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statistic being compared. For example, the difference in 〈Q〉 itself is likely to be significant
unless of course 〈Q〉 ≈ 〈Q〉Foff . It seems likely that higher order statistics, such as 〈q8〉,
would be more sensitive to the prescribed value of the quartic than to the prescribed values
of the average energy and potential enstrophy. However, it is also likely that lower order
statistics such as 〈ψ〉 are not very sensitive to the prescribed value of 〈Q〉 or αQ. In fact, if
this were not the case, then the whole program of statistical mechanics as applied to systems
like (2.1–2.2) would be seriously in doubt.

In this section we are only interested in the average streamfunction 〈ψ〉, and we investigate
the influence of the quartic by increasing αQ from zero, keeping the same values of αE and
αZ as in the Fofonoff case described above.7 We find no significant changes to the average
flow until αQ exceeds the value αQcrit ≡ n/〈Q〉Foff , where, again, n is the number of
degrees of freedom. Figure 1b shows the streamfunction corresponding to a value of αQ

equal to five times this amount. In the solution of Figure 1b, the average interior flow is
114.5 km/day; 〈E〉/〈E〉Foff = 1.63; 〈Z〉/〈Z〉Foff = 0.86; and 〈Q〉/〈Q〉Foff = 0.67.
These changes are significant, but the general pattern of the flow is the same as in Figure 1a.
This supports the prevailing idea (e.g. Carnevale and Frederiksen, p. 175) that the higher
moments of potential vorticity are of secondary importance in determining the equilibrium
mean flow.

Before leaving the quasigeostrophic case, we briefly mention a connection between the
statistical mechanical explanation for Fofonoff flow and wave-mean theories based upon
the concept of pseudomomentum. Suppose that the energy (2.3) were the only conserved
quantity. Then equilibrium statistical mechanics predicts equipartition of energy among
Fourier modes. Since the number of modes with wavenumbers of size k increases like k,
most of the energy appears near the highest wavenumber kmax in the truncated system. The
enstrophy approaches its maximum value of k2

max times the energy. But suppose that the
potential enstrophy (2.6) is also conserved. Apart from irrelevant additive and multiplicative
constants, this implies conservation of

Z =
∫∫

dx
(

1

2
ζ2 + βyζ

)
. (3.3)

If β = 0 the conservation of enstrophy
∫∫

dx ζ2 prevents energy from reaching high
wavenumbers; the enstrophy constraint traps most of the energy in large spatial scales.
The entropy of the system is lower than if energy alone were conserved. However, if β 
= 0,
then energy can move to high wavenumbers, increasing the entropy of the system. The
resulting increase in enstrophy can be balanced by a negative correlation between y and ζ.
The first term in the integrand of (3.3) corresponds to the pseudomomentum;8 the second
term corresponds to the mean momentum, after integrations by parts. A typical argument

7. An alternative procedure would hold 〈E〉 and 〈Z〉 fixed while varying 〈Q〉, but it would be extremely difficult
to determine the corresponding α’s.

8. In discussing pseudomomentum, it is conventional to divide (3.3) by β.
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applies the local, flux-form, conservation law corresponding to (3.3) to an ocean subdo-
main bounded by a latitude line (e.g. Salmon, 1998, pp. 264–279). Here we focus on the
integral (3.3) over the whole domain, which is more closely related to the statistical mechan-
ical approach. The implied negative correlation between vorticity and latitude represents
the same sorting mechanism identified by Veronis (1970), and it offers a simple, quali-
tative explanation for Fofonoff flow. Since quasigeostrophic theory does not distinguish
between bottom topography and Coriolis parameter, these same ideas predict anticyclonic
flow around islands and seamounts.

Discussions of pseudomomentum often refer to the importance of dissipation or irre-
versible mixing of potential vorticity, and thus would seem to contradict the basis of equi-
librium statistical mechanics. In fact, the two are closely related. Suppose that the invis-
cid truncated system reaches an equilibrium in which the increase in pseudomomentum
P ≡ 1/2

∫∫
dx ζ2/β balances the decrease in U ≡ ∫∫

dx yζ. Since ζ + βy is conserved
on fluid particles, the increase in pseudomomentum is associated with the development of
thin filaments of vorticity ζ. Now imagine that viscous dissipation is suddenly turned on
for a short time. It is very plausible that the effect of the dissipation will be to decrease the
pseudomomentum P while hardly affecting the mean flow U at all. However, this viscous
decrease in P simply clears the way for nonlinear interactions to build P back up, thereby
further decreasing U , resulting in an even stronger Fofonoff flow. We could achieve much
the same result, with no dissipation at all, by simply increasing the truncation wavenum-
ber kmax , that is, by opening up new, high-wavenumber modes, whose excitation would
correspond to an increase in P and a compensating decrease in U .

4. Statistical mechanics of shallow water

The shallow water equations may be written in the form

∂u

∂t
= qvh − ∂Φ

∂x
(4.1a)

∂v

∂t
= −quh − ∂Φ

∂y
(4.1b)

∂h

∂t
+ ∂

∂x
(uh) + ∂

∂y
(vh) = 0 (4.1c)

where (u, v) is the horizontal velocity in the (x, y) direction at time t , h is the fluid depth,

q = (ζ + f )/h (4.2)

is the potential vorticity with relative vorticity ζ = vx − uy and Coriolis parameter f , and

Φ = 1

2
(u2 + v2) + gh. (4.3)
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At solid boundaries, both the normal component of velocity and its time derivative must
vanish. We regard (4.1–4.3) as a reduced gravity model of the ocean’s upper layer; below
this upper layer, the ocean is assumed to be at rest. Hence we take g = 0.002×9.8 m sec−2.

The dynamics (4.1–4.3) conserves the energy

E =
∫∫

dx
(

1

2
h u · u + 1

2
gh2

)
(4.4)

and every quantity of the form
∫∫

dx hqn. Particular importance attaches to the mass

M =
∫∫

dx h, (4.5)

the circulation

C =
∫∫

dx hq, (4.6)

and the potential enstrophy

Z =
∫∫

dx hq2. (4.7)

Neither (4.4) nor (4.7) is quadratic in the dependent variables. Despite this fact, Salmon
(2009, hereafter S09) developed a finite-difference model of the shallow-water equations
that—apart from truncation error in the time step—exactly conserves finite-difference ana-
logues of (4.4–4.7) in a bounded domain.

As shown in S09, it is easy to construct shallow-water models that conserve (4.5–4.7)
if the fundamental dynamical variables u and v are replaced by the vorticity ζ and the
divergence μ = ux + vy . In the new independent variables ζ, μ, h, the evolution equations
take the form

∂ζ

∂t
= J (q, χ) − ∇ · (q∇γ) (4.8a)

∂μ

∂t
= J (q, γ) + ∇ · (q∇χ − ∇Φ) (4.8b)

∂h

∂t
= −∇2γ. (4.8c)

The streamfunction χ and the velocity potential γ are defined by

hu =
(

−∂χ

∂y
+ ∂γ

∂x
,

∂χ

∂x
+ ∂γ

∂y

)
(4.9)

and are determined from ζ, μ, h by the elliptic equations

∇ · (h−1∇χ) + J (h−1, γ) = ζ (4.10a)

∇ · (h−1∇γ) + J (χ, h−1) = μ. (4.10b)
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We also require

Φ = 1

2h2
(∇χ · ∇χ + ∇γ · ∇γ + 2J (χ, γ)) + gh. (4.11)

The no-normal-flow boundary conditions may be taken as χ = 0 and ∂γ/∂n = 0, where n is
the outward normal. S09 derives finite-difference analogues of (4.8) that conserve analogues
of (4.5–4.7) for any values of the ‘diagnostic variables’ χ, γ, and Φ. This is possible because
(4.5–4.7) take a particularly simple form in terms of the ‘prognostic varibiables’ ζ, μ, and
h. However, the conservation of energy

E =
∫∫

dx
(

1

2h
(∇χ · ∇χ + ∇γ · ∇γ + 2J (χ, γ)) + 1

2
gh2

)
(4.12)

depends upon the finite-difference forms of (4.10) and (4.11). More precisely, the finite-
difference form of (4.12) determines the finite-difference forms of (4.10) and (4.11). Because
the formulation (4.8–4.11) requires the solution of the coupled elliptic equations (4.10) at
every time step, the S09 model is much less efficient than numerical models based upon
the standard formulation (4.1–4.3). This inefficiency is the price to be paid for maintaining
so many conservation laws, especially in the presence of boundaries.9 For a complete
description of the finite-difference model, refer to S09.

In this section we use Monte Carlo to calculate the equilibrium statistical mechanics of the
shallow water equations, and we compare our predictions to unforced, inviscid solutions of
the S09 model. The domain is similar to that in Section 3—a square ocean with the equator
at mid-basin. However, in order to resolve the deformation radii, we take the domain size
to be L = 2000 km—half the size of the domain in Section 3. As in the quasigeostrophic
case, we impose statistical symmetry about the equator; we assume that the average value
of the circulation (4.6) vanishes. The remaining invariants are the mass (4.5), the energy
(4.12), and the potential enstrophy (4.7). The Monte Carlo calculation applies the Metropolis
algorithm to the probability distribution

P = α0 exp(−αMM − αEE − αZZ). (4.13)

This requires only the finite-difference expressions for M , E and Z. Thus, for Monte Carlo
calculations, virtually any choice of fundamental variables would suffice. Although the
conventional variables u, v, h would seem to be a natural choice, there are three reasons
to prefer χ, γ and h as phase-space coordinates that define the state of the shallow water
system.

First, as already explained, the shallow-water model derived in S09 is based upon χ, γ

and h. By using these same variables for the Monte Carlo calculation we facilitate inter-
comparison.

9. Griffa et al. (1996) investigated the inviscid dynamics of a much simpler shallow water model that conserved
only the potential enstrophy.
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Second, as noted in S82, the phase-space motion is nondivergent if the variables are
taken to be hu, hv and h. That is, uniformly gridded values of these variables obey the
requirement (2.8). Since by (4.9) the transformation between hu, hv, h and χ, γ, h is a
linear one, the latter variables also obey (2.8). Said another way, volumes in hu-hv-h space
are proportional to volumes in χ-γ-h space, and are conserved in both spaces. This means
that, in applying the Metropolis algorithm, one nominates new system states by selecting
from distributions that are uniformly distributed in a local χ-γ-h neighborhood, in a manner
analogous to the nomination of ψ-states in Section 3.

Third, the choice χ-γ-h represents a natural partition of phase space into three parts.
For our Monte Carlo calculations we use 1002 grid points. Thus, taking the boundary
conditions on χ and γ into account, we have 982 values of χ, 982 values of γ, and 1002

values of h. The full phase space has 982 × 982 × 1002 dimensions. However, by imposing
the conditions h = H (constant) and γ = 0, we can apply the Metropolis algorithm to
the 982-dimensional subspace spanned by the χ-values alone. In this case, the mass (4.5)
is a trivial invariant, and—apart from irrelevant additive and multiplicative constants—the
energy (4.4) and potential enstrophy reduce to the corresponding quasigeostrophic forms
with ψ = χ/H . Thus, for the χ-space truncation, the Monte Carlo calculation reduces to
the much-studied quasigeostrophic case reviewed in Sections 2 and 3.

At the next level of complexity, one can consider the equilibrium statistical mechanics of
the χ-h system, obtained by maintaining the restriction γ = 0, but allowing χ to take any
value at nonboundary grid points, and h to take any non-negative value at all grid points.
The advantage of the χ-h system over the χ system—the quasigeostrophic system—is that
the thermocline depth h can vary by an arbitrary amount. In particular, h can vanish. In the
χ-h system, the mass takes the form (4.5), the energy takes the form

E =
∫∫

dx
(∇χ · ∇χ

2h
+ 1

2
gh2

)
(4.14)

and the potential enstrophy takes the form

Z =
∫∫

dx h−1(∇ · (h−1∇χ) + f )2. (4.15)

Since neither (4.14) nor (4.15) is quadratic, the Monte Carlo method is indispensable.
As compared to the χ system, the χ-h system corresponds to ‘lifting a barrier’ in the sense

of thermodynamics. One can lift a second ‘barrier’—the ‘barrier’ that prevents excitation of
γ—and consider the equilibrium statistical mechanics of the χ-γ-h system, corresponding
to the full shallow-water dynamics. However, it is not obvious that the full χ-γ-h system has
more to teach us than the χ-h system. To understand this point, first realize that the ‘barriers’
mentioned above are not fundamentally different than the ‘barrier’ that confines the energy,
potential enstrophy and other invariants to a finite number of spatial degrees of freedom, i.e.,
the ‘barrier’ between our spatially truncated systems and the many degrees of freedom that
reside in wavenumbers greater than the cutoff wavenumber kmax . Suppose that this cutoff
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barrier too were lifted. In a real fluid there are still a finite number of degrees of freedom,
but these now correspond to the locations and velocities of the molecules comprising the
fluid. The equilibrium statistical mechanics of this molecular system is a rather uninteresting
one; it is heat death, with no motion whatsoever on macroscopic scales. As is generally
true in thermodynamics, interesting results are obtained only by considering systems in
which barriers prevent global equilibria of this kind. Past studies of spatially truncated,
quasigeostrophic systems with their twin barriers confining excitations to χ-space on the
one hand, and to macroscopic scales of motion on the other, have proved to be valuable:
The inviscid, spatially-truncated, quasigeostrophic equilibrium states indicate the general
direction towards which nonlinear interactions tend to drive the more realistic, viscous,
untruncated system. The precise connection between these two systems—truncated and
inviscid versus untruncated and viscous—is unavoidably ambiguous, but it clearly depends
on the placement of ‘barriers’ that define the truncation. We come back to these points in
Section 5. In the remainder of this section we apply the Monte Carlo method to the χ-h
system and to the χ-γ-h system.

To apply the Metropolis algorithm we specify values for αM , αE and αZ . As in Section
3, we redefine M , E and Z as the mass, energy and potential enstrophy per unit area of the
whole domain. Consider, as a reference state, the state in which the fluid layer is motionless
and covers the domain with a uniform depth h = H ≡ 250 m. In this state of rest, the
invariants take the values

M0 = H, E0 = 1

2
gH 2, Z0 = 1

3
β2y2

max/H (4.16)

where ymax = 1000 km. We define the α’s with respect to these values. We take

αM = n

θMM0
, αE = n

θEE0
, αZ = n

θZZ0
(4.17)

where n = 1002 is the number of grid points, and θM , θE , θZ are the ‘nondimensional tem-
peratures’ corresponding to mass, energy and potential enstrophy, respectively. We choose
order-one values for θM , θE , and θZ . Then, starting at the state of rest, we apply the Metropo-
lis algorithms in stages that consist of many passes through the 1002 grid points. In each
pass, first χ, then h, and then (sometimes) γ is perturbed at each grid point. The perturbations
cover a range ±Δχ, ±Δh, ±Δγ, which are initially set at Δχ = Δγ = 1 Sverdrup (Sv),
Δh = 100 m, and then periodically adjusted to keep the acceptance rate near 50%. Since
h can take only positive values, the Metropolis algorithm must be slightly modified from
the form described in Section 3. The Appendix, which describes the needed modification,
is an almost self-contained derivation of the Metropolis algorithm.

Table 1 summarizes the Monte Carlo calculations. The calculations differ only in the
choice of ‘potential-enstrophy temperature’ θZ and the particular system considered: Exper-
iments E1, E2, E3 and E4 correspond to the χ-h system; in these experiments γ ≡ 0.
Experiments E5, E6, E7 and E8 correspond to the full χ-γ-h system. All 8 Monte Carlo
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Table 1. Summary of Monte Carlo solutions.

Experiment E1 E2 E3 E4 E5 E6 E7 E8
Perturbs χ, h χ, h χ, h χ, h χ, h, γ χ, h, γ χ, h, γ χ, h, γ

θZ 1 1/2 1/4 1/8 1 1/2 1/4 1/8
havg (meters) 301 287 268 242 346 335 315 300√

〈u2〉 (km/day) 102 131 138 135 218 235 251 278√
〈u〉2 (km/day) 94 122 129 127 82 110 127 175

〈χ〉max (Sv) 130 170 163 144 122 170 175 133
ζrms/fmax 0.61 0.56 0.54 0.54 0.62 0.55 0.53 0.54
μrms/fmax 0.77 1.12 1.65 2.18 10.8 11.1 12.0 14.8

experiments have ‘mass temperature’ θM = 1 and ‘energy temperature’ θE = π. These
values were arbitrarily selected 10 to give an average thermocline depth in the oceanographic
range. The statistics reported in Table 1 correspond to the final stage of each calculation—the
stage nearest equilibrium—containing 5.8 billion ensemble members. For each calculation,
Table 1 gives the ensemble- and area-average depth havg , the rms velocity

√〈u2〉, the mean-
flow velocity

√〈u〉2, the mass transport 〈χ〉max in either gyre, the rms vorticity ζrms , and the
rms divergence μrms . The latter two are normalized by the value of the Coriolis parameter
at the northern boundary. Repeated calculations suggest that the numbers presented in Table
1 are accurate to within a few per cent.

If θZ = ∞ (αZ = 0), then there is no constraint on potential vorticity and no equilibrium
mean flow. The equilibrium statistical mechanics is that of nonrotating, compressible, two-
dimensional turbulence. As θZ decreases past unity, both the χ-h system and the χ-γ-h
system develop strong and very similar mean flows. As measured by the ratio Urel ≡√〈u〉2/

√〈u2〉, the strength of the mean flow increases from 0.92 to 0.94 as θZ decreases
from 1 to 1/8 in the χ-h system. In the corresponding χ-γ-h calculations, Urel increases
from 0.38 to 0.62.

The principal difference between the χ − h calculations (E1-4) and the χ − h − γ

calculations (E5-8) is that most of the kinetic energy in the latter resides in small-scale
divergent motions that make little contribution to the mean flow. That is, as the ‘γ-barrier’ is
lifted, the newly available region of phase space rapidly gains energy, and the rms divergence
increases by an order of magnitude. In contrast, the rms vorticity hardly changes. The large
difference between the rms vorticity and divergence in calculations E5-8 may be traced
to the fact that vorticity—but not divergence—appears in the potential vorticity, and thus
is constrained by potential enstrophy conservation. The change in the mean flow between
E1-4 and E5-8—as measured by the velocity ratio Urel or by the gyre transport 〈χ〉max—is
relatively slight. Of course, instead of comparing calculations with the same values of θM

10. In the very special case αE = αZ = 0 of no constraints on energy or potential enstrophy, the value
θM = 1 corresponds to a spatially uniform average depth 〈h〉 equal to the reference depth H . Similarly, when
αM = αZ = 0, and when the kinetic energy term is omitted from the energy, the value θE = π also corresponds
〈h〉 = H . However, in the general case these choices have no special significance.
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Figure 2. The ensemble- and longitude-averaged thermocline depth h in Monte Carlo calculations E1-
E4, in which χ and h vary freely but the velocity potential γ is constrained to vanish. In each panel,
the horizontal line represents the ocean surface, and the curved line represents the main thermocline.
The equator lies at the center. The average depth for each calculation is given in Table 1.

and θE , one might prefer to compare calculations with the same values of mass and energy,
but this would require an enormous number of independent Monte Carlo calculations to
accurately determine the dependence of θM , θE , and θZ on M , E and Z.

Figure 2 shows the ensemble-averaged thermocline depth 〈h〉 in the χ − h calculations
(E1-4) after x-averaging over the middle half of the ocean basin, to exclude eastern and
western boundary layers. In each panel of Figure 2, the horizontal line denotes the ocean
surface, and the curve represents the average location of the boundary between isopycnal
layers. Figure 3 shows the corresponding information for the χ − h − γ calculations (E5-
8). In every case, as θZ decreases, the thermocline depth at the equator decreases; the
maximum thermocline depth at mid-latitude increases; and the poleward extremities of the
layer approach outcrop. In these features, the calculations strongly resemble the ocean’s
main thermocline. In fact, the general shape of the curves in Figures 2 and 3 strongly
resembles the shapes of upper-ocean isopycnals in typical meridional sections throughout
the world ocean.

Figures 4–7 show the mean streamfunction 〈χ(x, y)〉 and mean layer depth 〈h(x, y)〉 for
all 8 Monte Carlo calculations. At the smallest values of θZ , the flow separates from the
northern and southern boundaries in E3 and E4. In this region, the average layer depth is
only a few meters.11 However, the eastern and western boundary currents extend all the

11. These regions of very small layer depth correspond to actual outcrops of the abyssal layer. Average values
of zero cannot occur in the Monte Carlo method because the Metropois algorithm nominates only non-negative h.



2010] Salmon: The shape of the main thermocline, revisited 559

Figure 3. As in Figure 2, but for Monte Carlo calculations E5-8, in which χ, h, and γ all vary freely.

way to the corners of the domain. This behavior is clearly associated with the extension of
the fluid layer into the corners, which is especially notable in E3, E4 (Fig. 6) and E8 (Fig.
7). The noisy behavior of 〈h(x, y)〉 in the equatorial region of E8 (Figs. 5 and 7) seems to
be caused by incomplete convergence of the Metropolis algorithm in this region. In fact,
despite the size of the ensemble, which required several days computing time on a 2.6 GHz
processor, 〈h(x, y)〉 is everywhere quite noisy, especially along the ‘outcrop’ lines at which
the layer depth nearly vanishes.

This noisiness is understandable when one considers the difficulties facing Monte Carlo
calculations in which h nearly vanishes. As h → 0 the potential vorticity q blows up unless
ζ experiences a compensating change in the numerator of (4.2). In the Metropolis algorithm,
this subtle compensating change must occur by chance. This at least partly explains why
the shallow-water Monte Carlo calculations require so much more computing time, and
are still so much noiser, than the quasigeostrophic calculations of Section 3. This agony
could be avoided by using the potential vorticity itself as one of the fundamental dynamical
variables to be perturbed, and by nominating only finite values of the potential vorticity.
Unfortunately, changing the potential vorticity at a single gridpoint induces a change in
the velocity field throughout the domain. Determining the new velocity would require the
solution of an elliptic problem at every step of the Monte Carlo calculation. This strategy
was briefly tried and found to be impractical. However, modifications of the strategy, in
which iterations in the solution of the elliptic equation are somehow interleaved with the
Metropolis iterations, may eventually prove successful. We come back to these issues in
the following section.
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Figure 4. The transport streamfunction χ in Monte Carlo calculations E1-4. The maximum transport
values are given in Table 1. The corresponding velocity field, which is symmetric about the equator,
resembles Fofonoff flow. Darker contours correspond to larger values.

Finally, we examine direct numerical simulations of the shallow water equations using
the S09 model. This model comprises a set of coupled ordinary differential equations,
analogous to (4.8–11), in which all the space derivatives—but not the time derivatives—
are replaced by finite differences. These coupled ordinary differential equations exactly
conserve finite-difference analogs of (4.5–7) and (4.12). To solve the S09 equations, we use
and adaptive fourth-order Runge-Kutta method for the time step, and we use a multi-grid
method to solve the analogs of the elliptic equations (4.10). Both of these methods introduce
errors that can be made as small as desired. In the experiment to be discussed, the largest
errors were caused by incomplete convergence of the multi-grid solver. However, the mass,
potential enstrophy and energy were nevertheless conserved to within a few per cent over a
time interval comprising 800,000 time steps, corresponding to a period of 3200 simulated
days and 19 hours of computer time. Even smaller errors can be achieved by increasing the
number of iterations in the multi-grid solver, but the cost in computing time is considerable.
For a complete description of the S09 model, refer to S09.
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Figure 5. The same as Figure 4, but for Monte Carlo calculations E5-8.

Figures 8 and 9 show the time-average streamfunction χ(x, y) and layer depth h in a
shallow-water simulation with 642 grid points and random initial conditions. These averages
correspond to the last 3200 days of a simulation that lasted 4000 days. This simulation
is much less energetic that the Monte Carlo cases considered above; its rms velocity of
20 km day−1 and its average maximum transport of 42 Sv are less than half the values given
in Table 1. However, because difficulties arise when h approaches zero at any point within
the flow, the direct numerical simulation of Figures 8 and 9 was the most energetic inviscid
calculation that could be achieved. We digress to explain the difficulties.

Although the S09 model conserves energy exactly, the model can still blow up, because,
if h becomes even slightly negative, then the kinetic energy in (4.4) becomes negative
and the kinetic and potential energy may simultaneously diverge, even as the total energy
remains constant. It was hoped to counteract this catastrophe by introducing an additional
‘surface energy’ term into (4.4) and (4.12) that becomes very large when the layer depth
falls below a very small positive value. This strategy was used successfully in viscous
simulations by Salmon (2002) and Primeau and Newman (2007). In the present inviscid
context, the surface-energy strategy offers the essential advantage that it does not affect
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Figure 6. The average thermocline depth 〈h(x, y)〉 in Monte Carlo calculations E1-4. Maximum
values are, respectively, 353 m, 362 m, 489 m, and 460 m. Darker contours correspond to larger
values.

the conservation properties of the S09 model. Inviscid simulations with the surface-energy
term did indeed avoid negative h but at a prohibitively high cost: The system became so
stiff, and the adaptive time step so short, that the evolution essentially ground to a halt. In
the simulation corresponding to Figures 8 and 9, which again had no surface energy, the
instantaneous layer depth was at times perilously close to zero, but the average layer depth
in Figure 9 varies only between 452 m and 526 m.

Despite this disappointment, the time-average flow of Figures 8 and 9 supports the general
prediction of statistical mechanics and the Monte Carlo calculations that the zeroth-order
flow in the ocean’s surface layer—a westward drift at low latitudes associated with poleward
deepening of the thermocline, and a compensating eastward flow near the latitudes at which
the warm layer depth vanishes—requires no particular explanation at all. It is simply the
average of all possible states with the given average values of mass, energy, and potential
enstrophy.
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Figure 7. The same as Figure 6, but for Monte Carlo calculations E5-8. The maximum values of
average layer depth are, respectively, 403 m, 412 m, 428 m, and 510 m.

5. Discussion

In at least one sense these results are surprising. In the quasigeostrophic case, the con-
nection between the streamfunction and the layer depth is built into the model and, most
particularly, into the conservation laws (2.3) and (2.6). That is, the quasigeostrophic
energy and potential enstrophy know about geostrophic balance. Thus, although the quasi-
geostrophic phase space has only one-third the dimensions of the full shallow-water phase
space, its conservation laws incorporate more physics. The statistical mechanics of the
shallow-water system depend only on the forms of the mass (4.5), the potential enstrophy
(4.7) and the energy (4.12). The fields χ, h and γ may assume any configuration consistent
with the values of these invariants. In particular, there is no imposed connection between the
streamfunction χ and the fluid depth h; the shallow-water Monte Carlo calculation knows
nothing at all about geostrophy. At the beginning of this study, it was suspected that this
defect might be fatal, and that there might be no connection between the statistical mechan-
ics of the shallow water system and either the statistical mechanics of the quasigeostrophic
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Figure 8. The transport streamfunction χ(x, y) averaged over the final 3200 days of a direct numerical
simulation of the shallow water equations with random initial conditions. The simulation conserved
mass, energy, and potential enstrophy to within a few per cent. The transport of either gyre is 42
Sverdrups. Darker contours correspond to larger values.

system or shallow water inviscid dynamics. The author has still not quite recovered from
his surprise that all three yield similar mean flows.

It is still probably worthwhile to investigate the statistical mechanics of a model with
fewer independent variables than the shallow water equations, but whose conservation
laws incorporate more of the physics. This is the territory of balanced models like the L1

model proposed by Salmon (1985).12 All balanced models of the shallow water equations
incorporate two balance conditions to remove the two fast inertia-gravity modes from the
physics; the remaining physics contains only the one slow Rossby mode, and is most con-
veniently presented as a single evolution equation for potential vorticity. The balance con-
ditions require the solution of elliptic equations at every time step. The balance conditions
in quasigeostrophy and in L1 are geostrophic balance, but geostrophic balance is not appro-
priate for flow in the vicinity of the equator. Therefore, the first step in a Monte Carlo
calculation based upon a balanced model would be to find physically defensible balance
conditions for flow that spans the equator. The assumption γ = 0 that the mass trans-
port have no divergence, used for the χ − h system in Section 4, is one plausible balance
condition, but a second condition relating χ and h is also required. If this second balance

12. Strictly speaking, the quasigeostrophic system is a balanced model, but its key assumption—that the layer
depth be nearly uniform—makes it useless for most oceanographic purposes.
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Figure 9. The time-average of the layer depth h(x, y) in the same simulation of the shallow water
equations as depicted in Figure 8. The average depth varies from 452 m to 526 m. Arrows denote
the velocity, which has an rms value of 20 km/day and a maximum value of 77 km/day.

condition involves an elliptic equation (as seems likely) then the Monte Carlo method might
well become impractical. These matters deserve much further study.

What precisely do our calculations mean? As in every case, the ideal equilibrium states
represent target states towards which nonlinear interactions, acting by themselves, would
tend to drive the flow. To the extent that flows with realistic forcing and dissipation resemble
these ideal states, equilibrium statistical mechanics offers a kind of generic explanation.
For example, the resemblance between Figures 2 and 3 and the observed shape of the main
thermocline plausibly means that the observed thermocline shape requires no very particular



566 Journal of Marine Research [68, 3-4

explanation; it is simply the average shape that results from the system’s tendency to explore
all the states consistent with its mass, energy and potential enstrophy. Numerical experiments
with, say, a very particular forcing might also yield this observed thermocline shape, thus
possibly creating the misconception that the thermocline shape depends critically on that
very particular forcing. However, the generic explanation offered by equilibrium statistical
mechanics suggests otherwise; the system always seeks the equilibrium state.

Of course, many features predicted by equilibrium statistical mechanics are never attained
by even weakly dissipative systems. For example, the wavenumber spectra predicted by
equilibrium statistical mechanics typically exhibit an ‘ultra-violet catastrophe’ and bear no
resemblance to observed wavenumber spectra. The latter require theories—such as Kol-
mogorov theory—in which the forcing and dissipation assume a leading-order importance.
Unfortunately, the search for a complete theory of turbulence—a nonequilibrium statistical
mechanics—that would encompass all statistics in all cases of forcing and dissipation has
yet proved largely unsuccessful.

In any case, previous applications of equilibrium statistical mechanics to quasigeostrophic
models have yielded tantalizing results. These include the emergence of anticyclonic
flow around islands and seamounts, and the almost complete ‘barotropization’ of two-
layer quasigeostrophic flow on scales larger than the internal deformation radius. One
especially interesting—and possibly unappreciated—result is the theory’s prediction that
quasigeostrophic turbulence transfers its energy toward the equator and into high vertical
mode. More precisely, the equilibrium state is one in which the kinetic energy in each ver-
tical mode peaks at the equator. The width of each peak equals the equatorial deformation
radius for that mode. All the peaks have equal height, corresponding to energy equipartition
among vertical modes at the equator. Thus equilibrium statistical mechanics offers a generic
explanation for the existence of the deep equatorial jets. For details, see Salmon (1982b, pp.
55–63). The same features can be understood more simply as resulting from the tendency
for energy to flow toward the lowest ‘total wavenumber’ of the system (Salmon 1982b,
p. 47; Salmon, 1998, p. 284).

The present paper is among the first to apply equilibrium statistical mechanics to the
shallow water equations. It seems possible that future applications to more complicated,
multi-layer, shallow water systems could yield new results as interesting as those previously
obtained for quasigeostrophic systems.
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APPENDIX

Metropolis algorithm applied to the fluid depth

In applying the Metropolis algorithm, we separately nominate new values of χ, γ and
h at each grid point. Apart from boundary conditions, the variables χ and γ can assume
any values. Hence we nominate new values, with uniform probability, from fixed ranges
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centered on the current values of χ and γ, as described for ψ in Section 3. However, the
fluid depth h can assume only positive values. This requires the following modification to
the algorithm.

Suppose that we are considering a transition in which the value of h at a particular grid
point is changed from h1 to h2. Let P1 and P2 be the canonical probability densities in the
system states corresponding to h1 and h2, respectively. Let P(1 → 2) be the probability of
transition from state 1 to 2, and let P(2 → 1) be the probability of transition from state 2
to 1. By the principle of detailed balance,

P1 P(1 → 2) = P2 P(2 → 1) (A.1)

at equilibrium. However,

P(1 → 2) = N(1 → 2) A(1 → 2) (A.2)

where, given that we are in state 1, N(1 → 2) is the probability of nominating state 2, and
A(1 → 2) is the probability of accepting state 2 as the next ensemble member. Similarly,

P(2 → 1) = N(2 → 1) A(2 → 1). (A.3)

Substituting (A.2) and (A.3) into (A.1), we obtain

A(1 → 2)

A(2 → 1)
= P2 N(2 → 1)

P1 N(1 → 2)
≡ P. (A.4)

We satisfy (A.4) by adopting the rules

A(1 → 2) = 1 if P > 1 (A.5a)

A(1 → 2) = P if P < 1. (A.5b)

If, as in the case of χ and γ, nominations are made from an interval of fixed width centered on
the current value, then N(2 → 1) = N(1 → 2), and (A.5) reduces to the verbal explanation
of the Metropolis algorithm given in Section 3, with P = P2/P1. However, since h cannot
be negative, we nominate h2, uniformly, from the range [max(0, h1 − Δh), h1 + Δh] and
vice versa. Since the probability of nominating a particular state is inversely proportional
to the range from which it is selected, we have

N(1 → 2)

N(2 → 1)
= h2 + Δh − max(0, h2 − Δh)

h1 + Δh − max(0, h1 − Δh)
= Δh + min(h2, Δh)

Δh + min(h1, Δh)
. (A.6)

If both h1 and h2 are greater than Δh then (A.6) is unity. In general, we apply the rules
(A.5) with

P = P2 (Δh + min(h1, Δh))

P1 (Δh + min(h2, Δh))
. (A.7)

The foregoing is an almost self-contained derivation of the Metropolis algorithm. For further
details, see Kalos and Whitlock (2008, pp. 64–72).
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