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Abstract

Economic and financial time series data can exhibit nonstationary and nonlinear patterns si-
multaneously. This paper studies copula-based time series models that capture both patterns.
We propose a procedure where nonstationarity is removed via a filtration, and then the nonlin-
ear temporal dependence in the filtered data is captured via a flexible Markov copula. We study
the asymptotic properties of two estimators of the parametric copula dependence parameters: the
parametric (two-step) copula estimator where the marginal distribution of the filtered series is es-
timated parametrically; and the semiparametric (two-step) copula estimator where the marginal
distribution is estimated via a rescaled empirical distribution of the filtered series. We show that
the limiting distribution of the parametric copula estimator depends on the nonstationary filtration
and the parametric marginal distribution estimation, and may be non-normal. Surprisingly, the
limiting distribution of the semiparametric copula estimator using the filtered data is shown to be
the same as that without nonstationary filtration, which is normal and free of marginal distribution
specification. The simple and robust properties of the semiparametric copula estimators extend
to models with misspecified copulas, and facilitate statistical inferences, such as hypothesis test-
ing and model selection tests, on semiparametric copula-based dynamic models in the presence of
nonstationarity. Monte Carlo studies and real data applications are presented.
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1. Introduction

Nonstationarity and nonlinearity are important empirical features in economic and financial time se-
ries. For many economic time series, nonstationary behavior is often the most dominant characteristic.
Some series grow in a secular way over long periods of time, others appear to wander around as if they
have no fixed population mean. Growth characteristics are especially evident in time series that repre-
sent aggregate economic behavior. Random wandering behavior is also evident in many financial time
series. In addition, existing literature (e.g. Gallant, Rossi, Tauchen (1993), Granger (2002), Gallant
(2009)) points out that the classical linear time series modelling based on the Gaussian distribution
assumption clearly fails to explain the stylized facts observed in economic and financial data, and that
it is highly undesirable to perform various economic policy evaluations, financial forecasts, and risk
managements based on linear Gaussian models.

FEconometric analysis that ignores either nonstationarity or nonlinearity may lead to erroneous
inference for policy evaluations and financial applications. Arguably the most common nonstationarity
in many economic time series are persistency and trending characteristics. Deterministic or stochastic
trend components are usually used to capture these kinds of nonstationarity in time series. In the
presence of a deterministic trend, detrending methods are commonly used to extract this trend and the
residuals are then analyzed as a stationary time series. Unit root and cointegration models are widely
used to model stochastic trends in economic time series. For stationary series, copula-based Markov
models provide a rich source of potential nonlinear dynamics describing temporal dependence and
tail dependence, without imposing any restrictions on marginal distributions. See, e.g., Joe (1997),
Chen and Fan (2006a), Patton (2006, 2009, 2012), Ibragimov (2009), Cherubini, et al (2012) and
the references therein. However, existing large sample theories for estimation and inference on the
copula-based time series models rule out nonstationarity.

An important issue in practice is that nonstationarity and nonlinearity may occur simultaneously.
In this paper, we study copula-based time series models that can capture nonstationarity and non-
linearity (and tail dependence). We propose a sequential procedure where nonstationarity is first
removed via a filtration, and then the nonlinear temporal dependence (and the tail dependence) in the
filtered data is captured by a copula-based first-order stationary Markov model. We are interested in
simple estimation and inference on the copula dependence parameter for the deterministic or stochas-
tic detrended data. We focus on the sequential approach due to its easy implementation in empirical
applications.

An advantage of copula-based modeling approach is to leave the marginal distribution completely
free of parametric assumptions. Nevertheless, many empirical researchers still like to assume mar-
ginal distribution belonging to a parametric family and estimate it parametrically before proceeding

to estimate the copula dependence parameters. For the sake of comparison, we consider both the



parametric (two-step) copula estimation where the marginal distribution of the filtered series belongs
to a parametric family, and the semiparametric (two-step) copula estimation where the marginal dis-
tribution of the filtered series is nonparametric. Without nonstationary filtering and for observable
stationary Markov data, both copula estimators are shown to be asymptotically normal, while the
semiparametric copula estimator is obviously robust to misspecification of the marginal distribution.
We show that the copula estimators using nonstationary filtered data have very different properties,
however. In particular, the limiting distribution of the parametric (two-step) copula estimator is af-
fected by the nonstationary filtration and the parametric marginal distribution estimation, and may
be non-normal in the presence of stochastic trends (unit root or cointegration). While the parametric
copula estimator using deterministic trend filtered data is shown to be asymptotically normal, its
asymptotic variance still depends on the filtrating and the parametric marginal specification in a com-
plicated way. Surprisingly, we show that the limiting distribution of the semiparametric (two-step)
copula estimator using the filtered data is the same as that without nonstationary filtration, which
is normal and free of marginal distribution specification. While this surprising result is first derived
for models with correctly specified parametric copulas in Section 3, we show in Section 4 that the
limiting distribution of the semiparametric copula estimator (for the pseudo-true parameters) is still
not affected by the nonstationary filtration even in misspecified parametric copula models. The simple
and robust properties of the semiparametric copula estimators greatly facilitate statistical inferences,
such as hypothesis testing and model selection tests, on semiparametric copula-based dynamic models
in the presence of nonstationarity.

Previously, Chen and Fan (2006b) uses parametric copula to generate contemporaneous dependence
among multivariate standardized innovations of observed weakly-dependent multivariate time series,
where the standardized innovations have no serial dependence. They also obtained a surprising result
that the limiting distribution of their semiparametric two-step copula estimator does not depend on the
stationary filtering in the first step. It is interesting that both papers establish the "no-filtering-effect"
in semiparametric two-step copula parameter estimation. While Chen and Fan (2006b) consider the
contemporaneous copula dependence among multivariate standardized innovations that are orthogonal
to the dynamic filtering part, our paper studies the temporal copula dependence of univariate non-
stationary filtered residuals, and there is dependence among the nonstationary (stochastic trending)
and the stationary parts in our setting.

Monte Carlo studies reveal interesting finite sample behaviors of the parametric and the semi-
parametric copula estimators under various combinations of nonstationary filtration, correctly- and
incorrectly- specified marginal distribution of the filtered series, and copula function specification (with
or without tail dependence). Simulation evidences (in terms of biases and variances) indicate that the

finite sample performance of parametric copula estimator is indeed very sensitive to different types of



filtration and the parametric estimation of marginal distributions. The semiparametric copula estima-
tor not only is robust to specification of marginal distributions, but also performs very similarly to the
infeasible semiparametric estimator without nonstationary filtering. In comparison to the paramet-
ric copula estimator with correctly specified parametric marginal distributions, the semiparametric
estimator has reasonably good sampling performance over a wide range of copula parameter values.
Simulation patterns are consistent with the theoretical findings in our paper.

To illustrate the practical usefulness of our proposed models and method. We first apply our
method to estimate the short term dynamics in the GNP time series after the cointegrating regression
of GNP on consumption series. Our semiparametric copula estimation and testing using the filtered
data enable us to detect both lower and upper tail dependence in the GNP series (of the USA).
We next apply our method to the famous "CAY" time series that was first constructed in Lettau
and Ludvigson (2001), which is the residual term from a cointegrating regression of consumption
(ct) on asset holding (a¢) and labor income (y;). According to Lettau and Ludvigson (2001) and
many subsequent work, the "CAY" time series contain important information of future returns at
short horizons. Our semiparametric copula estimation and testing detects very significant lower tail
dependence and relatively weak upper tail dependence in the "CAY" series.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3 presents
estimation of copula parameters for both the parametric and semiparametric models of the filtered
data. It also obtains the large sample properties of the parametric and semiparametric copula esti-
mators. Section 4 considers estimation under possibly misspecified copula models. It also discusses
semiparametric copula model selection tests using nonstationary filtered data. Section 5 presents
Monte Carlo studies and Section 6 provides empirical applications. Section 7 briefly concludes with
future research. In the supplementary appendices, Appendix A displays tables summarizing the Monte
Carlo results, and Appendix B contains the technical proofs. Notation: BM (w?) denotes a Brownian
motion with variance w?. For a generic parameter, say, 3, we denote the true parameter value by 3*,

the pseudo-true value by /3 and the feasible estimator by B

2. The Model
We assume that the observed scalar time series {Z;}}_; can be modelled as
Zy =Xyt + Y, (2.1)

where X/7* is the nonstationary component in which X; is an observed d,-dimensional vector of
nonstationary regressors. For example, X; may contain deterministic trends, unit root or near unit
root nonstationary time series. Y; is the latent stationary ergodic component that could exhibit

nonlinear temporal dependence and/or tail dependence.



Estimation of the parameter 7* in model (2.1) is by now standard (usually an OLS regression
of Z; on X;) and is not the focus of our paper. Instead we are interested in estimation of the
copula parameter /3 that captures stationary nonlinear temporal dependence in {Y;}}- ;. Unfortunately
{Y;}7- is unobserved. We shall estimate the latent temporal dependence parameter 5 and study its
asymptotic properties based on the filtered time series {ﬁ}{;l, where

Y, = Z, — X/7,
and 7 denotes some nonstationary filtering estimator for 7*. We state the basic regularity conditions
on the nonstationary part and the stationary part as follows. The assumptions about the nonstationary
part {X,7*}{_; are the typical ones for trend, unit roots and cointegration, and the assumptions about
the stationary part {Y;}}"; are the same as those in Chen and Fan (2006a).

Due to the nonstationarity in X;, we introduce appropriate re-standardization via a scaling matrix
D,, to facilitate asymptotic analysis. Denoting X,,(r) = nl/zDng[m] and Y, (r) = n~1/2 ZEZI] Y; for
r € [0, 1], we make the following assumption concerning the nonstationary component and the related
filtration.

Assumption X. In model (2.1), the elements in X; can be either a deterministic trend function, or
an unit root or local to unit root process such that
Yo(r) By (r)

,7€[0,1] as mn — oo,
Xn(r) X(r)

where By (r) is a Brownian motion, X (r) is a vector of stochastic or deterministic functions. And
D, (t—7%)=¢ as n— oc.

The limit of the standardized nonstationary component n'/ DX [nr], May be stochastic processes
such as Brownian motions, or deterministic functions, or a mixture of both type. By (r) is a Brownian
motion. In the case when X(r) contains stochastic functions, By (r) and X(r) may be correlated.
The limiting distribution of the filtration parameter, &, is a function of X (-) and may not be a normal
variate. We give below a few examples that are widely used in time series applications. In all these

examples, we use the OLS filtration.

Example 1. Trending Time Series. X, is a vector of deterministic trend function and n'/ DX [nr] —
X(r), where X(r) is a piecewise continuous limiting trending function. Let 7 be the OLS esti-
mator of 7%,

D, (7 —7*) = &,

where in general &; is a normal variate. In particular, let By (r) = BM(w%) denote the weak
limit of Yy,(r) = n~1/2 Z,[Zl] Y;, then

-/ X(r)X(r)’dr]_l [ xtiasy).

5



which is a mean zero normal random variable with variance-covariance matrix w?, [ [ X ()X (r) dr]

For example, if the observed time series {Z;}} ; contains a linear trend:
Zy =75+ mit+ Y,
then X; = (1,t)" and X (r) = (1,7), and the standardization matrix is D,, = diag(n'/?,n%/?).

Example 2. Time Series with a Root Close to Unity. X; = Z;_; and 7 = 1 + ¢/n. Thus
Xt = Z;—1 can be a unit root (¢ = 0) or local to unit root process (¢ < 0). D, = n, and
n_1/2X[m] = X(r)=Je(r)= [, e('=5)¢dBy (s), where J,(r) is a Ornstein-Uhlenbeck process. If
¢ =0, Jo(r) = By(r) is simply a Brownian motion. The OLS filtration estimators 7 converges

at rate-n to a non-normal limit: n (7T — 7) = &,, where

&= [/01 Jc(r)zdr]_l [/01 Jo(r)dBy (1) + A| ,

with A = 320, E(Y1Y14p).

Example 3 Cointegrated Time Series. X; = (X7, X%,)’, where Xy, is a vector of deterministic

trend, and Xo; is a vector of stochastic nonstationary process, then
n1/2D;rL1X1,[nr] - Xl(r)a n_1/2X2,[nr} = B2(T) = BM(W%),

X1(r) is the limiting trending function, and By(r) is a stochastic process. Let D,, = diag{D1,,n
) n}’
n'2D 1 X, — X(r) =

The OLS filtration estimators 7 has the following limit:

D, (7 —7) [/X r} B [/X(?"),dBy(T‘) +AXY] ;

where A'yy- = [0, ALy]. In typical cointegration models, Aay # 0, Bo(r) is correlated with By (r),
and [ [ Ba(r)Ba(r)'dr]” f Bs(r)dBy (r) is asymmetrically distributed.

The latent component, Y;, is a stationary ergodic process that may display nonlinear dynamics
captured by a copula function. For simplicity, we assume that {Y;}}; is a strictly stationary first-
order Markov process (see, e.g., Chen and Fan 2006a). Higher order Markov process of {Y;}}~; can
be handled similarly (see, e.g., Ibragimov, 2009).

Under the assumption that {Y;}}", is a first-order stationary Markov process, its probabilistic

properties are determined by the true joint distribution of Y;_1 and Y}, say, G*(y;—1, y:). Suppose that
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Y; has continuous marginal distribution function F*(-), then by Sklar’s (1959) Theorem, there exists

an unique copula function C(-,-) such that

G*(Yy1-1,9t) = C(F* (1), F* (1)),

where the copula function C(-,-) is a bivariate probability distribution function with uniform mar-
ginals. Denote the corresponding copula density of C(u,v) by ¢(u,v), and the density of the marginal
distribution F'(-) by f(-), the true conditional density of Y; given Y;_; is

P(elye—1) = " (ye)e(F™ (ye-1) , ™ (1))

We assume the following basic conditions on the dynamics of the latent process {Y;}.
Assumption DGP: {Y;}}"; in model (2.1) is a stationary first-order Markov process generated
from (F*(-),C(-,-;8")), where F*() is the true invariant distribution that is absolutely continuous
with respect to Lebesgue measure on the real line; C(-,-; %) is the copula for (Y;_1,Y;), is absolutely
continuous with respect to Lebesgue measure on [0, 1]2.

Assumption MX: The process {Y;} is absolutely regular with mixing coefficient 3 (1) = O(77%), for
a constant & > 0.

See Chen and Fan (2006a), Chen, Wu and Yi (2009), Beare (2010), Longla and Peligrad (2012)
and others about sufficient conditions that most commonly used copula-based Markov processes are
geometric ergodic and hence absolutely regular (or beta-mixing) with exponentially decaying mixing

coefficients.

3. Estimation Under Correctly-Specified Copulas
We are interested in estimation and inference on the copula dependence parameter 5*.

3.1. Feasible estimation of copula parameter using filtered data fft

Let Y; be the filtered time series, and F(-) be a feasible estimator of the marginal distribution F*(-)

using }A/t In this paper we propose and study the properties of the following feasible copula estimator
3 = argmax Qu(F. §), where Qu(F. ) = Z log o(F(¥;_1), F(¥3), B). (3.1)

3.1.1. Parametric marginal case

We first consider the parametric case where the marginal distribution of Y; belongs to a parametric

family. Denote the unknown true marginal density function and the distribution function of Y; by



f(,a*) and F(-,a*), where « is an kj-dimensional vector of unknown parameters. We could then

estimate the true marginal F*(-) by F(-, &) where

a = arg moz}XZlog F(Yi, ), (3.2)
t=1

and estimate the copula parameter 8* by the following “parametric copula estimator”:

BP = argmﬁax@n(ﬁ), where Q\n(ﬁ) = %ZIOgC<F(2—17a)7F<2aa)7ﬁ)
t=2

3.1.2. Nonparametric marginal case

In practice, the exact form of marginal distribution is usually beyond our knowledge and thus the
parametric model of marginal distribution may be misspecified. We now consider a semiparametric
model where the marginal distribution is estimated nonparametrically based on the filtered time series
Y;. We use the so-called rescaled empirical distribution function (EDF) to estimate F*(-):

n

. 1 .
Fuy) = =2 1(Ve<v).
t=1

and estimate the copula parameter 8* by the following “semiparametric copula estimator”:

BSP = argmgxfn(ﬂ), where .C Zlogc T/} 1) ﬁn(?t),,@’)

3.2. Infeasible estimation of copula parameter using Y;

For comparison purpose, we review an infeasible estimator, B, of * assuming that Y; is observed.
Let F (1) be an infeasible estimator of the true marginal distribution F™*(-) using Y;. Then a pseudo

maximum likelihood estimator of 5* using observed Y; is given by
B = argmax Qn(F', B), where Qu(F Z log ¢(F(Y;-1), F(Y3), B).
Again, E p denotes the parametric copula estimator using the infeasible parametric marginal estimator

F = F(-, &), where!

n
a= argmaleog f(Yz, ).
(03
t=1

'Previously, Joe and Xu (1996) and Joe (2005) studied two-step parametric estimation of copula parameter
B for iid data {(Y1,i,...,Ym,)}.; of a multivariate random vector (Y1,...,Y;,) whose concurrent copula density

c(F1(Yi;01), ..., Fin(Yim; am); B) links different parametric marginal distributions Fj;(Yj; «j),5 =1,...,m



And B gp denotes the semiparametric copula estimator using the infeasible rescaled estimator for F*(-):

n
Fl) = Falo) = 1y D105 <0)
Chen and Fan (2006a) has proposed and studied the asymptotic properties of BSP for first-order
stationary Markov process Y;.
Comparing 5 and 5, the infeasible estimator E assumes that Y; is observed so that it is not affected
by filtration of nonstationarity. In addition to B and B gp; we also compare our estimators with the
ideal infeasible estimator B, which is the maximum likelihood estimator of 5* assuming Y; is observed

with a completely known marginal distribution F*(-):
B = argmﬁaxQn(F*,ﬂ) where Q,(F*, ) = Zlogc *(Yio1), F* (Y1), B). (3.3)

In the next two subsections, we show that although the parameter estimators B p and B p could have
different asymptotic properties, the semiparametric estimators B gp and B gp have the same asymptotic

distribution.

3.3. Asymptotic properties of parametric copula estimator

In this subsection we establish the consistency and limiting distribution for the feasible paramet-
ric copula estimators. We introduce some notation in the parametric case. Let g (Y;—1,Y:, o, 3) =
10gC(F(}/t,1,0Z),F(}/t,OZ),,6) and 9B (81,82,0[,5) = 89 (51752a0575) /aﬁ For ¢ = 1727 .7 = ]-525 we
define

89 (31,82,@,5) ag (8178270575>
b da = gﬁa(slaSQaavﬁ)a b 86 2955(51,82,01,6),

dg5 (81, 82, @, B) 09sp (51,52, @, )
& ) = 9pj (81,82704,,3), op = 39B8j (5173270575):
Sj 68]'

89 81,82,C¥,5 89 (817527a7ﬂ
6 ( ) 9560 (51, 52,0, B) , 22 ) 9poj (51,52, @, B)
Oa s

09si (51,52, , 8 09si (51,52, , 8
/BZ( 0 ) = 9pij (817827a76)7 Bl( ) = JBia (81,82,067/6).
5 Oa

For convenience, we also denote ¢(u, v, 3) = log c¢(u, v, 3), and

90(u, v, (v,

%fﬂ)_gﬁ(uvm (1;5 6)_&(“’%5),W:MM@,
ot » Uy ov , U, oY ,U,
B(SUUB)ZEBl(UJUJ/B)76(;2}1}6)2662(11’707/8)7WZgﬁﬁ(U7’l),B).

For consistency in the parametric case, we make the following assumptions.



Assumption ID1: (1) A and B are compact subsets of R¥* and R¥. (2). q(a) =E[log (Y3, @)] has a
unique maximizer o € A; and Q(8) =E[¢(F(Yi—1,a*), F(Y;, o), 5)] has a unique maximizer 8* € B.
(3) f(y, ) is continuous in o € A, and g (o, 5) =E[g (Yi—1, Ys, a, §)] is Lipschitz continuous in « € A
and § € B.

Assumption M1 (1) E[sup, |log f(Y;,a)|] < oo, and E[supgem aca; |9 Vi1, Vs, o, B)]] < o0. (2)
f(y, @) is uniformly continuous in y, uniformly over o € A, in the sense that for any e > 0, there exists

d > 0, such that if |y; — y2| < 6, then

SUE llog f(y1, ) —log f(y2, )| < e.
ac

Similarly, g(s1, s2, a, 8) is uniformly continuous in (s1, s2, @), uniformly over 5 € B, in the sense that

for any € > 0, there exists § > 0, such that if |s] — s{| + [sh, — s5| + |/ — "] < &, then

sup |g(s}, s, 0", 8) — g(s], s5,0", B)| <e.
€

Theorem 1: Under Assumptions DGP, MX, ID1, M1, and X, BP = 3"+ 0p(1).

We introduce additional notation and assumptions for convenience of developing the limiting dis-

tribution of B p. Denote
Qﬂ =K [6,3 (F*(Y%—I%F*(Y%)vﬂ*)éﬁ (F*(Y%_Q,F*(Y;),ﬂ*)l]

and

g, - p[los ) Dl Oa)] |y _p [log (Vi)

foJe} oo/ dada!
Assumption ID2: (1). Bp = B* + 0,(1) and 5* € int(B) (2) 9Qn(Bp)/08 = 0p(n~2). (3)
(3 (s1,s2,0) is Lipschitz continuous in 3, £g; (s1,s2,/) are continuous in (s1,s2,3). (3). Hg =
—Elgg (F*(Yi—1), F*(Y3), 8%) = Qg is positive definite. (4). f(-,o*) and F(-, o), are differentiable in
a*. (5) Hy = Q4 is positive definite, v/n (& — o*) = N (0,Q4).
Assumption M2 (1) the derivatives of gg (s1, s2, v, 5) are uniformly continuous in (s1, s2, o, 5). (2)

the following limits hold in probability:
1 - * * - .
P”j - E Zgﬁj (Y;f—la Yi,a 16 ) 2—2+an 1n1/2 = P’] + Op(l)’ J=12,
=2

n
Png = n_lzgﬁa(n*hiftaa*aﬁ*):P3+Op(1)'
t=2

1~ 8*log f(V;, 0"
Hypoy = 72 ’ ng( s ) (XgD_1n1/2) = Huoy +0p(1)-

n

10



Theorem 2: Under Assumptions DGP, MX, ID2, M2, and X, as n — 00,
N (BP _ 5*) =~ N (0,H§19§H51> — H;' (P + Py + Py, Hay) €

where

. 1 <& _,0log (Y3, o)

# % * * 1 g ts

Qp = hqlanar <\/ﬁ;<€5(F (Yi1), F*(Y2), B%) + 39, 8oz>>
= Qg+ PP

An immediate result from Theorem 2 is: in the presence of nonstationarity, the limiting distribution
of the parametric copula estimator may not be normal even asymptotically.

From the proof of Theorem 2, we can decompose the limiting distribution of the parametric
copula estimator B into three components: The first part is NV (O, H§195H§1> = N (0,9Qp), the
normal limit of the ideal infeasible estimator when Y; is observed with a completely known mar-
ginal F*(Y;) = F(Y:,a*) (or a known a*); The second part is N(O,Hﬁ_nglePéﬂﬁ_l), the nor-
mal limit from the parametric estimation of marginal parameter o using Y;; The third part is
Hgl (P1 + Py + PgQalHay) &, the effect of nonstationary filtration 172 The first two parts are normal
random variates but the third part may not be normal. Unless P; + P, + P3Q ' Hyy = op(1), the
nonstationary filtration will affect the limiting distribution of the parametric copula estimator B p-
In particular, the filtration affects the limiting distribution of \/n <B p— B*) directly through Y, and
indirectly through @. Unless X; is purely deterministic, the limiting distribution of \/n (B p— B*) is

not normal and is generally affected by nuisance parameters in a complicated way.

Remark 1. Recall the simple asymptotic normality result for the ideal infeasible estimator B , assum-

ing Y; is observed with a completely known marginal distribution F*(-), is given by
Jn (5 - 5*) =N (O,HB*IQBH;) _N (0, H51> = N (0,9p).
From the proof of Theorem 2, we have
7 * —10# 7—1
\/ﬁ(ﬁp—ﬁ ) :>N(0,H5 Of 1 )

Since Q? — Qg Is positive definite, even assuming observable Y;, there is still efficiency loss of the infea-
sible parametric copula estimator B p using a consistent parametric estimator of marginal distribution

F*(). Nevertheless, according to Theorem 2, it is unclear which one, E p Vs B p, is more efficient.

Example 1 (Continued). Trending Time Series. X; is a vector of deterministic trend with a

limiting trending function X (r). Let

2
n=> Egg (Yio1,Y:, 0", 5%) + PQ,'E
j=1

[02 log f(Yt,oz*)] 7 (3.4)

dadY
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and
1
e[t )
PHJHP—EgﬁJ(YVt 17Y;‘/7 a/B /X d’l“]—12

2log f(V;, a
HnayHHayzE[a ng t, :|/ X

notice that,

dadY

we have .

P+ P+ Pgleﬂay = 7]/ X(T’)IdT

0
and
) * —16# 77—

\/ﬁ(ﬂp—ﬁ ) éN(O,HﬁlQﬁHﬁl),
where
o 1 . 9log /0% ) L
Qf = lim Var <ﬁ;gﬁ (Y1, Y3, 0%, B%) + Pas2, ! Z —nXEtan XY .

In this example, since the nonstationary component is deterministic and thus is uncorrelated
with Y3, the limiting distribution of D,, (T — m) coming from nonstationary filtration is normal,
and thus the limiting distribution of the parametric copula estimator in this case B p is normal
although it is affected by the filtration asymptotically which is reflected in the formula of the

limiting variance matrix ﬁ?

Example 2 (Continued). Unit Root. Suppose that the time series Z; is a process with unit root.

Then X; = Z;_1, #* = 1, and the filtration process is an autoregression
Zy =Tl + 27
1 -1 1
n(T—7n")=¢&= [/ By(?")2d’l":| [/ By (r)dBy (r) + A
0 0
with A = >, E(Y1Y144). Then,
N (BP - 6*) = N (0, Hglﬂ?Hgl) — H; " h(By (r))

where 7 is defined as (3.4), and

/ By (r [/ By(r)er}l [/OlBy(r)dBy(r)+)\ .

In this example, the limiting distribution &, coming from nonstationary filtration is non-normal,
and thus the limiting distribution of the parametric copula estimator B p is not normal because

it is affected by the filtration asymptotically.
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Example 3 (Continued). Cointegrated Time Series. X; = (X7{;, X%,)’, where Xy, is a vector of

deterministic trend, and Xo; is a vector of unit root process, then

1 1
P.j = P; = Bgg; (Yi_1,Yi, 0, 8°) [ / X, (r)'dr, / Ba(r)’dr] =12
0 0

and )
o [0%log f(Yi, @
HnaYﬁHaY—E[ 900y :| / X
Then,
Vi (Bp = 8°) = N (0, H7 ' QF HF') — nH ' ha(Xa, B2, By)
where

ha(X1, Ba, By) — [ /O ' Xu(rydr, /O 1Bg(r)’dr]

Jo X1(r)dBy (r) ]
fo Ba(r)dBy (r) + Agy

In this example, since the nonstationary component contains a vector of stochastic nonstationary
process Xo; which is usually correlated with Yz, and a bias term Aoy, the limiting distribution
coming from nonstationary filtration is not normal. Thus the limiting distribution of the para-

metric copula estimator in this case Sp is not normal.

3.4. Asymptotic properties of semiparametric copula estimator

We denote the space of continuous probability distributions over the support of Y; as F, then F' € F.
For an appropriate positive weighting function w (-) (whose property is specified below in Assumption

SP), we define a weighted metric |||, as
1F = F, = Sup {E () = F"(y)} Jw(F"(y))]-

For a small § > 0, let Fs ={F € F:||F - F*|, <0}. Then, F* € F5, and F), € F;5 with probability
approaching 1 as n — oo.
Assumption SP: (1) There exists Y, for |y| > Y, and any sequence 6,, = o(1), |F(y + &,) — F(y)| <
F(y)(1+0(1)). (2) w(-) is a continuous function on [0, 1] which is strictly positive on (0, 1), symmetric
at u = 0.5, and increasing on (0,1/2], satisfying w(u) > ¢ [u(1 —u)]*log(1/(u(1 — u)))** with ¢ > 0,
>0, p<1/2q, ¢ > 1.

We first establish an important Lemma for a weighted empirical process that is of independent

interest to handle filtration for time series. Consider b = (b, - -, b,)’, let

zn: [1 (Yt <y+ n_l/zbt> — F*(y+n"Y2,)

1
Zn(y,b) =
(y,b) 1

13



and denote |b| = max; |by|.

LeMMA 1. Under Assumptions DGP, MX, SP, and X, for any given B > 0,

sup sup Zn(y7 b) - Zn(y> 0)
b|<B w(F*(y))

= 0p(1).

We modify the assumptions ID1 and M1 to facilitate asymptotic analysis in the semiparametric
case.
Assumption ID3: (1). B is a compact subset of R*. (2) E[¢g(F*(Y;-1), F*(Y3), 8)] = 0 if and only
if =% €B. (3) g (s1,s2,) is Lipschitz continuous in 3, £g; (s1, s2, ) are continuous in (s1, s2, ).
Assumption M3 (1). E[supscss 145 (F* (Y1), F*(Y2), 8) | log (1 + €5 (F*(Yi-1), F*(¥3), B)II)] < oc.
(2). Efsupgen e, 165 (F(Yi1), F(Y0), )| w(F*(Yiezs;))] < 00,5 = 1,2. (3). sup, |£(y)/w(F*(y))] <
00.

Theorem 3 below gives the consistency of the semiparametric estimator.
Theorem 3: Under Assumptions DGP, SP MX, ID3, M3, and X, BSP ="+ o0, (1).

The following additional assumptions are added for asymptotic normality of B Sp-
Assumption ID4: (1). Assumption ID3 is satisfied with 5* € int (B), (2) Hg = —Elgg (F*(Yi—1), F*(Y2), 87)
is positive definite. (3). sup, [(Fn(y) — F*(y)) /w(F*(y))| = 0,(n=1/2).
Assumption M4 (1). Let F,, = F* + n[F — F*] for n € [0,1] and F' € F;, the interchange of
differentiation and integration of £g (F,(Y;-1), F, (), 8,) w.r.t n e (0,1) is valid.
(2) EJsupjs_ e <s.rer, 16 (F(Yi1), F(Y0), B)|*log (1 + |65 (F(Yi-1), F(Y,), B)])] < o0,
B [supjs_s- <5 per, s (F(Yem1), F(Y), B)I| < oo.
(3). E[SUPHB—L?*HS&FGJ-‘(; 1€5; (F (Y1), F'(Y2), B)|| w(F*(Yt—zﬂ'))r <oo,j=1,2
E[supjs s <s.re, 105 (F(Yir), F(Y0).B) w(F* (Vigia))w(F* (Viagoa))| < o0, 1.5 = 1.2
E :SUPHB—B*HS&FG}'(; 1€55; (F(thl)aF(Kﬁ)»ﬁ)w(F*(Yl%jfﬂ)H] <00, 4,5 =1,2.

Denote
n

1
gn =
LD =

{€s (F*(Yi—1), F*(Yy), 5%) + Go(Yz) + G1(Yi-1) },
where
1 1
G,(Yiey) = /0 /0 [L(F*(Yi_y) < va_y) — 03—y €52 (01, 09: B%) ¢ (vr, vas B87) dvrduz, j = 0, 1.

Let
Qg = lim Var (G,) = Qg + Var (Go(Y;) + G1(Yi-1)) -

n—oo

14



Theorem 4: Under Assumptions DGP, SP, MX, ID4, M4, and X, as n — 00,
vn (Bsp - B*) =vn (Esp - B*) +op(1) = N (0, Hglggﬂgl) :

In contrast to Theorem 2, which shows that the nonstationary filtration affects the limiting distri-
bution of the parametric copula estimator B p, Theorem 4 shows that the nonstationary filtration does
not affect the limiting distribution of the semiparametric copula estimator B gp, which is the same as
that of the infeasible semiparametric copula estimator B gp using Y;.

From the proof of Theorem 4 in the Appendix, we can again decompose the distribution of the
semiparametric copula estimator BS p into three components: The first part is NV (O, H/ngﬁ H51> =
N (0,€3), the normal limit of the ideal infeasible estimator  when Y; is observed with a completely
known marginal distribution F™*(-); The second part, denoted as A2+ Ap4 in the Appendix, is from the
nonparametric estimation of the unknown marginal distribution using Y;, and is also asymptotically
normal; The third part, denoted as A,1 + An3 in the Appendix, is the effect of nonstationary filtration
EAQ. We show in the Appendix that A,; + A,3 = 0p(1), thanks to the fact that the nonparametric
marginal distribution estimator enters the copula score function in a symmetric manner that absorbed

and cancelled the filtration effects. Therefore, the distribution of \/n (BS p— 6*) is only asymptoti-
cally affected by the first two parts. Consequently, the limiting distribution of v/n (BS p— B*) is the
same as that of \/n (B sp — ﬁ*), which is always normal.

Remark 2. Chen and Fan (2006b) studied the following class of semiparametric copula-based multi-

variate dynamic models

Zy = (Z1gysZag),  Zjp = (0°) +054(07)Y4,
pif(0°) = ElZjlTia), 05,(0%) = VarE[Z|Ti),
Y; = (Yit...,Yas) Isindependent of T, 1, and {Y;}; , isiid. overt

where the joint distribution of the multivariate standardized innovation Y; = (Y1, ..., Yq) has the con-
current copula density ¢(F1(Y1y), ..., Fy(Ya); B) that links marginal distributions Fj(Yj:),7 = 1,...,d
of individual standardized innovation at the same time period t. Chen and Fan (2006b) established
that the asymptotic distribution of the semiparametric (two-step) copula parameter estimator using
the filtered standardized innovation fft is the same as that based on true multivariate standardized
innovation Y;, and hence is not affected by the estimation of the dynamic conditional mean and volatil-
ity parameters 6. Although results look similar, we should stress that the result behind Chen and
Fan (2006b) crucially depends on the independence between Y; = (Y14, ..., Y4,) and the dynamic part
Zi—1 of the observed time series Z;. However, in the presence of nonstationarity (say, unit-root or
cointegration) as in our paper, X; can be correlated with the residual term Y;, and hence our Theorem

4 could not be explained by that in Chen and Fan (2006b).
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3.5. Semiparametric inference on copula parameters

The simple and robust asymptotic properties of the semiparametric (two-step) copula estimator greatly
simplify all kinds of statistical inferences on copula models for latent {Y;}. In this section, we briefly
mention the Wald test for restrictions on the copula dependence parameters 8 using the asymptotic
results of Theorem 4.

Consider the general linear restriction Hp : RS* = r. A leading example is the significance test

for 8: Hps: B;k = By;- Notice that under the null Ho; and regularity assumptions,

N (RBSP - 7’) =~ N (0, RHflegHglR’) ,
where Hg and Qg are defined in Theorem 4. Thus, under Hyi, as n — oo,
~ / —1 ~
n (RBSP - r) {RHgIQEHﬂ‘IR’} (RBSP _ 7") =3,
where d, is the number of restrictions.

In order to construct the Wald test, we need to estimate Qg = lim, ., Var(G,), and Hg =
—Elgg (F*(Yi—1), F*(Y;), 5%). We may estimate Hg by the sample analog:

_ 1 (Y. 0 F(V). 3
Hg = - Zﬁﬁﬁ (Fn(y;:—l)7Fn(Y75)7/BSP) )
t=2

and estimate QE by a nonparametric kernel estimator:

Qf = hiMK <J\h4> 3., (h).

with .
0= 3 5i(FaB) S (RaB)
2<t,t+h<n
where

St (ﬁn,B) = {3 (ﬁn(?t—l—i—l)y ﬁn(?t—l—z),B) + é[)(ﬁ—&-i) + al(i}t-&-i—l)
@j(}/}t_j) = /01 /01 [1 (ﬁn(ﬁ_]) < Ug_j) — Ug_j} lgo_j (vl,vz;B> c (vl,vg;g) dvidvs, j = 0, 1.
We define the Wald test statistic as
W, =n (RBSP - 1“)/ [RﬁglﬁgﬁglR’] o (RBSP - 1“)
We assume the following bandwidth condition for the consistency of covariance estimator for QE

Assumption BW: As n — 0o, M — oo and M = o(n!/3).

Theorem 5. Under Assumptions DGP, SP, MX, ID3, M3, X, and BW, we have: (1) (AZE =
QE +0,(1). (2) Under Ho1, W), = X?lr where d, is the number of linearly independent restrictions.
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4. Semiparametric Estimation Under Copula-Misspecification

4.1. Semiparametric two-step estimation of pseudo-true copula parameters

Our previous analysis considers the case where the copula function is correctly specified. In some
applications, economic or finance theory may shed little light on the specification of a parametric
copula model. Although in practice one may select a copula to capture the main source of nonlinear
correlation by eye spotting a simple plot of ﬁn(fﬁg) against ﬁn(ﬁ,l) to roughly exam the dependence
in data, the copula model is in general an approximation and maybe potentially misspecified. In
practice, there might be multiple parametric copula functions that can generate the similar observed
tail dependence structure. For this reason, in this section we consider our model when the copula
functions are potentially misspecified.

Theorem 4 shows that the nonstationary filtration does not affect the limiting distribution of the
semiparametric copula estimator for correctly specified copula functions. Since Monte Carlo results
reveal the good finite sample performance of semiparametric copula estimator, we shall focus on
semiparametric copula estimator allowing for misspecified copula functions in this section.

Suppose that the true copula function that captures the dependence in Y; is given by C*(u,v), but

we consider a copula function C'(u, v, 3) and estimate 8 by B which maximizes
1 n
Lo(B) = = logc(Fn(Yio1), Fn(Y2),B),
"=

where ﬁn(ﬁ) is the EDF of Y; estimated based on the filtered time series {}7}} as in Section 3.2.

The infeasible semiparametric estimator based on unobserved Y; maximize
1 n
Ln(ﬁ) = - Z IOg C(Fn(Yi—l)a Fn(Y;f)7 /B)
iz

where

1
Fn(y):nJrl 1(Y; <y).
t=1

The maximizer of L, (3) will converge to the pseudo-true value 3 of the copula dependence parameter
defined as the minimizer of the Kullback-Leibler Information Criterion (KLIC) between the candidate

parametric copula density and the true unknown copula density,
B = arg mﬁin KLIC (¢*, ¢ (-, B))
where following White (1982),

KLIC (¢*,¢(+,8)) = Elogc¢* (F*(Yi-1), F*(Y1)) — Elog c(F*(Yi-1), F* (Y1), B).
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In the special case when the class of copula functions C(u,v, ) is correctly specified, C*(u,v) =
C(u,v, ). In this section, we show that, even in the misspecified case, the nonstationary filtration
does not affect the limiting distribution of the semiparametric estimator when it is centered around
the pseudo-true parameter 3. Similar to Theorem 2 for the correctly specified case, the limiting
distribution of parametric copula estimators based on filtered time series under copula misspecification
are again affected by the preliminary filtration, and may not be asymptotic normal in the presence of

a nonstationary component.

We still denote £(u, v, 8) = log c(u, v, 3) and define its derivatives in the same way as in Section 3,
but keep in mind that the copula function is misspecified.

We make the following regularity assumptions, which are parallel to the assumptions in Section
3.4, but modified to accommodate the misspecified copula.
Assumption ID5: (1). 8 € B, B is a compact subset of R¥. (2) Q(B) =E[{(F*(Y;_1), F*(Y3), B)]
has a unique maximizer 8 on B. (3) Q (B) is Lipschitz continuous in 3 € B.

Theorem 6. Under Assumptions DGP, MX, ID5, M3, and X, B = B+ 0, (1).

Assumption ID6: (1). Assumption ID5 is satisfied with 3 € int (%8), (2). Hp = —Ells3 (F*(Y}_l), F*(Yt),B)]
is positive definite. (3). sup, |(Fu(y) — F*(v)) /w(F*(y))| = 0,(n=1/2).
Assumption M6: Assumption M4 holds for the misspecified log density ¢(u, v, §) around the pseudo-
true value [ .
Let Qg = lim,, o Var(G,) where G, =n~ 23" 43 (Uj—1,U;, B) and Uy = F*(Yy),

1
U5 (U;-1,U;,B) = L3 (Uj—1,U;, B) + ZE (82— (Ui—1, U, B) 1 (U; < Up—y) — Upi]| Uj]

1=0

Theorem 7. Under Assumptions DGP, MX, ID6, M6, and X, as n — oo,

Vn (BSP - B) =Vn (551: - B) +op(1) = N (QF;QBFEI) :

Theorem 7 shows that, in the case of misspecified copula, the nonstationary filtration does not
affect the limiting distribution of the semiparametric copula estimator B gp (centered at the pseudo-
true parameter (), which is again normal, the same as that of the infeasible semiparametric copula

estimator Sgp using Y;, under misspecification.
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4.2. Semiparametric inference on copula model selection

We next consider copula model selection using the asymptotic result derived in this Section. In prac-
tice, there might be more than one copula functions that can generate the similar observed dependence
structure, and we want to select a copula function among candidate copula functions. Suppose that
there are two candidate classes of parametric copula models given by C} (ul, U3, ,Bj), j=1,2. We are
interested in selecting a copula model from these two candidates. Corresponding to the j-th copula,

the conditional log likelihood of Y; given Y;_; is given by

log f*(yt) + log ¢; (F* (yt—1) , F* (yt) , B;)-

Notice that the first term log f*(y:) is not dependent on the copula, we may consider the following

log-likelihood ratio:
c2(F” (1), F* (1) » Ba)

ct(F* (Ye—1)  F* (), B1)

If we consider the hypothesis Hyo: Copula model Cy (u,us2, ;) is not worse than copula model

LR =log

Cy (uq,uz, B9); vs. Hy: Copula model Cy (uq,uz, 81) is worse than copula model Cs (uq,ug, 85). Then,

under Hp, LR is small (negative). Otherwise, it is large (positive). In practice, neither F' nor Y; are

observed, and have to be replaced by appropriate estimates. Let Bj ( = 1,2.) be the semiparametric
n

estimator (E S P) using the filtered time series{)/}t} and based on model j, we construct the following
pseudo-likelihood-ratio (PLR) statistic

based on

For convenience of asymptotic analysis, we introduce the following infeasible PLR statistic LR,

based on unobserved {Y;}} |,

LRn — l Zlog CQ(Fn(Y;t—l%Fn(Y%)aég)?
n t—2 Cl(Fn(Y;f—l)7Fn(n)7/61>

where Bj (j = 1,2.) are the semiparametric copula estimators based on model j and {Y:};"; and

1 n
Fo(Y;) = —— 1Y; <Y,).
n( t) n+1 4 ( Jj = t)
7j=1
The following theorem shows that the PLR statistic ﬁn is asymptotically equivalent to the

infeasible PLR test LR,,.
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Theorem 8: Under Assumptions DGP, SP, MX, ID4, M4, and X, as n — oo, (i) If
Pr{(Y1,Y2) : c1(F* (Y1), F*(Y2), B1) # c2(F* (Y1), F*(Y2), B2) } > O,
where Bj are the pseudo-true values of the copula dependence parameters,
NG (Eﬁn - LRn> =0,(1).
(it) I Pr{(Y1,Y2) : e1(F*(V1), F*(Y2), 1) = c2(F* (Y1), F*(Y2), By) } = 1,

n (Zﬁn - LRn) =0, (1).

Theorem 8 shows that, under our assumptions, the limiting distribution of the pseudo-likelihood-
ratio (PLR) test Z}\zn is the same as the infeasible PLR statistic LR, based on unobserved Markov
series {Y;}; ;. Thus, Chen and Fan (2006b) can be slightly modified to conduct PLR copula model
selection test for latent Markov series {Y;} using nonstationary filtered data. In particular, when the

two copula models are generalized non-nested in the sense
Pr{(Y1,Y2) : c1i(F*(Y1), F*(Y2), B1) # c2(F* (Y1), F*(Ya), B3) } > 0,

the null hypothesis Hy is a composite hypothesis, and we may consider the least favorable configuration
(LFC) which satisfies

E |log

CQ(F*(Y;:_l), F*(Y;f)732) =0
B '

Cl(F*(Y}fl%F*(Y;)’ )
Thus, under the LFC and other regularity Assumptions,

\/ﬁf}\%n :>N(0,w2),asn—>oo,

with

1 n 2 1 n

2 . ) 3 A
w” =limVar | — s(Up—1,Uy, By, B1) + — Z {92]' (Ul,ﬁz) — 015 (Ul,51)}] )
Vn t=2 j=1 Vn 1=2
where ( _ )
S — c2(Us—1,Us, By .
S(Ut—17 Ut75 75 ) = log = ) Ut =F (1/%)7

2l c1(Ui-1, Uy, B4)

and

9 (U1, B;) = E{ [alogcé((g:zft’ﬂi)] (LU < Up—24y) — Ut2+j)]‘ Uz} :
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Let &2 be a consistent long-run variance estimator of w? based on

gt(BlaBQ) = log ———— =/~
a(F (Vi) F (V)
and fori=1,2,5j=1,2,
e[ (L) F ()R]
i () - - (07 (7) <7 (5 0) -7 (7))
1=2+4j
Then we may consider the following testing statistic

VnLR,

w

=2

L, =
Under the LFC and generalized non-nested case,
L, — N(0,1), as n — oo.

Many applications using non-nested copula models, the above model selection test is directly
applicable. For theoretical completeness, we could also consider generalized nested case, in which
CI(F*(Y1>7F*<Y2)731) = CQ(F*(}/I):F*<Y2)7BQ)7 a.s.. Denote

9805 = Hig=- BRELA

:_72”:8210% W(Yie1), Fa(V2),B;) . 821ogcj(F*(Yt1),F*(yt),5j)]

and let Uy = F*(Y), and G, = n~ 230 455 (Uj-1),Uj), B;), 5 = 1,2, where

Vi - 81 . U47 ,U' ’*'
Ui (Uj-1),Uj),B;) = 0g ¢ ( 551.) ), 55)
J

9?log ¢ (Ur—1, Uy, B;)
0B,;0U;—;

1

+) E

[L(Uj < Up—i) — Up—i]
=0

[gQ’"]:HV(O, >
gl,n

Under the null, 2nf§n converges to a weighted sum of independent y? random variables in which

Uj

then B -
Qog Qo1

— _
Q2,1 QI,B

the weights (A1, - -, Ak +k,) 1s the vector of eigenvalues of the following matrix
—=—1
7_1 .
—H, 5
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5. Monte Carlo Studies

In this section, we exam the finite sample performance of the parametric and semiparametric copula
estimators based on filtered time series {}A/t} We compare the sampling performance of the semi-
parametric estimator B gp with the parametric estimator B p under correct and incorrect specifications
of the marginal distribution F* (of the latent Y;); in particular, E p« signifies the B p under correct
specification and B p1 Signifies the B p under incorrect specification of F*. In addition, for comparison
purpose, we also look at two infeasible copula estimators based on the true values of {Y;}: the infea-
sible parametric estimator B p« under correct specification of F*, and the infeasible semiparametric
estimator BS p using {Y;} process (no filtration is needed).

DGP designs: The observed time series {Z;}} ; is generated by Z; = X{n* +Y;, where {Y;}7,
is a latent first-order stationary Markov process generated from a copula function C(-,-;3) and a

marginal distribution F* such that the joint distribution of (Y;_1,Y;) is given by

G*(Yt—1,yt) = C(F™ (yr—1), F (yr); B%).

In the Monte Carlo studies, we have examed various combinations of three kinds of filtering part X/m*,
four kinds of copula functions C(-,-; ) with a range value of the copula parameter 3, and two kinds
of marginal distributions F™.

Three types of X[7*: (1) X} is a deterministic trend process; in particular we use a linear trend,

ie. Xy = (1,t), and {Z;} are generated by
Zy=my+mt+Y;, with m5=02,7] =0.3. (5.1)
(2) Z; (and thus X; = Z;_1) is an unit root process:
Zy =77, 1+Y; with 7" =1. (5.2)
(3) X¢ is an I(1) process and is cointegrated with Z;,
Xe=Xi1+6, with Zy=7"X¢e+Y;, with 7" =1. (5.3)

Two types of true marginal distributions: (i) symmetric one: student-#(3) distribution; (ii)
asymmetric one: re-centered Chi-square with d.f. 3.

Four types of copula functions: (A) The Gaussian Copula. Let ®3(-,-) be the distribution
function of bivariate normal distribution with mean zeros, variances 1, and correlation coefficient S,

and ® be the CDF of a univariate standard normal. The bivariate Gaussian copula is given by

Clu,v;8) = @p(¢ " (u), 27 (v))

2 2
(s* —20st +t )}dsdt.

1 &) ,d1(v)
T oo /1- /_oo /_oo eXp{_ 2(1 - 4%
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If the marginal distribution of Y; is F*(-). denote U; = F*(Y};), then the joint distribution of U; and
Utfl is

Clug—1,u; 8) = @p(~ (ur—1), " (ur)).
(B). The Frank copula:

Bu—i-v

L =pa-p]
1-8 1-8

C(u,v; 8) = log(871) if B> 0, 8#1.

(C). The Clayton copula:
C(u,v; 8) = [u_ﬁ +o 8- 1]_1/5, where (> 0.
(D) The Gumbel copula:
C(u,v;8) = exp{—((—lnu)ﬁ + (—lnv)ﬁ)l/ﬁ} for 1< <o0.

Gaussian and Frank copulas have zero tail dependence. Clayton copula has zero upper tail dependence
but positive lower tail dependence (2_1/ B ) that increases with 8. Gumbel copula has zero lower tail
dependence but positive upper tail dependence (2 — 21/6 ) that increases with $. The overall temporal
dependence in Y; measured as Kendall’s tau is all increasing with copula parameter § in all these
copula models. Finally, the Y; generated according to all these copula functions are automatically
beta-mixing with exponential decay. See, e.g., Chen, Wu and Yi (2009).

For all the above models, we investigate the finite sample performance of the five copula estima-
tors mentioned at the beginning of this section: the three feasible ones BS P, B p+ and B p1 use the
nonstationary filtered data; and the two infeasible ones B gp and B p« use the true Y; process (without
filtration). Recall that B gp and E gp have the same asymptotic normal distribution, which does not
depend on the filtration or the functional form of F*. The infeasible B p« 18 asymptotically normal,
with the limiting distribution independent of the filtration but does depend on the parametric estima-
tion of F*. The two feasible parametric estimators B p« and B p1 have complex limiting distributions
that depend on both the filtration and the parametric estimation of F'*, while they are asymptotically
normal under deterministic trend filtration, are generally non-normal under stochastic trend (the unit
root and cointegration) filtration.

In Appendix A we present all the monte Carlo tables. For each table, the number of Monte Carlo
repetition is 2000 and the simulated sample size is n = 500 (although we considered a larger sample
size of n = 2000 in a few tables as well). The Monte Carlo bias, variance, and the Ratio of MSE of an
estimator over the MSE of B p+« denoted by "Rmse", are reported in each table.

All the simulations reveal the following patterns. First, the semiparametric copula estimator BS P

performs well in terms of finite sample bias, variance, "Rmse" compared to the correctly specified
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parametric estimator E p+« in most situations. Second, for all the cases when there is no strong lower
tail dependence, both the semiparametric copula estimator B gp and the correctly specified parametric
copula estimator B p+« perform much better than the parametric copula estimator B p1 using incorrectly
specified parametric marginals. The parametric copula estimator for copula dependence parameter 3*
is very sensitive to the specification of parametric marginals, while the semiparametric copula estimator
is truly robust to functional form of marginals as well as the nonstationary filtering. Third, the feasible
semiparametric estimator BS p and its infeasible version 3 gp are reasonably close, corroborating the
asymptotic results - the efficiency loss from filtration in the semiparametric estimators are of second
order magnitude. The feasible parametric estimator B p« and its infeasible version B p+ are less close
to each other, signaling that the parametric estimator is sensitive to nonstationary filtration. Forth,
an interesting exception is the case for Clayton copula with very strong lower tail dependence (or
large parameter value 5*). In this case, the infeasible parametric copula estimator B p+ performs much
better than the feasible parametric estimator B p« and the semiparametric estimators, BS p and B sp-
The performance of BSP is again similar to the infeasible 3gp for Clayton copula with very strong
lower tail dependence, which has been shown to perform poorly (due to big bias) in Chen, Wu and Yi

(2009).2 We plan to investigate this issue in future research.

6. Empirical Applications

In this section, we consider two empirical applications to highlight the potentials of our proposed

models and methods.

6.1. An application to macro time series

An important literature in empirical macroeconomic analysis is the study of long-run properties and
short term dynamics of GNP. Many studies (e.g. Blanchard 1981, Kydland and Prescott 1980, etc)
argue that GNP reverts to a long term trend following a shock, and that fluctuations in output
represent temporary deviations from the trend. Various macroeconomic theories are designed to
produce and understand the dynamics of transitory fluctuations that deviates from the long run
trend. Studies on the transitory shocks provide important information on the prediction of variation
in GNP growth. (see, e.g. Cochrane (1994), King, Plosser, Stock and Watson (1991)).

A time series that provides a good estimate of the "trend" in GNP is "consumption". Cochrane

(1994) provides empirical evidence on the role of consumption as an measurement of long run compo-

?Chen, Wu and Yi (2009) had shown that Clayton copula generated Markov process {Y¥;} is beta-mixing with expo-
nential decay. Ibragimov and Lentzas (2017) provided simulation evidence that, in finite samples, the time series plot of
the Clayton copula generated stationary Markov process {Yz} may exhibit a spurious long memory-like behavior when

the lower tail dependence is strong. This might explain the poor finite sample performance in this case
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nent in GNP. In this section, we apply our model to estimate the short term dynamics in GNP time
series based on the cointegrating regression of GNP on consumption. In particular, we consider the

following trending cointegrating regression
Zy=ap+art+a Xy +Y; (6.1)

where Z; is the logarithm of real GNP and X; is the logarithm of real consumption. The permanent
component of the GNP series is characterized by a linear time trend combined with a stochastic trend
X;. We assume that the latent process {Y;} is a stationary first-order Markov process generated from
a flexible copula C (-, -; 3).

All data are from FRED® Economic Data.? We consider quarterly time series from 1947 Q1 to
2019 Q2, with length 290. Consumption is defined as the sum of nondurables and services. We first
exam the nonstationarity of these series. In particular, we apply the ADF test to these series based

on the following regression

P
Zy=bo+6t+pZi1+ Y bidZ i+
i=1
The ADF testing statistics of the GDP and consumption time series are —1.530622 (lag length = 3),
and 0.206161 (lag length = 3) respectively, both are smaller (in absolute value) than the 5% critical
value (—3.43), thus the null hypothesis of a unit root can not be rejected.

We then exam the relationship between these two time series based on the cointegrating regression
(6.1). The Engle-Granger two-step cointegration test statistic is —4.13, rejecting the null hypothesis
of no cointegration (5% critical value —3.78).

Next, we study the short term dynamics in the latent process {Y;} using the fitted residual series
{)A/}} obtained from the cointegrating regression (6.1). Figure 6.1 presents the scatter plot of the
empirical cdf standardized realizations of the filtered time series {?t} The figure indicates possibly

presence of asymmetric tail dependence.

Given the small sample size of n = 290, to capture possibly asymmetric tail dependence we consider

the Joe-Clayton copula:
Clu,v;8) =1 — {1 —[(1 —a’2) P14 (1 —vP2)=F1 — 1" VB }1/B2 (6.2)

where t =1—wu, v =1—wv, 8= (81,8,) and 8; > 0, 35 > 1. This family of copulas has the lower
tail dependence given by Az, = 271/81 and the upper tail dependence given by Ay = 2 — 21/82. When

*https://fred.stlouisfed.org/https://fred.stlouisfed.org/
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Figure 6.1: Scatter Plot of the standardized GNP residuals

Bo = 1, the Joe-Clayton copula reduces to the Clayton copula:
C(u,v; 5) = [u_’B +o0 P — 1]_1/5, where [ =3, > 0.

When £, — 0, the Joe-Clayton copula approaches the Joe copula whose upper tail dependence increase
as (5 increases. See Joe (1997) and Patton (2006) for other properties of the Joe-Clayton copula.
The semiparametric two-step copula parameter estimates are: 31 = 3.902; 32 = 2.765. We
examine tail dependence based on the copula parameter values 5; and 3,. We first test the lower tail
dependence based ;. The estimated value of ; is 3.902, and the corresponding t-statistic is 5.04
(p-value < 0.1%) which is significantly greater than 0, rejecting the null hypothesis of no lower tail
dependence at 5% level. Next, for upper tail dependence, the estimated value of [, is 2.765, and the
corresponding t-statistic is 5.36 (p-value < 0.1%). We reject the null hypothesis Hy : 5 = 1 at 5%

level. Thus, we conclude that we find tail dependence in the short term dynamics of GNP.

6.2. An application to financial time series

The CAY time series (Lettau and Ludvigson (2001)) has been often used in macro-finance applications.
Lettau and Ludvigson (2001, 2003, 2009), Chen and Ludvigson (2009) studied the role of consumption
and fluctuations in the aggregate consumption—wealth ratio for predicting stock returns. They argue

that investors who want to maintain a flat consumption path over time will attempt to “smooth
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out” transitory movements in their asset wealth arising from time variation in expected returns.
When excess returns are expected to be higher in the future, forward-looking investors will react by
increasing consumption out of current asset wealth and labor income, allowing consumption to rise
above its common trend with those variables. When excess returns are expected to be lower in the
future, these investors will react by decreasing consumption out of current asset wealth and labor
income, and consumption will fall below its shared trend with these variables. In this way, investors
may insulate future consumption from fluctuations in expected returns, and stationary deviations from
the shared trend among consumption, asset holdings, and labor income are likely to be a predictor of
excess stock returns.

We apply the copula model to capture the short term dynamics in the consumption—wealth ratio
time series. Since this time series is not directly observed, Lettau and Ludvigson (2001) argue that
consumption (¢;), asset holding (a;) and labor income (y;) are cointegrated, and that deviations
from this shared trend summarize agents’ expectations of future returns on the market portfolio. In
particular, the residual term from a cointegrating regression of consumption (¢;) on asset holding (a;)
and labor income (y;) is called the "CAY" time series by Lettau and Ludvigson (2001). The "CAY"
time series contain important information of future returns at short horizons.

We use the dataset from the website of Martin Lettau. The time series is from 1952Q4 to 1998Q3.
The unit root nonstationarity in time series ¢, a¢, y¢ can be verified. In particular, the ADF t-test
statistics corresponding to (¢, ar, y¢) are —1.233, —2.603, —0.7918, thus the unit root hypothesis can
not be rejected. We then consider a cointegrating regression of consumption (¢;) on asset holding
(at) and labor income (y;). The Engle-Granger 2-stage cointegration test statistic is -3.93, rejecting
the null hypothesis of no cointegration (the 5% level critical value is -3.81). Figure 6.2 presents the
corresponding scatter plot of standardized realizations of the CAY time series. The figure indicates

presence of lower tail dependence.

We again consider the Joe-Clayton copula model given by (6.2). The semiparametric two-step
copula estimates are Bl = 2.050; Bz = 1.356. We test lower tail dependence based on ;. The
estimated value of this parameter is 2.05, and the corresponding t-statistic is 4.95 (p-value < 0.1%).
The null hypothesis of no lower tail dependence in the CAY time series is rejected at 5% level of
significance and lower tail dependence is detected.

For upper tail dependence, the estimated value of (5 is 1.356. Corresponding to the null hypothesis
Hg : 85 = 1, the t-statistic is 1.825. We reject the null at 5% level. However, the p-value corresponding
to this t-statistic is 3.414%, we can not reject the null hypothesis at 1% level. Given this marginal

empirical evidence for upper tail dependence, we further conduct a likelihood ratio (LR) test for
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Figure 6.2: Scatter Plot of the standardized CAY residual time series

Hg : 85 = 1. The corresponding LR statistic equals 4, with a p-value equals 4.6%, marginally rejecting
the null at 5% level, but could not reject it even at 4% level of significance. Thus, the evidence of
upper tail dependence is relatively weak.

Thus, we conclude that we find significant lower tail dependence and moderate upper tail depen-

dence in the CAY time series.

7. Conclusion

We propose a component approach to study nonstationary time series with nonlinear short term
dynamics that may also exhibit tail dependence. The observed time series can be decomposed into a
nonstationary part and a stationary Markov component generated via a copula. The nonstationary
component can be removed by a filtration, and the copula-based Markov model is used to capture the
weakly dependent nonlinear dynamics (and the tail dependence) in the filtered time series.

When the marginal distribution of the filtered time series is parametrically estimated, we show that
the limiting distribution of the parametric (two-step) copula estimator can be affected by the filtra-
tion and the estimation of the marginal distribution, and may not be normal under stochastic trend
filtration. However, when the marginal distribution of the filtered time series is nonparametrically

estimated, we find that the limiting distribution of the semiparametric (two-step) copula estimator is
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not affected by the nonstationary filtration and is asymptotically normal. The surprising result for
the semiparametric two-step copula estimator is also extended to models with misspecified residual
copula function. Monte Carlo studies reveal that, for different kinds of nonstationarity, symmetric
or asymmetric unknown marginal distributions, various copula functions with or without tail depen-
dence, our semiparametric (two-step) copula estimator not only is robust, but also performs very
similarly to the infeasible semiparametric copula estimator without filtration. The simple and robust
asymptotic properties of the semiparametric copula estimators greatly simplify statistical inference on
nonstationary filtered copula-based time series models. These results have many practical implications
for empirical analysis of nonstationary nonlinear time series in economics and finance.

The results in this paper can be extended in many directions. First, other copula estimators, such
as those in Oh and Patton (2013) and Chen, Wu and Yi (2009), can be studied. Second, notice that,
given a copula function C(u,v) of the latent first-order Markov process {Y;}, differentiating C'(u,v)
with respect to u, and evaluate at u = F*(x), v = F*(y), we obtain the conditional distribution
of Y; given Y;_1 = z. Consequently, a time series with nonlinear dynamics satisfying the specific
copula can be generated based on the conditional distribution (Chen and Fan 2006a, Chen, Koenker
and Xiao 2009), and thus the bootstrap approach can be studied as an alternative inference method.
Finally, multivariate nonstationary filtration may be considered with the latent stationary multivariate
Markov process {Y;} generated by contemporary and temporal copulas as in Remillard, Papageorgiou
and Soustra (2012), Beare and Seo (2015) and others.
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A. Appendix A: Monte Carlo Results

In the Monte Carlo studies, we have examed various DGPs that are different combinations of three
kinds of filtering part X;7*, four kinds of copula functions C(-,-; 8) with a range value of the copula
parameter 5, and two kinds of marginal distributions F* of Y; given in Section 5 of the paper. In
each table below, the number of Monte Carlo repetition is 2000 and sample size is n = 500 (we also
considered a larger sample size of n = 2000 in a few tables). The Monte Carlo bias, variance, and
"Rmse" (the Ratio of MSE of an estimator over the MSE of 3 p+) are reported in each table.

We investigate the finite sample performance of the semiparametric copula estimator ESP, the
parametric copula estimator with corrected specified parametric marginals B p+; the parametric cop-
ula estimator with a normal distribution as the incorrectly specified distribution 3 p1; the infeasible
parametric estimator B p« with corrected specified parametric marginals; and the infeasible semipara-
metric estimator BS p. Both ESP and B p+ are computed using {Y;} directly, and are presented for
comparison purpose.

Recall that BS p and B gp have the same asymptotic normal distribution, which does not depend
on any filtration and the specification of F*. The infeasible B p« 1s asymptotically normal, with the
limiting distribution independent of the filtration but does depend on the parametric estimation of
F*. The limiting distributions of B p+ and B p1 depend on the filtration and the parametric estimation
of F* in complicated ways; they are normal under the deterministic trend filtration, but, are generally
non-normal under the stochastic trend (the unit root and cointegration) filtration.

Table 1 and Table 2 report the finite sample performances of the estimators for models with
deterministic trending time series. In particular, Tables 1A - 1D below summarize simulation results
corresponding to the deterministic trending model (5.1) when the true marginal distribution is student-
t(3) distribution (symmetric dist.), with Table 1A for Gaussian copula, Table 1B for Frank copula,
Table 1C for Clayton copula and Table 1D for Gumbel copula. Similarly, Tables 2A - 2D summarize
results corresponding to the deterministic trending model (5.1) when the true marginal distribution
is re-centered Chi-square with d.f. 3, again with "A to D" corresponding to Gaussian, Frank, Clayton
and Gumbel copulas.

Tables 3 - 6 report the finite sample behaviors of the estimators for models with stochastic trends.
In particular, Tables 3A - 3D correspond to the unit root model when the true marginal distribution
is student-¢(3). Tables 4A - 4D summarize results for the unit root model when the true marginal
distribution is re-centered Chi-square with d.f. 3. Tables 5A - 5D correspond to the cointegrated
model when the true marginal distribution is student-¢(3). Tables 6A - 6D summarize results for the
cointegrated model when the true marginal distribution is re-centered Chi-square with d.f. 3. Again,

"A to D" correspond to Gaussian, Frank, Clayton and Gumbel copulas.
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Table 1A: Trending Time Series, Gaussian Copula

(True marginal is student t(3))

n = 500
B* 0.5 -0.3 -0.1 0.1 0.3 0.5

Bsp Bias -0.0066  -0.0077  -0.0063  -0.0042  -0.0033  -0.0049

Bgp Std 0.0391  0.0438  0.0462  0.0465  0.0445  0.0401

Bsp Rmse 1.1224 1.0912 1.0613 1.0389 1.0369 1.0588

Bp- Bias 0.0004 -0.0014  -0.0035 -0.0056  -0.0076  -0.0094

Bps Std 0.0374  0.0425  0.0452  0.0455  0.0431  0.0381

Bp- Rmse 1 1 1 1 1 1

3p, Bias -0.0046  -0.0151  -0.0193  0.0078  0.0048  -0.0067

Bpy Std 0.0721  0.0835  0.0911  0.0945  0.0871  0.0725

3p, Rmse 3.7261 3.9751 4.2273 4.2896 3.9660 3.4407

Bgp Bias -0.0065  -0.0071  -0.0053  -0.0027  -0.0013  -0.0024

Bgp Std 0.0388  0.0436  0.0461  0.0463  0.0442  0.0397

Bgp Rmse 1.1069 1.0763 1.0508 1.0264 1.0181 1.0257

B p~ Bias 0.0002  -0.0007 -0.0014  -0.0022  -0.0030  -0.0037

Bp« Std 0.0370  0.0423  0.0450  0.0452  0.0427  0.0375

Bp- Rmse 0.9758 0.9873 0.9889 0.9775 0.9569 0.9225
n = 500

BspMSE / Bsp MSE  0.9862 0.9864 0.9901 0.9879 0.9819 0.9687

Bp MSE / Bp« MSE ~ 0.9758  0.9873  0.9889  0.9775  0.9569  0.9225
n = 2000

Bsp MSE / Bsp MSE  0.9992 0.9981 0.9978 0.9983 0.9980 0.9935

Bp MSE / Bp« MSE  0.9977  0.9960  0.9958  0.9926  0.9859  0.9731
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Table 1B: Trending Time Series, Frank Copula

(True marginal is student t(3))

n = 500
B* -5 -3 -1 1 3 5
Bgp Bias 00115 -0.0229  -0.0242  -0.0310  -0.0591  -0.1280
Bgp Std 04025 03230 02812  0.2812 03194  0.3925
Bsp Rmse 1.2118 1.1066  1.0170  1.0207 1.1254 1.2741
B p+ Bias 0.0393  0.0093  -0.0103  -0.0288  -0.0581  -0.1116
Bp- Std 0.3637  0.3077 02797  0.2785  0.3006  0.3483
Bp+« Rmse 1 1 1 1 1 1
p, Bias 15653  -1.3416  -0.8315  0.7674 1.2818 1.4765
Bpy Std 11554 1.1182 1.1144 1.1915 1.2066 1.2242
3p; Rmse 28.2919 32.1860 24.6847 25.6159 33.0572 27.5063
Bgp Bias -0.0330  -0.0307  -0.0232  -0.0218  -0.0362  -0.0764
Bgp Std 03973 0.3209 02799  0.2809 03192  0.3915
B¢p Rmse 1.1879  1.0963  1.0075 1.0124 1.1010 1.1896
Bp~ Bias 0.0144  -0.0134  -0.0108  -0.0092  -0.0112  -0.0128
Bp« Std 03489  0.3022 02776 02778  0.3003  0.3454
3p« Rmse 0.9114 0.9658 0.9857 0.9854 0.9634 0.8935
n = 500
Bsp MSE / Bgp MSE  0.9803  0.9907 0.9907 0.9919 0.9783  0.9336
Bp MSE / Bp« MSE  0.9114  0.9658  0.9857  0.9854  0.9634  0.8935
n = 2000
Bsp MSE / Bsp MSE  0.9935  0.9985 0.9992 0.9993 0.9975 0.9875
Bp MSE / Bp« MSE  0.9696  0.9887  0.9965  0.9951  0.9867  0.9615
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Table 1C: Trending Time Series, Clayton Copula

(True marginal is student t(3))

n = 500
B* 0.5 1 2 4 6 8

Bsp Bias -0.0012  -0.0307 -0.1672  -0.7897  -1.8797  -3.2800

Bgp Std 0.1040  0.1989  0.4486 09392  1.2412  1.4254

Bsp Rmse 1.3184 1.4836 1.4314 1.2141 1.7435 2.3035

B p« Bias -0.0098  -0.0217  -0.0787  -0.3700  -0.9417  -1.6985

Bp~ Std 0.0900  0.1638  0.3923  1.0504  1.4224  1.6333

Bp« Rmse 1 1 1 1 1 1

3 p, Bias -0.0706  -0.0086  0.1218  0.1131  -0.2723  -0.9375

Bpy Std 04077 05114 06111 09539  1.3258  1.7819

3p; Rmse 20.8799 9.5796 2.4249 0.7439 0.6296 0.7301

Bsp Bias 0.0016  -0.0256 -0.1415 -0.6389 -1.5373  -2.7485

Bgp Std 0.1028  0.1905 04373 10141 14205  1.6720

Bgp Rmse 1.2899 1.3534 1.3191 1.1583 1.5055 1.8639

B p~ Bias -0.0026  -0.0069 -0.0171  -0.0257  -0.0240  -0.0160

Bp~ Std 0.0854  0.1343  0.2602  0.6389  1.1813  1.7828

Bp+ Rmse 0.8896 0.6621 0.4246 0.3296 0.4797 0.5725
n = 500

Bsp MSE / Bgp MSE  0.9784 0.9122 0.9215 0.9289 0.8635 0.8092

Bp MSE / Bp« MSE ~ 0.8896  0.6621  0.4246  0.3296  0.4797  0.5725
n = 2000

Bsp MSE / Bsp MSE  0.9948 0.9832 0.9577 0.9464 0.9520 0.9331

Bp MSE / Bp« MSE ~ 0.9051  0.7167 0.3915 0.2155  0.1923  0.2537
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Table 1D: Trending Time Series, Gumbel Copula

(True marginal is student t(3))

n = 500

B* 2 3 4 5 6 7
Bsp Bias -0.0379  -0.1785  -0.4513  -0.8697  -1.4093  -2.0454
Bgp Std 0.1666  0.3793  0.5882  0.7423  0.8490  0.9330
Bsp Rmse 1.0719 1.0647 1.1286 1.3556 1.7370 2.1476
Bp- Bias -0.0236  -0.0907 -0.2292 -0.4523 -0.7562  -1.1173
Bp~ Std 0.1633  0.3960  0.6592  0.8717  0.9932  1.0512

Bp- Rmse 1 1 1 1 1 1
3p, Bias 0.1096  0.0663  -0.0742 -0.3122  -0.6547  -1.0985
Bpy Std 0.3842 05599  0.7989  1.0189  1.2148  1.4015
Bp; Rmse 5.8626 1.9262 1.3218 1.1775 1.2220 1.3473
Bsp Bias -0.0321  -0.1540 -0.3861 -0.7354  -1.1963  -1.7464
Bgp Std 0.1596  0.3512  0.5534  0.7335  0.8846  1.0121
Bgp Rmse 0.9732 0.8909 0.9349 1.1187 1.4204 1.7311
B p~ Bias -0.0066 -0.0225 -0.0533  -0.0962 -0.1456  -0.1927
Bp« Std 0.1264 02810 04848  0.7207  1.0384  1.4401
Bp+ Rmse 0.5887 0.4815 0.4883 0.5618 0.7054 0.8971

n = 500

Bsp MSE / Bsp MSE 0.9079 0.8368 0.8284 0.8252 0.8177 0.8061

Bp MSE / Bp- MSE

0.5887

0.4815 0.4883

0.5618 0.7054  0.8971

n = 2000

Bsp MSE / Bgp MSE  0.9330 0.8732 0.8819 0.8744 0.8589 0.8521

Bp MSE / Bp. MSE

0.6260

0.4710  0.4435

0.4376  0.4451  0.4496
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Table 2A: Trending Time Series, Gaussian Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

B* 0.5 -0.3 -0.1 0.1 0.3 0.5
Bgp Bias  -0.0062 -0.0074 -0.0059  -0.0037 -0.0028  -0.0046
Bgp Std  0.0387  0.0436  0.0463  0.0466  0.0447  0.0404

Bsp Rmse 1.3211 1.0519 0.9589 0.9521 0.9309 0.9054
Bp+ Bias  -0.0053  -0.0078  -0.0068 -0.0006  0.0083  0.0147
Bpe Std 00337  0.0425  0.0472  0.0479  0.0456  0.0401

Bp« Rmse 1 1 1 1 1 1
Bpy Bias  0.0897  0.0437  0.0079 -0.0181 -0.0344  -0.0414
Bpp Std  0.0302  0.0371  0.0431  0.0476  0.0496  0.0479

Bp, Rmse 7.7163 1.7650 0.8457 1.1262 1.6895 2.1902
Bgp Bias  -0.0065 -0.0071  -0.0053 -0.0027 -0.0013  -0.0024
Bgp Std  0.0388 00436  0.0461  0.0463  0.0442  0.0397

Bsp Rmse 1.3371 1.0460 0.9483 0.9371 0.9077 0.8639
Bp« Bias 00044  0.0029  0.0000 -0.0036 -0.0063  -0.0074
Bp«Std 00320 00400  0.0444  0.0446  0.0404  0.0324

Bp« Rmse 0.9013 0.8646 0.8679 0.8705 0.7763 0.6047
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Table 2B: Trending Time Series, Frank Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

B* 5 -3 -1 1 3 5
Bgp Bias  -0.0297  -0.0344  -0.0297 -0.0206 -0.0440  -0.0851
Bgp Std 03970 03214 02809  0.2819  0.3222  0.4001

Bsp Rmse 1.3150 1.0811 0.9519 0.9623 0.8341 0.6380
Bps Bias  -0.0425 -0.0523 -0.0433  0.0036  0.0988  0.2274
Bpe Std 03445 03065  0.2863  0.2889  0.3421  0.4589

Bp« Rmse 1 1 1 1 1 1
Bpy Bias 04944  0.0962  0.0035  0.1712 03759  0.5257
Bpp Std 03021 02970 03018  0.3392  0.4140  0.5400

Bp, Rmse 2.7855 1.0084 1.0861 1.7296 2.4664 2.1656
Bgp Bias  -0.0330  -0.0307 -0.0232 -0.0218 -0.0362 -0.0764
Bgp Std 03973 03209 02799 02809 03192  0.3915

Bsp Rmse 1.3188 1.0747 0.9411 0.9508 0.8140 0.6066
Bp« Bias 00033  -0.0013 -0.0065 -0.0132 -0.0208  -0.0255
Bp«Std 03370 02967 02764  0.2762  0.2943  0.3336

Bp« Rmse 0.9423 0.9108 0.9114 0.9158 0.6866 0.4267
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Table 2C: Trending Time Series, Clayton Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

B* 0.5 1 2 4 6 8
Bgp Bias  -0.0077  -0.0524  -0.2200  -0.9035 -1.9578  -3.2889
Bgp Std 01014 01830  0.4007  0.8853  1.2933  1.5443

Bsp Rmse 0.8758  1.0248 1.2213 1.2928 1.2684 1.1733
Bp« Bias 00022  -0.0198  -0.1264 -0.5526 -1.2366 -2.0305
Bp«Std 01086 01870  0.3981  0.9655  1.6767  2.6700

Bp« Rmse 1 1 1 1 1 1
Bpy Bias  0.6251 07053 0.7347  0.6051  0.3685  -0.0129
Bpy Std 01651 02284 04478 11839  2.3474  3.5508

Bp, Rmse 35.4067 15.5463 4.2438 1.4283 1.3008 1.1205
Bgp Bias  0.0016  -0.0256  -0.1415 -0.6389 -1.5373 -2.7485
Bgp Std 01028  0.1905 04373  1.0141  1.4205  1.6720

Bsp Rmse  0.8959  1.0454 1.2109 1.1607 1.0093 0.9198
Bp« Bias  -0.0327  -0.0773  -0.2062 -0.6221 -1.2212  -1.9876
Bp«Std 00851 01402  0.2823  0.6896  1.2753  1.8589

Bp« Rmse 0.7039  0.7254 0.7007 0.6969 0.7183 0.6582
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Table 2D: Trending Time Series, Gumbel Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

B* 2 3 4 5 6 7
Bgp Bias  -0.0217 -0.1278 -0.3610  -0.7509  -1.2756  -1.9110
Bgp Std 01736 04040  0.6410  0.8087  0.9238  1.0039

Bsp Rmse 0.9308 0.9498 1.0090 1.1762 1.6286 2.4850
Bps Bias 01061 02632 04169  0.5320  0.5779  0.5270
Bpe Std 01471 03461  0.6021  0.8668  1.0905  1.2639

Bp« Rmse 1 1 1 1 1 1
Bpy Bias  -0.1716  -0.2440  -0.4207  -0.7133  -1.1187  -1.6247
Bpy Std  0.2353  0.5360  0.8422  1.1149  1.3327  1.4940

Bp, Rmse 2.5773 1.8340 1.6526 1.6922 1.9876 2.5980
Bgp Bias  -0.0321  -0.1540 -0.3861 -0.7354 -1.1963  -1.7464
BgpStd 01596 03512 05534 0.7335  0.8846  1.0121

Bsp Rmse 0.8052 0.7776 0.8489 1.0421 1.4532 2.1726
Bp« Bias  -0.0091 -0.0234 -0.0334 -0.0305 -0.0072  0.0184
Bp«Std 00758 01225 02694  0.5207  0.8738  1.2924

Bp« Rmse 0.1773 0.0822 0.1374 0.2628 0.5013 0.8909

41



Table 3A: Unit Root Time Series, Gaussian Copula

(True marginal is student-t(3), n = 500)

5* -0.5 -0.3 -0.1 0.1 0.3 0.5
BSP Bias 0.0032 -0.0015  -0.0022  -0.0010  -0.0005  -0.0020
Bgp Std  0.0413  0.0444  0.0464  0.0464  0.0443  0.0398

BSP Rmse 0.9609 1.0487 1.0587 1.0552 1.0651 1.0977

BP* Bias 0.0149 0.0072 0.0024 -0.0010  -0.0036  -0.0054
BP* Std 0.0396 0.0428 0.0451 0.0452 0.0428 0.0376
Bp« Rmse 1 1 1 1 1 1
BPl Bias 0.0068 -0.0072  -0.0130 0.0132 0.0094 -0.0024
Bpl Std 0.0738 0.0844 0.0918 0.0945 0.0869 0.0720
BPl Rmse 3.0701 3.8195 4.2210 4.4582 4.1482 3.5967
BSP Bias -0.0065  -0.0071  -0.0053  -0.0027 -0.0013 -0.0024
BSP Std 0.0388 0.0436 0.0461 0.0463 0.0442 0.0397
BSP Rmse 0.8674 1.0368 1.0589 1.0549 1.0615 1.0943
Table 3B: Unit Root Time Series, Frank Copula
(True marginal is student-t(3), n = 500)

B* 5 -3 -1 1 3 5
,&gp Bias 0.1320 0.0370 0.0026 -0.0118 -0.0312 -0.0746
,&gp Std 0.4599 0.3355 0.2831 0.2819 0.3205 0.3926

BSP Rmse 0.9452 1.0435 1.0200 1.0293 1.1367 1.3053
/BP* Bias 0.2276 0.0858 0.0239 -0.0032 -0.0219 -0.0444
Bp* Std 0.4363 0.3190 0.2793 0.2781 0.3012 0.3469

Bp« Rmse 1 1 1 1 1 1
Bp, Bias  -1.3618  -1.2542  -0.7833  0.8126 13305 15537
BPl Std 1.3053 1.2081 1.1563 1.1914 1.2061 1.2220

BPl Rmse 14.6941 27.7834 24.8172 26.8892 35.3614 31.9379
BSP Bias -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764
BSP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

BSP Rmse 0.6563 0.9518 1.0039 1.0264 1.1317 1.3005
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Table 3C: Unit Root Time Series, Clayton Copula

(True marginal is student-t(3), n = 500)

B* 0.5 1 P 4 6 8
BSP Bias 0.0029 -0.0238 -0.1400  -0.6490  -1.5641  -2.7850
BSP Std 0.1032 0.1930 0.4410 1.0001 1.3963 1.6425

GSP Rmse 1.4129 1.7608 2.0309 1.7618 1.7485 2.1501
/BP* Bias -0.0044 -0.0137 -0.0504  -0.2014  -0.4862 -0.9244
,Bp* Std 0.0868 0.1459 0.3207 0.8753 1.5092 2.0019

Bp« Rmse 1 1 1 1 1 1
BPl Bias -0.0623 0.0084 0.1702 0.2957 0.1473 -0.1913
BPI Std 0.4181 0.5283 0.6247 0.9293 1.2528 1.6933

BPl Rmse 23.6719 12.9987 3.9770 1.1788 0.6329 0.5972
BSP Bias 0.0016 -0.0256 -0.1415  -0.6389  -1.5373  -2.7485
BSP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

BSP Rmse 1.4013 1.7206 2.0036 1.7806 1.7425 2.1287

Table 3D: Unit Root Time Series, Gumbel Copula
(True marginal is student-t(3), n = 500)

3* P 3 4 5 6 7
BSP Bias -0.0294  -0.1470 -0.3747  -0.7229  -1.1864  -1.7400
BSP Std 0.1641 0.3615 0.5748 0.7517 0.8779 0.9840
BSP Rmse 1.3930 1.4290 1.4408 1.3654 1.4689 1.6783
BP* Bias -0.0148  -0.0569  -0.1378  -0.2572  -0.4252  -0.6287
BP* Std 0.1404 0.3215 0.5548 0.8546 1.1411 1.4091

Bp« Rmse 1 1 1 1 1 1
BPl Bias 0.1259 0.1172 0.0386 -0.1034  -0.3119  -0.5863
Bpy Std 03842 05646  0.8089  1.0408  1.2631  1.4861
Bp, Rmse 8.1965 3.1196 2.0069 1.3733 1.1414 1.0719
BSP Bias -0.0321  -0.1540 -0.3861 -0.7354  -1.1963  -1.7464
BSP Std 0.1596 0.3512 0.5534 0.7335 0.8846 1.0121
/BSP Rmse 1.3284 1.3795 1.3933 1.3545 1.4927 1.7112
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Table 4A: Unit Root Time Series, Gaussian Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

5 -0.5 -0.3 -0.1 0.1 0.3 0.5

BSP Bias 0.0049 0.0010  -0.0003  0.0001 0.0001  -0.0017

BSP Std 0.0421 0.0447 0.0462 0.0463 0.0442 0.0398

BSP Rmse 1.6123 1.1434 0.9912 0.9845 1.0668 1.2028

BP* Bias 0.0026 0.0004 0.0017 0.0027 0.0029 0.0029

,@P* Std 0.0333 0.0418 0.0463 0.0466 0.0427 0.0362

Bp- Rmse 1 1 1 1 1 1

[31;,1 Bias 0.0989 0.0511 0.0137  -0.0133  -0.0301  -0.0372

Bpl Std 0.0309 0.0371 0.0429 0.0472 0.0493 0.0475

Bpl Rmse 9.6256 2.2816 0.9414 1.1046 1.8186 2.7519

Bsp Bias  -0.0065 -0.0071  -0.0053  -0.0027 -0.0013  -0.0024

BSP Std 0.0388 0.0436 0.0461 0.0463 0.0442 0.0397

BSP Rmse 1.3922 1.1162 1.0032 0.9870 1.0666 1.1961

Table 4B: Unit Root Time Series, Frank Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

B* -5 -3 -1 1 3 5

BSP Bias 0.1025 0.0325 0.0014  -0.0109  -0.0275  -0.0624

BSP Std 0.4346 0.3291 0.2801 0.2815 0.3201 0.3923

ﬁsp Rmse 1.5689 1.1906 0.9808 0.9860 1.0704 1.0627

313* Bias 0.0513  -0.0012 0.0002 0.0144 0.0327 0.0735

313* Std 0.3528 0.3031 0.2828 0.2833 0.3088 0.3783

Bp. Rmse 1 1 1 1 1 1

Bpl Bias 0.5930 0.1565 0.0413 0.2045 0.4112 0.5774

Bpl Std 0.5355 0.4057 0.3297 0.3397 0.4119 0.5258

,@’Pl Rmse 5.0235 2.0582 1.3803 1.9540 3.5128 4.1070

BSP Bias  -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764

BSP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

BSP Rmse 1.2505 1.1307 0.9867 0.9866 1.0703 1.0714
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Table 4C: Unit Root Time Series, Clayton Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

B* 0.5 1 2 4 6 8
BSP Bias 0.0030 -0.0260 -0.1464  -0.6391  -1.4513  -2.5290
BSP Std 0.1030 0.1901 0.4360 1.0528 1.7108 2.3180

GSP Rmse 1.1142 1.3112 1.4351 1.3368 1.2267 1.1781
/BP* Bias -0.0068 -0.0431 -0.1549  -0.5338  -1.1085  -1.8549
,Bp* Std 0.0973 0.1619 0.3513 0.9218 1.6954 2.5592

Bp« Rmse 1 1 1 1 1 1
BPl Bias 0.6387 0.7224 0.7678 0.7159 0.6593 0.5805
Bpl Std 0.1603 0.2091 0.3837 1.0003 2.1043 3.3443

BPI Rmse 45.5370 20.1466 4.9984 1.3336 1.1852 1.1532
BSP Bias 0.0016 -0.0256 -0.1415  -0.6389  -1.5373  -2.7485
BSP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

Bgp Rmse 1.1108 1.3163 1.4329 1.2661 1.0677 1.0360

Table 4D: Unit Root Time Series, Gumbel Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

B* 2 3 4 5 6 7
BSP Bias -0.0243  -0.1264 -0.3328  -0.6624  -1.1074  -1.6450
BSP Std 0.1645 0.3706 0.5923 0.7663 0.8860 0.9805
BSP Rmse 1.5436 1.7158 1.8271 1.8169 2.0074 2.3653
BP* Bias 0.0432 0.1260 0.2160 0.3035 0.3676 0.3911
Bp* Std 0.1266 0.2711 0.4538 0.6875 0.9310 1.1822

Bp« Rmse 1 1 1 1 1 1
BPl Bias -0.1573  -0.1898  -0.2874  -0.4533  -0.6804  -0.9590
Bpy Std 02221 05060  0.8124  1.1127  1.3962  1.6602
Bp; Rmse 4.1361 3.2682 2.9395 2.5562 2.4076 2.3709
BSP Bias -0.0321  -0.1540 -0.3861 -0.7354  -1.1963  -1.7464
BSP Std 0.1596 0.3512 0.5534 0.7335 0.8846 1.0121
/BSP Rmse 1.4798 1.6453 1.8024 1.9105 2.2092 2.6276
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Table 5A: Cointegrated Time Series, Gaussian Copula

(True marginal is student t(3), n = 500)

5* -0.5 -0.3 -0.1 0.1 0.3 0.5
BSP Bias -0.0066  -0.0074  -0.0058  -0.0034 -0.0023  -0.0037
BSP Std 0.0388 0.0435 0.0462 0.0465 0.0444 0.0398

BSP Rmse 1.1386 1.0925 1.0611 1.0460 1.0519 1.0850

BP* Bias 0.0003  -0.0011 -0.0025 -0.0039 -0.0053 -0.0066
BP* Std 0.0369 0.0422 0.0451 0.0454 0.0430 0.0378
Bp« Rmse 1 1 1 1 1 1
BPl Bias -0.0039  -0.0140 -0.0176 0.0102 0.0075  -0.0038
Bpl Std 0.0725 0.0838 0.0915 0.0945 0.0870 0.0722
BPl Rmse 3.8714 4.0452 4.2554 4.3448 4.0632 3.5518
BSP Bias -0.0065 -0.0071  -0.0053  -0.0027  -0.0013  -0.0024
BSP Std 0.0388 0.0436 0.0461 0.0463 0.0442 0.0397
Bgp Rmse 1.1401 1.0916 1.0567 1.0350 1.0411 1.0730
Table 5B: Cointegrated Time Series, Frank Copula
(True marginal is student t(3), n = 500)

B 5 -3 1 1 3 5
BSP Bias -0.0213 -0.262 -0.0233 -0.0257 -0.0470 -0.1018
BSP Std 0.3981 0.3216 0.2811 0.2819 0.3196 0.3913

BSP Rmse 1.2980 1.1326 1.0182 1.0221 1.1355 1.3120
Bp* Bias 0.0137 -0.0018 -0.0106 -0.0189 -0.0347 -0.0628
Bp* Std 0.3496 0.3032 0.2793 0.2793 0.3012 0.3473

Bp+ Rmse 1 1 1 1 1 1
Bpl Bias -1.5928 -1.3566 -0.8338 0.7883 1.3134 1.5319
BpyStd 12267 11657  1.1345 1.1913 1.2069 1.2233

Bp, Rmse 33.0116 34.7982 25.3703 26.0401 34.6178 30.8483
BSP Bias -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764
BSP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

BSP Rmse 1.2980 1.1301 1.0099 1.0130 1.1229 1.2770
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Table 5C: Cointegrated Time Series, Clayton Copula

(True marginal is student t(3), n = 500)

B* 0.5 1 P 4 6 8
BSP Bias 0.0004 -0.0280 -0.1519  -0.7054  -1.6939  -2.9915
Bgp Std 01032 01927 04434 09793  1.3301  1.5500

/BSP Rmse 1.3655 1.6828 1.9211 1.7613 2.1061 2.6836
/BP* Bias -0.0063 -0.0149 -0.0498  -0.2098  -0.5225  -0.9808
BP* Std 0.0881 0.1494 0.3344 0.8849 1.3890 1.8078

Bp« Rmse 1 1 1 1 1 1
BPI Bias -0.0647 0.0067 0.1725 0.3067 0.1600 -0.1894
Bpy Std 04123 05222 0.6256  0.9401  1.2729  1.7079

BPI Rmse 22.3337 12.1029 3.6831 1.1824 0.7473 0.6980
BSP Bias 0.0016 -0.0256 -0.1415  -0.6389  -1.5373  -2.7485
BSP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

BSP Rmse 1.3561 1.6400 1.8475 1.7371 1.9892 2.4468

Table 5D: Cointegrated Time Series, Gumbel Copula
(True marginal is student t(3), n = 500)

B* P 3 4 5 6 7
BSP Bias -0.0349  -0.1676  -0.4205 -0.8015 -1.3003  -1.8937
3513 Std 0.1627 0.3558 0.5579 0.7233 0.8493 0.9527
BSP Rmse 1.1636 1.2718 1.3916 1.6076 1.9301 2.2544
BP* Bias -0.0140  -0.0559  -0.1443  -0.2866  -0.4859  -0.7285
BP* Std 0.1537 0.3442 0.5743 0.8018 1.0068 1.2094

Bp« Rmse 1 1 1 1 1 1
Bpy Bias 01251 01147  0.0301 -0.1249 -0.3561  -0.6626
Bpy Std 03855  0.5664  0.8119  1.0448  1.2625  1.4788
Bp Rmse 6.8989 2.7456 1.8822 1.5274 1.3769 1.3172
BSP Bias -0.0321  -0.1540 -0.3861 -0.7354  -1.1963  -1.7464
BSP Std 0.1596 0.3512 0.5534 0.7335 0.8846 1.0121
/BSP Rmse 1.1129 1.2088 1.2984 1.4882 1.7713 2.0438
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Table 6A: Cointegrated Time Series, Gaussian Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

G -0.5 -0.3 -0.1 0.1 0.3 0.5

BSP Bias -0.0063  -0.0072  -0.0056  -0.0032  -0.0021  -0.0035

BSP Std 0.0388 0.0436 0.0463 0.0465 0.0444 0.0399

BSP Rmse 1.3898 1.1142 1.0103 0.9926 0.9952 1.0527

BP* Bias -0.0013  -0.0034 -0.0040  -0.0015  0.0033 0.0073

,@p* Std 0.0333 0.0417 0.0462 0.0468 0.0444 0.0384

Bp« Rmse 1 1 1 1 1 1

Bpl Bias 0.0911 0.0453 0.0097  -0.0159  -0.0318  -0.0384

BPI Std 0.0302 0.0371 0.0431 0.0474 0.0493 0.0475

Bpl Rmse 8.2865 1.9519 0.9062 1.1415 1.7373 2.4417

BSP Bias  -0.0065 -0.0071  -0.0053  -0.0027 -0.0013 -0.0024

BSP Std 0.0388 0.0436 0.0461 0.0463 0.0442 0.0397

BSP Rmse 1.3971 1.1118 1.0040 0.9835 0.9857 1.0339

Table 6B: Cointegrated Time Series, Frank Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

B* 5 -3 -1 1 3 5

BSP Bias -0.0313  -0.0325  -0.0263  -0.0252 -0.0387 -0.0773

BSP Std 0.3968 0.3213 0.2806 0.2816 0.3201 0.3937

BSP Rmse 1.3420 1.1197 0.9819 0.9849 0.9466 0.8169

BP* Bias -0.0243  -0.0303  -0.0270  -0.0015  0.0548 0.1379

Bp* Std 0.3427 0.3037 0.2831 0.2849 0.3268 0.4219

Bp- Rmse 1 1 1 1 1 1

Bpl Bias 0.5008 0.1040 0.0149 0.1884 0.3985 0.5604

Bpl Std 0.3628 0.3278 0.3109 0.3385 0.4141 0.5344

Bpl Rmse 3.2402 1.2697 1.1977 1.8496 3.0082 3.0429

BSP Bias -0.0330  -0.0307  -0.0232  -0.0218 -0.0362 -0.0764

BSP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

BSP Rmse 1.3463 1.1153 0.9757 0.9782 0.9400 0.8075
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Table 6C: Cointegrated Time Series, Clayton Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

B* 0.5 1 P 4 6 8
BSP Bias -0.0034 -0.0399 -0.1888  -0.7936  -1.7964  -3.0777
BSP Std 0.1025 0.1872 0.4119 0.9159 1.3067 1.5658

/BSP Rmse 0.9985 1.1506 1.3626 1.4072 1.4238 1.4918
/BP* Bias -0.0091 -0.0403 -0.1571  -0.5909  -1.2861  -2.1973
/BP* Std 0.1022 0.1739 0.3550 0.8333 1.3460 1.7789

Bp« Rmse 1 1 1 1 1 1
BPI Bias 0.6315 0.7141 0.7526 0.6658 0.4923 0.1799
BPI Std 0.1626 0.2150 0.3894 0.9684 1.8165 2.6612

BPl Rmse 40.3787 17.4608 4.7656 1.3233 1.0220 0.8901
BSP Bias 0.0016 -0.0256 -0.1415  -0.6389  -1.5373  -2.7485
BSP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

BSP Rmse 1.0042 1.1603 1.4019 1.3764 1.2641 1.2949

Table 6D: Cointegrated Time Series, Gumbel Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

B* P 3 4 5 6 7
BSP Bias -0.0264  -0.1393 -0.3687  -0.7297  -1.2112  -1.7912
BSP Std 0.1646 0.3676 0.5754 0.7426 0.8632 0.9660
BSP Rmse 1.4518 1.5389 1.7695 2.0905 2.5928 3.3765
BP* Bias 0.0663 0.1697 0.2678 0.3417 0.3741 0.3457
Bp* Std 0.1214 0.2676 0.4385 0.6338 0.8445 1.0522

Bp« Rmse 1 1 1 1 1 1
BPl Bias -0.1548  -0.1821 -0.2766  -0.4411  -0.6698  -0.9527
Bpy Std 02238 05124  0.8083  1.0926  1.3600  1.6112
Bpl Rmse 3.8690 2.9455 2.7646 2.6779 2.6937 2.8563
BSP Bias -0.0321  -0.1540 -0.3861 -0.7354  -1.1963  -1.7464
BSP Std 0.1596 0.3512 0.5534 0.7335 0.8846 1.0121
/BSP Rmse 1.3843 1.4646 1.7249 2.0810 2.5945 3.3213
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B. Appendix B: Proofs

B.1. The Parametric Models

We first introduce a useful inequality of absolutely regular process given by Yoshihara (1976).

Lemma A. Let xy,, &y, ..., 2y, (With £ < t2 < --- < 1) be absolutely regular random vectors with
mixing coefficients 5(t). Let h(z¢,, t,, ..., xt,) be a Borel measurable function and let there be
a ¢ > 0 such that
P = max{M;, My} < o0

where
_ 146
M; = sup /|h(:1:t1,xt2,...,xtk)\ AF (x4, , Tty ..., Tt,)
t1,t2,. otk
Ms; = sup / |h(xty, Tryy - - ,xtk)|1+6 AF(Ztys -y 0 )AF (T gy -5 Tty )
t1,82,..5lk
Then
’/h(%tl, e ,Q?tk)dF(.%'tl, N ,.%‘tk) — h(.%'tl, ce 7.’L'tk)dF($t1, e ,CUtj>dF(l'tj+1, e ,xtk)
< 4PT g (tj+1 — tj)ﬁ
for all j.

B.1.1. Consistency of BP
For the first step estimator, @ = arg maxaeca 4 log f(i/;t, a), let ¢(a) =El[log f (Y%, )], we need to
verify that

sup
acA

= OP (1)7

% > log f(Vi, a) — q(e)
t=1

where q(a) = E[log f(Y;,«)]. By (1) Assumption ID1(1): compactness of A; (2) Assumption MX:
weak dependence of Y;; (3) Assumption ID1(3): f(y,a) is continuous in a € A; and (4) Assumption
M1(1): E[supaecal|logf(Y:, a)|] < 0o, we can show that

LS log (¥, ) — g(0)

- =0, (1).
=1

sup
acA

Thus, we only need to show that

sup L > [log f(Yi, ) —log f (Y3, a)} ‘ =o0p(1).

n
t=1
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Denote the re-standardized X; by X,, ie. X, = nl/QDngt, and define ¢; (n,a) = log f(Y; —

X}n,a). Under Assumption M1(2), we have, for all sequences of positive numbers {¢, } with €, = o (1),

n

sup |23 ar (n,0) — 1 (0, )

acA,|nll<en | 15

Thus

n

1 ~
sup |~ [log /(¥ ) — log (¥, )]
acA|T —1
1 n
S sup - [Qt (777 a) - (07 Oé)} = 017 (1) .
acA|n|<en | T ;

Together with Assumption ID1(2), we obtain consistency of a.

For the second step estimation, we need to verify that supgep H@n(ﬁ) — Q(B)H = op (1), where

~

QD) = - 0(Fir, V@ 6), QB) = Elg(Yin, Yira®,5)].
t=2

Denote

Qn(ﬁ) = Zg(}/t*hy%aa*?ﬁ)7
t=2

S

similarly, by: (1) Assumption ID1(1): compactness of B; (2) Assumption MX: weak dependence of Y;;
(3) Assumption ID(3): g(-) is continuous in 3; (4) Assumption M1(1): E[supgeg aca, 19(Yi-1, Vi, o, B)]]

< 00, we have

sup [Qn(8) — Q(B)] = 0, (1).

BeB
Thus, it suffice to show that

sup [Qu(8) — Qu(B)] = 0, (1).

peB

Notice that ¥; = Y; — X[ (7 — %) = Y; — n~ V2 (X/n'/2D; ") D,, (7% — 7*), let
Dy, (T — ") = 6p, VR (G — a*) = Aqy,

then we may write

~

1 2y 1271 12 (/2 =1 « o —1/2
Qu(B) = n;g(YH V2 (X0 2D 1) 80, Vi = 072 (Xin! DY) 8, 0 4 07 2A0, ).
Recall X, = n'/?2D;1X;, we define

my (7’],0[,,8) =g (}/;5—1 - X,tfl’rh}/;f - K;naaaﬁ) .
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Under the Assumption M1(2) that g(s1, s2, a, ) is uniformly continuous in (s1, s2, @), uniformly over
B € B, thus we can show that, for all sequences {¢,} with €, = o (1),
1 n

o [my¢ (0, a, B) —my (0,07, B)]| = 0p (1).
t=2

sup
BeEB,[la—a*|[+[nl|<en

Let 7j = n~1/2§,,, then

~

Notice that

sup |Qn(8) ~ Qu(8)

peB
1 « .
S sup - [Q(Y;f—l —52717771@ —5;57770475) _g(}/;f—b}/;f:a 7ﬂ)]
BEB, |la—a*||+|nl|<en | 15
= op(1).

Thus, supgep ‘@\n(ﬁ) - Qn(ﬁ)) = 0p (1). In addition with Assumption ID1, Theorem 1 is proved.

B.1.2. Limiting Distribution of 5p
Let g (}A/t_l, EAQ, aQ, B) = log c(F(i/\}_l, a), F(}A’t, @), 3), then the likelihood function is given by

~

Q5 = 130 (Vv T 5).
t=2

Let /7 (8 — 8%) = Ag, and Dy (7 — 1) = 6p, /71 (@ — a*) = Ain, /7 (B - 5*) = Agy, then, we

may re-write the criterion function Q, (B) as
Vn(A2)

1 n
S (s (KL D) ¥ (XA ) e 4
n
t=2

and mingé)\n(ﬂ) is equivalent to mina,V;,(Ag).
The FOC corresponding to minimize V,,(Ag) w.r.t. Ag is given by

0V, (Ag) _ 0
04 Ax=Ao,
Expanding ngﬁﬂ N around Ay = 0, we have
2=8A2n
0 — OV, (Ag)
042 Ag=Agy,
1< - 1<
= Ezgﬁ (Yt—lthaa,ﬁ*) +’I’l_1/2 [nzgﬁﬂ (}/;f—17§/taa7ﬁ#) AQn
t=2 t=2
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where 87 is the middle value between §* and E

Let ]Tlng =-n"1Y" 5985 (}Aﬁg,l,ﬁ,a,ﬂ#>, §n5 =n"Y23 0 g (Yt LY. a, B ) First, denote
n = (n},m5,13)’, by consistency of B, Assumption X, and Assumption M2, we can show that, for any
sequence {e,} with €, = o(1),

”S”u<P *ZH%B (Y1 + X0 ym, Yo+ Ximy, @ 412, 85 4 13) — 938 (Yio1, Yi, 0, %) || = 0,(1)
Mi>€en +=2

ZHgﬁa Y1+ X5 m1, Ye + Xing, oF + 19, 85+ n3) — gpp (Yier, Ve, @, 87| = 0p(1)
e P 25

||S\|u<p *ZHQBJ Y- 1+Xt 177171/75+Xt7717a +n2’ﬁ +773)—965(Yt 1, Y, 7/8*)H = Op(l)’
N=en ™7 =9

7 = 1,2
we have

Hy5 = Hyp + 0p(1),
where

1 = * *
H,3 = — § 988 (Yi—1,Ys, ", B%).
t—2

Denote

1 n
Sy = —— Y, 1. Y5 0", 8%,
B \/ﬁ;gﬁ( -1, Y, o, BY)

and expanding gg (E_l,ﬁ,a, B*) around (Y;_1,Y:, a*), Using a similar argument as the previous

term, we can show that

n
Sn,B = Sn,B +n_1zgﬁl (thl,Y},Oé*:ﬁ*)Xé_ml/zD;l(Sn
t=2

n n
+n" Y gse Vi1, Vi, 0, B7) (X£n1/2D;1) Sn+ 1Y gpa Vi1, Vi, 0, B%) A + 0p(1)

t=2 t=2
Thus,
Vi (B- ﬁ*)
= H,;Sus—H (Pn1 + Py) Dy, (% — ) + H, 5 P/ (@ — @) + 0p(1)
= HZ'N(0,Q3) — Hy' (P1+ P2) Dy (7 — 7*) + Hy ' P3y/n (@ — ) + 0,(1)
= HZ'N(0,Q3) — Hy' (P4 Py + P3Q, Hay) D (T — %) + Hy ' P3y/n (@ — o) + 0p(1)

Notice that v/n (& — a*) = H,, 1Sy + 0p(1), where

1 & 8210gf(Yt,oa*‘ 8logf Yt, ")
_ g ORI ). m_\fz :

n Oada!
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thus,

n,

Jn (B _ ,6’*) = H} [Sup + PasHp Sua] — Hy' (Pu+ Pa+ PsQy Hay) Dy (7 — %) + 0y(1).

B.2. The Semiparametric Copula Model

We use ¢ and 1 € (0,1) to signify generic constants whose value may vary throughout the paper.
Recall that we denote the true values of F' and 8 by F* and 5*. We first restate the important

Lemma 1 from the main text. Consider b = (by,- - -, b,)’, let

1
vn+1

n
Zn(y,b) = Z [1 (YZ <y+ n_1/2bt) — F*(y+ n—l/th)
t=1

and denote |b| = maxy |by|.

LEMMA 1. Under Assumptions DGP, MX, SP, and X, for any given B > 0,

Zn(y> b) B Zn(yv 0)
w(F*(y))

sup Sup‘ ’ = 0p(1),

[bI<B Yy

Proor oF LEMMA 1.
Following the argument of Csorgs, Csorgd, Horvath and Mason (1986), Csorgd and Horvath (1993),
Shao and Yu (1996), we only need to show that, for any € > 0,

- Zn(y,b) — Zn(y, 0)’

lim lim sup Pr | sup >e| =0, B.1

—00 n—00 [y<L U)(F*(y)) ( )
and

lim lim sup Pr |sup Zuly.b) — Zn(y,O)‘ >e|l =0. (B.2)

L—oo n—o0 y>L w(F*(y))

We show (B.1), (B.2) can be proved in the same way. For a large L, partition (—oo, —L] into
U324 (Y5, Y1), with F* (y;) = 277§, where § = 6, = F*(—L), then

Pr | sup
y<-L

Zn(ya b) - Zn(y7 0) =
w(F*(?/)) ' ° 6] = ;Pr [yj<21g@)/j—1

Thus, we need to show that

Zn(ya b) — Zn(yvo) ' > 6]
w(27795) —

o0
lim lim sup ZPr sup | Zn(y,b) — Zn(y,0)| > ew(2776) | = 0.
—00 n—oo j=1 yj<y§yj71
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By monotonicity of the indicator function and the distribution function, we have

sup

|Zn(y) b) - Zn(y’ O)‘

Y <y<yj—1

< ‘Zn@j?

+ sup

b) = Zn(y;,0)| + 1 Zn(yj—1,0) — Zn(y;j—1,0)

Y <y<yj—1

1
+

n +

1
+

3

+

-

t=1

M-

~
Il

1

Y <y<yj—1

[F(yj—1) — F ()]

[F*(y1 +n712) = F* (g5 + 07 0)

Notice that F* (y;) = 2774, and, under Assumption SP, for large enough n,

Pr sup
Y5 <y<yj—1

(Y5, 0) — Zn(y5,0)] + | Zn(yj-1,b) —
|Zn(yj71a 0) - Zn(y70)| + sup |Zn(yja 0) - Zn(y70)|

< Pr{|Z,

+ su

p

Y <y<yj—1

+C*V/n2776 > ew(2776)} .

1Zn(y,0) = Zn(y,0)] = 611}(2_]5)]

Zn(yj-1,0)]

Y <y<yj—1

We first consider the case when n!/22775C* < ew(2776)/2, C* = 8. Let

if j € 51,

Sp = {j . nY/297I50 < ew(2_j(5)/2},

Pr [ sup | Zn(y,b) — Zn(y,0)] > ew(2_j5)]

Y <Y<yj—1

< Pr [\Zn(yj,w — Zu(y;,0)] >

8

+Pr ([ Zn(yj-1,0) — Zn(yj-1,0)] >

- , N
+ Pr sup
| Y5 <y<yj-1 | VT +1 tz
+P _ !
r sup
lyj<y<y;1 |V + 1]

NE

1

1

29

cuz 9]

8

We consider each of these terms. In particular, we show that

LILH;O lim sup Z Pr

lim lim sup
L—oo n—oo

n—oo

Z Pr [
JES1

JES1

sup
Y <y<yj—1

[|Zn<yj,b> ~ Zu(y;,0) 2

|Zn(yja0) - Zn(y70)| >

55

[1(Y: <w;) — F(y;) —1(Y: <y) + F(y)]

ew(2776)

8

ew(2776)

8

|
|

>

(Y <yj1) = F(yj—1) -1 (Y1 <y) + F(y)]

ew(2j5)]

|Zn(yj—1a 0) - Zn(y’0)| + sup |Zn(yja 0) - Zn(y)())‘

8

>




and analysis of the other two terms are similar.

For the first term (B.3), by Chebyshev inequality,

cw(2796) 2B | Z,, (y;,b) — Zn(y;,0)[?
Pr ||Z,(y;,b) — Zn(y;,0)| > 5 < 2w (2T5)?

Under weak dependence of Y;, by definition of y;, Assumption SP, and by the inequality of Yoshi-
hara (1976), we have:
iy 1
E|Zn(j,b) — Zn(yj O)* < ¢ [277+16]"%,

for ¢ >0, ¢ > 1. Thus, for 1/(2q) > u,

—J o0
EZMDZ%,—-@mmz“§;5}‘i§j $W/a=2) | G142, 0, a5 § — 0.
JEST =1

Thus, under our assumptions,

]

hm lim sup Z Pr {]Z (yj,b) — Zn(y;,0)| > S

n—>c>ojes1

For the second term (B.4), using Billingsley (1968, eq.(22.17)),

Pr

Sup
y<y] 1

~ Flyy) = 1% <) + F)l| = “55

ew(?jé)]

< 72 — F(y;) = 1(Y; < yj—1) + F(yj-1)]

=1

» ew(2776)
2776 > ————~
+v/n > S ]

Notice that n'/2277§ < ew(2776)/16, using (1) weak dependence of ¥;, (2) the Cauchy-Schwarz
inequality, and (3) Yoshihara (1976), we have

Pr[ s <y;)— Fly;) —1(Y: <y)+ F(y)] Zew(?a)]
¢ [275)M"
[ew(2-96)]%

and (B.4) can be proved by a similar argument as the proof of (B.3).
Next we consider the case n'/22776¢* > ew(2778)/2. Let

Sy = {j /297050 > ew(2_j6)/2} ,

and
1

n,j — 8n1/2

A ew(2779),
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we divide the interval (—oo,y;j—1] into U;(yj4, yjit1], where F (y;;) = iAyj, 0 <1 < F(yj—1)/Anj =
2_j+15/An7j, then

Y <y<yj—1

Pr [ sup | Zn(y,b) — Zn(y,0)] > ew(2j5)]

Yj—1)/Bn; Yi,i <Y<Yj,i+1

= n\Y,0) — Zn ,O > ’j(; .
g [(JgigF( Sup | Zn(y,b) (y,0)| > ew(2 )]
Notice that

sup |Zn(y’ b) - Zn(@/» O)‘
Y5,i <Y<Yji+1

< 1 Za(W),i50) = Zn(W4,i5 0)| + [ Zn (Y415 0) — Zn(yy,i41,0)]

+  sup | Zn(Y546,0) = Zn(y,0)[ +  sup [ Zn(Yji41,0) — Zn(y, 0)|
Y5,i <Y<yYj,i+1 Y5,i <Y<Yj,i+1

1 n B )
+ n -+ Z |:F*<yj7i+1 +n 1/2bt) — F”k(y]72 +n 1/2bt>
t=1

—

1

_|_
n+1

NE

[F(yji+1) — F (y5.0)]

t=1

by definition F'(y;;) = iA, j, under Assumption SP, for large n,

sup | Zn(y,b) — Zn(y,0)]
Y5, <Y<Yjit1

< N Zn(Wj,b) = Zn(y4,4,0)| + | Zn(Yj,i+1,0) — Zn(yj,i4+1,0)]
+  sup  |Zn(Y5,0) — Zn(y,0)[+  sup  [Zn(Yji+1,0) — Zn(y, 0)]
Y5,i <Y<Yjit+1 Yi,i <UYSYjit+1
1 .
+Zew(2*76)
and thus

Pr[ sup  |Zn(y,b) — Zn(y,0)] Zew(2j5)]

Y <y<yj—1 |
< Pr [o<i<F8?}i)/Aw | Zn (Y., b) — Zn(y;,0)] > 3611;(126J5)]
+Pr :oggF?;i)i)/AnJ | Z0(Yj.i1,0) — Zn(yjiv1,0)| > 3610(126—15)]
+Pr _OSiSF{g?—}i)/AM yj’ijylgmﬂ | Zn(yj4,0) — Zn(y,0)| > 3ew(126j5)]
+Pr _Osz‘SFI(Ei}i)/AW yj}z_jylgmﬂ | Z(yj.i21,0) — Zn(y,0)| > 3ew(126—36)]
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By Billingsley (1968, eq.(22.17)) again,
1 .
sup | Zn(¥4,i,0) — Zn(y,0)| < [Zn(Yji+1,0) — Zn(yj,i, 0)| + gew(2770),
Y5,i <Y<Yj,i+1 8

thus

Pr[ sup | Zn(y,b) — Zn(y,0)] Zew(2j5)]

Y <y<yj—1
3ew(27799)
< P 7. .. b -7 o) > 22 Y
= [0<i<FI(2;a}i)/An,j| n(¥ji:0) n(Yj,,0)| = 16 ]
— 3ew(27799)
P 7 .. b — Z - 0) > 222\ "9
TP osisrl a2 i) = Znlbiien, 012 =g ]
_ ew(2776)
P 7 .. ,0 -7z iy 0y > S\ 79
i _OSigF?lea—)i)/An,j‘ nWie1,0) = Znls0 Ol 2 =5 }
- ew(2776)
P 7 .. 0)—-Z o) > 2 Y
A _OSigFgli)i)/An,j‘ n(Yji+1,0) = Zn(y;,0)| = 16 }
We next show that
im i 3 3ew(2776)
1 1 P 7 . -7 . S 26 T9 )
Lgréo m nSEIo)o : ' [0<i<F8?)i)/An,j ’ n(y.]ﬂ? b) n(yj,27 0)| e 16 :|
JES2
im i 3 _ 3ew(2796)
1 \ P 7 .. 7b -7 . ’0 >
Lo e £ {0i<F, /B Zn (w42, 0) = nlyg i1, 0 2 =g
2
. . i ew(z_]é)
[ 1m53£>o : OSiSng}i)/An,j’ n(Yj,i+1,0) n(Y4.,0)] > I ]
JES2 -
. . i 6w(2_]5)
e R 2T oci<r(y, ) /A, |Zn(Yji1,0) = Zn(y;i: 0)| = 16 ]
JES2 -
We use the maximum inequality of Moricz (1982) to bound
B __max o |Zu(yib) = Zu(y;s 0

1<i<F(yj-1)/An,;

and Emaxi<i<ry,_,)/a,; |Zn(y54,0)[F. First,
B | Zn(yik:0) = Zn(Yj ks 0) = Zn(Yji:b) — Zn(yji, 0)* < C(k — i) An ;.
Next, by Viennet (1997), we obtain a Rosenthal-type inequality for
E|Zn (), ) = Zn(Yjk, 0) = Zn(Yj,i,0) — Zn(v3,0)” -
For 0 <i <k <279FL5/A, ;, let

¥y (4, k. 7)
=1 (Yt < Yjk T+ Tfl/zbt) — 1(Ys <wjk) + F*(yjn) — F*(yjn +1br)

-1 (Yt < Yt ”71/2bt) +1(Y; < yji) — F*(yj) + F* (i +n " 2by).
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Notice that v, (j,k,7) is a bounded function, by Theorem 2 of Viennet (1997), and application of
Moricz (1982), we have

p
Zn(W0,b) = Zn(y54, 0
[KKF@??)/%J' n(Y50:0) = Za(y;. N}

< (G (2770)" + ¢ 227 510 (27925 /A ).

where p; = p/2, po = p — 2, and thus

3ew(2799)
P Za(30:) = Zulys,0) = 220
' |:O<i<Fg/lja)i)/An,j| Wi 0) = Znly: 0 16 }
<3 (2*]6)?1 + C4n*p2/22*j5logp(27j+25/An’j)
- @) ‘

Notice that A, j = 2730~ 2ew(2776), and n'/22776¢* > ew(2776)/2,

3ew(2776)
P Zn(iib) — Zn(yii,0)] > =2
r[OéiéF@i}i)/An,J-| (434 0) = Zn (Y3, 0)| 16 ]

< ¢ [ew(2—j5)/g] -p [(2—1‘5)171 n (Ew(Q—j(;))—m (52_j)(1+p2) logp(w ]

ew(2779)

Under Assumption SP, we have

3ew(2799)
lim i EP Zn(yii, ) — Zn(yis > =
P fﬂﬁ’o , ' [ogz‘gFI(Si}i)/An,j [Zn(yj4:0) n(y3i 0 2 16 }
JES2
Notice that,
ew(2776)
P Zn(Yiiz1,0) = Z,(yis,0)| > —2
r |:O<i<Fg1]'a))i)/An,j‘ n(y],l+1? ) ”(yj,lv )| > 16 }

- Emaxi<i<r(y,_1)/An, 1Zn (Y5, 0)|”
- [ew(2776)]P

The analysis of other terms are similar. l

B.2.1. Theorem 3.

Notice that

~

Vit T (Fu(y) = F*(w)) = Vot 1 (Fa) = Falw)) + Vi + 1 (Faly) — F*(3)

The first term, v/n + 1 <F\n(y) — Fn(y)), captures the preliminary filtering effect, and the second term,
vn+ 1(F,(y) — F*(y)), captures the effect of marginal estimation.
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Let Yi(v) = Y; — n~ Y2 (X;D;;'n'/?) 4, and

1

— > 1) <),

t=1

Fn,v (y) =

By Lemma 1 and differentiability (and a Taylor expansion) of F*, we have that, for  in an arbitrary

compact set T' of RF,

{vn + 1(Fnqy(y) = Fuly) — f(v) [; ZXt’DElnl/Ql 7}/w(F*(y))| =op(1).  (B.5)

t=1

sup sup
yel' v

Notice that ¥ = D,, (7 — 7*), then ﬁn(y) can be written as

Fuly) = Faa) = —— D10 <9).
t=1

{\/n +1 (An(y) - Fn(y)) — f(y) iZX{Dnan] Dy (7 - w*)}/w(F*(y))‘ = op(1).
L t=1
(B.6)

. [0logc(F(Y;-1), F(Yy), )
s(F,p)=E _ R } ’

Under our assumptions, the consistency of B can be obtained if

1 o= dlog c(F(Yi1), Fu(Y2), \
n; Ogc( ( taﬁll) ( t) ﬁ) — s(F ’6)H :Op(l)

=2

sup
BeB

By triangular inequality,

l n 8logc(ﬁn(ﬁ_1),ﬁn(ﬁ),ﬂ)_ o
pEPD 7 )
< sup | L3 | QloeltFn (i), Fu(Y0). ) Dloge(F” (Yir), F*(¥0). §)
-~ pes || iS5 op’ o5’
1 <= dlog c(F*(Yi—1), F*(V3), B) i}
+21€15 n; o7 —S(Fvﬂ)H-

By Chen and Fan (2006a),

sup

sy lz dlog c(F* (Y1), F* (Y1), B) s(F*,B)H =0p(1).

s’

n
t=2

Next we verify that

60



dlog c(Fy(Yio1), Fu(Y),8)  dloge(F*(Yie1), F*(Y2),8) |||
] o0
Note that
- dlogc(Fu(Yi1), Fu(Ye), ) dloge(F*(Yi1), F*(Y2), 8)
BEB n - 85 051
< glelg n;fm F" 1,Ft,3)< Fo(Yio1) — Fn(Yt1)>||

+ sup o 2562(Ftil>Ftnaﬁ) <ﬁn(?t) - Fn(Yt)> "

BeB

+ sup *Zﬁm Ly B B) (Fu(Yiea) — F* (Y1)
BeB

l

+Elelg n 2552(5[1»}'?’5) (Fa(Yy) — F*(Yt))H

where Fl = nF,(Ys) + (1 —n)F*(Ys), s=t—1or t, n e (0,1).

We can show that the third and fourth terms are o, (1) using a similar argument as Chen and Fan

(2006a). We next show that the first two terms are o, (1). Notice that

sew n;fﬁz FL F}LB) [FulY) - an)}H
— su w(F* su (t) (Y1)
< tz;ﬁe% w (b2 (F (i), F(Y2), B) w(F" (Vo)) sup | == s

By (B.6), we have

together with Assumption M4, we obtain

1 <~ [Olog c(Fp(Yien), Fa(Y)), 8)  Ologe(F*(Yie1), F*(Y),8) ||| _
s n;[ o5’ - aF H_O”(l)
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B.2.2. Theorem 4.

A Taylor expansion of /g < (17} 1), ﬁn(fft),BSP> w.r.t [ around S* gives
0 = —Zﬁg( (Yi-1), Fn(Y2), 5SP)

= —Zfﬂ( Ytl Y, ) 2555( Yt 1) (f/t) 5) (//B\SP_B*)a

where 6 is a middle value between ﬁ gp and £*, and ﬂ gp is a consistent estimator of 5*.

Expanding (g (Fu(¥i-1), Fu(¥3), ) around (F*(Yi-1), F*(Y7)), we have
Zzﬂ( (Vie), Fu(%2), 87)
_ Zeg *(Yier), F*(Y:). 8°)
e Zeﬁl “(Yim), F* (%), 8 Vi (B (Vi) = F* (Vi)
T Zem (Vi) F* (%), %) v (Fal%) - F*(Y))

3/2 Z Zfﬁw E |, F{,p3%) {f( Fo(Yigio2) — F*(Ytﬂ'ﬁ))} [\/ﬁ (F\n(ﬁ+jf2) —F*(Ytﬂfz))}

1,j=1 t=2
where Fll = nFy,(Ys) + (1 — n)F*(Ys), n € (0,1).
First, for i = 1,2, j = 1,2,

~

1 g * oo * - *
—73 2 i (L B B%) [V (FuBiie) = F* (Yiwiea) ) | [V (Bu(Fisj2) = F*(Yiey2) ) | = 0, (1).
=2
Consider, for example, the case i =1, j = 2,

S b (R F87) [V (BuFi) - P (%)) ] [ (Bl - F*(Y»)}‘

t=2

7 Z I5-° Su‘i% o 12 (F Vi), P00, 3w (i) 0)

ﬁ(F (Vio1) Ytl vi(F, ) FH(Y)))
(F*(Yt 1) F*(Yy))

X

Under Assumption M4,

S sl (PO, FOO), ) w(F (Vi)u(F ()] = 0p (1),

3/2
”/ “— ||8-p"||<8,FFs
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and by application of Lemma 1,

= 0,(1),

Vi (Ba(Vimr) = F* (Vi)
w(F (¥i0))

thus

s S o (R FL.5°) Vi (Ba(i) = Fr )| [vin (Ba(P) = P () )| ' 0p (1).
t=2

Second, by Taylor expansion,

*Z% (FulFie0). B, 5)

= *Z%ﬂ *(Yie1), F*(Y2), B7)

n3/2 ZZ@W (Ft 17Ft75)\f( n(Virj—2) = F*(Ym—z))

j=1t=2

/2 Z«%ﬁﬁ( e ﬁ) V(B - B),

where E =nf* 4+ (1— 77)6 Thus, by Assumptions M4, ST, and Lemma 1,

~

L™ 035 (BuFioa). B30, 5) = b (" (), P (), 5°)]

l

=2
2
%ZZ sup  [[€ss; (F(Yio1), F(Y2), B) w(F*(Yeys-2))|

—2 IB=B[I<6,FeFs

IN

~

7 (Fu(Fiajon) — F*(Yiaso2)

‘ W(F*(Yiry—2))

cs S s s (FO). PO B |Vl - )

t—o I1B=B"1<6,FeFs
= o0p(1).

Thus,

{jem( (Vi-1), Fu(%2), B) = Zéw “(Yee1), F*(Y), 8) + 0, (1),
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Let

2551 (Y1), F*(Y2), B%) v'n (ﬁn(z—l) - Fn(Y%—l)) ,
Zem “(Yi1), F*(Y2), %) v (Fu(Yie1) — F*(Yi-1),
Ay = Zeﬁz “(YVie), F* (%), ) Vi (FulT) = Fa(Y0))

Apg = Zﬁm "(Yi-1), F*(Y2), B%) Vn (Fu(Yy) — F* (V1)) ,

and
[ Zfﬁg *(Yi-1), F*(Y2), B° ], n Z%’ *(Yi-1), F (YY), B)

then we have
S, /n (BSP _ 5*) = Sp+ A1 + Aps + Az + Apg + 0, (1)
where A,o+ Apng is the effect of estimating F*(-) based on Y; (unobserved), and A, + A3 is the effect
of filtration. Thus, the first part
Sn+ Apz + Apg
is the leading part of the infeasible estimator based on knowledge of Y/s, and the effect of filtration is

captured by A,; and A,3.

The analysis of A,; and A,3 are similar, we illustrate our proof for A,3. Notice that

Ans = Zeﬁz W), F* (¥, 8 Vi (Fu(¥) = Fu()

ZZ% “(Yiea), F*(V), B%) £ (%) |(X; = X0)' D 'n 2] Da(7 = ) + 0,(1).

t=2 j=2

and

S o (P () (400,87 £ (%) (X, — X0 D]

t=2 j=2
_ nzzt;me F (0,87 1 00 [xtp ]
222% (Vi) F* (Y0, 87) £ (V) [ X[ Dy 2|
t;% “(Yie1), F*(Y), 87) f (V2) | X;D; ']
ZZ% F*(Y;),8%) £ (v;) [X] Dy 'n?]
75

= Hln + H2n - H3n - H4n-
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We investigate the behavior of each of the above terms and show that
Hy — [/ X(r)ar| Bltsa (F* (4-0), (V). 5°) £5)]
Hy — //X )dsdrE (52 (F* (Yi_), F*(Y0), 8°) f (YD)
Hy — U X(r)ir] B (62 (P (i), (4, 5) SO}

Hin — / / X(s)dsdrE {Ls (F* (Y1), F*(Yi), 6) F(¥)}

Thus A,z = op(1). Similarly, A,; = o0p(1). The semiparametric copula estimator of 8 based on
filtered data is asymptotically equivalent to the infeasible semiparametric copula estimator of 3 based

on the unobserved data Y7,

”\F@SP ): ”\f(BSP )+0p(1)=Sn+An2+An4+op(1).

By Chen and Fan (2006a), we can then obtain the result of Theorem 4.

B.2.3. Theorem 5

We may re-write the variance estimator Qg as:

:hﬁMK@) )+ f K< ) bt )vn(h)]thﬁ:MK(]\Z) () = 7o (1)

where .
Tn(h) = % Z St (F, B) St (F, ),
t=2
2<t,t+h<n
and

b =2 S 5 (B Suan (15).
2§tft:—2h§n

The first part,
M

h
> & (37 )
h=—M
is the conventional long-run variance (spectral density) estimator, which converges to €23 by the

standard arguments as Hannan (1970).

The second part,



contains the effect of copula estimation error (B — ), this term converges to 0 following a similar

argument as Andrews (1991, p852).

We now consider the third term,

M

> & (47) Bult) = a0

h=—M

which contains the estimation error from the filtration and the estimation of marginal. Notice that

0 = L3 5 (BB) Seen (BunB)

a<t i th<n
- % Z [St (F, B) + S (ﬁmg) -5 (F, 3)} [St—i—h (F, B) + St+n (ﬁmg) — St+h <F7 E)]
=2
2<t,t+h<n
thus
M h
> 5 (37) Balt) =30
h=M
M n
- Yk (j’\}) Y [50(BuB) - 5 (RB)] e (£B))]
h=-M 2<tt;-2h<n
M BN 1 R o .
c 2 K (5)n X [ s (RB) s (19)
M
2<t t+h<n
+ Z K <]\}i[> % <ﬁn,3> — 5 <F,B>} [St+h (ﬁruB) — Stin (F,B)]
2<t t+h<n

We can verify the order of magnitude for each of these terms. For example, consider the second

term
n

> k()L S [5(m)] [sen (Fud) - s (1))
=M 2§tftj—2h§n
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notice that

ZK(h

h=—M

St (F, B) [St+i (EuB) — Sty (Fn>B>:|

SRS

2<t t+h<n

~

h) Zst F 5) Zfﬁg ( b1 ntﬂaB) (ﬁn(YtHﬂ—z) —F(Ytﬂ'ﬂ'—2)>
h

S

'Mz éM:iN

K ) ZSt Fﬁ)/ lgo (m,F;Z,Hi;B) (vl,FnHZ,B) dv1< (}A/tJrz)—F(Ytﬂ'))
K( >71125t F,ﬁ)/ 31 < n,tti— 171)2,5) <ngt+i_1,v2;g> dvo <ﬁn(?t+z‘—1)—F(Y}+i_1)>

where F)] s = F(Ys) + 1 [ﬁn(i}s) - F(Ys)} , 1 € [0, 1], denotes a (generic) middle value between E,(Y,)

and F(Ys). Under our regularity assumptions, the order of magnitude for each of these terms are

op (1). For example

~

i K <J\h4> % Z Sy (F 5) Zeﬁy ( nt+h—1 nt—f—h?B) (ﬁn(Yt+h+j—2) — F(Yt+h+j_2)>
h=—M

2<t t+h<n
L1ls oy K( )\Zsup ¢ (FB) w (F* Oanes—2) €y (Fenor). F(¥in). B)
\/ﬁnh:_M o 1Fe]—'5 ) +h+j5—2 Bj t+h—1), t+h/)s
2<t,t+h<n
vn (ﬁn(ﬁ+h+j72) —F *(Y;‘/+h+jf2)>
- w (F*(Yeshtj—2))

under our regularity assumptions and the bandwidth condition, the above term is o, (1).

Other terms can be verified to be o, (1) using similar arguments.

B.2.4. Theorem 8

~

We show that the filtration does not affect the limiting distribution. Expanding log ca(Fy,(Yi—1), Fn(Y7), Bs)

around BQ, and notice that the FOC corresponding to Bz implies

Z 8log02(13n(?ta—61), Fo(Y2), By) —0,

t
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in the non-nested case,

Pr [log ca(Up—1, Ut7§2) L [log c2(F (Y1), F (V) 752)”
c1(Ui—1, Uy, B1) ci(F (Yi-1), F'(Y2), B1)
alOgCQ(Ut—lthBz) 810g01(Ut—1,Ut751)]
P > 0
' { OUt—2+; 7 OUt—2+;
we have
=3 log ea(Fu(Yio1), Fu(Y2), Bo)
t=2
I S o= L o Ploge(Fa(Vie), Fa(Y), By) (= 4
- ntz;log62<Fn(}/t—1)?Fn(n)752)_2nt22<52_ﬂ2) 8/Baﬁl (/32_52)
n 2 n )
1 — 1 8IOgCQ<Ut_1,Ut,ﬁ2) =~ S -1/2
_ 1 _ - Fo,(Yi—ori)— F(Yi_oy;
n ; og c2(U—1,Us, By) + n;t_2 0U;_2+; [ (Yi—245) (Y 2+J):| +0p (n )
and
LR,
_ 1 ilog c2(Fn(Yeo1), Fu(Y2), By)
=2 Cl<Fn( t—1 7FTZ( t)751)
n - 2 n ) )
1 cz(Ut—laUthQ) 1 {8lOgCQ(Ut—17Ut7/62) 810g01(Ut—1;Ut7/31)} [ S
- _ lo Z2) — F,(Yi_o1:) — F(Yi_o
ntZQ gcl(Ut—laUtaﬁl) nj;t2 aUt—Z—i—j BUt_ngj [ ( t 2+]) ( t—2
+op (n 1/2
Thus
LRn —E |:10g CQ(F (}/t*l) 7F (}/t) 752):|
c1(F (Yi-1), F'(Y2), 1)

_1¢ o c2(Up—1,U, By) o ca(F (Yi-1), F (V) , By)
n ; [l gcl(Ut—laUtvgﬂ . [l gcl(F(Y%—ﬁ,F(Yt)aﬁl)H

1 " (Dlogca(Up—1,Us, By)  Ologer(Ui—1, Ui, B)) T5 =
n - F,(Yi—04:) — F(Yi_o
+TL Z { aUthJrj (3Ut,2+j |: ( t 2+]) ( t 2+])
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~

722 810gC2 Ut 17Ut7ﬁ2) [ﬁn(yt72+]) — F(}/t72+])i|

=1 t=2 OVt
_ dlog ca(Up—1,Us, Bs) [ o
_ Z e (B (Virr) = Fa(¥i)]

810g62(Ut—17Ut75) oo
+HZ - el ORI

dlog ca(Up—1, Uy, By)
+7§: (Vi) — F(Yie
nis OU;—1 Fn(Yir) i)

—I—l Z dlog 02(?&:, Ut, Ba) (Fo(Y)) — F(Y))]
=2

Using similar argument as in the previous Sections, we can show

1 3 dlog 02([3';:7 Ut, ) [ﬁn(f@) - Fn(Yt)}

11 i dlog ca(Up-1, Ut,BQ)f* (V) % i [(X]’ - X)) D;lnl/ﬂ D, (7 —7) 4+ op (n‘l/2>

\/ﬁnt:2 8Ut =1
1 1< 8log02(Ut,1,Ut,32) * 1 & 1 y—1,.1/2 =~ *
= —— Y;) — X:D D, (7w —
n el f<»n;um o
11 310g02(Ut71,Ut,52 1 ¢ 1,,1/2 ~ ~1/2
_ = X/D, -
\/ﬁn; oU; nj_l{ t ] n(@—m)+o ( )
= op(n_l/Q)
and thus

2 n — —
% Z Z {6log c2(Up—1,U1, By) ~ Ologer(Ui—1, Ut, By) } [ﬁn(i;t—%rj) — F(Y}/,gﬂ-)}

P OUi—24; OUt—2+j
2 n - -
1 dlog co(Up—1,U, By)  dloger(Ui—1, Uy, By) } _1/2
= — — F,(Yi o ;) —F(Yiy9:i)+o0,([(n .
N3 e S P B (i a1) = F(iais)] + 0, (n12)

9 (U1, B;) = E{ [alog Cé(UU:;jUt’ﬁi)] [(1(U) < Ut—a+;) — Ut—?-i—j)]‘ Ul} ;
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{8kg02a%—thJ%)__8k%cla%_hth%)}[F(Y}2+)-—FKY22+)]
n\+t—2+y 4T

j=1 tZQ 8Ut_2+j 8Ut_2+j
2 n _ B
1 dlog ca(Ui—1,Us, By)  0Olog i (Up—1, Ut,ﬁl)] }
- E - WU < Upoei) — Uso | U
ﬁ]:llzz; {|: aUt_2+j 8Ut—2+j [( ( | >~ Ut 2+]) t 2+])] 1
2 ;> B -
- Z [n E {gzj (U1752) — g1j (Ul,ﬁl)}] ,
Jj=1 =2
we have

1 < o c2(U-1,Us, By) op 2 Y1), F (W), Bs)
Z [l gcl(Ut—lyUt,Bﬁ E[l ¢ ci(F (Yie1), F (Y1),8 ”

2 n -
1 aIOgCQ(Ut,hUt,Bg) alOgC]_ Ut 17Ut751 }
+— (Y, F(Y; i)+ op (1
n;tzg{ e T 2es) — F(ieai)] + 0, (1)
_ ii [log 2Ui1, Ui Ba) 4 [log co(F (Y1), F (Y )752)”
Vn = c1(Ui-1, Uy, By) a(F (Y1), F (Y1), 61)
2 n
1 — _
+Z —= > _E{92j (U1, 85) — 91 (U1, 81) } | +0p (1)
j=1 \/ﬁl:2
= N( ,wz)
In the generalized nested case, denote
" 91 W(Yii1), Fo(Y),B.)  —
772 0g ¢;(Fu(Yi1), Ful 1), ;) T

apops’

Notice that
Pr [cz(Ut_l, Ut,BQ) = c1(Ug-1, UtaBl)] =1

thus

Pr [log c2(Ug-1, Uta§2) —0-E [log ca(F (Yie1), F (V) ,BQ)H .
c1(U—1,Ut, By) a(F (Yio1),F(Y2),B;)
Pr [alogcz(UthUt,ﬁg) _ alogcl(Utht,ﬂﬂ]
8Ut72+j 8Ut,2+]’
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thus,

_ N[, @0, Ui By) ) ea(F (Vi) , F (Y1), Ba)
- nz[lgclwt_hut,/sl) E[lg (F (Y1), F <m>”

lz - {3108§C2(Ut—1,Ut752) dlogci1(Up—1,Us, By)
n

ﬁ (Y, — F(Yy_oy
OUs_94 U2y t=2+47) (Yi-24j)

j
(32 Bz) Hyp (52 22) - % <B1 - 31) Hyy, (Bl ) +
B2‘B2> 2n (32_B2> _%<Bl_51> Hiy, (Bl 51) +0p< )

Let Uy = F*(Y;), and G =n Y230, 055 (Uj—1,U;, B;), j = 1,2, where

9?log ¢; (Up—1, Uy, B)
aﬁgUt 7

alogcj (Ujfl,Uj,ﬂ Zl:

g (Uj—1,U;,B;) = a5 1(Uj < Ui—s) — U] | U

Qjp = lim Var (Gjn), Hjp = —FEl; 35 (F*(Yi-1), F*(Y), B;)

n—oo

Using the results of Section 4,

and
|:LR —E[log 2( (Y;f—l)vF(Y;&>762):|:|
c1(F (Yi-1), F (Y1), 581)
1/~ = 1 -~ = 5
= 3n (ﬁz - 52) Hoy, (52 52) Pl (51 - /31) Hip, (51 - 51)
+op (1)
1 ——1 e 1o ——1 1=
= 592,nH2,6 (Han) Hy gGom — §gl,nH1,B (Hin) Hy gG1n +0p (1)
7_1 —_
B 1 — — Hgﬁ 0 gZ,n
= 5[ Gom Yin } [ 0 _ﬁl—}j ] [glm +op(1)
where

Gon Q Q
Gin 92,1 91,5

Thus, under the null, 2nLR, converges to a weighted sum of independent y? random variables in

which the weights (A1, - -+, Ak, +k,) is the vector of eigenvalues of the following matrix
= =1 = =1 = = =1
QopHyp —21Hyp ] _ | Q2 Q2 [ Hy ]
=1 =1 = =1 | = | & & =1 |-
Qo1fy5 —ipHypg Qa1 g —Hyp
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