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Abstract

We analyze how to optimally engage in social distancing in order to minimize the

spread of an infectious disease. We identify conditions under which any optimal policy

is single-peaked, i.e., first engages in increasingly more social distancing and subse-

quently decreases its intensity. We show that an optimal policy might delay measures

that decrease the transmission rate substantially to create herd-immunity and that

engaging in social distancing sub-optimally early can increase the number of fatalities.

Finally, we find that optimal social distancing can be an effective measure and can

substantially reduce the death rate of a disease.

Keywords— Social Distancing, SIR model, Time-Optimal Control of an Epidemic

1 Introduction

This paper theoretically analyzes how to optimally engage in measures to contain the spread of an

infectious disease. We formalize this question in the context of a standard model from epidemiology,

the Susceptible-Infected-Recovered (SIR) model (Kermack and McKendrick, 1927). This model

divides the population into the three groups susceptible, infected and recovered. People transition

from one group into another at given exogenously specified rates depending on the size of each sub-

population. We extend this model by introducing an additional parameter controlled by the planner

that affects the rate at which the disease is transmitted. We think of this parameter as capturing

∗We want to thank Stefan Ankirchner, Alexis Toda, and Aleh Tsyvinski for helpful discussions. We plan
on updating this paper frequently, the current version of the paper can be found at https://papers.ssrn.
com/sol3/papers.cfm?abstract_id=3581295. The first version of this paper was circulated on April 20,
2020.
†Giessen University, thomas.kruse@math.uni-giessen.de
‡Yale University and CEPR research fellow, philipp.strack@yale.edu
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political measures such as social distancing, the lockdown of businesses, schools, universities and

other institutions. While such measures reduce the spread of the disease, they often come at a

substantial economic and social cost. We model this trade-off by considering a planner who faces

convex cost in the number of infected (capturing the number of people whose death is caused by

the disease) and the reduction in transmission rate (capturing the cost of shutting down society).

Convexity of the cost allows for the possibility that the probability of dying from the disease

increases in the fraction of the population which is infected, for example due to capacity constraints

of the healthcare system.

Our analysis identifies several features of any optimal policy: First, whenever the probability

of dying from the disease does not increase to quickly in the number of infected, the optimal policy

is single peaked in the sense that first the measures to reduce the transmission rate are escalated

until some point in time, and after this point measures are reduced. Second, if furthermore the

cost of reducing the transmission rate is linear, meaning that closing half of society for two days is

equally costly as closing all of society for one day, only the most extreme policies are used at any

point in time. Either, the planner imposes the maximal possible lockdown or no restrictions at all.

Intuitively, the planner can achieve a greater effect by imposing a more extreme policy for a shorter

time and thus does not find it optimal to use intermediate policies. These results imply that for

linear cost the optimal policy has a simple structure and consists of maximally three phases: first

it imposes no restrictions then it imposes as many restrictions as possible, and finally in the third

phase imposes no restrictions at all. This result drastically simplifies the search for an optimal

policy as the planner has to only optimize over the start and end time of the social distancing

period. We furthermore show that in this case the number of infected peaks at most twice under

any optimal policy.

We then illustrate some further insights using parameters that are commonly chosen to model

the Covid-19 epidemic in 2020. We first characterize the optimal timing of the social distancing

period given that the planner has access to a certain budget of days of social distancing. We find

that the optimal social distancing is often substantially delayed. For example, if the planer has a

budget of 100 days of social distancing in the next 360 days after 0.1% of the population are infected

it is optimal to delay social distancing by 50 days. This initial period of letting the disease spread

uncontrolled is useful as it creates “herd immunity” and thereby reduces the overall severity of the

epidemic. We show by an example that the benefit of herd immunity is so strong that sometimes

more social distancing can increase the number of people that die from the epidemic. We show

that in this example more people die when social distancing is imposed from day 0-100 compared

to day 50-100. As this example suggests, benefit of optimally timing social distancing measures is

often large and we illustrate this by comparing social distancing in the first t days after 0.1 percent

are infected to t days of optimally timed social distancing. Finally, we quantify the optimal amount

of social distancing.
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Related Literature Our theoretical results extend the literature on the optimal control of an

infectious disease (for an overview see chapter 5 in Wickwire, 1977). In general, there are three

policy tools commonly used to control an infectious disease: (i) immunization, (ii) testing and

isolation of infected individuals and (iii) lockdown measures that lead to a reduction in the contact

rate for the whole population. Most of the preceding literature has focused on immunization and

selective isolation measures. Abakuks (1973) considers how to optimally isolate infectious popula-

tion if infectious population can be instantaneously isolated. Abakuks (1972, 1974) determine the

optimal vaccination strategy in the same framework. Morton and Wickwire (1974) and Wickwire

(1975) extend the previous work on vaccination and isolation by considering flow controls. Behncke

(2000) considers more general functional forms and Hansen and Day (2011) allows for hard bounds

on the control, while considering vaccination and isolation policies simultaneously. The general

insight from this literature is that for linear cost of vaccination/testing the optimal policy switches

from vaccinating/testing the population at the maximal feasible intensity until some point in time

to vaccinating/testing no one after that point in time.

While the previously discussed literature has analyzed vaccination and isolation policies, little

is known about optimal lockdown policies. In general, the analysis of optimal lockdown policies

in the standard SIR model is a challenging problem, due to its non-linear structure and the three

dimensional state space.1 To the best of our knowledge the first article that discusses the optimal

social distancing or lockdown policies in the SIR model is chapter 4 in Behncke (2000). In a model

without terminal cost, this paper observes that the optimal policy depends only on the shadow

price difference between infected and susceptible.2 Our paper contributes to this literature by

theoretically deriving properties of the optimal lockdown policy about which little has been known

before. Most closely related to our work, Miclo et al. (2020) derive the optimal policy that keeps

the number of infected below some exogenous threshold when the cost of reducing the transmission

rate is linear. The two studies nicely complement each other as we focus on the case where the cost

of infected is not too convex3, while their model intuitively corresponds to the case where the cost

is infinitely convex at the threshold that captures the capacity of the healthcare system.

Finally, our paper relates to the recent, quickly growing literature in economics that numerically

studies optimal policies for the epidemic of Covid-19 in the context of SIR models (see for example

Alvarez et al., 2020; Kissler et al., 2020; Toda, 2020; Acemoglu et al., 2020; Akbarpour et al.,

1Parts of the literature focused on variants of the model that allow for a reduction in the dimension of
the state space. Rowthorn and Toxvaerd (2012) solved the model where infected population always recovers
(does not die) and can become susceptible again. Gonzalez-Eiras and Niepelt (2020) adopt a model from
Bohner et al. (2019) that assumes that there is no contact between infectious population and population
that was previously infected (see the discussion in Bohner et al. (2019) on page 2) and are able to obtain
closed form solutions for the optimal policy.

2This insight generalizes to our analysis (see Proposition 1).
3See Assumption 1 below.
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2020; Garibaldi et al., 2020; Kantner, 2020). While it is not a goal of this paper to make any

recommendations for the current Covid-19 epidemic we hope that the formal analysis and insights

into the structure of optimal policies will be useful in the rapidly evolving discussion of how to

optimally react to the Covid-19 epidemic.4

2 The Evolution of an Epidemic

The SIR Model To model the spread of an infectious disease we rely on a basic model from

epidemiology, the Susceptible Infected Recovered (SIR) model introduced in Kermack and McK-

endrick (1927). We divide society into three groups: susceptible s, infected i, and the rest which

is either immune to the disease as they recovered from it or died. We denote by s(t) the fraction

of the population that is healthy, but susceptible to disease at time t, and by i(t) the fraction of

the population that is infected. The SIR model assumes the number of people that gets infected

by a single infected person is deterministic proportional to the fraction of society s(t) that is still

susceptible to the disease. Intuitively, if only a small fraction of society is susceptible to the disease

it is unlikely that an infected person meets a susceptible person. The mass of healthy people that

become infected during dt thus equals

β(t)i(t)s(t) ,

where the transmission rate β(t) ∈ [b, b] captures both the infectivity of the disease, as well as mea-

sures society has taken to influence the speed at which the disease spreads (like social distancing).

At rate γ > 0 infected become non-infected, by either recovering from the disease, or dying of it,

such that during a short time span dt, the fraction of infected is reduced by γi(t). The susceptible

and infected populations thus for every t ∈ [0,∞) evolve according to the following dynamics

s′(t) = −β(t)i(t)s(t), s(0) = s0,

i′(t) = β(t)i(t)s(t)− γi(t), i(0) = i0,
(1)

where s0, i0 ∈ (0, 1) are given initial values satisfying s0 + i0 ≤ 1.

Reproduction Rate The basic reproduction rate R0 of the disease equals the number of people

a single infected person infects when he is the only person carrying the disease and the transmission

rate is maximal

R0 =
b

γ
.

4See for example Atkeson (2020); Barro et al. (2020); Dewatripont et al. (2020); Piguillem et al. (2020);
Stock (2020); de Walque et al. (2020); Guerrieri et al. (2020).
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The effective reproduction rate R(t) = 1
γβ(t)s(t) at time t equals the number of people infected by

an infected person at time t and depends on the current transmission rate.

Control of the Transmission Rate The time-dependent transmission rate β : [0,∞) → B

takes values in an compact interval B = [b, b] ⊂ (0,∞). We denote by b the maximal transmission

rate and by b the minimal transmission rate that can be achieved through policy measures, like

social distancing, the closure of schools, wearing masks, etc. The set of admissible controls B
consists of all measurable functions β : [0,∞)→ B.

We introduce three cost functions v, v̄ : [0, 1]→ [0,∞) and c : B → [0,∞), where v, v̄ capture the

economic and health cost of infected population and c captures the cost of reducing the transmission

rate. The planner trades-off the consequences of a higher number of infected with the economic

and social cost of reducing the transmission rate and thus aims at minimizing the cost functional

J(β) =

∫ T

0
v(i(t)) + c(β(t)) dt+ v̄(i(T )) . (2)

A policy β∗ is optimal if it minimizes J over B

β∗ ∈ arg min
β∈B

J(β) . (3)

The cost v(i) measures the number of people that die per unit of time if a share i ∈ [0, 1] of

the population is infected. We suppose that v is convex, continuously differentiable, and strictly

increasing and without loss set v(0) = 0. Convexity of v captures that the probability of dying from

the disease might be higher if a large share of the population is infected and the hospital system is

overwhelmed.5

We assume that a vaccine arrives at time T > 0 and every susceptible person is vaccinated

immediately, but no cure is available at that point in time.6 As, after the comprehensive vaccination

of the population, there are no new infections, the share of infected population evolves according

to i′(t) = −γi(t) and is given by i(t) = i(T )e−γ(t−T ) for t ≥ T . The share of the population that

dies after the arrival of the vaccine thus equals

v̄(i(T )) =

∫ ∞
T

v
(
i(T )e−γ(t−T )

)
dt =

∫ i(T )

0

v(z)

zγ
dz . (4)

The cost function c captures the economic and social cost of measures taken to reduce the

transmission rate. For example if social distancing measures are imposed which require the closure

5The cost v can not only capture the people who die of the disease directly, but also those who die because
other medical conditions remain untreated as an indirect consequence of the disease.

6If a cure also becomes available at time T , the terminal cost equals zero v̄(i) = 0 as all infected get cured
immediately at time T . We considered this case in the working paper version of this paper.
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of most businesses this comes at a substantial economic cost. We only make minimal assumption

on c and assume that it is non-increasing, convex, and continuous. Without loss we normalize

the cost associated with the highest transmission rate to zero, c(b) = 0 > c(b) for all b ∈ [b, b).

The convexity of c captures that some businesses are less costly to close down than others and

the planner could start by closing down these “least essential” businesses or impose other low cost

measures such as making masks mandatory. The convexity of c creates a incentive for the planner

to smooth out lockdown measures over time and it is often instructive to focus on the linear case

where such an incentive is absent.

3 Optimal Policies

The next result shows existence of an optimal policy and provides necessary conditions that any

solution of the optimal control problem (3) must satisfy.

Proposition 1. An optimal policy exists. Let β∗ ∈ B be an optimal policy and denote by s∗, i∗ : [0, T ]→
[0, 1] the associated number of susceptible and infected satisfying (1). There exists a function

η∗ : [0, T ]→ R with η∗(T ) = v(i∗(T ))
γi∗(T ) such that for almost all t ∈ [0, T ] it holds

(η∗)′(t) = η∗(t)β∗(t)i∗(t)− v′(i∗(t)) +
v(i∗(t)) + c(β∗(t))−minb∈B

[
1
γ v(i∗(T ))s∗(T )b+ c(b)

]
i∗(t)

, (5)

(β∗)(t) ∈ arg min
b∈B

[
η∗(t)i∗(t)s∗(t)b+ c(b)

]
. (6)

Moreover, we have η∗(t) > 0 for all t ∈ [0, T ].

The proof of Proposition 1 relies on a sequence of auxiliary results we establish in the appendix

using standard arguments from control theory that can, e.g., be found in Clarke (2013). The

existence of an optimal policy follows as the convexity of c and B ensures compactness of the policy

space which leads to the existence of an optimal policy. Pontryagin’s optimality principle then yields

that there exist two Lagrange multipliers λ∗1 - the marginal cost of susceptible population – and λ∗2

– the marginal cost of infected population – such that the optimal control is only a function of these

multipliers. As the transmission rate controls how fast susceptible population becomes infected,

the optimal control can be determined from the difference in marginal cost η∗ = λ∗2 − λ∗1 > 0

according to (6).7 This Lagrange multiplier η∗(t) has a clear interpretation as the marginal cost

of having an additional susceptible person infected. Proposition 1 goes beyond the Pontryagin

maximum principle as it shows that the two Lagrange multipliers λ∗1, λ
∗
2 can be summarized in a

single Lagrange multiplier η∗ whose dynamics can be expressed as a forward-backward differential

7A similar observation is made in Behncke (2000).
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equation (independent of λ∗1, λ
∗
2) thereby effectively reducing the dimension of the problem by 1.

This, simplification of the problem allows us to explicitly characterize features of the optimal policy

later. Furthermore, Proposition 1 shows that η∗(t) > 0 which establishes that the planner always

benefits from having fewer infected. While this result seems intuitive it is not at all obvious as we

later show that the planner sometimes benefits from a higher transmission rate (see Figure 1).

We throughout restrict attention to optimal policies where (6) is satisfied for all t ∈ [0, T ]. This

assumption is inconsequential in the sense that changing the policy β∗ on a set of measure zero

does not affect the share of susceptible and infected population (s∗, i∗).8

3.1 Gain from Reducing the Transmission Rate

An important quantity is the gain from reducing the transmission rate at time t along the optimal

path which we define as

g∗(t) = η∗(t)i∗(t)s∗(t) .

Proposition 1 implies that g∗ : [0, T ] → (0,∞) is strictly greater zero and completely determines

the optimal control through (6). To simplify notation we define for all g ∈ R

M(g) = min
b∈B

[g b+ c(b)] .

Our next result characterizes how the gain from reducing the transmission rate evolves over time.

Proposition 2 (Properties of the Gain from Reducing the Transmission Rate).

(i) The gain from reducing the transmission rate g∗ : [0, T ]→ (0,∞) evolves according to

(g∗)′(t) = −γg∗(t) + s∗(t)
(
M(g∗(t))−M(g∗(T ))− [v′(i∗(t))i∗(t)− v(i∗(t))]

)
, (7)

with terminal condition g∗(T ) = 1
γ [v(i∗(T ))s∗(T )].

(ii) For all t ∈ [0, T ) the gain g∗ satisfies the following bounds

0 < g∗(T ) < g∗(t) <
1

γ

[
v(1) + v′(1)

(
e(T−t)γ − 1

)]
. (8)

(iii) Any optimal control β∗ is non-increasing in g∗

g∗(t) > g∗(t′)⇒ β∗(t) ≤ β∗(t′) .

Equation (7) characterizes how the incentive to reduce the transmission rate evolves over time.

The first term −γg∗(t) shows that the incentive is exponentially decaying at the rate at which the

8It is a priori not clear that an optimal β∗ can be modified such that (6) is satisfied for all t ∈ [0, T ] and
such that β∗ remains measurable. We proof this in Lemma 13 in the appendix.
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infected die or become cured. Intuitively, when there are fewer infected the benefits from reducing

the transmission rate is smaller.

The term M(g∗(t)) − M(g∗(T )) quantifies how much the objective function of the planner

increases as a function of g∗(t). This term is strictly positive, and increasing in g∗(t). Finally, the

third term v′(i∗(t))i∗(t) − v(i∗(t)) is non-negative, increasing in i∗ and a measure of the increase

in cost due to the convexity of v.9 The term implies that the gain from reducing the transmission

rate falls more quickly when more people are currently infected.

Part (ii) of the proposition states that the incentive to reduce the transmission rate is minimal at

the final time T . Part (iii) establishes that the optimal control is non-increasing in the transmission

rate. Together part (ii) and (iii) imply that the optimal control is maximal at the terminal time T .

Corollary 3. Any optimal control β∗ ∈ B satisfies β∗(t) ≤ β∗(T ) for all t ∈ [0, T ].

Intuitively, as the benefit of having fewer infected is smallest at time T as people which get

infected at time T do not cause further infections due to the availability of a vaccine at time T .

3.2 Herd-Immunity

We denote by τ the first time society achieves herd-immunity, that is the first time every infected

person infects fewer than one person on average without intervention of the planner10

τ = min

{
t ∈ [0, T ] :

b

γ
s(t) ≤ 1

}
.

It is immediate from the definition of τ that the share of infected population is strictly decreasing

after τ , independent of the policy chosen after time τ . Our next result shows that the optimal

policy always implies a non-decreasing transmission rate after τ , i.e. that lockdown measures get

less stringent after herd-immunity has been achieved in society.

Proposition 4. Fix an optimal policy β∗. The gain from reducing the transmission rate g∗ is

strictly decreasing on [τ, T ] and the optimal transmission rate β∗ is non-decreasing on [τ, T ].

Intuitively, after herd-immunity has been achieved the incentives to reduce the transmission

rate are decreasing as each infected has a smaller chance of infecting someone in the future as over

time one gets closer to the arrival of a vaccine, and the share of susceptible population decreases.

For any disease with basic reproduction rate R0 below 1 herd immunity is achieved at time

zero and an immediate corollary of Proposition 4 is that any optimal policy reduces the lockdown

9For example suppose that the percentage infected who dies grows linearly in the fraction of the population
that is infected v(i) = ki2. In this case v′(i∗(t))i∗(t)− v(i∗(t)) = ki2.

10Throughout the article we use the conventions that inf ∅ = min ∅ =∞ and sup ∅ = max ∅ = −∞
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measures over time. Especially, in the case of linear costs, i.e. there exists δ > 0 such that

c(β) = δ(b − β), this implies that the planner optimally engages in the maximal lockdown until

some time t∗ and afterwards uses no lockdown measures at all.

Corollary 5. Assume that R0 ≤ 1 and let β∗ be an optimal policy. Then, β∗ is non-decreasing on

[0, T ] and if c is linear then there exists t∗ ∈ [0, T ] such that11

β∗(t) =

b for t ∈ [0, t∗)

b for t ∈ (t∗, T ]
. (9)

Less Social Distancing Leads to Faster Herd-Immunity As we argue next, the fact

that for R0 ≤ 1 the optimal policy engages in a lockdown as quickly as possible does not generalize

to diseases with R0 > 1. Intuitively, for such diseases there is an additional motive at play for

the planner before herd immunity is reached. By increasing the transmission rate the planner

generates more infections, which lead to more people who are immune to the disease, and faster

herd-immunity.

Consider two policies β and β̂ and their associated paths of susceptible and infected (sβ, iβ) and

(sβ̂, iβ̂). We say that β induces less social distancing than β̂ if for all t, t′ ∈ [0, T ] with sβ(t) = sβ̂(t′)

we have β(t) ≥ β̂(t′). Our definition of less social distancing requires that for any given share of

susceptible population the transmission rate is higher if the planner engages in less social distancing.

Proposition 6. If β induces less social distancing than β̂ then there will be fewer susceptible

sβ(t) ≤ sβ̂(t) at every point in time t ∈ [0, T ] and herd-immunity will be reached faster under the

policy β.

Proposition 6 shows that less social distancing can lead to faster herd-immunity. A natural

conjecture following this observation is that too much social distancing can increase the number

of people who die from a disease. Figure 1 provides such an example. The example considers a

disease with a basic reproduction rate of 2.5, an average infection length of 12 days, where social

distancing reduces the transmission rate by 65%, and 1% of infected die. These parameters are

chosen in line with estimates for the Covid-19 pandemic in 2020.12 A vaccine is assumed to arrive

after 360 days. Starting with 0.1% of the population infected at time zero it compares the number

of infected if social distancing is enacted from day 0− 100 to social distancing from day 50− 100.

11Here and in the sequel we use the convention that [x, x) = (x, x] = (x, x) = ∅ for all x ∈ R. In particular,
any of the intervals in (9) might be empty.

12Wu et al. (2020) estimate R0 for Covid-19 to be between 2.47 and 2.86 or between 2.32 and 2.71
depending on the modelling assumptions. For an average infection length of 10 days Toda (2020) finds
a median reproduction rate of 2.9 and documents significant variation across countries. Kantner (2020)
calibrate an SIR model to Germany and find a basic reproduction rate of R0 = 2.7.
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Figure 1: On the left there is the fraction of infected over time for maximal social distancing
from day 50-100 (solid line) and from day 0-100 (dashed line). The vertical lines mark
the time of herd-immunity. On the right the fraction of dead population over time for
maximal social distancing from day 50-100 (solid line) and from day 0-100 (dashed line).
The parameters are R0 = 2.5, γ = 1/12, b = R0 γ, b = 0.35b, v(i) = 0.01γi, T = 360.

On the left one can see how the number of infected evolves over time under either policy. If there is

no social distancing initially the number of infected peaks early and then decreases until day 100,

after which it mildly increases until herd immunity is reached at day 126, after which the number

of infected decrease. If social distancing is enacted from day 0-100 the number of infected peaks

much later and higher at day 168 at which herd-immunity is reached. The right-hand-side plot

illustrates the accumulated share of people who died. While with social distancing more people

die early from the disease, fewer people die later on. Overall, the share of the population that dies

from the disease is 0.177% less when social distancing is enacted from day 50-100 in this example.

Notably, this example does not assume convex v, which corresponds to limited hospital capacity,

and would amplify the difference in dead due to the different height of the peak number of infected.

3.3 Limited Capacity Effects

We next introduce an assumption that restricts to environments where the cost is not too convex

in the share of infected population.13

Assumption 1 (Limited Capacity Effects). The cost v is twice continuously differentiable and

satisfies v′′(i)
γ < 27

4
b

b−b

∣∣c′(b−)
∣∣ for all i ∈ [0, 1].

Assumption 1 admits an intuitive interpretation: As 1
γ v
′(i) is the probability with which an

additional infected dies when a share i of the population is infected. The condition thus requires

that the probability of dying from the disease can not be too sensitive to the share of infected

13We denote by c′(b−) = limb↗b
c(b)−c(b)

b−b ≤ 0 the left-derivative of c at b (which exist due to convexity

of c).
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population, compared to the marginal cost of reducing the transmission rate. It is always satisfied

if the probability of dying from the disease is independent of which fraction of the population is

infected, which corresponds to the case where v is linear. The main reason for non-linear v is that

the death rate increases for larger number of infected due to limited hospital capacity.

This assumption thus rules out too large capacity effects that arise from the overload of the

medical system. It is thus a reasonable approximation if the number of infected is kept within levels

that do not overburden the healthcare system, or if the death rate does not increase too quickly

when the number of infected exceeds the hospital capacity.

Our next result shows that in this case the optimal transmission rate is quasi-convex.

Proposition 7. Suppose that Assumption 1 is satisfied and let β∗ ∈ B be an optimal control. Then

there exists t∗ ∈ [0, T ] such that

(i) β∗ is non-increasing on [0, t∗] and non-decreasing on [t∗, T ], i.e., β∗ is quasi-convex, and

(ii) the fraction of infected population i∗ is strictly log-concave on [0, t∗] and thus admits at most

one local maximum on [0, t∗].

Proposition 7 establishes that any optimal policy is single peaked, in the sense that the measures

to decrease the transmission rate are first escalated until some point in time and then reduced

over time. Any policy where a reduction in measures is followed by an increase is suboptimal.

Furthermore, in the initial period where SD measures are escalated and the transmission rate falls

the fraction of infected is single peaked. The proof of Proposition 7 is quite involved. The main

idea of the proof is to differentiate the dynamics of the gain from reducing the transmission rate

derived in (7) and then bounding the second derivative of g∗ using Assumption 1 to establish that

g∗ is quasi-concave.

We next show that if Assumption 1 is satisfied and c is linear then the optimal policy involves

only the two most extreme controls β∗(t) ∈ {b, b}. The assumption that the cost c of measures that

reduce the transmission rate is linear has a simple interpretation in the context of social distancing:

Shutting down half of the economy for two days is equally costly as shutting down the whole

economy for a single day.14 While there is no normative reason for this assumption we think of it

as a natural baseline for the analysis, and potentially a good approximation of the trade-offs once

“cheap measures” to reduce the transmission rate (such as wearing masks) are exhausted.15

Proposition 8. Suppose that Assumption 1 is satisfied and c is linear and let β∗ ∈ B be an optimal

control. Then there exist 0 ≤ t∗1 ≤ t∗2 ≤ T such that

14This implicitly assumes that the transmission rate β depends linearly on the shut down of the economy.
15We note here that the theoretical literature on optimal policies to manage an infectious disease has

almost exclusively focused on the case of linear cost.
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(i) for a.e. t ∈ [0, T ] we have

β∗(t) =


b for t ∈ [0, t∗1)

b for t ∈ (t∗1, t
∗
2)

b for t ∈ (t∗2, T ]

(10)

(ii) and the fraction of infected i∗ under the policy β∗ is strictly increasing on [0, t∗1], and has at

most one local maximum in [0, t∗2], and at most one local maximum in [t∗2, T ].

Proposition 8 drastically simplifies the search for an optimal policy as it implies that any optimal

policy is characterized by the two points in time (t∗1, t
∗
2). Note that the proposition does not rule

out that any of the intervals is empty. In particular, reducing the transmission rate by the maximal

amount at every point in time as well as taking no measures at all to reduce the transmission rate

can be optimal.

The first economic insight of Proposition 8 is that when the cost of reducing the transmission

rate is linear and the hospital capacity does not have a too strong effect on the death rate it is never

optimal to use intermediate measures for a longer time (i.e. closing only parts of the economy)

as doing so is dominated by implementing maximal measures for a shorter time. The second part

of the proposition establishes that under the optimal policy the number of infected peaks at most

twice. The second peak always happens after the planner has stopped using lockdown measures.

Thus, whenever one observes the number of infected peak more than twice one can conclude that

either the planner acted suboptimally or one of the assumptions of the model must be violated.

3.4 The Optimal Timing of Social Distancing

We next illustrate the optimal timing of social distancing. For this illustration we again consider

a disease with a basic reproduction rate of 2.5, an average infection length of 12 days, where

social distancing reduces the transmission rate by 65%, and 1% of infected die.16 A vaccine is

assumed to arrive after 360 days. We consider linear cost of reducing the transmission rate for

which Proposition 8 implies that the optimal policy consist of three subsequent periods, first no

social distancing, followed by a period of social distancing, and a period of no social distancing.

Without loss we suppose that the planner has a fixed budget of days of social distancing and

plot during which time period he optimally engages in social distancing. This allows us to display

the optimal policy for various costs. For example, consider the case where the planner has a budget

of 100 days of social distancing. In this case the optimal policy is to start social distancing on day

50 and end it on day 150. As one can see in the left graph of Figure 2 this leads to a flatter curve of

infected over time than social distancing in the first 100 days or no social distancing. Interestingly,

16These parameter values are chosen in line with the Covid-19 pandemic in 2020 c.f. Footnote 12.
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Figure 2: On the left: The number of infected over time without SD (dashed line), with SD
from day 0-100 (solid line), and for the optimal SD period from day 50 to day 150 (dotted
line). On the right: the optimal period of SD as a function of the length of SD.

the effect of suboptimal social distancing is marginal in the sense that while it initially reduces

the number of infected substantially, it essentially only delays the peak of infected, but does not

substantially flatten it. Optimal social distancing leads to a substantial reduction in the implied

death rate within a year: 0.607% under optimal social distancing, 0.892% with social distancing in

the first hundred days, and 0.893% without social distancing.

The right graph of Figure 2 depicts the optimal timing of social distancing as a function of the

length of social distancing. As one can see it is often optimal to delay social distancing beyond the

date where 0.1% of the population is infected. For example even if it is optimal for the planner

to engage in 150 days of social distancing within the next year it is only optimal to start social

distancing after 50 days. This observation might be surprising as it implies that if it is not optimal

to maintain permanent social distancing (until the arrival of a vaccine/cure), then it is optimal to

substantially delay the period of social distancing.

The Value of Optimal Social Distancing We next illustrate the importance of the optimal

timing of social distancing. The left graph of Figure 3 plots the death rate as a function of

the number of days of social distancing.17 The solid line depicts the death rate when the social

distancing measures are optimally timed and the dashed line depicts the death rate if the planner

engages in social distancing immediately. As one can see in the figure social distancing can be an

effective measure to prevent the death of population. For example, 50 days of optimally timed

social distancing (from day 50 to day 100) reduce the death rate by roughly 0.2%. The figure

however shows that without optimal timing social distancing is much less effective and to achieve

an equal reduction in the example one needs 270 days of social distancing.

17We used the same parameters as in Figure 1 and 2.
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Figure 3: On the Left: Fraction of the population that dies within 360 days of 0.1% infected
as a function of the length of social distancing for the optimal timing of social distancing
(solid line) and social distancing starting at day 0 (dashed line). On the right: the benefit
of an additional day of social distancing.

The right graph of Figure 3 plots the reduction in cost from engaging in an additional day of

optimally timed social distancing. As one can see in the picture the benefit is non-concave. It is

initially high and the first days of social distancing safe around 0.005% of the population. It then

decreases and peaks again around 300 days of social distancing. Intuitively, this non-concavity

results from the fact that engaging in social distancing over almost the whole time until a vaccine

arrives can prevent the disease from ever substantially spreading. In contrast engaging in social

distancing over a shorter time horizon can not avoid a substantial spread of the disease before the

arrival of a vaccine.

4 Conclusion

In this short note we derived the optimal policy for social distancing during an epidemic. Our

analysis revealed several features of the optimal policy. If the death rate is not too sensitive to

the number of infected, the optimal policy consists of two phases: a first phase where the planner

engages in more social distancing over time and a second phase where the planner engages in less

social distancing over time. Furthermore, if the cost of reducing the transmission rate is linear, the

optimal policy is always extreme. At any point in time either social distancing is carried out to

the maximal extend possible or not at all. The intuitive reason for this result is that more extreme

measures over a shorter time horizon are more effective than less extreme measures over a longer

horizon. We illustrated through an example that the effectiveness of social distancing depends

crucially on its optimal timing. Within the context of this example optimal social distancing is

often substantially delayed in order to generate herd immunity. Engaging in more, but too early

social distancing can increase the peak number of infected and the fatalities caused by the disease.
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A Appendix

We first prove a sequence of auxiliary results which together imply Proposition 1. Recall that

the function M : R → R is defined by M(y) = minb∈B[yb + c(b)], y ∈ R, and note that M is

non-decreasing.

Lemma 9. An optimal policy β∗ exists that solves (3). Let s∗, i∗ : [0, T ] → [0, 1] be the state

processes associated with an optimal control satisfying (1). Then there exist absolutely continuous

functions λ∗1, λ
∗
2 : [0, T ]→ R which satisfy for almost all t ∈ [0, T ] the dynamics

(λ∗1)
′(t) = (λ∗1(t)− λ∗2(t))β∗(t)i∗(t), λ∗1(T ) = 0,

(λ∗2)
′(t) = (λ∗1(t)− λ∗2(t))β∗(t)s∗(t) + γλ∗2(t)− v′(i∗(t)), λ∗2(T ) =

v(i∗(T ))

γi∗(T )
,

(11)

and the optimality condition

β∗(t) ∈ arg min
b∈B

[
(λ∗2(t)− λ∗1(t))i∗(t)s∗(t)b+ c(b)

]
. (12)

Moreover, for all t ∈ [0, T ] we have

M
(
λ∗2(t)− λ∗1(t))i∗(t)s∗(t)

)
− γλ∗2(t)i∗(t) + v(i∗(t)) = M

(
v(i∗(T ))s∗(T )

γ

)
. (13)

Proof of Lemma 9. Suppose an optimal policy β∗ exists. The existence of functions λ∗1, λ
∗
2 :

[0, T ]→ R that satisfy (11), (12) and (13) follows from the Pontryagin principle (see, e.g., Clarke,

2013, Theorem 22.2 and Corollary 22.3). We show the existence of an optimal policy by verifying

the conditions of Theorem 23.11 in Clarke (2013).

(a) g(t, (s, i)) =

(
−is
+is

)
which implies that |g(t, (s, i))| ≤ 2|is| < 2 .

(b) B = [b, b] is closed and convex by definition.

(c) The sets E = {(s0, i0)} × R+ and Q = [0, T ] × [0, 1]2 are closed and `(s0, i0, sT , iT ) = v̄(iT ) is

lower semicontinuous.

(d) The running cost β 7→ v(i) + c(β) is convex as c is convex. Furthermore, v(i) + c(β) ≥ 0.

(e) The projection set is given by {(s0, i0)} and thus bounded.

(f) As β ∈ B it follows that |β| ≤ b. This verifies (f) (ii).

Moreover, the constant control β(t) = b has finite costs. We have hence verified that there exists

an optimal policy.

In the following we suppose that β∗ ∈ B is an optimal control and denote by s∗, i∗ : [0, T ] →
[0, 1] the associated state processes satisfying (1). Moreover, we denote by λ∗1, λ

∗
2 : [0, T ] → R
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the Lagrange variables from Lemma 9. Compactness of B and continuity of c ensure that for all

t ∈ [0, T ] the function b 7→ [λ∗2(t)− λ∗1(t)]i∗(t)s∗(t)b+ c(b) attains its minimum on B.

We introduce the new Lagrange variable

η∗(t) = λ∗2(t)− λ∗1(t) . (14)

The variable η∗(t) has a clear interpretation: it measures the marginal change in the cost with

respect to infecting susceptible population. Intuitively speaking, η∗(t) measures the additional cost

if one additional person is infected at time t given the optimal policy is used. Note that by (12)

at each time t the optimal control β∗(t) depends on λ∗1(t) and λ∗2(t) only through their difference

η∗(t) = λ∗2(t)− λ∗1(t).

Lemma 10. Let β∗ ∈ B be an optimal control and suppose that the optimality condition (12) holds

for all t ∈ [0, T ]. Suppose that t0 ∈ [0, T ] satisfies η∗(t0) ≤ 0. Then it holds that limt→t0 β
∗(t) =

β∗(t0) = b.

Proof of Lemma 10. First note that the assumption η∗(t0) ≤ 0 ensures that the function b 7→
η∗(t)i∗(t)s∗(t)b + c(b) attains its global minimum on B at b. Hence (12) implies that β∗(t0) = b.

Next let (tn) be a sequence such that tn → t0 as n → ∞. Suppose by contradiction that there

exists a subsequence such that limn→∞ β
∗(tn) =: b0 < b. Next note that (12) ensures for all n ∈ N

that (recall that c(b) = 0)

η∗(tn)i∗(tn)s∗(tn)β∗(tn) + c(β∗(tn)) ≤ η∗(tn)i∗(tn)s∗(tn)b. (15)

This implies that

η∗(tn)i∗(tn)s∗(tn) ≥ c(β∗(tn))

b− β∗(tn)
. (16)

Taking the limit n→∞ yields the contradiction

0 ≥ lim
n→∞

η∗(tn)i∗(tn)s∗(tn) ≥ lim
n→∞

c(β∗(tn))

b− β∗(tn)
=

c(b0)

b− b0
> 0. (17)

Therefore, we have limt→t0 β
∗(t) = b = β∗(t0).

The next result shows that the cost of additional infected η∗ is characterized by a differential

equation that does not depend on λ∗1 and λ∗2. Moreover, we show that both λ∗1 and λ∗2 can be

recovered from η∗.

Lemma 11. The variable η∗ solves

(η∗)′(t) = η∗(t)β∗(t)i∗(t)− v′(i∗(t)) +
v(i∗(t)) + c(β∗(t))−M

(
v(i∗(T ))s∗(T )

γ

)
i∗(t)

(18)
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with terminal condition η∗(T ) = v(i∗(T ))
γi∗(T ) . Conversely, suppose that i, s, β, η : [0, T ]→ R satisfy

s′(t) = −β(t)i(t)s(t), s(0) = s0,

i′(t) = β(t)i(t)s(t)− γi(t), i(0) = i0,

η′(t) = η(t)β(t)i(t)− v′(i(t)) +
v(i(t)) + c(β(t))−M

(
v(i(T ))s(T )

γ

)
i(t)

, η(T ) =
v(i(T ))

γi(T )
,

β(t) ∈ arg min
b∈B

[
η(t)i(t)s(t)b+ c(b)

]
,

(19)

then

λ1(t) =
1

γ

η(t)β(t)s(t) +
v(i(t)) + c(β(t))−M

(
v(i(T ))s(T )

γ

)
i(t)

− η(t),

λ2(t) =
1

γ

η(t)β(t)s(t) +
v(i(t)) + c(β(t))−M

(
v(i(T ))s(T )

γ

)
i(t)


(20)

solves (11).

Proof of Lemma 11. First note that it follows from (13) and (12) that

−η∗(t)β∗(t)i∗(t)s∗(t) + γλ∗2(t)i
∗(t) = −M(η∗(t)i∗(t)s∗(t)) + γλ∗2(t)i

∗(t) + c(β∗(t))

= v(i∗(t)) + c(β∗(t))−M
(
v(i∗(T ))s∗(T )

γ

)
.

(21)

Then (11) implies that

(η∗)′(t) = (λ∗2)
′(t)− (λ∗1)

′(t) = −η∗(t)β∗(t)s∗(t) + γλ∗2(t)− v′(i∗(t)) + η∗(t)β∗(t)i∗(t)

= η∗(t)β∗(t)i∗(t)− v′(i∗(t)) +
v(i∗(t)) + c(β∗(t))−M

(
v(i∗(T ))s∗(T )

γ

)
i∗(t)

.

(22)

Next suppose that s, i and η solve (19) and that λ1 and λ2 are given by (20). Observe that it

holds that λ1(T ) = 0 and λ2(T ) = v(i(T ))
γi(T ) . Next note that the envelope theorem ensures that

∂

∂t
[η(t)i(t)s(t)β(t) + c(β(t))] =

∂

∂t
min
b∈B

[η(t)i(t)s(t)b+ c(b)] = β(t)
∂

∂t
[η(t)i(t)s(t)] . (23)
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Then it holds that

λ′2(t) =
∂

∂t

η(t)β(t)i(t)s(t) + v(i(t)) + c(β(t))−M
(
v(i(T ))s(T )

γ

)
γi(t)


=
β(t) ∂∂t [η(t)i(t)s(t)] + v′(i(t))i′(t)

γi(t)

−

(
η(t)β(t)i(t)s(t) + v(i(t)) + c(β(t))−M

(
v(i(T ))s(T )

γ

))
i′(t)

γ(i(t))2

=
1

γ
(β(t)η′(t)s(t) + β(t)η(t)s′(t))

+
i′(t)

γi(t)

v′(i(t))− v(i(t)) + c(β(t))−M
(
v(i(T ))s(T )

γ

)
i(t)


=

1

γ
(β(t)η′(t)s(t) + β(t)η(t)s′(t)) +

i′(t)

γi(t)

(
η(t)β(t)i(t)− η′(t)

)
=
β(t)η(t)

γ
(s′(t) + i′(t)) +

η′(t)

γ

(
β(t)s(t)− i′(t)

i(t)

)
= −β(t)η(t)i(t) + η′(t).

Therefore we obtain that

λ′2(t) =
v(i(t)) + c(β(t))−M

(
v(i(T ))s(T )

γ

)
i(t)

− v′(i(t)) = γλ2(t)− η(t)β(t)s(t)− v′(i(t))

= (λ1(t)− λ2(t))β(t)s(t) + γλ2(t)− v′(i(t)) .

Similarly, λ1 satisfies

λ′1(t) = λ′2(t)− η′(t) = [η′(t)− η(t)β(t)i(t)]− η′(t) = (λ1(t)− λ2(t))β(t)i(t) .

Lemma 12 (More Infected are Costly). The function η∗ satisfies η∗(t) > 0 for all t ∈ [0, T ).

Proof of Lemma 12. Suppose that there exists t ∈ [0, T ) such that η∗(t) ≤ 0. Then Lemma 10

shows that β∗(t) = b. Moreover, Lemma 10 ensures that β∗ is continuous at t and hence η∗ is

differentiable at t. Then (18) shows (recall that c(b) = 0)

(η∗)′(t) = η∗(t)β∗(t)i∗(t) +
v(i∗(t))−M

(
v(i∗(T ))s∗(T )

γ

)
− v′(i∗(t))i∗(t)

i∗(t)
. (24)
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Since v is convex and since M
(
v(i∗(T ))s∗(T )

γ

)
> 0 we thus obtain that

(η∗)′(t) < η∗(t)β∗(t)i∗(t) ≤ 0 (25)

We conclude from the terminal condition η∗(T ) = v(i∗(T ))
γi∗(T ) > 0 that η∗(t) > 0 for all t ∈ [0, T ).

Since (λ∗1)
′(t) = −η∗(t)β∗(t)i∗(t) we obtain from Lemma 12 that λ∗1 is decreasing in time and,

in particular, that λ∗1 is non-negative. This means that a marginal increase of the susceptible

population (while keeping the infected population constant) marginally increases the costs. This

marginal effect decreases over time and vanishes at time T .

Combining the results of Lemma 9, Lemma 10, Lemma 11 and Lemma 12 proves Proposition 1.

Proof of Proposition 2. Recall that g∗(t) = η∗(t)i∗(t)s∗(t), t ∈ [0, T ]. We compute (g∗)′(t)

(g∗)′(t) = (η∗)′(t)i∗(t)s∗(t) + (η∗(t))(i∗)′(t)s∗(t) + η∗(t)i∗(t)(s∗)′(t)

= [(λ∗1(t)− λ∗2(t))β∗(t)s∗(t) + λ∗2(t)γ − v′(i∗(t))− (λ∗1(t)− λ∗2(t))β∗(t)i∗(t)]i∗(t)s∗(t)

+ (λ∗2(t)− λ∗1(t))s∗(t)[β∗(t)i∗(t)s∗(t)− γi∗(t)]

− (λ∗2(t)− λ∗1(t))i∗(t)β∗(t)i∗(t)s∗(t)

= (λ∗1(t)− λ∗2(t))β∗(t)[−(s∗(t))2i∗(t) + (i∗(t))2s∗(t) + (s∗(t))2i∗(t)− (i∗(t))2s∗(t)]

+ [γλ∗2(t)− v′(i∗(t))]i∗(t)s∗(t)− γ(λ∗2(t)− λ∗1(t))s∗(t)i∗(t)

= [γλ∗1(t)− v′(i∗(t))]i∗(t)s∗(t).

(26)

This and the fact that g∗(t) = (λ∗2(t)− λ∗1(t))i∗(t)s∗(t) imply

(g∗)′(t) = γλ∗1(t)i
∗(t)s∗(t)− v′(i∗(t))i∗(t)s∗(t) = −γg∗(t) + γλ∗2(t)i

∗(t)s∗(t)− v′(i∗(t))i∗(t)s∗(t).

Next (13) implies that

(g∗)′(t) = −γg∗(t) + s∗(t)

[
M(g∗(t))−M

(
v(i∗(T ))s∗(T )

γ

)
+ v(i∗(t))− v′(i∗(t))i∗(t)

]
.

Using that g∗(T ) = η∗(T )i∗(T )s∗(T ) = v(i∗(T ))s∗(T )
γ we obtain

(g∗)′(t) = −γg∗(t) + s∗(t)
[
M(g∗(t))−M(g∗(T ))− [v′(i∗(t))i∗(t)− v(i∗(t))]

]
.

We next argue that we have that g∗(t) > g∗(T ) > 0 for all t ∈ [0, T ). Let t ∈ [0, T ) and suppose that

g∗(t) ≤ g∗(T ). Since M is non-decreasing we have M(g∗(t)) ≤ M(g∗(T )). Convexity of v ensures

that v′(i∗(t))i∗(t)− v(i∗(t)) ≥ 0. Moreover, by Lemma 12 we have g∗(t) > 0 and consequently (7)

implies that (g∗)′(t) < 0. This contradicts continuity of g∗ and therefore proves g∗(t) > g∗(T ) > 0
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for all t ∈ [0, T ).

Next, we verify the upper bound in (8). To this end let Q : [0, 1]→ R satisfy Q(i) = v′(i)i−v(i).

Note that convexity of v implies that Q is non-decreasing. Note that (7), monotonicity of M and

the fact that g∗(t) > g∗(T ) ensure that

(g∗)′(t) = −γg∗(t) + s∗(t)
(
M(g∗(t))−M(g∗(T ))− [v′(i∗(t))i∗(t)− v(i∗(t))]

)
> −γg∗(t)− s∗(t)Q(i∗(t)) ≥ −γg∗(t)−Q(1) .

Gronwall’s lemma shows that

g∗(t) < e(T−t)γg∗(T ) +
Q(1)

γ

(
e(T−t)γ − 1

)
.

Using that g∗(T ) = v(i∗(T ))s∗(T )
γ ≤ v(1)

γ and Q(1) = v′(1)1− v(1) we get

g(t) <
1

γ

[
e(T−t)γv(i∗(T ))s∗(T ) + (v′(1)− v(1))

(
e(T−t)γ − 1

)]
≤ 1

γ

[
v(1) + v′(1)

(
e(T−t)γ − 1

)]
.

(27)

Finally, take two points in time t, t′ ∈ [0, T ]. Then (12) shows that

g∗(t)β∗(t) + c(β∗(t)) ≤ g∗(t)β∗(t′) + c(β∗(t′)) and g∗(t′)β∗(t′) + c(β∗(t′)) ≤ g∗(t′)β∗(t) + c(β∗(t)).

(28)

Adding these two inequalities yields that

(g∗(t)− g∗(t′))(β∗(t)− β∗(t′)) ≤ 0 (29)

Thus, g∗(t) > g∗(t′) implies β∗(t) ≤ β∗(t′).

By (12) we have that β∗(t) ∈ arg minb∈B g
∗(t)b − c(b) for almost all t ∈ [0, T ]. By potentially

changing β∗ on a set of measure zero we suppose in the sequel that β∗(t) attains the minimum for

all t ∈ [0, T ] (i.e., (12) holds for all t ∈ [0, T ]). Note that this change does not affect the trajectories

of s∗, i∗, λ∗1 and λ∗2. In Lemma 13 below we show that this modification preserves the measurability

of β∗.

Lemma 13. There exists an optimal policy such that β∗(t) ∈ arg minb∈B[g∗(t)b + c(b)] for all

t ∈ [0, T ].

Proof. Let β∗ be an arbitrary optimal policy and g∗ the associated gain from reducing the trans-

mission rate. Let S : R→ [b, b] be a function that satisfies for all y ∈ R that M(y) = yS(y)+c(S(y)).

Such a function S exists by the axiom of choice and since b 7→ yb + c(b) is continuous and hence
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attains a minimum on [b, b]. Then we can show as in Proposition 2 that S is non-increasing. Hence

any such S is measurable. Now let β∗ satisfy β∗(t) ∈ arg minb∈B[g∗(t)b + c(b)] for all t ∈ T where

T is a measurable set of full Lebesgue measure. Then define β̂ for all t ∈ [0, T ] by

β̂(t) = S(g∗(t))1Tc(t) + β∗(t)1T(t).

Then β̂(t) ∈ arg minb∈B[g∗(t)b + c(b)] for all t ∈ [0, T ], β̂ is measurable as S is measurable and g∗

is continuous, and β̂(t) = β∗(t) for almost all t ∈ [0, T ].

Proof of Corollary 3. The statement follows directly from parts (i) and (ii) of Proposition 2.

Proof of Proposition 4. Let Q : [0, 1] → R satisfy Q(i) = v′(i)i − v(i). Note that for all t > τ

we have that bs∗(t)− γ ≤ 0. This implies that

(g∗)′(t) = −γg∗(t) + s∗(t) [M(g∗(t))−M(g∗(T ))−Q(i∗(t))]

≤ −γg∗(t) + s∗(t) [M(g∗(t))−M(g∗(T ))]

< −γg∗(t) + s∗(t)β∗(T )(g∗(t)− g∗(T ))

< −γg∗(t) + s∗(t)b(g∗(t)− g∗(T ))

< g∗(t)[s∗(t)b− γ] ≤ 0 .

This establishes that g∗ is strictly decreasing on [τ, T ] and as β∗ is non-increasing in g∗ the result

follows.

Proof of Corollary 5. As 1 ≥ R0 = b
γ we have that τ = min{t ∈ [0, T ] : b

γ s(t) ≤ 1} = 0. Thus,

Proposition 4 implies that g∗ is strictly decreasing on [0, T ] and β∗ is non-decreasing on [0, T ].

Let t∗ = inf{t ∈ [0, T ] : g(t) = δ} ∧ T . We note that g∗(t) < δ for t < t∗ and g∗(t) > δ for

t > t∗. Since c(b) = δ(b − b) it follows immediately from β∗(t) ∈ arg maxb∈B g
∗(t)b + c(b) =

arg maxb∈B(g∗(t)− δ)b+ δb that β∗(t) = b for t < t∗ and β∗(t) = b for t > t∗.

Proof of Proposition 6. Denote by τβ(q) = inf{t : sβ(t) ≤ q}18 and let ĩβ(q) = i(τβ(q)) for all

q ≥ sβ(T ) and define ĩβ̂ analogously. The number of infected ĩβ as a function of the number of

susceptible solves

ĩβ(s) = i0 + s0 − s− γ
∫ s0

s

1

β(τβ(z))z
dz

for s ∈ [sβ(T ), s0]. As β induces less social distancing than β̂ we have that β(τβ(z)) ≥ β̂(τ β̂(z)) for

all z ≥ max{sβ(T ), sβ̂(T )}. It thus follows that ĩβ(z) ≥ ĩβ̂(z) for all z ≥ max{sβ(T ), sβ̂(T )}. This

18By convention inf ∅ =∞.
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implies that any given share of susceptible population is reached faster with less social distancing,

i.e. for all s ∈ [max{sβ(T ), sβ̂(T )}, s0]

τβ(s) =

∫ s0

s

1

β(τβ(z))zĩβ(z)
dz ≤

∫ s0

s

1

β̂(τ β̂(z))zĩβ̂(z)
dz = τ β̂(s) .

This implies that sβ(t) ≤ sβ̂(t) for all t ∈ [0, T ]. This implies that herd immunity is achieved faster

under a higher transmission rate τβ(γ/b) < τ β̂(γ/b).

Proof of Proposition 7. Let Q : [0, 1]→ R satisfy Q(i) = v′(i)i− v(i). As g solves

(g∗)′(t) = −γg∗(t) + s∗(t) [M(g∗(t))−M(g∗(T ))−Q(i∗(t))] (30)

and M and Q are continuous it follows that (g∗)′ is continuous. Moreover, we obtain from (30)

that

(g∗)′(t) = −γg∗(t) + s∗(t) [g∗(t)β∗(t) + c(β∗(t))−M(g∗(T ))−Q(i∗(t))]

=
(i∗)′(t)

i∗(t)
g∗(t) + s∗(t) [c(β∗(t))−M(g∗(T ))−Q(i∗(t))] .

(31)

By the envelope theorem we get that M is absolutely continuous and for a.e. t ∈ [0, T ] we have

M ′(g∗(t)) = β∗(t). We thus get by (30) that for a.e. t ∈ [0, T ]

(g∗)′′(t) = −γ(g∗)′(t) + (s∗)′(t) [M(g∗(t))−M(g∗(T ))−Q(i∗(t))]

+ s∗(t)
[
β∗(t)(g∗)′(t)−Q′(i∗(t))(i∗)′(t)

]
.

Using (30) once again we obtain for a.e. t ∈ [0, T ]

(g∗)′′(t) = −γ(g∗)′(t) +
(s∗)′(t)

s∗(t)
[(g∗)′(t) + γg∗(t)]

+ s∗(t)
[
β∗(t)(g∗)′(t)−Q′(i∗(t))(i∗)′(t)

]
=

[
−γ +

(s∗)′(t)

s∗(t)
+ s∗(t)β∗(t)

]
(g∗)′(t) +

γg∗(t)(s∗)′(t)

s∗(t)
− s∗(t)Q′(i∗(t))(i∗)′(t)

= [−γ + β∗(t)(s∗(t)− i∗(t))] (g∗)′(t)− γg∗(t)β∗(t)i∗(t)− s∗(t)Q′(i∗(t))(i∗)′(t).
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Next it follows from (31) that for a.e. t ∈ [0, T ]

(g∗)′′(t) =

[
−γ + β∗(t)(s∗(t)− i∗(t))− Q′(i∗(t))i∗(t)s∗(t)

g∗(t)

]
(g∗)′(t)− γg∗(t)β∗(t)i∗(t)

+
(s∗(t))2i∗(t)Q′(i∗(t)) [c(β∗(t))−M(g∗(T ))−Q(i∗(t))]

g∗(t)

=

[
−γ + β∗(t)(s∗(t)− i∗(t))− Q′(i∗(t))i∗(t)s∗(t)

g∗(t)

]
(g∗)′(t)

+ g∗(t)β∗(t)i∗(t)

[
(s∗(t))2Q′(i∗(t)) [c(β∗(t))−M(g∗(T ))−Q(i∗(t))]

β∗(t)(g∗(t))2
− γ
]
.

It follows from the fact that Q′(i) = v′′(i)i that for a.e. t ∈ [0, T ]

(g∗)′′(t) =

[
−γ + β∗(t)(s∗(t)− i∗(t))− v′′(i∗(t))(i∗(t))2s∗(t)

g∗(t)

]
(g∗)′(t)

+ g∗(t)β∗(t)i∗(t)

[
(s∗(t))2i∗(t)v′′(i∗(t)) [c(β∗(t))−M(g∗(T ))−Q(i∗(t))]

β∗(t)(g∗(t))2
− γ
] (32)

Next note that the facts that s∗(t) + i∗(t) ≤ 1 and for all s ∈ [0, 1] : s2(1− s) ≤ 4
27 imply that

(s∗(t))2i∗(t) ≤ (s∗(t))2(1− s∗(t)) ≤ 4

27
. (33)

Moreover, note that convexity of v and concavity of M ensure that

c(β∗(t))−M(g∗(T ))−Q(i∗(t)) ≤ c(β∗(t))−M(g∗(T ))

= M(g∗(t))−M(g∗(T ))− g∗(t)β∗(t)

≤ β∗(T )(g∗(t)− g∗(T ))− β∗(t)g∗(t) ≤ (β∗(T )− β∗(t))g∗(t).

(34)

We next consider the two cases (i) g∗(t) < −c′(b−) and (ii) g∗(t) ≥ −c′(b−).

Case (i): Note that convexity of c ensures that for all b ∈ [b, b) we have

c(b)− c(b)
b− b

≤ c′(b−).

In the case g∗(t) < −c′(b−) we thus obtain for all b ∈ [b, b) that

g∗(t)b+ c(b) < g∗(t)b+ c(b).

This implies that β∗(t) = b. By Proposition 2 we have g∗(t) > g∗(T ) and hence we obtain similarly
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that β∗(T ) = b. It follows from (34) that in the case g∗(t) < −c′(b−) we have

c(β∗(t))−M(g∗(T ))−Q(i∗(t))

β∗(t)(g∗(t))2
≤ 0. (35)

Case (ii): In the case g∗(t) ≥ −c′(b−) we have with (34) that19

c(β∗(t))−M(g∗(T ))−Q(i∗(t))

β∗(t)(g∗(t))2
≤ β∗(T )− β∗(t)

β∗(t)g∗(t)
≤ − 1

c′(b−)

(
b

b
− 1

)
. (36)

Combining (33), (35), (36) and (32) implies that in both cases (i) and (ii) we have that for a.e.

t ∈ [0, T ]

(g∗)′′(t) ≤
[
−γ + β∗(t)(s∗(t)− i∗(t))− v′′(i∗(t))(i∗(t))2s∗(t)

g∗(t)

]
(g∗)′(t)

− g∗(t)β∗(t)i∗(t)
[

4v′′(i∗(t))

27c′(b−)

(
b

b
− 1

)
+ γ

]
.

(37)

To show that g∗ is strictly quasi concave consider a point t∗ ∈ (0, T ) such that (g∗)′(t∗) = 0. It

follows from boundedness of β∗, i∗ and s∗, the fact that g∗ > 0 and continuity of (g∗)′ that

lim
t→t∗

[
−γ + β∗(t)(s∗(t)− i∗(t))− v′′(i∗(t))(i∗(t))2s∗(t)

g∗(t)

]
(g∗)′(t) = 0.

Moreover, γβ∗g∗i∗ is bounded away from 0 on [0, T ]. Therefore Assumption 1 that v′′(i)
γ <

27b

4(b−b)(−c
′(b−)) and (37) ensure that there exist ε, δ > 0 such that (g∗)′′(t) ≤ −δ for a.e. t ∈

(t∗ − ε, t∗ + ε). This implies for all t ∈ (t∗ − ε, t∗) that

(g∗)′(t) = −((g∗)′(t∗)− (g∗)′(t)) = −
∫ t∗

t
(g∗)′′(r)dr ≥ δ(t∗ − t) > 0.

Similarly, we get that (g∗)′(t) < 0 for all t ∈ (t∗, t∗+ ε). It follows that t∗ is a strict local maximum.

Thus every local extremum of g∗ in (0, T ) is a strict local maximum and hence it follows that g∗ is

strictly quasi concave. In particular, g∗ is single peaked. For the sequel let t∗ ∈ [0, T ] be such that

g∗ is strictly increasing on [0, t∗] and strictly decreasing on [t∗, T ]. It follows from Proposition 2

that β∗ is quasi-convex.

We next show that i∗ is strictly log-concave on [0, t∗]. Since β∗ is non-increasing on [0, t∗] and

s∗ is strictly decreasing it follows that ∂
∂t log(i∗(t)) = (i∗)′(t)

i∗(t) = β∗(t)s∗(t)− γ is strictly decreasing

on [0, t∗]. Consequently, i∗ is strictly log-concave on [0, t∗] and thus has at most one local maximum

19Note that Assumption 1 implies that −c′(b−) > 0 as −c′(b−) = 0 otherwise would imply that v′′(i) < 0
which contradicts the convexity of v.
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on [0, t∗].

Proof of Proposition 8. Let c(β) = δ(b − β). It follows from (12) that any optimal control

satisfies

β∗(t) =

b if g∗(t) < δ

b if g∗(t) > δ .
(38)

As argued in the proof of Proposition 7, g∗ is strictly quasi-concave. If g∗(t) < δ for all t ∈ [0, T ]

we set t∗1 = t∗2 = 0. If there exists t ∈ [0, T ] with g(t) ≥ δ we set t∗1 = inf{t ∈ [0, T ] : g∗(t) ≥ δ} and

t∗2 = sup{t ∈ [0, T ] : g∗(t) ≥ δ}. This together with (38) implies (10).

Next note that β∗ is almost everywhere equal to a non-increasing function on the interval [0, t∗2).

This implies that ∂
∂t log(i∗(t)) = s∗(t)b∗(t)− γ is strictly decreasing and thus that i∗ is strictly log-

concave and admits at most one local maximum on [0, t∗2]. It follows similarly that as β∗ is almost

everywhere equal to a constant function on (t∗2, T ] that i∗ has at most one local maximum on [t∗2, T ].

In the case t∗2 > 0 there can never be a local maximum at t∗2 as the left derivative is strictly less

than the right derivative.

We finally show that i∗ is strictly increasing on [0, t∗1]. First assume that g∗(T ) ≥ δ. Then we

have g∗(t) > g∗(T ) ≥ δ for all t ∈ [0, T ) and hence t∗1 = 0 and there is nothing to show. For the

remainder of the proof assume that g∗(T ) < δ. Then we have β∗(T ) = b and hence for all t ∈ [0, t∗1)

(g∗)′(t)

(g∗)(t)
= −γ +

s∗(t)

g∗(t)
[M(g∗(t))−M(g∗(T ))−Q(i∗(t))]

≤ −γ +
s∗(t)

g∗(t)
[M(g∗(t))−M(g∗(T ))]

= −γ +
s∗(t)

g∗(t)
[g∗(t)− g∗(T )] b

= −γ + s∗(t)

[
1− g∗(T )

g∗(t)

]
b ≤ bs∗(t)− γ =

(i∗)′(t)

i∗(t)
.

Observe, that as g∗ is strictly increasing on [0, t∗1]
20 it follows that i∗ is strictly increasing on

[0, t∗1].

20Note that if we have g∗(t) < δ for all t ∈ [0, T ] then by construction we have t∗1 = 0 and this claim
clearly holds true.
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