JOURNAL OF MARINE RESEARCH

The Journal of Marine Research, one of the oldest journals in American marine science, published important peer-reviewed original research on a broad array of topics in physical, biological, and chemical oceanography vital to the academic oceanographic community in the long and rich tradition of the Sears Foundation for Marine Research at Yale University.

An archive of all issues from 1937 to 2021 (Volume 1–79) are available through EliScholar, a digital platform for scholarly publishing provided by Yale University Library at https://elischolar.library.yale.edu/.

Requests for permission to clear rights for use of this content should be directed to the authors, their estates, or other representatives. The Journal of Marine Research has no contact information beyond the affiliations listed in the published articles. We ask that you provide attribution to the Journal of Marine Research.

Yale University provides access to these materials for educational and research purposes only. Copyright or other proprietary rights to content contained in this document may be held by individuals or entities other than, or in addition to, Yale University. You are solely responsible for determining the ownership of the copyright, and for obtaining permission for your intended use. Yale University makes no warranty that your distribution, reproduction, or other use of these materials will not infringe the rights of third parties.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/
ABSTRACT

Measurements of plankton community composition (eight planktonic groups), particle size-fractionated (10, 20, 53, 70, and 100-µm Nitex screens) distributions of organic carbon (OC) and 234Th, and particle export of OC and 234Th are reported over a seasonal cycle (2006–2007) from the Bermuda Atlantic Time-Series (BATS) site. Results indicate a convergence of the particle size distributions of OC and 234Th during the winter-spring bloom period (January–March, 2007). The observed convergence of these particle size distributions is directly correlated to the depth-integrated abundance of autotrophic pico-eukaryotes ($r = 0.97$, $P < 0.05$) and, to a lesser extent, Synechococcus ($r = 0.85$, $P = 0.14$). In addition, there are positive correlations between the sediment trap flux of OC and 234Th at 150 m and the depth-integrated abundance of pico-eukaryotes ($r = 0.94$, $P = 0.06$ for OC, and $r = 0.98$, $P < 0.05$ for 234Th) and Synechococcus ($r = 0.95$, $P = 0.05$ for OC, and $r = 0.94$, $P = 0.06$ for 234Th). An implication of these observations and recent modeling studies (Richardson and Jackson, 2007) is that, although small in size, pico-plankton may influence large particle export from the surface waters of the subtropical Atlantic.

1. Introduction

Plankton community composition is a fundamentally important determinant of both the magnitude and mechanisms of particulate organic carbon (POC) export from the upper-ocean (Boyd et al., 1999; Kawakami and Honda, 2007; Lomas and Bates, 2004; Wassmann, 1998). In oligotrophic regions, the classic paradigm is that large, rapidly sinking cells contribute disproportionately to export as compared to small cells (Michaels and Silver, 1988). In the traditional model, pico-sized (<3-µm) organisms are responsible for most of the open-ocean’s primary production and are retained in the euphotic zone via the microbial loop. However, despite their small size, pico-plankton are increasingly recognized for their dynamic role in open-ocean carbon cycle processes. Recent evidence suggests that aggregates of pico-plankton may contribute significantly to the downward
sinking flux of organic carbon (OC) in direct proportion to their abundance in the euphotic
zone (Olli et al., 2002; Richardson and Jackson, 2007).

Plankton community structure may differentially affect POC fluxes determined using sedi-
ment traps and 234Th/238U disequilibria, which are the primary techniques used to
quantify the rate of upper ocean POC export. In this regard, laboratory (Quigley et al.,
2002) and field (Guo et al., 2002; Hung et al., 2004; Santschi et al., 2003) studies
demonstrate that acid polysaccharide exudates from different plankton species can signifi-
cantly influence the POC/234Th ratio of marine particles, which is important because the
POC/234Th ratio is a key parameter in quantifying POC export using 234Th/238U disequilibria
(Moran et al., 2003; Smith et al., 2006). Moreover, free-floating, surface-tethered sediment
traps may ineffectively capture the small, slowly sinking component of the particle flux due
to hydrodynamic “winnowing” (Gustafsson et al., 2004; Buesseler et al., 2007). There
have also been laboratory studies of phytoplankton-radiotracer interactions (e.g., Fisher et
al., 1987) and field measurements of 234Th and selected pigments (e.g., Baskaran et al.,
1996); however, few field studies have reported simultaneous measurements of POC
export, 234Th/238U disequilibria, POC/234Th ratios, and plankton community structure.

In an effort to better define the relationship between plankton community composition
and export, this study reports contemporaneous measurements of plankton community
composition and particle size distributions and fluxes of OC and 234Th over a seasonal
cycle at the Bermuda Atlantic Time-Series (BATS) site.

2. Methods

a. Sample collection and at-sea processing

Samples were collected at the Bermuda Atlantic Time Series (BATS) site (31°40’N,
64°10’W) aboard the R/V Atlantic Explorer on four cruises between May 2006 and March
2007 (Steinberg et al., 2001). Primary productivity, sediment trap POC export, phototro-
phic pico- and nano-plankton cell enumeration, temperature, salinity, and fluorescence
data were collected as part of the BATS sampling regimen (DuRand et al., 2001; Steinberg
et al., 2001).

During three of the cruises (November, 2006, January, 2007, March, 2007), ~80 L of
water was collected from 4–5 of the in-situ pump depths and filtered (0.08–0.45 L min$^{-1}$)
through three 25-mm diameter in-line filter holders connected in series and fitted with
Nitex screens (53, 70, and 100-μm). After ~10–80 L passed through the filter series, the
screens were removed, fixed with alkaline Lugol’s solution (1% Lugol’s iodine and sodium
acetate) and mounted onto glass slides for microscopic examination.

A drifting sediment trap array with cylindrical traps (collection area 0.0039 m2)
suspended at 150, 200 and 300 m was deployed for 1.8–4.3 days during each sampling
period (Table 1). Sediment traps were prepared and processed according to the BATS
sampling protocol, including picking swimmers from each tube prior to POC and 234Th
analysis (Steinberg et al., 2001). Two traps at each depth were treated as replicates for
either POC or 234Th determination.
Dissolved 234Th and particle size fractionated organic C and 234Th were collected at 5–6 depths (Table 1) in the upper 500 m using large-volume in-situ pumps (Challenger Oceanic Systems and Services, Surrey, U.K., and McLane Laboratories, Falmouth, MA). Seawater (200–1000 L) was sequentially pumped through a series of three 142 mm diameter Nitex screens (for each depth; 10, 20, 53–H_{9262} m on one cast; 53, 70, 100–H_{9262} m on a second cast), a 1–H_{9262} m cartridge filter (providing for each depth; 1–10–H_{9262} m on one cast; 1–53–H_{9262} m on the second cast), and two MnO$_2$-impregnated cartridges connected in series to scavenge dissolved 234Th. Size fractionated particles collected on the Nitex screens were resuspended into GF/F filtered seawater with an ultrasonicator for five minutes, vacuum-filtered onto pre-combusted 25 mm Whatman GF/F filters (0.7-H_{9262} m nominal pore size), and then stored frozen in Petri dishes until POC and 234Th analysis.

Samples (4 L) were collected from 12 depths using the CTD rosette for small-volume (SV) 234Th analysis (Buesseler et al., 2001). Two or three SV 234Th profiles were

Table 1. Samples collected on BATS cruises between May 2006 and March 2007.

<table>
<thead>
<tr>
<th>BATS ID</th>
<th>Dates</th>
<th>Collection method</th>
<th>Depth range (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B211</td>
<td>May 9–12, 2006</td>
<td>In-situ Pump</td>
<td>100–500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>234Th and POC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SV 234Th</td>
<td>10–500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trap deployment 3.1 d</td>
<td>150–300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCM</td>
<td>0–250</td>
</tr>
<tr>
<td>B217</td>
<td>Nov 6–11, 2006</td>
<td>In-situ Pump</td>
<td>75–500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>234Th and POC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SV 234Th</td>
<td>10–500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trap deployment 4.3 d</td>
<td>150–300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCM</td>
<td>0–250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 L plankton filtration</td>
<td>75–500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microscopic enumeration</td>
<td></td>
</tr>
<tr>
<td>B219</td>
<td>Jan 27–Feb 2, 2007</td>
<td>In-situ Pump</td>
<td>75–500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>234Th and POC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SV 234Th</td>
<td>10–500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trap deployment 1.8 d</td>
<td>150–300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCM</td>
<td>0–250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 L plankton filtration</td>
<td>75–300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microscopic enumeration</td>
<td></td>
</tr>
<tr>
<td>B221</td>
<td>Mar 19–24, 2007</td>
<td>In-situ Pump</td>
<td>75–500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>234Th and POC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SV 234Th</td>
<td>10–500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trap deployment 2.5 d</td>
<td>150–300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCM</td>
<td>0–250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 L plankton filtration</td>
<td>75–500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microscopic enumeration</td>
<td></td>
</tr>
</tbody>
</table>

In-situ Pump 234Th and POC data are size fractionated particles ranging from $<1–100$-μm and 10–100-μm, respectively.
determined on each cruise (Table 1). One hour after the addition of 25 mL of 0.2 M KMnO₄, 10 mL of 1 M MnCl₂, and 7–8 drops of concentrated NH₄OH, samples were vacuum-filtered (∼0.13 L min⁻¹) through 25 mm GM/F filters (1-µm nominal pore size) and stored in Petri dishes until ²³⁴Th analysis.

b. Plankton community composition analysis

The relative abundance of organisms retained on the 25 mm diameter Nitex screens (53, 70, and 100-µm) was determined through microscopic examination. Particles retained on these Nitex screens (mounted on microscope slides as described above), were categorized and enumerated using a Nikon (model S-Ke, coaxial focusing) light microscope in bright-field mode at 100X magnification. Based on prior experience, an estimated counting error of 10% was applied to all count data.

All identifiable organisms were enumerated on each screen. The taxonomic groups included in this study were zooplankton, radiolarians, dinoflagellates, and diatoms. These groups were chosen as they could be identified with the highest degree of confidence. Although other organisms were present, limitations of the experimental design did not allow for their inclusion in this study.

Water column (0–250 m) cell abundances of cyanobacteria (*Prochlorococcus* and *Synechococcus*), and autotrophic pico- and nano-eukaryote cells were determined on a high sensitivity Cytopeia Influx Flow Cytometer (FCM). Samples were fixed in paraformaldehyde (0.5% final concentration) and stored at −80°C prior to laboratory analysis. Prior to enumeration, cells were categorized using two-dimensional scatter plots (DuRand and Olson, 1996). Pico-cyanobacteria were identified as *Prochlorococcus* or *Synechococcus* based upon cell size and the absence or presence of the pigment phycoerythrin. Chlorophyll containing auto-fluorescent cells 1–3-µm and 3–10 µm were identified as pico-eukaryotes and nano-eukaryotes, respectively (DuRand and Olson, 1996; DuRand et al., 2001). Cells in each category were enumerated and the results converted to cell abundance using the method of Sieracki et al. (1993), with estimated counting uncertainties of ∼±2–3% at cell abundances >200 cells mL⁻¹.

c. ²³⁴Th, ²³⁸U and POC determination

The ²³⁴Th activity of large-volume size fractionated particulate (142 mm diameter, 10, 20, 53, 70, and 100-µm Nitex), SV, and sediment trap samples was determined by beta emission of ²³⁴mPa (E_max = 2.19 MeV) using a RISØ National Laboratory low-background beta detector (Charette et al., 2001). Samples were counted approximately once per week for three weeks during the first 50 days after sample collection and one additional time ∼150 days after sample collection to determine background ²³⁴Th. Count data were decay-corrected to the midpoint of sample collection by best-fit of the weekly count data. Large-volume particulate (10, 20, 53, 70, and 100-µm) subsamples and SV total ²³⁴Th samples were mounted on acrylic disks and covered with one layer of clear plastic (1.3 mg cm⁻²) and aluminum foil (4.3 mg cm⁻²) to decrease interference from low-energy
beta and alpha particle emitters. The 234Th collection efficiency of the small-volume method was assumed to be 100%; this assumption is confirmed by the observation that the 234Th/238U activity ratio was ~ 1 in deep (500 m) waters. Sediment trap 234Th was isolated through a series of anion-exchange columns using a 230Th yield monitor (Buesseler et al., 1992). The Th fraction was electroplated onto stainless steel disks and beta counted for 234Th as described above.

Large-volume dissolved (<1-μm) and cartridge particulate (1–10-μm or 1–53-μm) 234Th activities were determined by gamma spectrometry (Buesseler et al., 1992). Cartridge filters (1-μm) and MnO$_2$-impregnated cartridges were dried at 50°C for approximately 24 hours and then combusted at 500°C overnight. The ash (3.5 g) was compacted to 4 mL in 10 mL polystyrene vials and counted at 63.3 KeV using a pure Ge well detector (detector efficiency 0.48 ± .01 for 234Th in this sample geometry). The resulting count data were then decay-corrected to the midpoint of sample collection. Dissolved 234Th activities ($\text{Th}_{\text{d}}, \text{dpm L}^{-1}$) were calculated after correction for the MnO$_2$ cartridge collection efficiency. Average collection efficiencies were 0.88 ($\sigma = 0.06, N = 11$) in May, 0.90 ($\sigma = 0.03, N = 12$) in November, 0.89 ($\sigma = 0.05, N = 6$) in January, and 0.87 ($\sigma = 0.10, N = 11$) in March. 238U was determined at each station depth using the relationship 238U = 0.0708 × salinity (dpm L$^{-1}$) (Chen et al., 1986).

Subsamples of particulate (142 mm diameter, 10, 20, 53, 70, and 100-μm Nitex) material collected using in-situ pumps were cut (approximately 10% by weight) from 25 mm Whatman GF/F filters using ceramic scissors for POC analysis. POC samples were dried at 50°C overnight, acidified in fuming HCl in an acid dessicator for 24 hours, and dried (Pike and Moran, 1997). POC concentrations were measured using a CE 440 Elemental Analyzer (Exeter Analytical, Inc., Chelmsford, MA). The average POC blank of dry, pre-combusted GF/Fs was 4.80 μmol C ($N = 5, \sigma = 0.34$) and used for all sample blank corrections.

3. Results

a. Hydrography and primary production

Water column (0–200 m) temperature, chlorophyll concentration (L$^{-1}$), density anomaly, and integrated (0–140 m) primary production from April 2006 through April 2007 are illustrated in Figure 1 (http://bats.bios.edu). Surface temperature increased in May 2006 and water column stratification intensified throughout the summer and fall months. In December 2006 and January 2007, water column de-stratification began and continued throughout the remainder of the annual cycle. Seasonal maxima in chlorophyll a concentrations were observed throughout the euphotic zone from January to April 2007 during the winter/spring bloom, with only a deep chlorophyll maximum observed from May through December 2006, consistent with previous observations.

Integrated (0–140 m) primary production varied throughout the annual cycle (Fig. 1). Primary production increased by a factor of ~ 2 from January (76.1 mmol C m$^{-2}$ d$^{-1}$) and
March (50 mmol C m\(^{-2}\) d\(^{-1}\)), which together averaged 63.1 mmol C m\(^{-2}\) d\(^{-1}\), compared to May (24.7 mmol C m\(^{-2}\) d\(^{-1}\)) and November (29.8 mmol C m\(^{-2}\) d\(^{-1}\)), which together averaged 27.3 mmol C m\(^{-2}\) d\(^{-1}\). The increase in primary production and chlorophyll \(a\) suggests the occurrence of a winter-spring bloom between January and April 2007. Data from May and November are consistent with seasonally averaged summer-fall data from 1990–present. Primary production rates observed in January and March 2007, however, were among the highest values measured during the past two decades at BATS (data available at http://bats.bios.edu).

b. Plankton community composition

In this study, plankton community composition is defined as the abundance of zooplankton, radiolarians, dinoflagellates, diatoms, the Prochlorococcus and Synechococcus cyanobacteria, and autotrophic pico- and nano-eukaryote organism groups. Prochlorococcus abundance peaked (>10\(^5\) cell mL\(^{-1}\)) in November and subsequently decreased to \(\sim4 \times 10^4\) cell mL\(^{-1}\) during January and March (Fig. 1). In contrast to Prochlorococcus abundance, cell concentrations of Synechococcus are highest during January and March. Phototrophic bacterial cell abundances reported here are consistent with the typical seasonal pattern at the BATS site (DuRand et al., 2001).
The abundance of autotrophic pico-eukaryotes increased during the winter-spring months and was greatest in March, when cell concentrations reached ~1,600 cell mL\(^{-1}\) (Fig. 1). In contrast, autotrophic nano-eukaryote cell concentrations reached a maximum (~1,200 cell mL\(^{-1}\)) in November. During November, concentrations of nano-eukaryotes at most depths were greater than those of the pico-eukaryotes, a pattern not observed during the winter-spring months.

At most depths, autotrophic Prochlorococcus, Synechococcus, pico- and nano-eukaryote abundances during each cruise were similar to seasonally averaged data from 1991–1994 and 2001–present. In March 2007, however, Synechococcus and nano-eukaryote abundances were ~two-fold greater than the upper 95% confidence interval and significantly greater than their respective seasonal averages (Lomas, unpub. data).

Total abundance (cell m\(^{-3}\)) of zooplankton, radiolaria, dinoflagellate and diatoms from 75–300 m or 500 m are plotted for November, January, and March (Fig. 2). At each depth, the abundance of each organism on every screen (53, 70 and 100-µm) was combined to obtain a total abundance per depth. The greatest radiolaria concentration (~1,800 organism m\(^{-3}\)) was during November. The maximum diatom cell concentration (~190 cell m\(^{-3}\)) occurred during November.
in January, and dinoflagellate (∼1,800 cell m\(^{-3}\)) and zooplankton (∼5,000 organism m\(^{-3}\)) abundances peaked during March.

In the analysis that follows, depth-integrated abundances of each organism are compared to \(^{234}\)Th and POC particle size distributions and particle fluxes. The maximum integrated abundances of \textit{Prochlorococcus} (10,000 cell cm\(^{-2}\)) and nano-eukaryotes (100 cell cm\(^{-2}\)) occurred in November, while the abundances of \textit{Synechococcus} and pico-eukaryotes decreased from May to November and then increased to their peak concentrations (6,000 cell cm\(^{-2}\) and 200 cell cm\(^{-2}\), respectively) in March.

c. Size fractionated particulate (10–100 μm) \(^{234}\)Th, OC and POC/\(^{234}\)Th ratios

Size fractionated particulate \(^{234}\)Th (\(^{234}\)Th\(_p\)) activities and POC concentrations range between 0.0007 ± 0.0001 and 0.038 ± 0.002 dpm L\(^{-1}\), and 0.00021 ± 0.00001 to 0.135 ± 0.006 μmol C L\(^{-1}\), respectively (Fig. 3). Although POC was not sampled on 1–10 μm particles, \(^{234}\)Th activities on this size fraction comprise the greatest portion of total \(^{234}\)Th\(_p\) during all four months and indicate the prevalence of this particle size class (Brew, 2008).

In all months sampled, the majority of \(^{234}\)Th\(_p\) activities decreased or remained constant with depth (Fig. 3). In addition, the majority of the particle size fractionated POC concentrations decreased with depth (Fig. 3), consistent with organism utilization of OC with depth (Suess, 1980).

Large particle, size fractionated (10, 20, 53, 70, 100-μm Nitex) POC/\(^{234}\)Th ratios range between 0.28 ± 0.03 and 24.19 ± 3.05 μmol dpm\(^{-1}\) (Fig. 3). Ratios in most size fractions tend to remain constant with depth during May and November, while a slight decrease with depth is observed during January and March (Fig. 3). As indicated by the January and March \(^{234}\)Th\(_p\) activity and POC concentration profiles, in most size classes POC concentration decreases while \(^{234}\)Th\(_p\) activity remains nearly constant during these months (Fig. 3).

During all months, large particle, size fractionated POC/\(^{234}\)Th ratios were essentially independent of particle size (10–100 μm; Fig. 4). Nearly invariant POC/\(^{234}\)Th ratios on the >1-μm and >70-μm size particle at the BATS site have previously been observed (unpub. data within Buesseler et al., 2006). In addition, within their respective analytical uncertainties, there is little difference in average POC/\(^{234}\)Th ratios collected during May, November, and January and, in March, the average POC/\(^{234}\)Th ratio is slightly higher. Overall during these sampling periods, average POC/\(^{234}\)Th ratios range from ∼3–4 μmol dpm\(^{-1}\) (Fig. 4).

The fractions of total particulate \(^{234}\)Th (\(X_i^{\text{Th}}\)) and OC (\(X_i^{\text{POC}}\)) across the large particle (10–100 μm) size spectrum are plotted in Figure 5. In more than half of the 19 distributions, POC and \(^{234}\)Th distribute in a bi-modal fashion with the highest fraction of OC and \(^{234}\)Th in the 10 and 20-μm size classes.

Profiles (150–300 m) of sediment trap POC/\(^{234}\)Th ratios exhibit little change with depth in May and November, whereas trap POC/\(^{234}\)Th ratios decrease with depth during January and March (Fig. 6). Depth averaged trap POC/\(^{234}\)Th ratios in November (5.75 ± 0.80 μmol dpm\(^{-1}\)), January (5.00 ± 0.61 μmol dpm\(^{-1}\)), and March (5.41 ± 0.64 μmol dpm\(^{-1}\)) are identical within the reported uncertainties and, in May, the average ratio
Figure 3. Profiles (0–500 m) of large particle (10, 20, 53, 70, 100-μm) 234Th activities, POC concentrations, and POC/234Th ratios at the BATS site.
(2.98 ± 0.68 μmol dpm⁻¹) is only slightly lower (Fig. 4). The measured trap POC/²³⁴Th ratios are of similar magnitude to the few previous data from the BATS site (Buesseler et al., unpub. 1993–1995 data referenced in Buesseler et al., 2006), including the more recent values of 3.7–6.7 μmol dpm⁻¹ reported by Maiti et al. (2009). These values are comparable with trap ratios of ~1–5 μmol dpm⁻¹ reported in other oligotrophic regions, such as the equatorial Pacific (Buesseler et al., 1995), Hawaiian Ocean Time-series (HOT) site (Benitez-Nelson et al., 2001) and the Mediterranean (Lepore et al., 2009; Schmidt et al., 2002).

d. ²³⁴Th/²³⁸U disequilibria and ²³⁴Th fluxes

For all cruises, total ²³⁴Th activities determined at most depths from duplicate in-situ pump casts agree within their analytical errors; similarly, at most depths replicate SV casts agree within the uncertainty of the measurements. For the majority of samples measured during May, January, and March, there is close agreement between ²³⁴Th activities determined using the SV and pump methods (Fig. 6). In addition, deep water (500 m) ²³⁴Th/²³⁸U activity ratios are, with the exceptions noted below, within the uncertainties close to 1, indicating ²³⁴Th/²³⁸U secular equilibrium at depth during these months. At 5 m depth in May, an apparent ²³⁴Th deficit for the in-situ pump samples is suspected to be due to a failed flow meter on the pump. As a result, pump ²³⁴Th fluxes in May are calculated excluding ²³⁴Th activity data from this depth. Similarly, in November, we suspect an
in-situ pump flow meter malfunction may explain the relatively low dissolved 234Th activities compared to the SV 234Th data, particularly at the surface and at 500 m depth. As a result, pump 234Th fluxes in November are not included in this study.

Figure 5. Fractional distributions of particulate 234Th and OC across the large particle size spectrum (10–100-μm) at the BATS site from 75–500 m.

in-situ pump flow meter malfunction may explain the relatively low dissolved 234Th activities compared to the SV 234Th data, particularly at the surface and at 500 m depth. As a result, pump 234Th fluxes in November are not included in this study.
Figure 6. Profiles of total 234Th and 238U activities (dashed line), 234Th fluxes determined using water column sampling devices and sediment traps, POC/234Th ratios on large (100-μm) particle and sediment trap material, and 234Th-derived and sediment trap POC fluxes at the BATS site.
Assuming steady-state and neglecting the transport of ^{234}Th due to diffusion and advection, the flux of ^{234}Th on sinking particles (P_{Th}, dpm m$^{-2}$ d$^{-1}$) over a prescribed depth interval, $0 - z$ (m) can be calculated using the following relationship,

$$P_{\text{Th}} = \lambda \int_{0}^{z} (A_U - A_{\text{Th}}) dz$$ (1)

where, A_U and A_{Th} are the activities (dpm L$^{-1}$) of ^{238}U and total ^{234}Th, respectively, and λ is the decay constant of ^{234}Th (0.028 d$^{-1}$).

Water column ^{234}Th fluxes were calculated using Eq. (1) from depth-integrated ^{234}Th deficits obtained using in-situ pump and SV methods (Fig. 6). There is no consistent temporal trend, although during all months, in-situ pump and SV ^{234}Th fluxes increase with depth (Fig. 6). Trap ^{234}Th fluxes increase temporally from May through March but do not exhibit a consistent trend with depth (Fig. 6). Also, the relative agreement between water column and sediment trap ^{234}Th fluxes varies over the months sampled. In May and November, water column ^{234}Th fluxes are \simtwo to \simten-fold greater than trap ^{234}Th fluxes at all depths. A closer agreement between water column and trap ^{234}Th fluxes exists in January and March, (Fig. 6) and fluxes calculated during these months agree to within a factor of \sim2–4.

Trap ^{234}Th fluxes in May (\sim250–300 dpm m$^{-2}$ d$^{-1}$) are comparable to those reported during May 1992 at the BATS site (Buesseler et al., 1994). The ^{234}Th fluxes reported here are also similar in both magnitude and profile to those recently reported by Buesseler et al. (2008) for cyclonic eddies in the Sargasso Sea. Buesseler et al. (2008) reported ^{234}Th fluxes at 100 m of \sim500 dpm m$^{-2}$ d$^{-1}$ that increased to \sim1500 dpm m$^{-2}$ d$^{-1}$ by 300 m. Also, Sweeney et al. (2003) reported 30 upper ocean ^{234}Th fluxes determined monthly over three years, with values ranging from \sim0–2300 dpm m$^{-2}$ d$^{-1}$ and averaging \sim500 dpm m$^{-2}$ d$^{-1}$ over the duration of the study. Overall, ^{234}Th fluxes reported in this study (\sim250–1500 dpm m$^{-2}$ d$^{-1}$ using traps and \sim250–1800 dpm m$^{-2}$ d$^{-1}$ using small-volume and large volume pump methods; Fig. 6) are well within the range of values reported for these independent studies.

In a recent study at the BATS site, Maiti et al. (2009) reported steady-state and non-steady-state ^{234}Th fluxes that varied at this location by a factor of \sim2–5. Specifically, these authors reported one deployment consisting of five measurements over nine days, and another deployment of three measurements over five days. In both cases, steady-state and non-steady-state models used to calculate fluxes for the five-day deployment indicate a 50% difference in ^{234}Th flux, which is consistent with the variability between traps and SV data presented in this paper. For the three-day deployment, results indicate a larger, \simfive-fold, difference between steady-state and non-steady-state fluxes, however the range of ^{234}Th fluxes reported by Maiti et al. (2009) using steady-state and non-steady-state models are also in reasonable agreement with those reported here (Fig. 6). Maiti et al., (2009) suggest that advective or diffusive transport of ^{234}Th may result in large differences.
between 234Th fluxes determined using steady-state and non steady-state models. In the present study, time-series 234Th measurements were not made and therefore steady-state conditions must be assumed. In addition, the sampling scheme did not allow for the determination of advective and diffusive 234Th transport and so these fluxes are assumed to be small relative to the downward particle export.

e. POC export

From April 2006 through March 2007, sediment trap POC export at 150 m ranged from 0.75 ± 0.04 to 8.83 ± 0.44 mmol C m$^{-2}$ d$^{-1}$, with enhanced export between January and April 2007 (Fig. 1; http://bats.bios.edu). The lowest and highest export events occurred in May 2006 and March 2007, respectively. Similar to the trend in primary production, trap POC fluxes at 150 m during January (4.06 ± 0.02 mmol C m$^{-2}$ d$^{-1}$), and March (8.83 ± 0.44 mmol C m$^{-2}$ d$^{-1}$) are a factor of \simtwo or more greater than fluxes in May (0.75 ± 0.04 mmol C m$^{-2}$ d$^{-1}$) and November (1.86 ± 0.09 mmol C m$^{-2}$ d$^{-1}$). In May, November and January, trap POC data are consistent with seasonally averaged data from 1991–present. In March at 150 and 200 m, however, trap POC data are greater than the long-term seasonal mean by more than a factor of two (data available at http://bats.bios.edu).

Assuming steady-state conditions and that the advective and diffusive transport of 234Th is negligible, the magnitude of POC export (P_{POC}, mmol C m$^{-2}$ d$^{-1}$) was calculated with the following equation:

$$P_{POC} = \frac{C_{POC}}{A_{Th}} \times P_{Th}$$

where, C_{POC} and A_{Th} are the concentration of POC (mmol C L$^{-1}$) and the activity of 234Th (dpm L$^{-1}$) in sinking particles, respectively, and P_{Th} is the export flux of 234Th on particles (dpm m$^{-2}$ d$^{-1}$). Note that a key assumption of using the 234Th-normalization method to calculate POC export is that POC and 234Th are removed from the water column on the same particles at the same rate (Moran et al., 2003; Buesseler et al., 2006).

Using Eq. (2), 234Th-derived POC export at 150 m was calculated with water column 234Th fluxes and the POC/234Th ratio of >100-μm filtered particles. During the four months sampled, 234Th-POC export at 150 m ranged from 1.32 ± 0.19 to 3.81 ± 0.52 mmol m$^{-2}$ d$^{-1}$ using SV 234Th fluxes, and 3.07 ± 0.43 to 4.57 ± 0.70 mmol m$^{-2}$ d$^{-1}$ using in-situ pump 234Th fluxes (Fig. 6). Consistent with the trend in sediment trap POC export, the SV method indicates lower POC export during May and November and increased export during January and March at 150 m.

The relative agreement between trap and 234Th-estimated POC export varied throughout the months sampled. In May, trap export at 150 m is less than half of the water column estimates. In March, trap export at this depth is greater than 234Th-POC export by a factor of \sim2–3. In contrast, during November and January trap and 234Th-derived export agree to within a factor of \sim2.
4. Discussion

a. Plankton community composition and particle size distributions of OC and 234Th

The degree of correlation between the distribution of OC and 234Th in large, rapidly sinking, particles provides information on the assumption that 234Th and OC are removed from the water column on the same particles (Smith et al., 2006). For each sampling period, the relationship between the OC and 234Th particle size distributions (Fig. 5) was determined from correlation of the fraction of total particulate 234Th measured in size class i (X_{i}^{Th}, defined here as measured in 10, 20, 53, 70 and 100-μm particles) and the fraction of total POC in size class i (X_{i}^{POC}) at all depths sampled (Fig. 7). During all months, $X_{i}^{\text{Th}} - X_{i}^{\text{POC}}$ correlations are statistically significant (P-values < 0.05) and correlation coefficients (r) are shown for each sample month.

Figure 7. The fractional distribution of 234Th (X_{i}^{Th}) plotted against the fractional distribution of OC (X_{i}^{POC}) across the large particle (10–100-μm) size spectrum from 75–500 m. All correlations are statistically significant (P-value < 0.05) and correlation coefficients (r) are shown for each sample month.

OC in large particles sampled evidently increases with seasonal increases in primary production and export (Fig. 7).

During each month, the abundance of each organism group enumerated (zooplankton, radiolarians, dinoflagellates, diatoms, the Prochlorococcus and Synechococcus cyanobacteria, and autotrophic pico- and nano-eukaryotes) was trapezoidally depth-integrated to the maximum sample depth. Correlations of the $X_i^{Th} - X_i^{POC}$ correlation coefficients (r) against each of the integrated organism abundances were determined with a 95% confidence level. The depths included in the $X_i^{Th} - X_i^{POC}$ correlation were adjusted to maintain consistency with the organism integration depths. Because zooplankton, radiolarians, dinoflagellates, and diatom count data were only gathered during November, January and March, correlations using these organism groups include 3 points and are not statistically significant (P-values > 0.05). In contrast, the integrated pico-eukaryote and Synechococcus abundances each exhibit a strong ($r = 0.97$ and 0.85, respectively) positive association with the $X_i^{Th} - X_i^{POC}$ correlation; however, only the pico-eukaryote relationship is statistically significant (P-value < 0.05) (Fig. 8).

While pico-eukaryotes are by definition $<3 \mu m$, their depth-integrated abundance is significantly correlated with the observed convergence of OC and 234-Th distributions determined in large particles (Fig. 8). In addition, eukaryotic species are frequently the dominant component of the BATS winter-spring bloom (Haidar and Thierstein, 2001; Lomas and Bates, 2004) and, during the winter-spring bloom period in January and March 2007, at most depths there is a greater than two-fold increase in autotrophic pico-eukaryote cell abundance as compared to concentrations in May and November (Fig. 1). Thus, if the rate of particle aggregation increased during January and March 2007, then the contribution of small cells (including autotrophic pico-eukaryotes) to the downward sinking flux of POC may also have increased.

b. Plankton community composition and particle export of OC and 234Th

In addition to examining the relationship between plankton abundance and particle size distributions of OC and 234-Th (Fig. 8), an objective of this study was to evaluate the correlation between plankton community composition and particle export of OC and 234-Th. As indicated in Figure 9, there are seasonal changes in the depth-integrated abundance of the measured plankton taxonomic groups as well as the particle export flux at 150 m determined using sediment trap, SV, and in-situ pump methods. To determine the relationship between plankton community and particle export, sediment trap 234-Th and POC fluxes at 150 m were correlated against depth-integrated (0–140 m) plankton abundances (Fig. 10, Table 2). Because of potential methodological uncertainties related to the assumption of steady-state and neglecting advective and diffusive 234-Th transport, water column 234-Th fluxes and 234-Th-derived POC fluxes were not included in this analysis.

There is a positive correlation between sediment trap 234-Th fluxes and integrated abundance of Synechococcus ($r = 0.94$) and pico-eukaryote ($r = 0.98$). These results suggest that, in addition to increasing the correlation between the large particle OC and
234Th size distributions, pico-eukaryote abundance may influence the extent to which sinking, 234Th-bound, particles are collected by sediment trap at 150 m. While pico- and nano-plankton have traditionally been thought of as contributing little to export production because of their small size and tight micro-grazer control (e.g., Michaels and Silver, 1988), there is recent evidence to challenge this notion. In particular, pico-plankton may sediment out of the euphotic zone directly through aggregation (Jackson, 1990; 2001; Jackson \textit{et al.}, 2005) or indirectly as fecal pellets if meso-zooplanton consume aggregates containing pico-plankton (Olli and Heiskanen, 1999). More recently, Richardson and Jackson (2007) analyzed the contribution of relative size classes to carbon export from inverse and network analyses and reported that the contribution of pico-plankton was proportional to their high contribution to net primary production.

Although we do not have data on the organisms collected in the sediment trap, evidence at the BATS site suggests there is no statistically significant temporal disconnect between sinking fluxes at 500 and 3200 m, implying an average particulate settling velocity of \(\sim 200 \text{ m day}^{-1} \) (Conte \textit{et al.}, 2001). Thus, a sediment trap suspended directly below the

Figure 8. Correlation coefficients describing the relationship between the large particle (10, 20, 53, 70, 100-\(\mu \text{m} \)) distributions of 234Th and OC from 75–300 m are plotted against the integrated (0–250 m) abundance of \textit{Synechococcus} and pico-eukaryotes during each month of this study. The pico-eukaryote relationship is statistically significant (P-value < 0.05) and correlation coefficients \((r)\) are shown for each organism.
Figure 9. The integrated abundance of autotrophic *Prochlorococcus*, *Synechococcus*, pico- and nano-eukaryotes, zooplankton, radiolaria, dinoflagellates and diatoms, and water column and sediment trap 234Th and OC fluxes at 150 m during the months sampled in this study.
euphotic zone may collect sinking pico-eukaryotes during the course of a trap deployment (~2–4 days); this would also imply that pico-eukaryotes would have to be sinking as part of aggregates to be sinking at these speeds. *Synechococcus* and pico-eukaryote abundances also show strong positive associations with trap POC export at 150 m (Fig. 10b). However, the P-value for each correlation is ≥ 0.05 and therefore these relationships are not statistically significant at the 95% confidence level (Table 2).

The correlation between plankton abundance and $r(X_i^{Th} - X_i^{POC})$ (Fig. 8) suggests that as primary production and pico-eukaryote abundance increase during the winter-spring
months, 234Th may be more tightly coupled to POC-containing particle surfaces. Moreover, the positive correlation between pico-eukaryote abundance and sediment trap 234Th fluxes at 150 m implies that the sinking flux of 234Th-bound particles increases as the abundance of pico-eukaryotes increases. Aggregation rates can increase with increasing cell abundance (Passow, 2002) and the correlations evident in Figure 10 suggest that aggregates of pico-eukaryotic organisms may contribute to the downward sinking flux.

The observations reported for these four cruises can be extrapolated to the longer time-series BATS data. Since the inception of the BATS program, there have been 75 cruises with paired observations of sediment trap POC flux and pico-eukaryote enumeration by flow cytometry. POC flux measurements were conducted by the BATS program, while the pico-eukaryote enumeration was conducted by DuRand et al. (2001) from 1991–1994 and by Lomas (unpubl. data) from 2001 to the present. This more extensive data set, while more variable as it covers many years and physical conditions, yields a significant ($P < 0.05$) correlation (Fig. 11). When divided into approximate seasons, summer (July, August, September; JAS) and fall (October, November, December; OND) are at the lower end of the range in observed POC fluxes and pico-eukaryote abundances. Winter (January, February, March; JFM) and spring (April, May, June; AMJ) tend to span the entire observed range. In fact, data for winter alone show a significant correlation between POC flux and pico-eukaryote abundance. Taken together, these observations support the hypothesis of Richardson and Jackson (2007) that pico-plankton may contribute to POC export in oligotrophic systems.

5. Conclusions

Contemporaneous measurements of plankton community composition and particle size fractionated OC and 234Th at the BATS site provide new information on 234Th-OC particle
interactions in association with seasonal changes in primary productivity and upper ocean particle export. These observations suggest that seasonal changes in pico-eukaryote abundance in the water column may affect the interaction between 234Th and OC in large particles and, in turn, the export of large, rapidly sinking particles from this subtropical gyre. In particular, although small in size, changes in the abundance of pico-planktonic organisms may enhance the aggregation of large particles that are exported and captured in upper ocean sediment traps and that 234Th is tracing, an observation that is also supported by recent modeling studies (Richardson and Jackson, 2007).

Acknowledgments. We thank the captain and crew of the R/V Atlantic Explorer, Pat Kelly for field and laboratory assistance, Amanda Burke for laboratory assistance, and the NSF for financial support (OCE-0327721 to SBM; OCE-0326685 and OCE-0752592 to MWL; OCE-0327693 to ABB. This is Bermuda Institute of Ocean Sciences contribution number 2000.

REFERENCES

Boyd, P., J. LaRoche, M. Gall, R. Frew and R. M. L. McKay. 1999. Role of iron, light, and silicate in

Received: 9 June, 2009; revised: 9 March, 2010.