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Abstract

A single seller faces a sequence of buyers with unit demand. The buyers are forward-

looking and long-lived but vanish (and are replaced) at a constant rate. The arrival

time and the valuation is private information of each buyer and unobservable to the

seller. Any incentive compatible mechanism has to induce truth-telling about the

arrival time and the evolution of the valuation.

We derive the optimal stationary mechanism in closed form and characterize its

qualitative structure. As the arrival time is private information, the buyer can choose

the time at which he reports his arrival. The truth-telling constraint regarding the

arrival time can be represented as an optimal stopping problem. The stopping time

determines the time at which the buyer decides to participate in the mechanism. The

resulting value function of each buyer cannot be too convex and must be continuously

differentiable everywhere, reflecting the option value of delaying participation. The op-

timal mechanism thus induces progressive participation by each buyer: he participates

either immediately or at a future random time.
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1 Introduction

1.1 Motivation

We consider a classic mechanism design problem in a dynamic and stationary environment.

The seller wants to repeatedly sell a good (or service) to buyers with randomly evolving

valuation. The willingness to pay of each buyer is private information of the buyer and

evolves randomly over time. We assume a stationary environment in which each buyer is

replaced at random, and with a constant rate, by a new buyer whose initial willingness-to-

pay is randomly drawn from a given distribution. The objective of the seller is to find a

stationary revenue maximizing policy in this dynamic environment. The choice of policy or

mechanism is unrestricted and may consist of leasing contracts, sale contracts, or any other

form of dynamic contract.

We depart from the earlier analysis of dynamic mechanisms in our treatment of the

participation decision of the buyer. We allow the buyer (he), once he has arrived in the

economy, to choose the time at which he enters into a contract with the seller (she). While

he can sign a contract with the seller immediately upon arrival, he has the option to postpone

the participation decision until a future date. The buyer therefore has the option to wait

and sign any contract only after he has received additional information about his willingness

to pay. In particular, he can time the acceptance of a contract until he has a sufficiently

high willingness to pay. Thus, both the incentive constraints that are in place after the

buyer has signed the contract and the participation constraints that are in place before the

buyer has signed the contract are fully responsive to the arrival of new information, and

are consequently represented as sequential constraints. In particular, the buyer can enter

the contract upon arrival or at any later time. His participation is therefore determined

progressively as he receives additional information. For brevity, we sometimes refer to the

current setting with interim participation and interim incentive constraints as progressive

mechanism design.

We can contrast this with the received perspective in dynamic mechanism design. With

some notable exceptions, such as Garrett (2016) that discuss shortly, the seller is assumed

to know the arrival time of the buyer and the seller can commit herself to make a single

and once-and-for-all offer to the buyer at the moment of arrival. In particular, the seller can

commit herself to never make another offer to the buyer in any future period. These two

features: (i) the ability of the seller to time the offer to the arrival time of the buyer and

(ii) the ability to refrain from any future offers seem likely to be violated in many economic
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environments of interest. For example, the consumer clearly has a choice when to sign up for

a mobile phone contract, a gym membership, or a service contract for a kitchen appliance.

Importantly, as the consumer waits, he may receive more information about his willingness

to pay for the product. Thus, relative to the specific assumption in the earlier literature, we

allow the arrival time and the identity of the buyer to be private information to the buyer.

Consequently, the contract or the menu of contracts cannot be timed to the arrival of the

buyer and the contract (or lack of contract) offer cannot be tied to the identity of the buyer.

In a stationary environment in which buyers arrive and depart at a balanced rate, we restrict

attention to the optimal stationary mechanism.

We view the relaxation of the two above mentioned restrictions as necessary steps to bring

the design of dynamic revenue maximizing mechanism closer to many interesting economic

applications. To the extent that these restrictions impose additional constraints on the seller,

they directly weaken the power of dynamic mechanism design. We therefore investigate the

impact of these additional constraints on the ability of the seller to raise revenues from the

buyers using dynamic contracts. The additional constraints for the seller are reflected in a

larger set of reporting strategies for the buyers. A buyer can misreport both his willingness

to pay as well as his arrival time. This creates an option value for the buyer as instead of

choosing a contract immediately he can wait and enter into a contract with the seller when

it is most favorable for him to do so. Given the menu of contracts offered by the seller, the

buyer thus solves an optimal stopping problem to determine when to enter into a contractual

relationship with the seller. From the point of view of the buyer, the choice of an optimal

contract from the menu therefore has an option element. Subject to the (random) evolution

of his type and his willingness to pay, he can choose when to enter into an agreement with

the seller. This suggests that the buyer will receive a larger information rent than in the

standard dynamic mechanism design framework where the buyer has to sign a contract with

the seller immediately.

We develop our analysis in a continuous time setting where the buyer’s willingness to pay

follows a geometric Brownian motion. The prior distribution of the willingness to pay upon

arrival is given exogenously, and paired with the renewal rate in the population, generates

an ergodic distribution which forms the stationary environment. The revenue maximizing

static mechanism, i.e. the contract which does not condition on a buyer’s history, is a leasing

contract which offers the good in every period for the posted price that is optimal given the

ergodic distribution of the valuations of the buyers.
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In the absence of the sequential participation constraint, the revenue maximizing dy-

namic mechanism would sell the object with probability one and forever at fixed price (see

Bergemann and Strack, 2015). Thus, the object would be sold rather than leased to all buy-

ers who have an initial willingness to pay above a certain threshold. Conversely, all buyers

whose initial value is below this threshold would not buy the object, neither at the beginning

of time, nor anytime thereafter. In a first pass, we then restrict attention to a sales price

policy, which is optimal in the absence of sequential participation constraints, and determine

the optimal sales price with the presence of sequential participation constraints. Here, the

comparison of thresholds and prices between dynamic and progressive mechanism design are

instructive. We find that the threshold for the willingness to pay at which a buyer purchases

the object is strictly higher in the progressive model than in the dynamic model without

progressive participation constraint. By contrast, the price at which the buyer can acquire

the object can be either below or above the price charged in the dynamic setting.

We can gain some initial insight by considering how a buyer would react to the option to

buy at a fixed price. In the dynamic setting, there would be a threshold type for the buyer

who would receive zero expected net surplus at the offered price. In the progressive setting,

this threshold type could and clearly should delay the purchase until his willingness to pay

is sufficiently above the threshold level to guarantee himself a positive net surplus. Thus,

at any threshold level, the seller will be able to extract less surplus from the buyer than

he could in the presence of a static participation constraint. In response to the weakened

ability to extract surplus, the seller has to adjust her policy along the price and the quantity

margin at the same time. We show that the seller will generally choose to implement a higher

threshold for the willingness to pay. Thus, there will be fewer initial sales relative to the

static participation constraint. But the seller also adjusts along the dimension of the price

and will ask for a price below the price at which the threshold type would have received zero

expected net surplus. Interestingly, the price with sequential participation constraints may

either be below or above the price charged under the static participation constraint. Most

importantly, a gap now arises between the price paid to receive the object and the expected

value assigned to the object by the threshold type.

Following the analysis of the optimal price policy under sequential participation con-

straint, we then show that a single sale price policy is indeed an optimal progressive mech-

anism in the class of all possible stationary mechanisms. In other words, a single sale price

as a specific and simple indirect implementation of a direct mechanism achieves the revenue

maximizing optimum. The main challenge for establishing this result is that it is unclear
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how to handle the progressive participation constraint. As our example with the threshold

type illustrates, this constraint will always bind for some type and thus cannot be ignored.

This constraint is non-standard as it states that the value function of the buyer must be the

solution to an optimal stopping problem which itself involves the value function. We relax

this problem by restricting the buyer to a small set of deviations, namely cut-off strategies

which are indexed by the cut-off. This relaxation has the advantage that the buyer’s partic-

ipation strategies can be mapped into R which allows us to reduce the problem into a static

mechanism design problem. This static problem is a variant of the classical setup by Mussa

and Rosen (1978) with the non-standard feature that each buyer can (deterministically) in-

crease his type at the cost of multiplicatively decreasing his interim utility. This additional

constraint leads to a failure of the first-order approach. We show that the resulting mathe-

matical program can be expressed as a Pontryagin control problem with contact constraints

and we develop a verification result for such problems which might be of independent in-

terest. We illustrate the implications that the option to wait has for the effectiveness of

dynamic mechanism in a concluding example.

1.2 Related Literature

The analysis of revenue-maximizing mechanism in an environment where the buyer’s private

information changes over time started with Baron and Besanko (1984) and Besanko (1985).

Since these early contributions, the literature has developed considerably in recent years with

notable contributions by Courty and Li (2000), Battaglini (2005), Eső and Szentes (2007)

and Pavan et al. (2014).1 These papers derive in increasing generality the dynamic revenue

maximizing mechanism. The analysis in these contributions have in common the same set of

constraints on the choice of mechanism. The seller has to satisfy all of the sequential incentive

constraints, but only a single ex-ante participation constraint. In earlier work, Bergemann

and Strack (2015), we considered the same set of constraints in a continuous-time setting

where the stochastic process that describes the evolution of the flow utility was governed

by a Brownian motion. The continuous-time setting allowed us to obtain additional and

explicit results regarding the nature of the optimal allocation policy, which are unavailable

in the discrete-time setting. In the present paper, we will use the continuous-time setting

again for very similar reasons.

The literature on dynamic mechanism design largely assumes that the arrival time of the

1Bergemann and Välimäki (2019) provide a survey into the recent developments of dynamic mechanism
design.
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buyer is known to the seller and that the seller can make a single, take-it-or-leave-it offer at

the moment of the buyer’s arrival. In contrast, there is a separate literature that analyzes the

optimal sales of a durable good with the recurrent entry of new consumers, and it is directly

concerned with the timing of the purchase decision by the buyers. The seminal contribution

by Conlisk et al. (1984) considers a durable good model with the entry of a new group of

consumers in every period, constant in size and composition. Each buyer has either a low or

high value that is persistent. They consider the subgame perfect equilibrium of the game;

thus the seller has no commitment. The equilibrium displays a cyclic property. Sobel (1991)

considers a durable good model with the entry of new consumers. He extends the equilibrium

analysis of Conlisk et al. (1984) to allow for non-stationary equilibria and this enlarges the set

of attainable equilibria and payoffs. The model remains restricted to binary and persistent

types. The main part of his analysis is concerned with subgame perfect pricing policies by the

firm, thus he analyzes the pricing problem for the firm without commitment. In addition,

Sobel (1991) describes the optimal sales policy under commitment and establishes that a

stationary price is the optimal policy (Theorem 4). Board (2008) considers the optimal

commitment solution for seller when incoming demand for a durable good varies over time.

He characterizes the optimal sequence of prices and allocations in an optimal, possibly time-

dependent policy. While he considers a continuum of valuations, he maintains the restriction

that the value of each buyer is perfectly persistent and does not change after arrival.2 Thus,

the literature on newly arriving consumer restricts attention to: (i) a sequence of prices

rather than general allocation mechanisms, and (ii) perfectly persistent values.

Garrett (2016) offers a notable exception in that he is concerned with unobservable arrival

and allows for stochastic values. He considers a stationary environment in continuous time

in which each buyer arrives and departs at random times. The private value of each buyer

is governed by a Markov process with binary values, low and high. The seller can commit to

any deterministic time-dependent sales price policy. The seller maximizes the revenue from a

representative buyer. Garrett (2016) provides conditions under which a time-invariant price

path is optimal within the class of deterministic price paths, and he obtains conditions on

the binary values under which a deterministic price cycle prevails in the optimal contract.

Garrett (2016) observes that an optimal policy in the class of all dynamic direct mechanisms,

2Besbes and Lobel (2015) consider a related question in a very different environment. They study the
revenue-maximizing pricing policy under commitment in a steady state where the consumers have private
information across two dimension: the valuation and their willingness to wait. The valuation of the consumer
however is constant and the willingness to wait is in terms of a deadline until the value expires. Thus each
consumer faces a finite horizon problem without discounting, and the seller maximizes her long-run average
revenue.

6



one that does not restrict attention to deterministic sale price path (and implied restrictions

on reporting types), may lead to very different results and implications.

By contrast, we consider an environment with a continuum of values whose evolution

is governed by a geometric Brownian motion. We allow for a general mechanism that can

depend in arbitrary ways on the reported values once the buyer has entered the mechanism.

We restrict attention to a stationary mechanism. Thus, the seller commits to renew the

mechanism in every future period either for newly arriving buyers, or late deciding buyers. In

this environment, we establish that a deterministic and time-invariant sale price constitutes

a revenue maximizing mechanism in the class of all stationary mechanisms.

The importance of a privately observed arrival time is also investigated in Deb (2014) and

Garrett (2017). In contrast to the present work, these papers do not investigate a stationary

environment. Instead, while the mechanism starts at time t = 0, the buyer may arrive at

a later time. The main concern therefore is how to encourage the early arrivals to contract

early. In a setting with either a durable good or a non-durable good, respectively, these au-

thors find that the optimal mechanism treats early arriving participants more favorably than

late arriving participants. The late arriving participants face less favorable prices and pur-

chase lower quantities than the early arrivals. In a recent contribution, Correa et al. (2020)

assess the value of observable against unobservable arrival time. Their setting differs as they

allow for different discount factors for buyer and seller but restrict attention to constant

valuations. They approximate the value of the optimal contract under unobservable arrival

and then establish a revenue bound on the value of observable arrival time by considering

a ratio between the revenue under observable vs. unobservable arrival. In Gershkov et al.

(2015, 2018), the value of each buyer is also constant while the arrival time is unobservable.

In their setting, the seller seeks to incentivize truthful reporting of the arrival time as it is

informative about the aggregate demand.

There are related concerns with the emphasis on the ex-ante participation constraints in

the literature on dynamic mechanism design that pursue different directions from the one

presented here. Lobel and Paes Leme (2019) question the unlimited ability of the seller to

commit to make only a single offer to the buyer. They suggest that while the seller may

have “positive commitment” power, she may lack in “negative commitment” power. That

is, he can commit to any contractual promise, but may not be able to commit never to make

any further offer in the future. They show that in a finite horizon model with a sequence

of perishable goods, the equilibrium is long-term efficient and that the seller’s revenue is a

function of the buyer’s ex ante utility under a no commitment model. Skreta (2006, 2015)
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and Deb and Said (2015) also investigate the sequential screening under limited commitment

by the seller.

A more radical departure from the ex-ante or interim participation constraint to ex-

post participation constraints is suggested in recent work by Krähmer and Strausz (2015)

and Bergemann et al. (2020). These papers re-consider the sequential screening model of

Courty and Li (2000). In this two-period setting, where information arrives over time and

the allocation of a single object can be made in the second period, they impose an ex-post

participation rather than an ex-ante participation constraint. In consequence the power

of sequential screening is diminished and sometimes the optimal mechanism reduces to the

solution of the static mechanism. Ashlagi et al. (2016) investigate the performance guarantees

that can be given with ex-post participation constraints in a setting where a monopolist sells

k items over k periods.

The remainder of the paper proceeds as follows. Section 2 introduces the model and

the design problem. Section 3 shows how the progressive mechanism design problem can

be related to an auxiliary static problem. Section 4 reviews the optimal mechanism in the

environment with observable environment, and shows that the optimal fails to be incentive

compatible in the environment with unobservable arrivals. Section 5 derives the optimal

progressive mechanism. Section 6 offers a detailed discussion of how the arguments developed

generalize beyond geometric Brownian motion and unit demand and Section 7 concludes.

The proofs are collected in the Appendix.

2 Model

2.1 Payoffs and Allocation

We consider a stationary model with a single seller (she) and a single representative buyer

(he). Time is continuous and indexed by t ∈ [0,∞). The buyer departs and gets replaced

with a newly arriving buyer at rate γ > 0. We denote by i the buyer who arrived i-th to

the market.3 We denote the random arrival time of buyer i by αi ∈ R+ and the random

departure time of buyer i equals the random arrival time αi+1 ∈ R+ of buyer i+ 1.

3An equivalent formulation would consist of a continuum of buyers where each buyer arrives and departs
with rate γ. The average behavior of such a continuum of buyers will match the expected behavior of a single
representative buyer. The main advantage of the representative buyer model is that it avoids technical issues
due to integration over a continuum of independent random variables, which is formally not well defined in
standard probability theory, see e.g. Judd (1985).
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The seller and the buyer discount the future at the same rate r > 0. At each point

in time t, the buyer demands one unit of the good. The flow valuation of buyer i at time

t ∈ [αi, αi+1] is denoted by θit ∈ R+, the quantity allocated to buyer i at time t is xit ∈ [0, 1],

and pit is the flow payment from the buyer to the seller. His flow preferences are represented

by a (quasi-)linear utility function

uit = θit x
i
t − pit, (1)

The arrival and departure time of each buyer are assumed to be independent of his

valuation process. The valuation of buyer i, θit ∈ R+, at the time of his arrival t = αi is

distributed according to a cumulative distribution function:

F :
[
0, θ
]
→ R,

with strictly positive, bounded density f(θ) = F ′(θ) > 0 on the support. The prior distri-

bution F is the same for every buyer i and every arrival time αi.

The valuation of each buyer evolves randomly over time, independent of the valuation

of other buyers. We assume that each buyer’s valuation (θit)t∈[αi,∞) follows a geometric

Brownian motion:

dθit = σ θitdWt , (2)

where (Wt)t∈R+ is a Brownian motion and σ ∈ R+ is the volatility which measures the speed

of information arrival. The geometric Brownian motion forms a martingale and consequently

the buyer’s best estimate of his valuation at any future point in time is his current valuation,

i.e. for all s ≥ t :

Et
[
θis
]

= θit .

Furthermore, θit takes only positive values, and so the buyer’s valuation for the good is always

positive.

Each buyer i seeks to maximize his discounted expected net utility given his valuation

θiαi at his arrival time αi:

E
[ˆ αi+1

αi

e−r(t−αi)
(
θitx

i
t − pit

)
dt | θiαi , αi

]
.
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The seller seeks to maximize the expected discounted net revenue collected from her

interaction with the sequence of all buyers:

E

[
∞∑
i=0

ˆ αi+1

αi

e−r tpit dt

]
. (3)

2.2 Stationary Mechanism

A mechanism specifies, after each history, a set of messages for each buyer and the allocation

as a function of the complete history of messages sent by this buyer. Throughout, we impose

that the allocation–quantity and monetary transfer–are independent of the identity of buyer

i. The quantity process (xt) specifies whether or not the buyer consumes the good at any

point in time. We assume that the assignment of the object is reversible, i.e. the seller can

give the buyer an object for some time and then take it away later.

Definition 1 (Mechanism).

A mechanism (x, p) specifies at every point in time t ∈ R+, where some buyer i is active

t ∈ [αi, αi+1), the allocation xt ((mi
s)αi≤s≤t) as well as the transfer pt ((mi

s)αi≤s≤t) as a function

of the messages (mi
s)αi≤s≤t sent by this buyer prior to time t.

A direct mechanism is a mechanism where the buyer reports his arrival and his valuations

to the mechanism.

Definition 2 (Direct Mechanism).

A direct mechanism (x, p) specifies at every point in time t ∈ R+, where some buyer i is

active t ∈ [αi, αi+1), the allocation xt
(
αi, (θ

i
s)αi≤s≤t

)
as well as the transfer pt

(
αi, (θ

i
s)αi≤s≤t

)
as a function of the arrival time αi and the valuations (θis)αi≤s≤t reported by this buyer prior

to time t.

As the payoff environment is stationary, we restrict attention to stationary mechanisms

where the allocations are independent of the arrival time of the buyer. More formally, we

require that a buyer who arrives at time α and whose valuations follows the path (θs)],

receives the same allocation as a buyer who arrives at time α′ and his valuations follows the

same path of valuations shifted by the difference in arrival times, i.e. θ′s = θs+(α−α′). Thus,

the seller cannot discriminate the buyer based on his arrival time.
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Definition 3 (Stationary Direct Mechanism).

A direct mechanism (x, p) is stationary if for all arrival times α, α′ and valuation paths θ:

xt
(
α, (θs)α≤s≤t

)
= xt+(α′−α)

(
α′, (θs)α′≤s≤t+(α′−α)

)
,

pt
(
α, (θs)α≤s≤t

)
= pt+(α′−α)

(
α′, (θs)α′≤s≤t+(α′−α)

)
.

2.3 Progressive Mechanism

By the revelation principle we can, without loss of generality, restrict attention to direct

mechanisms where it is optimal for the buyer to report his arrival time α and his valuation

θt truthfully at every point in time t. Define the indirect utility Vα : R+ → R of a buyer who

arrives at time α with a value of θα and reports his arrival and valuations (θt)t truthfully by:

Vα(θ) = E
[ˆ αi+1

αi

e−r (t−αi)
{
θitx

i
t − pit

}
dt | αi = α, θiαi = θ

]
= E

[ˆ ∞
αi

e−(r+γ) (t−αi)
{
θitx

i
t − pit

}
dt | αi = α, θiαi = θ

]
.

The second equality follows immediately from the law of iterated expectations and the fact

that the departure time αi+1 of the buyer is independent of the arrival time αi and the

valuation process θi and hence of xit, p
i
t .4

It is optimal for the buyer to report truthfully if

Vα(θα) ≥ sup
α̂≥αi,(θ̂t)

E
[ˆ ∞

α̂

e−(r+γ) (t−αi)
{
θit x̂

i
t − p̂it)

}
dt | αi = α, θiαi = θ

]
, (IC)

where the allocation x̂it = xt(α̂, (θ̂s)α̂≤s≤t) as well as the payment p̂it = pt(α̂, (θ̂s)α̂≤s≤t is a

function of the reported arrival time α̂ as well as all previously reported valuations (θ̂s)α̂≤s≤t .

We note here that the supremum in (IC) is taken over stopping times α̂ as the buyer can

condition his reported arrival on his current (and past) valuation θt.

We restriction attention to mechanisms where the buyer participates voluntarily, i.e. for

all arrival times α and all initial values θα, the buyer’s expected utility from participating in

the mechanism is non-negative:

Vα(θα) ≥ 0 . (PC)

While imposing incentive compatibility constraints (IC) as well as participation con-

4See Lemma 4 in the Appendix.
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straints (PC) is standard in the literature on (dynamic) mechanism design, we note that

the incentive compatibility constraint (IC) imposed here is stronger than the one usually

imposed in the literature. As the arrival time α is not observable, the seller has to provide

incentives for the buyer to report his arrival truthfully. In fact the incentive constraint (IC)

directly implies the participation constraint (PC) as the buyer can always decide to never

report his arrival α̂ = ∞. We denote by M the set of all incentive compatible stationary

mechanisms where every buyer participates voluntarily.

The seller seeks to maximize her revenue subject to the incentive and participation con-

straints, and we refer to it as the progressive mechanism design problem.

3 Aggregation and Revenue Equivalence

As a first and significant step in the analysis, we establish that the progressive mechanism

design problem can be related to an auxiliary static problem. The static formulation aggre-

gates the progressive problem over time with suitable weights into static problem. In the

new static problem, the buyer reports only his initial valuation and the seller chooses an

expected and discounted aggregate quantity q ∈ R+ to allocate to the buyer. We establish

that in any incentive compatible progressive mechanism, both the value of the buyer as well

as the revenue of the seller are only a function of this aggregate quantity.

Towards this end, we first rewrite the revenue of the seller from the sequence of buyers,

given by (3) in terms of the revenue collected from the interaction with a single buyer i only.

After all, in a stationary direct mechanism, the allocation and transfer depend only on the

time which elapsed since the arrival time of buyer i.

Lemma 1 (Expected Revenue).

The expected discounted revenue in the optimal mechanism equals

r + γ

r
max

(x,p)∈M
E
[ˆ αi+1

αi

e−r (t−αi)pitdt

]
, (4)

where i is an arbitrary buyer.

This follows directly from the independence of the values across the buyers. The formal

proofs are all relegated to the Appendix. We can therefore, without loss of generality, assume

that the representative buyer arrives at time zero αi = 0 to determine the revenue the seller

derives from her interaction with all the buyer. With the focus on a single instance of buyer i,
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we can therefore drop the index i indicating his identity i and his arrival time αi and denote

by V (θ0) the indirect utility of the buyer who arrived at time t = 0 with initial valuation θ0.

We now define the “aggregate quantity” q : Θ → R+ which is allocated to a buyer with

initial valuation θ0 by

q(θ0) , E
[ˆ ∞

0

e−(r+γ) txt exp

(
−σ

2

2
t+ σWt

)
dt | θ0

]
. (5)

The aggregate quantity is the expected discounted integral over the flow quantities (xt). The

flow quantity xt is weighted by a term that represents the information rent in period t due

the initial private information θ0 as we explain next. The first term inside the integral is

simply the discounted quantity in period t:

e−(r+γ) txt.

The second term is the derivative of the valuation θt in period t with respect to the ini-

tial value θ0. Here, we use the fact that the geometric Brownian motion can be explicitly

represented as:

θt = θ0 exp

(
−σ

2

2
t+ σWt

)
,

and thus the derivative is given by:

dθt
dθ0

= exp

(
−σ

2

2
t+ σWt

)
.

The above derivative represents the influence that the initial value θ0 has on the future

state θt. In Bergemann and Strack (2015), we referred to it as stochastic flow, and it is the

analogue of the impulse response function in discrete time dynamic mechanism (see Pavan

et al. (2014), Definition 3). As in the discrete time setting, the stochastic flow enters the

dynamic version of the virtual utility as established in Theorem 1 of Bergemann and Strack

(2015):

Jt(θt) , θt −
1− F (θ0)

f(θ0)

dθt
dθ0

. (6)

The expected “aggregate quantity” q(θ0) thus weighs the discounted quantity with the

corresponding stochastic flow, or information rent that emanates from the initial value θ0.

As the quantity xt is bounded between 0 and 1 and the exponential term is a martingale, it
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follows that the aggregate quantity is bounded as well, i.e. for all θ0 ∈ [0, θ] :

0 ≤ q(θ0) ≤ 1

r + γ
. (7)

We can complete the description of the static auxiliary problem with the virtual value at

time t = 0:

J(θ0) , θ0 −
1− F (θ0)

f(θ0)
, (8)

the “virtual flow value” of the buyer upon arrival to the mechanism. We denote by

θ◦ , inf{θ0 : J(θ0) ≥ 0}, (9)

the lowest type with a non-negative virtual value. We assume that the distribution of initial

valuations is such that θ 7→ min{0, f(θ)J(θ)} is non-decreasing.5

The expected quantity q and the virtual utility J are useful as they completely summarize

the expected discounted revenue of the seller and the value of the buyer:

Proposition 1 (Aggregation and Revenue Equivalence).

In any incentive compatible mechanism, the value of the buyer with initial valuation θ is:

V (θ) =

ˆ θ

0

q(z)dz + V (0) , (10)

and the expected discounted revenue of the seller is:

E
[ˆ ∞

0

e−(r+γ) tpt dt

]
=

ˆ θ

0

J(θ)q(θ)dF (θ)− V (0) . (11)

Proposition 1 allows us to express the objective functions of buyer and seller in terms of

the discounted quantities q only. In earlier work, we obtained a revenue equivalence result for

dynamic allocation problems, see Theorem 1 in Bergemann and Strack (2015). The new and

important insight of Proposition 1 is that we can aggregate the intertemporal allocation (xt)

into a single static quantity q(θ0) that serves as a sufficient statistic for the determination

5This is a weak technical assumption which is satisfied for most standard distributions like the uniform
distribution, the exponential distribution, or the log-normal distribution. For example for the uniform

distribution U([0, θ]) we have that f(θ)J(θ) = 2θ−θ
θ

which is increasing in θ. For the exponential distribution

with mean µ > 0 we have that min{0, f(θ)J(θ)} = min
{

0,
(
θ
µ − 1

)
exp

(
− 1
µθ
)}

which is also increasing in

θ.
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of the indirect utility and the discounted revenue at the same time. In the presence of

the geometric Brownian motion and the unit demand, Proposition 1 asserts that there is a

particularly transparent reduction given by (5). We should emphasize that the reduction

to an auxiliary static program can be extended to a wide class of stochastic process and

allocation problems. We discuss these generalizations in detail in Section 6. The next result

establishes that the function q must be increasing in the initial valuation θ0 in any incentive

compatible mechanism.

Proposition 2 (Monotonicity of Discounted Quantity).

In any incentive compatible mechanism the aggregate quantity q(θ0) increases in θ0.

Proposition 1 and 2 follow from the the truth-telling constraint at time zero. We empha-

size that the conditions of Proposition 1 and 2 provide only necessary conditions for incentive

compatibility and optimality of the mechanisms as they omit:

(i) the possibility to misreport the arrival time, and

(ii) the buyer’s truth-telling constraints after time zero.

Indeed we will show in the Section 4.2 that the monotonicity of q is not a sufficient condi-

tion for incentive compatibility under unobservable arrival. We find that there are further

restrictions on the shape of the aggregate quantity q(θ0) beyond monotonicity that are due

to the above intertemporal incentive constraints (i) and (ii). These additional restrictions

will impose upper bounds on the derivative of aggregate quantity q(θ0). In consequence, the

revenue problem given by (11) is transformed from what looks like a standard unit demand

problem with extremal solutions to an optimal control problem.

We will derive the revenue maximizing mechanism for the seller when she does not observe

the arrival time of the buyer in Section 5. As a point of reference, it will be instructive for

us to first understand what the seller would do if the (individual) arrival time of each buyer

would be observable by the seller.

4 Sales Contract

With observable arrival, the optimal direct mechanism can be implemented by a simple sales

contract. We first review these results in Section 4.1 and then investigate in Section 4.2 how

this specific sales contract performs in the environment with unobservable arrival. In Section

4.3 we determine the sales contract that is the optimal sales contract with unobservable

arrival.
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4.1 Optimal Contract with Observable Arrival

With observable arrival time by the buyer, we are in the canonical dynamic mechanism design

environment. In Bergemann and Strack (2015), we derived the revenue maximizing mecha-

nism for the current problem of interest, unit demand with values governed by a geometric

Brownian motion. The optimal mechanism can be implemented by an indirect mechanism

that offers the product for sale at an optimally determined price P , see Proposition 8 of

Bergemann and Strack (2015).

We described the revenue of the seller in Proposition 1. It follows the optimal mechanism

awards the object to the buyer if and only if his virtual value is positive upon arrival:

J(θ0) ≥ 0.

Hence, it is optimal to maximize q(θ0) if J(θ0) ≥ 0 and minimize it otherwise. The optimal

allocation then awards the object to the buyer at all times s ≥ 0 if and only if his initial

valuation θ0 at arrival time t = 0 is sufficiently high:

xs =

1, if θ0 ≥ θ◦;

0, otherwise;

where the critical value threshold θ◦ is determined by

J(θ◦) = 0.

The buyer thus receives the object forever whenever his initial valuation θ0 is above the

threshold value θ◦. With observable arrivals this allocation can be implemented in a sales

contract where the seller charges a sales price of θ◦/(r+γ), which entitles the buyer to owner-

ship and continued consumption at all future times. An revenue-equivalent implementation

would be to sell the good at time t = 0 and then charge the buyer a constant flow price of

p◦ = θ◦,

in all future periods, independent of his future value θs, for all s ≥ 0. Thus, the indirect

utility of the buyer when his arrival is observable equals

V (θ0) = max

{
0,
θ0 − θ◦

r + γ

}
.
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4.2 Unobservable Arrival and Failure of Incentive Compatibility

We now abandon the restrictive informational assumption of observable arrival and let the

arrival time be private information to each buyer. We ask what would happen if the seller

were to maintain the above sales policy at the optimal observable price p◦, as a stationary

contract. Now, any newly arriving buyers with value close to p◦ would conclude that rather

than buy immediately, he should wait until he learns more about his value, and purchase

the object if and only if he learned that he has a sufficiently high valuation for the object.

Thus, the sale would occur (i) later and (ii) to fewer buyers. Thus the sale price contract

fails to remain incentive compatible in the environment with unobservable arrival times.

Still, we can ask how the buyer would behave when faced with stationary mechanism

that offers him to object for sale at flow price p. In the presence of unobservable arrival, the

buyer can determine the optimal purchase time by an optimal stopping problem. We denote

by T the random time at which the buyer leaves the market. If the buyer acquires the good

at time t with valuation θt at any given price p > 0, whether it is p = p◦ or not, then his

expected continuation utility is:

Et
[ˆ T

t

e−r (s−t) (θs − p) ds

]
= (θt − p) Et

[ˆ T

t

e−r (s−t)ds

]
=
θt − p
r + γ

.

The first equality in the above equation follows from the fact that θ is a martingale (inde-

pendent of T ). The buyer’s value at time t is his best estimate of his value at later points in

time. The second equality follows as the time T at which the buyer leaves the market and

thus stops consuming the good is (from a time t perspective) exponentially distributed with

mean t+ 1/γ. The time τ at which the buyer optimally purchases the good thus solves the

stopping problem:

sup
τ

1

r + γ
E
[
e−r τ 1{τ<T} (θτ − p)

]
.

As the buyer leaves the market with rate γ this problem is equivalent to the problem where

the discount rate is given by (r + γ), i.e. the buyer solves the stopping problem

sup
τ

1

r + γ
E
[
e−(r+γ) τ (θτ − p)

]
. (12)

The stopping problem given in (12) is the classic irreversible investment problem analyzed

in Dixit and Pindyck (1994, Chapter 5, p.135 ff.). For a given sales price p, it leads to

a determination of a threshold w(p) that the buyer’s valuation θτ needs to reach at the
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stopping time τ .6

To simplify notation, we define a constant β that summarizes the discount rate r, the

renewal rate γ and the variance σ2 in a manner relevant for the stopping problem :

β ,
1

2
+

1

2

√
1 + 8

r + γ

σ2
> 1 . (13)

Proposition 3 (Sales Contract).

In a sales contract with flow price p, the buyer acquires the object once his valuation θ reaches

a time independent threshold w(p) given by

w(p) ,
β

β − 1
p . (14)

The buyer’s value in this sales contract is given by

V (θ) =

 1
1+γ

(
θ

w(p)

)β
(w(p)− p) , if θ ≤ w(p);

1
1+γ

(w(p)− p) , if θ ≥ w(p).

We can now illustrate the payoff consequences due to the private information regarding

the arrival time by comparing the value functions of the buyer across these two informational

environments. The blue line depicts the value function for the buyer in the setting with

observable arrival time. The value is zero for all values below the threshold θ◦ and then a

linear function of the initial value. Notably, the value function has a kink at the threshold

level θ◦. The red curve depicts the value function when the sales contract is offered at the

above terms as a stationary contract. As shown in Proposition 3 the buyer reacts to this

contract by reporting his arrival only once his value exceeds

w(p◦) = w(θ◦) =
β

β − 1
θ◦ > θ◦ .

Now, the value function is smooth everywhere, and coincides with blue curve whenever

the initial value weakly exceeds the critical type w(p◦) Importantly, for all values θ0 below

w(p◦), the red curve is above the blue curve, which depicts the option value as expressed

6Dixit and Pindyck (1994) consider an investment problem with a real asset. There, the geometric
Brownian motion may have a positive drift, α > 0. The positive quadratic root in their equation (16)
becomes (13) after setting the growth rate α, the drift of the geometric Brownian, to zero, or α = 0. Their
discount rate ρ becomes in our setting the sum of discount rate and renewal rate, thus ρ = r + γ, and the
difference between discount rate and growth, δ = ρ− α, is then simply the discount rate, or δ = ρ.
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Figure 1: This figure displays the value of the buyer as a function of her initial valuation in
a sales contract with flow price p = 1 when she has to participate immediately (blue) and
when she can delay her arrival (red) when β = 1.7.

by (16). Notably, the value is strictly positive for all initial values which expresses the fact

that the option value guarantees every value θ0 an information rent, quite distinct from the

environment with observable arrival. Hence all buyers with low valuations would deviate by

not reporting their arrival immediately, and the optimal contract with observable arrivals

can not be implemented with unobservable arrivals.

4.3 Optimal Sales Contract under Unobservable Arrival

Thus, the optimal sales contract under observable arrival fails to remain incentive compatible

in an environment with unobservable arrival. Still, we could ask what is the best sales

contract, thus the best sales price p in the environment with unobservable arrival. Towards

this end, we denote by τw(p) the (random) time at which the buyer purchases the good:

τw(p) , inf{t : θt ≥ w(p)}.

As w(p) > p, the buyer only purchases the good once his valuation is sufficiently above the

price p charged for the object. Thus, a buyer who starts with an initial value of θ0 below the

threshold w(p) expects to wait some random time until he hits any given threshold w(p).

With the geometric Brownian motion, we can explicitly compute the expected discounted

time for a buyer with initial value θ0 to hit any arbitrary valuation threshold x.
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Lemma 2 (Expected Discounted Time).

The expected discounted time τx = inf{t : θt ≥ x} until a buyer’s valuation exceed a threshold

x conditional on the initial valuation θ0 is given by

E
[
e−(r+γ) τx | θ0

]
= min

{(
θ0

x

)β
, 1

}
. (15)

Thus if the initial value θ0 exceeds the threshold x, then the expected discounted time

is simply 1, in other words there is no waiting at all. By contrast, if the initial value θ0 is

below the threshold x, then the expected discounted time is smaller when the gap between

the initial value θ0 and target threshold x is larger. The magnitude of the discounting is

again determined entirely by the constant β which summarizes the primitives of the dynamic

environment, namely r, γ and σ2, as defined earlier in (13).

Intuitively, the buyer has an option value of waiting and learning more about his valu-

ation of the good and only purchases once the forgone utility of not purchasing the good

is sufficiently high. This is in sharp contrast to the dynamic mechanism design approach

where the arrival time of the buyer is observable. When the arrival time is observable the

seller can commit herself to not sell to the buyer in the future if the buyer does not purchase

the good immediately. Thus, the buyer can not delay his purchasing decision and buys the

good immediately if his valuation exceeds the price p. The information rent that the buyer

gains from his ability to delay his purchasing decision is his “option value”:

E
[
e−(r+γ) τw(p)(w(p)− p)

]
−max {(w(p)− p), 0} . (16)

From a dynamic mechanism design perspective the option value given in (16) corresponds

to an additional information rent the buyer receives due to his ability to delay entering a

contractual relation with the seller. As the option value is always positive, the buyer is, for

any fixed mechanism, unambiguously better off if he can delay his purchasing decision.

In contrast the effect of the buyer’s ability to delay the purchase on the seller’s revenue is

ambiguous in a sales contract. When the buyer delays his purchase the revenue of the seller

decreases. But to the extent, that some types of the buyer who would not have bought the

object upon arrival will do now later on, and after a sufficiently large positive shock on their

valuation, there are now additional revenues accruing to the seller.

Using the characterization of the purchase behavior of the buyer in Proposition 3 and

standard stochastic calculus arguments, we can completely describe the seller’s average rev-

enue for a given sales contract.
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Proposition 4 (Revenue of Sales Contract).

The flow revenue per time in a sales contract with flow price p is given by

Rsales(p) =
p

r

ˆ ∞
0

min

{(
β − 1

β

θ

p

)β
, 1

}
f(θ) dθ . (17)

Equation (17) reduces the problem of finding an optimal sales contract to a simple single

dimensional maximization problem over the price. It is worth noting that the revenue up to

a linear scaling depends on r, γ, σ only through β which implies that the optimal sales price

is only a function of β and the distribution of initial valuations F .

The expression inside the integral of (17) represent the expected quantity to be sold to

a buyer with initial value θ. In contrast to a standard revenue function under unit demand,

the realized quantities are not merely 0 or 1. Rather, the seller offers a positive quantity to

all buyers, namely

min

{(
β − 1

β

θ

p

)β
, 1

}
. (18)

This expression reflects the expected discounted time the object is consumed by those buyers

who have an initial value below the optimal purchase threshold w(p) = β
β−1

p derived in

Proposition 3. The complete expression (18) then follow from Lemma 2 as the expected

discounted probability of a sale to a buyer with initial value θ. Thus, an increase in the sales

price p uniform lowers the probability of a sale for every value θ. The problem for the seller

with unobservable arrivals is therefore how to respond to slower and more selective sales.

Perhaps surprisingly then, using a sequence of relaxation arguments we prove in Section

5, that the optimal mechanism in the space of all incentive compatible mechanisms when

the buyer’s arrival to the mechanism is unobservable remains a sales contract. Thus, (17)

can be used to identify the optimal mechanism. But importantly, as the current analysis

suggests, there is going to be a large gap between the optimal flow price p and the optimal

threshold w(p) with p < w(p).

5 The Optimal Progressive Mechanism

The discussion in the previous section illustrates that the first order approach will in general

fail once the buyer can misreport his arrival time. To solve this problem we will employ the

following strategy: First, we will identify particularly tractable necessary conditions for the

truthful reporting of arrivals, by considering a specific class of deviations in the arrival time
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dimension. We then find the optimal mechanisms for the relaxed problem where we impose

only these necessary conditions using a novel result on optimization theory we develop.

Finally, we will verify that in this mechanism it is indeed optimal to report the arrival time

truthfully.

5.1 Truthful Reporting of Arrivals

In the first step we find a necessary condition such that the buyer wants to report his arrival

immediately. Observe that if it were optimal for the buyer to reveal his presence to the

mechanism immediately, then the value from revealing his presence at any stopping time α̂

must be smaller than revealing his presence at time zero. As the buyer can condition the

time at which he reports his arrival to the mechanism on his past valuations, the following

constraint must hold for all stopping times α̂ which may depend on the buyers valuation

path (θt)t:
7

V (θ0) ≥ sup
α̂

E
[
e−(r+γ) α̂V (θα̂) | θ0

]
. (IC-A)

We first show that the buyer’s value function V in any incentive compatible mechanism must

be continuously differentiable and convex.

Proposition 5 (Convexity of Value Function).

The value function in any incentive compatible mechanism is continuously differentiable and

convex.

The discussion in Subsection 4.2 illustrated that the indirect utility need not to be con-

tinuously differentiable in the optimal mechanism if the buyers arrival time is observable.

Intuitively, the constraint that the buyer must find it optimally to report his arrival imme-

diately, (IC-A) implies that there cannot be kinks in the value function as this would imply

a first order gain for the buyer from the information he would get by waiting to report his

arrival. As the cost of waiting due to discounting are second order this implies that a mech-

anism with a kinked indirect utility can not be incentive compatible. Thus, Proposition (5)

strengthens Proposition (2) by guaranteeing differentiability of the value function.

In the next step, we will relax the problem by restricting the buyer to a small class of

deviations in reporting his arrival. The class of deviations we are going to consider is to have

7This is a version of the revelation principle as the seller can replicate every outcome where the buyer
does not report his arrival immediately in a contract where the buyer reveals his arrival immediately, but
never gets the object before he would have revealed his arrival in the original contract.

22



the buyer report his arrival the first time his valuation crosses a time independent cut-off

x > θ0:

τx = inf{t ≥ 0: θt ≥ x} .

Note, that the optimal deviation of the buyer will not (necessarily) be of this form for every

direct mechanism. By restricting to deviations of this form we hope that in the optimal

mechanism the optimal deviation will be of this form and the restriction is non-binding.

5.2 Information Rents Associated with Unobservable Arrival

We established in Lemma 2 that the payoff from deviating to τx when reporting the arrival

time, while maintaining to report values truthfully, is given by:

E
[
e−(r+γ) τxV (vτx) | θ0

]
= V (x)

(
θ0

x

)β
where β > 1 was defined in (13). The term(

θ0

x

)β
captures the discount factor caused by the time the buyer has to wait to reach a value of x

before participating in the mechanism. When the buyer then participates in the mechanism

he receives the indirect utility V (x) of a buyer whose initial value equals x. Now, in any

mechanism where (IC-A) is satisfied the buyer does not want to deviate to the strategy τx

we must have

V (θ0) ≥ V (x)

(
θ0

x

)β
⇔ V (x)x−β ≤ V (θ0)θ−β0 . (19)

As (19) holds for all θ0 and x > θ0, we have that the buyer does not want to deviate to any

reporting strategy (τx)x>θ0 if and only if V (x)x−β is decreasing. Taking derivatives yields

that this is the case whenever8

V ′(x) ≤ β
V (x)

x
. (20)

By the earlier revenue equivalence result, see Proposition 1, the derivative of the value

function V (θ) is equal to the aggregate quantity q(θ). We therefore have the following

proposition that derives a necessary condition on the aggregate quantity q for it to be optimal

for the buyer to report his arrival truthfully.

80 ≥ V ′(x)x−β − βx−β−1V (x)⇒ V ′(x) ≤ β V (x)
x .
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Proposition 6 (Upper Bound on Discounted Quantities).

The aggregate quantity is bounded from above by

q(θ0) = V ′(θ0) ≤ β
V (θ0)

θ0

(21)

in any mechanism where it is optimal to report arrivals truthfully, i.e. that satisfies (IC-A).

Intuitively, (21) bounds the discounted quantity a buyer of initial type θ0 can receive.

Note, that (21) is always satisfied if the value function of all initial values θ0 of the buyer

from participating in the mechanism is sufficiently high. Intuitively, due to discounting the

buyer does not want to delay reporting his arrival when the value from participating is high.

As we can always increase the value to all types of the buyer, by possibly offering a subsidy

to the lowest type, we can reformulate (21) as a lower bound on the value V (0) of the lowest

type θ0 = 0.

Proposition 7 (Lower Bound on Information Rent).

In any mechanism which satisfies (IC-A) we have that

V (0) ≥ sup
θ∈Θ

(
θq(θ)

β
−
ˆ θ

0

q(z)dz

)
.

The above result establishes a lower bound on the cost of providing the buyer with

incentives to report his arrival time truthfully. This lower bound depends only on the

allocation q. Intuitively, the seller may need to pay subsidies independent of the buyer’s

type to provide incentives for the buyer to report his arrival time truthfully if the quantity

q is too convex and the option value of waiting is thus too high.9 The subsidy would

correspond to a payment made to the buyer upon arrival and independent of his reported

value θ0. Such a scheme makes delaying the arrival costly to the buyer due to discounting

and it is potentially very costly as it requires the seller to pay the buyer just for “showing

up”. We will show that in the optimal mechanism this issue will not be relevant as the

optimal mechanism does not reward the buyer merely for arriving.10

9An immediate corollary from this formula is that it is infinitely costly to implement a policy which leads
to a value function V that admits a convex kink and thus has an infinite derivative V ′ = q at some point as
argued in Proposition 5.

10Such subsidy schemes were discussed in Gershkov et al. (2015, 2018) in a context where the buyer’s value
does not evolve over time. In Gershkov et al. (2015) such subsidies are sometimes necessary in order to to
incentivize the buyer to report his arrival time truthfully.
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As a consequence of Proposition 7 we get an upper bound on the revenue in any incentive

compatible mechanism.

Corollary 1 (Revenue Bound).

An upper bound on the revenue in any incentive compatible mechanism is given by

ˆ θ

0

q(z)J(z)dF (z)− max
θ∈[0,θ]

(
θq(θ)

β
−
ˆ θ

0

q(z)dz

)
. (22)

The upper bound on revenue in (22) is obtained by considering only a small class of devi-

ations. In particular, the buyer is only allowed to misreport his arrival via simple threshold

strategies, where he enters the mechanism once his valuation is sufficiently high. Economi-

cally,

V (0) = max
θ∈[0,θ]

(
θq(θ)

β
−
ˆ θ

0

q(z)dz

)
is a lower bound on the information rent the buyer must receive to ensure that he reports his

arrival truthfully in a mechanism which implements the allocation q. As discussed before,

this information rent is payed to the buyer in the form of a transfer that is independent of

his consumption and thus even those types receive who never consume the object. We note

that due to the maximum this information rent can not be rewritten as an expectation and

thus is fundamentally different from the classical information rent term. As a consequence,

pointwise maximization can not be used to find the optimal contract even in the relaxed

problem. We next develop the mathematical tools to deal with this type of non-standard

maximization problem.

5.3 The Optimal Progressive Mechanism

We now characterize the optimal mechanism. To do so we proceed by first finding the

allocation q that maximizes the upper bound on revenue (22). Second, we are going to

construct an incentive compatible mechanism that implements this allocation. As (22) is

an upper bound on the revenue, in any incentive compatible mechanism, we then found a

revenue maximizing mechanism.

A mathematical challenge is that, due to the information rent from arrivals, the relaxed

problem (22) is non-local and non-linear in the quantity q. A change of the quantity for one

type can affect the surplus extracted from all higher and lower types. Consider the relaxed

problem of finding the revenue maximizing mechanism such that the buyer never wants to
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misreport his arrival using a cut-off stopping time. By Proposition 6, the indirect utility V

of the buyer in this mechanism solves the optimization problem:

max
V

ˆ θ

θ

V ′(z)J(z) f(z) dz − V (0), (23)

subject to

V ′(θ) ∈
[
0,

1

r + γ

]
for all θ, (24)

V is convex, (25)

V ′(θ) ≤ β
V (θ)

θ
for all θ∈ (0, 1) . (26)

We will further relax the problem by initially ignoring the convexity constraint (25) and

later verifying that the relaxed solution indeed satisfies the convexity condition. By the

revenue equivalence result, Proposition 1, we can restate the allocation problem in terms the

indirect utility of the buyer. The novel and important restriction is given by the inequality

(26) that states that the information rent of the buyer cannot grow too fast. The inequality

thus present an upper bound on the allocated quantity q(θ) = V ′(θ).11

We could approach the above problem as an optimal control problem where V (θ) is the

state variable and V ′(θ) is the control variable. The presence of the derivative constraint

(26) which combines, in an inequality, the state and the control variable renders this problem

intractable. In particular, to the best of our knowledge the current problem is not directly

covered by any standard result in optimization theory.12 In particular, while a non-standard

version of the Pontryagin maximum principle with state dependent control constraints could

in principle be used to deal with the derivative constraint (26),13 this approach would lead

to a description of the optimal policy in terms of a multi-dimensional ordinary differential

equation (ODE). There seems to be no obvious way to infer the optimal policy from the

resulting ODE, and we could make this approach work only in special cases.

To avoid these issues, we adopt a proof technique that has proved useful in stochastic

optimal control as established by Peng (1992), see also Karoui et al. (1997) for a wide

11At this point we skip a complete formulation of the orginal problem as we later directly verify that
the solution to the relaxed problem is implementable. We could state the original problem as a calculus of

variation problem where the condition (26) would have to be replaced by V ′′(θ)σ
2θ2

2 ≤ (r + γ)V (θ) under a
suitable generalized notion of the second derivative.

12This constraint is fundamentally different from the Border constraint appearing in multi-buyer mecha-
nism design problems which is a (weak) majorization constraint.

13See for example Evans (1983) for a detailed introduction into the Pontryagin maximum principle.
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range of applications of this technique. A comparison principle asserts a specific property

of a differential inequality if an auxiliary inequality has a certain property. An important

comparison result is Gronwall’s inequality that allows us to bound a function that is know

to satisfy a certain differential inequality by the solution of the corresponding differential

equation. Following standard arguments in the literature on comparison principles, we use

Gronwall’s inequality to establish the following lemma.

Lemma 3 (Comparison Principle).

Let g, h : [0, θ] → R be absolutely continuous and satisfy g′(θ) ≤ Φ(g(θ), θ) and h′(θ) ≥
Φ(h(θ), θ) where Φ : R× [0, θ]→ R is uniformly Lipschitz continuous in the first variable. If

g(0) ≤ h(0) we have that g(θ) ≤ h(θ) for all θ ∈ [0, θ].

We can then use the comparison principle to apply it the differential inequality constraint

(26) and give a characterization of the optimal solution.

Proposition 8 (An Optimization Problem with State Dependent Control Constraints).

Let Φ : R× [0, θ]→ R+ be increasing and uniformly Lipschitz continuous in the first variable

as well as continuous in the second on every interval [a, θ] for a > 0.14 Let J : [0, θ] → R
be continuous, satisfy J (0) = −1 and z 7→ min{J (z), 0} be non-decreasing. Consider the

maximization problem:

max
w

ˆ θ

0

J (θ)w′(θ)dθ − w(0) . (27)

over all differentiable functions w : [0, θ] → R that satisfy w′(θ) ≤ Φ(w(θ), θ). There exists

an optimal policy w to this problem such that for all θ ∈ (0, θ]

w′(θ) = Φ(w(θ), θ) .

To apply Proposition 8 to the optimization problem given by (23), (24) and (26) we

define

J (θ) , f(θ)J(θ),

and

Ψ(v, θ) , min

{
β
v

θ
,

1

r + γ

}
.

An immediate observation is that J (0) = −1 . Applying Proposition 8 to the optimization

14This means that for every a > 0, there exists a constant La <∞ such that |Φ(v, θ)− Φ(w, θ)| ≤ La·|v−w|
for all θ ∈ [a, θ].
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problem (23)-(26) by ex-post verifying that the solution is non-negative and convex, and

hence feasible, yields the following characterization of the relaxed optimal mechanism.

Theorem 1 (Optimal Control).

There exists a θ? ∈ [0, θ] such that a solution to the control problem (23)-(26) is given

V (θ) =


(
θ
θ?

)β θ?/β
r+γ

, for θ ≤ θ?,

θ?/β
r+γ

+ θ−θ?
r+γ

, for θ? ≤ θ,
. (28)

We arrived at the optimization problem (23)-(26) by relaxing the original mechanism

design problem in two ways. First, we allowed the buyer to misreport his arrival only using

cut-off stopping times. Second, we ignored the monotonicity constraint associated with

truthful reporting of the initial value.

The indirect utility given in (28) is implemented by a sales contract with a flow price of

p? =
β − 1

β
θ?.

As the revenue with relaxed incentive constraints is an upper bound on the revenue in

the original problem and this upper bound is achieved by some sales contract it follows that

a sales contract is a revenue maximizing mechanism.

Theorem 2 (Sales Contracts are Revenue Maximizing).

The flow price p? and the associated sales contract is a revenue maximizing mechanism with

unobservable arrivals.

We observe that the optimal allocation gives the object to the buyer forever. Hence, any

irreversibility constraint on the allocation is non-binding and thus the problem of irreversibly

selling the buyer an object yields the same solution.15 Thus, our optimal mechanism is also

revenue maximizing in a problem where the buyer consumes the object once and immediately,

the buyer is privately informed about his arrival, and the buyer’s valuation evolves over time.

5.4 An Example: The Uniform Prior

We illustrate the results now for the case of the uniform prior, and assume that θ0 ∼ U [0, 1]

throughout this section. With the uniform prior we can then directly compute from the

15For the case of observable arrivals this problem was analyzed in Board (2007) and Kruse and Strack
(2015).
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revenue formula (17) the value threshold θ? and the associated flow price p? in the optimal

progressive participation mechanism:

θ? =
1

2

1 + β

β
,

p? =
1

2

β2 − 1

β2
.

In the dynamic mechanism, the value threshold and the associated price are determined

exclusively by the virtual value at t = 0, and thus under the uniform distribution, the

corresponding threshold and flow price are given by

θ◦ = p◦ =
1

2
.

Thus the price in the progressive mechanism is below the dynamic mechanism whereas the

threshold of the progressive mechanism is above the dynamic mechanism:

p? < p◦ = θ◦ < θ?. (29)

In Figure 2 we display the behavior of the thresholds and the prices as a function of β ∈
(1,∞). As β increases, the discounting rate and the renewal rate are increasing, and the

buyer becomes less forward-looking. As β decreases towards one, the gap between the value

threshold θ? and the price p∗ increases. As the option value becomes more significant, the

buyer chooses to wait until his value has reached a higher threshold, thus he will wait longer

to enter into a relationship with the seller. Faced with a more hesitant buyer, the seller

decreases the flow price as β decreases. Yet, the decrease in the flow price only partially

offsets the option value, and the buyer still waits longer to enter into the relationship with

the seller. In contrast, the threshold value, and the price, in the dynamic mechanism, θ◦ and

p◦, respectively remain invariant with respect to the patience of the buyer β. An important

aspect of the progressive mechanism is that the buyer enters the relationship gradually rather

than once and for all, as in the dynamic mechanism. In Figure 3a we plot the probability

that an initial type drawn from the uniform distribution consumes the object as a function

of the time since his arrival. In the dynamic mechanism, this probability is constant over

time. As all values θ0 above θ◦ = 1/2 buy the object, and all those with initial values

θ0 < θ◦ = 1/2 never buy the object, the probability of consumption does not change over

time, and is always equal to 1/2. By contrast, in the progressive mechanism, the probability of
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participation is progressing over time, and thus the probability of consumption is increasing

over time. The geometric Brownian motion displays sufficient variance, so that eventually

every buyer purchases the product.

We now zoom in on the purchase behavior of the initial types θ0. Figure 3b, quantity,

illustrates the discounted expected consumption quantity q(θ0) as a function of the initial

valuation θ0 for various values of β. We find again that in the dynamic mechanism there

is a sharp distinction in the consumption quantities between the initial values below and

above the threshold of θ◦ = 1/2. By contrast in the progressive mechanism, the consumption

quantity is continuous and monotone increasing in the initial value θ0. As the buyer becomes

more patient, and hence as β decreases, the slope of the consumption quantity flattens outs

and the threshold θ? upon which consumption occurs immediately is increasing.
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The differing thresholds and allocation probabilities give us some indication regarding the

contrasts in welfare properties between progressive and dynamic mechanism. As the price in

the progressive mechanism is uniformly lower, this allows us to immediately conclude that the

consumer surplus is larger in the progressive mechanism than in the corresponding dynamic

mechanism. Conversely, as the seller could have offered the progressive mechanism in the

dynamic setting, but did not, it follows that the revenue of the seller is uniformly lower in the

progressive mechanism. Thus, the option of the buyer to postpone his allocation is indeed

valuable and increases the consumer surplus significantly. This leaves open the question

as to how the social surplus is impacted by these different participation constraints. With

the uniform prior, we can further compute that the social welfare is uniformly larger in the

progressive than in the dynamic mechanism.

Significantly, the social welfare comparison does not extend to all prior distributions. In

particular, if there is only a small amount of private information, so that the static virtual

utility is non-negative for all initial values, then the dynamic mechanism will not distort

the allocation, and thus support the first best social welfare. For example, in the class of

uniform distribution on the interval [a, 1], the static virtual utility:

θ − 1− F (θ)

f(θ)

is positive for all θ∈[a, 1] if the lower bound a in the support of the distribution is sufficiently

large, or a > 1/2. In these circumstances, the seller in the dynamic environment will cease

to discriminate against any initial value, and rather sell the object forever to all initial types

θ∈[a, 1]. By contrast, in the progressive mechanism, the option value remains an attractive

opportunity for all buyers, and thus the seller will never sell to all buyers irrespective of their

initial value θ∈[a, 1]. In consequence, the revenue maximizing progressive mechanism leads

to some initial inefficiency, and thus will not attain the first best.

6 Beyond Geometric Brownian Motion and Unit Demand

We considered a model where the valuation of a buyer with unit demand evolves according

to a geometric Brownian motion and the seller has a constant marginal cost of production.

A natural question is how our model, methods, and results extend to more general environ-

ments. Our approach worked in the following steps. We decomposed the progressive mech-

anism problem into an intertemporal participation (entry) problem and an intertemporal
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incentive problem. The novel arguments then centered on the treatment of the participation

problem. By contrast, we could rely on earlier insights for the optimal allocation conditional

upon entering into the contract.

We approached the participation problem in three steps. First, we considered only a

small subset of deviations in reporting the arrival time, namely reporting the arrival once

the value exceeds some threshold. Second, we proved that this constraint can be rewritten

as a condition bounding the derivative of the value function. Third, we solved the relaxed

optimization problem where we only imposed this constraint and showed that its solution is

implementable.

As we will argue next the first two steps generalize to other stochastic processes and

allocation problems. In the case of the geometric Brownian motion the condition we obtained

in the second step was

V ′(x) ≤ β
V (x)

x
,

for all x ≥ 0, see (21). A similar condition can be obtained in general allocation problems

and for arbitrary diffusion processes. To see this define

φ(x, y) = E
[
e−rτy | θ0 = x

]
where τy = inf{t : θt ≥ y}. Note that φ(x, z) = φ(x, y)φ(y, z) for all x ≤ y ≤ z and that φ is

differentiable. This implies that there exists a function h : R→ R+ such that

φ(x, y) = e−
´ y
x h(s)ds.

Consequently, the constraint that the buyer does not want to deviate by reporting his arrival

once his value is sufficiently high simplifies in a way completely analogous to Proposition 6,

i.e. for all x < y:

V (x) ≤ φ(x, y)V (y) = e−
´ y
x h(s)dsV (y)

⇔ e−
´ x
0 h(s)dsV (x) ≤ e−

´ y
0 h(s)dsV (y)

⇔ V ′(x) ≤ h(x)V (x) . (30)

In the special case of the geometric Brownian motion h(x) = β/x . The above condition thus

remains necessary for arbitrary processes.

What changes for more general stochastic processes is the expected revenue as a function
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of the value of the buyer given in (22) and (23). The particularly simple multiplicative

structure of the virtual value is a consequence of the geometric Brownian motion. For

other processes such as the arithmetic Brownian motion, or the mean reverting Ornstein-

Uhlenbeck process, the corresponding virtual value is obtained in Bergemann and Strack,

2015. Using these virtual values and replacing β/x by h(x), one obtains a relaxed program

that is analogous to (23)-(26). Notably, this provides a reduction of our original dynamic

problem into a completely static problem without any incentive constraints.

For general processes or models with convex production cost, the resulting problem will

not admit the same simple multiplicatively separable structure. As a consequence, we could

not use our Proposition 8 to solve for the optimal mechanism, but would have to rely on other

methods such as the Pontryagin Principle. Yet, whenever the solution to this relaxed general

program is implementable it will constitute an optimal mechanism. Whether the restriction

we imposed on the buyer that he can only misreport his arrival using threshold strategies

is sufficient to guarantee implementability depends on the details of the environment. A

necessary and sufficient condition for a general martingale with diffusion coefficient σ is that

the interim value of the agent V for all x satisfies16

V ′′(x)
σ2(x)

2
≤ (r + γ)V (x) (31)

i.e. that the agents value is not too convex. For the case of the geometric Brownian motion

without production cost this was the case as the solution to the relaxed program (23)-(26) is

a posted price mechanism in which the interim value is linear for participating buyers. More

generally, this is the case whenever the derivative of the value function of the buyer, which

(roughly) corresponds to the expected discounted quantity promised to the buyer does not

react to strongly to the buyer’s initial type. We conjecture that this is the case whenever

the generalized virtual value of the buyer (derived in Bergemann and Strack, 2015) does not

change too fast as a function of his initial type. Beyond the unit demand model, this might

be guaranteed by production costs that are sufficiently convex.

By contrast, if the virtual value were to react too strongly to the type, then the stopping

constraint (31) may be binding at several disconnected intervals. This would imply that

there is not a single and always lower interval at which the agent would wait, but rather a

collection of disconnected intervals. In each one of these intervals, the agent would wait until

his value leaves the interval, either below or above. In consequence, the optimal strategy for

16The second derivative here is to be understood in a viscosity sense..
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the agent could not be expressed anymore in terms of a simple threshold strategy as in the

current setting.

7 Conclusion

We considered a dynamic mechanism problem where each buyer is described by two di-

mensions of private information, his willingness to pay (which may change over time) and

his arrival time. We considered a stationary environment – in which the buyers arrive and

depart at random – and a stationary contract. In this arguably more realistic setting for

revenue management, the seller has to guarantee both interim incentive as well as interim

participation constraints. As the buyer has the valuable option of delaying his participation,

the mechanism has to offer incentives to enter into the relationship.

One challenge in our environment is that the first-order approach and other standard

methods fail as global incentive constraints bind in the optimal contract. We were able to

solve this multi-dimensional incentive problem by rephrasing the participation decision of the

buyer as a stopping problem, and then solve a new optimal control problem. More precisely,

we decomposed the progressive mechanism problem into an intertemporal participation (en-

try) problem and an intertemporal incentive problem. Given the separability between these

two problems, our approach can be possibly extended to allocation problems beyond the unit

demand problem considered here. There are (at least) three natural directions to extend the

analysis. First, the stochastic evolution of the value was governed by the geometric Brown-

ian motion, and clearly other stochastic process could be considered. Second, the allocation

problem could be extended to nonlinear allocation problems rather than the unit demand

problem considered here. Third, a natural next step is to extend the techniques developed

here to multi-buyer environments, say competing bidders for a scarce resource. The final

generalization will pose new challenges as we will have to investigate whether the solution of

the individual stopping problem can be decentralized or distributed in a consistent manner

across the buyers. This is a problem similar to the reduced form auction as posed by Border

(1991) but now in dynamic rather than static allocation problem.
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A Appendix

Lemma 4. We have that

Vα(θ) = E
[ˆ ∞

αi

e−(r+γ) (t−αi)
{
θitx

i
t − pit

}
dt | αi = α, θαi = θ

]
.

Proof. By the law of iterated expectations and the fact that the departure time of the buyer

αi+1 is independent of the arrival time αi and the valuation process θi and hence of xit, p
i
t

and uit = θitx
i
t − pit

E
[ˆ T

αi

e−r (t−αi)uitdt

]
= E

[ˆ ∞
αi

1{T≥t}e
−r (t−αi)uitdt

]
= E

[ˆ ∞
αi

E
[
1{αi+1≥t}

]
e−r (t−αi)uitdt

]
= E

[ˆ ∞
αi

P [T ≥ t] e−r (t−αi)uitdt

]
= E

[ˆ ∞
αi

e−γ (t−αi)e−r (t−αi)uitdt

]
.

Proof of Lemma 1. As each buyer’s allocation is only a function of his own reports and the

willingness to pay is independent between different buyers the law of iterated expectations

implies that the revenue can be rewritten as

E

[
∞∑
i=0

ˆ αi+1

αi

e−r tpitdt

]
= E

[
∞∑
i=0

e−rαiE
[ˆ αi+1

αi

e−r (t−αi)pitdt

]]
.

As buyer are ex-ante identical they are necessarily treated the same in the optimal mechanism

which yields that the revenue equals

max
(x,p)∈M

E

[
∞∑
i=0

ˆ αi+1

αi

e−r tpitdt

]
= max

(x,p)∈M
E
[ˆ αi+1

αi

e−r (t−αi)pitdt

]
E

[
∞∑
i=0

e−rαi

]
.

Note, that αi+1 − αi = τi − αi are independently and identically exponentially distributed

with rate γ it follows from this that

E

[
∞∑
i=0

e−rαi

]
= E

[
∞∑
i=0

e−rα0

i−1∏
j=0

e−r(αj+1−αj)

]
= E

[
e−rα0

] ∞∑
i=0

i−1∏
j=0

E
[
e−r(αj+1−αj)

]
=
∞∑
i=0

E
[
e−r(αj+1−αj)

]i
=
∞∑
i=0

(
γ

r + γ

)i
=
r + γ

r
.
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This yields the result.

Proof of Proposition 1. The first part of the Proposition follows by applying the envelope

theorem. By the hypothesis of the Proposition, it is optimal for the buyer to report his

initial value θ0 truthfully. Therefore, we can compute the derivative of the buyer’s indirect

utility by treating the allocation (x, p) as independent of the buyer’s report:

V ′(θ0) =
∂

∂θ0

E
[ˆ ∞

0

e−(r+γ) t {xt θt − pt} dt | θ0

]
= E

[ˆ ∞
0

e−(r+γ) txt

(
∂

∂θ0

θt

)
dt | θ0

]
(32)

As (θt)t≥0 is a geometric Brownian motion, the evolution of θt can be explicitly represented

as:

θt = θ0 exp

(
−σ

2

2
t+ σWt

)
. (33)

We can then insert the derivative ∂θt/∂θ0 and obtain:

V ′(θ0) = E
[ˆ ∞

0

e−(r+γ) txt

(
∂

∂θ0

θt

)
dt | θ0

]
= E

[ˆ ∞
0

e−(r+γ) txt

(
∂

∂θ0

{
θ0 · exp

(
−σ

2

2
t+ σWt

)})
dt | θ0

]
= E

[ˆ ∞
0

e−(r+γ) txt exp

(
−σ

2

2
t+ σWt

)
dt | θ0

]
= q(θ0),

where the last line follows from the definition of the aggregate quantity q(θ0) given earlier

in (5).

Similarly, we can express the revenue of the seller in terms of the dynamic virtual value

as given earlier in (6):

Jt(θt) , θt −
1− F (θ0)

f(θ0)

dθt
dθ0

,

and we observe that using (33) we can express the derivative equivalently as

dθt
dθ0

=
θt
θ0

.
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The expected revenue of the seller can therefore be expressed as:

E
[ˆ ∞

0

e−(r+γ) tptdt

]
= E

[ˆ ∞
0

e−(r+γ) t xt

(
θt −

1− F (θ0)

f(θ0)

dθt
dθ0

)
dt

]
= E

[ˆ ∞
0

e−(r+γ) t xt θt

(
1− 1− F (θ0)

f(θ0)θ0

)
dt

]
= E

[ˆ ∞
0

e−(r+γ) t xt
θt
θ0

(
θ0 −

1− F (θ0)

f(θ0)

)
dt

]
− V (0)

=

ˆ
E
[ˆ ∞

0

e−(r+γ) t xt
θt
θ0

(
θ0 −

1− F (θ0)

f(θ0)

)
dt | θ0

]
f(θ0)dθ0 − V (0)

=

(
θ0 −

1− F (θ0)

f(θ0)

) ˆ
E
[ˆ ∞

0

e−r t xt
θt
θ0

dt | θ0

]
f(θ0)dθ0 − V (0) .

Plugging in the explicit representation of θt given by (33) yields that the expected revenue

satisfies

E
[ˆ ∞

0

e−(r+γ) tptdt

]
=

ˆ θ

0

J(θ0)E
[ˆ ∞

0

e−(r+γ) t xt exp

(
−σ

2

2
t+ σWt

)
dt | θ0

]
︸ ︷︷ ︸

q(θ0)

f(θ0)dθ0 − V (0) .

Proof of Proposition 2. The result follows as q plays the same role as the quantity in a static

allocation problem.

Proof of Proposition 3. The result follows from Dixit and Pindyck (1994), Section 5.2.

Proof of Lemma 2. For θ0 ≥ x, the buyer stops immediately and thus the statement is true.

For θ0 < x we have that

E
[
e−(r+γ) τx | θ0

]
= E

[
e−(r+γ) τx

(
θτx
θτx

)β
| θ0

]
= E

e−(r+γ) τx

(
θ0e
−σ

2

2
τx+σWτx

x

)β

| θ0


= E

[
e
−
[
(r+γ)−σ

2

2
β
]
τx+βσWτx

(
θ0

x

)β
| θ0

]

= E

[
e
−
[
(r+γ) +σ2

2
β−σ

2β2

2

]
τx
e−

σ2β2

2
τx+β σWτx

(
θ0

x

)β
| θ0

]
.

As (r + γ) + σ2

2
β − σ2β2

2
= 0 and t 7→ e−

σ2β2

2
t+β σWt is a uniformly integrable martingale it
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follows from Doob’s optional sampling theorem that

E
[
e−r τx | θ0

]
= E

[(
θ0

x

)β
| θ0

]
.

Proof of Proposition 4. By Proposition 3 the buyer acquires the object once his valuation

exceeds θ? = β
β−1

p. By Lemma 1 the expected revenue the seller generates from a single

buyer with initial valuation θ0 is given by

r + γ

r
E
[ˆ ∞

τθ?

e−(r+γ) tp dt | θ0

]
=

1

r
E
[
e−(r+γ) τθ? p | θ0

]
=
p

r
E
[
e−(r+γ) τθ? | θ0

]
=
p

r
min

{(
θ0

θ?

)β
, 1

}
=
p

r
min

{(
β − 1

β

θ0

p

)β
, 1

}
.

Consequently, the expected discounted revenue from buyer with random initial valuation

distributed according to F is given by

p

r

ˆ ∞
0

min

{(
β − 1

β

θ

p

)β
, 1

}
f(θ) dθ .

Proof of Proposition 5. It follows from the envelope theorem that the value function is con-

tinuous and convex in any mechanism where truthfully reporting the initial valuation is

incentive compatible. Furthermore, the envelope theorem implies that V is absolutely con-

tinuous, thus any non-differentiability must take the form of a convex kink. As it is never

optimal to stop in a convex kink it follows that V is differentiable.

Proof of Proposition 7. By Proposition 1 and 6 we have that IC-A implies that for all θ

θ q(θ)

β
≤ V (θ) = V (0) +

ˆ θ

0

q(z)dz

⇔ θ q(θ)

β
−
ˆ θ

0

q(z)dz ≤ V (0) .

Taking the supremum over θ yields the results.

Proof of Lemma 3. Define ∆ ≡ g − h. Suppose, that there exists a point θ′ such that

∆(θ′) > 0. As ∆(0) ≤ 0 and by the absolute continuity of ∆ there exists a point θ′′ such
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that ∆(θ′′) = 0 and as ∆′ ≥ 0 we have that ∆(θ) ≥ 0 for all θ ∈ [θ′′, θ′]. This implies that

there exists a constant L > 0 such that for all θ ∈ [θ′′, θ′]

∆′(θ) = g′(θ)− h′(θ) ≤ Φ(g(θ), θ)− Φ(h(θ), θ) ≤ |Φ(g(θ), θ)− Φ(h(θ), θ)|

≤ L |g(θ)− h(θ)| = L |∆(θ)| = L∆(θ) .

By Gronwall’s inequality we thus have that ∆(θ′) ≤ ∆(θ′′)eL(θ′−θ′′) = 0 which contradicts

the assumption that ∆(θ′) > 0 .

Lemma 5 (Generalized Comparison Principle).

Let g, h : [0, θ] → R be absolutely continuous and satisfy g′(θ) ≤ Φ(g(θ), θ) and h′(θ) ≥
Φ(h(θ), θ) where Φ : R× [0, θ]→ R is uniformly Lipschitz continuous in the first variable. If

g(θ̂) = h(θ̂) we have that g(θ) ≤ h(θ) for all θ ∈ [θ̂, θ] and g(θ) ≥ h(θ) for all θ ∈ [0, θ̂] .

Proof. The first part of the result follows by considering the functions g̃(s) = g
(
θ̂ + s

)
, h(s) =

ȳ
(
θ̂ + s

)
and applying Lemma 3. The second part follows by considering the functions

g̃(s) = −g
(
θ̂ − s

)
, h̃(s) = −h

(
θ̂ − s

)
for s ∈ [0, θ̂] and applying Lemma 3 which implies

that for all s ∈ [0, θ̂]

g̃(s) ≤ h̃(s)⇔ −g
(
θ̂ − s

)
≤ −h

(
θ̂ − s

)
⇔ g

(
θ̂ − s

)
≥ h

(
θ̂ − s

)
.

Lemma 6.

Suppose that J : [0, θ] is a non-decreasing function with J (θ) ≤ 0, and g, h : [0, θ]→ R are

absolutely continuous with g = h then

ˆ θ

0

J (θ)g′(θ)dt+ J (0)g(0) ≤
ˆ θ

0

J (θ)h′(θ)dθ + J (0)h(0) .
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Proof. The result follows from partial integration, the assumption that J (θ) ≤ 0

ˆ θ

0

J (θ)g′(θ)dt+ J (0)g(0) = [J (θ)g(θ)]θ=θθ=0 −
ˆ θ

0

g(θ)dJ (θ) + J (0)g(0)

= J (θ)g(θ)− J (0)g(0)−
ˆ θ

0

g(θ)dJ (θ) + J (0)g(0)

≤ J (θ)h(θ)− J (0)h(0)−
ˆ θ

0

h(θ)dJ (θ) + J (0)h(0)

= [J (θ)h(θ)]θ=θθ=0 −
ˆ θ

0

h(θ)dJ (θ) + J (0)h(0)

=

ˆ θ

0

J (θ)h′(θ)dθ + J (0)h(0).

Proof of Proposition 8. Let g be an arbitrary feasible policy in the optimization problem

(27). Define θ? = inf{θ : J (θ) ≥ 0}. As J is continuous J (θ?) = 0. Let h : [0, θ] → R be

the solution to

h′(θ) = Φ(h(θ), θ),

h(θ?) = g(θ?) .

The proof proceeds in two step: first we establish that h leads to a higher value of the integral

(27) above θ? and in the second step we establish the analogous result below θ?.

Step 1: As g′(θ) ≤ Ψ(g(θ), θ) it follows from Lemma 5 that g(θ) ≤ h(θ) for θ ∈ [θ?, θ]

and g(θ) ≥ h(θ) for θ ∈ [a, θ?] for every a > 0. As g and h are continuous it follows that

g(0) ≥ h(0) . The monotonicity of Φ in the first variable implies that for θ ≥ θ?

g′(θ) ≤ Φ(g(θ), θ) ≤ Φ(h(θ), θ) = h′(θ) .

As J (θ?) = 0 and θ 7→ min{J (θ), 0} is non-decreasing we have that J (θ) ≥ 0 for θ ≥ θ? we

have that

ˆ θ

θ?
J (θ)g′(θ)dθ ≤

ˆ θ

θ?
J (θ)h′(θ)dθ . (34)

Step 2: Note, that by Lemma 5 g(θ) ≥ h(θ) for θ ≤ θ?. Furthermore, by definition of θ?

we have that J (θ) = min{J (θ), 0} for θ ≤ θ?. As θ 7→ min{J (θ), 0} is non-decreasing J (θ)
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is non-decreasing for θ ≤ θ?. Lemma 6 implies that

ˆ θ?

0

J (θ)g′(θ)dθ + J (0)g(0) ≤
ˆ θ?

0

J (θ)h′(θ)dθ + J (0)h(0) . (35)

Combining the inequalities (34) and (35) with the assumption that J (0) = −1 yields that

ˆ θ

0

J (θ)g′(θ)dt− g(0) ≤
ˆ θ

0

J (θ)h′(θ)dθ − h(0) .

As Φ is continuous in both variables it follows that h is continuously differentiable and thus

feasible and an optimal policy.

Proof of Proposition 1. Define J (θ) = J(θ)f(θ) and recall that θ◦ = min {θ : J (θ) = 0} .
We first note, that J (θ) is negative for θ < θ◦ and J (0) = −1. Consider the problem of

solving

max
V

ˆ θ

0

V ′(z)J (z) dz − V (0) .

subject to V ′(θ) ≤ Ψ(V (θ), θ) for all θ∈
[
θk, θ

]
,

where Ψ(v, θ) = min
{
β v
θ
, 1
r+γ

}
. By Proposition 3 we have that there exists an optimal

policy that solves

V ′(θ) = Ψ(v, θ) (36)

We have that all solutions to the ODE (36) are of the form

V (θ) =


(
θ
θ′

)β
V (θ?) for θ ≤ θ?

V (θ?) + θ−θ?
r+γ

for θ ≤ θ?

where 1
r+γ

= V ′(θ?) = β
θ′
V (θ?) . Thus, plugging in V (θ?) yields that

V (θ) =


(
θ
θ?

)β θ?/β
r+γ

for θ ≤ θ?

θ?/β
r+γ

+ θ−θ?
r+γ

for θ ≤ θ?
.

We note that V = 0 and V ′ is increasing. It is thus feasible in the control problem (23)-(26)
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and we hence have found an optimal policy.

Consider the sales contract where the object is sold at a flow price of p = β−1
β
θ?. Propo-

sition 3 yields that the buyer’s value is given by

V (θ) =


1

r+γ

(
θ
θ?

)β 1
β
θ? for θ ≤ θ?

1
r+γ

(
θ − β−1

β
θ?
)

for θ ≥ θ?
,

and thus satisfies (28) which establishes the result.
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