed around intentionally difficult image-to-image translation tasks.

These translations are much harder than style or texture transfer problems, where the

domain transformation can be reduced to repeating a common patch transformation on

every local patch of every image without higher-level semantic information (e.g. turning

a picture into a cartoon) [134, 75]. Instead, we choose domains where the differences are

higher-level and semantic. For example, when mapping from horses to birds, any given

picture of a horse might solely consist of style, texture, and patches that appear in other

pictures of real birds (like blue sky, green grass, sharp black outlines, and a brown exterior).

Only the higher-level shape and context of the image eventually reveal which domain it

belongs to. Additionally, because we use datasets that are designed for classification tasks,

the domains contain significant heterogeneity that makes finding commonality within a

domain very difficult.

We compare the TraVeLGAN to several previous methods that first regularize the

generators by enforcing cycle-consistency and then augment this with further regular-

izations [189, 80, 4, 134, 102, 3, 35, 12]. Namely, we compare to a GAN with just the

cycle-consistency loss (cycle GAN) [189], with cycle-consistency loss plus the identity reg-

ularization (cycle+identity GAN) [189], with cycle-consistency loss plus a correspondence

loss (cycle+corr GAN) [4], with cycle-consistency loss plus a feature matching regularization

(cycle+featmatch GAN) [80], and with cycle-consistency loss plus a shared latent space

regularization (cycle+latent GAN) [98]. The TraVeLGAN utilizes a U-net architecture with

skip connections [132] for the generator. The discriminator network is a standard stride-2

convolutional classifier network that doubles the number of filters at each layer until the layer

is 4x4 and outputs a single sigmoidal probability. The siamese network is identical except

rather than outputting one node like the discriminator it outputs the number of nodes that

is the size of the latent space, without any nonlinear activation. For the cycle-consistent

GANs we compare to, we optimized the hyperparameters to get the best achievement we

could, since our focus is on testing our different loss formulation. This involved trying both

Resnet and U-Net architectures for the models from [189]: the U-Net performed much better

44

than the Resnet at these tasks, so we use that here. We also had to choose a value of the

cycle-consistent coefficient that largely de-emphasized it in order to get them to change the

input image at all (0.1). Even so, we were not able to achieve nearly as convincing results

with any of the baseline models as with the TraVeLGAN.

4.3.1 Similar domains

The datasets we first consider are traditional cases for unsupervised domain mapping with

cycle-consistent networks, where little change is necessary. These are:

Apples to oranges The photos of apples and oranges from [189] (Figure 4.3a). The

TraVeLGAN successfully changes not only the color of the fruit, but also the shape and

texture. The stem is removed from apples, for example, and the insides of oranges aren’t

just colored red but fully made into apples. In the last row, the TraVeLGAN changes the

shape of the orange to become an apple and correspondingly moves its shadow down in the

frame to correspond.

Van Gogh to landscape photo The portraits by Van Gogh and photos of landscapes,

also from [189] (Figure 4.3b). Here the prototypical Van Gogh brush strokes and colors are

successfully applied or removed. Notably, in the last row, the portrait of the man is changed

to be a photo of a rocky outcrop with the blue clothes of the man changing to blue sky and

the chair becoming rocks, rather than becoming a photo-realistic version of that man, which

would not belong in the target domain of landscapes.

Ukiyoe to landscape photo Another dataset from [189], paintings by Ukiyoe and photos

of landscapes (Figure 4.3c). It is interesting to note that in the generated Ukiyoe images,

the TraVeLGAN correctly matches reflections of mountains in the water, adding color to

the top of the mountain and the corresponding bottom of the reflection.

CelebA glasses The CelebA dataset filtered for men with and without glasses [29] (Figure

4.3d). As expected, the TraVeLGAN produces the minimal change necessary to transfer an

image to the other domain, i.e. adding or removing glasses while preserving the other aspects

of the image. Since the TraVeLGAN learns a semantic, rather than pixel-wise, information

preserving penalty, in some cases aspects not related to the domain are also changed (like

45

hair color or background). In each case, the resulting image is still a convincingly realistic

image in the target domain with a strong similarity to the original, though.

CelebA hats The CelebA dataset filtered for men with and without hats [29] (Figure

4.3e). As before, the TraVeLGAN adds or removes a hat while preserving the other semantics

in the image.

Sketch to shoe Images of shoes along with their sketch outlines, from [144] (Figure

4.3f). Because this dataset is paired (though it is still trained unsupervised as always), we

are able to quantify the performance of the TraVeLGAN with a heuristic: the pixel-wise

mean-squared error (MSE) between the TraVeLGAN’s generated output and the true image

in the other domain. This can be seen to be a heuristic in the fourth row of Figure 4.3c,

where the blue and black shoe matches the outline of the sketch perfectly, but is not the red

and black color that the actual shoe happened to be. However, even as an approximation it

provides information. Table 4.2 shows the full results, and while the vanilla cycle-consistent

network performs the best, the TraVeLGAN is not far off and is better than the others.

Given that the TraVeLGAN does not have the strict pixel-wise losses of the other models

and that the two domains of this dataset are so similar, it is not surprising that the more

flexible TraVeLGAN only performs similarly to the cycle-consistent frameworks. These

scores provide an opportunity to gauge the effect of changing the size of the latent space

learned by the siamese network. We see that our empirically chosen default value of 1000

slightly outperforms a smaller and larger value. This parameter controls the expressive

capability of the model, and the scores suggest providing it too small of a space can limit the

complexity of the learned transformation and too large of a space can inhibit the training.

The scores are all very similar, though, suggesting it is fairly robust to this choice.

Quantitative results Since the two domains in these datasets are so similar, it is reasonble

to evaluate each model using structural similarity (SSIM) between the real and generated

images in each case. These results are presented in Table 4.1. There we can see that the

TraVeLGAN performs comparably to the cycle-consistent models. It is expected that the

baselines perform well in these cases, as these are the standard applications they were

designed to succeed on in the first place; namely, domains that require little change to the

46

SSIM Apple Van Gogh Ukiyoe Glasses Hats

TraVeLGAN 0.302 0.183 0.222 0.499 0.420
Cycle 0.424 0.216 0.252 0.463 0.437
Cycle+ident 0.305 0.327 0.260 0.608 0.358
Cycle+corr 0.251 0.079 0.072 0.230 0.204
Cycle+featmatch 0.114 0.117 0.125 0.086 0.209
Cycle+latent 0.245 0.260 0.144 0.442 0.382

Table 4.1: Real/generated SSIM on the similar-domains datasets.

Pixel MSE Sketches Shoes

TraVeLGAN 0.060 0.267
TraVeLGAN (Dlatent=100) 0.069 0.370
TraVeLGAN (Dlatent=2000) 0.064 0.274
Cycle 0.047 0.148
Cycle+corr 0.427 0.603
Cycle+featmatch 0.077 0.394
Cycle+latent 0.072 0.434

Table 4.2: Per-pixel MSE on the shoes-to-sketch dataset.

original images. Furthermore, it is expected that the TraVeLGAN changes the images slightly

more than the models that enforce pixel-wise cycle-consistency. That the TraVeLGAN

performs so similarly demonstrates quantitatively that the TraVeLGAN can preserve the

main qualities of the image when the domains are similar.

4.3.2 Imagenet: diverse domains

The previous datasets considered domains that were very similar to each other. Next, we map

between two domains that are not only very different from each other, but from classification

datasets where the object characterizing the domain is sometimes only partially in the frame,

has many different possible appearances, or have substantial clutter around it. In this most

difficult task, we present arbitrarily chosen classes from the Imagenet [43] dataset. These

images are much higher-resolution (all images are rescaled to 128x128), making it easier

to learn a transfer that only needs local image patches (like style/texture transfer) than

entire-image solutions like TraVeLGAN’s high-level semantic mappings.

We chose classes arbitrarily because we seek a framework that is flexible enough to make

translations between any domains, even when those classes are very different and arbitrarily

picked (as opposed to specific domains contrived to satisfy particular assumptions). The

pairs are: 1. abacus and crossword (Figures 4.2a and 4.8) 2. volcano and jack-o-lantern

(Figures 4.2b and 4.11) 3. clock and hourglass (Figures 4.2c and 4.10) 4. toucan and rock

47

Figure 4.5: (a) A real crossword image artificially manipulated to move a white square around the
frame. (b) The TraVeLGAN, which has not seen any of these images during training, has learned a
semantic mapping between the domains that moves an abacus bead appropriately with the crossword
square.

beauty (Figures 4.2d and 4.9).

Asymmetric domains Learning to map between the domains of abacus and crossword

showcases a standard property of arbitrary domain mapping: the amount and nature

of variability in one domain is larger than in the other. In Figure 4.4, we see that the

TraVeLGAN learned a semantic mapping from an abacus to a crossword by turning the

beads of an abacus into the white squares in a crossword and turning the string in the abacus

to the black squares. However, in an abacus, the beads can be aligned in any shape, while

in crosswords only specific grids are feasible. To turn the abacus in Figure 4.4 (which has

huge blocks of beads that would make for a very difficult crossword indeed!) into a realistic

crossword, the TraVeLGAN must make some beads into black squares and others into white

squares. The cycle-consistency loss fights this one-to-many mapping because it would be

hard for the other generator, which is forced to also be the inverse of this generator, to learn

the inverse many-to-one function. So instead, it learns a precise, rigid bead-to-white-square

and string-to-black-square mapping at the expense of making a realistic crossword (Figure

4.4b). Even though the background is an unimportant part of the image semantically, it

must recover all of the exact pixel-wise values after cycling. We note that the TraVeLGAN

48

Figure 4.6: The CycleGAN generates images such that pairwise L2-distances in pixel space are
strongly preserved. The TraVeLGAN generated images are virtually uncorrelated in pixel space, but
the siamese network learns a latent space where pairwise distances are preserved.

automatically relaxed the one-to-one relationship of beads to crossword squares to create

realistic crosswords. On the other hand, any real crossword configuration is a plausible

abacus configuration. In the next section, we show that the TraVeLGAN also automatically

discovered this mapping can be one-to-one in white-squares-to-beads, and preserves this

systematically.

Manipulated images study Next we examine the degree to which the TraVeLGAN has

learned a meaningful semantic mapping between domains. Since the Imagenet classes are so

cluttered and heterogeneous and lack repetition in the form of two very similar images, we

create similar images with a manipulation study. We have taken one of the real images in the

crossword domain, and using standard photo-editing software, we have created systematically

related images. With these systematically related images, we can test to see whether the

TraVeLGAN’s mapping preserves the semantics in the abacus domain in a systematic way,

too.

In Figure 4.5, we started with a crossword and created a regular three-by-three grid of

black squares by editing an image from Figure 4.8. Then, systematically, we move a white

square around the grid through each of the nine positions. In each case, the TraVeLGAN

generates an abacus with a bead moving around the grid appropriately. Remarkably, it even

colors the bead to fit with the neighboring beads, which differ throughout the grid. Given

that none of the specific nine images in Figure 4.5 were seen in training, the TraVeLGAN

49

FID score (a) (b) (c) (d)

TraVeLGAN 1.026 0.032 0.698 0.206
Cycle 1.350 1.281 1.018 0.381
Cycle+identity 1.535 0.917 1.297 1.067
Cycle+corr 1.519 0.527 0.727 0.638
Cycle+featmatch 1.357 1.331 1.084 0.869
Cycle+latent 1.221 0.485 1.104 0.543

Table 4.3: FID scores for each of the models on each of the Imagenet datasets. Column labels
correspond to Figure 4.2.

Discriminator score (a) (b) (c) (d)

TraVeLGAN 0.035 0.206 0.074 0.145
Cycle 0.014 0.008 0.033 0.008
Cycle+identity 0.011 0.044 0.040 0.064
Cycle+corr 0.009 0.191 0.026 0.001
Cycle+featmatch 0.002 0.029 0.066 0.014
Cycle+latent 0.009 0.069 0.047 0.039

Table 4.4: Discriminator scores for each of the models on each of the Imagenet datasets. Column
labels correspond to Figure 4.2.

has clearly learned the semantics of the mapping rather than memorizing a specific point.

Pairwise distance preservation The DistanceGAN [18] has shown that approximately

maintaining pairwise distances between images in pixel space achieves similar success to the

cycle-consistent GANs. In fact, they show that cycle-consistent GANs produce images that

preserve the pixel pairwise distance between images with extremely highly correlation. On

the toucan to rock beauty dataset, we observe the same phenomenon (r2 = 0.82 in Figure 4.6).

While this produced plausible images in some cases, maintaining pixel-wise distance between

images could not generate realistic toucans or rock beauties. The TraVeLGAN pairwise

distances are virtually uncorrelated in pixel space (r2 = 0.17). However, we understand the

role of the siamese network when we look at the pairwise distances between real images in

latent space and the corresponding pairwise distances between generated images in latent

space. There we see a similar correlation (r2 = 0.72). In other words, the TraVeLGAN

simultaneously learns a mapping with a neural network to a space where distances can be

meaningfully preserved while using that mapping to guide it in generating realistic images.

Quantitative results Lastly, we add quantitative evidence to the qualitative evidence

already presented that the TraVeLGAN outperforms existing models when the domains

are very different. While we used the SSIM and pixel-wise MSE in the previous sections

50

to evaluate success, neither heuristic is appropriate for these datasets. The goal in these

mappings is not to leave the image unchanged and as similar to the original as possible, it is

to fully change the image into the other domain. Thus, we apply two different metrics to

evaluate the models quantitatively on these Imagenet datasets.

In general, quantifying GAN quality is a hard task [17]. Moreover, here we are specifically

interested in how well a generated image is paired or corresponding to the original image,

point-by-point. To the best of our knowledge, there is no current way to measure this

quantitatively for arbitrary domains, so we have pursued the qualitative evaluations in the

previous sections. However, in addition to those qualitative evaluations of the correspondence

aspect, we at least quantify how well the generated images resemble the target domain, at a

population level, with heuristic scores designed to measure this under certain assumptions.

The first, the Fréchet Inception Distance (FID score) [47] is an improved version of the

Inception Score (whose flaws were well articulated in [17]) which compares the real and

generated images in a layer of a pre-trained Inception network (Table 4.3). The second,

the discriminator score, trains a discriminator from scratch, independent of the one used

during training, to try to distinguish between real and generated examples (Table 4.4). The

TraVeLGAN achieved better scores than any of the baseline models with both metrics and

across all datasets.

4.3.3 Discussion

In recent years, unsupervised domain mapping has been dominated by approaches building

off of the cycle-consistency assumption and framework. We have identified that some

cluttered, heterogeneous, asymmetric domains cannot be successfully mapped between by

generators trained on this cycle-consistency approach. Further improving the flexibility of

domain mapping models may need to proceed without the cycle-consistent assumption, as

we have done here.

51

Figure 4.7: Learning to map between two CIFAR domains: (a) horse to bird (b) bird to
horse.

52

Figure 4.8: Learning to map between two imagenet domains: (a) crossword to abacus (b)
abacus to crossword.

53

Figure 4.9: Learning to map between two imagenet domains: (a) rock beauty to toucan (b)
toucan to rock beauty.

54

Figure 4.10: Learning to map between two imagenet domains: (a) clock to hourglass (b)
hourglass to clock.

55

Figure 4.11: Learning to map between two imagenet domains: (a) jack-o-lantern to volcano
(b) volcano to jack-o-lantern.

56

Figure 4.12: Learning to map between two imagenet domains: (a) cd to cassette (b) cassette
to cd.

57

4.4 Final notes

Quantitative results Quantitative results are summarized by the FID score (Table 4.3)

and the discriminator score (Table 4.4). We note that these scores were both designed to

evaluate models that attempt to generate the full diversity of the Imagenet dataset, while in

our case we only map to a single class.

The Fréchet Inception Distance (FID score) [47] calculates the Fréchet distance between

Gaussian models of the output of a the pre-trained Inception network [149] on real and

generated images, respectively. Lower distances indicate better performance. The results

are the mean of the scores from each direction.

The discriminator score is calculated by training a new discriminator, distinct from the

one used during training, to distinguish between real and generated images in a domain. A

score of zero means the discriminator was certain every generated image was fake, while

higher scores indicate the generated images looked more like real images. As in the FID, the

results are the mean of the scores from each direction.

Optimization and training parameters Optimization was performed with the adam

[81] optimizer with a learning rate of 0.0002, β1 = 0.5, β2 = 0.9. Gradient descent was

alternated between generator and discriminator, with the discriminator receiving real and

generated images in distinct batches.

Architecture The TraVeLGAN architecture is as follows. Let d denote the size of the

image. Let cn be a standard stride-two convolutional layer with n filters, tn be a stride-two

convolutional transpose layer with kernel size four and n filters, and fn be a fully connected

layer outputting n neurons. The discriminator D has layers until the size of the input is

four-by-four, increasing the number of filters by a factor of two each time, up to a maximum

of eight times the original number (three layers for CIFAR and five layers for Imagenet).

This last layer is then flattened and passed through a fully connected layer. The overall

architecture is thus cn − c2n − c4n − c8n − c8n − f1. The siamese network has the same

structure as the discriminator except its latent space has size 1000, yielding the architecture

cn−c2n−c4n−c8n−c8n−f1000. The generator uses the U-Net architecture [132] that has skip

58

connections that concatenate the input in the symmetric encoder with the decoder, yielding

layers of cn− c2n− c4n− c4n− c4n− t8n− t8n− t8n− t4n− t2n− t3. For the cycle-consistency

networks, the architectures of the original implementations were used, with code from [189],

[189], [4], [80], for the cycle, cycle+identity, cycle+corr, and cycle+featmatch, respectively.

All activations are leaky rectified linear units with leak of 0.2, except for the output layers,

which use sigmoid for the discriminator, hyperbolic tangent for the generator, and linear for

the siamese network. Batch normalization is used for every layer except the first layer of

the discriminator. All code was implemented in Tensorflow [2] on a single NVIDIA Titan X

GPU.

CIFAR While the CIFAR images [88] are relatively simple and low-dimensional, it is

a deceptively complex task compared to standard domain mapping datasets like CelebA,

where they are all centered close-ups of human faces (i.e. their shoulders or hair are in the

same pixel locations). The cycle-consistent GANs struggle to identify the characteristic

shapes of each domain, instead either only make small changes to the images or focusing on

the color tone. The TraVeLGAN, on the other hand, fully transfers images to the target

domain. Furthermore, the TraVeLGAN preserves semantics like orientation, background

color, body color, and composition in the pair of image (complete comparison results in

Figure 4.7)

Interpretability As the siamese latent space is learned to preserve vector transformations

between images, we can look at how that space is organized to tell us what transformation

the network learned at a dataset-wide resolution. Figure 4.13 shows a PCA visualization

of the siamese space of the CIFAR dataset with all of the original domain one (bird) and

domain two (horse) images. There we can see that S learned a logical space with obvious

structure, where mostly grassy images are in the bottom left, mostly sky images in the top

right, and so forth. Furthermore, the layout is analogous between the two domains, verifying

that the network automatically learned a notion of similarity between the two domains. We

also show every generated image across the whole dataset in this space, where we see that

the transformation vectors are not just interpretable for some individual images and not

59

others, but are interpretable across the entire distribution of generated images.

Salience We next perform a salience analysis of the TraVeL loss by calculating the

magnitude of the gradient at each pixel in the generated image with respect to each pixel

in the original image (Figure 4.14). Since the TraVeL loss, which enforces the similarity

aspect of the domain mapping problem, is parameterized by another neural network S,

the original image contributes to the generated image in a complex, high-level way, and as

such the gradients are spread richly over the entire foreground of the image. This allows

the generator to make realistic abacus beads, which need to be round and shaded, out of

square and uniform pixels in the crossword. By contrast, the cycle-consistency loss requires

numerical precision in the pixels, and as such the salience map largely looks like a grayscale

version of the real image, with rigid lines and large blocks of homogeneous pixels still visible.

This is further evidence that the cycle-consistency loss is preventing the generator from

making round beads with colors that vary over the numerical RGB values.

60

Figure 4.13: Having access to the siamese space output by S provides an interpretability
of the TraVeLGAN’s domain mapping that other networks lack. PCA visualizations on
the CIFAR example indicate S has indeed learned a meaningfully organized space for G to
preserve transformation vectors within.

61

Figure 4.14: A salience analysis exploring how the TraVeLGAN’s objective loosens the
restriction of cycle-consistency and allows it more flexibility in changing the image during
domain transfer. The TraVeL loss requires significantly less memorization of the input pixels,
and as a result, more complex transformations can be learned.

62

Chapter 5

Feature Mapping GAN (FMGAN)

5.1 Introduction

Often when biological entities are measured in multiple ways, there are distinct categories

of information: some information is easy-to-obtain information (EI) and can be gathered

on virtually every subject of interest, while other information is hard-to-obtain information

(HI) and can only be gathered on some. We propose building a model to make probabilistic

predictions of HI using EI. Our Feature Mapping GAN (FMGAN), based on the conditional

GAN framework, uses an embedding network to process conditions as part of the conditional

GAN training to create manifold structure when it is not readily present in the conditions.

We experiment on generating RNA sequencing of cell lines perturbed with a drug conditioned

on the drug’s chemical structure and generating FACS data from clinical monitoring variables

on a cohort of COVID-19 patients, effectively describing their immune response in great

detail.

When collecting information on biological entities, for example hospital patients, cells,

or drugs, we are often faced with the choice of collecting easy-to-obtain information (EI) on

many entities or collecting hard-to-obtain information (HI) on a few entities. For example,

in a drug library of millions of drugs, it is easy to obtain chemical structure information

but hard to obtain RNA sequencing information of cells treated with drugs. On patients, it

may be easy to obtain information such as heart rate and lab values, but hard to obtain

blood flow cytometry information. Here, we present a neural network-based method that

63

can bridge the gap between these sources of information on entities like drugs or patients.

We introduce a framework based on a conditional Generative Adversarial Network

(cGAN) that we call Feature Mapping GAN (FMGAN), which learns a mapping from EI to a

distribution of HI. The FMGAN takes in noise as input, the EI information as the condition

and the distribution of HI for that EI as the output. Unique to the FMGAN is an auxiliary

network called the condition-embedding network. This network processes the EI information

in order to discover its latent manifold dimensions, from which the mapping can be smoother

or more regular to learn. To illustrate the utility of this, consider a simple linear mapping

between an EI variable and an HI variable. The linearity guarantees that small changes in the

EI will result in a small change in the HI, i.e. a mapping mapping is smooth. However, such

a mapping is only possible if the EI is linearly related to the HI. With chemical structure,

for example, this is known not to be true: a small change in chemical structure can lead to

vastly different properties of a drug. Therefore, our condition-embedding network embeds

or finds alternative coordinates for our conditions that lie in low dimensional spaces (like

lines or planes) thereby discovering latent structure that can render the mapping smooth.

In the case of chemical structure, we use a convolutional neural network which performs a

complex mapping into manifold dimensions. This is key as the addition of convolutional

architectures allows the FMGAN to integrate conditions that have image structure with

tabular, non-image transcriptomic measurements.

After the EI condition is appropriately processed to discover latent dimensions, it is

passed to the generator to allow for a stochastic mapping. Since the HI information is a

distribution of cells in a RNA sequencing or FACS sample, a model needs to generate data

at the resolution of single cells given a condition, but also generate a variety of different

cells for that individual condition. Moreover, in other cases it is unlikely that the EI has

complete information about the drug or patient in question, and thus it is important for each

EI condition to be able to map to a range or a distribution of HI conditions. For example,

replicates of a drug perturbation experiment result in different gene expression results even

when applied on the same cell line [148]. This stochastic response can only be captured by a

generative model that can produce stochastic output.

We showcase FMGAN on two main application areas, drug discovery and clinical

64

Figure 5.1: (a) The measurements on data are separated into “easy-to-collect information” (EI) and
“hard-to-collect information” (HI). The easy-to-collect measurements are available on all data, while the
hard-to-collect measurements are only available on some data. (b) With a Conditional GAN, we can learn
to model the relationship between these two categories of measurements. The conditions go through the
condition-embedding network to find manifold structure for the generator to utilize even if it is not initially
present in the conditions.

prediction. Here we specifically consider measurements involving drug perturbations, a

commonly used technique for measuring the effect of a drug [59, 89, 87]. We utilize drug

perturbation data from the L1000 Connectivity Map dataset [148]. Because perturbing a

cell line with a drug involves physically performing an experiment, including obtaining the

cells, applying the drug, and getting the sequencing results, this process can be expensive

and time-consuming. We use the FMGAN to generate the RNA-sequencing results from

the drug structure to speed this process up by not having to perform all of the experiments

exhaustively. If only a subset of the drugs have a priori RNA-sequencing measurements, the

rest can be generated with the FMGAN, obviating the need for additional experimentation

on a large number of candidates.

We also use these experiments to compare different ways of representing the chemical

structure of drugs which we use as EI. We compare string and image based representations,

and by measuring how well the FMGAN models the HI data in each case, we can draw

conclusions about the different representations. For example, we show that pictorial diagrams

of chemical structure are more effective than string sequences when all other things are held

equal.

Another motivating setting is that of clinical data. In the clinical setting, some

measurements are readily available EI, either because they are already measured as part of

the standard patient monitoring, or because they are non-invasive and do not pose any risk.

65

The clinical dataset we work with uses as EI these clinical measurements from COVID-19

patients from Yale New Haven Hospital. In this case, the HI information are future single-cell

flow cytometry measurements from samples gathered on some of the patients. In practice,

these types of single-cell measurements cannot be performed exhaustively on every patient in

the clinic, for reasons of cost as well as time sensitivity. Thus, we use the FMGAN to be able

to generate future flow cytometry data which depicts compartments of the immune system

from readily available clinical data. With the FMGAN, we are then able to generate flow

cytometry data for any number of patients who only have clinical measurements available.

This can be valuable as immune responses have been shown to be predictive of mortality in

COVID-19 [103].

5.2 Related Work

5.2.1 Conditional GANs

The FMGAN builds off of the conditional GAN (cGAN) framework, which differs from a

regular GAN by learning to model data distributions that are conditioned upon a label

that is supplied along with noise as input to the generator. In our FMGAN, we use the

terminology “easy-to-obtain information” for the conditional label and “hard-to-obtain

information” for the data distribution; we do this to emphasize the broad applicability of

the FMGAN. In our applications, the EI is not a “label” for the HI in any classical sense:

for example, it would be odd to call a patient’s present monitoring data a label for that

patient’s future FACS data. Thus, our use of EI and HI are intended to help move beyond

the scope of traditional cGAN applications.

Those traditional cGAN applications are usually similar to its first application: image

generation. In image generation contexts the condition referred to what type of image

should be generated (e.g. a dog). The cGAN is able to generate a distribution that is

conditioned on the label, for example generating a wide variety of images of dogs when given

the conditional label for dogs. Canonical use cases for cGANs use simple integer conditions of

non-overlapping classes, like the CIFAR dataset where there are 10 distinct classes with 6000

images per class, all known a priori [88]. In cases like this, a human has already separated

66

all images of one group from those of the others and the labels have no relation to each

other: class 1 is not more similar to class 2 than it is class 9 or 10. More importantly, this

setting offers no ability to extrapolate. When trained on 10 conditional labels, no network is

able to extrapolate to an unseen 11th condition because it doesn’t have any information

about how it relates to the conditions it trained on. This is because previous cGAN models

do not model the condition space, instead only modeling each individual condition label

separately. In the FMGAN, we model the condition space itself via the condition-embedding

network. This allows for extrapolation to never-before-seen conditions, using the functional

model of the condition space it learned from the training data.

5.2.2 Biological applications of conditional GANs

Previous work has used cGANs for biological applications in ways that are related to, but in

crucial ways differ from our method. Some approaches have modeled single-cell transcriptomic

data, as we do, but have predicted the expression of some target genes using the value of other

landmark genes, not using any meta-data separate from the expression matrix at all [170].

Several other works used cell-type conditional labels, but have used integer conditions. These

integers represent manually labeled cell types in some cases [175], or clusters identified from

the transcriptomic data itself via an off-the-shelf clustering model [110]. To the best of

our knowledge, no previous work has learned conditional generation based on processing

sequential or image representations of chemicals.

5.2.3 Learning embeddings of biological data manifolds

In this work, we build off of the observation that biological data in a high-dimensional

ambient space often exhibits manifold structure in a low-dimensional latent space. We

assume that the conditions in our framework form such a manifold, and that learning to

generate off of their manifold coordinates leads to an easier mapping problem than doing so

off of their ambient coordinates. In the FMGAN, we assume that the conditions form such

a space. Much previous work has shown biological datasets can be meaningful represented

as low-dimensional manifolds [117, 54, 7, 145, 111].

67

5.3 Results

5.3.1 FMGAN

The FMGAN consists of a conditional GAN where the condition input is given by an

auxiliary network called the condition-embedding network. This network that processes

conditions is trained adversarially during the GAN training to best optimize the conditions

for mapping between EI and HI.

A standard GAN learns to map from random stochastic input z ∼ N(0, 1) (or a similarly

simple distribution) to the data distribution by training G and D in alternating gradient

descent with the following objective:

min
G

max
D

Ex∼P (x)log(D(x)) + Ez∼Pz log(1−D(G(z)))

The generator in a cGAN receives both the random stochastic input z and a conditional

label l and thus has the following objective:

min
G

max
D

Exl∼P (x|l)log(D(x|l)) + Ez∼Pz log(1−D(G(z|l)))

5.3.2 Condition-Embedding Network

Condition-embedding networks on each side of the generator/discriminator adversarial

process, a feature of the FMGAN that distinguishes it from previous models, allow for

conditions to be used in a cGAN even when the information in the conditions is not in

an easy-to-access form. This is because most biological data is known to have manifold

structure [117].

Often, this manifold structure is not present in the original space the data exists in,

but instead exists in a latent lower-dimensional space. In the original data space for the

EI, transformations from the EI to the HI may be highly non-smooth and irregular. For

example, consider shifting a particular element in a chemical formula. Shifting this element’s

location by several spaces may result in no change or minor change to the molecule’s effect

on a cell system. Then, a critical point is reached, when one more shift fundamentally alters

68

the structure as observable by the perturbed cell system.

The condition-embedding network transforms the representations of these chemical

structures into latent manifold representations (as seen in Figure 5.1). Small, smooth

movements in these manifold coordinates results in small, smooth observable effects in the

perturbed cell system. Thus, while in ambient data coordinates all shifts to the chemical

structure are equal, in the manifold coordinates, only the ones that change the molecule’s

function result in movement on the manifold.

Specifically, the condition-embedding network learns a mapping that produces a d2-

dimensional embedding m from a d1-dimensional condition l:

{l1, l2, . . . ld1} � {m1,m2, . . .md2}

, where Mi = {m1,m2, . . .md2} for condition i. The function learned is such that M1 −M2

implies an empirical bound on the difference in generated distributions PM1 and PM2 . We

demonstrate this experimentally on our drug structure data in a later section.

The condition-embedding network, parameterized as either a fully-connected neural

network or as a convolutional neural network when the ambient data has structure that

convolutions can process, uncovers the latent manifold and transforms points into these

coordinates, subsequently passing them to the generator.

This rendering of the EI into manifold structure allows for generalization, i.e., it learns a

landscape of the EI, for instance a landscape of drugs of which some examples of the drug

effects on cells can be used to infer the effects of neighboring drugs (for more discussion of

manifold structure, please see the supplementary information). After training the condition-

embedding network, the FMGAN can generate from never-before-seen conditions, as it has

a functional model of the condition space as well as the generated data space.

The framework of the FMGAN is summarized in Figure 5.1. The information on each

data point is separated into easy-to-collect information (EI) and hard-to-collect information

(HI). In the notation of the GAN, we use the EI as the conditional label l and the HI as the

data x. For data points that have both, we process the condition and train the FMGAN

with the generator receiving a label l and a noise point z, while the discriminator receives

69

the label l and both real points x and the generated points G(z|l). Then, after training,

the generator can generate points for conditions l without known data x. This allows us to

impute HI where we only have EI.

5.3.3 Modeling drug perturbation experiments

We first demonstrate the results of our FMGAN model on data from the L1000 Connectivity

Map (CMap) dataset [148]. The CMap dataset contains a matrix of genes by count values

on various cell lines under different drug perturbations. We examine the A375 cell line,

a cell line from a human diagnosed with malignant melanoma. In this densely measured

dataset, we have all gene expression measurements for each drug. Each drug also has various

numbers of replicates of the same experiment. These replicates produce variable effects,

motivating the need for a framework that is capable of modeling such stochasticity.

We design four separate experiments with this dataset:

1. A proof-of-concept that the cGAN framework can effectively model and predict gene

expression values when the conditions are known to be meaningful because they are

selected holdout genes from the expression matrix itself.

2. An experiment where the conditions are taken from a non-linear dimensionality

reduction method applied to the expressions, and thus do not need significant processing

to make them a usable data manifold.

3. A test of the full FMGAN pipeline where conditions represent chemical structure in

the form of SMILES strings, and thus do not provide information about the drug in a

readily available numeric form, and meaningful embeddings for conditions must be

learned.

4. A variation of the chemical structure conditions where they are represented as images

of the chemical structure diagram as opposed to SMILES strings.

In each dataset, the measurement we choose for evaluation is maximum mean discrepancy

(MMD) [46]. We choose this because we require a metric that is a distance between

distributions, not a distance merely between points. Taking the mean of a distance between

70

points would not capture the accuracy of any moments in the desired distribution beyond the

first one. For the experiments based on drug metadata (the SMILES strings and the chemical

structure images experiments), we consider the drug’s distribution to be all of the gene

profiles from that drug. For the experiments with conditions derived from each gene profile

(the heldout genes and dimensionality-reduction experiments), we take a neighborhood of

drugs around each condition and compare the predicted distribution of gene profiles for

those drugs with the true distribution.

We make several comparisons to our FMGAN with each dataset. We first compare

to a simpler model that takes in the condition and stochastic noise and minimizes mean-

squared-error (MSE) between the output of a linear transformation and the real gene profile

for that condition. As it is given noise input as well as a condition, it is still able to

generate whole distributions as predictions for each condition, rather than deterministic

single points. Secondly, we compare to a variational autoencoder (VAE) model that also

receives the condition and must produce the real gene profile for that condition. The

VAE then stochastically generates from its latent layer when needing to generate an entire

distribution of points from a single condition. Finally, we compare to two models just like

the FMGAN but without one aspect of the full model (an ablation test). We compare to an

FMGAN that does not use our novel condition-embedding network, and then we compare

to an FMGAN that has the condition-embedding network but uses a MSE loss rather than

an adversarial GAN loss. These ablation tests showcase the crucial role both the condition-

embedding network and the adversarial training play in the overall FMGAN framework.

We note in developing baselines, since generating conditional distributions (especially based

off of oddly structured conditions like images or strings) is relatively understudied in the

computational biology field, we find no directly comparably published methods that can be

applied to this problem.

Predicting gene expression under drug perturbation

To show our FMGAN can learn informative mappings from the EI space to the gene

expression space, as distinct from the rest of the process, we first choose a means of obtaining

EI that are known to be meaningfully connected to the gene expression space. Specifically,

71

Figure 5.2: The formation of easy-to-collect (red columns) and hard-to-collect (white columns) data for
each experiment with drug perturbation data. (a) in the held-out genes experiment, the easy-to-collect
measurements are taken from held-out genes (b) in the PHATE coordinate experiment, they are the result of
running on the genes matrix (c) in the SMILES string experiment, the easy-to-collect data is an embedding
from processing this representation with a CNN (d) in the structure diagram experiment, it is the same as in
the SMILES string experiment except run on the structure diagrams.

we artificially hold out ten genes and use their values as EI, with the FMGAN tasked with

generating the values for all other genes.

This experimental design is summarized in Figure 5.2a. We choose the ten genes

algorithmically by selecting one randomly and then greedily adding to the set the one

with the least shared correlation with the others, to ensure the information in their values

have as little redundancy as possible: PHGDH, PRCP, CIAPIN1, GNAI1, PLSCR1, SOX4,

MAP2K5, BAD, SPP1, and TIAM1. In addition to dividing up the gene space to use these

ten genes to predict all of the rest, we also divide up the cell space and train on 80% of the

cell data, with the last 20% heldout for testing.

72

MMD Scores
Heldout
Genes

PHATE
Coordinates

SMILES
Chemical
Structure
Image

FMGAN
(full model)

2.841 +/- 0.006 0.213 +/- 0.008 1.232 +/- 0.005 1.219 +/- 0.007

FMGAN
(no condition-embedding)

2.883 +/- 0.005 0.220 +/- 0.007 1.307 +/- 0.006 1.621 +/- 0.010

FMGAN
(no GAN)

2.956 +/- 0.003 0.424 +/- 0.005 1.482 +/- 0.009 1.511 +/- 0.011

Linear 2.912 +/- 0.006 0.533 +/- 0.001 1.565 +/- 0.005 1.772 +/- 0.010
VAE 2.962 +/- 0.003 0.497 +/- 0.002 1.886 +/- 0.0035 2.012 +/- 0.003

Table 5.1: MMD scores (lower is better) across all datasets for the drug data for all models
with mean and standard deviation reported across five independent runs. The full FMGAN
with all of its components most accurately predicts the distribution from each condition
for all methods of forming the condition space, although the datasets that require more
advanced convolutional processing benefit the most.

We find our FMGAN is able to successfully leverage information in the EI space to

accurately model the data. We designed our proof of concept deliberately so that the true

values are known for each gene expression and drug we ask our network to predict. These

real heldout values can be compared to the predictions with MMD for a measure of accuracy.

As shown in Table 5.1, our FMGAN is able to generate predictions with the lowest MMD

between them and the never-before-seen evaluation set (drugs it has never previously seen),

showing it very effectively learned to model the dependency structure between the EI space

and the HI space. The table reports the average and standard deviation of the MMD scores

across five independent iterations. The FMGAN’s performance is significantly better in

comparison to the other models, which have higher (worse) MMDs. It is noteworthy that the

FMGAN outperforms the baselines even in this case, where we don’t know a priori of any

significant processing of the EI that needs to take place, as they are numerically meaningful

values to begin with.

We also can visualize the embedding spaces learned by the generator to investigate the

model. Shown in Figure 5.3a are the generator’s embeddings colored by each of the heldout

genes. As we can see, the generator found some of these more informative in learning an

EI embedding than others. We can quantify this by building a regression model to try to

predict the value of each gene given the embedding to determine the most valuable of the

heldout genes. By this measure, PHGDH, PRCP, and GNAI1 are the most important genes.

Analyzing the embeddings in this way is useful for determining which part of the EI space

was most informative for generating the HI space, and we will continue to do this with more

73

complex EI in later experiments.

PHATE coordinates as conditions for manifold-structured EI

Our next experiment uses an EI space that consists of a dimensionality-reduced manifold

representation of the data. While the whole FMGAN will take raw ambient data and

learn a manifold simultaneously with learning to generate from the manifold, here we first

experiment with generating from an already-learned manifold. We do this to test whether

the FMGAN has the ability to accurately generate from a condition manifold as distinct

from its ability to learn the manifold of the conditions, as well.

We theorize that this approach would be beneficial over the previous held-out-genes

experiment if the gene space exhibits manifold structure, which previous work has shown is

often the case [7, 4, 119]. If so, and if the FMGAN is able to leverage the manifold structure,

this processing will have made a geometric representation of the EI that corresponds to the

HI, and thus the mapping is computationally simpler.

We run the embedding tool PHATE on the gene profiles to calculate two coordinates,

which we then use as EI in our FMGAN [119]. Doing so preserves the manifold structure

of the data, allowing for a meaningful transformation to the HI space. This process is

depicted in Figure 5.2b. As usual, we separate cells into an 80%/20% training/testing split

for evaluation purposes, after being subsampled to ten thousand points for computational

feasibility with the dimensionality reduction method, and we report scores on the evaluation

points.

As shown in Table 5.1, once again the FMGAN better models the target distribution, as

measured by MMD between its predictions in the neighborhood of each point and the true

values. The FMGAN’s predictions once again have a lower MMD than any of the alternative

models. This is notable as PHATE has already processed the conditions in thee sequencing

domain to produce lower-dimensional, more compact representations. The fact that the

full FMGAN still performs the best indicates that optimal conditions for generating may

be different from optimal conditions for visualizing or some other task, implying it is still

beneficial to utilize the FMGAN’s condition-embedding network.

We observe the PHATE coordinates are much more effective than heldout genes as

74

Figure 5.3: (a) Visualization of the embedding of cells in the held-out genes experiment, colored by each
held-out gene. The network has inferred the structure of the space from these genes. (b) The raw data,
colored by the expression of gene EIF4G2, separated into the three most abundant drugs: BRD-K60230970,
BRD-K50691590, and BRD-K79090631. (c) The generator’s embedding space of drugs from the SMILES
strings experiment, with the same three drugs highlighted. The embedding shows that the drugs with similar
distributions have been embedded into similar locations in the learned embedding space. (d) The same as in
(c) but with the structure diagram experiment. (e) The conditions are more correlated to the generated data
after they have been embedded.

75

conditions. This is in line with our hypothesis that manifold structure that is related to the

data space is beneficial for generating. Despite containing loosely correlated information,

the heldout genes are too few and noisy, while the PHATE coordinates actually calculate

a full data manifold from more genes and with more shared information with the ambient

data that needs to be modeled.

Predicting gene expression from drug chemical structure represented as SMILES

Next, we test the full pipeline of FMGAN by using SMILES strings as the EI (summarized

in Figure 5.2c). This is a much more challenging test case than the previous ones, because

in the previous cases each point in HI space had a distinct condition, and in the case of the

PHATE coordinates, that condition was derived from the data it had to predict.

Most importantly, the conditions are in a raw data structure (one-hot vectors representing

the SMILES strings token-by-token), rather than a priori existing in their final numerical

form like heldout genes or scalar PHATE coordinates. This structure is not trivial to

extract information from, as simple changes like one insertion shift the dimensions of every

subsequent token, or the necessity of identifying recurring patterns that occur in different

locations. These motivate the need for a convolutional condition-embedding network that

looks for these kinds of structural forms and processes them prior to being given to the

standard fully-connected network that generates the RNA sequencing data.

As in the previous experiment, we separate the data into an 80%/20% training/testing

split for evaluation purposes, but this time split along the drugs since each condition gives

rise to many points in the HI space. Table 5.1 indicates that the FMGAN has the lowest

MMD of any of the models in this application. Perhaps unsurprisingly, there is also a

larger gap between the full FMGAN and the FMGAN without an condition-embedding

network than there was in the previous experiments. This provides verification that there is

information about the RNA sequencing that can be leveraged in the drug metadata, but

special architectures are necessary to process them and access it.

EI Space Analysis In addition to superior generative performance, we show the usefulness

of having a generative model that learns embeddings by analyzing the learned EI SMILES

76

strings embedding space.

In this learned EI space, there is one condition coordinate for each drug (while the HI

consists of many perturbations from each drug). Shown in Figure 5.3b is the raw data

colored by the value of gene EIF4G2. Then, all of the perturbations from each of three drugs

are shown separately: BRD-K60230970, BRD-K50691590, and BRD-K79090631. As we can

see, the first two are characterized by high expression of this gene and are quite similar to

each other. The third, however, is quite distinct, in a separate space of the embedding, and

is characterized by much lower expression of this gene.

We compare this to the embedding learned by the generator, which we show in Figure 5.3c.

In this plot, each drug is one point, colored by the mean gene value of all perturbations for

that drug and with a point whose size is scaled by the number of perturbations for that

drug. We see that the first two drugs are in the central part of the space, and closer to each

other than they are to BRD-K79090631. The drug BRD-K79090631 is off in a different part

of the space, along with other drugs low in EIF4G2. This shows that the learned conditions

from the generator have indeed identified information about the drugs and taken complex

sequential representations and mapped them into a much simpler space.

Condition-to-generated data correlation The importance of the condition-embedding

network can be seen by analyzing the distances between conditions and the distances between

their corresponding generated data distributions. Since the generator must map from a

condition to its generated distribution, the function it learns needs to be more complex (and

will generalize poorly) if nearby conditions induce very different distributions and faraway

conditions induce very similar distributions. The condition-embedding network is able to

take conditions from their original space which may not be conveniently structured into a

manifold space which is.

To test this, we perform the following experiment. For each pair of held-out drugs i and

j, we calculate the distance between condition li and lj , the distance between embedded

conditions E(li) and E(lj), and the MMD between the generated data from each condition

G(E(li)) and G(E(lj)).

As Table 5.2 shows, the correlation of distances between conditions and their MMDs

77

Correlation with
Generated Data

Raw
Conditions

Embedded
Conditions

SMILES 0.071 +/- 0.002 0.709 +/- 0.016

Chemical Structure Images 0.220 +/- 0.008 0.800 +/- 0.012

Table 5.2: Pairwise correlation of the distance between two conditions and the MMD between
their generated distribution. For distances in raw condition space, they are substantially
uncorrelated. After being processed by the condition-embedding network, the distances in
the embedded space are highly correlated with the difference in their generated data.

between the generated data distributions is just 0.071. This is unsurprising, as the SMILES

strings have structure that violates notions of Euclidean distances with respect to the

underlying similarity of the drugs. Drugs that only differ by one element can be very far

from each other by Euclidean distance if the rest of the formula is shifted, but may produce

almost identical data distributions if that inserted element has little effect on the overall

structure. In the space that the condition-embedding network produces, the conditions

form a manifold that is smooth with respect to the generated distributions. The correlation

soared to 0.709, with distances in the embedded space meaningfully relating to how different

their corresponding distributions are. These correlations can also be seen visually in the

plotted data, as shown in Figure 5.3e. For further details and figures about this experiment,

please refer to the supplement.

Predicting gene expression from drug structure diagrams

The final experiment we consider for the drug perturbation data is the formation of the

condition space from an image representation of the chemical structure (Figure 5.3d). These

images are downloaded from the PubChem PUG REST API. An example image for the

drug BRD-U86686840 is shown in Figure 5.2d. They are given as input to a two-dimensional

CNN designed for image processing, as points in the original h x w x c pixel space, with

h = w = 64 and c = 3. While a CNN is used in both the SMILES string case and this one,

the underlying data is in a fundamentally different structure.

Table 5.1 shows that the FMGAN also outperformed the baseline models in this case, as

before. However, something more deeply revealing is also apparent from the scores in this

experiment as compared to the previous experiments.

78

The FMGAN scored slightly better with these chemical structure diagrams as compared

to the SMILES strings. The baseline models, on the other hand, all scored significantly

worse with the drug structure diagram images. For processing these images, clearly the

convolutional condition-embedding network is necessary to achieve good generation perfor-

mance. The full FMGAN is able to leverage the information in image form just as well as in

a long one-dimensional sequence form, while other models (including the FMGAN without

the condition-embedding network) are not.

This illustrates the FMGAN’s flexibility, as it performs comparably with such drastically

different structures. That the chemical structure images perform slightly better is perhaps

a sign that two-dimensional image convolutional networks are currently more effective at

distilling this information than one-dimensional sequence convolutional networks, but the

FMGAN’s flexible framework allows it to keep improving with advances in deep learning

architectures. Another possibility is that the structure diagrams have relevant information

more easily separable from irrelevant information, making them an easier statistical task.

EI Space Analysis In Figure 5.3d, we show the learned embedding from the generator.

We color the embedding by the same gene and highlight the same three drugs as in the

previous experiment: BRD-K60230970, BRD-K50691590, and BRD-K79090631. As before

the learned conditions have taken a space where it is hard to characterize the information it

contains (raw images in pixel space) and mapped them to a simpler space with numerically

meaningful points. This can be seen by noting that the two drugs with similar distributions in

the raw data (BRD-K60230970 and BRD-K50691590) have been mapped to nearly identical

conditions, while they are separate from the drug with a very different distribution (BRD-

K79090631). In fact, this goes towards an explanation of the improvement in performance

over the SMILES string model, as the condition-embedding network has placed the drugs

with similar distributions closer to each other in conditions, making the generator’s job

easier.

Condition-to-generated data correlation As in the SMILES string experiment, we

evaluate the correlation of the distance between conditions and the distance between their

79

data distributions. And just as in the previous case, the condition space is originally

structured in such a way that distances are not meaningfully related to the effect that

condition produces (images can be far away simply because they have the same diagram

but it is rotated or shifted). The condition-embedding network produces a manifold that

increases the correlation of these distances from 0.220 to 0.800 (Table 5.2).

We note that we can evaluate the two different representations of the chemical structure

and compare them by looking at the scores in these experiments. The embedding with

chemical structure images increases the correlation with MMD between ambient data

distributions by 12% over the embedding with SMILES representations. In this latter case,

the embedding network was slightly better able to organize the embedding space to align

with the ambient data distributions. We caution careful interpretation of this, though:

this improvement could stem from the images being a better representation of information,

image-based embedding architectures being more powerful than sequence-based embedding

architectures, or some combination of both. But in either case, the learned embedding space

is vastly better organized than the original representation of the conditions.

5.3.4 Predicting flow cytometry data on COVID-19 patients

We demonstrate the versatility of our proposed method by experimenting on data in a very

different context from the drug perturbations of the previous section. Here we work on

clinical data that is derived from measurements taken early in the clinical stay and predict

measurements that are taken later in the stay. Specifically, in this section we present an

experiment that learns a mapping between clinical measurements and FACS measurements

from COVID-19 patients [60]. The clinical measurements are taken from the first 24 hours

in the ICU, with a patient’s record being the most extreme value taken during that period

when more than one record is taken. To test the ability of FMGAN to make practical, and

actionable predictions we learn to generate the first flow cytometry measurement, taken

from anywhere from the first week to the eleventh week of the stay. Thus, we model future

flow cytometry with present clinical data.

The conditions we use for the FMGAN are PHATE coordinates of the present available

clinical variables. In the PHATE embedding each patient is represented by a vector of

80

Figure 5.4: FACS data generated from clinical measurements in the COVID-19 data. Top row: for all 26
held-out patients in the first fold, the real FACS measurements. Second row: for all 26 held-out patients,
generated FACS measurements from the FMGAN. Third row: a single patient’s real FACS measurements.
Bottom row: a single patient’s generated FACS measurements.

variables, listed in the supplement. For each of 129 patients, we also have matched FACS

measurements on 14 proteins obtained from each patient, which are also listed in the

supplement. While the clinical measurements are relatively easy and inexpensive to obtain,

FACS samples are comparatively expensive and time-consuming to obtain. Thus, we wish to

learn a model that can accurately generate FACS data from a patient’s clinical measurements

alone. We note that while these conditions are in tabular form and processed with PHATE,

we still use the full FMGAN to learn embeddings, as this achieved the best generative

performance even for conditions of this form.

To evaluate the ability of the FMGAN to perform this generation, and to handle the

relatively few number of distinct patients, we perform K-fold cross-evaluation, training each

time on 80% of the patients (103) and withholding 20% of the patients (26) for evaluation.

We train to generate a distribution of FACS measurements from each single condition

corresponding to a patient’s clinical measurements. In Figure 5.4, we see the resulting data

from all heldout patients in the top row from the first fold. In the second row, we see the

81

corresponding FMGAN generated data. Remarkably, the FMGAN learned to accurately

model the true distribution of FACS data even for the never-before-seen patients. Distinct

populations of cells are visible: CD3+ T cell populations including both CD4+ (T helper

cells) and CD8+ (Cytotoxic T cells), as well as a CD38+ population. With each protein

marker, the FMGAN accurately models the underlying data distribution.

In the bottom two rows of Figure 5.4, we see the FMGAN model the distribution

from a single patient accurately, as well. This per-patient generation forms the basis

for our quantification of the model’s accuracy. We utilize the same baselines as in the

previous section. For each fold (reported separately), and for each patient within that

fold, we measure the distribution distance between the predicted distribution and the true

distribution of FACS data (scored by MMD, as before). These numbers are reported in

Table 5.3. That evaluation shows the FMGAN is able to produce distributions very close to

the true underlying distribution for each patient, while the baseline models do not. As each

distribution is complex with many different cell populations with varying proportions, it is

not surprising that the more richly expressive FMGAN is best able to model the true data.

We note that with the FMGAN, we are able to predict the FACS measurements on

never-before-seen patients, based on their clinical measurement alone. However, this relied

upon the patients in the training set being representative of the patients in the held-out

set. In practical applications, this means that the population of patients would need to be

chosen carefully and diversely for the predictions to be meaningful for future patients.

5.4 Experimental Procedures

5.4.1 Conditional Generative Adversarial Networks

In a Generative Adversarial Network (GAN), samples from the generator G can be obtained

by taking samples from z ∼ Z and then performing the forward pass with the learned

weights of the network. But while the values of z control which points G generates, we do

not know how to ask for specific types of points from G (more discussion of the original,

unconditional GAN is in the Supplementary Information).

The lack of this functionality motivated the need for the conditional GAN (cGAN) frame-

82

work [146, 101]. The cGAN augments the standard GAN by introducing label information

for each point. These labels stratify the total population of points into different groups.

The generator is provided a given label in addition to the random noise as input, and the

discriminator is provided with not only real and generated points, but also the labels for

each point. As a result, the generator not only learns to generate realistic data, but it also

learns to generate realistic data for a given label.

After training, the labels, whose meaning is known to us, can be provided to the generator

to generate points of a particular type on demand. Because G is provided both a label and

a random sample from Z, the cGAN is able to model not just a mapping from a label to a

single point, but instead a mapping from a label to an entire distribution.

Expressing the cGAN formula mathematically yields a similar equation as to the original

GAN, except with the modeled data distributions being marginal distributions conditioned

on the label l of each point:

min
G

max
D

Exl∼P (x|l)log(D(x|l)) + Ez∼Pz log(1−D(G(z|l)))

Learning a generative model conditioned on the labels allows information sharing across

labels, another advantage of the cGAN framework. Since the generator G must share weights

across labels, the signal for any particular label li is blended with the signal from all other

labels lj , j ̸= i, allowing for learning without massive amounts of data for each label.

5.4.2 Chemical Structure and SMILES Strings

Conditional GANs are a powerful construction for guided generation, but require some

known label space to be used. While the label space must be relevant to the measured

data space for an informative model to be learned, the relationship need not be simple and

can be noisy. When the data space is gene expression after a drug perturbation, as in our

application here, one relevant source of labels is metadata about the structure of the drug

used for the perturbation. We consider two ways of representing this structure for our label

space: a one-dimensional sequence of letters called a Simplified Molecular-Input Line-Entry

System (SMILES) string, and a two-dimensional image called a structure diagram.

83

SMILES strings A SMILES string encodes the chemical structure of a drug in a variable-

length set of standard letters and symbols. Each character in the string represents an element

of the chemical’s physical formation, for example an atom, a bond, or a ring. For example,

the common molecule glucose has the following structure:

OC[C@@H](O1)[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)1

The letters indicate elements oxygen, carbon, and hydrogen, with @ denoting sterio-

chemical configuration, and brackets and parentheses representing bonds and branches,

respectively. Clearly, while providing rich information about the drug, this representation

does not immediately lend itself to use as a condition. In order to distill these variable-length

sequences into a fixed-size representation where similar structures have similar represen-

tations, we use a sequence-encoding neural network to embed each structure into a latent

space.

Structure diagram An alternate way of representing chemical structure, more intelligible

for a human observer than SMILES strings, is a structure diagram. These have letters

representing elements as in the SMILES strings, but also are distinguished by colors, while

different types of bonds are indicated with simple lines. These images are downloaded from

the PubChem PUG REST API. While specifying how to get information about the structure

out of this image explicitly would be impossible (in terms of RGB pixels), a neural network

can learn how to process these images itself in order to accomplish its training objective, all

through a completely differentiable optimization with stochastic gradient descent.

5.4.3 FMGAN Architecture

We describe the architecture for the FMGAN in this section. In the SMILES strings

experiment, to obtain a fixed-length DE-dimensional vector for each string, we represent

each input as a sequence of length Nseq vectors, with Nseq being the longest SMILES string

in the database. Each element in the sequence is a vector representing the character in

that position of the sequence (with a null token padding the end of any sequence shorter

than Nseq). As is standard in language processing, we learn character-level embeddings

84

simultaneously with the sequence-level processing. Let V be the vocabulary, or set of all

characters. The character-level embeddings are rows of a |V | ×Dchar matrix W , where |V |

is the number of characters in the vocabulary and Dchar is a hyperparameter, the size of the

character embedding. Each input is then represented as a sequence where the ith element is

the row of W corresponding to the ith character in the SMILES string.

The size of the vocabulary (number of characters including start, end, and null tokens) is

43. We chose the size of the character-level embedding to be 100. The condition-embedding

network E consists of two convolutional layers with 64 and 32 filters, respectively, each with

a kernel-size of 40 and stride-length 2 with batch normalization and a leaky ReLU activation

applied to the output. These convolutional layers are followed by four fully-connected

layers which gradually reduce the dimensionality of the data with 400, 200, 100, and 50

filters, respectively. All layers except the last one have batch normalization and leaky ReLU

activations. The generator and discriminator have the same architecture as the previous

experiment.

This input representation is then passed through E, a convolutional neural network

(CNN), which produces the sequence embeddings. E performs one-dimensional convolutions

over each sequence followed by fully-connected layers, eventually outputting a single DE-

dimensional vector for each SMILES string. We let these embeddings form the condition

space for the next stage in FMGAN, the conditional GAN.

For the structure diagram experiment, we start with images that are points in h x w

x c space, with h = w = 64 and c = 3. They are then processed with a CNN. The CNN

consists of four convolutional layers with stride 2, kernel size 3, and filters of 32, 64, 128,

and 256, respectively. Batch normalization and a ReLU activation was used for each layer.

Finally, after the convolutions, one fully connected layer maps the flattened output to a

100-dimensional point, representing the embedding learned for the particular diagram.

For both experiments, the generator structure, after the drugs are processed into condi-

tions, is the same. Let ci be the condition for drug i formed by the condition-embedding

network. Let xi be the Dx-dimensional corresponding gene expression profile from a per-

turbation experiment performed with drug i. We build a GAN that trains a generator G

to model the underlying data distribution conditioned upon the structure pdata(x|c). G

85

takes as input both a sample from a noise distribution (we choose an isotropic Gaussian)

z ∼ Z, and a condition ci. G maps these inputs to a Dx-dimensional point. Then, the

discriminator D takes both a Dx-dimensional point and a condition c and outputs a single

scalar representing whether it thinks the point was generated by G or was a sample from

pdata. These networks then train in the standard alternating gradient descent paradigm of

GANs previously detailed.

For specific hyperparameter choices and data dimensionality details, we refer to the

Supplementary Information.

We note a few additional points about the FMGAN framework. First, since everything

in the network including the character-level embeddings, the condition-embedding network

E, and the GAN are all expressed differentiably, the whole pipeline can be trained at once in

an end-to-end manner. Thus, the character-level embeddings and the convolutional weights

can be optimized for producing SMILES strings embeddings useful for this specific task and

context. This is a powerful consequence, as defining what makes a good static embedding of

a high-dimensional sequence may be ambiguous without reference to a particular task.

5.5 Discussion

The FMGAN model allows us to predict hard-to-obtain information for samples where we

only directly measure easy-to-obtain information. We demonstrate that the FMGAN can

accurately model never-before-seen samples in these contexts. In the drug discovery context,

this allows the potential impact of saving on expense and time by not performing as many

physical experiments and instead modeling their results. In the clinical context, this allows

for the modeling of patient data sooner, with more time to take positive interventions.

Furthermore, the flexible framework of the cGAN we develop for the FMGAN allows for

EI that requires advanced processing to be used as the conditional input. We demonstrate

this on images and long one-dimensional sequences, but this can extended to other difficult-

to-represent data. For example, in the clinical setting, the advances in natural language

processing achieved by deep neural networks could be utilized to process doctor’s notes as

raw text and then incorporated into the model.

86

COVID-19 FACS
K-fold validation

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

FMGAN 0.039 ± 0.02 0.024 ± 0.01 0.022 ± 0.01 0.041 ± 0.02 0.031 ± 0.01
Linear 0.851 ± 0.03 0.915 ± 0.01 0.701 ± 0.02 0.758 ± 0.01 0.881 ± 0.01
VAE 0.623 ± 0.02 0.499 ± 0.01 0.682 ± 0.01 0.521 ± 0.01 0.588 ± 0.02

Table 5.3: MMD distance between real and generated data (lower is better) on the COVID-19
data, with mean and standard deviation across the 26 held-out patients in each fold in the
cross-evaluation. The FMGAN outperforms the baselines significantly in all cases.

We demonstrate that the FMGAN is able to leverage structure in the condition space

in both manifold form (from the PHATE coordinates) and discrete form (from chemical

structure strings). While seemingly similar, these are very different from an information

theoretical point of view. In the manifold setting, differences in input can create differences

in output in a smooth way, but in the discrete setting, one small change in an individual

feature may have a large effect on the output while another small change in a different

feature has no effect on the output at all. For example, in a chemical structure string,

modifications to some locations will not change the function at all, while in other locations

a single change will determine function.

While we demonstrate that the FMGAN can be usefully applied to generative problems

in a wide variety of modalities, and, as we show, even in the presence of high amounts of

stochasticity.

5.6 Supplemental Experimental Procedures

5.6.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a deep learning framework for learning a

generative model of a data distribution. In recent years, they have gained significant

popularity by achieving state-of-the-art performance on applications to images, language,

sequences, and many other data modalities [23, 177, 5, 56, 4]. GANs differ from other types

of models by not using explicit likelihood measures nor relying on having a meaningful

distance measure between points. Instead, they teach a generator neural network G with a

second discriminator network D using the following equation:

87

min
G

max
D

Ex∼Px [log(D(x))] + Ez∼Pz [log(1−D(G(z)))]

where x is the training data, z is a noise distribution that provides stochasticity to the

generator and is chosen to be easy to sample from (typically an isotropic Gaussian).

5.6.2 Conditional Generative Adversarial Networks

Conditional Generative Adversarial Networks (cGANs) originated from the desire for having

greater control over generation from GANs. In the case where external information, such

as class labels, are available, we would like to be able to generate a random point from a

specific class. The methods devised to achieve this involve providing a random label to the

generator during training and then providing this label and the generated image to the

discriminator. The discriminator also receives real images and their labels, allowing it to

learn their joint distribution.

Once the model has been trained in this way, control over generation can be used to

generate a point from a particular class by feeding the desired class into the generator. This

process especially benefits from having fine-grained, continuous conditions like we have, as

this gives even more precise control over generation.

5.6.3 Optimization

The networks G and D take turns optimizing their objectives through alternating gradient

descent. Throughout training, the discriminator provides gradient information to the

generator guiding it to better quality generation. This powerful framework provides the

ability to model arbitrarily complex distributions without making any explicit parametric or

limiting assumptions about their shape.

Theoretical analysis of GANs have shown their ability to converge to an optimal point

where the generated distribution is indistinguishable from the true distribution [84, 64, 113].

The ability to converge to this optimal generative model without specifying a distribution

distance is especially helpful in our applications, where the points lie in high dimensions and

88

the curse of dimensionality makes distances problematic [71].

Manifold learning A useful assumption in representation learning is that high biomedical

dimensional data originates from an intrinsic low dimensional manifold that is mapped via

nonlinear functions to observable high dimensional measurements; this is commonly referred

to as the manifold assumption. In particular, we believe that since biological entities like

patients, cells lie in lower dimensional spaces because of informational redundancy and

coordination between measured features (coordinating genes, or coordinated combinations

of residues on molecules). Further, we believe that these low dimensional spaces form

smoothly varying patches because of natural heterogeneity between entities. The fact that

the manifold model is successful in modeling biological entities has been shown in literature

numerous times [117] and has lead to successful methods data denoising [164], clustering

[91], visualization [118], and progression analysis [57].

Formally, let Md be a hidden d dimensional manifold that is only observable via a

collection of n ≫ d nonlinear functions f1, . . . , fn : Md → R that enable its immersion in a

high dimensional ambient space as F (Md) = {f(z) = (f1(z), . . . , fn(z))
T : z ∈ Md} ⊆ R

n

from which data is collected. Conversely, given a dataset X = {x1, . . . , xN} ⊂ R
n of high

dimensional observations, manifold learning methods assume data points originate from a

sampling Z = {zi}Ni=1 ∈ Md of the underlying manifold via xi = f(zi), i = 1, . . . , n, and aim

to learn a low dimensional intrinsic representation that approximates the manifold geometry

of Md.

To learn a manifold geometry from collected data, we use the popular diffusion maps

construction of [37] that uses diffusion coordinates to provide a natural global coordinate

system derived from eigenfunctions of the heat kernel, or equivalently the Laplace-Beltrami

operator, over manifold geometries. This construction starts by considering local similarities

defined via a kernel K(x, y), x, y ∈ F (Md), that captures local neighborhoods in the data.

We note that a popular choice for K is the Gaussian kernel exp(−∥x− y∥2/σ), where σ > 0

is interpreted as a user-configurable neighborhood size. However, such neighborhoods encode

sampling density information together with local geometric information. To construct a

diffusion geometry that is robust to sampling density variations we use an anisotropic kernel

89

K(x, y) =
G(x, y)

∥G(x, ·)∥α1 ∥G(y, ·)∥α1
, G(x, y) = e−

∥x−y∥2
σ

as proposed in [37], where 0 ≤ α ≤ 1 controls the separation of geometry from density, with

α = 0 yielding the classic Gaussian kernel, and α = 1 completely removing density and

providing a geometric equivalent to uniform sampling of the underlying manifold. Next, the

similarities encoded by K are normalized to define transition probabilities p(x, y) = K(x,y)
∥K(x,·)∥1

that are organized in an N ×N row stochastic matrix

Pij = p(xi, xj) (5.1)

that describes a Markovian diffusion process over the intrinsic geometry of the data. Finally,

a diffusion map [37] is defined by taking the eigenvalues 1 = λ1 ≥ λ2 ≥ · · · ≥ λN and

(corresponding) eigenvectors {ϕj}Nj=1 of P, and mapping each data point xi ∈ X to an N

dimensional vector Φt(xi) = [λt
1ϕ1(xi), . . . , λ

t
NϕN (xi)]

T , where t represents a diffusion-time

(i.e., number of transitions considered in the diffusion process). In general, as t increases,

most of the eigenvalues λt
j , j = 1, . . . , N , become negligible, and thus truncated diffusion

map coordinates can be used for dimensionality reduction [37].

PHATE for structure-preserving visualization of Data Several dimensionality

reduction methods that render data into 2-D visuals like PCA and tSNE. [162] and UMAP

[111] exist. However, they often cannot handle the degree of noise in biomedical data. More

importantly, most of these methods are not constructed to preserve the global manifold

structure of the data. PCA cannot denoise in non-linear dimensions, tSNE/UMAP effectively

only constrains for near neighbor preservation—losing global structure. This motivated us

to develop a method of dimensionality reduction that retains both local and global structure,

and denoises data [118].

PHATE also builds upon the diffusion-based manifold learning framework described

above, and involves the creation of a diffused Markov transition matrix from cellular data,

as in MAGIC, Pt (Equation 5.1). PHATE collects all of the information in the diffusion

operator into two dimensions such that global and local distances are retained. To achieve

90

this, PHATE considers the ith row of P as the representation of the ith datapoint in

terms of its t-step diffusion probabilities to all other datapoints. PHATE then preserves

a novel distance between two datapoints, based on this representation called potential

distance (pdist). Potential distance is an M -divergence between the distribution in row i,

Pt
i,. and the distribution in row j, Pt

j,.. These are indeed distributions as Pt is Markovian:

pdist(i, j) =
√∑

k(log(P
t(i, k)− P t(j, k))2.

The log scaling inherent in potential distance effectively acts as a damping factor which

makes faraway points similarly equal to nearby points in terms of diffusion probability.

This gives PHATE the ability to maintain global context. These potential distances are

embedded with metric MDS as a final step to derive a data visualization. We have shown

that PHATE outperforms tSNE [162], UMAP [111], force directed layout and 12 other

methods on preservation of manifold affinity, and adjusted rand index on clustered datasets,

in a total of 1200 comparisons on synthetic and real datasets. In [118] we also showcased

the ability of PHATE to reason about differentiation systems and differentiation trajectories

in human embryonic cell development.

5.6.4 Maximum Mean Discrepancy

To evaluate the accuracy of the predicted distribution with respect to the true distribution

for a given condition, we utilize maximum mean discrepancy (MMD) [93]. The MMD is a

distribution distance based on a kernel applied to pairwise distances of each distribution.

Specifically, MMD is calculated as:

MMD(X,Y) =
1

n
Σ
i ̸=i′

k(xi, xi′) +
1

m
Σ
i ̸=i′

k(yi, yi′)−
2

mn
Σ
i ̸=j

k(xi, yj)

for finite samples from distributions X = {x1, ...xm} and Y = {y1, ...yn} and kernel function

k. Two distributions have zero MMD if and only if they are equal. MMD has been used

successfully in biological systems in the past, particularly in detecting whether two systems

were different in distribution [21].

91

5.6.5 Raw and Embedded Condition Space Correlation Experiment

The correlation experiment was conducted as follows. For the drugs held-out to be used as

evaluation conditions, samples from the generator were calculated, along with the condition’s

embedding coordinates that went into the generator. A fixed noise sample was used

throughout. Then, for each pair of conditions i and j, we calculate distance between

condition li and lj , distance between embedded conditions E(li) and E(lj), and the MMD

between the generated data from each condition G(E(li)) and G(E(lj)). We plot each

distance against the MMD in Figure 5.3e for both the SMILES string experiment (top row)

and the chemical structure diagram experiment (bottom row).

5.6.6 COVID-19 Clinical data

The cohort of patients included only those who were hospitalized at any of 6 hospitals

in the Yale-New Haven Health System (Bridgeport, Greenwich, St. Raphael’s Campus,

Westerley, Lawrence and Memorial, York Street Campus) during the period between March

1st, 2020 and June 1st, 2020 with a positive COVID test (nasopharyngeal source) between

admission and discharge. Only the first encounter was included in the dataset for patients

with multiple encounters during the time period of observation. Patients with a positive

test prior to hospital admission but not tested during admission or tested negative during

admission were not included in the cohort. Data for these patients was then extracted from

the electronic health record (Epic, Verona, WI) and included data domains of demographics

(e.g. age and sex), medical history (e.g. history of diabetes), laboratory samples (e.g. white

blood cell count), as well as vital signs (e.g. blood pressure measurement). Pre-defined

outcomes included in-hospital mortality, transfer to the intensive care unit (ICU), as well

as requirement for invasive ventilation. In-hospital mortality was measured as patients

being discharged from the hospital with a deceased status. ICU care was measured through

location data for patients and was manually validated through chart review. Ventilation

status was measured through procedure orders placed during the patient’s hospitalization

and were validated through chart review.

Time-varying data, specifically vital signs as well as laboratory studies, were extracted

92

at all timepoints of measurement during a patient’s admission.

Features were selected from a predictive model developed to predict early hospital respira-

tory decompensation among patients with Covid-19 and augmented with treatment received.

There were a total of 19 clinical, laboratory, and treatment variables extracted: systolic blood

pressure, respiratory rate, oxygen saturation, blood urea nitrogen, creatinine,chloride, glucose,

white blood cell count, alanine aminotransferase, aspartate aminotransferase, high-sensitivity

C-reactive protein, ferritin, procalcitonin, age, gender, and treatment with hydroxychloro-

quine, steroid, antibiotic, or tocilizumab. Only complete cases, or patients with recorded

values for all 19 variables in the first 24 hours, were included in the final dataset. The FACS

markers used were: CCR7, CD3, CD4, CD8, CD25, CD38, CD45RA, CD127, CXCR5, FSC,

HLA-DR, PD1, SSC, TIM3.

As preprocessing, the most abnormal value in the first 24 hours was selected for the

clinical and laboratory variables according to the methodology described in a previous

electronic health record-based study. The categorical variables for treatment were coded as

binary (1 for received, 0 for not recorded).

93

Part II

Multi-sample alignment with

Autoencoders

94

Chapter 6

SAUCIE

6.1 Introduction

Biomedical researchers are generating high-throughput, high-dimensional single-cell data at a

staggering rate. As costs of data generation decrease, experimental design is moving towards

measurement of many different single-cell samples in the same dataset. These samples can

correspond to different patients, conditions, or treatments. While scalability of methods

to datasets of these sizes is a challenge on its own, dealing with large-scale experimental

design presents a whole new set of problems, including batch effects and sample comparison

issues. Currently, there are no computational tools that can both handle large amounts

of data in a scalable manner (many cells) and at the same time deal with many samples

(many patients or conditions). Moreover, data analysis currently involves the use of different

tools that each operate on their own data representation, not guaranteeing a synchronized

analysis pipeline. For instance, data visualization methods can be disjoint and mismatched

with the clustering method. For this purpose, we present SAUCIE, a deep neural network

that leverages the high degree of parallelization and scalability offered by neural networks,

as well as the deep representation of data that can be learned by them to perform many

single-cell data analysis tasks, all on a unified representation.

A well-known limitation of neural networks is their interpretability. Our key contributions

here are newly formulated regularizations (penalties) that render features learned in hidden

layers of the neural network interpretable. When large multi-patient datasets are fed

95

into SAUCIE, the various hidden layers contain denoised and batch-corrected data, a low

dimensional visualization, unsupervised clustering, as well as other information that can be

used to explore the data. We show this capability by analyzing a newly generated 180-sample

dataset consisting of T cells from dengue patients in India, measured with mass cytometry.

We show that SAUCIE, for the first time, can batch correct and process this 11-million

cell data to identify cluster-based signatures of acute dengue infection and create a patient

manifold, stratifying immune response to dengue on the basis of single-cell measurements.

Processing data of high dimensionality and scale is inherently difficult, especially con-

sidering the degree of noise, batch effects, artifacts, sparsity and heterogeneity in the

data [154, 171]. However, this effect becomes exacerbated as one tries to compare between

samples, which themselves contain noisy heterogeneous compositions of cellular populations.

Deep learning offers promise as a technique for handling the size and dimensionality of

modern biological datasets. However, deep learning has been underutilized for unsupervised

exploratory tasks. In this paper, we use a regularized autoencoder, which is a neural

network that learns to recreate its own input via a low-dimensional bottleneck layer that

learns representations of the data and enables a denoised reconstruction of the input from

them [169, 152, 153, 30, 31], as a basis for deep learning framework with layers constrained

(via architectural choices and regularization), so they can be used to extract task-oriented

features of the data. Since autoencoders learn their own features, they can reveal structure

in the data without defining or explicitly learning a similarity or distance metric in the

original data space as other dimensionality reduction methods do (for instance, PCA uses

covariance and diffusion maps [37] utilize affinities based on a kernel choice). We use

this approach to construct SAUCIE, a Sparse Autoencoder for Unsupervised Clustering,

Imputation, and Embedding, which is aimed to enable exploratory tasks via its design

choices. SAUCIE is a multilayered deep neural network, whose input layer is fed single-cell

measurements, such as mass cytometry or single-cell RNA sequencing, of an individual

cell. We see that the output or reconstruction layer of SAUCIE gives similarly denoised

and imputed data as the manifold denoising method MAGIC [163], effectively learning the

manifold of the data in a similar way to data diffusion [166] methods. Manifold learning

methods are traditionally difficult to scale due to the computational complexity of kernel

96

computation and eigendecomposition operations. Deep learning comes to the rescue here

by being amenable to GPU speedup and parallelization of matrix operations. SAUCIE’s

regularizations, balanced against reconstruction accuracy, reveal different representations of

the data: for visualization, batch correction, clustering, and denoising.

We apply SAUCIE to a twenty-million cell mass cytometry dataset with 180 samples from

forty subjects in a study of the dengue flavivirus [187]. SAUCIE is able to batch correct 180

samples and cluster them in such a way that subpopulation proportions become comparable

prima facia. This obviates the need for approaches such as first clustering samples separately

and then performing “meta-clustering”, or other methods that cannot operate uniformly on

combined data of this size (the problems of which are illustrated in Figure S10). SAUCIE

results show that acute subjects are characterized by enrichment in distinct subpopulations

of CD4-CD8-γδT cells and cells involved in Type I interferon signaling. When subjects are

measured in convalescence, there is an increase in CD4+Foxp3+ T reg cells. Thus, SAUCIE

provides a unified representation of data where different aspects or features are emphasized

in different layers, forming a one-step data analysis pipeline. This unified analysis uncovers a

cell-space manifold as well as a sample-space manifold, thus enabling a multilevel analysis of

complex experimental design where the samples are stratified on the basis of their cell-level

features. We additionally evaluate SAUCIE extensively on all of its designed tasks using ten

public single-cell datasets.

6.2 Results

6.2.1 The SAUCIE Architecture and Layer Regularizations

To enable unsupervised learning in a scalable manner, we base our method on the autoencoder.

Autoencoders learn to recreate their input at the output layer, but via a low-dimensional

informational bottleneck layers which are forced to learn meaningful structure-preserving

representations of the data. However, a key challenge is to extract meaning from this

representation. Specifically, we seek representations in hidden layers that are useful for

performing the various analysis tasks associated with single cell data. Here, we introduce

several design decisions and novel regularizations to our autoencoder architecture (Figure 6.1)

97

Figure 6.1: The pipeline for analyzing single-cell data in large cohorts with
SAUCIE. Many individual patients are separately measured with a single-cell technology
such as CyTOF or scRNA-seq, producing distinct datasets for each patient. SAUCIE
performs imputation and denoising, batch effect removal, clustering, and visualization on the
entire cohort with a unified model and is able to provide interpretable, quantifiable metrics
on each subject or group of subjects.

98

in order to constrain the learned representations for four key tasks:

1. visualization and dimensionality reduction,

2. batch correction,

3. clustering, and

4. denoising and imputation.

For each task, dedicated design decisions are used to produce the desirable result.

Clustering: First, to cluster the data, we introduce the information dimension regular-

ization that encourages activations of the neurons in a hidden layer of the network to be

binarizable. The idea is that if we can obtain a “digital” binary encoding, then we can easily

turn these codes into clusters. As Figure 6.2A shows, the network without regularizations

tends to store its information in a distributed, or “analog” way. With the ID regularization

the activations are all near 0 or 1, i.e., binary or “digital”, and thus amenable to clustering

by simple thresholding-based binarization. As seen in Figure 6.3A, this leads to a clustering

of the cells that effectively represents the data space. Thus, the ID regularization achieves an

analog-to-digital conversion that enables interpretation of the representation as data groups

or clusters corresponding to each binary code. A previous work in the same vein, Binary

Connect, has shown the promise in encouraging networks to learn in ways that are easy to

binarize. That work differs from SAUCIE though, in that they learn binary weights rather

than binary activations, along with the goal being to improve computational efficiency rather

than achieve a clustering of the data [38]. Further work has considered binarizing activations,

as well, but do so with exact binarization (as opposed to our activations which are still

continuous but are encouraged to be near binary) and do so with the aim of compressing

the network into a smaller memory footprint (rather than our clustering) [155, 39].

Batch Correction: Batch effects are generally systematic differences found in biological

data measured under different experimental runs, largely due to ambient conditions such as

temperature, machine calibration or day-to-day variation in measurement efficiency. Thus,

99

measurements even from very similar systems, such as blood cells of the same patient, appear

to have a shift or difference between two different experimental runs. To solve this problem,

we introduce a maximal mean discrepancy (MMD) correction that penalizes differences

between the probability distributions of internal activations of samples. Previous work has

attempted batch correction by minimizing MMD. However, those models assume that batch

effects are minor and simple shifts close to the identity function, which is often not the

case [141]. Moreover, minimizing MMD alone only removes any and all differences between

batches. In contrast, the additional autoencoder reconstruction penalty in SAUCIE forces it

to preserve the original structure in each batch, balancing the goals of, on one hand, making

the two batches alike while on the other hand not changing them. We note that this notion

of a biological batch (data measured or run together) is distinct from the mini-batches used

in stochastic gradient descent to train neural networks and the two should not be confused.

The term batch is exclusively used to describe biological batches and when training with

stochastic gradient descent the term mini-batches is used.

Figure 6.5 shows that analyzing data before batch correction can lead to misleading

results, as artificial variation from batch effects can drown out the relevant variation within

the biology that we are interested in. Penalizing MMD directly on the input space would be

a flawed way of addressing batch effects because it would require making the assumption of

(and thus being sensitive to the choice of) meaningful distance and similarity measures on

the input points. Since the data is noisy and possibly sparse, by instead penalizing MMD

on an internal layer of the network, we can correct complex, highly nonlinear batch effects

by aligning points on a data manifold represented in these layers.

Imputation and denoising Next, we leverage the fact that an autoencoder does not

reconstruct its input exactly, but instead must learn a lower dimensional representation of the

data, and decode this representation for data reconstruction. This means the reconstructions

are denoised versions of the input and are thus naturally solutions to the dropout and

other noise afflicting much real-world data, especially single cell RNA-sequencing data. The

gene-gene relationships plotted in Figure 6.3C illustrate the ability of SAUCIE to recover

the meaningful relationship between genes despite the noise in the data. Thus, downstream

100

activities like differential gene expression are now enhanced by these improved expression

profiles.

Visualization Finally, we design the informational bottleneck layer of the autoencoder to

be two dimensional, which lets it serve as a visualization and nonlinear embedding of the data.

Because the network must reconstruct the input accurately from this internal representation,

it must compress all the information about a cell into just these two dimensions, unlike

methods like PCA or Diffusion Maps, which explicitly leave some variation unmodeled.

Consequently, the information stored is also global, meaning points close together in the

SAUCIE visualization are more similar than points that are farther apart, which is not true

beyond small neighborhoods in a local method like tSNE. The ability to flexibly learn and

accurately reflect the structure in the data with SAUCIE is demonstrated in Figure 6.3B.

Considered together, these customized regularizations and architectural choices make

SAUCIE ideally suited for the exploratory data analysis when presented with single-cell

biological data. Further, SAUCIE is entirely self-contained and not require any external

algorithms that may not be able to process the scale of multisample single-cell data.

6.2.2 Comparison to other methods

We begin by offering an extensive comparison between SAUCIE and other (generally

specialized) methods at each of these tasks in turn. We find that SAUCIE performs as

well as, or even better than, specialized algorithms, which are much less scalable, for each

individual task. Moreover, SAUCIE performs all tasks on a unified representation leading to

visualizations that are coherent with clusters and cluster expression.

Throughout the comparisons on each of the tasks, we use an artificial dataset (simulation

from mixtures of Gaussians), along with ten different single-cell datasets. Five datasets

are CyTOF: the dengue dataset we extensively evaluate later in the manuscript, T cell

development data from [140], renal cell carcinoma data from [33], breast tumor data from

[14], and iPSC data from [190]. Five datasets are scRNA-seq: mouse cortex data, retinal

bipolar cells from [143], hematopoiesis data from [126], mouse brain data from [182], and

the 10x mouse megacell demonstration from [1].

101

fig:regularizations

Figure 6.2: Regularizations and architecture choices in SAUCIE. A) the ID regu-
larization applied on the sparse encoding layer produces digital codes for clustering B) the
informational bottleneck, i.e. a smaller embedding layer, uses dimensionality reduction to
produce denoised data at the output C) the MMD regularization removes batch artifacts D)
the within cluster distance regularization applied to the denoised data provides coherent
clusters.

102

fig:smallcomp

Figure 6.3: A comparison of the different analysis tasks performed by SAUCIE
against other methods. A) A comparison of clustering performance on the data from
Shekhar et al (top) and Zeisel et al (bottom) with samples of size 27499 and 3005, respectively.
B) A comparison of SAUCIE’s visualization on the same datasets as part (A). C) A
comparison of imputation on the 10x mouse dataset subset of size 4142.

103

suppfig:clustcomp

Figure 6.4: A comparison of the SAUCIE clustering to other clustering methods on artificial
and real data. Rows show the different datasets. Along with the first artificial dataset,
there are two CyTOF datasets and three scRNA-seq datasets. Columns show the different
clustering methods. From left to right: True “ground truth” labels, SAUCIE, kmeans,
Phenograph, scVI. In (b) and (c), we add the scores for the modularity and silhouette
heuristics from Table 6.1, respectively.

Clustering

To evaluate the ability of SAUCIE to find meaningful clusters in single-cell data, we compare

it to several alternative methods: minibatch kmeans [127], Phenograph [90], and another

neural network approach called Single-cell Variational Inference (scVI) [100]. While we

compare to scVI as it and SAUCIE are both neural networks, we emphasize a fundamental

difference between the two: scVI only returns a latent space, which must then be visualized

or clustered by another outside method, while SAUCIE explicitly performs these tasks. Since

kmeans needs to be told how many clusters there are ahead of time (k), we use the number

of clusters identified by Phenograph as k. We look at the following datasets: artificially

generated Gaussians rotated into high dimensions, and public single-cell datasets for which

we have curated cell clusters as presented by the authors: [143], [33], [182], [126], and [140].

104

tab:scoresclustering

SAUCIE kmeans Phenograph scVI

GMM 0.7512/0.8162 0.8917/0.3097 0.9302/0.2662 0.9030/-0.0626

Shekhar et al 0.9662/-0.0602 0.8530/0.0753 0.8981/0.0868 0.93139/0.0593

Chevrier et al 0.9347/-0.3761 0.9517/0.0085 0.9258/-0.0452 0.9330/-0.1967

Zeisel et al 0.8663/-0.1881 0.9138/0.1135 0.9209/0.1529 0.9085/-0.1238

Paul et al 0.8854/-0.3060 0.8930/0.0249 0.8819/0.1802 0.8839/-0.0540

Setty et al 0.6860/0.0425 0.8704/0.0377 0.8912/0.0147 0.8591/-0.0718

Table 6.1: A comparison of modularity (left) and silhouette (right) scores of each of the
clustering algorithms on each dataset.

In addition to analyzing the clusters visually (Figure 6.4), we also quantitatively assess

cluster performance of the methods by computing modularity and silhouette scores [127] on

the generated clusters and ground truth labels (Table 6.1). First, we look at an artificially

generated dataset of four two-dimensional Gaussian point clouds with different means rotated

into 100 dimensions. We find that SAUCIE is the only method that automatically identifies

exactly four clusters, which was the underlying number of clusters in the generation model.

This illustrates why optimizing modularity, like Phenograph does, is not necessarily the best

heuristic to follow, as it adds additional complexity to the clustering in order to increase the

modularity score, resulting in too many clusters. Likewise, scVI did not identify the four

clusters, which is unsurprising as the data did not fit its parametric model appropriate for

gene counts.

We also examine clustering performance on five public single-cell datasets to evaluate

the ability of SAUCIE to cluster real biological data: from [143], [33], [182], [126], and [140].

Visual inspection reveals that SAUCIE produces clusters that are qualitatively coherent

on the embedding. Quantitatively, the modularity scores of its clusters corroborate this

evaluation. As shown in Table 6.1 the average modularity score across datasets is 0.8531. In

a wide variety of data from both CyTOF and scRNA-seq measurements, SAUCIE is able

to produce clusters that reasonably represent the data qualitatively, quantitatively, and by

comparison to other methods.

105

fig:batchcorrectioncartoon

Figure 6.5: Demonstration of SAUCIE’s batch correction abilities. A) SAUCIE
batch correction balances perfect reconstruction (which would leave the batches uncorrected)
with perfect blending (which would remove all of the original structure in the data) to remove
the technical variation while preserving the biological variation. B) The effect of increasing
the magnitude of the MMD regularization on the dengue data of size 41721. Sufficient MMD
regularization is capable of fully removing batch effect. C) Results of batch correction on
the synthetic GMM data (of size 2000) (top) and the dengue data (bottom) shows that
SAUCIE better removes batch effects than MNN and better preserves the structure of the
data than CCA.

106

suppfig:batchcorrectioncomp

Figure 6.6: A comparison of batch correction with SAUCIE to other methods on an artificial
dataset, two technical replicates from the dengue CyTOF data, non-technical replicates on
scRNA-seq batches from mouse cortex, and then public data from Chevrier et al, Azizi et
al, and Setty et al. Rows show the different datasets. Columns show the different batch
correction methods. From left to right: The original data prior to batch correction, SAUCIE,
mutual nearest neighbors (MNN), canonical correlation analysis (CCA). In (b) and (c),
we add graphs of the mixing score and shape preserving score results from Table 6.2 for
quantitative evaluation, respectively.

107

tab:scoresbatchcorrection

Original SAUCIE MNN CCA

GMM 0.999/— 0.630/0.629 0.526/0.620 0.510/0.998

Dengue 0.999/— 0.593/0.532 0.998/0.512 0.992/0.765

Mouse cortex 0.994/— 0.530/0.498 0.898/0.485 0.836/0.923

Chevrier et al 0.880/— 0.540/0.934 0.787/0.232 0.835/0.346

Azizi et al 0.621/— 0.512/0.180 0.560/0.205 0.621/0.000

Setty et al 0.518/— 0.504/0.064 0.514/0.067 0.523/0.698

Chen et al 0.919/— 0.661/0.508 0.672/0.383 0.826/0.955

Table 6.2: A comparison of mixing (left) and Procrustes (right) scores of each of the batch
correction algorithms on each dataset.

Batch correction

We assess our ability to remove batch-related artifacts with SAUCIE by comparison to

two published batch correction methods that have been specifically designed to remove

batch effects in single-cell data. The first, Mutual Nearest Neighbors (MNN) [58], uses

mutual nearest neighbors on a k-nearest neighbors graph to align two datasets, and the

second, Canonical Correlation Analysis [25], finds a latent space in which the two batches

are aligned. To evaluate the performance of these methods and SAUCIE, we use several

different datasets with varying degrees of batch artifacts. We note that SAUCIE is the

only method capable of scaling batch correction to hundreds of samples as we do in the

next section. Nonetheless, here we compare performance on datasets small enough for the

alternative methods to handle.

To quantitatively assess the quality of batch correction, we apply a test we term the

mixing score (similar to that of [27]):

mixing score =
Nb1

Nb2

∗ Σxj∈KNN(xi)

(
1batch(xi)=batch(xj)

)
(6.1)

where Nb1 and Nb2 are the number of points in the first and second batch respectively. This

score calculates for each point the number of nearest neighbors that are in the same batch

as that point, accounting for the difference in batch sizes. In perfectly mixed batches, this

score is 0.5, while in perfectly separated batches it is 1.0. As batch correction should not

only mix the batches but also preserve their shape as best as possible, we quantify the

108

SAUCIE PCA Monocle2 DM UMAP TSNE PHATE

Artificial Tree 3 0.993 0.956 0.935 0.963 0.967 0.968 0.947

Artificial Tree 7 0.994 0.951 0.921 0.980 0.986 0.990 0.971

Artificial Tree 20 0.948 0.896 0.854 0.940 0.938 0.940 0.939

DLA Tree 0.865 0.817 0.725 0.819 0.836 0.845 0.847

Half Circles 0.975 0.970 0.940 0.937 0.958 0.946 0.925

GMM 0.999 0.972 0.953 0.500 0.992 0.992 0.969

Paul et al 0.944 0.948 0.896 0.807 0.842 0.865 0.856

Setty et al 0.882 0.870 0.839 0.508 0.501 0.501 0.491

Zunder et al 0.939 0.903 0.884 0.505 0.522 0.513 0.510

Shekhar et al 0.942 0.908 0.918 0.506 0.863 0.508 0.496

Ziesel et al 0.952 0.914 0.903 0.943 0.909 0.881 0.905

Table 6.3: A comparison of precision-recall area-under-the-curves (AUCs) for each of the
visualization algorithms on each dataset.

distortion between the original and batch corrected data using Procrustes, which finds the

error between the optimal alignments of the two batches by linear transformation [107].

These numbers are reported in Table 6.2. While the other methods each have some datasets

that violate their assumptions and thus they perform poorly, SAUCIE performs as well or

better at each of the wide variety of datasets.

We compare SAUCIE to the alternative methods on artificial GMM data, spike-in CyTOF

samples from the dengue dataset, non-technical scRNA-seq replicates from developing mouse

cortex, and four public datasets from [33], [14], [140], and [32]. In Table 6.2, we see SAUCIE

has the best average mixing score across the wide range of data types, without distorting

the data more than is necessary.

Visualization

To evaluate the SAUCIE visualization and its ability to provide a faithful low-dimensional

data representation, we provide comparisons of this visualization to other frequently used

methods. We make use of artificial datasets where the underlying structure is known, as

well as real biological datasets that have been extensively characterized previously, so we

have prior understanding of the structure we expect to see in the visualization (Figure 6.7).

We measure the quality of the visualizations with a quantitative metric taken from [106].

In line with their method’s precision and recall metrics, we compute a neighborhood around

109

suppfig:vizcomp

Figure 6.7: A comparison of the SAUCIE visualization to other methods on a number of
artificial and real datasets. The columns show the different methods. From left to right:
SAUCIE, PCA, Monocle2, Diffusion Maps, UMAP, tSNE, PHATE. The rows show the
different datasets. From top to bottom: Artificially generated trees with varying amounts of
noise, random tree generated with diffusion limited aggregation (DLA), intersecting half
circles, Gaussian mixture model, scRNA-seq hematopoiesis from Paul et al [126], CyTOF T
cell development from Setty et al [140], CyTOF ipsc from Zunder at al [190], scRNA-seq
retinal bipolar cells from Shekhar et al [143], scRNA-seq mouse cortex from Zeisel et al [182].
In (b), we add a graph of the precision-recall metric results from Table 6.3 for quantitative
evaluation.

110

each point in both the original data space and the embedding space, and compare the

neighbors of each. An embedding with high recall has most of a point’s original-space

neighbors in its embedding-space neighborhood. Similarly, an embedding with high precision

has most of the point’s embedding-space neighbors in its original-space neighborhood. As

directed by the authors’ algorithm, we gradually increase the size of the neighborhood and

report the area-under-the-curve (AUC) for the precision-recall curve. These results are

in Table 6.3, where SAUCIE has the highest average score of 0.9342, averaged across all

datasets. Despite this, we note that this is only a heuristic and can give undesirable results

at times, as it only looks at fixed neighborhoods in the original input space. For example,

PCA fails to produce any visual separation in the data from Zunder et al, yet scores well

by this metric. Likewise, tSNE artificially shatters the trajectories in the DLA data, yet

produces a high score. Nonetheless, this metric offers some corroboration at the quality of

SAUCIE’s visualization, a hard task to measure quantitatively.

In Figure 6.7, we some methods preserve global information, but frequently at the expense

of not preserving local and more fine-grained variation, like PCA. Other methods, like

Diffusion Maps, provide visualizations that look like connected trajectories on every dataset,

no matter the underlying distribution. tSNE preserves local information, but at the expense

of not preserving global information, on the other hand. SAUCIE, meanwhile, balances

global and local information preservation and provides varied visualizations, depending on

the structure of the underlying data.

Imputation

We analyze the SAUCIE imputation and its ability to recover missing values by implicitly

interpolating on a data manifold in several ways. First, Figure 6.8 shows several relationships

from the scRNA-seq data of the 10x mouse megacell dataset affected by severe dropout. This

dataset consists of 1.3 million cells, and SAUCIE was the only method in the comparison

to be able process the full dataset. Moreover, it was able to do this in just 44 minutes.

Additionally, because training a neural network only requires small minibatches in memory

at one time, we were able to do this without ever loading the entire large dataset into

memory all at once. Thus, to enable this comparison, we subsampled the data by taking

111

suppfig:imputationcomp

Figure 6.8: A comparison of imputation methods including SAUCIE. Several gene-gene
associations are shown from the 10x mouse cortex dataset. From left to right: The original
(sparse) data, data after imputation with SAUCIE, MAGIC, scImpute, and nearest neighbor
completion.

112

one of the SAUCIE clusters consisting of 4172 cells.

For this comparison, we measure against several popular imputation methods for scRNA-

seq data: MAGIC, which is a data diffusion based approach, scImpute, which is a parametric

statistical method for imputing dropouts in scRNA-seq data, and Nearest Neighbors Com-

pletion (NN Completion), which is an established method for filling in missing values in a

general application of high-dimensional data processing.

In Figure 6.8, we show six relationships of the mouse megacell dataset for the original

data and the different imputation methods. We observe that the original raw data is highly

sparse, which can be seen by the large number of values on the axes where one of the

variables is exactly zero. Note that most cells have one or both genes missing. This is a

problem because this prevents us from identifying trends that exist between the genes. After

imputation with SAUCIE, we can observe that the sparse character of the data has been

removed, with values filled in that reveal underlying associations between the gene pairs.

These associations are corroborated by MAGIC, which imputes similar values to SAUCIE in

each case. MAGIC is a dedicated imputation tool that is widely used, so SAUCIE matching

the relationships it found gives confidence in the ability of SAUCIE to impute dropout

effectively. The resulting imputation in scImpute does not look significantly less sparse

from the original and we do not see continuous trends emerge. NN Completion appears to

desparsify the data, but the resulting trends all look similar to each other (i.e., positively

correlated). This suggests that it does not correctly identify the underyling trends, as we

would expect different genes to have different relationships. While scRNA-seq is highly

sparse, the undersampling affects all entries in the matrix, including the nonzero values. As

such, manifold-based methods like SAUCIE and MAGIC are more suited for finding these

true relationships because they denoise the full dataset as opposed to just filling in zeros.

Due to the fact that ground truth values for the missing counts in this single-cell data

are not known, we further test the accuracy of the imputation abilities of SAUCIE with an

artificially constructed experiment. We first leverage the bulk RNA sequencing data of 1076

cells from [159], because it accurately captures the relationships between genes due to it not

being sparse (as opposed to generating our own synthetic data from a parametric generating

function that we have the ability to choose, where we can create the relationships). We then

113

Figure 6.9: A comparison of imputation with SAUCIE to other methods on the simulated
dropout experiment. Increasing amounts of dropout are along the horizontal axis from left
to right, and the accuracy of each method as measured by R2 is along the vertical axis. The
time each method took to complete is in the legend in seconds.

simulate increasing amounts of dropout and compare the imputed values returned by each

method to the true values we started with. To simulate dropout in a manner that reflects

the underlying mechanisms of inefficient mRNA capture, we remove molecules instead of

just setting values for genes to zero. As a result, the level of dropout is conditional upon

expression level, reflecting the dropout structure of single-cell RNA sequencing data. The

results are reported in Figure 6.9, where SAUCIE compares favorably to other methods,

recovering the true values accurately even after as much as 99% dropout. The dataset for

this experiment consisted of just 1076 cells, which allowed us to compare to the methods

that cannot process larger datasets, but even on a dataset of this size SAUCIE gave a more

than 100-times speedup over NN Completion and 600-times speedup over scImpute.

Runtime Comparison

In order to showcase the scalability of SAUCIE, we compare to a host of other methods on

a subset of our newly generated CyTOF dataset consisting of over 11 million cells existing

in 35 dimensions. We display the runtimes of each method on a random sample of N points,

114

Figure 6.10: Comparison of runtimes on an increasing number of points. The number of
points is represented on the horizontal axis and the time in seconds the method took to
complete is on the vertical axis. If a method ran out of resources and could not complete a
run for a certain number of points, that is demarcated with an ‘x’ and no further time points
were attempted for that method. SAUCIE is the fastest method besides PCA and kmeans.

115

with N = 100, 200, 400, 800, . . . , 11000000 in Figure 6.10. For each step, the method was

given a timeout after 24 hours. Points where a method stopped scaling in Figure 6.10 are

marked with an ‘x’.

SAUCIE performs visualization, batch correction, imputation, and clustering in its run,

while each of the other methods only performs one of these tasks. Moreover, SAUCIE

does not just compute simple linear functions on the data, but instead performs complex

non-linear transformations in the process. Despite its complexity, it also scales very well

with the extremely large dataset sizes, which can be further improved by simply adding more

independent GPUs for calculations. Each additional (relatively inexpensive) GPU can offer a

near linear increase in computation time, as opposed to more CPUs which offer diminishing

returns in parallelizability. All experiments were run on a single machine with just one GPU,

meaning these results could still benefit even more from this potential for scalability. For

further details on how the runtime experiment was performed, see the Methods section.

Among the batch correction methods, there are no other methods that correct multiple

batches simultaneously. However even when we restrict to pairwise comparisons, SAUCIE

is the only method that comes close to handling this amount of data. CCA and MNN

both stop scaling in the tens of thousands of cells. In the group of imputation methods,

scImpute and NN completion also stop scaling in the tens of thousands, while MAGIC stops

scaling in the hundreds of thousands. For visualization, PCA was the only method faster

than SAUCIE, which is unsurprising because calculating it using fast randomized SVD is

quick, but it gives a simple, strictly linear blurry views of the data, in contrast to SAUCIE’s

nonlinear dimensionality reduction. The other more complex visualization methods do not

scale to these dataset sizes: Diffusion Maps, PHATE, tSNE, and Monocle2 all stop scaling

before even reaching the full eleven million cells. For clustering, kmeans is the only one

faster than SAUCIE, due to using its minibatched version. However, it still assumes circular

clusters in the Euclidean space and comes with the intrinsic flaw that the number of clusters

must be known ahead of time, which is not possible in any realistic setting like ours where

we are performing exploratory data analysis on a large new dataset. Phenograph and scVI

do not scale to the full dataset, either. Despite being another neural network method, scVI

cannot scale to these larger sizes because it only produces a latent space that then must be

116

clustered with another method. This requirement then becomes its bottleneck, emphasizing

the importance of SAUCIE performing all tasks directly instead of acting as a pre-processing

step for other methods.

SAUCIE is the only method that can efficiently batch correct, impute and denoise,

visualize, and cluster datasets of this size, while using a nonlinear manifold representation of

the data.

6.2.3 Analysis of immune response to dengue infection with SAUCIE

Next, we demonstrate an application of SAUCIE as an important tool enabling exploratory

analysis of a new “big” dataset that consists of single-cell CyTOF measurements of T cells

from 45 subjects including a group acutely infected with the dengue virus and healthy

controls from the same endemic area [187]. While dengue is estimated to affect sixty

million people yearly and cause ten thousand deaths, like other tropical diseases, it remains

understudied. Moreover, dengue is especially challenging since there are several different

serotypes with complex interactions between them. Specifically, there are four strains that

have very different characteristics. While infection with a particular strain may provide some

immunity towards reinfection with that same strain, an antibody dependent enhancement

results in faster uptake of another strain upon reinfection [79]. Drugs have proven difficult

to develop for dengue. Further, vaccine development has also been challenging in the case of

dengue. Recently, the WHO has ruled that the dengue vaccine of Senofi Pasteur only be

administered to patients who are infected for the second (or subsequent) time [139]. This is

because the vaccine itself is thought to leave patients vulnerable to very severe reinfections.

So unlike other viruses, the dengue virus apparently leaves patients more vulnerable the

second time. These types of complex effects require deep and detailed analysis of both

infected and convalescent patients at the single cell level to understand the immune response.

We applied SAUCIE to the single-cell CyTOF data of T cells collected in an area endemic

for dengue virus infection [187] to study general T cell compartment composition, variability

and changes in the variability after convalescence. We believe that the dengue data is

an ideal test case for SAUCIE, because the samples are shipped from India and samples

were collected over a period of months and were assesed over different experiment days

117

[187]. Thus, there is a pressing need for batch correction and data cleaning as well as

uniform processing, clustering and meta-analysis of patient stratification. As part of the

study, cells from additional patient groups beyond the acutely infected were also measured:

healthy people unrelated to the subjects as a control and the same acute subjects at a later

convalescent time point. Primary research questions include understanding profile of the

acute subjects and how they differ from the other groups. Across all groups, there are 180

samples resulting in over twenty million cells with results analyzed on 35 different protein

markers, a massive amount of data that would cause difficulties in most standard analytic

frameworks.

Differential cluster proportions between subjects

We first batch correct and denoise the data using SAUCIE’s MMD regularization and then

obtain the clusters characteristic of each group and then further analyze them for marker

enrichments as single cell versions of blood biomarkers [130]. For the clustering considered

here, we use a coarse-grained clustering obtained with a coefficient for ID regularization

of 0.1. This was chosen by scanning across values of 0.01, 0.1, 0.2, 0.3, 0.4, and 0.5, and

choosing the clustering that yielded the best modularity. If other granularities are desired,

lower coefficients could be used and the impact of this parameter on the number of clusters

is shown in Figure 6.12. The two regularizations λd and λc affect the number of clusters that

result. For a given value of λd, as λc increases, the number of clusters decreases (coarser

granularity). Higher values of λd yield more clusters (finer granularity). Notably, these

results are robust and yield reasonable results for varying values of the two regularizations.

These two together act as knobs that can be tuned to get the desired granularity of clustering.

The methods section further discusses how these regularizations affect the number of clusters.

For the SAUCIE clustering, we focus on T cells as particularly relevant to the immune

process and an abundant subset of the data (eleven million total cells), looking for clusters

that are over- or under-represented in the cells of each group. We look for clusters that

behave differently in the acute compared to the convalescent time points. These would then

represent a population of cells that might have an important role in the process, which could

be further investigated. To understand what cell population this is, we examine the marker

118

fig:zikaclustering

Figure 6.11: SAUCIE identifies and characterizes cellular clusters, whose pro-
portions can be used to compare patients. SAUCIE on the entire dengue dataset of
11228838 cells. A) The cell manifolds identified by the two-dimensional SAUCIE embedding
layer for the T lymphocyte subsets from acute, healthy, and convalescent subjects. B) A
heatmap showing clusters along the horizontal axis and markers along the vertical axis.
Cluster sizes are represented as a color bar beneath the heatmap. C) Cluster proportions
for acute, convalescent, and healthy patients.

119

suppfig:clustering

Figure 6.12: The granularity of the clustering, as measured by the total number of clusters
found. Each line represents a fixed value of λd as λc increases from left to right.

abundance profile for the cluster. The mean for each cluster and marker is shown in the

heatmap in Figure 6.11B.

We find twenty total clusters within the T cell populations, five of which are CD8 T

cells and thirteen of which are CD4 T cells. In addition, interestingly, there are six clusters

of CD4-CD8- T cells, where four are γδ T cells. These have been noted as a characteristic

of reaction to viral infections [123, 158, 49, 34, 36]. There are twelve clusters representing

effector memory cells and nine regulatory T cells that are CD4+Foxp3+. Two of the clusters

are naive T cells.

Several of these populations are indicative of differences between acute, convalescent,

and healthy subjects, and can be used for characterizing the nature of the reaction of each

of these groups, as we do below.

1. γδ T cells are a relatively rare type of T cells, but SAUCIE is still able to identify

them. Despite their rarity, they appear to have significance in identifying different

populations, which emphasizes the importance of this attribute of SAUCIE. These

cells signal especially strong early in immune response, particularly skin and mucosal

immunity. They have less variable TCR sequences than αβ T cells [131]. These cells are

a bridge between T cells and myeloid cells, as they have some innate immune activity,

where they express CD11c and CD86. They can bind to lipid antigens. Clusters 0

and 3 (consisting of 7% of the total cells) show upregulation of CD57. This is an

120

indication of terminal differentiation. CTLA-4 and CD38 are also high, so these are

highly activated cells and potentially dysfunctional. We see that these clusters are

highest in the acute subjects and lowest in the healthy subjects. Out of the fifteen

subjects that were measured both as acute subjects and later in convalescence, thirteen

had more of these cells during their acute infection.

2. We find another group of γδ T cells that are CD45RO and CD45RA positive (cluster

2, consisting of 1% of the total cells), but not yet fully terminally differentiated, so

these could be transitional between näıve and effector memory. The effector memory

cells express less IFNb. As this cluster is more expressed in the healthy subjects, it

indicates that even these subjects may have had some exposure to dengue. There is a

lack of an inflammatory state, i.e., low in IFNb and Perforin, so we expect that these

are actually memory cells instead of effector cells. It makes more sense then that these

populations are more expressed in convalescent and healthy subjects.

3. We also find another population of CD4+ T cells (clusters 3-15, consisting of 45% of

the total population) that are not expressing any inflammatory markers or activation

markers, and these are higher in the convalescent and healthy subjects, while being very

low in the acute subjects. These look to be other memory cells that may characterize

these convalescent subjects. In fact, out of the fifteen subjects with acute-convalescent

paired measurements, eleven had more of these cells during convalescent measurement.

These have signs of recent activation as they do not have CD69, which is an early

activation marker, nor any of the cytokines like IFNg, IFNb, or IL-6.

4. Additionally, we find a population of CD8+ effector cells (cluster 15, which consists

of 3% of the total cells) that are highly expressed in the acute subjects. These cells

also express CD57 and CD38, but are not γδ as the previous populations were. These

appear to be more differentiated and are likely not transitional, as the previous ones

were, either.

We can also visualize the cell-level cluster proportions on a patient manifold (Figure 6.13B).

There, we see that cluster proportions arranged on this manifold reveal clusters that are

121

changing across the space. This analysis indicates clearly that cluster 1 is representative

of acute subjects and cluster 5 is representative of the healthy subjects. Furthermore, we

can evaluate the same individual when measured after acute infection, and then later at

a convalescent time point (Figure 6.13C). Viewed in this way, we see that cluster 11 is

also more present in most subjects when they came in with an acute infection than at the

convalescent time point.

Visualization

SAUCIE can process all cells from all subjects to construct a cellular manifold and extract

its features. First, we visualize this manifold using the 2-D visualization layer. Figure 6.11A

is divided into two embeddings that show the cell manifolds for acute and healthy subjects

separately. As can be seen, there is a characteristic change in the manifold that becomes

apparent when comparing the embeddings side-by-side. The acute subjects have cell

populations distinctly missing that are present in the healthy subjects.

After characterizing the nature of the cellular space in the aggregate, we can additionally

analyze manifolds formed by the distributions of T lymphocytes within each patient separately.

As each patient has a heterogeneous population of cells, including with different total numbers

of cells, it becomes a challenge to define a meaningful measure of similarity between the

individuals. Here we are able to leverage the manifold constructed by the SAUCIE embedding

and calculate MMD (a distribution distance) between the distribution of cells in the latent

space for each pair of subjects. With a measure of similarity between each pair of patients,

we can now construct a manifold not of the cells but also of the subjects (Figure 6.13A).

6.3 Discussion

We presented SAUCIE, a neural network framework that streamlines exploratory analysis of

datasets that contain a multitude of samples and a large volume of single cells measured in

each sample. The key advantage in SAUCIE is its ability to perform a variety of crucial

tasks on single-cell datasets in a highly scalable fashion (utilizing the parallelizability of deep

learning with GPUs) without needing to call external algorithms or processing methods. As a

122

fig:mdsonmmd

Figure 6.13: SAUCIE produces patient manifolds from single-cell cluster signatures.
SAUCIE on the entire dengue dataset of 11228838 cells. Top row) The patient manifold
identified by SAUCIE cluster proportions, visualized by kernel PCA with acute, healthy,
convalescent, and all subjects combined from left to right. The healthy manifold overlaps
with the convalescent manifold to a much higher degree than the acute manifold. Middle
row) The same patient manifold shown colored by each patient’s cluster proportion. Cluster
1 is more prevalent in acute, cluster 3 in healthy, cluster 5 is ubiquitous, and cluster 9 is
rare and in acute patients. Bottom row) A comparison of the cluster proportion for acute
(X-axis) versus convalescent (Y-axis) for patients that have matched samples.

123

result, SAUCIE is able to process multisample data in a unified way using a single underlying

representation learned by a deep autoencoder. Thus, different samples can be visualized in

the same coordinates without batch effects via the embedding layer of the neural network,

and cluster proportions can be directly compared, since the whole dataset is decomposed

into a single set of clusters without requiring cluster matching or metaclustering. These

unified representations can be readily used for inter-sample comparisons and stratification,

on the basis of their underlying cell-to-cell heterogeneity.

Mathematically, SAUCIE presents a new way of utilizing deep learning in the analysis of

biological and biomedical data by directly reading and interpreting hidden layers that are

regularized in novel ways to understand and correct different aspects of data. Thus far, deep

learning has primarily been used in biology and medicine as a black-box model designed to

train classifiers that often mimic human classifications of disease or pathology. However, the

network internal layers themselves are typically not examined for mechanistic understanding.

SAUCIE provides a way of obtaining information from internal layers of a deep network.

Deep autoencoding neural networks essentially perform nonlinear dimensionality reduction on

the data. As such they could be used “off-the-shelf” for obtaining new coordinates for data in

a reduced-dimension space, to which other algorithms can be applied. However, in SAUCIE

we aim to go further to structure the reduced dimensions in specifically interpretable ways

using novel regularizations. Our information-theoretic regularization encourages near-binary

activations of an internal layer, thus making the layer amenable to directly output encoded

cluster identifications. We believe that such regularizations add interpretability to layers in

neural networks, thus turning these “black boxes” into “glass boxes.”

The ability to stratify patients on the basis of their single-cell subpopulations, which can

emerge as features in deep neural networks, can be key to a new generation of biomarkers that

can be used in diagnosis and treatment. Traditionally, biomarkers are proteins or antibodies

that are circulating in blood, which signals the presence of infection or other conditions.

However, immune cells are highly plastic and can evolve or activate in specific ways in

response to disease conditions in different patients. Here, we showcase the heterogeneity of

immune cells in response to acute dengue infection in a large patient cohort. We see that

specific subpopulations are enriched in the acute conditions, as opposed to convalescent or

124

healthy controls. We showed with our dengue dataset it is possible discover cell populations,

even rare ones that are indicative of patient and experimental conditions. Other datasets

comprising of large patient cohorts measured at single-cell resolution are underway already

in many hospitals and clinical trials. In the future, we are confident that this capability will

be useful in many studies including immunotherapy, autoimmunity, and cancer, where there

are immune subsets that emerge in response.

6.4 Methods

6.4.1 Computational Methods

In this section we explain the SAUCIE framework in greater detail including the philosophy

behind using autoencoders for learning the cellular manifold, details of the regularizations

used in different layers of SAUCIE to achieve particular data analysis tasks as well as training

and implementation details. Finally, we discuss the emergent higher level organization of

the patient manifold as a result of the cellular manifold of the subjects learned by SAUCIE.

Multitask manifold learning

A popular and effective approach for processing big high-dimensional data in genomics, as

well as other fields, is to intuitively model the intrinsic geometry of the data as being sampled

from a low dimensional manifold – this is commonly referred to as the manifold assumption [1].

This assumption essentially means that local regions in the data can be linearly mapped

to low dimensional coordinates, while the nonlinearity and high dimensionality in the data

comes from the curvature of the manifold. Typically, a notion of locality is derived from the

data with nearest-neighbor search or adaptive kernels to define local neighborhoods that

can approximate tangent spaces of the manifold. Then, these neighborhoods are either used

directly for optimizing low dimensional embeddings (e.g., in TSNE [108] and LLE [133]), or

they are used to infer a global data manifold by considering relations between them (e.g.,

using diffusion geometry [37, 120, 116, 163]).

The characterization of the intrinsic data geometry as a data manifold is also closely

related to the underlying approach in SAUCIE. Indeed, neural networks can be considered

125

as piecewise linear approximations of target functions [115]. In our case, we essentially

approximate the data manifold coordinate charts and their inverse with the autoencoder

architecture of SAUCIE. The encoder training identifies local patches and maps them to

low dimensional coordinates, while sewing these patches together in this embedding to

provide a unified visualization. The decoder learns the linear relation between these intrinsic

coordinates and the tangent spaces of the manifold, positioned in the high dimension. This

also results in a projection of data points on the manifold (via its tangent spaces), which

creates a denoising effect similar to the diffusion-based one used recently in MAGIC [163].

Finally, the clustering layer in SAUCIE is trained to recognize and aggregate similar data

regions to ensure an appropriate granularity (or resolution) of the identified neighborhoods

and prevent excessive fragmentation of the manifold.

While tools using the scaffold of manifold learning have emerged for various tasks in

single cell data analysis, there is currently no unified manifold model that provides all of the

necessary tasks in a scalable fashion. For example, MAGIC [163] uses manifold learning to

impute the data, but does not address embedding, visualization, or clustering. Diffusion

pseudotime [57] provides an organization of the data to infer latent temporal structure and

identifies trajectories, but it does not deal with imputation, clustering, or visualization.

Furthermore, manifold learning methods do not work well across batches and typically just

focus on single batches. Thus, their construction may suffer from batch effects and be

dominated by the geometry between batches rather than their biology, as demonstrated by

the example of Phenograph in Figure 6.16.

To address these shortcomings, SAUCIE performs all operations on a unified manifold

geometry, which is learned implicitly by a deep multitasking neural network. It utilizes the

scalability of deep learning to process high throughput data and construct a manifold that

is jointly optimized for multiple tasks; namely, clustering, visualization, imputation, and

batch correction. Therefore, the tasks themselves respect the manifold assumption and have

the associated advantages, such as robustness to noise, while also agreeing with each other

on a coherent underlying structure of the data.

126

SAUCIE architecture

SAUCIE consists of three encoding layers, an embedding layer, and then three decoding

layers. The default number of neurons per hidden layer in the encoder used were 512, 256,

and 128 with a symmetric decoder. The GMM dataset, being simpler, was clustered with

layers of 50, 30, and 10. For batch correction, the best results were achieved with layer

sizes of 1024, 512, and 256. The ID regularization was applied to the final decoder layer,

which uses a ReLU. The two-dimensional embedding layer uses a linear activation, while

all other layers use a leaky rectified linear activation with 0.2 leak. The coefficients λd and

λc were chosen depending on the dataset, with the best values generally being λd twice λc.

Their magnitude was guided by the effect of these two knobs on the granularity (shown in

Figure 6.12). Training was performed with minibatches of 256, mean-squared-error for the

reconstruction error function, and the optimizer chosen is ADAM with learning rate 0.001.

Batch correction and MMD Regularization

A major challenge in the analysis of single-cell data is dealing with so-called batch effects that

result from technical variability between replicates of an experiment. Combining replicates

often results in technical and experimental artifacts being the dominant source of variability

in the data, even though this variability is entirely artificial. This experimental noise can

come in the form of dropout, changes of scale, changes of location, or even more complicated

differences in the distributions of each batch. It is infeasible to parametrically address all of

the potential differences explicitly, for example, by assuming measurements are drawn from

a Gaussian distribution. Instead of addressing specific explicit models of noise, SAUCIE

minimizes a distance metric between distributions. The batch correction term Lb calculates

the Maximal Mean Discrepancy (MMD) between batches, as

Lb = Σi ̸=refMMD(Vref , Vi),

where Vref is the visualization layer of one of the replicates, arbitrarily chosen to be considered

as a reference batch. MMD compares the average distance from each point to any other

point in its own batch, with the distance to points in the other batch. MMD is zero only

127

when two distributions are equal. Thus minimizing this metric encourages SAUCIE to align

the batches. MMD has been used effectively to remedy batch effects in residual networks,

but here SAUCIE uses it in a feedforward autoencoder and combines it with other tasks of

interest in biological exploratory data analysis [141].

The choice of reference does not affect the degree to which two distributions can be

aligned, but a reference batch is necessary because the encoding layers of a standard network

will be encouraged to embed different batches in different places in the visualization layer.

It does this because the decoder is required to make its reconstruction X̂ match the original

data in X, which includes the batch effects. To remedy this, the decoder in SAUCIE is

required to reconstruct the reference batch exactly as usual, but other batches must only be

reconstructed to preserve the points normalized by mean and variance. Consequently, the

MMD regularization term will be minimized when batches are aligned, and the decoder need

only be able to reconstruct the exact values of the reference batch and the relative values of

the non-reference batches. The non-reference batches will be aligned to the reference batch

in a way that preserves their internal structure as best as possible.

Regularizations and Post-processing for clustering

Information Dimension Regularization We consider the task of clustering data points

by interpreting the sparse layer B in the network as encoding cluster assignments. We

note that a common activation function used to introduce nonlinearities in neural networks

(including SAUCIE) is the Rectified Linear Unit (ReLU), and it provides a natural threshold

for binarizing neuron activation to be either zero or one. These units are either “off” at or

below zero or “on” for any positive value, so a small positive value ϵ can be used a threshold

to binarize the activations in B. This results in an interpretable clustering layer that creates

‘digital’ cluster codes out of an ‘analog’ hidden layer, thus providing a binary code for each

input point of the network. These binary codes are in turn used as cluster identifiers in

order to group data points with the same code into a single cluster.

In order to automatically learn an appropriate granularity of clusters, we developed a

novel regularization that encourages near-binary activations and minimizes the information

(i.e., number of clusters) in the clustering layer. Our regularization is inspired by the von

128

Neumann (or spectral) entropy of a linear operator [10], which is computed as the Shannon

entropy of their normalized eigenvalues. This entropy serves as a proxy for the numerical

rank of the operator, and thus provides an estimation of the essential dimensionality of its

range. In our case, we extend this notion to the nonlinear transformation of the neural

network by treating neurons as our equivalent of eigenvalues, and computing the entropy

of their total activation over a batch. We call this entropy ‘information dimension’ (ID)

and the corresponding ID regularization aims to minimize this entropy while still encoding

sufficient information to allow reconstruction of the input data points.

The ID regularization is computed from the clustering layer activations in B by first

computing the activation of each neuron j as aj =
∑n

i=1Bij , then normalizing these

activations to form an activation distribution p⃗ = a⃗/∥a⃗∥1, and finally computing the entropy

of this activation distribution as

Lc(B) = −
k∑

j=1

pj log pj .

By penalizing the entropy of neuron activations, this regularization encourages a sparse

and binary encoding. This counters the natural tendency of neural networks to maximize

the amount of captured (i.e., encoded) information by spreading activations out across a

layer evenly. By forcing the activations to be concentrated in just a few distinct neurons,

different inputs end up being represented with rather similar activation patterns, and thus

naturally clustered. When combined with the reconstruction loss, the network will retain

enough information in the sparse layer for the decoder to reconstruct the input, keeping

similar points in the same cluster.

Intracluster distance regularization The digital codes learned by SAUCIE create

an opportunity to interpret them as clusters, but these clusters would not necessarily be

comprised of only similar points. To emphasize that inputs only be represented by the same

digital code if they are similar to each other, SAUCIE also penalizes intracluster pairwise

distances. Beyond suffering reconstruction loss, using the same code for points that are far

away from each other will now incur an even greater loss.

129

This loss is calculated as the euclidean distance between points with the same binary

code:

Ld(B, X̂) =
∑

i,j:bi=bj

∥x̂i − x̂j∥2

where x̂i, x̂j and bi, bj are the i-th and j-th rows of X̂ and B, respectively.

Since ID regularization is minimized by using the same code to represent all inputs, this

term acts as an opposing balance. Intracluster distances are minimized when all points are

in a cluster by themselves. Together with the reconstruction penalty, these terms encourage

SAUCIE to learn clusters that are composed of as many points as possible that are near to

each other.

An additional benefit of clustering via regularization is that not only is the number of

clusters not needed to be set a priori, but by changing the value of λc the level of granularity

of the clustering can be controlled, so both coarse clustering and fine clustering can be

obtained to further add insight into the underlying structure of the data.

Cluster merging As the binarized neural network may not converge to the ideal level

of granularity due to the many possible local optima in the loss landscape, we process the

SAUCIE clustering with a cluster merge step to fix the ideal level of granularity everywhere.

The cluster merging is performed by calculating MMD between clusters in the SAUCIE

latent space and merging all clusters i, j ∈ C, where C is the set of all clusters, such that

both of the following equations hold

argmin
ξ∈C

MMD(i, ξ) = j (6.2)

argmin
ξ∈C

MMD(j, ξ) = i (6.3)

This merging finds clusters that would be a single cluster in another granularity and fixes

them to a single cluster.

130

Patient Manifold Visualization

In addition to the cell-level manifold constructed by SAUCIE, we also consider the geometry

between samples to provide a coarser patient-level manifold. We construct and embed this

manifold in low dimensions by applying kernel-PCA (kPCA) with an RBF kernel to the

metric space defined by MMD distances between subjects. This augments the analysis

SAUCIE provides of the biological variations identified in the cell space with an analysis

of the variation in the patient space. Normally, without batch correction, the two sources

of variation would be confounded, and batch effects would prevent clear analysis at either

level (patient or cell) across batches. With our approach here we are able to separate

them to provide on one hand, a stable (batch-invariant) cell-level geometry by the SAUCIE

embedding, and on the other hand, a robust patient geometry provided by kPCA embedding.

The patient geometry then allows us to recover patient-level differences and utilize them

further for data exploration, in conjunction with the cell-level information. For example,

as Figure 6.13A shows, we have a notable stratification between the acute and non-acute

subjects. There is also a noticeable difference between the convalescent subjects and the

acute, albeit a less drastic one than the difference between acute subjects and the others.

Training

To perform multiple tasks, SAUCIE uses a single architecture as described above, but is run

and optimized sequentially. The first run imputes noisy values and corrects batch effects in

the original data. This preprocessed data is then run through SAUCIE again to obtain a

visualization and to pick out clusters. The different runs are done by optimizing different

objective functions. In the following, we describe the optimization of each run over a single

batch of n data points. However, the full optimization of each run independently utilizes

multiple (mini-)batches in order to converge and minimize the described loss functions.

For the first run, formally let X be an n × d input batch, where each row is a single

data point, and d is the number of features in the data. It is passed through a cascade of

encoding linear and nonlinear transformations. Then, a cascade of decoding transformations

reconstruct the denoised batch X̂, which has the same dimensions as the input X and is

131

optimized to reconstruct it.

For the next run, the cleaned batch X̂ is passed through encoding transformations and a

visualization layer denoted by V ∈ Rn×2. We also consider a clustering layer in another run

where the decoder outputs near-binary activations B ∈ Rn×dB , where dB is the number of

hidden nodes in the layer, which will be used to encode cluster assignments, as described

below. The activations in B are then passed to the reconstruction X̃ that has the same

dimensions as X̂ (and X) and is optimized to reconstruct the cleaned batch.

The loss function of all runs starts with a reconstruction loss Lr forcing the autoencoder

to learn to reconstruct its input at the end. SAUCIE uses the standard mean-squared

error loss (i.e., Lr(X, X̂) = 1
n

∑n
i=1∥xi − x̂i∥2, where xi and x̂i are the i-th row of X and X̂

correspondingly). We note that while MSE is a standard and effective choice in general, other

loss functions can also be used here as application-specific substitutes that may be more

appropriate for particular types of data. For the first run, we add to this loss a regularization

term Lb that enables SAUCIE to perform batch correction. This regularization is computed

from the visualization layer to ensure consistency across subsampled batches. The resulting

total loss is then

L = Lr(X, X̂) + λb · Lb(V).

The loss function of the clustering run then optimizes Lr along with two regularization terms

Lc and Ld that together enable SAUCIE to learn clusters:

L = Lr(X̂, X̃) + λc · Lc(B) + λd · Ld(B, X̂).

The first term Lc guides SAUCIE to learn binary representations via the activations in

B using a novel information dimensionality penalty that we introduce in this paper. The

second term Ld encourages interpretable clusters that contain similar points by penalizing

intra-cluster distances in the cleaned batch X̂, which is fixed for this run.

132

suppfig:batcheffect3

Figure 6.14: Four select marker abundances with samples grouped by day they were run on
the cytometry instrument, with each day having fourteen distinct samples in the group. For
each marker, the fourteen samples before batch correction are shown to the left of the same
fourteen samples after batch correction.

Dengue dataset batch correction

Beyond the sheer size of the total dataset, due to the large number of distinct samples in

the experiment there are significant batch related artifacts effects, stemming from day-to-

day differences, instruments, handling and shipping of the samples. While there are true

biological differences between the individual samples, to identify those true differences in

the samples we have to remove differences that are caused by these technical variables.

Differences that are highly associated with the day the samples were run on the cytometry

instrument can be seen by grouping all of the samples together by run day and examining

their marker-by-marker abundances. Each run day has twelve samples chosen such that

each day has samples from each experimental condition, so any differences between the

samples from each day are batch effects. As shown in Figure 6.6, these difference exist in

the spike-in controls as well as the samples, confirming their identity as batch effect and not

true variation.

Figure 6.14 shows four markers with extreme batch effects: TCRgd, IL-6, IFNg, and

CD86. These batch effects would normally mean only samples within each run day could

be compared to each other, as comparisons between samples from different run days would

be dominated by the differences in the run days. Instead, the SAUCIE batch correction

removes these undesirable effects by combining the samples from each day and aligning them

133

suppfig:batcheffect1

Figure 6.15: Histograms of marker expression (top: IL-6, bottom: CD86) of samples run
together on the cytometry instrument on day two, separated by sample. The values for each
sample and marker are shown before SAUCIE batch correction (left) and after SAUCIE
batch correction (right).

to a reference batch, here chosen to be Day 1. Figure 6.14 shows that after SAUCIE the

differences between run days disappear so that now what it means to be low or high in a

marker is the same for each day. Before, the cells with the lowest IFNg in samples from

Day 3 would still be considered IFNg+ while the cells with the highest IFNg in samples

from Day 1 would still be IFNg-. After batch correction with SAUCIE, these can be directly

compared.

The challenge of batch correction is to remove differences due to artifacts while preserving

biological differences. We reason that to prevent removing true biological variation, the

‘shape’ of the data (but not its position and scale) within each day must be preserved. We

define the shape of the data as any moment beyond the first two - mean and variance. We

examine this in detail by considering a run day with the most significant batch effects, Day 2.

In Figure 6.6C, the SAUCIE visualization shows that the reference and nonreference batches

are completely separated. When MMD regularization is added in SAUCIE, though, these

134

two batches are fully overlapped. In Figure 6.15, we examine the twelve individual samples

that were run on Day 2. Initially, we see that this confirms our idea that the differences

between days are batch effects, because each sample measures high in IL-6 and CD86. So the

differences between samples run on Day 1 and Day 2 in CD86 abundance is not dominated

by having more of a certain sample type in Day 2. Instead, all samples in Day 2 have been

shifted higher. As desired, after batch correction, the mean of each marker is reduced to the

level of the reference-batch mean. Crucially, the relationship of samples in Day 2 relative to

each other is preserved. The samples with the highest IL-6 in Day 2 are still Samples 3, 9,

and 11 while the samples with the lowest are still Samples 4, 5, and 6. SAUCIE has just

changed what it means to be high or low for samples in this day such that it reconciles what

it means to be high or low for samples in the reference day.

Comparison to Phenograph

We next compare the SAUCIE pipeline of batch correcting, clustering, and visualizing single-

cell data from a cohort of subjects to an alternative approach called metaclustering [92]. We

first cluster each sample individually with Phenograph. Then, we represent each cluster as

its centroid and use Phenograph again on the clusters to obtain metaclusters. We examine

the pipelines on ten of the 180 samples here, where the metaclustering approach took forty

minutes. We note that the SAUCIE pipeline took 45 minutes to process all 180 samples,

while the metaclustering approach would take 12 hours to process all of them. Figure 6.16

shows tSNE embeddings of the cluster centroids where the size of the cluster is proportional

to the size of the point. Coloring by sample, we see that the metaclusters have identified

batch effects. Metacluster 0 is only composed of samples 1, 3, 4, and 5. These samples

have no clusters in any other metacluster, and none of the other samples have any cluster

in this metacluster. Examining the gene expression heatmap, we see that metacluster 0

has separated cells with high CD86 values, which were shown earlier to be batch effects.

Moreover, the metaclusters are very heterogeneous internally with respect to gene expression.

This is a results of metaclustering the cluster centroids, as the metaclusters then have no

information about the individual cells comprising that centroid.

In contrast, Figure 6.17 shows the SAUCIE pipeline on these ten samples. The cluster

135

Figure 6.16: An illustration of the metaclustering process on the dengue dataset. Top
left: cluster centroids embedded by tSNE and colored by metacluster, sized according to
the number of cells in each cluster. Top right: cluster centroids colored by sample, also
sized according to the number of cells in each cluster. Bottom left: a cell-level heatmap of
expression grouped by metacluster. Bottom right: the composition of each metacluster by
sample.

136

Figure 6.17: An illustration of the SAUCIE pipeline on the dengue dataset. Left: cell-level
heatmap of expression grouped by cluster. Top right: cluster centroids embedded by tSNE,
sized according to the number of cells in each cluster. Bottom right: the composition of
each cluster by sample.

137

proportions show that each cluster is fully mixed with respect to the samples, as opposed

to the sample-segregated metaclusters of the previous approach. Similarly, the clusters are

more homogeneous internally, meaning they actually keep similar cells together, as opposed

to the metaclusters, which lost this information when each cluster was represented by only its

centroid. Finally, we find that SAUCIE effectively compares cells across subjects, while the

metaclustering approach still fails at patient-to-patient comparisons, instead only identifying

batch effect variation. This emphasizes the importance of multitask learning using a unified

representation in SAUCIE.

Runtime Comparison Methodology

For each visualization, clustering, and imputation method, the dataset of size N was given

to the method as input and returned the appropriate output. For batch correction, the

dataset of size N was divided into two equal-sized batches that were corrected. For the

methods that operated on minibatches, minibatches of size 128 were used. For the methods

that train by stochastic gradient descent, the number of steps was determined by taking the

total number of points and dividing by the size of the minibatch, so that a complete pass

through the entire dataset was performed. In order to return clusters, the latent space of

scVI must be clustered by another method, and since the number of clusters is not known

ahead of time, the fastest method that does not require this to be known (Phenograph)

was used. For SAUCIE, batch correction, imputation, clustering, and visualization were all

produced in the timed run. All computations were performed on a single machine with 16

CPU cores and a GeForce GTX 1080 GPU.

Number of Clusters

As discussed earlier, the number of clusters resulting from SAUCIE is not specified in

advance, but dictated by the structure of the data that the model discovers, and by the

choice of regularization coefficients λd and λc. For a given value of λd, as λc increases,

the number of clusters decreases. Increasing λd, on the other hand, increases the number

of clusters (Figure 6.12). This is because λc penalizes entropy in the activations of the n

neurons in the clustering layer of the network. While entropy can be initially decreased by

138

making all n neurons either 0 or 1, it can be further decreased by making all n neurons 0.

Thus, as this term is considered more influential in the total loss, in the extreme, all points

can be mapped to the same binary code. In contrast, λd penalizing intra-cluster distances,

so this value can be decreased by making clusters smaller and smaller (and thus getting

more of them). In the extreme for this term, every point can be made its own cluster and

intra-cluster distances would decrease to 0. By balancing these two, the desired granularity

of clustering can be obtained from SAUCIE. In our experiments, we find making λd to be

between two and three times larger than λc, with values around 0.2 generally results in

medium coarse-grained clustering. Another consideration that affects the number of clusters

is the number of neurons in the clustering layer. We found varying this number does not

improve performance and for all experiments here we use a fixed size of 256 neurons.

6.4.2 Experimental methods

Study Subjects

Dengue patients and healthy volunteers were enrolled with written informed consent under the

guidelines of the Human Investigations Committees of the NIMHANS and Apollo Hospital,

and Yale University [187]. The Human Investigations Committee of each institution approved

this study. Patients with dengue virus infection were defined as dengue fever using WHO-

defined clinical criteria, and/or laboratory testing of viral load or serotyping at the time of

infection. Healthy volunteers included household contacts of dengue patients present in the

same endemic area. Participants were of both genders (26.7% female) and were all of Indian

heritage. Subjects from the symptomatic and healthy groups were not statistically different

for age, gender, or race in this study.

Sample Collection and Cell Isolation

Heparinized blood was collected from patients and healthy volunteers and employed a

42 marker panel of metal conjugated antibodies following methods previously described

[180, 179]. Purification of peripheral blood mononuclear cells (PBMCs) was performed

by density-gradient centrifugation using Ficoll-Paque (GE Healthcare) according to the

139

manufacturer’s instructions following isolation and cryopreservation guidelines established by

the Human Immunology Phenotyping Consortium. PBMCs for CyTOF were frozen in 90%

FBS containing 10% DMSO and stored in liquid N2 for shipping following the guidelines of

the DBT. Samples for this study were received in three shipments and viability was average

85% (range 50− 98) across the dates.

Mass Cytometry Acquisition

For mass cytometry at Yale University, PBMCs (5 x 106 cells/vial) were thawed incubated

in Benzonase (50U/ml) in RPMI/10% human serum, and seeded in 96-well culture plate

(6 x 103-1.2 x 106 cells/well. Monensin (2mM, eBioscience) and Brefeldin A (3mg/ml,

eBioScience) added for the final 4 h of incubation for all groups. Groups of samples (8-

13/day) were infected in vitro per day on 5 separate days and included a CD45-labeled

spike-in reference sample in every sample. Surface markers were labeled prior to fixation and

detailed staining protocols have been described. Briefly, cells were transferred to 96-well deep

well plates (Sigma), resuspended in 25 mM cisplatin (Enzo Life Sciences) for one minute, and

quenched with 100% FBS. Cells were surface labeled for 30 min on ice, fixed (BD FACS Lyse),

and frozen at −80°C. Intracellular labeling was conducted on batches of cells (12/day). Fixed

PBMCs were permeabilized (BD FACS Perm II) for labeling with intracellular antibodies for

45 min on ice. Cells were suspended overnight in iridium interchelator (125 nM; Fluidigm)

in 2% paraformaldehyde in PBS and washed 1X in PBS and 2X in H2O immediately before

acquisition. A single batch of metal-conjugated antibodies was used throughout for labeling

panels. Metal-conjugated antibodies were purchased from Fluidigm, Longwood CyTOF

Resource Core (Cambridge, MA), or carrier-free antibodies were conjugated in house using

MaxPar X8 labeling kits according to manufacturer’s instructions (Fluidigm). A total of

180 samples were assessed by the Helios (Fluidigm) on 15 independent experiment dates

using a flow rate of 0.03 ml/min in the presence of EQ Calibration beads (Fluidigm) for

normalization. An average of 112, 537 ± 71, 444 cells (mean ± s.d.) from each sample

were acquired and analyzed by CyTOF. Data was preprocessed with the hyperbolic sine

transformation. Additional experimental details will be given in [187].

140

Chapter 7

Neuron Editing

7.1 Introduction

While generative neural networks can learn to transform a specific input dataset into a

specific target dataset, they require having just such a paired set of input/output datasets.

For instance, to fool the discriminator, a generative adversarial network (GAN) exclusively

trained to transform images of black-haired men to blond-haired men would need to change

gender-related characteristics as well as hair color when given images of black-haired women

as input. This is problematic, as often it is possible to obtain a pair of (source, target)

distributions but then have a second source distribution where the target distribution is

unknown. The computational challenge is that generative models are good at generation

within the manifold of the data that they are trained on. However, generating new samples

outside of the manifold or extrapolating “out-of-sample” is a much harder problem that

has been less well studied. To address this, we introduce a technique called neuron editing

that learns how neurons encode an edit for a particular transformation in a latent space.

We use an autoencoder to decompose the variation within the dataset into activations of

different neurons and generate transformed data by defining an editing transformation on

those neurons. By performing the transformation in a latent trained space, we encode fairly

complex and non-linear transformations to the data with much simpler distribution shifts to

the neuron’s activations. Our technique has the advantage of being generally applicable to

a wide variety of data domains, modalities, and applications. We first demonstrate it on

141

image transformations and then move to our two main applications in biology: removal of

batch artifacts representing unwanted noise and modeling the effect of drug treatments to

predict synergy between drugs.

Many experiments in biology are conducted to study the effect of a treatment or a

condition on a set of samples. For example, the samples can be groups of cells and the

treatment can be the administration of a drug. However, experiments and clinical trials

are often performed on only a small subset of samples from the entire population. Usually,

it is assumed that the effects generalize to all of the samples in a context-independent

manner, potentially conflating sample-specific variation with treatment-induced variation.

Mathematically modeling both sources of variation and isolating the treatment-induced

parts provides an opportunity to improve generalization beyond the samples measured.

We propose a neural network-based method for learning a general edit function corre-

sponding to treatment in the biological setting. Popular neural network architectures like

GANs pose the problem as one of learning to output data in the region of the space occupied

by the target distribution, no matter where the input data is coming from. To fool the

discriminator, the generator’s output must end up in the same part of the space as the

target distribution. The discriminator does not take into account the input points into the

generator in any way.

Instead, we reframe the problem as learning a transformation towards the target dis-

tribution that is more sensitive to where the input data starts. Thus, we could learn an

edit between pre- and post- treatment samples on one patient and apply it to pre-treatment

samples of another patient without also modeling patient-specific characteristics that were

present both pre- and post-treatment.

We propose to learn such an edit, which we term neuron editing, in the latent space of

an autoencoder neural network with non-linear activations. First we train an autoencoder

on the entire population of data which we are interested in transforming. This includes all

of the pre-treatment samples and the post-treatment samples from the subset of the data

on which we have post-treatment measurements. Neuron editing then involves extracting

differences between the observed pre-and post-treatment activation distributions for neurons

in this layer and then applying them to pre-treatment data from the rest of the population

142

to synthetically generate post-treatment data. Thus performing the edit node-by-node in

this space actually encodes complex multivariate edits in the ambient space, performed

on denoised and meaningful features, owing to the fact that these features themselves are

complex non-linear combinations of the input features.

Neuron editing is a general technique that could be applied to the latent space of any

neural network, even GANs themselves. We focus exclusively on the autoencoder in this

work, however, to leverage its denoising ability, robustness to mode dropping, and superior

training stability as compared to GANs. We demonstrate that neuron editing can work on a

variety of architectures, while offering the advantages of introducing no new hyperparameters

to tune and being stable across multiple runs.

While latent space manipulation has been explored in previous work, ours differs in

several ways. For example, [129] represents a transformation between two distributions as a

single constant shift in latent space. In addition to assuming the latent transformation is the

same for all points in the distribution, [161] also uses an off-the-shelf pre-trained Imagenet

classifier network. Our work, on the other hand, does not require a richly supervised pre-

trained model; also, we model the shift between two distributions as a complex, non-constant

function that learns different shifts for different parts of the space. We compare to this

”constant-shift” approach and demonstrate empirically why it is necessary to model the

transformation more complexly.

By performing the edit to the neural network internal layer, we allow for the modeling of

some context dependence. Some neurons are less heavily edited but still influence the output

jointly with edited neurons due to their integration in the decoding layers, propagating their

effect into the output space.

We note that neuron editing makes the assumption that the internal neurons have

semantic consistency across the data, i.e., the same neurons encode the same types of

features for every data manifold. We demonstrate that this holds in our setting because we

choose to let the autoencoder learn a joint manifold of all of the given data, including pre-

and post-treatment samples of the experimental subpopulation and pre-treatment samples

from the rest of the population. Recent results show that neural networks prefer to learn

patterns over memorizing inputs even when they have the capacity to do so [183].

143

We demonstrate that neuron editing extrapolates better than generative models on two

important criteria. First, as to the original goal, the predicted change on extrapolated

data more closely resembles the predicted change on interpolated data. Second, the editing

process produces more complex variation, since it simply preserves the existing variation

in the data rather than needing a generator to learn to create it. We compare to standard

GAN approaches, dedicated parametric statistical methods used by computational biologists,

and alternative autoencoder frameworks. In each case, we see that they stumble on one or

more of several hurdles: out-of-sample input, desired output that differs from the target of

the training data, and data with complex variation.

In the following section, we detail the neuron editing method. Then, we motivate the

extrapolation problem by trying to perform natural image domain transfer on the canonical

CelebA dataset [99]. We then move to two biological applications where extrapolation is

essential: correcting the artificial variability introduced by measuring instruments (batch

effects), and predicting the combined effects of multiple drug treatments (combinatorial drug

effects) [11].

7.2 Model

Let S ∈ RnS×d, T ∈ RnT×d,X∈RnX×d
represent d-dimensional source, target, and second

source distributions with nS , nT , and nX observations, respectively. We seek a transformation

such that: 1. when applied to S it produces a distribution equivalent to T 2. when applied to

T it is the identity function and 3. when applied to X it does not necessarily produce T if S

is different from X. While GANs learn a transformation with the first two properties, they

fail at the third property due to the fact that T is the only target data we have for training,

and thus the generator only learns to output data like T . Therefore, instead of learning such

a transformation parameterized by a neural network, we learn a simpler transformation on a

space learned by a neural network (summarized in Figure 7.1).

We first train an encoder/decoder pair E/D to map the data into an abstract neuron

space decomposed into high-level features such that it can also decode from that space, i.e.,

144

Figure 7.1: (a) Neuron editing interrupts the standard feedforward process, editing the
neurons of a trained encoder/decoder to include the source-to-target variation, and letting
the trained decoder cascade the resulting transformation back into the original data space.
(b) The neuron editing process. The transformation is learned on the distribution of neuron
activations for the source and applied to the distribution of neuron activations for the
extrapolation data.

145

the standard autoencoder objective L:

L(S, T,X) = MSE [(S, T,X), D(E(S, T,X))]

where MSE is the mean-squared error. The autoencoder is trained on all three data

distributions S, T , and X and thus learns to model their joint manifold. Then, without

further training, we separately extract the activations of an n-dimensional internal layer of

the network for inputs from S and from T , denoted by aS : S → Rn, aT : T → Rn. We define

a piecewise linear transformation, called NeuronEdit, which we apply to these distributions

of activations:

NeuronEdit(a) =

(
a− pSj

pSj+1 − pSj
· (pTj+1 − pTj)

)
+ pTj (7.1)

where a ∈ Rn consists of n activations for a single network input, pSj , p
T
j ∈ Rn consist of

the jth percentiles of activations (i.e., for each of the n neurons) over the distributions

of aS , aT correspondingly, and all operations are taken pointwise, i.e., independently on

each of the n neurons in the layer. Then, we define NeuronEdit(aS) : S → Rn given by

x 7→ NeuronEdit(aS(x)), and equivalently for aT and any other distribution (or collection)

of activations over a set of network inputs. Therefore, the NeuronEdit function operates

on distributions, represented via activations over network input samples, and transforms

the input activation distribution based on the difference between the source and target

distributions (considered via their percentile disctretization).

We note that the NeuronEdit function has the three properties we stated above:

1. NeuronEdit(aS) ≈ aT (in terms of the represented n-dimensional distributions)

2. NeuronEdit(aT) = aT

3. NeuronEdit(aX) = NeuronEdit(aS) =⇒ aX = aS

.

This last property is crucial since learning to generate distributions like T , with a GAN

for example, would produce a discriminator who encourages the output to be funneled as

146

close to T as posssible no matter where in the support we start from.

To apply the learned transformation to X, we first extract the activations of the internal

layer computed by the encoder, aX . Then, we edit the activations with the neuron editing

function âX . Finally, we cascade the transformations applied to the neuron activations

through the decoder without any further training. Thus, the transformed output X̂ is

obtained by:

X̂ = D(NeuronEdit(E(X)))

We emphasize that at this point, since we do no further training of the encoder and decoder,

and since the neuron editing transformation has no weights to learn, there is no further

objective term to minimize at this point and the transformation is fully defined.

Crucially, the nomenclature of an autoencoder no longer strictly applies. If we allowed

the encoder or decoder to train with the transformed neuron activations, the network could

learn to undo these transformations and still produce the identity function. However, since

we freeze training and apply these transformations exclusively on inference, we turn an

autoencoder into a generative model that need not be close to the identity.

Training a GAN in this setting could exclusively utilize the data in S and T , since we

have no real examples of the output for X to feed to the discriminator. Neuron editing, on

the other hand, is able to model the variation intrinsic to X in an unsupervised manner

despite not having real post-transformation data for X. Since we know a priori that X will

differ substantially from S, this provides significantly more information.

Furthermore, GANs are notoriously tricky to train [137, 55, 172]. Adversarial discrimi-

nators suffer from oscillating optimization dynamics [95], uninterpretable losses [17, 13], and

most debilitatingly, mode collapse [147, 80, 121]. Under mode collapse, significant diversity

that should exist in the output of the generator is lost, instead producing synthetic data

that is a severely degenerated version of the true target distribution.

Neuron editing avoids all of these traps by learning an unsupervised model of the data

space with the easier-to-train autoencoder. The essential step that facilitates generation

is the isolation of the variation in the neuron activations that characterizes the difference

147

between source and target distributions.

There is a relationship between neuron editing and the well-known word2vec embeddings

in natural language processing [51]. There, words are embedded in a latent space where a

meaningful transformation such as changing the gender of a word is a constant vector in

this space. This vector can be learned on one example, like transforming man to woman,

and then extrapolated to another example, like king, to predict the location in the space

of queen. Neuron editing is an extension in complexity of word2vec’s vector arithmetic,

because instead of transforming a single point into another single point, it transforms an

entire distribution into another distribution.

7.3 Experiments

We compare the predictions from neuron editing to those of several generation-based

approaches: a traditional GAN, a GAN implemented with residual blocks (ResnetGAN) to

show generating residuals is not the same as editing [150], and a CycleGAN [189]. While in

other applications, like natural images, GANs have shown an impressive ability to generate

plausible individual points, we illustrate that they struggle with these two criteria. We also

motivate why neuron editing is performed on inference by comparing against a regularized

autoencoder that performs the internal layer transformations during training, but the decoder

learns to undo the transformation and reconstruct the input unchanged [6]. Lastly, we

motivate why the more complex neuron editing transformation is necessary by comparing

against a naive “latent vector arithmetic” approach. We find the constant vector between

the mean of the source and the mean of the target in the internal layer of our pre-trained

autoencoder, and apply this single shift to all neurons in the target (Constant Shift).

For the regularized autoencoder, the regularization penalized differences in the distri-

butions of the source and target in a latent layer using maximal mean discrepancy [6, 46].

The image experiment used convolutional layers with stride-two filters of size four, with

64-128-256-128-64 filters in the layers. All other models used fully connected layers of size

500-250-50-250-500. Leaky ReLU activation was used with 0.2 leak. Training was done with

minibatches of size 100, with the Adam optimizer [81], and learning rate 0.001.

148

Figure 7.2: Data from CelebA where the source data consists of males with black hair and
the target data consists of males with blond hair. The extrapolation is then applied to
females with black hair. (a) A comparison of neuron editing against other models. Only
neuron editing successfully applies the blond hair transformation. (b) An illustration that
neuron editing must be applied to the neurons of a deep network, as opposed to principle
components.

CelebA Neuron Editing GAN CycleGAN ResnetGAN RegAE Constant Shift
FID 121.63 +/- 2.12 282.26 +/- 13.32 153.03 +/- 6.55 184.31 +/- 9.71 272.12 +/- 1.10 320.97 +/- 1.04

Table 7.1: FID scores on the CelebA extrapolation task.

149

7.3.1 CelebA Hair Color Transformation

We first consider a motivational experiment on the canonical image dataset of CelebA [99].

If we want to learn a transformation that turns a given image of a person with black hair to

that same person except with blond hair, a natural approach would be to collect two sets

of images, one with all black haired people and another with all blond haired people, and

teach a generative model to map between them. The problem with this approach is that the

learned model may perform worse on input images that differ from those it trained on. This

has troubling consequences for the growing concern of socially unbiased neural networks, as

we would want model performance to go unchanged for these different populations [156].

This is illustrated in Figure 7.2a, where we collect images that have the attribute male

and the attribute black hair and try to map to the set of images with the attribute male

and the attribute blond hair. Then, after training on this data, we extrapolate and apply

the transformation to females with black hair, which had not been seen during training.

The GAN models are less successful at modeling this transformation on out-of-sample data.

In the parts of the image that should stay the same (everything but the hair color), they

do not always generate a recreation of the input. In the hair color, only sometimes is the

color changed. The regular GAN model especially has copious artifacts that are a result

of the difficulty in training these models. This provides further evidence of the benefits of

avoiding these complications when possible, for example by using the stable training of an

autoencoder and editing it as we do in neuron editing.

We quantify the success of neuron editing by using the common metric of Frechet

Inception Distance (FID) that measures how well the generated distribution matches the

distribution targeted for extrapolation. These scores are reported in Table 7.1, where we

see neuron editing achieve the best result on an average of three runs. Notably, due to the

autoencoder’s more stable training, the standard deviation across multiple runs is also lower

than the GAN-based methods.

In Figure 7.2b, we motivate why we need to perform the NeuronEdit transformation

on the internal layer of a neural network, as opposed to applying it on some other latent

space like PCA. Only in the neuron space has this complex and abstract transformation of

150

Figure 7.3: Additional CelebA transformations.

changing the hair color (and only the hair color) been decomposed into a relatively simple

and piecewise linear shift.

Beyond hair color transformation, neuron editing is able to learn general transformations

on CelebA males and apply them to females. In Figure 7.3, we learn to transform between

having/not having the mustache attribute and having/not having the glasses attribute. The

latter transformation on glasses demonstrates the importance of learning a non-constant

transformation. The glasses attribute is bimodal, with both examples of sunglasses and

reading glasses in the dataset. With neuron editing, we are able to learn to map to each of

these different parts of the latent space, as opposed to the constant shift which adds dark

sunglasses to the entire distribution.

7.3.2 Batch correction by out-of-sample extension from spike-in samples

We next demonstrate another application of neuron editing’s ability to learn to transform

a distribution based on a separate source/target pair: biological batch correction. Many

biological experiments involve using an instrument to measure different populations of

cells and then characterizing the features that distinguish between them. However, these

complex instruments can be difficult to calibrate and use consistently, and thus can introduce

151

technical artifacts into the data they are used to measure. In fact, we can even measure the

same population of cells twice and get two very different datasets back. When we measure

different populations, these technical artifacts (batch effects) get confounded with the true

differences between the populations. Batch effects are a ubiquitous problem in biological

experimental data can lead to incorrect conclusions in downstream analysis. Addressing

batch effects is a goal of many new models [48, 160, 25, 58], including some deep learning

methods [142, 6].

One method for grappling with this issue is to repeatedly measure an unvarying control

(called a spike-in) set of cells with each population of interest (called a sample) [15]. Because

we know any observed differences in the spike-in are technical artifacts, we can model and

then remove this artifact in the population of interest. In our previous terminology, the

two spike-in distributions are our known source/target pair while the actual population of

interest is our second source that lacks a known target.

Existing methods of batch correction based on spike-ins work directly in the data space,

operate independently on each dimension, and only do crude matching of distribution

statistics. The most common approach is to simply subtract the difference in means between

the spike-ins from the sample. We believe this is natural opportunity for deep learning, where

the same concept can be extended to an abstract feature space, composed of combinations

of features, and a more powerful transformation. Moreover, we expect neuron editing to

shine as the spike-ins likely differ drastically from the sample.

The dataset we investigate in this section comes from a mass cytometry [16] experiment

which measures the amount of particular proteins in each cell in two different individuals

infected with dengue virus [6]. We note that these data are in a drastically different format

from the images of the previous experiment, as they are in tabular form with cell i being

row i and the amount of protein j in column j. We believe a key strength to neuron editing

is its general applicability to a wide range of data types and modalities. In this particular

experiment, there are four datasets, each consisting of measurements of 35 proteins: the

two spike-ins we refer to as Control1 and Control2 are shape 18919× 35 and 22802× 35,

respectively, while the two populations we actually want to study, called Sample1 and

Sample2, are shape 94556× 35 and 55594× 35. To better grasp the problem of batch effects,

152

Figure 7.4: Neuron editing corrects the variation in IFNg while preserving the variation in
CCR6 and correctly predicting the effect of combining two drugs.

Neuron Editing GAN CycleGAN ResnetGAN RegAE Constant Shift CCA MNN ComBat Limma
0.96275 0.5108 0.4310 0.6268 -0.0508 0.88205 0.6034 0.5339 0.5569 0.5431

Table 7.2: Correlation between observed change in spike-ins and applied change to samples.
Neuron editing most accurately applies just the transformation observed as batch effect and
not true biological variation.

we visualize a biaxial plot with two of the proteins where there is a batch effect in one

dimension and a true underlying biological difference in the other dimension (Figure 7.4).

By using the controls, we seek to correct the artificially low readings of the protein IFNg in

Sample1 (along the x-axis) without removing the biologically accurate readings of higher

amounts of protein CCR6 (along the y-axis).

We would like our model to identify this source of variation and compensate for the

lower values of IFNg without losing other true biological variation in Sample1. For example,

Sample1 also has higher values of the protein CCR6, and as the controls show, this is a true

biological difference, not a batch effect (the y-axis in Figure 7.4a).

We quantify the performance of the models at this goal by measuring the correlation

between the change in median marker values observed in the spike-in with the change applied

to the sample. If this correlation is high, we know the transformation applied to the samples

only removes the variation where we have evidence, coming from the spike-ins, that it is a

technical artifact. This data is presented in Table 7.2, where we compare to not only the deep

generative models we have already introduced, but also dedicated batch correction methods

commonly used by practitioners [76, 58, 25]. We see that neuron editing outperforms all of

the alternatives at extrapolating from the spike-ins to the samples. This is unsurprising, as

the GAN methods are only trained to produce data like Control2, and thus will not preserve

much of the variation in the sample. The traditional batch correction methods make specific

153

Figure 7.5: (a) The global shift in the two controls (light blue to red) is isolated and this
variation is edited into the sample (dark blue to red), with all other variation preserved.
(b) The median change in the sample in each dimension corresponds accurately with the
evidence in each dimension in the controls.

Neuron Editing GAN CycleGAN ResnetGAN RegAE Constant Shift
r 0.99661/0.97232 0.87014/0.58130 0.92687/0.85380 0.94529/0.93032 0.91965/0.96053 0.96680/0.96925

Table 7.3: Correlation between real and predicted means/variances on the combinatorial
drug prediction data. The GANs generate data that is less accurate (means are off) and less
diverse (variances are smaller) than the real data, while neuron editing best models the true
distribution.

parametric distributional assumptions on the data that are not held in practice, and thus

also perform poorly. The regularized autoencoder, since the transformation is performed

during training rather than after training like neuron editing, just reproduces its input

unchanged.

In Figure 7.5a, a PCA embedding of the data space is visualized for Control1 (light

blue), Control2 (light red), Sample1 (dark blue), and post-transformation Sample1 (dark

red). The transformation from Control1 to Control2 mirrors the transformation applied to

Sample1. Notably, the other variation (intra-sample variation) is preserved. In Figure 7.5b,

we see that for every dimension, the variation between the controls corresponds accurately

to the variation introduced by neuron editing into the sample. These global assessments

across the full data space offer additional corroboration that the transformations produced

by neuron editing reasonably reflect the transformation as evidenced by the controls.

154

7.3.3 Combinatorial drug treatment prediction on single-cell data

Finally, we consider biological data from a combinatorial drug experiment on cells from

patients with acute lymphoblastic leukemia [11]. The dataset we analyze consists of cells

under four treatments: no treatment (basal), BEZ-235 (Bez), Dasatinib (Das), and both Bez

and Das (Bez+Das). These measurements also come from mass cytometry, this time on 41

dimensions, with the four datasets consisting of 19925, 20078, 19843, and 19764 observations,

respectively. In this setting, we define the source to be the basal cells, the target to be the

Das cells, and then extrapolate to the Bez cells. We hold out the true Bez+Das data and

attempt to predict the effects of applying Das to cells that have already been treated with

Bez.

Predicting the effects of drug combinations is an application which is typically approached

through regression, fitting coefficients to an interaction term in a multiple linear regression

model. This limitation of only fitting linear relationships and treating each protein inde-

pendently, greatly restricts the model in a biological contexts where we know nonlinearity

and protein regulatory networks exist and play a large role in cellular function. Using

neuron editing in this context facilitates learning a much richer transformation than previous,

non-deep learning methods.

We quantitatively evaluate whether neuron editing produces a meaningful transformation

in Table 7.3, where we calculate the correlation between the real and generated means and

variances of each dimension. Neuron editing more accurately predicts the principle direction

and magnitude of transformation across all dimensions than any other model. Furthermore,

neuron editing better preserves the variation in the real data. The GANs have trouble

modeling the diversity in the data, as manifested by their generated data having significantly

less variance than really exists.

We see an example of the learned transformation by looking at a characteristic effect

of applying Das: a decrease in p4EBP1 (seen on the x-axis of Figure 7.4c). No change in

another dimension, pSTATS, is associated with the treatment (the y-axis of Figure 7.4c).

Neuron editing accurately models this change in p4EBP1, without introducing any change

in pSTATS or losing variation within the extrapolation dataset (Figure 7.4d).

155

We note that since much of the variation in the target distribution already exists in the

source distribution and the shift is a relatively small one, we might expect the ResnetGAN

to be able to easily mimic the target. However, despite the residual connections, it still

suffers from the same problems as the other models using the generating approach: namely,

the GAN objective encourages all output to be like the target it trained on. This leaves

it unable to produce the correct distribution if it differs from the target of the learned

transformation, as we see in this case.

7.4 Discussion

In this work, we have only consider learning from a single pair of distributions and applying

it to another single distribution. We consider it an interesting direction for future work to

extend this to multiple distributions, either for learning from and application to. Additional

future work along these lines could include training parallel encoders with the same decoder,

or training to generate conditionally.

156

Chapter 8

Discussion and Future Work

This thesis has put together concepts from computer science, namely deep learning and

artificial intelligence, but also statistics and computational biology. Generative modeling

is a complex goal at the intersection of many different fields. As the need for generative

models increases, especially in data integration, no single model will be best in all settings.

This thesis presents a few different ways to meld a generative model with its specific task

and application setting.

Despite the progress made within it, open problems abound in the topics covered in this

thesis. These open problems range from further applications of the models introduced in it,

to improvements in the models themselves, to new models entirely for these applications.

We discuss a few of these, but by no means a comprehensive list of them, next.

8.1 Applications of models

The models in this thesis have many further applications beyond those considered here.

For example, data integration is a key task for the future of neuroscience. As the goals of

understanding cognition and the brain grow more and more ambitious, experimental design

is becoming increasingly complex to try to capture more information. As the experimental

design becomes more complex, they became harder to analyze jointly. This is where data

integration comes to prominence, especially the multi-modal kind rather than multi-sample

of the same modality. MAGAN and TraVeLGAN are positioned well in the landscape

157

to perform important roles for this application. When we seek to align multiple datasets

of significantly different structure, flexible models like GANs are necessary rather than

simpler ones that only perform rigid transformations or cannot be used in different data

dimensionality at all. Furthermore, the need to constrict transformations during alignment

motivates the use of an appropriate correspondence loss in MAGAN. Likewise, the very

abstracted notion of information preservation used in TraVeLGAN is crucial for settings

where one wants to use a pair of GANs for alignment but the traditional invertibility

requirement for information preservation is inappropriate.

The FMGAN has exciting applications, as well, in future work either in the drug discovery

field or diagnostic medicine modeling. For example, this thesis has only scraped the surface

of predicting perturbation results based on drug metadata. By considering the chemical

structure of a drug, we are able to predict perturbation results on a population of cells

from a known cell line. Future work using other drug metadata, like known performance at

treatment or encoded structural information rather than just a diagram of the structure,

could be used. Most promising, the rapidly growing field of combinatorial drug perturbations

represents an opportunity for the use of the FMGAN. Predicting not only the effect of

one drug, but multiple drugs used in combination, is a key task going forward. While

performing one experiment per drug is already timely and expensive, due to the math of

combinatorics, the number of experiments that would need to be performed to measure all

pairwise interaction of drugs, or three-way interactions, or further, grows exponentially and

very quickly becomes infeasible. To be able to do this accurately with a model that runs at

the speed of a standard neural network would make analyzing this important data possible,

because it will have been generated rather physically experimented.

8.2 Improvements of models

While these models have been successful and represent improvements to the previously

existing models at their tasks, there are further improvements that can be made. In the

MAGAN framework, the correspondence loss depends on the ability to formulate a domain-

specific formula that differentiates numerically between the aspects of a good alignment and

158

those of a bad alignment. While this is often possible, and while it is a crucial step to use

such a loss when it is possible to formulate one as opposed to never using such a loss, this is

a limitation because it is not always possible to express such a loss. In this case, it would be

helpful to have more generic forms of correspondence loss beyond the mean squared error

to use in any situation such as this. These generic forms could be based on data geometry,

data symmetry, external feature generation methods like graph scattering, or other ideas

that leverage mutual information that could be preserved across the domains of alignment.

The FMGAN similarly could benefit from generalization of specific architectural choices

made for effective performance on the given datasets considered. The network chosen to

process conditions, for example, must be tailored to the type of conditions in a given dataset.

While convolutional networks (two-dimensional in the case of images or one-dimensional

in the case of strings) were effective in the datasets in this thesis, there exist conditions

where the assumptions and invariances built into these models would be inappropriate. A

generalization of the condition embedding network, or framework changes to the FMGAN

that make it less sensitive to this architectural design choice would be beneficial and extend

its applicability.

8.3 New frameworks of models

At a higher level, the field of generative modeling and multi-sample embedding have many

different directions they can take. While the current landscape is dominated by the very

popular GAN models, these need not be the dominant models in the intermediate to long

term. Adversarial modeling has its disadvantages, some of which are being overcome at a

rapid pace, but others of which may prove to be insurmountable. Entirely new paradigms

not based on the use of an adversarial discriminator may be the future.

For example, several of the improvements to existing models presented in this thesis are

based on adding ideas of data geometry to the GAN adversarial loss, which is based on the

data density along the manifold. In aligning samples which are independent draws from

related but not necessarily identical distributions, data density can be misleading. Some

observation populations may only exist in one sample, or the different populations may have

159

varying densities in the two samples. Both of these situations would render the use of a

GAN adversary inappropriate. While this thesis introduces data geometry regularizations

on top of the GAN adversary to address this problem, a future without a GAN adversary at

all might be the next step forward.

The key to having the right mindset going forward will be to remain open. Generative

models are so computationally demanding that their use has propelled forward drastically

in recent years. In such a fast-developing landscape, one always needs to remain open to

new developments. Keeping the target on the applications, and then letting the tools be

determined by that goal, will be essential for continuing to develop important and useful

research.

160

Bibliography

[1] 10x Genomics. 10x Genomics Datasets. https://support.10xgenomics.com/

single-cell-gene-expression/datasets.

[2] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:

a system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[3] Amjad Almahairi, Sai Rajeswar, Alessandro Sordoni, Philip Bachman, and Aaron

Courville. Augmented cyclegan: Learning many-to-many mappings from unpaired

data. arXiv preprint arXiv:1802.10151, 2018.

[4] Matthew Amodio and Smita Krishnaswamy. Magan: Aligning biological manifolds.

arXiv preprint arXiv:1803.00385, 2018.

[5] Matthew Amodio and Smita Krishnaswamy. Travelgan: Image-to-image translation by

transformation vector learning. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 8983–8992, 2019.

[6] Matthew Amodio, David van Dijk, Krishnan Srinivasan, William S Chen, Hussein

Mohsen, Kevin R Moon, Allison Campbell, Yujiao Zhao, Xiaomei Wang, Manjunatha

Venkataswamy, et al. Exploring single-cell data with deep multitasking neural networks.

bioRxiv, page 237065, 2018.

[7] Matthew Amodio, David Van Dijk, Krishnan Srinivasan, William S Chen, Hussein

Mohsen, Kevin R Moon, Allison Campbell, Yujiao Zhao, Xiaomei Wang, Manjunatha

161

https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-gene-expression/datasets

Venkataswamy, et al. Exploring single-cell data with deep multitasking neural networks.

Nature methods, pages 1–7, 2019.

[8] Matthew Amodio, David van Dijk, Guy Wolf, and Smita Krishnaswamy. Learning

general transformations of data for out-of-sample extensions. In 2020 IEEE 30th

International Workshop on Machine Learning for Signal Processing (MLSP), pages

1–6. IEEE, 2020.

[9] Matthew Amodio, Dennis Shung, Daniel B Burkhardt, Patrick Wong, Michael Simonov,

Yu Yamamoto, David van Dijk, Francis Perry Wilson, Akiko Iwasaki, and Smita

Krishnaswamy. Generating hard-to-obtain information from easy-to-obtain information:

applications in drug discovery and clinical inference. Patterns, page 100288, 2021.

[10] Kartik Anand, Ginestra Bianconi, and Simone Severini. Shannon and von neumann

entropy of random networks with heterogeneous expected degree. Physical Review E,

83(3):036109, 2011.

[11] Benedict Anchang, Kara L Davis, Harris G Fienberg, Brian D Williamson, Sean C

Bendall, Loukia G Karacosta, Robert Tibshirani, Garry P Nolan, and Sylvia K Plevritis.

Drug-nem: Optimizing drug combinations using single-cell perturbation response to

account for intratumoral heterogeneity. Proceedings of the National Academy of

Sciences, 115(18):E4294–E4303, 2018.

[12] Asha Anoosheh, Eirikur Agustsson, Radu Timofte, and Luc Van Gool. Combogan:

Unrestrained scalability for image domain translation. arXiv preprint arXiv:1712.06909,

2017.

[13] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint

arXiv:1701.07875, 2017.

[14] Elham Azizi, Ambrose J Carr, George Plitas, Andrew E Cornish, Catherine Konopacki,

Sandhya Prabhakaran, Juozas Nainys, Kenmin Wu, Vaidotas Kiseliovas, Manu Setty,

et al. Single-cell map of diverse immune phenotypes in the breast tumor microenviron-

ment. Cell, 174(5):1293–1308, 2018.

162

[15] Rhonda Bacher and Christina Kendziorski. Design and computational analysis of

single-cell rna-sequencing experiments. Genome biology, 17(1):63, 2016.

[16] Dmitry R Bandura, Vladimir I Baranov, Olga I Ornatsky, Alexei Antonov, Robert

Kinach, Xudong Lou, Serguei Pavlov, Sergey Vorobiev, John E Dick, and Scott D

Tanner. Mass cytometry: technique for real time single cell multitarget immunoassay

based on inductively coupled plasma time-of-flight mass spectrometry. Analytical

chemistry, 81(16):6813–6822, 2009.

[17] Shane Barratt and Rishi Sharma. A note on the inception score. arXiv preprint

arXiv:1801.01973, 2018.

[18] Sagie Benaim and Lior Wolf. One-sided unsupervised domain mapping. In Advances

in neural information processing systems, pages 752–762, 2017.

[19] Sean C Bendall, Garry P Nolan, Mario Roederer, and Pratip K Chattopadhyay. A

deep profiler’s guide to cytometry. Trends in immunology, 33(7):323–332, 2012.

[20] Marc Gorriz Blanch, Marta Mrak, Alan F Smeaton, and Noel E O’Connor. End-to-

end conditional gan-based architectures for image colourisation. In 2019 IEEE 21st

International Workshop on Multimedia Signal Processing (MMSP), pages 1–6. IEEE,

2019.

[21] Karsten M Borgwardt, Arthur Gretton, Malte J Rasch, Hans-Peter Kriegel, Bernhard

Schölkopf, and Alex J Smola. Integrating structured biological data by kernel maximum

mean discrepancy. Bioinformatics, 22(14):e49–e57, 2006.

[22] Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip

Krishnan. Unsupervised pixel-level domain adaptation with generative adversarial

networks. In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), volume 1, page 7, 2017.

[23] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high

fidelity natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

163

[24] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume

Desjardins, and Alexander Lerchner. Understanding disentangling in b-vae. arXiv

preprint arXiv:1804.03599, 2018.

[25] Andrew Butler and Rahul Satija. Integrated analysis of single cell transcriptomic data

across conditions, technologies, and species. bioRxiv, page 164889, 2017.

[26] Andrew Butler, Paul Hoffman, Peter Smibert, Efthymia Papalexi, and Rahul Satija.

Integrating single-cell transcriptomic data across different conditions, technologies,

and species. Nature biotechnology, 36(5):411, 2018.

[27] Maren Buttner, Zhichao Miao, Alexander Wolf, Sarah A Teichmann, and Fabian J

Theis. Assessment of batch-correction methods for scrna-seq data with a new test

metric. bioRxiv, page 200345, 2017.

[28] J Donald Capra, Charles A Janeway, Paul Travers, and Mark Walport. Inmunobiology:

the inmune system in health and disease. Garland Publishing,, 1999.

[29] celeba. Large-scale celebfaces attributes (celeba) dataset. http://mmlab.ie.cuhk.

edu.hk/projects/CelebA.html. Accessed: 2018-10-20.

[30] Huaming Chen, Jun Shen, Lei Wang, and Jiangning Song. Leveraging stacked denoising

autoencoder in prediction of pathogen-host protein-protein interactions. In Big Data

(BigData Congress), 2017 IEEE International Congress on, pages 368–375. IEEE,

2017.

[31] Lujia Chen, Chunhui Cai, Vicky Chen, and Xinghua Lu. Learning a hierarchical

representation of the yeast transcriptomic machinery using an autoencoder model.

BMC bioinformatics, 17(1):S9, 2016.

[32] William S Chen, Nevena Zivanovic, David van Dijk, Guy Wolf, Bernd Bodenmiller, and

Smita Krishnaswamy. Embedding single-cell experimental conditions to reveal manifold

structure of cancer drug perturbation effects. bioRxiv, 2019. doi: 10.1101/455436.

DOI: 10.1101/455436.

164

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

[33] Stéphane Chevrier, Jacob Harrison Levine, Vito Riccardo Tomaso Zanotelli, Karina

Silina, Daniel Schulz, Marina Bacac, Carola Hermine Ries, Laurie Ailles, Michael

Alexander Spencer Jewett, Holger Moch, et al. An immune atlas of clear cell renal cell

carcinoma. Cell, 169(4):736–749, 2017.

[34] Yueh-hsiu Chien, Christina Meyer, and Marc Bonneville. γ δ t cells: first line of

defense and beyond. Annual review of immunology, 32:121–155, 2014.

[35] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul

Choo. Stargan: Unified generative adversarial networks for multi-domain image-to-

image translation. arXiv preprint, 1711, 2017.

[36] Eleonora Cimini, Concetta Castilletti, Alessandra Sacchi, Rita Casetti, Veronica

Bordoni, Antonella Romanelli, Federica Turchi, Federico Martini, Nicola Tumino,

Emanuele Nicastri, et al. Human zika infection induces a reduction of ifn-γ producing

cd4 t-cells and a parallel expansion of effector vδ2 t-cells. Scientific reports, 7(1):6313,

2017.

[37] Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational

harmonic analysis, 21(1):5–30, 2006.

[38] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Train-

ing deep neural networks with binary weights during propagations. In Advances in

neural information processing systems, pages 3123–3131, 2015.

[39] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.

Binarized neural networks: Training deep neural networks with weights and activations

constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[40] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta,

and Anil A Bharath. Generative adversarial networks: An overview. IEEE Signal

Processing Magazine, 35(1):53–65, 2018.

[41] Bin Dai and David Wipf. Diagnosing and enhancing vae models. arXiv preprint

arXiv:1903.05789, 2019.

165

[42] Bo Dai, Sanja Fidler, Raquel Urtasun, and Dahua Lin. Towards diverse and natural

image descriptions via a conditional gan. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2970–2979, 2017.

[43] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference on, pages 248–255. Ieee, 2009.

[44] Pedro Domingos. A few useful things to know about machine learning. Communications

of the ACM, 55(10):78–87, 2012.

[45] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb,

Martin Arjovsky, and Aaron Courville. Adversarially learned inference. arXiv preprint

arXiv:1606.00704, 2016.

[46] Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training genera-

tive neural networks via maximum mean discrepancy optimization. arXiv preprint

arXiv:1505.03906, 2015.

[47] fid. Fréchet inception distance (fid score) in pytorch. https://github.com/mseitzer/

pytorch-fid. Accessed: 2018-10-20.

[48] Rachel Finck, Erin F Simonds, Astraea Jager, Smita Krishnaswamy, Karen Sachs,

Wendy Fantl, Dana Pe’er, Garry P Nolan, and Sean C Bendall. Normalization of mass

cytometry data with bead standards. Cytometry Part A, 83(5):483–494, 2013.

[49] Beatriz Garcillán, Ana VM Marin, Anäıs Jiménez-Reinoso, Alejandro C Briones,

Miguel Muñoz-Ruiz, Maŕıa J Garćıa-León, Juana Gil, Luis M Allende, Eduardo

Mart́ınez-Naves, Maŕıa L Toribio, et al. gd t lymphocytes in the diagnosis of human t

cell receptor immunodeficiencies. Frontiers in immunology, 6:20, 2015.

[50] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using

convolutional neural networks. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2414–2423. IEEE, 2016.

166

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

[51] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s negative-

sampling word-embedding method. arXiv preprint arXiv:1402.3722, 2014.

[52] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

Advances in neural information processing systems, pages 2672–2680, 2014.

[53] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.

Communications of the ACM, 63(11):139–144, 2020.

[54] Alexander N Gorban and Andrei Zinovyev. Fast and user-friendly non-linear principal

manifold learning by method of elastic maps. In 2015 IEEE International Conference

on Data Science and Advanced Analytics (DSAA), pages 1–9. IEEE, 2015.

[55] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C

Courville. Improved training of wasserstein gans. In Advances in Neural Information

Processing Systems, pages 5767–5777, 2017.

[56] Anvita Gupta and James Zou. Feedback gan (fbgan) for dna: a novel feedback-loop

architecture for optimizing protein functions. arXiv preprint arXiv:1804.01694, 2018.

[57] Laleh Haghverdi, Maren Buettner, F Alexander Wolf, Florian Buettner, and Fabian J

Theis. Diffusion pseudotime robustly reconstructs lineage branching. Nature methods,

13(10):845, 2016.

[58] Laleh Haghverdi, Aaron TL Lun, Michael D Morgan, and John C Marioni. Batch

effects in single-cell rna-sequencing data are corrected by matching mutual nearest

neighbors. Nature biotechnology, 2018.

[59] Saad Haider and Ranadip Pal. Inference of tumor inhibition pathways from drug

perturbation data. In 2013 IEEE Global Conference on Signal and Information

Processing, pages 95–98. IEEE, 2013.

[60] Adrian Haimovich, Neal G Ravindra, Stoytcho Stoytchev, H Patrick Young, Francis P

Wilson, David van Dijk, Wade L Schulz, and Richard Andrew Taylor. Development and

167

validation of the covid-19 severity index (csi): a prognostic tool for early respiratory

decompensation. medRxiv, 2020.

[61] Ji Hun Ham, Daniel D Lee, and Lawrence K Saul. Learning high dimensional

correspondences from low dimensional manifolds. 2003.

[62] Jihun Ham, Daniel D Lee, and Lawrence K Saul. Semisupervised alignment of

manifolds. In AISTATS, pages 120–127, 2005.

[63] Changhee Han, Yoshiro Kitamura, Akira Kudo, Akimichi Ichinose, Leonardo Rundo,

Yujiro Furukawa, Kazuki Umemoto, Yuanzhong Li, and Hideki Nakayama. Synthesizing

diverse lung nodules wherever massively: 3d multi-conditional gan-based ct image

augmentation for object detection. In 2019 International Conference on 3D Vision

(3DV), pages 729–737. IEEE, 2019.

[64] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. Gans trained by a two time-scale update rule converge to a local nash

equilibrium. In Advances in neural information processing systems, pages 6626–6637,

2017.

[65] Yuta Hiasa, Yoshito Otake, Masaki Takao, Takumi Matsuoka, Kazuma Takashima,

Aaron Carass, Jerry L Prince, Nobuhiko Sugano, and Yoshinobu Sato. Cross-modality

image synthesis from unpaired data using cyclegan. In International workshop on

simulation and synthesis in medical imaging, pages 31–41. Springer, 2018.

[66] Geoffrey E Hinton, Peter Dayan, and Michael Revow. Modeling the manifolds of

images of handwritten digits. IEEE transactions on Neural Networks, 8(1):65–74,

1997.

[67] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.

arXiv preprint arXiv:2006.11239, 2020.

[68] Judy Hoffman, Erik Rodner, Jeff Donahue, Trevor Darrell, and Kate Saenko. Efficient

learning of domain-invariant image representations. arXiv preprint arXiv:1301.3224,

2013.

168

[69] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,

Alexei A Efros, and Trevor Darrell. Cycada: Cycle-consistent adversarial domain

adaptation. arXiv preprint arXiv:1711.03213, 2017.

[70] Christian Horvat and Jean-Pascal Pfister. Denoising normalizing flow. Advances in

Neural Information Processing Systems, 34, 2021.

[71] Michael E Houle. Dimensionality, discriminability, density and distance distributions.

In 2013 IEEE 13th International Conference on Data Mining Workshops, pages

468–473. IEEE, 2013.

[72] Xun Huang and Serge J Belongie. Arbitrary style transfer in real-time with adaptive

instance normalization. In ICCV, pages 1510–1519, 2017.

[73] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004,

2016.

[74] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks. arXiv preprint, 2017.

[75] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style

transfer and super-resolution. In European Conference on Computer Vision, pages

694–711. Springer, 2016.

[76] W Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch effects in microarray

expression data using empirical bayes methods. Biostatistics, 8(1):118–127, 2007.

[77] Artur Kadurin, Sergey Nikolenko, Kuzma Khrabrov, Alex Aliper, and Alex Zha-

voronkov. drugan: an advanced generative adversarial autoencoder model for de novo

generation of new molecules with desired molecular properties in silico. Molecular

pharmaceutics, 14(9):3098–3104, 2017.

[78] Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka, and Nobukatsu Hojo. Cyclegan-

vc2: Improved cyclegan-based non-parallel voice conversion. In ICASSP 2019-2019

169

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 6820–6824. IEEE, 2019.

[79] Leah C Katzelnick, Lionel Gresh, M Elizabeth Halloran, Juan Carlos Mercado, Guiller-

mina Kuan, Aubree Gordon, Angel Balmaseda, and Eva Harris. Antibody-dependent

enhancement of severe dengue disease in humans. Science, 358(6365):929–932, 2017.

[80] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jungkwon Lee, and Jiwon Kim. Learning

to discover cross-domain relations with generative adversarial networks. arXiv preprint

arXiv:1703.05192, 2017.

[81] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[82] Diederik P Kingma and Max Welling. Stochastic gradient vb and the variational

auto-encoder. In Second International Conference on Learning Representations, ICLR,

volume 19, page 121, 2014.

[83] Allon M Klein, Linas Mazutis, Ilke Akartuna, Naren Tallapragada, Adrian Veres,

Victor Li, Leonid Peshkin, David A Weitz, and Marc W Kirschner. Droplet barcoding

for single-cell transcriptomics applied to embryonic stem cells. Cell, 161(5):1187–1201,

2015.

[84] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On convergence and

stability of gans. arXiv preprint arXiv:1705.07215, 2017.

[85] Zhifeng Kong and Kamalika Chaudhuri. The expressive power of a class of normalizing

flow models. In International Conference on Artificial Intelligence and Statistics, pages

3599–3609. PMLR, 2020.

[86] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A

versatile diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

[87] Anil Korkut, Weiqing Wang, Emek Demir, Bülent Arman Aksoy, Xiaohong Jing,

Evan J Molinelli, Özgün Babur, Debra L Bemis, Selcuk Onur Sumer, David B Solit,

170

et al. Perturbation biology nominates upstream–downstream drug combinations in raf

inhibitor resistant melanoma cells. Elife, 4:e04640, 2015.

[88] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny

images. Technical report, Citeseer, 2009.

[89] Ola Larsson, Masahiro Morita, Ivan Topisirovic, Tommy Alain, Marie-Jose Blouin,

Michael Pollak, and Nahum Sonenberg. Distinct perturbation of the translatome by

the antidiabetic drug metformin. Proceedings of the National Academy of Sciences,

109(23):8977–8982, 2012.

[90] Jacob H. Levine, Erin F. Simonds, Sean C. Bendall, Kara L. Davis, El ad D. Amir,

Michelle D. Tadmor, Oren Litvin, Harris G. Fienberg, Astraea Jager, Eli R. Zunder,

Rachel Finck, Amanda L. Gedman, Ina Radtke, James R. Downing, Dana Pe’er, and

Garry P. Nolan. Data-driven phenotypic dissection of AML reveals progenitor-like

cells that correlate with prognosis. Cell, 162(1):184–197, jul 2015. doi: 10.1016/j.cell.

2015.05.047. URL http://dx.doi.org/10.1016/j.cell.2015.05.047.

[91] Jacob H. Levine, Erin F. Simonds, Sean C. Bendall, Kara L. Davis, El-ad D. Amir,

Michelle D. Tadmor, Oren Litvin, Harris G. Fienberg, Astraea Jager, Eli R. Zunder,

Rachel Finck, Amanda L. Gedman, Ina Radtke, James R. Downing, Dana Pe’er, and

Garry P. Nolan. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like

Cells that Correlate with Prognosis. Cell, 162(1):184–197, 7 2015. ISSN 00928674. doi:

10.1016/j.cell.2015.05.047.

[92] Jacob H Levine, Erin F Simonds, Sean C Bendall, Kara L Davis, D Amir El-ad,

Michelle D Tadmor, Oren Litvin, Harris G Fienberg, Astraea Jager, Eli R Zunder,

et al. Data-driven phenotypic dissection of aml reveals progenitor-like cells that

correlate with prognosis. Cell, 162(1):184–197, 2015.

[93] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos.

Mmd gan: Towards deeper understanding of moment matching network. In Advances

in Neural Information Processing Systems, pages 2203–2213, 2017.

171

http://dx.doi.org/10.1016/j.cell.2015.05.047

[94] Chunyuan Li, Hao Liu, Changyou Chen, Yuchen Pu, Liqun Chen, Ricardo Henao,

and Lawrence Carin. Alice: Towards understanding adversarial learning for joint

distribution matching. In Advances in Neural Information Processing Systems, pages

5495–5503, 2017.

[95] Jerry Li, Aleksander Madry, John Peebles, and Ludwig Schmidt. Towards understand-

ing the dynamics of generative adversarial networks. arXiv preprint arXiv:1706.09884,

2017.

[96] Torgny Lindvall. Lectures on the coupling method. Courier Corporation, 2002.

[97] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. In Advances

in neural information processing systems, pages 469–477, 2016.

[98] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image translation

networks. In Advances in Neural Information Processing Systems, pages 700–708,

2017.

[99] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces

attributes (celeba) dataset. Retrieved August, 15:2018, 2018.

[100] Romain Lopez, Jeffrey Regier, Michael Cole, Michael Jordan, and Nir Yosef. A

deep generative model for single-cell rna sequencing with application to detecting

differentially expressed genes. arXiv preprint arXiv:1710.05086, 2017.

[101] William Lotter, Gabriel Kreiman, and David Cox. Unsupervised learning of visual

structure using predictive generative networks. arXiv preprint arXiv:1511.06380, 2015.

[102] Yongyi Lu, Yu-Wing Tai, and Chi-Keung Tang. Conditional cyclegan for attribute

guided face image generation. arXiv preprint arXiv:1705.09966, 2017.

[103] Carolina Lucas, Patrick Wong, Jon Klein, Tiago BR Castro, Julio Silva, Maria

Sundaram, Mallory K Ellingson, Tianyang Mao, Ji Eun Oh, Benjamin Israelow, et al.

Longitudinal analyses reveal immunological misfiring in severe covid-19. Nature, 2020.

172

[104] James Lucas, George Tucker, Roger B Grosse, and Mohammad Norouzi. Don’t blame

the elbo! a linear vae perspective on posterior collapse. Advances in Neural Information

Processing Systems, 32:9408–9418, 2019.

[105] Andreas Lugmayr, Martin Danelljan, Luc Van Gool, and Radu Timofte. Srflow:

Learning the super-resolution space with normalizing flow. In European Conference

on Computer Vision, pages 715–732. Springer, 2020.

[106] Kry Lui, Gavin Weiguang Ding, Ruitong Huang, and Robert McCann. Dimensionality

reduction has quantifiable imperfections: Two geometric bounds. In Advances in

Neural Information Processing Systems, pages 8461–8471, 2018.

[107] Bin Luo and Edwin R Hancock. Iterative procrustes alignment with the em algorithm.

Image and Vision Computing, 20(5-6):377–396, 2002.

[108] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal

of machine learning research, 9(Nov):2579–2605, 2008.

[109] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan

Frey. Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

[110] Mohamed Marouf, Pierre Machart, Vikas Bansal, Christoph Kilian, Daniel S Magruder,

Christian F Krebs, and Stefan Bonn. Realistic in silico generation and augmentation of

single-cell rna-seq data using generative adversarial networks. Nature communications,

11(1):1–12, 2020.

[111] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approx-

imation and projection for dimension reduction. arXiv preprint arXiv:1802.03426,

2018.

[112] Iaroslav Melekhov, Juho Kannala, and Esa Rahtu. Siamese network features for image

matching. In Pattern Recognition (ICPR), 2016 23rd International Conference on,

pages 378–383. IEEE, 2016.

[113] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for

gans do actually converge? arXiv preprint arXiv:1801.04406, 2018.

173

[114] Shervin Minaee and Amirali Abdolrashidi. Iris-gan: Learning to generate realistic iris

images using convolutional gan. arXiv preprint arXiv:1812.04822, 2018.

[115] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the

number of linear regions of deep neural networks. In Advances in neural information

processing systems, pages 2924–2932, 2014.

[116] Kevin R Moon, David van Dijk, Zheng Wang, William Chen, Matthew J Hirn, Ronald R

Coifman, Natalia B Ivanova, Guy Wolf, and Smita Krishnaswamy. Phate: A dimen-

sionality reduction method for visualizing trajectory structures in high-dimensional

biological data. bioRxiv, page 120378, 2017.

[117] Kevin R. Moon, Jay S. Stanley, Daniel Burkhardt, David van Dijk, Guy Wolf, and

Smita Krishnaswamy. Manifold learning-based methods for analyzing single-cell RNA-

sequencing data. Current Opinion in Systems Biology, 7:36–46, 2 2018. ISSN 24523100.

doi: 10.1016/j.coisb.2017.12.008.

[118] Kevin R. Moon, David van Dijk, Zheng Wang, Scott Gigante, Daniel B. Burkhardt,

William S. Chen, Kristina Yim, Antonia van den Elzen, Matthew J. Hirn, Ronald R.

Coifman, Natalia B. Ivanova, Guy Wolf, and Smita Krishnaswamy. Visualizing

structure and transitions in high-dimensional biological data. Nature Biotechnology,

37(12):1482–1492, 2019.

[119] Kevin R Moon, David van Dijk, Zheng Wang, Scott Gigante, Daniel B Burkhardt,

William S Chen, Kristina Yim, Antonia van den Elzen, Matthew J Hirn, Ronald R

Coifman, et al. Visualizing structure and transitions in high-dimensional biological

data. Nature Biotechnology, 37(12):1482–1492, 2019.

[120] Boaz Nadler, Stephane Lafon, Ioannis Kevrekidis, and Ronald R Coifman. Diffusion

maps, spectral clustering and eigenfunctions of fokker-planck operators. In Advances

in neural information processing systems, pages 955–962, 2006.

[121] Vaishnavh Nagarajan and J Zico Kolter. Gradient descent gan optimization is locally

stable. In Advances in Neural Information Processing Systems, pages 5585–5595, 2017.

174

[122] Eng-Jon Ong, Sameed Husain, and Miroslaw Bober. Siamese network of deep fisher-

vector descriptors for image retrieval. arXiv preprint arXiv:1702.00338, 2017.

[123] Alexander Panda, Feng Qian, Subhasis Mohanty, David Van Duin, Frances K Newman,

Lin Zhang, Shu Chen, Virginia Towle, Robert B Belshe, Erol Fikrig, et al. Age-

associated decrease in tlr function in primary human dendritic cells predicts influenza

vaccine response. The Journal of Immunology, page ji 0901022, 2010.

[124] Noseong Park, Ankesh Anand, Joel Ruben Antony Moniz, Kookjin Lee, Tanmoy

Chakraborty, Jaegul Choo, Hongkyu Park, and Youngmin Kim. Mmgan: Mani-

fold matching generative adversarial network for generating images. arXiv preprint

arXiv:1707.08273, 2017.

[125] Mansi Patel, Xuyu Wang, and Shiwen Mao. Data augmentation with conditional gan

for automatic modulation classification. In Proceedings of the 2nd ACM Workshop on

Wireless Security and Machine Learning, pages 31–36, 2020.

[126] Franziska Paul, Ya’ara Arkin, Amir Giladi, Diego Adhemar Jaitin, Ephraim Kenigsberg,

Hadas Keren-Shaul, Deborah Winter, David Lara-Astiaso, Meital Gury, Assaf Weiner,

et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors.

Cell, 163(7):1663–1677, 2015.

[127] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[128] Jiaojiao Qiao, Huihui Song, Kaihua Zhang, Xiaolu Zhang, and Qingshan Liu. Im-

age super-resolution using conditional generative adversarial network. IET Image

Processing, 13(14):2673–2679, 2019.

[129] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

175

[130] Aviv Regev, Sarah A Teichmann, Eric S Lander, Ido Amit, Christophe Benoist, Ewan

Birney, Bernd Bodenmiller, Peter Campbell, Piero Carninci, Menna Clatworthy, et al.

Science forum: the human cell atlas. Elife, 6:e27041, 2017.

[131] Barbara L Rellahan, Jeffrey A Bluestone, Bronwyn A Houlden, Melissa M Cotterman,

and Louis A Matis. Junctional sequences influence the specificity of gamma/delta t

cell receptors. Journal of Experimental Medicine, 173(2):503–506, 1991.

[132] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks

for biomedical image segmentation. In International Conference on Medical image

computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[133] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally

linear embedding. science, 290(5500):2323–2326, 2000.

[134] Amélie Royer, Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch, Inbar Moressi,

Forrester Cole, and Kevin Murphy. Xgan: Unsupervised image-to-image translation

for many-to-many mappings. arXiv preprint arXiv:1711.05139, 2017.

[135] Paolo Russo, Fabio M Carlucci, Tatiana Tommasi, and Barbara Caputo. From

source to target and back: symmetric bi-directional adaptive gan. arXiv preprint

arXiv:1705.08824, 2017.

[136] Oleh Rybkin, Kostas Daniilidis, and Sergey Levine. Simple and effective vae training

with calibrated decoders. In International Conference on Machine Learning, pages

9179–9189. PMLR, 2021.

[137] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and

Xi Chen. Improved techniques for training gans. In Advances in Neural Information

Processing Systems, pages 2234–2242, 2016.

[138] Robin San-Roman, Eliya Nachmani, and Lior Wolf. Noise estimation for generative

diffusion models. arXiv preprint arXiv:2104.02600, 2021.

[139] ScienceMag. A new dengue vaccine should only be used in people who were previously

infected, WHO says, 2018 (accessed August 9, 2018).

176

[140] Manu Setty, Michelle D Tadmor, Shlomit Reich-Zeliger, Omer Angel, Tomer Meir

Salame, Pooja Kathail, Kristy Choi, Sean Bendall, Nir Friedman, and Dana Pe’er.

Wishbone identifies bifurcating developmental trajectories from single-cell data. Nature

biotechnology, 34(6):637, 2016.

[141] Uri Shaham, Kelly P. Stanton, Jun Zhao, Huamin Li, Khadir Raddassi, Ruth Mont-

gomery, and Yuval Kluger. Removal of batch effects using distribution-matching resid-

ual networks. Bioinformatics, 33(16):2539–2546, 2017. doi: 10.1093/bioinformatics/

btx196. URL +http://dx.doi.org/10.1093/bioinformatics/btx196.

[142] Uri Shaham, Kelly P Stanton, Jun Zhao, Huamin Li, Khadir Raddassi, Ruth Mont-

gomery, and Yuval Kluger. Removal of batch effects using distribution-matching

residual networks. Bioinformatics, page btx196, 2017.

[143] Karthik Shekhar, Sylvain W Lapan, Irene E Whitney, Nicholas M Tran, Evan Z

Macosko, Monika Kowalczyk, Xian Adiconis, Joshua Z Levin, James Nemesh, Melissa

Goldman, et al. Comprehensive classification of retinal bipolar neurons by single-cell

transcriptomics. Cell, 166(5):1308–1323, 2016.

[144] shoe. igan. https://github.com/junyanz/iGAN/tree/master/train_dcgan. Ac-

cessed: 2019-02-01.

[145] Davi Sidarta-Oliveira and Licio Velloso. Comprehensive visualization of high-

dimensional single-cell data with diffusion-based manifold approximation and projection

(dbmap). CELL-REPORTS-D-20-01731.

[146] Jost Tobias Springenberg. Unsupervised and semi-supervised learning with categorical

generative adversarial networks. arXiv preprint arXiv:1511.06390, 2015.

[147] Akash Srivastava, Lazar Valkoz, Chris Russell, Michael U Gutmann, and Charles

Sutton. Veegan: Reducing mode collapse in gans using implicit variational learning.

In Advances in Neural Information Processing Systems, pages 3308–3318, 2017.

[148] Aravind Subramanian, Rajiv Narayan, Steven M Corsello, David D Peck, Ted E Natoli,

Xiaodong Lu, Joshua Gould, John F Davis, Andrew A Tubelli, Jacob K Asiedu, et al.

177

+ http://dx.doi.org/10.1093/bioinformatics/btx196
https://github.com/junyanz/iGAN/tree/master/train_dcgan

A next generation connectivity map: L1000 platform and the first 1,000,000 profiles.

Cell, 171(6):1437–1452, 2017.

[149] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper

with convolutions. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1–9, 2015.

[150] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-

v4, inception-resnet and the impact of residual connections on learning. In AAAI,

volume 4, page 12, 2017.

[151] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised cross-domain image

generation. arXiv preprint arXiv:1611.02200, 2016.

[152] Jie Tan, Matthew Ung, Chao Cheng, and Casey S Greene. Unsupervised feature

construction and knowledge extraction from genome-wide assays of breast cancer with

denoising autoencoders. In Pacific Symposium on Biocomputing Co-Chairs, pages

132–143. World Scientific, 2014.

[153] Jie Tan, John H Hammond, Deborah A Hogan, and Casey S Greene. Adage-based

integration of publicly available pseudomonas aeruginosa gene expression data with

denoising autoencoders illuminates microbe-host interactions. MSystems, 1(1):e00025–

15, 2016.

[154] Jie Tan, Georgia Doing, Kimberley A Lewis, Courtney E Price, Kathleen M Chen,

Kyle C Cady, Barret Perchuk, Michael T Laub, Deborah A Hogan, and Casey S Greene.

Unsupervised extraction of stable expression signatures from public compendia with

an ensemble of neural networks. Cell systems, 5(1):63–71, 2017.

[155] Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary neural network

with high accuracy? In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[156] Rachael Tatman. Gender and dialect bias in youtube’s automatic captions. In

178

Proceedings of the First ACL Workshop on Ethics in Natural Language Processing,

pages 53–59, 2017.

[157] Ange Tato and Roger Nkambou. Improving adam optimizer. 2018.

[158] Chen-Yu Tsai, Ka Hang Liong, Matilda Gertrude Gunalan, Na Li, Daniel Say Liang

Lim, Dale A Fisher, Paul A MacAry, Yee Sin Leo, Siew-Cheng Wong, Kia Joo Puan,

et al. Type i ifns and il-18 regulate the antiviral response of primary human γ δ t cells

against dendritic cells infected with dengue virus. The Journal of Immunology, page

1303343, 2015.

[159] Aviad Tsherniak, Francisca Vazquez, Phil G Montgomery, Barbara A Weir, Gregory

Kryukov, Glenn S Cowley, Stanley Gill, William F Harrington, Sasha Pantel, John M

Krill-Burger, et al. Defining a cancer dependency map. Cell, 170(3):564–576, 2017.

[160] Po-Yuan Tung, John D Blischak, Chiaowen Joyce Hsiao, David A Knowles, Jonathan E

Burnett, Jonathan K Pritchard, and Yoav Gilad. Batch effects and the effective design

of single-cell gene expression studies. Scientific reports, 7:39921, 2017.

[161] Paul Upchurch, Jacob Gardner, Geoff Pleiss, Robert Pless, Noah Snavely, Kavita Bala,

and Kilian Weinberger. Deep feature interpolation for image content changes. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages

7064–7073, 2017.

[162] L.J.P. van der Maaten and G.E. Hinton. Visualizing high-dimensional data using t-sne.

Journal of Machine Learning Research, 9:2579–2605, 2008.

[163] David van Dijk, Juozas Nainys, Roshan Sharma, Pooja Kathail, Ambrose J Carr,

Kevin R Moon, Linas Mazutis, Guy Wolf, Smita Krishnaswamy, and Dana Pe’er.

Magic: A diffusion-based imputation method reveals gene-gene interactions in single-

cell rna-sequencing data. BioRxiv, page 111591, 2017.

[164] David van Dijk, Roshan Sharma, Juozas Nainys, Kristina Yim, Pooja Kathail, Am-

brose J. Carr, Cassandra Burdziak, Kevin R. Moon, Christine L. Chaffer, Diwakar

Pattabiraman, Brian Bierie, Linas Mazutis, Guy Wolf, Smita Krishnaswamy, and

179

Dana Pe’er. Recovering gene interactions from single-cell data using data diffusion.

Cell, 174(3):716 – 729.e27, 2018. doi: 10.1016/j.cell.2018.05.061.

[165] Lars Velten, Simon F Haas, Simon Raffel, Sandra Blaszkiewicz, Saiful Islam, Bianca P

Hennig, Christoph Hirche, Christoph Lutz, Eike C Buss, Daniel Nowak, et al. Human

haematopoietic stem cell lineage commitment is a continuous process. Nature cell

biology, 19(4):271, 2017.

[166] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-

tracting and composing robust features with denoising autoencoders. In Proceedings of

the 25th international conference on Machine learning, pages 1096–1103. ACM, 2008.

[167] Chang Wang and Sridhar Mahadevan. Manifold alignment using procrustes analysis. In

Proceedings of the 25th international conference on Machine learning, pages 1120–1127.

ACM, 2008.

[168] Chang Wang and Sridhar Mahadevan. Manifold alignment without correspondence.

In IJCAI, volume 2, page 3, 2009.

[169] Wei Wang, Yan Huang, Yizhou Wang, and Liang Wang. Generalized autoencoder: A

neural network framework for dimensionality reduction. In CVPR Workshops, 2014.

[170] Xiaoqian Wang, Kamran Ghasedi Dizaji, and Heng Huang. Conditional generative

adversarial network for gene expression inference. Bioinformatics, 34(17):i603–i611,

2018.

[171] Gregory P Way and Casey S Greene. Extracting a biologically relevant latent space

from cancer transcriptomes with variational autoencoders. bioRxiv, page 174474, 2017.

[172] Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, and Liqiang Wang. Improving the

improved training of wasserstein gans: A consistency term and its dual effect. arXiv

preprint arXiv:1803.01541, 2018.

[173] Lilian Weng. From gan to wgan. arXiv preprint arXiv:1904.08994, 2019.

180

[174] Jingjing Xu, Xuancheng Ren, Junyang Lin, and Xu Sun. Diversity-promoting gan:

A cross-entropy based generative adversarial network for diversified text generation.

In Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing, pages 3940–3949, 2018.

[175] Yungang Xu, Zhigang Zhang, Lei You, Jiajia Liu, Zhiwei Fan, and Xiaobo Zhou.

scigans: single-cell rna-seq imputation using generative adversarial networks. Nucleic

acids research, 48(15):e85–e85, 2020.

[176] Heran Yang, Jian Sun, Aaron Carass, Can Zhao, Junghoon Lee, Zongben Xu, and

Jerry Prince. Unpaired brain mr-to-ct synthesis using a structure-constrained cyclegan.

In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical

Decision Support, pages 174–182. Springer, 2018.

[177] Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. Unsupervised neural machine transla-

tion with weight sharing. arXiv preprint arXiv:1804.09057, 2018.

[178] Ting Yao, Yingwei Pan, Chong-Wah Ngo, Houqiang Li, and Tao Mei. Semi-supervised

domain adaptation with subspace learning for visual recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 2142–2150, 2015.

[179] Yi Yao, Rebecca Liu, Min Sun Shin, Mark Trentalange, Heather Allore, Ala Nassar,

Insoo Kang, Jordan S Pober, and Ruth R Montgomery. Cytof supports efficient

detection of immune cell subsets from small samples. Journal of immunological

methods, 415:1–5, 2014.

[180] Yi Yao, Dara M Strauss-Albee, Julian Q Zhou, Anna Malawista, Melissa N Garcia,

Kristy O Murray, Catherine A Blish, and Ruth R Montgomery. The natural killer

cell response to west nile virus in young and old individuals with or without a prior

history of infection. PloS one, 12(2):e0172625, 2017.

[181] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. Dualgan: Unsupervised dual

learning for image-to-image translation. arXiv preprint, 2017.

181

[182] Amit Zeisel, Ana B Muñoz-Manchado, Simone Codeluppi, Peter Lönnerberg, Gioele

La Manno, Anna Juréus, Sueli Marques, Hermany Munguba, Liqun He, Christer

Betsholtz, et al. Cell types in the mouse cortex and hippocampus revealed by single-

cell rna-seq. Science, 347(6226):1138–1142, 2015.

[183] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

Understanding deep learning requires rethinking generalization. arXiv preprint

arXiv:1611.03530, 2016.

[184] Wei Zhang, Chen Cao, Shifeng Chen, Jianzhuang Liu, and Xiaoou Tang. Style transfer

via image component analysis. IEEE Transactions on multimedia, 15(7):1594–1601,

2013.

[185] Zijun Zhang. Improved adam optimizer for deep neural networks. In 2018 IEEE/ACM

26th International Symposium on Quality of Service (IWQoS), pages 1–2. IEEE, 2018.

[186] Yang Zhao, Chunyuan Li, Ping Yu, Jianfeng Gao, and Changyou Chen. Feature

quantization improves gan training. arXiv preprint arXiv:2004.02088, 2020.

[187] Yujiao Zhao, Matthew Amodio, Brent Vander Wyk, David van Dijk, Kevin Moon, Xi-

aomei Wang, Anna Malawista, Megan E. Cahill1, Anita Desai, Purnima Parthasarathy,

Manjunatha Ventataswamy, V. Ravi, Priti Kumar, Smita Krishnaswamy, and Ruth R.

Montgomery. Dengue virus patients show distinct immune signatures and retain

immune response to infection with zika virus, 2018.

[188] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Generative

visual manipulation on the natural image manifold. In European Conference on

Computer Vision, pages 597–613. Springer, 2016.

[189] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-

to-image translation using cycle-consistent adversarial networks. arXiv preprint

arXiv:1703.10593, 2017.

[190] Eli R Zunder, Ernesto Lujan, Yury Goltsev, Marius Wernig, and Garry P Nolan. A

182

continuous molecular roadmap to ipsc reprogramming through progression analysis of

single-cell mass cytometry. Cell Stem Cell, 16(3):323–337, 2015.

183

	Deep Learning for Embedding and Integrating Multimodal Biomedical Data
	Recommended Citation

	Acknowledgements
	Introduction
	Background
	Generative Adversarial Networks (GANs)
	The Manifold Assumption
	Conditional GANs
	Cycle-consistent GANs

	Autoencoders
	Deep Learning
	Optimizers
	Invariance-inducing layers

	I Multi-sample alignment with Generative Adversarial Networks
	Manifold Aligning GAN (MAGAN)
	Introduction
	Model
	Architecture
	Correspondence Loss
	Manifold Data Augmentation

	Experiments
	Artificial Data
	MNIST
	Correspondence: CyTOF Replicates
	Correspondence: Different CyTOF Panels
	Correspondence: Cytometry and scRNA-seq

	Discussion
	Conclusion

	Transformation Vector Learning GAN (TraVeLGAN)
	Introduction
	Model
	Experiments
	Similar domains
	Imagenet: diverse domains
	Discussion

	Final notes

	Feature Mapping GAN (FMGAN)
	Introduction
	Related Work
	Conditional GANs
	Biological applications of conditional GANs
	Learning embeddings of biological data manifolds

	Results
	FMGAN
	Condition-Embedding Network
	Modeling drug perturbation experiments
	Predicting flow cytometry data on COVID-19 patients

	Experimental Procedures
	Conditional Generative Adversarial Networks
	Chemical Structure and SMILES Strings
	FMGAN Architecture

	Discussion
	Supplemental Experimental Procedures
	Generative Adversarial Networks
	Conditional Generative Adversarial Networks
	Optimization
	Maximum Mean Discrepancy
	Raw and Embedded Condition Space Correlation Experiment
	COVID-19 Clinical data

	II Multi-sample alignment with Autoencoders
	SAUCIE
	Introduction
	Results
	The SAUCIE Architecture and Layer Regularizations
	Comparison to other methods
	Analysis of immune response to dengue infection with SAUCIE

	Discussion
	Methods
	Computational Methods
	Experimental methods

	Neuron Editing
	Introduction
	Model
	Experiments
	CelebA Hair Color Transformation
	Batch correction by out-of-sample extension from spike-in samples
	Combinatorial drug treatment prediction on single-cell data

	Discussion

	Discussion and Future Work
	Applications of models
	Improvements of models
	New frameworks of models

