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Abstract

We propose a model of data intermediation to analyze the incentives for sharing

individual data in the presence of informational externalities. A data intermediary

acquires signals from individual consumers regarding their preferences. The interme-

diary resells the information in a product market in which firms and consumers can

tailor their choices to the demand data. The social dimension of the individual data–

whereby an individual’s data are predictive of the behavior of others– generates a data

externality that can reduce the intermediary’s cost of acquiring information. We derive

the intermediary’s optimal data policy and establish that it preserves the privacy of

consumer identities while providing precise information about market demand to the

firms. This policy enables the intermediary to capture the total value of the information

as the number of consumers becomes large.
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1 Introduction

Individual Data and Data Intermediaries The rise of large digital platforms– such

as Facebook, Google, and Amazon in the US and JD, Tencent and Alibaba in China– has

led to the unprecedented collection and commercial use of individual data. The steadily

increasing user bases of these platforms generate massive amounts of data about individual

consumers; including their preferences, locations, friends, political views, and nearly every

facet of their lives. In turn, many of the services provided by large Internet platforms rely

critically on these data. The availability of individual-level data allows these companies

to offer refined search results, personalized product recommendations, informative ratings,

timely traffi c data, and targeted advertisements.1

A central feature of the data collected from individuals is their social aspect. With this

term, we mean that the data captured from an individual user are informative not only about

that individual but also about other individuals with similar characteristics or behaviors.

In the context of shopping data, an individual’s purchases can convey information to a

third party about the willingness to pay for a given product among consumers with similar

purchase histories. More importantly, data from other individuals can also be informative to

a specific individual. For instance, in the context of geolocation data, an individual conveys

information about the traffi c conditions for nearby drivers which can help them to improve

their decisions. Thus, these individual data are actually social data. The social dimension of

the data can simultaneously lead to a loss of privacy and a gain in information. In any case,

the social nature of the data generates a data externality, the sign and magnitude of which

depend on the structure of the data and the use of the gained information.

In this paper, we analyze three critical aspects of the economics of social data. First, we

consider how the collection of individual data changes the terms of trade among consumers,

firms (advertisers), and large digital platforms. Second, we examine how the social dimen-

sion of the data magnifies the value of individual data for the platforms and facilitates data

acquisition. Third, we analyze how data intermediaries with market power (e.g., large Inter-

net platforms that sell targeted advertising space) change the level of aggregation and the

precision of the information that they provide in equilibrium about individual consumers.

A Model of Data Intermediation We develop a framework to evaluate the flow and

allocation of individual data in the presence of data externalities. Our model focuses on

three types of economic agents: consumers, firms, and data intermediaries. These agents

interact in two distinct but linked markets: a data market and a product market.

1Bergemann and Bonatti (2019) provided a recent introduction.
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In the product market, each consumer (she) determines the quantity that she wishes to

purchase, and a single producer (he) sets the unit price at which he offers a product to the

consumers. Each consumer experiences a demand shock. While the producer knows the

common prior distribution of the demand shocks, he does not know the realization of the

individual demand shocks.

In the data market, the data intermediary acquires demand information from the individ-

ual consumers and then sells these data to the producer in some possibly aggregated or noisy

version. The data intermediary can choose how much information to buy from the consumers

and how much information to share with all of the product market participants. Thus, the

data intermediary has control over the volume and the structure of the information flows

across consumers, as well as between the consumers and the producer. An example of an

information policy is complete data sharing by the data intermediary. However, this example

is only one of many possible information policies that the intermediary could pursue. In-

deed, we find that the solution to the information design problem faced by the intermediary

typically favors more limited data collection and data sharing.

The Social Nature of the Data The social dimension of the data– whereby a con-

sumer’s data are also predictive of the behavior of others– is central to understanding the

consumer’s incentives to share her data with a large platform. The individual data, and

hence the social data, are described by a statistical model of multivariate normal distrib-

utions. This statistical model yields a suffi ciently rich, yet compact, representation of the

arguably canonical factors of social data.

The personal data of the consumer consist of a signal with two additive components: a

fundamental component and a noise component. The fundamental component represents

her willingness to pay, and the noise component reflects that her initial information might be

imperfect. In practice, different consumers’preferences can exhibit some common traits, and

consumers might also be subject to similar limitations on information that induce correlation

in their errors. Thus, we model both the fundamental component and the noise as having

additive idiosyncratic and common elements. The idiosyncratic elements are distributed

independently across consumers, while the common elements are perfectly correlated.2

The Value of the Social Data The collection of the data from multiple consumers helps

to predict the fundamental component of each individual. From observing many individual

realizations the data intermediary can improve its estimate of the components (fundamental

2The twofold decomposition into fundamental and noise components and idiosyncratic and common
elements is canonical in a setting with symmetric consumers. Any other multivariate normal distribution
can be equivalently represented in the above format, and in this sense, this representation is canonical.
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and noise) that are common across all consumers. This process improves the estimate of

individual demands in two possible ways. First, in a market in which the noise terms

are largely idiosyncratic, a large sample size helps to filter out the noise and identify the

common fundamentals. Second, in a market with largely idiosyncratic fundamentals, many

observations help to filter out demand shocks and identify the common noise term, therefore

estimating individual fundamentals by differencing. As a result, data sharing can induce

informational gains for third parties, such as the intermediary and the firm in the product

market, as well as for individual consumers.

Data Market and Product Market Interactions in the product market are shaped by

the data market in two ways. First, the consumers and the producer learn more about

the realized demand. Second, the consumers and the producer respond to the additional

information by changing both the demand (i.e., the choice of quantity by each consumer)

and the supply (i.e., the choice of price by the producer). Thus, the linear pricing model

specifies how demand information can influence market outcomes, quantities and prices. This

specification of the interaction in the product market is of course only one of many models

that can broadly reflect the representative interactions in the product market. In particular,

the linear pricing model emphasizes that data markets can affect consumers and producers

differentially and that these differences matter for the equilibrium price of data.

The Price of Individual Data Each consumer’s choice to provide information is guided

only by her private benefits and costs, i.e., the externality generated by the data that she pro-

vides does not enter her decision. Thus, the intermediary must compensate each individual

consumer only to the extent that the disclosed information affects her own welfare. Con-

versely, the platform does not have to compensate the individual consumer for any changes

she causes in the welfare of others or any changes in her welfare caused by the information

revealed by others. Consequently, the cost of acquiring individual data can be substantially

less than the value of information to the platform.

Now we can see how social data drive a wedge between the effi cient and profitable uses

of information. Although many uses of consumer information exhibit positive externalities

(e.g., real-time traffi c information for driving directions), very little prevents the platform

from trading data for profitable uses that are in fact harmful to consumers. We thus seek to

identify under which conditions there might be too much or too little trade in data.

Data Sharing Policies We begin the analysis with complete data sharing. Initially,

we restrict the data intermediary to offering only one information policy as an alternative
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to no data sharing. This first step identifies the factors that support data sharing as an

equilibrium outcome. It emphasizes a significant gap between the equilibrium level and the

socially effi cient level of data sharing.

We then remove the restriction of complete data sharing and allow the data intermedi-

ary to determine the revenue-maximizing information flow. We find that aggregation and

anonymization will frequently be part of the optimal data sharing policy. This finding could

contribute to a more effi cient data flow, but the richer set of informational instruments also

allows the intermediary to exploit the data externalities more powerfully.

In particular, we show that, when consumers are homogeneous ex ante, the intermediary

prefers to collect aggregate, market-level information. With this choice, the intermediary

does not enable the producer to set personalized prices: the data are transmitted but dis-

connected from the users’personal profiles. In other words, although from a technological

standpoint, the data are freely available to the intermediary, the role of social data provides

a more nuanced ability to determine the modality of information acquisition and use.3

More Data and More Services We then ask how the gap between the social value of

the data and the price of the data behaves when the number of consumers or the number

of services increases. In either of these instances, the size of the database is growing as

the sources of data are multiplying, but the contribution of each individual consumer to

the aggregate information is shrinking. The presence of a data externality thus provides

an explanation for the digital privacy paradox (e.g., Athey, Catalini, and Tucker (2017)),

whereby small monetary incentives have large effects on the subjects’willingness to relinquish

their private data. In practice, this force also likely drives the extraordinary appetite of

Internet platforms to gather information.4

With a larger number of consumers in the market, we can extend the baseline model with

ex-ante identical consumers to accommodate heterogeneous groups of consumers. Indeed, we

find that data are aggregated at least to the level of the coarsest partition of homogeneous

consumers, although further aggregation is profitable for the intermediary when the number

of consumers is small. The resulting group pricing (which can be interpreted as discrimina-

tory based on observable characteristics such as location) has welfare consequences between

those of complete privacy and those of price personalization.

3The importance of social data is also manifest in the optimal information design. In particular, the
intermediary might find it profitable to introduce correlated noise terms into the information elicited from
each consumer. Noise reduces the value for the producer but exacerbates the data externality by rendering
the consumers’reports more correlated. Thus, it severely reduces the cost of procuring the data.

4The Furman report identified “the central importance of data as a driver of concentration and a barrier
to competition in digital markets”(Digital Competition Expert Panel (2019)). The social dimension of data
helps to explain these forces.
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Different Uses of Information We eventually enrich the basic setting to consider ad-

ditional features that are frequently part of data mediated transactions. We first consider

a model in which the producer can choose product characteristics as well as prices and in

which consumer preferences display a horizontal (taste) dimension, in addition to the ver-

tical (willingness-to-pay) dimension. The resulting data policy then aggregates the vertical

dimension but not the horizontal dimension, enabling the producer to offer personalized

product recommendations but not personalized prices.

Second, we generalize our aggregation results by allowing for heterogeneous uses of

information, some of which increase total surplus. We find that aggregate—market-level—

information is collected if and only if it reduces total surplus. This means that even if data

transmission is socially detrimental, as in the case of price discrimination downstream, the

equilibrium level of data aggregation is socially effi cient.

Related Literature Recently, there has been significant interest in data markets. In

particular, the role of data externalities in the socially excessive diffusion of personal data

has been a central concern in Choi, Jeon, and Kim (2019) and Acemoglu, Makhdoumi,

Malekian, and Ozdaglar (2019).

Choi, Jeon, and Kim (2019) introduced information externalities into a model of monopoly

pricing with unit demand. Each consumer is described by two independent random variables

that are private information to the consumer: her willingness to pay for the monopolist’s

service and her sensitivity to a loss of privacy. The purchase of the service by the consumer

requires the transmission of personal data. The nuisance cost of each type is affected by the

total number of consumers sharing their personal data. Finally, a proportion of consumers

generate information externalities, and a proportion does not. By selling the service, the

monopolist therefore offers a bundle—the service itself and the loss of privacy. The seller gains

additional revenue from the collected data, depending on the proportion of units sold and

the volume of data collected. The excessive loss of privacy is then established by comparing

the optimal pricing policy of the monopolist with the social welfare maximizing policy. In

contrast, we consider distinct data and product markets (and their interaction). Importantly,

our data policy and data flow are determined explicitly as part of the equilibrium analysis,

rather than represented by a reduced-form loss of privacy.

In contemporaneous work, Acemoglu, Makhdoumi, Malekian, and Ozdaglar (2019) also

analyzed data acquisition in the presence of information externalities. As in Choi, Jeon,

and Kim (2019), they considered a model with many consumers and a single data acquiring

firm. In common with the current analysis, Acemoglu, Makhdoumi, Malekian, and Ozdaglar

(2019) proposed an explicit statistical model for their data, allowing them to assess the loss
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of privacy for the consumer and the gains in prediction for the data acquiring firm. Their

analysis then pursued a different, and largely complementary, direction from ours. In partic-

ular, they analyzed how consumers with heterogeneous privacy concerns trade information

with a data platform. They derived conditions under which the equilibrium allocation of

information is (in)effi cient. In contrast, we endogenize privacy concerns to quantify the

downstream welfare impact of data intermediation. By making the information flow endoge-

nous to the equilibrium, we can also investigate when and how privacy can be partially or

fully preserved, for example, by aggregation, anonymization, and noise.

An early and influential paper on consumer privacy and the market for customer infor-

mation is Taylor (2004), who analyzed the sales of data in the absence of data externality.5

More recently, Cummings, Ligett, Pai, and Roth (2016) investigated how privacy policies

affect user and advertiser behavior in a simple economic model of targeted advertising.

The low level of compensation that users command for their personal data is discussed in

Arrieta-Ibarra, Goff, Jimenez-Hernandez, Lanier, and Weyl (2018), who proposed sources of

countervailing market power.

Fainmesser, Galeotti, and Momot (2020) provided a model of digital privacy in which the

data collection improves the service provided to consumers. However, as the collected data

can also be accessed by third parties imposing privacy costs, an optimal digital privacy policy

must be established. Similarly, Jullien, Lefouili, and Riordan (2020) analyzed the equilibrium

privacy policy of websites that monetizes information collected from users by charging third

parties for targeted access. Gradwohl (2017) considered a network game in which the level

of beneficial information sharing among the players is limited by the possibility of leakage

and a decrease in informational interdependence. In a model of personalized pricing, Ali,

Lewis, and Vasserman (2019) analyzed how different choices regarding disclosure policies

could affect the consumer surplus.

Liang andMadsen (2020) investigated how data policies can provide incentives in principal-

agent relationships. They emphasized how the structure of individual data, as well as how

the individual data form substitutes or complements the others and determines the impact

of data on incentives. Ichihashi (2020) considered a single data intermediary and asked how

the nature of the consumer data (under complete information for consumers), particularly

complementary or substitutable data, affects the price of the individual data.

5Acquisti, Taylor, and Wagman (2016) provided a recent literature survey of the economics of privacy.
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2 Model

We consider a trading environment with many consumers, a single intermediary in the data

market, and a single producer in the product market.

2.1 Product Market

Consumers There are finitely many consumers, labelled i = 1, ..., N . In the product

market, each consumer (she) chooses a quantity level qi to maximize her net utility given a

unit price pi offered by the producer (he):

ui (wi, qi, pi) , wiqi − piqi −
1

2
q2
i . (1)

Each consumer i has a true willingness to pay for the product:

wi , θ + θi. (2)

The willingness to pay wi ∈ W = R of consumer i is the sum of two components: one that

is common to all consumers in the market, denoted by θ; and one that is idiosyncratic to

consumer i, denoted by θi. Throughout, we assume that all of the random variables are

normally distributed and described by a mean vector and a variance-covariance matrix,(
θ

θi

)
∼ N

((
µθ

µθi

)
,

(
σ2
θ 0

0 σ2
θi

))
, (3)

with a positive mean vector µθ, µθi ≥ 0.

Producer The producer can choose the unit price pi at which he offers his product to each

consumer i. The producer has a linear production cost

c (q) , c · q, for some c ≥ 0.

The producer’s operating profits are given by

π (pi, qi) ,
∑
i

(pi − c) qi. (4)

The producer knows the structure of demand and thus the common prior distribution given

by (3). However, absent any additional information, the producer does not know the realized
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demand shocks prior to setting prices.

2.2 Data Environment

Initially, each consumer i may only have imperfect information about her willingness to pay.

The imperfect information is represented by a signal si that consumer i receives about her

willingness to pay:

si , θ + θi + ε+ εi. (5)

The additive noise terms ε and εi refer to a common and an idiosyncratic error generated,

for example, by partially overlapping sources of information about the producer’s goods.

Similar to the payoff components θ and θi above, the error terms are normally distributed,(
ε

εi

)
∼ N

((
0

0

)
,

(
σ2
ε 0

0 σ2
εi

))
. (6)

The data environment has three important features. First, any demand information

beyond the common prior comes from the signals of the individual consumers. Second, with

any amount of noise in the signals, σ2
ε + σ2

εi
> 0, each consumer can learn more about her

own demand from the signals of the other consumers. Third, even without any noise in

the signals, σ2
ε + σ2

εi
= 0, each consumer can learn more about the composition of her own

demand, i.e., the separate components θ and θi, from the signals of the other consumers.

The statistical model given by (3) and (6) specifies separately the idiosyncratic and

common factors in the fundamental and the noise shocks. The correlation coeffi cients across

any two consumers for payoff shocks and noise shocks are given by the respective ratios

α , σ2
θ

σ2
θ + σ2

θi

, β , σ2
ε

σ2
ε + σ2

εi

. (7)

We refer to the pair (α, β) ∈ [0, 1]2 as the data structure. The correlation coeffi cients sum-

marize the commonality in the data across any pair of consumers, for fundamentals and

noise separately.6 The data structure (α, β) thus expresses in statistical terms the social

dimension of the individual data.
6A statistically equivalent representation of the data environment could define the total payoff shock wi

and the total noise shock ei and the correlation coeffi cients α, β. The underlying factors, namely (θ, θi) and
(ε, εi), could then be inferred from (wi, ei) and (α, β).
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2.3 Data Market

The data market is run by a single data intermediary (it). The data intermediary can

acquire demand information from the individual consumers, package it, and transmit it to

the producer. We consider bilateral contracts between the individual consumers and the

data intermediary, as well as between the producer and the data intermediary. The data

intermediary offers these bilateral contracts ex ante, that is, before the realization of any

demand shocks. Each bilateral contract defines a data policy and a data price.

The data policy determines the inflow of information and the outflow of information

from the data intermediary. The data price determines the fee for the information flow. The

inflow data policy describes how each signal si enters the database of the intermediary:

Xi : R→ ∆ (R) , ∀i. (8)

The outflow data policy determines how the processed signals are transmitted to the producer

and the consumers in the product market:

Y : RN → ∆
(
RN × RN

)
. (9)

The data contract with consumer i specifies an inflow data policy Xi and a fee mi ∈ R
paid to the consumer. Similarly, the data contract with the producer specifies an outflow

data policy Y and a fee m0 ∈ R paid by the producer. We do not restrict the sign of the
payments a priori. The data intermediary maximizes the net revenue

R , m0 −
∑N

i=1
mi. (10)

As a monopolist market maker, the data intermediary decides how to collect the informa-

tion from each consumer and how to transmit it to the other consumers and the producer.

Thus, the data intermediary faces both an information design problem and a pricing prob-

lem. The data intermediary can transmit all information about each consumer i or some

possibly noisy statistics of individual and market demand. Two critical dimensions of the

data policy are noise and aggregation. A third critical dimension is the sharing of the data

outflow– whether all consumers should also receive the data offered to the producer. In

Section 3, we begin the equilibrium analysis under the assumption of complete data sharing.

In Section 4, we allow the data intermediary to optimally determine all of the dimensions of

the data policy.
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2.4 Equilibrium and Timing

The game proceeds sequentially. First, the terms of trade on the data market and then the

terms of trade on the product market are established. The timing of the game is as follows.

1. The data intermediary offers a data policy (mi, Xi) to each consumer i for data acqui-

sition. Consumers simultaneously accept or reject the intermediary’s offer.

2. The data intermediary offers a data policy (m0, Y ) to the producer. The producer

accepts or rejects the offer.

3. The data s and the information flows (x, y) are realized and transmitted according to

the terms of the bilateral contracts.

4. The producer sets a unit price pi for each consumer i who makes a purchase decision

qi given her available information about wi.

We analyze the Perfect Bayesian Equilibria of the game. At the contracting stage, the

information is imperfect but symmetric. A Perfect Bayesian Equilibrium is given by a tuple

of inflow and outflow data policies, pricing policies for data and product, and participation

decisions by producer and consumers

{(X∗, Y ∗,m∗) ; p∗ (X, Y ) ; a∗} , (11)

where

a∗0 : X × Y × R→{0, 1} , a∗i : Xi × R→{0, 1} , (12)

such that (i) the producer maximizes his expected profits; (ii) the intermediary maximizes

its expected revenue; and (iii) each consumer maximizes her net utility. In most of our

analysis, we focus on the best equilibrium for the data intermediary and discuss unique

implementation in Section 7.

Figure 1 summarizes the information and value flow in the data and product markets.

2.5 Discussion of Model Features

The participation constraints of every consumer and of the producer are required to hold at

the ex ante level. Thus, the consumers agree to the data policy before the realization of any

particular demand information si. The choice of ex ante participation constraints is meant

to capture the prevailing condition under which the consumers and the producer accept the

“terms of use agreement”or “terms of service”before any particular consumption or search

11



Figure 1: Data and Value Flows

event. For instance, when using Facebook, Amazon or other search engines, an account is

established before making any specific choice. Through the lens of our model, the consumer

evaluates the consequences of sharing her data flow ex ante. Hence, she requires a level of

compensation that allows her to profitably share the information on average. Upon agreeing

to share the information, there are no further incentive compatibility constraints.

Similarly, the intermediary’s choice of data outflow policy occurs after consumers are

enlisted but before the data are realized. This assumption is meant to capture the limited

ability of a platform to write advertising contracts contingent on, say, the volume of activity

taking place or the number of registered users.

The shared data allow each consumer to adjust demand (via quantity) and the producer

to adjust supply (via price). This basic model thus contains the central elements of data

mediated transactions. In this model, consumer, producer and social surplus can increase

or decrease with data sharing. The rate and direction of change are largely determined by

the data structure. In special case in which the shared data only improve the information

of the producer and not the information of the consumer, the product market model (and

its welfare implications) is closely related to that of third-degree price discrimination under

linear pricing, as in Schmalensee (1981), with information sharing decreasing social welfare.

The gains from data sharing would arguably change by considering different pricing

models, such as two-part tariffs or general nonlinear pricing. The instruments available to

the producer would presumably affect the value of the social data and the price of individual

data. However, the presence of the data externality would continue to drive a gap between

equilibrium and socially effi cient allocation.
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Finally, in our model, each consumer is compensated with a monetary transfer for her

individual data. In practice, many data intermediaries offer services rather than money in

exchange for personal data. An augmented model in which services are rendered in exchange

for data would add complexity to the interaction between consumer and data intermediary

but would not affect the nature of the data externality, which is the focus of our analysis.

3 Complete Data Sharing

We begin the analysis of the data market by considering complete data sharing– a specific

data policy whereby the intermediary collects all of the consumer information and then

transmits the entirety of the data to the producer and to all consumers. We identify the

costs and benefits of complete data sharing for all market participants, and exhibit conditions

under which complete data sharing emerges in equilibrium. In Section 4, we allow the data

intermediary to restrict the inflow and outflow of data by aggregating signals, withholding

data, and introducing noise. While the optimal data policy will depart in significant ways

from complete data sharing, the critical determinants of the cost and benefit of data sharing

will share similar features.

3.1 Data Policy and Data Price

Under complete data sharing, every signal si enters the database without any modification:

Xi (si) = si, for all i and si; and the outflow policy simply returns the inflow, Y (s) = s,

for all s. Furthermore, all the collected information is transmitted even to non-participating

consumers, while the producer receives the data only if she participates.

Given this data policy, the optimal pricing policy for the producer consists of a vector of

potentially distinct and personalized prices p∗ (s) ∈ RN , resulting in a vector of individual
quantities purchased q∗i (s). The net revenue of the producer is given by

Π (S) , E
[∑N

i=1
π (p∗i (s) , q∗i (s)) |S

]
.

If instead the producer rejects the data contract, he must offer a price using the prior

information only.7 We denote the monopoly price in the absence of any information (which

is necessarily uniform across consumers) by p̄ and the producer’s net revenue by

Π (∅) , E
[∑N

i=1
π (p̄, q∗i (si))

]
.

7If the producer rejects the intermediary’s offered outflow, consumers do not receive any information
either. The quantity purchased is then given by q∗i (si). This assumption has no consequences for payoffs.
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The participation constraint for the producer to enter the data contract is thus

Π (S)− Π (∅) ≥ m0, (13)

i.e., the gains from data acquisition have to at least offset the price of the data.

Proceeding backward, each consumer receives an offer for a data contract (mi, Si). We

denote the gross expected utility of consumer i from complete data sharing by

Ui (S) , E [ui (wi, q
∗
i (s) , p∗i (s)) |S ] .

Holding fixed the decision of the remaining consumers, by rejecting her contract, consumer

i would not transmit her data or receive compensation for her data. This reduces the

outflow data policy to S−i for all market participants. Thus, by withholding her information,

consumer i does not change the amount of information available to her. The consumer’s

surplus from rejecting the intermediary’s offer is given by

Ui (S, S−i) , E [ui (wi, q
∗
i (s) , p∗i (s−i)) |S ] , (14)

where the first argument (S) denotes the consumer’s information, and the second argument

(S−i) refers to the producer’s information.

Each pair (mi, Si) must satisfy the consumer’s participation constraints. In particular,

the data intermediary must set payments to consumers mi that satisfy

mi ≥ Ui (S, S−i)− Ui (S) , for all i. (15)

The participation constraints (13) and (15) indicate how the price of the data is deter-

mined by their value in the product market.

3.2 Data Sharing and Product Markets

We now quantify the value of information for consumers and producers. For each consumer,

the shared data help to improve her estimates of her willingness to pay. For the producer,

the shared data enable a more informed pricing policy. The nature of the demand and of

the uncertainty (i.e., the quadratic utility function and the multivariate normal distribution)

yields explicit expressions for the value of information for all product market participants.

Under the complete data sharing policy, all of the consumers and the producer observe

the vector of signals s. Let

ŵi (s) , E [wi | s] (16)
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denote the predicted value of consumer i’s willingness to pay given the signal profile s. The

realized demand function of consumer i is:

qi (s, p) = ŵi (s)− p. (17)

Therefore, the producer charges consumer i the optimal personalized price p∗i (s), which is a

linear function of the predicted type ŵi, i.e.,

p∗i (s) =
ŵi (s) + c

2
. (18)

From (1) and (4), the ex ante expectation of the consumer i’s surplus and producer

surplus in the interaction with consumer i can be written in terms of ŵi (s) as

Ui (S) =
1

8
E
[
(ŵi (s)− c)2 |S

]
, (19)

Πi (S) =
1

4
E
[
(ŵi (s)− c)2 |S

]
. (20)

The social surplus generated in the interaction between consumer i and the producer is:

Wi (S) , Ui (S) + Πi (S) .

Since prices and quantities are linear functions of the posterior mean ŵi, the ex ante average

prices and quantities are constant across all information policies. Consequently, all surplus

levels under complete data sharing depend on the variance in the posterior mean only:

var [ŵi (s)] , var [E [wi | s]] . (21)

For the producer, the consequences of complete data sharing relative to no information

sharing are simple: without information, the producer charges a constant price based on the

prior mean.8 For an individual consumer i, the consequences of data sharing are more subtle

since each consumer already has an initial signal si, according to which she can adjust her

quantity. Her welfare without data sharing then depends on the precision her own signal, as

measured by

var [ŵi (si)] , var [E [wi | si]] . (22)

We can now express the value of complete data sharing for the consumers and the producer

in terms of the variance in the posterior expectations.

8This price is obtained by setting ŵi = µθ + µθi in (18).
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Proposition 1 (Value of Complete Data Sharing)

1. The value of complete data sharing for the producer is:

Πi (S)− Πi (∅) =
1

4
var [ŵi (s)] .

2. The value of complete data sharing for consumer i is:

Ui (S)− Ui (∅) =
1

8
var [ŵi (s)]−

1

2
var [ŵi (si)] .

3. The social value of complete data sharing is:

Wi (S)−Wi (∅) =
3

8
var [ŵi (s)]−

1

2
var [ŵi (si)] .

The welfare consequences of complete data sharing operate through two channels. First,

with more information about her own preferences, the demand of each consumer is more

responsive to her willingness to pay, which is beneficial for both the consumers and the

producer. Second, with access to the complete data, the producer pursues a personalized

pricing policy toward each individual consumer. As the producer adapts his pricing policy to

the estimate of each consumer’s willingness to pay ŵi, some of the quantity responsiveness

is dampened by the price responsiveness. While beneficial for the producer, this second

channel reduces consumer surplus and also total welfare.

These channels have important welfare consequences in specific data environments. In

particular, suppose that the consumer observes her own willingness to pay without noise or

that she does not learn anything new from the data of the other consumers: data sharing

simply enables price discrimination. In these special cases, data sharing has a positive impact

on producer surplus but a negative impact on consumer and social surplus.9

3.3 Learning and Data Sharing

Proposition 1 gives us a way to describe the impact of data sharing on the creation and

distribution of the surplus in the product market. In particular, the surplus levels of all

9This result is reminiscent of the welfare consequences of third-degree price discrimination in the linear-
demand environment of Robinson (1933) and Schmalensee (1981). In these settings, each consumer knows
her willingness to pay (i.e., noiseless signals, in our model’s language). In the current setting, data sharing
enables the producer to offer personalized prices; thus, price discrimination occurs across different realizations
of the willingness to pay. In contrast, in Robinson (1933) and Schmalensee (1981), price discrimination occurs
across different market segments. In both settings, the central result is that average demand will not change
(with all markets served), but social welfare is lower under finer market segmentation.
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market participants can be expressed as linear combinations (with different weights) of the

consumers’initial information, as measured by var [ŵi (si)], and of the information about wi
generated by the entire social signal profile s, as measured by var [ŵi (s)].

We now define the consumer’s information gain from data sharing as

G , var [ŵi (s)]− var [ŵi (si)] . (23)

The gain function G is a purely statistical notion that compares the variance of the posterior

expectation before and after data sharing. However, we can already see from Proposition 1

that both consumer surplus and producer surplus are increasing in the information gain.

Thus, we seek to characterize the data environments that lead to smaller or larger infor-

mation gains. This goal requires a more detailed analysis of the relevant statistical properties

of the social data. To this end, we describe the data structure in terms of the correlation

coeffi cients (α, β) introduced earlier in (7):

α =
σ2
θ

σ2
θ + σ2

θi

, β =
σ2
ε

σ2
ε + σ2

εi

.

At the same time, we hold the total variance in the fundamentals and the noise constant:

σ2
w , σ2

θ + σ2
θi
, σ2

e , σ2
ε + σ2

εi
. (24)

For a given total variance in payoffshocks and noise shocks (σ2
w, σ

2
e), the data structure (α, β)

determines the composition of the shocks across the common and idiosyncratic components.

We then define the information gain G , G (α, β) in terms of the data structure (α, β). We

note from (23) that the first term var [ŵi (s)] in the information gain depends on the data

structure (α, β), while the second term var [ŵi (si)] (i.e., the variance in each consumer’s

posterior expectation before data sharing) depends on the signal-to-noise ratio only:

var [ŵi (si)] =
σ2
w

σ2
w + σ2

e

σ2
w. (25)

We now study the properties of the information gains in terms of the data structure (α, β).

Lemma 1 (Information Gains)

1. The gain function G (α, β) satisfies G (α, α) = 0, and it is strictly increasing in |α− β|
for all α, β ∈ [0, 1].

2. The gain function is maximized at (1, 0) if σ2
w > σ2

e and at (0, 1) if σ2
e > σ2

w.
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The first part of Lemma 1 asserts that data sharing generates the most pronounced

information gains when the structure of the fundamental shocks is as different as possible

from the structure of the noise shocks. The intuition for this result is best grasped by

considering the special data structures (0, 1) and (1, 0).

1. Suppose that payoff shocks are independent across the consumers, but noise is common

to the consumers; thus si = θi + ε, and the data structure is (0, 1). Each consumer

can estimate the common noise accurately by averaging over N signals. She can then

compute her true willingness to pay θi by differencing out the common noise term.

However, if the noise terms were also independent, then the other N − 1 signals would

provide no additional information at all to consumer i and her estimation problem.

2. Conversely, suppose that there are perfectly correlated fundamentals and idiosyncratic

noise; thus, si = θ + εi, and the data structure (1, 0). Data sharing now generates

additional information by filtering out idiosyncratic noise.

The second part of Lemma 1 indicates which of the special structures generates the

largest information gains. In particular, the common element with the larger variance,

whether it is the fundamental or noise term, can be estimated with more precision, and then

the idiosyncratic element can be estimated by differencing out the common element. Thus, if

the total variance of the fundamental is larger, more information can be gained by estimating

the common element of the fundamental, and vice-versa, the total variance in the noise term

is larger.10 Figure 2 illustrates the level curves of the gain function when σw = σe, in which

case G is a symmetric function of α and β.

We now relate this statistical measure of information to welfare gains and losses.

Proposition 2 (Data Structure and Welfare Gains)

1. For every α, there exist β (α) < α < β(α) such that social welfare is increasing with

complete data sharing if and only if β 6∈ [β (α) , β(α)].

2. For every β, there exist α (β) < β < α(β) such that social welfare is increasing with

data sharing if and only if either α < α (β) or α > α(β).

3. The thresholds β (α) and β(α) are increasing in α. The thresholds α (β), α(β) are

increasing in β.
10Indeed, when σe is large, for any fixed α, if the noise terms are perfectly correlated, each consumer

learns her idiosyncratic type with high precision. (This occurs because the average of N signals identifies
the common components θ + ε.) Thus, N signals carry statistical information for any level of total noise,
even as individual signals become uninformative. Conversely, with independent noise terms, as σe → ∞,
both the individual signals and the entire dataset lose all informativeness.
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Figure 2: Information Gains G(α, β), σw = σe = 1, N = 10

The content of Proposition 2 mirrors the results from Lemma 1. Data sharing is socially

valuable when α is suffi ciently different from β. Propositions 1 and 2 show that the relation-

ship between α and β is qualitatively symmetric, although not exactly in quantitative terms.

We note that the threshold values might lie at the boundary of the unit interval; thus, only

areas with welfare losses may exist.

Proposition 2 could be restated for consumer welfare rather than social welfare in similar

terms. We omit a restatement here and simply note that the respective thresholds for

consumer welfare would always be closer to the boundary, 0 or 1. This fact and the content

of Proposition 2 are visually illustrated in Figure 3.

Figure 3: Social (left) and Consumer (right) Surplus Gains, σe ∈ {1, 10}, σw = 1, N = 10.
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The blue area in each panel identifies the data structure (α, β) at which data sharing

leads to an increase in social surplus (left) and consumer surplus (right), for the case of large

initial noise levels (σe = 10). The ocher area in the left panel identifies the subset of data

structures under which social surplus is increasing when consumers have precise estimates

of their willingness to pay (σe = 1). In this case, data sharing reduces consumer surplus

for any data structure– there is no ocher area on the right. In all cases, positive gains can

only arise when the structures of the fundamentals and of the noise terms are suffi ciently

distinct, e.g., in the case of (α, β) = (1, 0) and (α, β) = (0, 1). Conversely, there are never

any information gains along the diagonal. Because G (α, β) = 0 when α = β, consumers

cannot learn anything from each other’s signals, but the producer can. Thus, consumer and

social welfare are diminished by data sharing.

We already know from Proposition 1 that the impact of data sharing on producer surplus

is always positive. Based on Proposition 1, we can write the consumer and social surplus in

terms of the gain function and the value of initial information:

Ui (S)− Ui (∅) =
1

8
G (α, β)− 3

8
var [ŵi (si)] ,

and

Wi (S)−Wi (∅) =
3

8
G (α, β)− 1

8
var [ŵi (si)] .

This formulation clarifies that, for large levels of initial noise σe, consumers know so little

about their preferences that they stand to gain from data sharing. This is only possible,

however, if the data structure enables suffi ciently large information gains. We now formalize

how the total variance terms impact the equilibrium consumer and social welfare.

Proposition 3 (Welfare Impact of Data Sharing)

1. For every α and β, there exist σ2
e and σ

2
e with σ

2
e ≤ σ

2
e ≤ ∞ such that

W (∅) < W (S) , if and only if σ2
e > σ2

e, (26)

and

U (∅) < U (S) , if and only if σ2
e > σ

2
e. (27)

2. For every α < 1, there exists β such that the thresholds σ2
e and σ

2
e are finite.

Proposition 3 establishes that, if the total noise level is significant—and thus consumers

stand to learn substantially from data sharing– then data sharing is going be socially benefi-

cial. With even more noise in the individual signals, it will also be beneficial for the consumer
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surplus. However, these thresholds are only finite for data structures such as those identified

in Proposition 2, in which the structure α of the payoff shocks is suffi ciently different from

that of the noise shock β.

3.4 Equilibrium with Complete Data Sharing

We have learned that complete data sharing improves social (and consumer) welfare when-

ever: (a) the correlation structure of the fundamentals is suffi ciently different from that of

the noise shocks; and (b) the total level of noise is suffi ciently large. We now investigate

whether these social gains can be decentralized in a market with a data intermediary. Con-

versely, we are asking whether the data intermediary could profitably induce complete data

sharing even when it is socially harmful.

To compute the profitability of complete sharing for the intermediary, we compute the

compensation owed to each consumer mi The payment mi to consumers must satisfy their

participation constraint (15), considering what would happen if consumer i held out her

signal, given that the other N − 1 consumers share theirs. We thus formally define a notion

of data externality.

Definition 1 (Data Externality)
The data externality imposed by consumers −i on consumer i is given by:

DEi (S) , Ui (S, S−i)− Ui (Si,∅) . (28)

In (28), we add the data S−i to the information held by the producer and consumer i.

Thus, the data externality for consumer i is given by the impact of the data S−i provided

by all other consumers. Without data externalities, the data S−i would have no impact, and

the difference between the two terms in (28) would be nil.

We can now represent consumer i’s compensation as

m∗i = Ui (S, S−i)− Ui (S, S)

= −(Ui (S, S)− Ui (Si,∅))︸ ︷︷ ︸
∆Ui(S)

+ Ui (S, S−i)− Ui (Si,∅)︸ ︷︷ ︸
DEi(S)

. (29)

The data compensation mi can thus be written as the difference between two terms. The

first term is the total change in consumer i’s surplus, denoted by ∆Ui (S), associated with

complete data sharing. We characterized these gains earlier in Propositions 1 and 3. The

second term is the data externality DEi (S) imposed on i by consumers j 6= i when they

sell their data to the intermediary, who shares it with the producer and with all consumers.
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Because this channel can potentially reduce consumer surplus, it creates the possibility of

profitable intermediation of information, which hurts consumers overall.11

With the above notion of a data externality and the producer’s binding participation,

which pins down m0 = Π (S)− Π (∅), we can write the intermediary’s profit (10) as

R (S) = ∆Wi (S)−
∑N

i=1
DEi (S) , (30)

where ∆W denotes the variation in total surplus resulting from data sharing. Thus, the

intermediary’s profits are given by the sum of two terms: the variation in total surplus

associated with data sharing; and the data externalities across N agents. The expression

in (30) clarifies the extent to which the intermediary’s objective diverges from the social

planner’s. If consumers exert negative externalities on each other, intermediation can be

profitable but welfare reducing. Conversely, if DEi (S) > 0 then intermediation is profitable

only if it is welfare enhancing.

The data externality can be written as

DEi (S) =
1

2

(
var [ŵi (s)]−

3

4
var [ŵi (s−i)]− var [ŵi (si)]

)
. (31)

The payments made to consumers are positive and can be written as

m∗i =
3

8
(var [ŵi (s)]− var [ŵi (s−i)]) ,

while the payment charged to the producer m0 comes immediately from Proposition 1,

m0 =
N

4
var [ŵi (s)] .

Finally, using Proposition 1, we can write the revenue as

R (S) =
N

8
(3 var [ŵi (s−i)]− var [ŵi (s)]) .

The intermediary’s profits thus depend positively on var [ŵi (s−i)], i.e., on the amount of

information gained by the producer about consumer i’s type on the basis of signals s−i only.

In Theorem 1, we characterize the data structures that allow for profitable intermediation

with complete data sharing.

11In particular, the data externality DEi (S) is strictly negative if consumers observe their willingness to
pay without noise (because in this case, var [ŵi (s)] = var [ŵi (si)], and the only effect of sharing is to give
better information to the producer).
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Theorem 1 (Complete Data Sharing)
Suppose that the intermediary collects and transmits all of the consumers’signals.

1. For every noise structure β ∈ [0, 1], there exists a threshold α∗ (β) > 0 such that the

intermediary obtains positive profits if and only if α > α∗ (β).

2. The threshold α∗ (β) is increasing in β when N ≥ 6, and it has a unique fixed point

β0 (N) for any N .

3. When N ≥ 6, the threshold α∗ (β) is increasing in the ratio σw/σe for all β < β0 and

decreasing otherwise.

Intuitively, the demand of each individual consumer comes from two sources: the idiosyn-

cratic shock and the common shock. While each consumer has an informational monopoly

over the idiosyncratic shock, the producer can learn about the common shock not only

from consumer i but also from all of the other consumers. The more strongly correlated

that the underlying fundamentals wi and w−i are, the easier it is to learn from other con-

sumers’ signals. In particular, for suffi ciently correlated fundamentals, intermediation is

always profitable, regardless of the correlation structure in the noise, while for independent

fundamentals, it is never profitable.

Figure 4: Profitable and Effi cient Data Structures, (σe ∈ {1, 10}, σw = 1, N = 10)

In Figure 4 we illustrate the socially effi cient data structures (blue) and profitable data

structures (green) for σe = 1(left) and σe = 10(right). Proposition 1.2 shows that, when the

error terms become more correlated (higher β), filtering individual willingness to pay on the

basis of other consumer’s signals becomes harder. Consequently, the required correlation of
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fundamental terms α∗ (β) increases. Proposition 1.3 shows that this problem is exacerbated

when the magnitude of the error terms’variance increases, for a fixed (high) β.

Finally, we compare profitable data structures and socially effi cient intermediation. When

σe is low, as in the left panel, the only structures that yield profitable and effi cient data

sharing are those with high α and low β: consumers benefit overall because data sharing

filters out the idiosyncratic noise and allows them to estimate their (common) willingness

to pay. When σe is large, as in the right panel, profitable and effi cient data sharing can

also happen due to the filtering of the common noise, with α relatively smaller than β. We

formalize this result in Corollary 1.

Corollary 1 (Effi cient and Equilibrium Data Sharing)
For a given variance σ2

w, there exists a threshold σ
2
e > 0 such that, for all σ2

e < σ2
e, effi cient

data sharing arises in equilibrium only if α > β.

However, for any σe, two types of ineffi ciency remain possible. First, socially ineffi cient

intermediation can be profitable, most notably when α is suffi ciently large, and β is close

to α. In this case, complete data sharing can lead to massive consumer and social welfare

losses because the consumers learn close to nothing from each other’s signals. Nonetheless,

a large and negative data externality indicates that the intermediary must only compensate

consumers for a small part of these losses. Second, effi cient intermediation might be unprof-

itable: when fundamentals are largely independent, and errors are correlated (low α, high

β), the presence of a positive data externality renders acquiring the consumers’signals too

expensive, despite the large welfare gains associated with filtering out the common noise

term across consumers.

Comparing Proposition 2 to Theorem 1 and Corollary 1, we note that the socially effi cient

data sharing is governed by different factors than the equilibrium data sharing. The former

suggests that filtering common noise and common fundamentals are both statistically valu-

able operations: for equilibrium data sharing to be socially effi cient, it is suffi cient that any

common component be precisely estimated. For the latter, the common component must be

the fundamental element since it reduces the cost of information acquisition by making the

data externality more severe.

When we next consider the optimal rather than the complete data sharing, we find that

the bias toward ineffi cient data sharing driven by the common fundamental becomes even

more pronounced.
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3.5 Data Complements and Data Substitutes

The statistical properties of the consumers’signals can further improve our understanding

of the data sharing equilibrium. In particular, we define consumers’signals as complements

if the increment in the variance in the posterior expectation due to the individual signal si
is larger in the presence of the other signals s−i than in their absence. Thus, signals are

complements if

var [ŵi (s)]− var [ŵi (s−i)] > var [ŵi (si)]− var [ŵi (∅)] , (32)

and they are substitutes otherwise. Equivalently, the data are complements if, for agent i,

the gains in information from the other signals s−i are larger in the presence of her signal si
than in the absence of her signal:

var [ŵi (s)]− var [ŵi (si)] > var [ŵi (s−i)]− var [ŵi (∅)] . (33)

The left-hand side of (33) is simply G. As is intuitive, the right-hand side is increasing in

α– the more correlated the fundamentals, the more there is to learn from signals s−i only.

We now relate the data structure to informational interaction of the signals.

Proposition 4 (Data Complements vs Data Substitutes)
For any β > 0, there exists α̃ ∈ [0, β] such that signals are complements if α ≤ α̃ (β), and

substitutes otherwise.

In particular, signals are always complements when the payoff shocks are completely

idiosyncratic (α = 0). Conversely, for any noise structure β, as the correlation in the payoff

shocks across agents increases (namely, for all α ≥ β), the signals become substitutes.

The intuition for this result is most easily grasped by considering the special case of

si = θi + ε (i.e., α = 0, β = 1). In this case, observing the individual signal si provides

partial information about wi, but observing a large sample of signals s−i allows one to

estimate the common noise ε precisely; hence, adding signal si perfectly reveals θi: the signals

are complements. Conversely, if s = θ + εi, each signal increases the sample size toward

estimating the common mean. With Gaussian information, this process has diminishing

returns: signals are substitutes.

The profitability of intermediation is intuitively related to the substitutability between

signals. With complement signals, the consumer knows they are giving up more information

by participating as a consequence of the presence of others, relative to the case of a single

agent. Because the intermediary must pay the marginal loss suffered by i as a consequence
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of her revealing her signal, complement signals depress the profitability of intermediation.12

More generally, when signals are complements, the intermediary’s profits are smaller than

the effect of data sharing on social welfare. Indeed, comparing the left-hand side of (32)

and the right-hand side of (31), we observe that the data externality is necessarily positive

whenever signals are complemented (but not the converse). Thus, profitable intermediation

of complement signals is possible, but only if it increases social surplus. This result is

consistent with expression (30) for the intermediary’s profits: when the data externality is

positive, the intermediary must derive its revenue from an increase in total welfare.

Viewed in this light, these results reconcile the findings of our paper with those of Ace-

moglu, Makhdoumi, Malekian, and Ozdaglar (2019), who assumed submodularity of infor-

mation and found socially excessive data intermediation. In our model, socially insuffi cient

intermediation can also occur. In particular, the intermediary may not be able to generate

positive profits from (socially effi cient) information with complement signals.

4 Optimal Data Intermediation

In the preceding analysis, the data intermediary collected and distributed all of the available

demand data to all of the product market participants. We now allow the intermediary to

design an optimal data intermediation (inflow, outflow) policy along three key dimensions.

First, we allow the intermediary not to release all of the data that it has collected, i.e.,

to introduce incomplete and possibly asymmetric information in the product market by

limiting the data outflow relative to the data inflow. Second, we allow the intermediary to

choose between collecting information about each individual consumer i or some aggregate

information about market demand. Third, we allow the intermediary to introduce further

(possibly correlated) noise terms in any (individual or aggregate) signals that it collects.

More specifically, if the intermediary chooses to collect individual information, a data

inflow policy consists of signals

xi , si + ξ + ξi, (34)

for each consumer i = 1, . . . , N who accepts the intermediary’s offer. The choice of the

variance terms σ2
ξ and σ

2
ξi
is an instrument available to the data intermediary to guarantee

some degree of privacy to consumer i. Conversely, if the intermediary chooses to collect

12These properties are also present in Liang and Madsen (2020), who related the statistical nature of the
signals to the sign of the data externality and to the strategic nature of the agents’participation decisions. In
both their model and ours, negative data externalities render participation decisions strategic complements
(and vice versa). However, in our game, information sharing has a direct effect on total surplus, indicating
that even substitute signals (those that filter out idiosyncratic noise) can yield positive externalities.
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aggregate information, a data inflow policy consists of a single signal

x̄ , 1

N

∑N

j=1

(
sj + ξ + ξj

)
aj, (35)

where aj ∈ {0, 1} represents the participation decision of consumer j. In both cases, we
assume the consumer observes the realization of the noisy signal xi that the intermediary

collects about her. However, if consumer j does not participate (aj = 0), she does not share

her data with the data intermediary, and no signal is collected about her willingness to pay.

We now analyze the intermediary’s optimal data policy along all dimensions, beginning

with the choice of data outflow for any realized data inflow.

4.1 Data Outflow

Recall that, given the realized data inflow, the intermediary offers a data outflow policy to

the producer specifying both the fee m0 and the flow of information to market participants,

including the consumers. The data outflow policy thus determines how well-informed the

producer’s customers are. A critical driver of the consumer’s decision to share the data is

then her ability to anticipate the intermediary’s use of the information thus gained. In this

case, the consumer knows that the intermediary will choose the data outflow policy that

maximizes the producer’s profits, which it then extracts through the fee m0.

Consistent with the previous section, we define a complete data outflow policy as one

by which all collected signals are reported to the producer and to all consumers, including

those who do not accept the intermediary’s offer. We then establish that the complete data

outflow maximizes the producer’s gross surplus and hence the intermediary’s profits.

Proposition 5 (Data Outflow Policy)
Given any realized data inflow X, the complete data outflow policy Y ∗ (X) = X maximizes

the gross revenue of the producer among all feasible outflow data policies.

The intuition for this result is twofold. First, as we showed in Proposition 3, producer

surplus is increasing in the amount of information that is symmetrically gained by all of the

market participants: when a consumer’s demand responds to the intermediary’s information,

a producer endowed with the same information can better tailor his price. Second, the

producer does not benefit from holding superior information relative to the consumers. If

he did, the prices charged would convey information to the consumers. In any equilibrium,

this reduces the producer’s profits because of the ensuing costly signaling.

Therefore, in every subgame following the consumers’participation decisions in the data

inflow policy, all of the consumers and the producer receive the same information from
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the intermediary. For any data inflow policy X, the compensation owed to consumer i in

equilibrium can then be written as in (29)

m∗i = −(Ui (X,X)− Ui (Xi,∅))︸ ︷︷ ︸
∆Ui(X)

+ (Ui (X,X−i)− Ui (Xi,∅))︸ ︷︷ ︸
DEi(X)

,

where the data externality DEi (X) is defined as

DEi (X) , Ui (X,X−i)− Ui (Xi,∅) . (36)

Finally, the intermediary’s profits can be written as in (30):

R (X) = ∆Wi (X)−
∑N

i=1
DEi (X) .

4.2 Data Aggregation

We now explore the intermediary’s decision to aggregate the individual consumers’demand

data. We focus on two maximally different policies along this dimension. At one extreme,

the intermediary can collect and transmit individual demand data, thereby enabling the

producer to charge personalized prices, as in the previous section. At the other extreme,

the intermediary can collect market demand data only. Under aggregate information inter-

mediation, the producer charges the same price to all consumers j who participate in the

intermediary’s data policy. In other words, the observation of aggregate demand data still al-

lows the producer to perform third-degree price discrimination across realizations of the total

market demand but limits his ability to extract surplus from the individual consumers.13

Certainly, the value of market demand data is lower for the producer than the value

of individual demand data. However, the cost of acquiring such fine-grained data from

consumers is also correspondingly higher. Aggregation then reduces the data acquisition

costs by anonymizing the consumers’information.

Theorem 2 (Optimality of Data Aggregation)
For any noise level in the consumers’ signals (σ2

ξ , σ
2
ξi

), the intermediary obtains strictly

greater profits by collecting aggregate information.

Within the confines of our policies, but independent of the initial and additional noise

levels, the data intermediary finds it advantageous to not elicit the identity of the consumer.

Therefore, the producer will not offer personalized prices but variable prices that adjust to

13Equivalently, the producer could have access to individual data, including identifying information about
the consumer, but could not identify consumers when he offers his product.
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the realized information about market demand. In other words, the presence of a monopolist

intermediary might induce socially ineffi cient information transmission, but the equilibrium

contractual outcome will preserve the personal identity of the consumer.

This finding suggests why we might see personalized prices in fewer settings than initially

anticipated. For example, the retail platform Amazon and the transportation platform Uber

very rarely engage in personalized pricing. However, the price of every single good or service

is subject to substantial variation across both geographic markets and over time. In light

of the above result, we might interpret the restraint on the use of personalized pricing in

the presence of aggregate demand volatility as the optimal resolution of the intermediary’s

trade-off in the acquisition of sensitive consumer information.

To gain intuition for why the intermediary resolves this trade-off in favor of aggregation,

we turn to the data externality. According to Proposition 5, each consumer i knows that she

will receive the same data outflow as all of other consumers −i regardless of her participation
decision. Therefore, her decision only impacts the information available to the producer

about her (and others’) willingness to pay.

Suppose that the intermediary acquires individual data; i.e., it collects signals

xi = si + ξ + ξi (37)

with some fixed noise levels (σ2
ξ , σ

2
ξi

). Now consider the data externality (36) imposed on

consumer i by all other consumers −i: if no consumer reports her signal, the producer sets
a single price using the prior distribution only. If consumers −i reveal their signals, and
consumer i does not, the producer charges price p∗i (X−i) to consumer i.

When the producer observes the N − 1 signals x−i only, he is restricted in his ability

to offer a personalized price to consumer i. Since the demand shock of each consumer has

an idiosyncratic and a common component, the producer can use the aggregate demand

data from within his entire sample to estimate the demand of any specific consumer out of

sample. The optimal price is a convex combination of the prior mean and the average of all

signals x−i with some weight λ ∈ (0, 1):

p∗i (X−i) =
E [wi | X−i] + c

2
=

1

2

(
c+ λ

Σj 6=ixj
N − 1

+ (1− λ)µ

)
. (38)

The extent to which the mean of signals x−i is informative about wi then depends on the

variances of the common shock σ2
θ and the idiosyncratic shock σ

2
θi
, i.e., on the degree of

correlation of the consumers’types.
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Now, contrast this case with the collection of aggregate data

x̄ =
1

N

∑N

j=1

(
sj + ξ + ξj

)
.

Along the path of play, the producer charges one price to all consumers. If a consumer rejects

its offer, however, the producer charges two prices: a single price for the N − 1 participating

consumers about whom the producer has aggregate information; and another price to the

deviating “anonymous”consumer. The latter price is again based on market data and is,

in fact, equal to p∗i (X−i) in (38). In other words, with individual signals, the producer

optimally aggregates the available data to form the best predictor of the missing data point.

Therefore, aggregate data has no impact on the price faced by consumer i off the equilibrium

path, hence generating the same level of the data externality as individual data.14

At this point, it is clear that the intermediary profits from aggregating the individual

information of all consumers for any given noise level. Aggregation leaves the DEi terms in

(30) unchanged but reduces the amount of information conveyed to the producer in equi-

librium. Crucially, this reduction does not occur at the expense of the consumers’ own

learning because the mean of the signals x̄−i is a suffi cient statistic for the problem of each

consumer i. Thus, signal aggregation mitigates the information transmitted to the producer

while holding fixed the consumer’s information. This shift increases total surplus and hence

also the intermediary’s profits, relative to individual data sharing.

4.3 Information Design

The data intermediary can jointly choose the level of aggregation and noise in the data inflow

by choosing the variance levels of the additional noise terms, σ2
ξ and σ

2
ξi
. We begin with the

information structure that maximizes the intermediary’s profits. In the next section, we

then consider how this policy changes with the number of consumers and how it adapts to

a richer demand specification with consumer heterogeneity.

Theorem 3 (Optimal Data Intermediation)
The optimal data policy includes data aggregation and

1. no additional idiosyncratic noise, σ∗ξi = 0; or

2. (weakly) positive additional aggregate noise σ∗ξ ≥ 0.

14The result in Proposition 2 would not change we forced the producer to charge a single price to all
consumers on and off the equilibrium. With this interpretation, however, we capture the idea that the
producer offers one price “on the platform,” to the participating consumers while interacting with the
deviating consumer “offl ine.”He then leverages the available market data to tailor the offl ine price.

30



The optimal level of common noise σ∗ξ is strictly positive when the correlation coeffi cient

of the consumers’willingness to pay α , σ2
θ/
(
σ2
θ + σ2

θi

)
, or the number of consumers N are

suffi ciently small: if the consumers’preferences are suffi ciently correlated (or if the market

is suffi ciently large), the intermediary does not add any noise. If the consumer types are

not suffi ciently correlated, the intermediary can supplement the degree of coordination with

additional common noise σ∗ξ , for any structure of the initial noise terms β. However, as we

establish in Proposition 6, no profitable intermediation is feasible for values of α less than a

threshold that decreases with N . Finally, as α approaches this threshold, the optimal level of

common noise grows without bound. Figure 5 shows the optimal variance in the additional

common noise term.

Figure 5: Optimal Additional Noise (σw = σe = 1, N = 2)

Proposition 6 (Profitability of Data Intermediation)
Under the optimal data policy, the intermediary’s profits are strictly positive if and only if

α >
N(
√

3 + 1)− 1

2N (N + 1)− 1
∈ (0, 1) . (39)

By introducing noise, the intermediary reduces the amount of information procured from

consumers and hence the total compensation owed to them. These cost savings come at the

expense of lower revenues. In this respect, aggregation and noise serve a common purpose.

However, because the intermediary optimally averages the consumers’signals prior to re-

selling them to the producer, it might appear surprising that the correlation structure in the

additional noise terms plays such a critical role.
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To gain intuition into the role of correlated noise, it might help to write the “regression

coeffi cient”used by the producer to estimate the market demand (i.e., the average willingness

to pay w̄) from the aggregate demand signal x̄ as in (35):

cov [w̄, x̄]

var [x̄]
=

σ2
θ + σ2

θi
/N

σ2
θ + σ2

ε + σ2
ξ +

(
σ2
θi

+ σ2
εi

+ σ2
ξi

)
/N
. (40)

Multiple combinations of σ2
ξ and σ

2
ξi
yield identical regression coeffi cients. The reason

for choosing the degenerate combination (σ2
ξ , σ

2
ξi

) =
(
σ∗ξ , 0

)
is again the data externality.

In particular, consider what happens to the producer’s inference problem when consumer

i does not sell her data to the intermediary. The producer wishes to estimate wi from the

aggregate signal x̄−i. In this new regression, the signal x̄−i receives the following weight:

cov [wi, x̄−i]

var [x̄−i]
=

σ2
θ

σ2
θ + σ2

ε + σ2
ξ +

(
σ2
θi

+ σ2
εi

+ σ2
ξi

)
/ (N − 1)

. (41)

Comparing (40) and (41), we observe that the common noise term enters identically into

both, while the idiosyncratic noise σ2
ξi
increases the variance in x̄−i relatively more than

the variance in x̄. This finding means that the aggregate demand signal in the absence

of consumer i’s participation is a relatively worse predictor of wi (and of w̄) when the

intermediary uses idiosyncratic noise, rather than correlated noise. Therefore, by loading all

the noise on the common term ξ, the intermediary can hold constant the information content

of the signal sold to the producer and reduce the cost of acquiring the information.

Intuitively, each consumer is performing two tasks under idiosyncratic noise: contributing

to the estimation of market demand and reducing the noise of the aggregate signal (by

averaging out the noise terms ξi over a larger sample size). The latter effect is absent when

only common noise is used. Common noise renders consumer i less valuable to the producer

and reduces her compensation.

It would be misleading, however, to suggest that common noise is unambiguously more

profitable for the intermediary. Indeed, these two elements of the information design–

aggregation and noise– interact with one another in a rich fashion. In particular, the value

of common noise is deeply linked to that of aggregate data: in a constrained problem in

which the intermediary must offer individual data intermediation, adding idiosyncratic noise

becomes optimal when the consumers’initial signals si are suffi ciently precise.15

Intuitively, if the intermediary is restricted to individual data inflow policies, it enables

personalized price discrimination. We can then informally describe the producer’s problem

15See Proposition 7 in Bergemann, Bonatti, and Gan (2020).
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as consisting of two tasks: estimating the common component of market demand θ from the

average signal x̄; and then estimating the idiosyncratic taste shocks θi from the difference

between average and individual signals. However, the difference between x̄ in (35) and xi in

(37) can be written as

x̄− xi =
1

N

∑N

j=1

(
θj + εj + ξj

)
− θi − εi − ξi.

This difference is an unbiased signal of w̄−wi, where the common noise terms ε and ξ drop
out. Therefore, common noise without data aggregation reduces the value of information to

the producer without protecting individuals from harmful price discrimination.

Having clarified why aggregation and common noise are integral parts of the optimal

intermediation policy, we now turn to the implications of our results for large databases.

5 Value of Large Databases

In this section, we leverage our model to explain the “thirst”for data shown by large plat-

forms. In particular, we examine the roles of data precision, of the number of consumers,

and of consumer heterogeneity. We begin with the comparative statics of the optimal inter-

mediation policy with respect to the precision of the consumers’signals and the number of

consumers. We then turn to the intermediary’s choice to enable finer segmentation of the

product market through information provision.

5.1 Data Precision

A defining feature of data markets is the rapid increase in data sources and data services. For

example, Facebook Connect allows Facebook to track consumers across additional services,

such as Instagram, Snapchat, Facebook Open Graph, and Facebook Groups. Similarly,

Google offers a number of services, such as Gmail, Google Maps, and YouTube. These

services extend the number of sources of information about each consumer.

Our aim in this section is to capture the precision of information associated with mul-

tiple sources in a parsimonious manner. We therefore consider the comparative statics of

the optimal data policy with respect to the total noise variance σ2
e, holding the degree of

correlation in the noise terms (β) constant.16

16This formulation assumes that each consumer learns more about her own preferences by using multiple
services and is able to convey this information to the intermediary. We could alternatively fix the consumer’s
initial information and introduce noise in the communication channels, with similar results.
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Greater signal precision has a direct effect on the data policy since it increases the value

of information for the producer. In addition, to the extent that the intermediary can acquire

more information from all consumers, it might be able to decrease the total compensation

for a given data policy.

Proposition 7 (Precision of Information Collection)

1. There exists a threshold β∗ (α,N) ∈ (0, 1) such that σ∗ξ is increasing in σ
2
e if β < β∗,

and decreasing in σ2
e otherwise.

2. The threshold β∗ (α,N) is strictly decreasing in both arguments.

3. The intermediary’s profit is decreasing and convex in σ2
e whenever σ

∗
ξ > 0.

This result captures the idea that the intermediary supplements the amount of correlation

in the consumers’signals: the optimal amount of additional common noise σ∗ξ increases with

the errors in the initial signals when these errors are independent, and it decreases when they

are correlated. In particular, greater signal precision (lower σ2
e) strengthens the correlation

in the signals si (because the fundamentals wi are themselves correlated) when the noise

terms εi are independent. The intermediary can then reduce the amount of common noise.

Conversely, when the noise terms are strongly correlated, any increase in precision can reduce

the correlation in the initial signals. The intermediary then supplements these signals with

an additional noise term σ∗ξ .

Finally, greater signal precision improves the data intermediary’s profits. This can occur

through two channels. First, the potential information (and total surplus) gains increase.

Second, information precision worsens the consumer’s bargaining position due to the data ex-

ternality. In particular, for suffi ciently low σ2
e, all of the signal structures exhibit substitutes,

and the data externality is unambiguously negative. This effect reduces the compensation

required by the individual consumer and explains the increasing returns (i.e., convex profits)

that the intermediary obtains when data precision improves.

5.2 Value of Social Data

Thus far, we have considered the optimal data policy for a given finite number of consumers,

each of whom transmits a single signal. Perhaps, the defining feature of data markets is

the large number of (potential) participants, data sources, and services. We now pursue

the implications of having a large number of participants and data sources for the social

effi ciency of data markets and the price of data.
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We first consider what happens when the number of consumers becomes large. Each

additional consumer presents an additional opportunity for trade in the product market.

Thus, the feasible social surplus is linear in the number of consumers. In addition, with

every additional consumer, the intermediary obtains additional information about the market

demand. These two effects suggest that intermediation becomes increasingly profitable in

larger markets, in which the potential revenue increases without bound, while individual

consumers make a small marginal contribution to the precision of aggregate data.

Theorem 4 (Large Markets)

1. As N → ∞, the individual consumer’s compensation goes to zero, and the total com-
pensation converges to

lim
N→∞

Nmi∗ =
3

4

σ2
wα (1− α)

α + βσ2
e/σ

2
w

.

2. For suffi ciently large α, the total compensation is asymptotically decreasing in N .

3. As N →∞, the intermediary’s revenue and profit grow linearly in N .

As the optimal data policy aggregates the consumers’signals, each additional consumer

has a rapidly decreasing marginal value. Furthermore, each consumer is only paid for her

marginal contribution, which explains how the total payments
∑N

i=1mi converge to a finite

number. Strikingly, this convergence can occur from above: when the consumers’willingness

to pay is suffi ciently correlated, the decrease in each i’s marginal contribution can be suffi -

ciently strong to offset the increase in N . Figure 6 illustrates such an instance, in which it

can be less expensive for the intermediary to acquire a larger dataset than a small one.

Finally, the revenue that the data intermediary can extract from the producer is linear

in the number of consumers. Our model therefore implies that, as the market size grows

without bound, the per capita profit of the data intermediary converges to the per capita

profit when the (aggregate) data are freely available.

In practice, the results in Theorem 4 can shed light on the digital privacy paradox of

Athey, Catalini, and Tucker (2017). Specifically, when aggregate information is collected,

the incremental contribution of each individual consumer to the estimation of the average

willingness to pay is close to nil. Therefore, independent of the final use of information,

each consumer is willing to accept a negligible compensation (even on aggregate) to give

up her private information. Far from being a paradox, this type of behavior reflects the

market value of their information, which depends both on the correlation structure of their

willingness to pay and on the intermediary’s equilibrium data policy.
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Figure 6: Total Consumer Compensation (σw = 1, σe = 0)

5.3 Market Segmentation and Data

We have so far used the assumption of ex ante homogeneity among consumers to produce

some of the central implications of social data. A more complete description of consumer

demand should consider additional characteristics that introduce heterogeneity across certain

groups of consumers. These characteristics might include location, demographics, income,

and wealth, among others.

We now explore how these additional characteristics influence the information policy and

the profits of the data intermediary. To this end, we augment the description of consumer

demand by splitting the population into subsets according to the common component of

their willingness to pay,

wij = θj + θij, i = 1, 2, ..., Nj, j = 1, ..., J . (42)

Thus, each member of group j has the same common component. The J groups are

identical ex ante: the common components θj are drawn from a normal distribution with

mean µ and variance σ2
θ. The idiosyncratic component θij is normally distributed with zero

mean and variance σ2
θi
, and all of the random variables are independent. For the remainder

of the analysis, we consider two consumer groups of equal size, i.e., J = 2 and N1 = N2 = N.

The intermediary’s data policy space is now potentially richer. In particular, the inter-

mediary must choose how to aggregate the consumers’signals both across groups and within

each group. However, an identical argument to Theorem 2 establishes that it is always opti-

mal to aggregate all signals within each homogeneous group, i.e., to sell at most two distinct
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signals (s̄1 and s̄2) to the producer.

Corollary 2 (No Discrimination within Groups)
The optimal data policy aggregates all signals within each group j = 1, 2.

We then ask whether and under what conditions the data intermediary will collect and

transmit group characteristics. By collecting information about the group characteristics,

the intermediary influences the extent of price discrimination. For example, the intermediary

could send the simple average of all signals across groups to the producer, thus forcing the

producer to offer a single price only. Alternatively, the intermediary could allow the producer

to discriminate between two groups of consumers by transmitting the group-level means s̄j.

As intuition would suggest, enabling price discrimination across groups not only allows the

intermediary to charge a higher fee to the producer but also increases the compensation owed

to consumers.

Proposition 8 sheds light on the optimal resolution of this trade-off. In this result,

we restrict attention to the case of noiseless signals (σ2
e = 0) and noiseless intermediation(

σ2
ξ = 0

)
. We expect these results to extend to a noisy signal environment.

Proposition 8 (Segmentation)
Let σ2

e = σ2
ξ = 0.

1. There exists N such that the data intermediary induces group pricing for all N > N .

2. When N ≥ 3, the threshold N is decreasing in the within-group correlation α.

While the earlier Theorem 2 stated that the intermediary will not reveal any information

about consumer identity, the present result shows that, if the market is suffi ciently large,

then the intermediary will convey limited identity information, i.e., each group’s identity

and average willingness to pay. This policy allows the producer to price discriminate across,

but not within, groups. Conversely, if the producer faces a small number of consumers, and

their types are not highly correlated, then pooling all signals reduces the cost of sourcing

the data.

The limited amount of price discrimination, which optimally operates at the group level

rather than at the individual level, can explain the behavior of many platforms. For example,

Uber and Amazon claim that they do not discriminate at the individual level, but they use

price discrimination based on location and time, as well as other dimensions that effectively

capture group characteristics.

The result in Proposition 8 is perhaps the sharpest manifestation of the value of big

data. By enabling the producer to adopt a richer pricing model, a larger database allows the
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intermediary to extract more surplus. Our result also clarifies the appetite of the platforms

for large datasets: since having more consumers allows the platform to profitably segment the

market in a more refined way, the value of the marginal consumer i = N to the intermediary

remains large even as N grows. In other words, allowing the producer to segment the market

is akin to paying a fixed cost (i.e., higher compensation to the current consumers) to access

a better technology (i.e., one that scales more easily with N). Proposition 9 formalizes this

result, and Figure 7 illustrates it.

Proposition 9 (Marginal Consumer)
The profitability of an additional consumer for the intermediary is higher under group pricing

than under uniform pricing (as long as either profit level is strictly positive).

The optimality of using a richer pricing model when larger datasets are available is

reminiscent of model selection criteria under overfitting concerns, e.g., the Akaike information

criterion. In our setting, however, the optimality of inducing segmentation is not driven by

econometric considerations. Instead, it is entirely driven by the intermediary’s cost-benefit

analysis in acquiring more precise information from consumers. As the data externality

grows suffi ciently strong, acquiring the data becomes cheaper as the intermediary exploits

the richer structure of consumer demand.17

Figure 7: Marginal Value of an Additional Consumer (σw = 1, σe = 0)

17Olea, Ortoleva, Pai, and Prat (2019) offered a demand-side explanation of a similar phenomenon: they
showed that data buyers who employ a richer pricing model are willing to pay more for larger datasets.
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6 Intermediation and Value Creation

In our baseline model, the data shared by the intermediary are used by the producer to set

prices and by consumers to learn about their own preferences. The first assumption is, in a

sense, the worst-case scenario for the intermediary: consider the case in which consumers’

initial signals are very precise. As price discrimination reduces total surplus, no intermedi-

ation would be profitable without a suffi ciently strong data externality. Consequently, data

aggregation is an essential part of the optimal data intermediation policy in this case. In

practice, however, consumer data can also be used by the producer in surplus-enhancing

ways, for example, to facilitate targeting quality levels and other product characteristics to

the consumer’s tastes.

In this section, we briefly describe two such extensions. The first one (quality pricing)

generalizes our data aggregation result and traces its limits. The second one (recommender

systems) shows the conditions under which information about idiosyncratic fundamentals is

more likely to be traded than market level information.

6.1 Quality Pricing

This generalization of our framework allows the producer to charge a unit price pi and to

offer a quality level yi to each consumer. Consumers are heterogeneous in their willingness

to pay for the product, but they all value quality uniformly,

ui (wi, qi, pi, yi) = (wi + γyi − pi) qi − q2
i /2.

The parameter γ ∈ [0,
√

2) is best viewed as a firm-level characteristic denoting the marginal

value of quality.18 (The case of γ = 0 yields the baseline model of price discrimination only.)

The producer faces a constant marginal cost of quantity provision and a fixed cost of quality

production, i.e.,

π =
∑N

i=1

(
piqi − cqi − y2

i /2
)
.

We assume that consumers perfectly observe their willingness to pay wi at the onset, and

we consider the effects of revealing all such information to the producer. In particular, we

find that the producer benefits from information for all values of γ, while consumers benefit

from collectively sharing information only if γ > 1, i.e., if the resulting targeted quality

provision is suffi ciently valuable. It also follows that there exists a unique γ∗ ∈ (0, 1) such

that total surplus is higher when the producer observes all wi than when he does not.

18Argenziano and Bonatti (2020) studied the role of privacy-protection regulations in a dynamic version
of this model without data intermediation.
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When the intermediary must procure the data from the consumers, a suffi ciently strong

data externality (e.g., large α or N) once again allows for the profitable intermediation of

information. Whether the outcome improves or diminishes total surplus depends on the use

of the data, which is represented here by the value of quality γ. Thus, equilibrium forces

in the market for data do not prevent the diffusion of socially detrimental information in

suffi ciently large markets.

However, we can revisit the optimal aggregation policy in this model and establish the

following generalization of Theorem 2.

Proposition 10 (Value of Quality and Aggregation)
The optimal data policy collects aggregate data if information reduces total surplus (i.e., if

γ < γ∗) and individual data otherwise.

In other words, while the effect of information on total surplus imposes no restrictions on

whether the data are traded in equilibrium, it does discipline the equilibrium level of data

aggregation, which is provided in a socially effi cient way.

An example consistent with these results provides a close B2B interpretation of our

model. Consider a business that owns data about its customers and seeks to advertise on a

large platform. In exchange for targeting benefits and a liquid supply of advertising space,

this business shares data with the intermediary about the effectiveness of the ads. This

performance data inform the demand for advertising in the future, as well as the platform-

optimal (reserve) prices. In practice, the provision of advertising space and reserve prices in

ad auctions are targeted at the advertiser level. In this case, our model suggests that this

form of price and quality discrimination might be socially effi cient; hence, the information

that enables it is provided at the individual advertiser level.

6.2 Recommender System

In this extension, we develop a generalization of our framework that allows the producer to

charge a unit price pi and to offer a product of characteristic yi to each consumer. Consumers

differ both in their vertical willingness to pay and in their horizontal taste for the product’s

characteristic y. Consumer i’s utility function is given by

ui (wi, qi, pi, yi, ti) =
(
wi − (yi − ti)2 − pi

)
qi − q2

i /2,

with wi denoting the consumer’s willingness to pay and ti the consumer’s ideal location or

product characteristic. Both the willingness to pay wi ∈ R and the location ti ∈ R of each
consumer i are the sum of a component that is common to all consumers in the market
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and an idiosyncratic component that reflects her individual taste shock. In particular, each

consumer i’s location is given by

ti , τ + τ i.

Because the distance (yi − ti)2 reduces the intercept of the consumer’s demand function, the

case σ2
τ = σ2

τ i
= 0 yields the baseline model of price discrimination only. The producer has

a constant marginal cost of quantity provision that we normalize to zero and can freely set

the product’s characteristic.

We examine the data intermediary’s optimal data inflow policy, allowing for separate

aggregation policies for willingness to pay and location information. We assume that the

gains from trade under no information sharing are suffi ciently large.19 Finally, we assume

that consumer i perfectly observes (wi, ti), but the extension to noisy signals is immediate.

We then obtain another generalization of Theorem 2.

Proposition 11 (Optimal Aggregation by a Recommender System)
The intermediary’s optimal policy collects aggregate data on the vertical component wi and

individual data on the horizontal component ti.

Therefore, the recommender system enables the producer to offer targeted product char-

acteristics that perfectly match yi to ti, but it does not allow for personalized pricing. The

logic is once again given by the intermediary’s sources of profits. Since the data externalities

do not depend on the level of aggregation, the intermediary chooses to aggregate only the

dimension of consumer data that would reduce total surplus if transmitted to the producer.

7 Discussion

Commitment In our analysis, the data intermediary maintains complete control over

the use of the acquired data. Given the data inflow, the data intermediary chooses the

sequentially optimal data policy to be offered to the producer. This assumption reflects the

substantial control that the data intermediary has regarding the use of the data, as well as

the opacity with which the data outflow is linked to the data inflow. In other words, it is

diffi cult to ascertain how any given data input informs any given data output.

Nonetheless, it is useful to consider the implications of the data intermediary’s ability to

commit to a certain data policy. In the working paper Bergemann, Bonatti, and Gan (2020),

we formally analyzed the equilibrium outcome under this stronger commitment assumptions.

We learned from Proposition 3 that the unrestricted use of data leads to a decrease in social

19This corresponds to assuming µθ + µθi is suffi ciently large relative to σ
2
τ + σ

2
τ i .
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surplus. This finding suggests that the data intermediary could realize a higher profit with

a data policy that limits the diffusion of information on the equilibrium path. Specifically,

the intermediary could ask each consumer to share her data and commit to not passing it

along to the downstream producer. In exchange for this commitment, the data intermediary

requests compensation from the consumer. Proposition 14 in Bergemann, Bonatti, and Gan

(2020) established that the revenue-maximizing data policy is indeed to acquire all consumer

data and to never forward the data to the downstream producer.20

Unique Implementation Our analysis has characterized the intermediary’s most pre-

ferred equilibrium. An ensuing question is whether the qualitative insights would hold across

all equilibria, particularly in the intermediary’s least preferred equilibrium. A seminal result

in the literature on contracting with externalities (see Segal (1999)) is the “divide-and-

conquer” scheme that guarantees a unique equilibrium outcome (see Segal and Whinston

(2000) and Miklos-Thal and Shaffer (2016)).

Proposition 16 in Bergemann, Bonatti, and Gan (2020) showed that the intermediary can

sequentially approach consumers and offer compensation conditional on all earlier consumers

having accepted their offers. In this scheme, the first consumer receives compensation equal

to her entire surplus loss, guaranteeing her acceptance regardless of the other consumers’

decisions. More generally, consumer i receives the optimal compensation level in the baseline

equilibrium when N = i. Thus, the cost of acquiring the consumers’data is strictly higher

than in the intermediary’s most preferred equilibrium. Nonetheless, as N grows without

bound, the intermediary’s profit per capita converges to the profit per capita when aggregate

data are available “in the wild.”

Competing Intermediaries In Bergemann, Bonatti, and Gan (2020), we asked whether

competition among data intermediaries can restore the socially effi cient data policy. We

assumed that each intermediary j ∈ {1, ..., J} collects a noisy signal about each consumer i,

ri,j = wi + ζ i,j.

As in Section 5, the noise term ζ i,j represents limitations in the communication channel be-

tween the consumers and the intermediary. We assume that each shock ζ i,j is independently

20This environment with commitment is related to the analysis in Lizzeri (1999) but has a number of
distinct features. First, in Lizzeri (1999), the private information is held by a single agent, and multiple
downstream firms compete for the information and for the object offered by the agent. Second, the privately
informed agent enters the contract after she has observed her private information; thus, an interim perspective
is adopted. The shared insight is that the intermediary with commitment power might be able to extract a
rent without any further influence on the effi ciency of the allocation.
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drawn from a normal distribution with zero mean and variance σ2
ζ > 0. The timing of the

game is otherwise unchanged: consumers and producer choose the subset of offers to accept.

Proposition 18 in Bergemann, Bonatti, and Gan (2020) compared the equilibrium outcome

under competition with the monopoly outcome. In the equilibrium outcome, competing in-

termediaries collect data in the same way as a monopolist would. Each intermediary’s profit

decreases due to a loss of bargaining power against the producer. Relative to monopoly, the

producer obtains an additional portion of the surplus extracted from consumers, and con-

sumer surplus decreases even further due to the multiple sources of information. This result

underscores the possibility that competition in the data market may reduce the consumer

surplus rather than protecting and increasing it.

8 Conclusion

We have explored the terms of information trading between data intermediaries with market

power and multiple consumers with correlated preferences. The data externality that we have

uncovered strongly suggests that data ownership is insuffi cient to bring about the effi cient

use of information. In large markets, arbitrarily small levels of compensation can induce an

individual consumer to relinquish precise information about her preferences.

A possible solution to alleviate this problem– echoed in Posner andWeyl (2018)– consists

of facilitating the formation of consumer groups or unions, to internalize the data externality

when bargaining with powerful intermediaries like large online platforms. In our baseline

model, this policy proposal would restore the first best. However, consumer unionization

would pose serious implementation challenges, both from theoretical and practical perspec-

tives. Within the confines of our model a richer specification of consumer heterogeneity, e.g.,

one that allows for different marginal valuations of quality as in Section 6 could be con-

sidered. Then, revealing information to a given producer might improve some consumers’

welfare but hurt others’. In this scenario, a consumer union would need to aggregate con-

sumer preferences prior to negotiating compensation with the intermediary, which would

inevitably lead to distortions in the allocation of information.

On a more constructive note, our results regarding the aggregation of consumer informa-

tion further suggest that privacy regulations must move away from concerns over personalized

prices at the individual level. Most often, firms do not set prices in response to individual-

level characteristics. Instead, segmentation of consumers occurs at the group level (e.g., as

in the case of Uber) or at the temporal and spatial levels (e.g., Staples, Amazon). Thus, our

analysis points to the significant welfare effects of group-based price discrimination and of
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uniform prices that react in real time to changes in market-level demand.21

Of course, there are dimensions along which the data generate surplus, including some

that do not interact with consumers’ decisions to reveal their information: for instance,

ratings provide information to consumers about producers, and back-end tools render it

possible to limit duplication and waste in advertising messages. There are also other welfare-

reducing effects, such as spillovers of consumer data to other markets, including B2Bmarkets.

For example, if Amazon and Google use the information revealed by consumers to extract

more surplus from advertisers, then consumers will also pay a higher price, depending on the

pass-through rate of the marginal cost of advertising. In other words, the data externality

that we identify is pervasive, starting with consumers but often extending to other economic

agents whose decisions are informed by consumer data.

Finally, our data intermediary collected and redistributed the consumer data but played

no role in the interaction between the consumers and the producer. In contrast, a consumer

can often access a given producer only through a data platform.22 Many such platforms can

then be thought of as auctioning access to the consumer. The data platform provides the

bidding producers with additional information that they can use to tailor their interactions

with consumers. A distinguishing feature of social data platforms is that they typically trade

individual consumer information for services, rather than for money. The data externality

then expresses itself in the level of service (i.e., in quantity and/or quality) and in the amount

of consumer engagement, rather than in the level of monetary compensation.

21This result echoes the claim in Zuboff (2019) that “privacy is a public issue.”
22Product data platforms, such as Amazon, Uber and Lyft, acquire individual data from the consumer

through the purchase of services and products. Social data platforms, such as Google and Facebook, offer
data services to individual users and sell the information to third parties, mostly in the form of targeted
advertising space. In terms of our model, the difference between the data intermediary and a product data
platform is that the platform combines the roles of data intermediation and product pricing.
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9 Appendix

The Appendix collects the proofs of all the results in the paper. Throughout, we assume

without loss of generality that µθi = c = 0 and σ2
w = 1, and we let λ , σ2

e/σ
2
w

Proof of Proposition 1. Denote consumer i’s initial information (σ-algebra) as Si,

and suppose the intermediary provides a data outflow T. (This information need not be the

complete sharing policy.) Consumer i demands the following quantity:

qi = E[wi|T, Si]− pi,

and the producer sets the following price

pi =
E[wi|T ]

2
.

The profit of the producer is:

Πi(T ) = E
[
E[wi|T ]

2

(
E[wi|T, Si]−

E[wi|T ]

2

)]
,

=
E [(E[wi|T ])2]

4
=

[ E[wi|T ]] + µ2
θ

4
, (43)

where the outside expectation represents integration over the whole probability space. The

impact of complete data sharing (T = S) on producer surplus is then given by

Πi(S)− Πi(∅) =
var[E[wi|S]]

4
.

The expected consumer surplus is given by

Ui(T ) = E

[(
wi −

E[wi|T ]

2

)(
E[wi|T, Si]−

E[wi|T ]

2

)
− 1

2

(
E[wi|T, Si]−

E[wi|T ]

2

)2
]
,

=
1

2
E[(E[wi|T, Si])2 − 3

4
(E[wi|T ])2],

=
1

2
E[(E[wi|T, Si]− E[wi|T ])2 +

1

4
(E[wi|T ])2]. (44)

Therefore the consumer surplus impact of complete data sharing is

Ui(S)− Ui(∅) =
1

8
var[E[wi|S]]− 1

2
var[E[wi|Si]],

which completes the proof.
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Proof of Lemma 1. Recall λ , σ2
e/σ

2
w and write the posterior expectation of wi as

E[wi|si] =
σ2
w

σ2
w + σ2

e

si +
σ2
e

σ2
w + σ2

e

µθ =
1

1 + λ
si +

λ

1 + λ
µθ,

E[wi|s] = Asi +BΣj 6=isj + (1− A−B)µθ, (45)

A =
(α− 1)N(α + βλ)− α(α + βλ− 2) + (2β − 1)λ− 1

(α + (β − 1)λ− 1)(α(N − 1) + βλ(N − 1) + λ+ 1)
,

B =
λ(β − α)

(α + (β − 1)λ− 1)(α(N − 1) + βλ(N − 1) + λ+ 1)
.

When α = β, we have B = 0 and E[wi|si] = E[wi|s]. Recalling the definition of G,

G , var [ŵi (s)]− [ŵi (si)] ,

we then have

G(α, α) = 0 ≤ G(α, β) ∀α, β.

Because E[wi|si] is unchanged when varying α and β, we focus on var[E[wi|s]], which equals

α2((1− λ)N + λ− 1) + α(2βλN − 2βλ−N + 2)− βλN + 2βλ− λ− 1

(α + (β − 1)λ− 1)(α(N − 1) + βλ(N − 1) + λ+ 1)
.

Taking the derivative with respect to α, we have:

−λ
2(N − 1)(α− β)(N(α(2β − 1) + β(2(β − 1)λ− 1))− 2(β − 1)(α + (β − 1)λ− 1))

(α + (β − 1)λ− 1)2(α(N − 1) + βλ(N − 1) + λ+ 1)2
.

The numerator is a quadratic function of α. Denote it as f(α) , and notice that it satisfies

f(β) = 0,

f(1) = (−1 + β)2λ2(N − 1)(2λ(1 + β(−1 +N)) +N) > 0,

f(0) = βλ2(N − 1)
(
2β2λ(N − 1)− β(2λ+ 1)(N − 2)− 2(λ+ 1)

)
< 0.

Therefore the derivative is negative in [0, β) and positive in (β, 1]. Thus, G decreases with

α in [0, β] and increases with α in [β, 1]. Similarly, taking the derivative of var[E[wi|s]] with
respect to β we have:

λ2(N − 1)(α− β)(N(α(2β − 1)λ+ 2(α− 1)α− βλ)− 2(α− 1)(α + (β − 1)λ− 1))

(α + (β − 1)λ− 1)2(α(N − 1) + βλ(N − 1) + λ+ 1)2
.
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The numerator is a quadratic function of β. Denote it as g(β), and notice that

g(α) = 0,

g(1) = (α− 1)2λ2(N − 1)(2α(N − 1) + λN + 2) > 0,

g(0) = αλ2(N − 1)(2(α− 1)(−α + λ+ 1)− αN(−2α + λ+ 2)) < 0.

So G decreases with β in [0, α] and increases with β in [α, 1].

Therefore we know G reaches maximum at either (0, 1) or (1, 0). Since

G(0, 1) =
λ(N − 1) + 1

8λN + 8
,

G(1, 0) =
N

8(λ+N)
,

we conclude that (0, 1) is the maximizer if λ > 1 while (1, 0) is the maximizer if λ < 1.

Proof of Proposition 2. The effect of complete data sharing on social surplus can be

written as

Wi (S)−Wi (∅) =
3

8
G (α, β)− 1

8
var [ŵi (si)] .

By Lemma 1, we know that G(α, α) = 0, and hence whenever α = β, social welfare is

decreasing with complete data sharing. This observation and Lemma 1 imply

β (α) < α < β(α),

α (β) < β < α(β).

Notice that the proposition allows for the possibility that all these four thresholds are the

boundary (β(α), α(β) equals 1 or β (α), α (β) equals 0).

Finally we prove the third part of the statement. Suppose that α′ > α: if either threshold

is on the boundary the result is immediate. For interior thresholds, we know that

G(α, β(α)) = G(α′, β(α′)) =
1

8 (1 + λ)
.

By Lemma 1 we know that

G(α′, β(α)) > G(α, β(α)) =
1

8 (1 + λ)
,

G(α, β(α′)) > G(α′, β(α′)) =
1

8 (1 + λ)
.
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The first line implies β(α′) > β(α), and the second line implies β(α′) > β(α). The result for

α and α can be proved similarly.

Proof of Proposition 3. As we have shown in the proof of Lemma 1, var[ŵi(si)]

does not depend on α and β for any fixed σ2
e and σ

2
w. Therefore, an increase in G means an

increase in var[ŵi(s)]. By Proposition 1, all three surplus levels increase.

The positive impact of data sharing on producer surplus is immediate. We thus turn to

consumer surplus. According to Proposition 1 and the equation ( 45) in the proof of Lemma

1, we know that

Ui(S)− Ui(∅) =
A1 +B1λ+ C1λ

2

−8(λ+ 1)(α + (β − 1)λ− 1)(α(N − 1) + βλ(N − 1) + λ+ 1)
,

A1 = 3(−1 + α)(1 + α(−1 +N)) < 0,

B1 = α(6β(N − 1)− 3N + 6)− 3β(N − 2)− 6 < 0,

C1 = α2(N − 1)− 2αβN + 2αβ + 4β2(N − 1)− 3β(N − 2)− 3.

(The formula does not hold in the degenerate case α = β = 1, in which case the consumer

surplus and social surplus are always negative so that both thresholds are infinite.) Therefore

when C1 < 0, the numerator is always negative. When C1 > 0, there exists a finite threshold

σ
2
e such that the numerator is positive if and only if λ > σ

2
e.

For social surplus, we obtain

Wi(S)−W (∅) =
A2 +B2λ+ C2λ

2

−8(λ+ 1)(α + (β − 1)λ− 1)(α(N − 1) + βλ(N − 1) + λ+ 1)
,

A2 = (α− 1)(α(N − 1) + 1) < 0,

B2 = α(2β(N − 1)−N + 2)− β(N − 2)− 2 < 0,

C2 = 3α2(N − 1)− 6αβ(N − 1) + β(4β(N − 1)−N + 2)− 1.

Thus when C2 < 0, the numerator is always negative. When C2 > 0, there exists a finite

threshold σ2
e. Since Wi(S) −W (∅) > Ui(S) − Ui(∅), clearly we have σ2

e < σ
2
e whenever σ

2
e

is finite.

Finally, the last part of the proposition follows from the fact that for α < 1, β = 1,

C1 = (α− 1)2(N − 1) > 0,

C2 = 3(α− 1)2(N − 1) > 0.

This completes the proof.
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Before we proceed to the proof of Theorem 1, we establish a bound of α above which is

intermediation with complete data sharing is profitable.

Lemma 2 If the intermediary collects positive profit under complete data sharing, then:

α ≥ 1√
2N + 1

(46)

Proof. Using the expression 43 and 44 in the proof of Proposition 1, the intermediary’s
profit under complete data sharing can be written as

R (S) =
N

8
(3 var [ŵi (s−i)]− var [ŵi (s)]) ,

=
3(N − 1)Nσ4

θ

8((N − 1)(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
−

(Nσ2
θ + σ2

θi
)2

8(N(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
−

(N − 1)σ4
θi

8(σ2
εi

+ σ2
θi

)
.

Now suppose we have:

α <
1√

2n+ 1
, Or equivalently σ2

θ <
1 +
√

2N + 1

2N
σ2
θi
.

We will prove the profit is always negative in this case. Notice that,

∂

∂N

3(N − 1)σ4
θ

8(σ2
ε(N − 1) + σ2

εi
+ (N − 1)σ2

θ + σ2
θi

)
,

=
3σ4

θ(σ
2
εi

+ σ2
θi

)

8(σ2
ε(N − 1) + σ2

εi
+ (N − 1)σ2

θ + σ2
θi

)2
> 0.

We have a upper bound of the profit:

R <
3(N)Nσ4

θ

8((N)(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
−

(Nσ2
θ + σ2

θi
)2

8(N(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
−

(N − 1)σ4
θi

8(σ2
εi

+ σ2
θi

)
,

=

(
2N2σ4

θ − 2Nσ2
θσ

2
θi
−Nσ4

θi

)
σ2
εi

+ (−Nσ2
θi

(
Nσ2

θi
(σ2

ε + σ2
θ) + σ2

θi
(−σ2

ε + σ2
θ + σ2

θi
)− 2Nσ4

θ

)
)

8(σ2
εi

+ σ2
θi

)(σ2
εN + σ2

εi
+Nσ2

θ + σ2
θi

)
.

The numerator is linear function of σ2
εi
. Under ??, we know the linear term is negative:

2Nσ4
θ < 2σ2

θσ
2
θi

+ σ4
θi

To complete our proof, it then suffi ces to show that the constant term is also negative.
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Plugging the above inequality into the expression for the constant term:

−Nσ2
θi

(
Nσ2

θi
(σ2

ε + σ2
θ) + σ2

θi
(−σ2

ε + σ2
θ + σ2

θi
)− 2Nσ4

θ

)
,

< −Nσ2
θi

(
Nσ2

θi
(σ2

ε + σ2
θ) + σ2

θi
(−σ2

ε + σ2
θ + σ2

θi
)− (2σ2

θσ
2
θi

+ σ4
θi

)
)
,

= −Nσ2
θi

(N − 1)σ2
θi

(σ2
ε + σ2

θ) < 0,

which completes the proof.

Proof of Theorem 1. Rewrite the expression of R in the language of α, β and λ:

R(S) =
3α2(N − 1)N

8(α(N − 1)− α + βλ(N − 1) + (1− β)λ+ 1)

− (αN − α + 1)2

8(N(α + βλ)− α + (1− β)λ+ 1)
− (1− α)2(N − 1)

8(−α + (1− β)λ+ 1)
.

We first prove that R is strictly increasing in α when R > 0. Since the third term in the

expression is strictly increasing in α, it is suffi cient to prove that the first two terms are

increasing in α when R > 0. By Lemma 2 in the Appendix, when the intermediary collects

positive profits, we have

α ≥ 1√
2N + 1

.

The derivative of the first two terms with respect to α is:

g =
3αN(α(N − 2) + 2(βλ(N − 2) + λ+ 1))

(α(N − 2) + βλN − 2βλ+ λ+ 1)2
−(α(N − 1) + 1)(α(N − 1) + 2λ(β(N − 1) + 1) + 1)

(α(N − 1) + βλN − βλ+ λ+ 1)2
.

When N = 2, direct calculation shows

g =
2(β + 1)λ2(α(6β + 5)− 1) + (α + 1)λ(α(24β + 23)− 2β − 3) + (12α− 1)(α + 1)2

(λ+ 1)(α + βλ+ λ+ 1)2
.

the numerator is increasing in α, and is positive when α = 1/
√

5 which yields the result.

When N ≥ 3, we have 1/N < 1/
√

2N + 1, and we can bound α from below using the

weaker condition α > 1/N . We then obtain

g >
3αN(α(N − 2) + 2(βλ(N − 2) + λ+ 1))

(α(N − 1) + βλN − βλ+ λ+ 1)2
− (α(N − 1) + 1)(α(N − 1) + 2λ(β(N − 1) + 1) + 1)

(α(N − 1) + βλN − βλ+ λ+ 1)2
,

=
α2(2(N − 2)N − 1) + λ(β(2α(2(N − 2)N − 1)− 2(N − 1)) + 4αN + 2α− 2) + 4αN + 2α− 1

(α(N − 1) + βλ(N − 1) + λ+ 1)2
.

Every term in the numerator above is positive, so g > 0 when N ≥ 3.
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We complete the proof of the first part of the theorem by showing that

R(α = 0) = − N(βλ(N − 2) + λ+ 1)

8(1 + (1− β)λ)(βλ(N − 1) + λ+ 1)
< 0,

R(α = 1) =
N(λ(β(2(N − 2)N + 3) + 2N − 3) + 2(N − 1)N)

8(βλN − 2βλ+ λ+N − 1)(βλN − βλ+ λ+N)
> 0.

To prove the second part of the theorem, we first show that the ∂R/∂β is negative when

R = 0. This guarantees that the threshold α∗ is increasing in β. Up to a multiplicative

constant, we have

∂R

∂β
= − 3α2(N − 1)N(λ(N − 2))

(α(N − 1)− α + βλ(N − 1) + (1− β)λ+ 1)2
− (1− α)2λ(N − 1)

(−α + (1− β)λ+ 1)2

+
(αN − α + 1)2(λ(N − 1))

(N(α + βλ)− α + (1− β)λ+ 1)2
.

Use R = 0 to eliminate the second term we obtain

8
1− α + (1− β)λ

1 + λ

∂R

∂β
= − 3α2(N − 1)2N

(α(N − 2) + βλ(N − 2) + λ+ 1)2

+
(α(N − 1) + 1)2

(N − 1)(α(N − 1) + βλ(N − 1) + λ+ 1)2

<
−3α2(N − 1)2N + (α(N − 1) + 1)2/ (N − 1)

(α(N − 1) + βλ(N − 1) + λ+ 1)2
.

Simplifying the numerator, it suffi ces to show that

1 + 2 (N − 1)α (1− (N − 1)α) < 0

whenever α > 1/
√

2N + 1. Both conditions are met, and hence ∂R/∂β < 0 when N ≥ 6.

As for the fixed point, it is easy to calculate the system of equations:

R(S) = 0, α = β

has β0 as its unique solution (β ∈ [0, 1]). To see this, plug α = β in the expression of R:

R(S) =
N(β(3β(N − 1)−N + 2)− 1)

8(λ+ 1)(β(N − 2) + 1)
= 0,

⇒ β = β0 (N) ,
√
N2 + 8N − 8 +N − 2

6(N − 1)
.

From Lemma 2 in the Appendix we know α∗(0) > 0, so α∗ crosses the diagonal line only
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once, and from above. This completes the proof of the second part of the theorem.

Finally, we show that ∂R/∂λ < 0 when α < β and R = 0 while ∂R/∂λ > 0 when α > β

and R = 0, which proves the last part of the theorem.

∂R

∂λ
= − 3α2(N − 1)N(λ(N − 2))

8(α(N − 1)− α + βλ(N − 1) + (1− β)λ+ 1)2
− (1− α)2λ(N − 1)

8(−α + (1− β)λ+ 1)2

+
(αN − α + 1)2(λ(N − 1))

8(N(α + βλ)− α + (1− β)λ+ 1)2
.

Using R = 0 to eliminate the second term we obtain

8
1− α + (1− β)λ

β − α
∂R

∂λ
= − 3α2(N − 1)2N

(α(N − 2) + βλ(N − 2) + λ+ 1)2

+
N(α(N − 1) + 1)2

(α(N − 1) + βλ(N − 1) + λ+ 1)2
,

<
−3α2(N − 1)2N + (α(N − 1) + 1)2/ (N − 1)

(α(N − 1) + βλ(N − 1) + λ+ 1)2
< 0

If α > β and inequality (46) holds, we have

∂

∂N

(N − 1)2N

(α(N − 2) + βλ(N − 2) + λ+ 1)2

=
(N − 1)(α((N − 5)N + 2) + λ(β((N − 5)N + 2) + 3N − 1) + 3N − 1)

(α(N − 2) + βλ(N − 2) + λ+ 1)3
> 0.

Thus we conclude that

8
1− α + (1− β)λ

α− β
∂R

∂λ
> − N(α(N − 1) + 1)2

(α(N − 1) + βλ(N − 1) + λ+ 1)2

+
3α2N2(N + 1)

(α(N − 1) + βλ(N − 1) + λ+ 1)2
,

=
N(α(α(N(2N + 5)− 1)− 2N + 2)− 1)

(α(N − 1) + βλ(N − 1) + λ+ 1)2
.

Notice that α(α(N(2N + 5)− 1)− 2N + 2)− 1 is increasing in α and N when equation (46)

holds. Plugging in N = 2 and equation ( 46) we obtain:

α(α(N(2N + 5)− 1)− 2N + 2)− 1 ≈ 1.50557 > 0.

Therefore ∂R/∂λ > 0 in this case.
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Proof of Corollary 1. Because the information gain G = 0 when λ = 0 (i.e., when

consumers know their value perfectly) we know that complete data sharing always decreases

social surplus in that case. Therefore α(β) = 0 for all β (the meaning of the notation is the

same as in Proposition 2). By continuity there exists a λ̄ such that for all λ ∈ [0, λ̄]

α(β, λ) ≤ α(1, λ) ≤ α(1, λ̄) <
N(
√

3 + 1)− 1

2N (N + 1)− 1
.

While by Proposition 6, the intermediary’s profit is non-negative only when

α ≥ N(
√

3 + 1)− 1

2N (N + 1)− 1
∈ (0, 1) ,

which completes the proof.

Proof of Proposition 4. Define D(α, β) as the difference

var [ŵi (s)]− var [ŵi (s−i)]− var [ŵi (si)]

when the data structure is (α, β). Signals are substitutes (complements) if D ≤ (≥)0. We

will prove that for any β, there exists a threshold α̃ such that D(α, β) ≤ 0 iff α ≥ α̃.

When α = 0, we know:

var [ŵi (s−i)] = 0.

Therefore by definition:

D(0, β) = var [ŵi (s)]− [ŵi (si)] ≥ 0.

When α = β, from the proof of Lemma 1 we know that:

var [ŵi (s)] = var [ŵi (si)] ,

D(β, β) = − var [ŵi (s−i)] ≤ 0.

We then calculate the following quantities:

var [ŵi (s)] =
(α− 1)(α(λ− 1)− 2βλ+ λ+ 1)−N (α2(λ− 1)− 2αβλ+ α + βλ)

(α + (β − 1)λ− 1)(α(N − 1) + βλ(N − 1) + λ+ 1)
,

var [ŵi (s−i)] =
α2(N − 1)

α(N − 2) + βλ(N − 2) + λ+ 1
,

var [ŵi (si)] =
1

λ+ 1
.
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Clearly var [ŵi (s−i)] is strictly increasing in α, and according to Lemma 1, we know var [ŵi (s)]

is strictly decreasing in α when α ∈ [0, β]. Therefore we know D(α, β) is strictly decreasing

in α in [0, β] , and there exists a α̃ ∈ [0, β] such that D(α, β) ≥ 0 if α ≤ α̃ and D (α, β) ≤ 0

if α̃ ≤ α ≤ β.

What remains to be proved is D(α, β) ≤ 0 for α ∈ [β, 1]. To verify this, we calculate an

expression for D(α, β) :

Aβ3 +Bβ2 + Cβ + E

(λ+ 1)(−α + (1− β)λ+ 1)(α(N − 2) + βλ(N − 2) + λ+ 1)(αn− α + βλN + (1− β)λ+ 1)
,

A = λ3(N − 2)(N − 1) > 0,

B = λ2(N − 1)(α(α(λ+ 1)(N − 1)− 2λ(N − 2) +N − 2) + λ+ 1),

C = αλ(N − 1)
(
2α2(λ+ 1)(N − 1)− α(4λ+ 1)(N − 2)− 2λ(λ+ 1)

)
,

E = α2(N − 1)
(
α2(λ+ 1)(N − 1)− α(2λ+ 1)(N − 2)− (λ+ 1)(2λ+ 1)

)
< 0.

Since the denominator is positive, we focus on the numerator f(α, β) , Aβ3 +Bβ2 +Cβ+E.

We complete the proof by showing that f(α, β) ≤ 0 for any β ∈ [0, α]. From the previous

analysis, we know f(α, α) ≤ 0, and since E < 0 we know f(α, 0) < 0. Now notice that

∂2f

∂β2 (α, β) = 6Aβ + 2B.

Since A > 0, either f is convex in β, or f is concave for small β and convex for large β.

If B ≥ 0 and f is convex in β, we are done, since:

f(α, β) ≤ max{f(α, 0), f(α, α)} ≤ 0 ∀β ∈ [0, α].

If B < 0 and f is first concave then convex, we look at the first order derivative at 0:

∂f

∂β
(α, 0) = C.

If C < 0, then f is decreasing in the concave region, and we are done. At last, we prove

that it is impossible to have B < 0 and C > 0 simultaneously. If so:

2B

λ2(N − 1)
= 2α2(λ+ 1)(N − 1)− 2α(2λ− 1)(N − 2) + 2λ+ 2 < 0,

C

αλ(N − 1)
= 2α2(λ+ 1)(N − 1)− α(4λ+ 1)(N − 2)− 2λ(λ+ 1) > 0.
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Subtracting the second line from the first, we obtain:

−3α (N − 2)− 2 (1 + λ)2 < 0,

a contradiction.

Proof of Proposition 5. Suppose the intermediary collects a data inflow X, while

consumer i has initial information structure Si. The intermediary chooses an outflow policy,

namely the signal T = T (X) sent to the producer and the signal Ti = Ti(X) sent to each

consumer i. The intermediary chooses a policy Y (and his favorite equilibrium in the ensuing

game) that maximizes the producer’s ex ante expected payoff, which it extracts through the

fixed fee m0.

The proof of this proposition is organized as follows. First, we show that a Perfect

Bayesian Equilibrium (PBE) always exists under any information structure (Ti, T ). Second,

we argue that without loss of generality we can focus on information structures where T is

measurable with respect to Ti, i.e., where consumer i observes all information signal sent to

the producer. Third, we prove it is optimal to provide full public information, T = Ti = X.

When σe = 0, consumers know their value perfectly, and there is an essentially equilibrium

under any information structure. It is easy to show using equation (43) that, in this case,

providing full information to the producer is optimal. Thus from now on we will focus on

the case where σe > 0.

Our first lemma establishes equilibrium existence by constructing a PBE under any in-

formation structure (Ti, T ).

Lemma 3 When σe > 0, under any information structure (Ti, T ), there exists a PBE.

Proof. For an arbitrary, noisy information structure (Ti, T ), consumer i ’s posterior

µ(Si, Ti) has full support almost surely (a.s.). Now consider the following pooling strategy

profile:

p∗i (T ) =
1

2
µ

q∗i (pi, Ti) =

E[wi|Ti, Si]− pi, if pi =
1

2
µ,

0 otherwise.

The optimality of the consumer’s demand is guaranteed by assuming that the consumer

will believe wi = pi whenever pi 6= µ/2. Such off-path belief is part of an equilibrium if
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µ(Si, Ti(S)) a.s. has full support. Note that for any non-zero measure (with respect to

Lebesgue measure) subset E ⊂ R, we have:

µ(Si, Ti)(E) = E[1wi∈E|Si, Ti]

= E
[
E[1wi∈E|Si, S]

∣∣∣Si, Ti] > 0 a.s.

The inequality in the last line follows from the assumption

E[1wi∈E|Si, S] = µ(Si, S)(E) > 0 a.s,

which completes the proof.

Next, we show that introducing asymmetric information is always suboptimal.

Lemma 4 It is without loss of generality to consider information structures where consumer
i has superior information compared to the producer. Thus, T (X) is measurable with respect

to Ti(X).

Proof. For any information structure (T, Ti), denote an induced signalling equilibrium

as σ(T, Ti) = (q∗i , p
∗). We will prove there exists an equilibrium σ(p∗ ◦ T, (Ti, p∗ ◦ T )) under

information structure (T, (Ti, p
∗◦T )) that brings the producer a weakly higher ex-ante payoff.

In this new information structure, instead of revealing T to the producer, the intermediary

only reveals what is necessary for the equilibrium pricing strategy in σ(T, Ti), and tells

consumer i both Ti and what the producer knows.

On the equilibrium path of σ(T, Ti), consumer i updates her posterior µ(Ti, Si, p
∗(T ))

using Ti, her own private signal Si, and the pricing signal p∗(T ). Thus the consumer demand

is given by:

qi

(
p∗(T ), µ(Ti, Si, p

∗(T ))
)

= E[wi|Ti, Si, p∗(T )]− p∗(T ).

The ex-ante payoff of the producer is:

E
[
p∗(T )qi

(
p∗(T ), µ(Ti, Si, p

∗(T ))
)]
.

Now consider the new information structure (T, (Ti, p
∗ ◦ T )). In this structure, since

consumer i knows everything that the producer knows, the price has no signalling effect.

There is a natural equilibrium where consumer i forms her demand using the signal (Ti, p∗◦T )

from the intermediary and her own signal Si. The demand (both on the path and off the

path) will be:

qi

(
p, µ(Ti, Si, p

∗(T ))
)

= E[wi|Ti, Si, p∗(T )]− p.

56



Knowing this, the producer maximizes his ex ante payoff by choosing a pricing strategy p̂(·)
as a function of his signal: p∗ ◦ T (wi). Thus the producer’s equilibrium profit is:

max
p̂
p̂
(
p∗(T )

)
qi

(
p̂
(
p∗(T )

)
, µ(Ti, Si, p

∗(T ))
)
.

Clearly p̂(p) = p is a feasible strategy and it will bring the same payoff as the equilibrium

payoff of σ(T, Ti). Consequently, the optimal value is weakly higher than what the producer

could obtain in σ(T, Ti).

So far, we have shown that we could assume without loss of generality that the producer

receives a signal T , and consumer receives a signal (Si, T ). Thus, we can focus on equilibria

where prices have no signalling effect. These equilibria coincide with those described in the

proof of Proposition 1. As we have calculated there, the profit of the producer is:

E
[
E[wi|T ]

2

(
E[wi|T ∪ Si]−

E[wi|T ]

2

)]
,

=
E [(E[wi|T ])2]

4
=

[ E[wi|T ]] + µ2
θ

4
.

Therefore it is optimal to maximize var[E[wi|T ]], which is achieved by setting T = X, so the

intermediary reveals everything to both the producer and the consumer i.

Proof of Theorem 2. Denote the non-aggregated inflow on and off the equilibrium

path as X and X−i, respectively. Similarly, denote the aggregated inflows as X̄ and X̄−i.

By Proposition 5, the information outflow coincides with inflow, and using the expressions

in (43) and ( 44) in the proof of Proposition 1, the profit of the intermediary under non-

aggregate information is:

R (X)

N
= Π((Si, Xi), X)− Π(Si,∅)− Ui((Si, X−i), X−i) + Ui((Si, X), X),

=
1

2
E
[
(E[wi|X ∪ Si]− E[wi|X])2 +

1

4
(E[wi|X])2

]
+

[E[wi|X]]

2
,

−1

2
E[(E[wi|X−i ∪ Si]− E[wi|X−i])2 +

1

4
(E[wi|X−i])2].
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However, notice that X ∪ Si = X−i ∪ Si, and so we have

R (X)

N
=

1

2
E
[
−(E[wi|X])2 +

1

4
(E[wi|X])2

]
−1

2
E
[
−(E[wi|X−i])2 +

1

4
(E[wi|X−i])2

]
+

var[E[wi|X]]

2
,

= −3

8
var[E[wi|X]] +

3

8
var[E[wi|X−i]] +

var[E[wi|X]]

2
,

= −1

8
var[E[wi|X]] +

3

8
var[E[wi|X−i]].

Under the aggregate scheme, since we assumed consumer i knows her own report, the profit

of the intermediary is:

1

N
R
(
X̄
)

= Π((Si, X̄), X̄)− Π(,∅)− Ui((Si, X̄−i), X̄−i) + Ui((Si, X̄,Xi), X̄).

Notice that X̄ ∪ Si ∪Xi = X̄−i ∪ Si. By the same derivation as above, we obtain:

1

N
R
(
X̄
)

= −1

8
var[E[wi|X̄]] +

3

8
var[E[wi|X̄−i]],

= −1

8
var[E[wi|X̄]] +

3

8
var[E[wi|X−i]],

≥ −1

8
var[E[wi|X]] +

3

8
[E[wi|X−i]],

=
1

N
R (X) .

To prove the inequality is strict, and to give a explicit expression of the profit, we have

R
(
X̄
)

= −N
8

var[E[wi|X̄]] +
3N

8
var[E[wi|X̄−i]],

= −N
8

var

[
E
[

Σiwi
N

∣∣X̄ ]]+
3N

8
var[ E[wi|X−i]],

=
3(N − 1)Nσ4

θ

8((N − 1)(σ2
ε + σ2

ξ + σ2
θ) + σ2

εi
+ σ2

ξi
+ σ2

θi
)
−

(Nσ2
θ + σ2

θi
)2

8(N(σ2
ε + σ2

ξ + σ2
θ) + σ2

εi
+ σ2

ξi
+ σ2

θi
)
,

where the second line comes from the fact that E[wi|X−i] places the same linear weight on
all xj so that E[wi|X−i] = E[wi|X̄−i]. (Note that this property only uses the symmetry of
the joint distribution, not normality.)

In these expressions, the “true”noise ε and the additional noise ξ are equivalent in terms

of the profit. With some abuse of notation, we denote σ2
ε = σ2

ε, σ
2
ε = σ2

ε +σ2
ξ . The expression
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of the profit can be rewritten as:

R
(
X̄
)

=
3(N − 1)Nσ4

θ

8((N − 1)(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
−

(Nσ2
θ + σ2

θi
)2

8(N(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
. (47)

The true noise σ2
ε places a lower bound on the total noise σ

2
ε.

Proof of Theorem 3. We first prove that the optimal additional idiosyncratic noise

level is zero: σ∗ξi = 0. To show this result, suppose σ∗εi > σεi . Then there exists δ > 0 such

that augmenting the common noise to σ̄2
ε , σ2

ε + δ2 and diminishing the idiosyncratic noise

to σ̄2
εi
, σ2

εi
− (N − 1)δ2 ≥ σ2

ε, the profits R will strictly increase. Too see this, notice that

R
(
X̄
)

=
3(N − 1)Nσ4

θ

8((N − 1)(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
−

(Nσ2
θ + σ2

θi
)2

8(N(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
.

The first term is unchanged under new information structure, while the denominator of the

second term increases, thus the total profit increases.

Proof of Proposition 6. We establish, equivalently, that the intermediary can obtain

positive profits if only if

N
(√

3− 1
)
σ2
θ − σ2

θi
> 0.

When N
(√

3− 1
)
σ2
θ < σ2

θi
, we have:

R =
3nσ4

θ

8(σ2
θ + σ2

ε)

(
1−

σ2
θi

+ σ2
εi

(N − 1)(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
(48)

−
(nσ2

θ + σ2
θi

)2

8n(σ2
θ + σ2

ε)

(
1−

σ2
θi

+ σ2
εi

N(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
≤
(

3nσ4
θ

8(σ2
θ + σ2

ε)
−

(nσ2
θ + σ2

θi
)2

8n(σ2
θ + σ2

ε)

)(
1−

σ2
θi

+ σ2
εi

N(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
< 0.

When N
(√

3− 1
)
σ2
θ > σ2

θi
, we could rewrite R as:

Aσ2
ε +B

8(σ2
εN + σ2

εi
+ nσ2

θ + σ2
θi

)(σ2
εN − σ2

ε + σ2
εi

+ nσ2
θ − σ2

θ + σ2
θi

)
,

A = (N − 1)
(
2n2σ4

θ − 2nσ2
θσ

2
θi
− σ4

θi

)
> 0.

Therefore the intermediary can obtain a positive profit R by setting σ2
ε suffi ciently large.
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Proof of Proposition 7. We first give an explicit expression for the optimal additional

noise. By Proposition 6, we can focus on the case where

N
(√

3− 1
)
σ2
θ − σ2

θi
> 0, (49)

i.e., where the intermediary can obtain positive profits. Straightforward algebra then yields

∂R

∂σ2
ε

=
Aσ4

ε +Bσ2
ε + C

8
(
N(σ2

ε + σ2
θ) + σ2

εi
+ σ2

θi

)2
((N − 1)(σ2

ε + σ2
θ) + σ2

εi
+ σ2

θi
)2
,

where

A = −(N − 1)2N
(
2N2σ4

θ − 2Nσ2
θσ

2
θi
− σ4

θi

)
.

Therefore the numerator is a quadratic function of σ2
ε with a negative quadratic term. It has

two roots, and the smaller one is given by

−2(N − 1)N2σ6
θ − (
√

3− 1)Nσ4
θσ

2
θi

+ (3N − 1)σ2
θσ

4
θi
−
√

3σ2
θσ

4
θi

+ σ6
θi

(N − 1)
(
2N2σ4

θ − 2Nσ2
θσ

2
θi
− σ4

θi

)
+

(
−N(2N − 3)σ4

θ + 2Nσ2
θσ

2
θi
−
√

3σ2
θ(Nσ

2
θ + σ2

θi
) + σ4

θi

)
(N − 1)

(
2N2σ4

θ − 2Nσ2
θσ

2
θi
− σ4

θi

) σ2
εi
.

When (49) holds, the denominator is positive while the nominator is negative so that the

smaller root is always negative. Therefore the optimal σ2
ε (for fixed σ

2
εi
) is either σ2

ε or the

larger root of the quadratic function, which can be simplified to

σ2∗
ε (σ2

εi
) = max

{
σ2
ε,
−2(N − 1)N2σ6

θ − (
√

3− 1)Nσ4
θσ

2
θi

+ (3N − 1)σ2
θσ

4
θi
−
√

3σ2
θσ

4
θi

+ σ6
θi

(N − 1)
(
2N2σ4

θ − 2Nσ2
θσ

2
θi
− σ4

θi

) +

(50)(
−N(2N − 3)σ4

θ + 2Nσ2
θσ

2
θi
−
√

3σ2
θ(Nσ

2
θ + σ2

θi
) + σ4

θi

)
(N − 1)

(
2N2σ4

θ − 2Nσ2
θσ

2
θi
− σ4

θi

) σ2
εi

}
,

= max

{
σ2
ε, A

′σ2
εi

+B′
}
.

Then clearly σ∗2ξ = σ∗2ε − σ2
ε is weakly increasing with respect to σe if A

′ ≥ β/ (1− β) and

weakly decreasing otherwise. Since the right hand side is increasing in β while the right

hand side does not depend on β, this proves the first part of the result.
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To prove the second part, we simply calculate the derivative:

∂A′

∂α
=

∂

∂α

(
α
(
α(N − 1)

(
−2N +

√
3− 1

)
+ 2N +

√
3− 2

)
+ 1

(N − 1)(α(α(2N(N + 1)− 1)− 2N + 2)− 1)

)
,

= −
α
((

4
√

3 + 6
)
αN2 + 2

(√
3 + 3

)
(1− α)N +

√
3(α− 2)

)
+
√

3

(N − 1)(α(−2αN(N + 1) + α + 2(N − 1)) + 1)2
< 0.

Similarly, we compute the derivative of the term A′ with respect to N. Up to positive

multiplicative terms, we have

∂A′

∂N
∝(α− 1)2

((√
3− 2

)
α(2α− 1)− 1

)
− 4α4N4 + 4

(√
3α + α + 2

)
α3N3

− 2
(

3
√

3α− 2
√

3 + 3
)
α3N2 + 4(α− 1)

(
α
(
α +
√

3− 2
)

+ 1
)
αN.

Finally, one can show that this expression is negative for all values of (α,N) for which the

solution β∗ (α,N) to the equation A′ = β/ (1− β) satisfies β∗ ∈ [0, 1].

For the third part of the proposition, note first that the optimal profits of the intermediary

R are weakly decreasing in σ2
e by construction: the data intermediary can always add noise

terms σ2
ξ and σ

2
ξi
to supplement the initial noise levels. Thus, a larger σ2

e cannot be strictly

more profitable than a lower one.

Next, we show that profits are convex in σ2
εi
when R > 0. Indeed, we have

∂2R

∂(σ2
εi

)2
=

3(N − 1)nσ4
θ

4(σ2
ε(N − 1) + σ2

εi
+ (N − 1)σ2

θ + σ2
θi

)3
−

(nσ2
θ + σ2

θi
)2

4(N(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)3
,

≥ 1

(N(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)2

(
3(N − 1)nσ4

θ

4(σ2
ε(N − 1) + σ2

εi
+ (N − 1)σ2

θ + σ2
θi

)
−

(nσ2
θ + σ2

θi
)2

4(N(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)

)
=

2

(N(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)2
R > 0.

Now we turn to the intermediary’s profits under the optimal data policy. Recall it is

always optimal to set σ∗ξi = 0 according to Theorem 3. Denote R(σ2
e, σε) as the profit

when the initial noise level is σ2
e while the final common noise (after information design)

is σ2
ε = βσ2

e + σ∗2ξ Consider any point σ2
e′ such that σ

∗
ξ(σ

2
e′) > 0. By continuity, there

exists an open interval I = (σ2
e, σ

2
e) around σ

2
e such that for all σ

2
e ∈ I, σ∗ε(σ2

e) > σ2
e > σ2

e.

Now by a standard argument we can prove the profit under the optimal information design

R(σ2
e, σ

∗
ε(σ

2
e)) is convex in I. Consider σ

2
e1
, σ2

e2
, and σ2

e3
in I such that:

σ2
e3

= µσ2
e1

+ (1− µ)σ2
e2
.
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we have:

µR(σ2
e1
, σ∗ε(σ

2
e1

)) + (1− µ)R(σ2
e2
, σ∗ε(σ

2
e2

)),

≥ µR(σ2
e1
, σ∗ε(σ

2
e3

)) + (1− µ)R(σ2
e2
, σ∗ε(σ

2
e3

)),

> R(σ2
e3
, σ∗ε(σ

2
e3

)),

where the first inequality comes from the fact that σ∗ε(σ
2
e3

) is feasible by the construction of

I, and the second inequality comes from the convexity of R. Given other parameters fixed,

R(σ2
e, σ

∗
ε(σ

2
e)) is clearly second-order differentiable with respect to σ

2
e in the region where

σ∗ξ > 0, and this region is an interval since σ∗ξ is decreasing in σ
2
e . Therefore R(σ2

e, σ
∗
ε(σ

2
e))

is convex when σ∗ξ > 0.

Proof of Theorem 4. It is easy to see from equation (50) for the optimal common

noise level that for N suffi ciently large, it is optimal to not add any noise: σ∗ξi = σ∗ξ = 0.

Therefore when N is large, the total compensation owed to consumers under the optimal

policy can be written as∑N

i=1
mi =

∑N

i=1
Ui((Si, X̄−i), X̄−i)− Ui((Si, X̄), X̄),

=
3

8

(
(α(N − 1) + 1)2

α(N − 1) + βλ(N − 1) + λ+ 1
− α2(N − 1)N

α(N − 2) + βλ(N − 2) + λ+ 1

)
.

The limit of the compensation is positive but finite:

lim
N→∞

∑N

i=1
mi =

3(1− α)α

4(α + βλ)
,

Furthermore, the derivative is asymptotically negative if α is suffi ciently large:

∂

∂N

∑N

i=1
mi|α=1 = −3(1− β)λ ((βλN +N)2 + (1− β)λ((2β − 1)λ+ 1))

8(βλ(N − 2) + λ+N − 1)2(βλ(N − 1) + λ+N)2
.

And finally, profits grow linearly, because we have

lim
N→∞

R

N
=

α2

4(α + βλ)
.

This completes the proof.

Proof of Proposition 8. Consider two groups of N consumers. We first derive the

expression of the profit in the two cases: uniform pricing and group pricing. In the case

of uniform pricing, the producer does not have any identification information. He can thus
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only provide one price for every consumer:

pij (S) =
1

4N
E[
∑2

j=1

∑N

i=1
wij | S] =

1

4N

∑2

j=1

∑N

i=1
sij.

The last equation holds since we only consider noiseless signals in this section. Off the

equilibrium path, the intermediary will use the remaining 2N − 1 signals to estimate the

willingness to pay of the deviating consumer, since he does not know which group this

consumer is coming from:

pij (S−ij) =
1

4
E[θ1 + θ2|S−ij] =

(2N − 1)σ2
θ

4((2N2 − 2N + 1)σ2
θ + (2N − 1)σ2

θi
)

∑
i′j′ 6=ij

si′j′ .

The revenue of the intermediary is given by

R (S) = −N var[pij (S)] +
3

2

∑
ij

var[pij (S−ij)],

= −
(
N

8
σ2
θ +

1

8
σ2
θi

)
+

3N

16

(2N − 1)2σ4
θ

(2N2 − 2N + 1)σ2
θ + (2N − 1)σ2

θi

. (51)

On the other hand, in the group pricing scheme, the producer knows which group the

consumer comes from, and hence the analysis is as in the baseline model. We immediately

obtain the expression of the intermediary’s profits:

R (S) =
3(N − 1)Nσ4

θ

4((N − 1)(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
−

(Nσ2
θ + σ2

θi
)2

4(N(σ2
ε + σ2

θ) + σ2
εi

+ σ2
θi

)
. (52)

We then compare the derivatives of (51) and (52) with respect to N :

∂(R−R)

∂N
= −

3(2N − 1)σ2
θ((2N(N(2N − 3) + 3)− 1)σ2

θ + 2N(4N − 3)σ2
θi

+ σ2
θi

)

(2(N − 1)Nσ2
θ + (2N − 1)σ2

θi
+ σ2

θ)
2

− 2

+
12σ2

θ

(
(N − 1)2σ2

θ + (2N − 1)σ2
θi

)
((N − 1)σ2

θ + σ2
θi

)2
,

≥ −
3(2N − 1)σ2

θ((2N(N(2N − 3) + 3)− 1)σ2
θ + 2N(4N − 3)σ2

θi
+ σ2

θi
)

((2N − 1)((N − 1)σ2
θ + σ2

θi
))2

− 2

+
12σ2

θ

(
(N − 1)2σ2

θ + (2N − 1)σ2
θi

)
((N − 1)σ2

θ + σ2
θi

)2
,

=
(2N(4(N − 4)N + 11)− 7)σ4

θ + (2N − 1)(8N − 5)σ2
θσ

2
θi

+ 2(1− 2N)σ4
θi

(2N − 1)((N − 1)σ2
θ + σ2

θi
)2

.

Note that 4Nσ2
θ > σ2

θi
is suffi cient for the last expression to be positive. Furthermore, when

63



4Nσ2
θ ≤ σ2

θi
, neither pricing scheme yields a positive profit to the intermediary. This is true

for the case of uniform pricing, since

R = −(
N

8
σ2
θ +

1

8
σ2
θi

) +
3N

16

(2N − 1)2σ4
θ

(2N2 − 2N + 1)σ2
θ + (2N − 1)σ2

θi

,

≤ −5N

8
σ2
θ +

3N

16

(2N − 1)2σ2
θ

(2N2 − 2N + 1) + 4N(2N − 1)
,

< −5N

8
σ2
θ +

3N

16

2N − 1

N − 1 + 4N
σ2
θ < 0.

It is also true for group pricing, because Proposition 6 showed that, when
(√

3− 1
)
Nσ2

θ <

σ2
θi
, group pricing is not profitable, and this condition is implied by 4Nσ2

θ ≤ σ2
θi
.

Finally, imposing 4Nσ2
θ = σ2

θi
we have

R−R =
N(N(40(7− 11N)N − 53) + 1)σ2

θ

16(5N − 1)(2N(5N − 3) + 1)
< 0, and

lim
N→∞

R−R
N

=
σ2
θ

4
> 0.

Therefore there exists at most a single threshold N such that group pricing is more profitable

if and only if N > N .

Now we prove the second part of the result:

R−R =
1

16

(
αN

(
− 3α(1− 2N)2

2α(N − 1)2 + 2N − 1
+

12α(N − 1)

α(N − 2) + 1
− 2

)
+ 2(α− 1)

)
,

∂R−R
∂α

=
2 (α4(N − 2)(N − 1)2(N(N(8(N − 2)N + 9) + 10)− 8) + (N − 1) (−(1− 2N)2))

(αN − 2α + 1)2 (2αN2 − 4αN + 2α + 2N − 1)2

+
2 (α3(N(4N − 9) + 4)(N(N(8(N − 2)N + 9) + 10)− 8))

(αN − 2α + 1)2 (2αN2 − 4αN + 2α + 2N − 1)2

+
2 (α2(N(N(2N(6N(3N − 8) + 31) + 67)− 87) + 24))

(αN − 2α + 1)2 (2αN2 − 4αN + 2α + 2N − 1)2

+
2 (α (N (8N3 − 36N + 33)− 8))

(αN − 2α + 1)2 (2αN2 − 4αN + 2α + 2N − 1)2 .

The numerator is increasing in N because its partial derivative with respect to N is:

2
(
(4α3(N − 2)(N − 1)2 + 3α2(N(4N − 9) + 4))(N(N(8(N − 2)N + 9) + 10)− 8)

)
+2
(
2α(N(N(2N(6N(3N − 8) + 31) + 67)− 87) + 24) +N

(
8N3 − 36N + 33

)
− 8
)
> 0.

Thus it is suffi cient to prove the numerator is positive when N(4α + 1) = 1, because we
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can focus on the region where 4Nσ2
θ > σ2

θi
. Plugging in N(4α + 1) = 1 and simplifying, we

obtain that the numerator is positive for all N ≥ 3. This completes the proof.

Proof of Proposition 9. We have shown in the proof of Proposition 8 above that, as

long as 4Nσ2
θ > σ2

θi
, we have

∂(R−R)

∂N
> 0.

Furthermore, when 4Nσ2
θ ≤ σ2

θi
, neither pricing scheme yields positive profits. Therefore

when either of the schemes is profitable, we must have 4Nσ2
θ > σ2

θi
, and thus the derivatives

with respect to N are ranked the same for all N.

Proof of Proposition 10. Since σe = 0, i.e., consumers know their own type, the only

relevant information is the information transmitted to the producer. Thus in the follow-

ing two propositions, we will simply use S (instead of (S, T )) to represent the information

structure. The consumer’s demand under quality and price discrimination is given by

qi = wi + γyi − pi,

where we restrict attention to the case where the complete-information outcome is well-

defined, i.e., γ <
√

2. Under data outflow S, the producer offers the following price and

quantity levels:

pi (S) =
1

2− γ2
E [wi |S ] ,

yi (S) =
γ

2− γ2
E [wi |S ] .

The producer’s profit is given by:

Π (S) =
∑N

i=1
E[(wi + γyi − pi)pi − y2

i /2] =
1

2(2− γ2)

∑N

i=1
var[wi|S] + Π (∅) ,

which is increasing in the amount of information conveyed by S. The surplus of consumer i

is given by

Ui (S) =
1

2
E
[
(wi + γyi − pi)2

]
= −(3− γ2)(1− γ2)

2(2− γ2)2
var[wi|S] + Ui (∅) .

For 0 ≤ γ < 1, information reduces consumer surplus, while for 1 < γ <
√

2, information
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increases consumer surplus. Finally, the social surplus is given by

W (S) =

(
1

2(2− γ2)
− (3− γ2)(1− γ2)

2(2− γ2)2

)∑N

i=1
var[wi|S] +W (∅).

It is straightforward to verify that information increases social surplus if and only if γ > γ∗,

where γ∗ =
√

(3−
√

5)/2 < 1. The profit of intermediation is:

R(S) = W (S)− Π(∅)−
∑N

i=1
Ui(S−i).

By the same argument as the proof of Theorem 2, anonymization does not affect Π(∅) and

Ui(S−i), and anonymization increases W (S) if and only if γ < γ∗. Therefore, anonymization

increases R if and only if γ < γ∗ .

Proof of Proposition 11. Each consumer demands

qi = wi − (ti − xi)2 − pi.

This means the producer’s profit is given by

π =
∑N

i=1
pi
(
wi − (ti − xi)2 − pi

)
.

Therefore, under any information structure S, the producer offers

pi =
(
E [wi | S]− E

[
(ti − E [ti | S])2 | S

])
/2,

=
(
E [wi | S]− E

[
(ti − E [ti | S])2

])
/2,

xi = E [ti | S] ,

where the second line relies on the fact that the underlying random variables are normal so
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that ti − E[ti|S] is independent of S . The consumer’s surplus is then given by

Ui (S) =
1

2
E

[(
wi − (ti − E [ti | S])2 − E [wi | S]− E [(ti − E [ti | S])2]

2

)2
]
,

=
1

2
E

[(
wi −

1

2
E [wi | S]

)2
]

+
1

2
E

[(
(ti − E [ti | S])2 − 1

2
E
[
(ti − E [ti | S])2])2

]

−E
[(
wi −

1

2
E [wi | S]

)]
E
[
(ti − E [ti | S])2 − 1

2
E
[
(ti − E [ti | S])2]] ,

=
1

2
E

[(
wi −

1

2
E [wi | S]

)2
]

+
1

2
E

[(
(ti − E [ti | S])2 − 1

2
E
[
(ti − E [ti | S])2])2

]
−1

4
E [wi]E

[
(ti − E [ti | S])2] ,

=
1

2
E
[
w2
i −

3

4
E [wi | S]2

]
+

1

2
E
[
(ti − E [ti | S])4 − 3

4
E
[
(ti − E [ti | S])2]2]

−1

4
E [wi]E

[
(ti − E [ti | S])2] .

Therefore the difference is:

Ui(S)− Ui(∅) = −3

8
var [E [wi | S]] +

1

4
µθ var [E [ti | S]]

+
1

2
E
[
(ti − E [ti | S])4]− 3

8
E
[
(ti − E [ti | S])2]2 − 1

2
E
[
(ti − µτ )

4]+
3

8
E
[
(ti − µτ )

2]2 .
Since every random variable is assumed to be normal, ti − E[ti|S] is also normal with zero

mean. We can further simplify and obtain

Ui(S)− Ui(∅) = −3

8
var [E [wi | S]] +

1

4
µθ var [E [ti | S]]

+
3

2
(var [ti]− var [E [ti | S]])2 − 3

8
(var [ti]− var [E [ti | S]])2 − 3

2
var[ti]

2 +
3

8
var[ti]

2,

= −3

8
var [E [wi | S]] +

1

4
µθ var [E [ti | S]] +

9

8

(
var [E [ti | S]]2 − 2 var [E [ti | S]] (σ2

τ + σ2
τ i

)
)
.
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Similarly we have:

Πi(S) = E
[(
wi − (ti − E [ti | S])2 − E [wi | S]− E [(ti − E [ti | S])2]

2

)
E [wi | S]− E [(ti − E [ti | S])2]

2

]
=

1

4
E
[(
E [wi | S]− E

[
(ti − E [ti | S])2

])]
=

1

4
E
[
E [wi | S]2 − 2E [wi | S]E

[
(ti − E [ti | S])2

]
+ E

[
(ti − E [ti | S])2

]2]
.

Πi(S)− Πi(∅) =
1

4
var[E [wi | S]] +

1

2
µθ var [E [ti | S]] +

1

4

(
var [E [ti | S]]2 − 2 var [E [ti | S]] (σ2

τ + σ2
τ i

)
)
,

Wi(S)−Wi(∅) = Ui(S)− Ui(∅) + Πi(S)− Πi(∅),

Ui(S)− Ui(∅)− 1

8
var [E [wi | S]] +

3

4
µθ var [E [ti | S]] +

11

8

(
var [E [ti | S]]2 − 2 var [E [ti | S]] (σ2

τ + σ2
τ i

)
)
.

Therefore we can write the difference as a quadratic function of the variance of the conditional

expectation x , var[E[ti|S]]. In particular, we let

g(x) , 11

8
x2 +

(
3

4
µθ −

11

4
(σ2

τ + σ2
τ i

)

)
x.

As long as µθ >
11
3

(σ2
τ + σ2

τ i
), this function is positive and increasing in x, which means a

higher var[E[ti|S]] increases consumer surplus.

Finally, as in the proof of Propositions 6 and 10, aggregating wi increases Wi(S) while

keeps Π(∅) and Ui(S−i) unchanged. Also not aggregating ti increases Wi(S) while keeping

Π(∅) and Ui(S−i) unchanged. Therefore it is optimal for the intermediary to aggregate wi
but not ti.
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