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Figure 10. First (dashed line) and second (dash-dotted line) EOFs and corresponding PCs (gray lines
in the lower panels) of the monthly zonal transport at 60◦ W between 32◦ and 44◦ N for the first
layer (units: m3 s−1). The thick black line in the upper panel shows the mean value of the zonal
transport at 60◦ W. The thick black lines in the lower panels have been obtained by filtering the
periods shorter than 1 year. EOF, empirical orthogonal function; PC, principal component.

variance (the first EOF and PC are shown in Fig. 11). The pattern is reminiscent of the basin
modes observed in simple models (see, for example, Cessi and Louazel 2001). In the refer-
ence experiment, the seasonal variability may enhance the variability along the separated
western boundary current and prevent this mode from being immediately detected. This
would agree with Sirven et al. (2007) who showed that a stochastic forcing does not effi-
ciently excite basin modes. The low-frequency waves that propagate along the outcrop line
are represented on the third and fourth EOFs of h2 (not shown). They contain approximately
16% of the total variance (8% each).

c. The overturning experiment

In the overturning experiment, the first EOF of h1 (Fig. 12) resembles the one obtained
in the reference experiment. On the contrary, the second EOF (not shown) shows large
differences in the western part of the basin with the second EOF of the reference experiment,
and its PC is no longer significantly correlated with the PC of the first EOF. This shows that
the westward propagation of waves along the outcrop line is altered. However, when the PC
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Figure 11. First EOF (contour interval: 10 m) and corresponding PC of the second-layer thickness
for the stationary experiment. The analysis is performed on the last 120 annual means of the run.
EOF, empirical orthogonal function; PC, principal component.
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Figure 12. First EOF (contour interval: 10 m) and corresponding PC of the first-layer thickness for
the overturning experiment. The analysis is performed on the last 120 annual means of the run, and
the grayed-out surface shows the outcrop area. EOF, empirical orthogonal function; PC, principal
component.
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Figure 13. First EOF (contour interval: 10 m) and corresponding PC of the first-layer thickness for
the reference experiment for the eastern part of the basin (left). The autocorrelation of the first PC
and the correlation between the first and second PCs are shown just below. The significance level
is indicated by the dash-dotted line. Similar figures for the overturning experiment (right). The
analysis is performed on the last 120 annual means of the runs, and the grayed-out surfaces show
the outcrop areas. EOF, empirical orthogonal function; PC, principal component.

analysis is performed on a reduced domain (see Fig. 13), the results become very similar
in both experiments. The first two EOFs are almost identical (it is the same thing for the
second EOFs, which are not shown), and the lag between the PCs shows that the pattern
propagates westward as expected. Note that the dominant timescale is now reduced to 8
years (it was approximately 15 years in the reference experiment). The model presented in
the next section will clarify this point.

The waves, which originate in an area centered around 36◦ W, 46◦ N and propagate
westward along the outcrop line, whatever the experiments, are a characteristic feature of
the model. Their EOFs, however, represent a smaller percentage of variance in the sta-
tionary experiment, and they cannot reach the western coast in the overturning experiment
because the mean state has changed. The mechanism driving these waves is now pre-
sented.

5. A simple model of the propagating waves

In this section, we develop a simple analytical model, which qualitatively explains the
dynamics of the outcrop line. We first consider a case where the forcing and dissipation
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are negligible, then briefly examine how the results are modified when they are taken
into account. As this model presents some similarities with those used in thin-jet theory
(Cushman-Roisin, Pratt, and Ralph 1993; Sasaki and Schneider 2011a), we mention sub-
sequently some analogies and differences between the two approaches.

To facilitate the analytical computations, a new system of coordinates (X, Y ), with X

and Y respectively along and across the front, is defined. The length scale along the front
(�1,000 km) is much larger than that across the front (�50 km), whereas the compo-
nent of the velocity along the front U (�0.2 m s−1) is much larger than the compo-
nent across the front V . Consequently, the velocity along the front can be estimated by
geostrophy,

f U = −∂Y [b(2h1 + h2)],

and the relative vorticity ζ = ∂XV − ∂Y U is approximatively equal to −∂Y U .
The momentum equation along the X axis allows us to estimate the velocity across the

front V . As only low-frequency variability (annual to decadal timescale) is considered, the
term ∂tU can be neglected. The equation thus reads

U∂XU + V ∂Y U − f V = −∂X[b(2h1 + h2)]

or, equivalently,

(−∂Y U + f )V = ∂X[b(2h1 + h2)] + U∂XU.

In the considered domain, the relative vorticity ζ � −∂Y U is negligible in comparison with
the planetary vorticity; indeed, we have f � 10−4 s−1 and |∂Y U | ≤ 0.2 m s−1/50 km <

10−5 s−1. In conclusion, the component of the velocity across the front is only computed
from the gradient of the Bernouilli function [b(2h1 + h2)] + U 2/2:

f V = ∂X[b(2h1 + h2)] + U∂XU.

The gradients of h1 and 2h1 + h2 have been computed. In Figure 8, over the surface
limited by the black bold curve, the relative difference between the meridional gradient of
h1 and that of 2h1 +h2 remains smaller than 10% (similar results are obtained for the zonal
gradient). This domain coincides with the area where the waves propagate. Consequently,
the gradient of 2h1 + h2 is approximated by that of h1 alone in the previous two equations,
which yields:

f U = −∂Y (bh1) and f V = ∂X(bh1) + U∂XU.

These equations, completed by the mass conservation equation, enable the determination
of h1.

The hypotheses made by Sasaki and Schneider (2011a) or more generally in thin-jet
theory are close to those made here. First, these authors use an equivalent barotropic model.
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Here, such a model has been obtained by replacing the gradient of 2h1 + h2 with that of
h1. Secondly, they neglect the time derivatives of U, V , and h1 (low-frequency variability).
Here we keep the term ∂th1 and we explain subsequently why this term is important. On
the contrary, the relative vorticity is neglected in comparison with the absolute vorticity, an
approximation that is not done in thin-jet theory.

The expressions of U and V are now introduced in the mass conservation equation, which
yields after simplifications:

∂th1 − bh1

f 2
(−∂Xf ∂Y h1 + ∂Y f ∂Xh1) + ∂Y

[
b2h1

f 3
(∂Y h1)(∂XY h1)

]
= 0. (4)

The long Rossby wave term bh1
f 2 (−∂Xf ∂Y h1 + ∂Y f ∂Xh1) is comparable to or larger than

the third term in this equation when h1 is large. However, as it is proportionnal to h1, it
vanishes with the first-layer thickness. In this case, the third term becomes dominant because
it contains b2

f 3 (∂Y h1)
2∂XY h1 proportional to the only derivatives of h1.

Note that ∂th1 does not vanish along the outcrop line, although h1 vanishes. To prove
this, let us note Y = Yf (X, t) the position of the front; this definition implies that
h1(X, Yf (X, t), t) = 0 for all X and t . Consequently, the differential of h1 along the out-
crop line also vanishes: dh1 = 0. On the other hand, dh1 = ∂Xh1dX + ∂Y h1dY + ∂th1dt .
From these last two relations, we deduce that for a fixed value of X along the outcrop line,
h1 verifies

∂th1 + ∂Y h1dYf /dt = 0.

Along the outcrop line, ∂Y h1 does not vanish. As shown in Figure 14, in the vicinity of
the outcrop line, this term is even very large. The term dYf /dt represents the meridional
velocity of the outcrop line. As the latter moves, this second term also does not vanish.
Consequently, we cannot assume that ∂th1 vanishes. This computation also shows that this
term in this simplified model permits us to take into account the shifts of the outcrop line.

Finally, in a narrow strip close to the outcrop line (less than approximately 100 km), the
evolution of the first-layer thickness is given by

∂th1 + ∂Y

[
b2h1

f 3
(∂Y h1)(∂XY h1)

]
= 0. (5)

It simply expresses a balance between the fluctuations of thickness close to the front and
the mass fluxes perpendicular to the front, caused by the ageostrophic part of the current.
Note that the ageostrophic part of the current also plays a prominent role in thin-jet theory.

As the separated current is nearly zonal, we can neglect the partial derivative ∂Xf , which
is much smaller than ∂Y f � β. In this case, equation (5) admits solutions that can be found by
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Figure 14. Mean profiles of h1 at 45◦, 50◦, 55◦, 60◦, and 65◦ W in January, April, July, and October
(thin gray lines) and profile (thick line) given by the theoretical model.

separating the variables. Indeed, looking for solutions such as h1(X, Y, t) = P(X, t)H(Y ),
it is transformed in a system of two equations:

{
AH + ∂Y [(b2/f 3)H(∂Y H)2] = 0
∂tP − AP 2∂XP = 0,

(6)

where A is an arbitrary constant, which characterizes the propagation velocity of the waves
(second equation in 6).

The first equation in (6) allows us to predict qualitatively the profile of the front south of
the line Y = Y0 close to the outcrop line. It can be numerically solved when f depends on
Y (e.g., f = f0 + βY ). It is, however, interesting to solve it analytically for a constant f

because this enlightens a crucial property of the constant A. If f is constant, this equation
becomes AH/(f L2)+H ′3+2HH ′H ′′ = 0 where L = b/f 2 is equal to 400 km (b = 0.004
m s−2 and f = 10−4 s−1). It is then integrated in

H 3/2H ′3 + A(3H 5/2 + 2H 5/2
s )/(5f L2) = 0,
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where Hs is an arbitrary constant. A second integration from the outcrop line leads to the
solution

Y0 − Y = 3

2
(5f L2H 2/3A)1/3 (7)

when Hs is equal to 0, and to the solution

Y0 − Y = (5f L2H 2
s /A)1/3

∫ H/Hs

0

dx

(3x + 2x−3/2)1/3
(8)

when Hs differs from 0. Because these solutions are only valid south of the outcrop line
(Y ≤ Y0), the arbitrary constant A must be positive.

A typical profile obtained from the analytical solution (7) is shown in Figure 14 for
A = 650 km y−1 and compared with the profiles observed in the reference experiment
between 45◦ W and 65◦ W (A has been estimated from Fig. 9). The agreement between
the theoretical and numerical models is good, considering the simplicity of the theoretical
model.

In a close vicinity of the outcrop line, H is proportional to (Y0 − Y )3/2 when Hs is equal
to 0 (solution shown in Fig. 14), and to (Y0 − Y )2/3 when Hs is different from 0. The first
solution is closer to the numerical results. However, the solutions computed from equation
(8) (Hs �= 0) remain very similar to the solution shown in Figure 14, except that they give
a steepest profile, because the slope at Y = Y0 becomes infinite. They are compatible with
the numerical results when Hs remains smaller than approximately 300 m. In this case, Hs

gives a typical depth over which the front remains nearly vertical.
The second equation in (6) characterizes the wave behavior of the solution.1 It can be

solved by the method of characteristics: P remains constant equal to P0 on the straight lines
of equation X = −AP 2

0 t + X0. The propagation velocity is always negative because A is
positive, which corresponds to a westward propagation. This agrees with Figures 8 and 9.

An analytical solution of this equation is shown in Figure 15(a) to illustrate the properties
of the waves. A constant anomaly is prescribed at t = 0, X = 0 and is suppressed after a
time, T0. The position of the wave front has been computed using the Rankine-Hugoniot
condition (this means that the front velocity is equal to [AP 3/3]/[P ], where the brackets
[ ] denote the jump of P or P 3 across the front). There is no propagation at the rear of
the anomaly because h vanishes, a choice that is not very realistic but allows an analytical
computation.

The deformation of the wave associated with the nonlinear nature of the wave equation
shows that there is a transfer of energy from small spatial scales to larger ones. This transfer
goes with a decrease of the amplitude of the head front as the anomaly travels westward.
In the example shown in Figure 15(a) the amplitude of the head front is divided by 2 at

1. This equation has the same form as the equation characterizing the creeping of a paint patch on a wall under
the effect of the gravity.
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Figure 15. (a) Response of the analytical model to a constant anomaly, P0, prescribed at x = 0
between t = 0 and T = T0. The response is shown at T0/2 (thick line), T0 (dashed line), 3T0/2
(dash-dotted line), and 5T0 (dotted line). The horizontal and vertical axes represent X/(AP 2

0 T0)

and P/P0. (b) An anomaly is prescribed at x = 37◦ W during 10 years. The resulting propagating
pattern (units: m), as predicted by equation (9), is shown at t = 24 (dotted), 48 (solid), 72 (dashed),
and 96 (dash-dotted) months. (c) Example of a westward propagation along the outcrop line in the
reference experiment (h1 is shown for the months 312, 336, and 360).
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a distance equal to AP 2
0 T0/3 from the source. With A = 650 km y−1 and P0 = 1, the

anomaly is attenuated by a factor of 2 at 217 km from its source when the process of
formation takes 1 year, and at 3,250 km when it takes 15 years. Consequently, only the
low-frequency anomalies may cross the basin with an amplitude that is large enough to
permit their observation.

To compare in a more precise way the solutions of the wave equation and the waves
shown in Figure 9, we have numerically integrated the equation

∂tP − AP 2∂XP = ν∂XXP + Ω. (9)

The viscous term ν∂XX has been added to facilitate the numerical computation. We can
thus avoid employing the tricky methods that directly compute the position of the wave
front. Moreover, it adds a small dissipation that is present in the model. Ω is a white noise
that helps represent the errors associated with the model as a random process. Both terms
are much smaller than the terms on the left-hand side of the equation. In the area where
the waves arise, h1 varies because of the forcing and the interior ocean dynamics. These
variations are introduced as a boundary condition at X = 37◦ W. The time series shown in
Figure 15(b), gives an example of such a boundary condition. It has a white spectrum for a
period ranging between 1 and 4 years. The corresponding solution obtained for A = 650 km
y−1 is shown just below. It is in qualitative agreement with the propagating waves observed
in the reference experiment after the 312th month of integration (Fig. 15c). The waves
propagate westward. The initial pattern is nearly not deformed during the first months of
the propagation; the amplitude of the anomaly decreases afterward, and the basis of the
anomaly becomes wider.

The system of equations in 6 predicts waves that propagate westward, although the long
Rossby wave term has been neglected. This direction of propagation is associated with the
fact that the water in which the wave propagates is located to the south of the outcrop line
in the Northern Hemisphere (see equation 8). The propagation would be eastward in the
opposite case, where denser water would outcrop to the south of lighter water.

When h1 increases (or, equivalently, the distance to the outcrop line increases), the long
Rossby waves have theoretically to be taken into account (see equation 4). We detected
long Rossby waves across the basin—with characteristics consistent with the theory: the
phase velocity increases toward the equator and its value is in agreement with the theory
for a 2.5-layer model—only during the spin-up. However, afterward these waves were no
longer seen, and the statistical analyses that we tried to detect them failed for the three
experiments.

We have obtained equation (4) and studied its properties when the viscosity vanishes and
the forcing is negligible. The first hypothesis is not verified in the numerical experiments
because the viscosity is equal to 400 m2 s−1. However, the impact of this term is easily
guessed: it smoothes the pattern of the solutions and suppresses the discontinuities. This
has been verified by the numerical computation of equation (9). Similarly, the impact of the
forcing term, introduced as a white noise in equation (9), is easy to describe: The variable P
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is no longer conserved along the characteristics but suffers changes caused by the forcing.
When the latter remains small, the changes remain also small as verified by integrating
equation (9).

6. Conclusion

This study investigates the dynamics of a separated western boundary current using a
reduced-gravity 2.5-layer model with simple coastlines, which reproduce in a simplified
way the geometry of the North Atlantic (between 70◦ W and 10◦ W and 15◦ N and 55◦ N).
In this model, the second layer outcrops in the northern part of the basin, which constitutes
an original feature in comparison with most of the idealized studies.

The model is driven by a realistic seasonal wind stress in the reference experiment. Two
additional experiments were made: in the stationary experiment, a steady wind stress is
used, and in the overturning experiment, mass fluxes are prescribed at the basis of the sec-
ond layer in order to represent a meridional overturning circulation. In all the experiments,
the obtained mean state shows a separated western boundary current, with, to its north,
a complex recirculation gyre. However, the separated western boundary current is shifted
northward by approximately 2◦, and its mass transport is slightly increased when the merid-
ional overturning circulation is added. The dynamics in the northern recirculation gyre are
also modified, but the changes remain moderate, considering the large increase of the mass
transport (approximately four times greater than in the reference experiment), which occurs
more northerly along the coast.

The mean seasonal signal along the path of the separated current remains weak and is
compatible with the results of Kelly, Singh and Huang (1999). In all the experiments, the
variability is much stronger at interannual periods. It is characterized by westward propa-
gating patterns along the outcrop line, whose dynamics are strongly nonlinear. However, in
the stationary experiment, the EOFs that describe them represent a smaller percentage of
variance, probably because the steady forcing does not bring enough energy to excite them
in the area where they arise.

A preferred timescale of approximately 15 years is observed when no attempt to represent
the meridional overturning circulation is done; it is replaced by a timescale of approximately
8 years when the latter is modeled. The timescale depends on the mean state and, more
widely, on the setup of the model (size of the domain where the wave can propagate without
being distorted, parameterizations, etc.); hence, its significance is weak. On the contrary, the
fact that the low frequencies (lower than approximately 0.25 y−1) are preferred in the area
of the separated western boundary current is robust because it rests on nonlinear dynamics
independent of the model setup.

A simple analytical model has been developed to explain the properties of the response
observed in the numerical experiments and to highlight the mechanisms driving the propa-
gation of the nonlinear waves along the outcrop line. It is only valid in close vicinity of the
outcrop line. In this model, the fluctuations of the first-layer thickness are nearly balanced
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by the mass fluxes due to the ageostrophic part of the current and perpendicular to the front.
Their evolution is thus driven by a nonlinear wave equation.

This model allows us to describe the propagation of waves excited by a random forcing
around 38◦ W, 45◦ N, where the eastern extremity of the outcrop line lies. It predicts a
westward propagation with a velocity linked to the meridional gradient of the first-layer
thickness. The β effect plays no role in this direction of propagation. Because it is nonlinear,
it allows energy transfers from small to large spatial scales and favors low frequencies. A
preferred timescale of approximately 15 years (8 years) is thus predicted when the waves
can propagate over approximately 3,000 km (1,500 km as in the overturning experiment).

This model differs from the models used in thin-jet theory because the first-layer thickness
is allowed to vanish. The waves that are predicted are thus different from those predicted
by this theory. In particular, the meandering of the jet cannot be represented in our model.
When h1 becomes large, the long Rossby wave propagation must be taken into account (see
equation 4). However, the transition from one type of wave to the other is certainly smooth
because both waves have quite similar propagation velocities.

The mechanism described here might explain why the low-frequency variability of the
Gulf Stream is easier to detect than the seasonal variability in the observations or the
models (see, for example, Frankignoul et al. 2001; Rossby, Flagg, and Donohue 2010).
Note, however, that the heat exchanges with the atmosphere in the Gulf Stream area are not
represented here and might modify the properties of these waves.

From a more theoretical viewpoint, the results found here obviously do not contra-
dict those coming from the theory of dynamical systems. Only the focus is different. In
the dynamical system approach, the properties of the system are explored over a wide
range of values that some parameters (e.g., the Froude number) may take. For example,
Primeau and Newman (2007) found in a 1.5-layer model a regime in which one of the
equilibrium solutions has a large outcropping region. This solution equilibrated to a stable
period orbit with a period of 8 months. Shimokawa and Matsuura (2010) similarly showed
with a time-dependent forcing but a quasi-geostrophic model that at least two different
regimes were possible. Here, no parameters are modified. Our initial choice makes possible
the existence of a large outcrop area and of propagating patterns; rather than exploring
the bifurcations diagram of the model, we concentrate on the wavelike patterns and their
properties.

Similarly, these results do not contradict those of Sirven (2005). He studied the part of
the low-frequency variability driven by an external low-frequency forcing and showed how
the latter could act close the outcrop line. A case combining these two aspects will be
considered in a next paper.
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APPENDIX

As the second layer may outcrop, the leapfrog scheme with an Asselin filter used in
Février, Sirven, and Herbaut (2007) has been modified. A leapfrog scheme reads ut+1 =
ut−1 + 2 × dtF (ut ), where the index denotes the time step and the function F represents
the different terms driving the evolution of the velocity. In a model where the first layer
remains thick, all the terms represented by F have the same order of magnitude. Here we
must distinguish between the terms that are proportional to h0, hereafter F(ut ), and those
proportional to h−1, hereafter h−1G(ut ), the latter becoming dominant when the first-layer
thickness decreases.

We thus pose the following:

u1,t+1 = u1,t−1 + 2(h1,t /a) exp(−a dt/h1,t ) sinh(adt/h1,t ) × [F(u1,t ) + h−1
1,t G(u1,t )]

When h1,t remains larger than 10 m, a dt/h1,t is much smaller than 1, and the usual leapfrog
is obtained. When h1,t tends toward 0, u1,t+1 = u1,t−1 + G(u1,t )/a. The function G(u1,t )

being equal toκh(u2,t−u1,t )+τ/ρ, we obtainu1,t+1 � u1,t−1−κhu1,t /a+κhu2,t /a+τ/(aρ).
For a = κh, we obtain u1,t+1 � u2,t + τ/(κhρ).

The equation characterizing the evolution of u2 contains a term of Rayleigh damping
proportional to −κh(u2 − u1)/h2. When h1 tends to 0, this term must become close to
τ/(ρh2) because the wind exerts the stress directly onto the second layer. With the previous
expression of u1,t+1, this property is verified.
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