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Abstract

An adequate description of economic dynamics requires the introduction of

a monetary system including default penalties and expectations in a society

whose economy utilizes money and credit. This essay notes and discusses several

of the factors involved in the use of money and credit in a process oriented

economy. It links these observations with the general equilibrium treatment of

the same underlying economy and formulates a government guidance game where

the government sets several key parameters in a monetary economy sufficient to

select a unique equilibrium. Low information and error correction are noted.

The links to the first and second welfare theorems of GE are also considered as

is the setting of the price level.

Keywords: General equilibrium, strategic market games, uniqueness, aggre-

gation, information, disequilibrium, minimal institutions, playable games.
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JEL Classifications: C7, D50, E4

1 Government Guidance

This essay lays out the connection between the static, non-strategic, general equilibrium

(GE) model of an economy and game theoretic, strategic market game (SMG) models

of the same economy. It notes that in the latter price formation mechanisms and

default or bankruptcy conditions must be defined.explicitly if any credit is created;

and that the specification of these conditions may have a considerable influence on the

outcomes. A basic observation is that no matter how simple a fully defined process

model may be it is fundamentally institutional,the mechanism that supports process

itself may be interpreted as such.

In essence the overall argument can be sketched in several simple points

1. Classical GE exchange economies have no institutional money, but rather just a

unit of account that sums to zero. The price level is of no concern. It is defined

on (0,∞). Default is of no concern.

2. The competitive equilibria (CE) of a GE model are not necessarily unique. In

fact, in this paper we reconsider an example with 3 CEs.

3. There are two ways uniqueness fails (a) there is more than one fixed point im-

plying more than one way to distribute all physical resources. (b) the price level

is not linked to an asset money. In a dynamic economy both of these may be

avoided.

4. As soon as we try to build a process model, we are forced to consider cash flow

constraints. There are three fairly natural ways to handle these constraints. (a)

we can consider that a referee hands out an accounting money line of credit

where each individual must return his credit line at the end or be penalized for

failing to do so. (b) Trade uses a commodity money where in simpler subcases

the money could be separable and could be linear in utility. (c) an intrinsically

worthless fiat is issued whose future value is determined by expectations.1 All

cases are feasible. If borrowing is permitted, a default penalty may be needed if

an individual is unable to pay back her debts.2

1Its value lies with the worth of liquidity, not in consumption.
2In all of the discussion in this essay we limit our concern to one round of trade in a single period.

3



5. As soon as we build a model using any feasible trading method even for the GE

model, we can calculate liquidity needs at any CE for any trading method. This

gives us a way to differentiate among CEs – if total nonmonetary wealth is to

sum to the same monetary amount W , then each CE requires a different level of

liquidity relative to wealth normalized to W.

6. Case 4 (b) above is a straightforward but mathematically messy way to develop

the conditions of “enough money” when the commodity selected as a money

enters into the utility functions generally. Dubey and Shapley [4] and others

have considered this possibility, including some examples where it is not feasible

to satisfy the conditions for there to be enough of a commodity money if it enters

the preferences of individuals in an inappropriate manner.

7. Case 4 (c) above, with fiat, may be considered with and without borrowing and

these are discussed below.

8. All cases require a counting of the degrees of freedom (DOF) and discussing what

is needed to fully nail down uniqueness and a price level. Fiat money introduces n

degrees of freedom into an economy with n trader types. A candidate for minimal

government might be a commodity money such as gold with 100% reserve lending;

but this requires a separate specific discussion as to why it may or may not be

economically and politically feasible (see [18] Chapter 5).

Government as a player Government may be treated in two ways. First, it can be

an active goal oriented agent with some strategic abilities such as setting an interest

rate, bankruptcy penalties and a bound on borrowing, and possibly taxes and subsidies.

Second, its role may be just regulatory, so its control variables may be regarded as a

given set of parameters. This avoids being explicit about government goals. The

former stresses the macro-economic connection while the latter emphasizes the, micro-

economic connection. For simplicity we choose the latter.

2 General Equilibrium (GE) Model

A general equilibrium exchange economy (or “GE economy” for short) Γ can be de-

scribed by the set of the trader types, their utility functions and their endowments

The variability in the velocity of money is an empirical fact; but even without this complicating feature
many of the basic properties of the monetary system we study can be investigated.
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Γ = {Rm
+ , u

i, ai}ni=1. where

Rm
+ = the commodity space for m commodities,

ui = the utility function for individual i, i = 1, ..., n.

ai = the initial endowment to individual i of the m commodities

For any GE economy, a competitive equilibrium (CE) as a pair {(x1, ..., xn), p} (here

xi is anm-dimensional consumption bundle for player i, and p is anm-dimensional price

vector) satisfying a) for each player i, xi maximizes ui(x) over all x satisfying
∑
pjxj ≤∑

pja
i
j; and b)

∑
xi =

∑
ai. This is the standard concept from microeconomics, in

which players are each maximizing their own utility and supply equals demand.

An observation here (relevant when we discuss strategic market game equivalents)

is that if (x, p) is a CE in a GE model, then so is (x, αp) for any positive α. Thus there

is complete degree of freedom in the equilibrium prices of the model.

In general, there is no guarantee that there is a unique equilibrium allocation x.

However, there are known conditions which do guarantee the uniqueness:

• Uniqueness will exist if all traders have the same utility function;

• if all have a commodity in common that enters the utility functions in a linear

separable manner and all have a sufficient supply;

• if there is gross substitutability.

Shapley and Shubik [16] give an m = n = 2 example satisfying none of the above

conditions, which contains three equilibria. In the latter part of this paper, we consider

a “strategic market game version” of their model, and compare results.

We remind the reader that as described in the previous section, there is no process

described in the GE model formulation, no explicit accounting of money. For that we

need strategic market games.

3 Strategic Market Games (SMGs)

Associated with any GE economy there are many ways to define a strategic market

game. These have been discussed elsewhere [17][15][18]. Here we enlarge the GE

model explicitly, by not merely constructing a process model, but also by introducing

government as an extra strategic dummy atomic player. Its powers over the economy

are specified by the financial instruments it controls, such as fiat money supply, taxation

and subsidies.
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3.1 The Most General SMG

The most general strategic market game may be described by: Ψ = {Rm
+ ×R, , p̃j,Π,Λ,

ρ, β, θ, B, {U i, ai, si, τ i}ni=1, k} where the extra dimension R in the commodity set in-

cludes the amount of fiat held by the players The i’s index player types, of which there

are n in all. Each individual of type i is assumed to be identical.

The government control set is Π,Λ, ρ, θ, B, τ i. In our formulation here, the govern-

ment is not a formal player in the game, but instead supplies the exogenous parameters

listed. There are other models in which the government IS a formal player in the game,

with its own objectives. See Quint and Shubik [15].

• The parameter Π may be described as official per unit expectations of the pur-

chasing power, or cost of living index, for any money held at settlement (in a

finite dynamic program it is part of the salvage value) 3.

• Λ is the common penalty, per unit, for any money owed (or negative money)

appearing in the second period or day of settlement; after the game is over

measured in terms of the ‘disutility or negative worth’ of the penaty relative

to the size of the bankruptcy measured in fiat 4.

• The B is a bound placed on the central bank’s issue of fiat. The bound may

not exist formally, but history has seen unconstrained printing of fiat eventually

destroying the functioning of the economy.

• τ i are the lump sum taxes (−∆) and subsidies (+∆) on each individual of type

i.

• p̃j are the previous market prices 5

3If we consruct a playable game with only nondurable commodities, no history beyond previous
prices and only one period of play there is little leaning feasible so that any valuation of worth at
settlement must depend at most on given parameters and the outcomes of a single move by each
agent.

4Philosophically it is difficult to be precise about a bankruptcy penalty and its indvidual worth.
By concentrating our thought on an experimental game we can at least be reasonably specific i our
assmptions.

5In a ”rational expectations world” the behavoral mystery of how future expectations are formed
is solved by assuming that the coordination probelm that matches the ex ante expectation is identical
with the ex post result. This, though intellectually satisfyng to some, sidesteps the dynamics by the
assumption of an error proof foresight. Here, as we do consider an equilibrium solution we permit
it to be conditioned on a parametrically given set of expectations. How the expectations are formed
and modified in a many period economy is, essentially, one of the key open questions in economic
dynamics; and, in our opinion, does not have a pure economic answer free from considerable context.
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• ρ is the money rate of interest,

• β is the natural discount

• θ is a lending parameter

We also define two derived variables where

• Πi is individual type i’s expectation of the per unit worth of money in the future.

It is calculated as Πi = βµiΠ. The discount factor β denotes that settlement

comes one period after the action and the µi is the Lagrangian that personalizes

the valuation for type i.6

• Λi is individual type i’s per unit worth of the government imposed bankruptcy

penalty. It is calculated as Λi = βµ̃iΛ. Again β denotes that settlement comes

one period after the action and the µi is the Lagrangian that personalizes the

valuation.

There is a conceptual problem in specifying the magnitude of the Λ. From the

viewpoint of the government it is a generalized “marginal disutility” of debt at the

point of bankruptcy. If we wanted to be physically specific it could be the disutiltiy

of going to debtor’s prison, or of other actual penalties. If this has been selected large

enough,7 then no one will wish to go bankrupt strategically.

At the point separating bankruptcy from nonbankruptcy, there will be left and right

hand derivatives that may differ.

Finally, the parameter k signifies the number of individuals of type i.(i = 1, ..., n).

The two important cases are where k = 1 and where k = ∞. In the k = ∞ case, the

interpretation is that there is a continuum of individuals of each type. More about this

in Section 9.

Individuals of type i wish to optimize, over all nonnegative ((bi1, ..., b
i
m, q

i
1, ...., q

i
m, d

i),

the following

6Mathematically, µi is the optimal value of the Lagrangian multiplier of a “no bankruptcy allowed”
constraint for type i, which is equivalent to our case below with Λ = ∞. See Quint-Shubik [15] for
details.

7If there is an upper bound to the amount of money and credit that can be issued, for a bounded
velocity, there is an upper bound to price, hence a high enough penalty to avoid strategic bankruptcy
near quilibrium is well-defined.
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maxU i = ui
(
bi1
p1

+ ai1 − qi1, ...,
bim
pm

+ aim − qim
)

(1)

+Πi

(
si + τ i +

m∑
j=1

pjq
i
j −

m∑
j=1

bij − ρdi
)+

(2)

+Λi

(
si + τ i +

m∑
j=1

pjq
i
j −

m∑
j=1

bij − ρdi
)−

(3)

subject to

si + τ i −
m∑
j=1

bij + di ≥ 0 (λi)

where

ai = the initial goods resources of i. For all goods aj > 0 where aj =
∑n

i=1 a
i
j.

si = the initial amount of fiat money held by i before taxes or subsidies, where

si ≥ 0 for all i. We also assume s > 0 where s =
∑n

i=1 s
i.

τ i = the initial amount of money lump sum taxes on or subsidies for i, where we

assume τ i ≥ −si and is bounded above where τ =
∑n

i=1 τ
i.

ρ = the money rate of interest fixed on the government’s outside bank

β = the natural discount rate

bij = the bid of type i for good j

qij = the offers for sale of good j by individuals of type i

θ = the leverage factor in borrowing

di = the amount of fiat borrowed by i

Here the notation (x)+ means max(x, 0) and (x)− means min(x, 0).

We select the SMG with the minimally simple price formation mechanism, where

price is the ratio of the sum of money bid to the quantity of goods offered. If k is finite,

this is

pj =

∑n
i=1

∑
bij∑n

i=1

∑
qij

for j = 1, ...,m. (4)

where the second summation sign in numerator and denominator is the summation over

the k individuals of each type. [If k =∞, these “second summations” are replaced by

integrals – see Section 9.] Any SMG utilizing this price formation is called a Cournot

SMG.

Here we note another distimction between the k = 1 and k = ∞ case. In the
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former, a single individual can affect the price via the selection of his bids and offers.

In the latter, he cannot because the size of his individual bid is miniscule compared

the magnitude of both numerator and denominator. Hence in their own optimization

the individuals take prices as a given constant. This simplifies the analysis compared

with the k = 1 case.

We look for noncooperative equilibria (NE) for the above game. More specifically,

we look for NEs in which all individuals of the same type are doing the same thing;

these are called “type specific noncooperative equilibria”, or TSNEs. In symbols, a

TSNE is a set of n vectors {(bi, qi, di)}ni=1 (each of which optimizes the individual

utility maximization problem above), plus a price vector which satisfies (4).

3.2 Where does negative money come from?

Debts are financial instruments different from fiat money. The debts are usually de-

nominated in fiat money to be paid. Thus at settlement the debt is expunged by

converting it into fiat money (in the United States fiat is good for all debts public or

private). When an individual cannot pay and goes bankrupt, no fiat is destroyed but

the bankruptcy procedure expunges the debt and also may impose a negative reward

for the debt not paid. As history indicates the punishment is partially or completely

societal and not necessarily economic. It has included death, slavery, deportation,

indentured servitude, debtors’ prison, garnishing of future income and other penalties.

3.3 An aside on taxes and transfers

Macroeconomic models, unless they are very low dimensional growth models, often do

not specify the number of control variables and the degrees of freedom in the system.

This may, in part, be encouraged by the concern for dynamic equilibrium paths and

a desire to avoid the complexity of boundary conditions. Our belief is that financial

control is heavily involved with boundary conditions and inequalities and, at best, tran-

sient paths to an equilibrium which may not always exist. Among the most important

devices in influencing adjustment are taxation and subsidies. In the models here they

can be treated explicitly. In particular the influence of a lump sum transfer is dealt

with explicitly in considering the welfare theorems of GE.

The construction here converts the general equilibrium model into a process model.

Although it is ridiculously simple behavioristically, it can actually be played as a one

period game. The full Pandora’s box concerning learning and expectations opens with
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the multistage game and Jurgen Huber, Martin Shubik and Shyam Sunder [6] have

experimented with this model.

Comment: In essence the simple SMG model selected here is a closed one period

economy in terms of agents; but is open in time and it is connected to the other periods

by the one durable asset, fiat money.

4 Control, Dimensionality, and Other Modeling Is-

sues

When we compare the set of GE exchange economies against the set of strategic market

games (SMG) presented here, we observe that there is a vast profusion of games that

map down to any GE model. The GE models in concentrating on the existence of

equilibria can dispense with the institutional detail needed to describe the carriers of

process in a SMG. Even with a relatively parsimonious description of the financial and

control structure the proliferation of models is considerable, but this is to be expected

when one attempts to model process. Many of the control variables such as Λ are set

equal for all. This is usually reasonable when information requirements are considered
8. Even though the physical penalty may, in law, be the same for all, like default it

may be valued differently by each agent.

4.1 Error correction

A dynamic system that acknowledges the possibility of error and disequilibrium requires

the appropriate forms of redundancy that help to correct errors. The availability

of lending and the variation of the money supply provides a system where in some

situations the ability to borrow may help to correct error, This is illustrated by Walter

Bagehot’s masterful discussion of Lender of Last Resort [1].

4.2 The use of money and the leaky conduit

At best clean abstract models pick up essences, not the details of reality. We utilize

a stark simplistic view of both fiat money and taxation. We imagine strict rules of

the game that require all individuals to use fiat money in their transactions, to borrow

only from a government bank, and to fully pay their taxes. In reality the monetary and

8Although, in fact, the legal process does some (expensive) hand-tailoring for individual cases.
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taxation system is not unlike a leaky irrigation conduit system where many mountain

streams pour inefficiently into the conduit and many individuals tap into the system

legally or illegally, while others dig wells for themselves.

4.3 Dimensional analysis and the redundancy of control in-

struments

In the pure GE model there is no explicit government control. It is proved that given

the assumptions made, efficient prices exist and they are not necessarily unique. No

selection mechanism is provided. We suggest that this mathematical problem may be

resolved in two considerably different ways. First, one may either search for restricting

conditions within the GE models that guarantee uniqueness of equilibrium (cutting

down the generality of the models). Alternatively, we may embed the GE economy

into a large class of monetary economies where government selection of certain ‘rules of

the game’ may still leave competitive markets to form price, but the extra rules guide

the outcome and possibly select or, at least maintain a unique equilibrium.

4.4 Degrees of freedom and control

In any macroeconomic textbook different government control instruments are dis-

cussed, but there is rarely if ever any discussion of the number of degrees of freedom in

the private sector and the number of control variables available to the government. In

many of the standard low dimensional growth models it is easy to construct economic

models where the dimensions of the control variable exceed the degrees of freedom in

the market structure. This appears as a paradox; but is easily explained with the

observation that a number of control variables cannot be utilized for political reasons.

For example, in the U.S. economy a marginal income tax rate of 80% for those with

incomes of over $100 million a year is economically feasible but may not be politically

feasible.

The information requirements for control variables need to be kept relatively sim-

ple; trying to hand-tailor a bankruptcy penalty to fit each individual would require

considerable detail. Thus Λ (rather than many parametersis) is far more reasonable

in practise. Another example that is discussed below calls for simple rules that are

information parsimonious for partially secured lending.

We may compare the GE models and the SMG games noted above. Setting aside

government control, the GE and SMG models share many features Each representation
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has n agent types and m goods. The distribution of goods aij is bounded by the

conditions that for each j = 1, ...,m,
∑n

i=1 a
i
j = aj > 0. There are apparently m

prices, but as only ratios matter there is an extra price to be fixed by imposing a

condition such as
n∑
i=1

m∑
j=1

aijpj = W

The GE model is described mathematically in such a manner that all details con-

cerning the payment structure are irrelevant. All that matters is that the books balance

at the end in accounting units (we could call this accounting money but apart from

balancing the books it has no operational meaning). Money as an asset, credit and

default and bankruptcy are not relevant.

We switch to an associated set of SMG because a full mechanism description of

a playable game must be presented. We must be explicit about many items that

are at best implicit in the GE model. A discussion has been given elsewhere of the

concept of ”minimal institution” [18]; we argue that even with trying to minimize

the description of an exchange economy with a transactions technology there is an

enormous proliferation of models.

In the construction of a SMG we may add a synthetic good whose supply is con-

trolled by government or by an extra atomic, large ”outside player”. We call the

synthetic good outside money or more simply fiat money. Its properties must be

specified. It is a durable that does not depreciate physically and is valid in the dis-

charge of all debts. Furthermore all debts are denominated in units of this good. The

existence of a fiat money requires the extra dimension R denoted in the description of

an SMG given above. The initial conditions require the specification of money holdings

siof all individuals and the government bank B. This requires n + 1 dimensions. As

the bank is capable of creating its fiat money the B could be regarded as a fiction, but

otherwise it may be regarded as a limit placed by the bank on the amount of central

bank money that it can or will create, given that the monetary unit has been fixed.

Although touched upon in Section 2, we reemphasize here the control variables

available to the government are τ i,Λ,Π, ρ, θ, B.

The strategic choices of the individuals in the SMG are (bi, qi, di) the (bi, qi)

are bids and offers forming prices as contrasted with the (xi) for the GE where the xi

are purchases or sales at a given set of prices. The di are loans.

The Πi in the SMG are the expectations of individuals who can believe what they

like about what money will be worth at the day of settlement. One can invoke a
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rational expectations or noncooperative equilibrium solution as a way to produce their

actions; but in a one period game there is no evidence on which to base one’s learning.

In an actual experimental game the referee can supply the terminal conditions and it is

for the individuals to decide whether or not to believe the referee. This is tantamount

to adding the variable Π to the government strategy. In an actual economy this is

having the government supply an estimation of inflation or deflation and each agent

utilizing it to form her estimate of Πi = βµiΠ this reflects the government forecast

modified by each agent’s individual valuation of the marginal worth of a unit of money

to her at settlement.

4.5 A comment on expectations and hoarding

The expected value of terminal claims to money is a behavioral parameter associated

with learning. This appears when we have a large number T of active periods followed

by a settlement period. Here we have only a T = 1 period followed by settlement 9. As

a first approximation we may assume that all use the same expectation Π concerning

the final or salvage value of fiat.

In the broad class of models described here it is possible, but unlikely that Π is

high enough, (as in a deep deflation) hoarding becomes an optimal strategy. Unless

supervision were sufficient, an individual might even borrow, hoard, conceal (such as

a foreign unregistered account) and declare bankruptcy. We omit an analysis of this

interesting possibility and confine our discussion to where the expected value of money

is ”small enough” to rule this out.

Generally the expected value of money to an individual is a function of history.

Here the only history available is reflected in the initial conditions.

4.6 Some Conditions on the SMG

In the SMGs considered here we impose an elementary financial structure including

a means of payment that enters the utility function only in the terminal conditions,

when economic default occurs, or when a salvage value is attached to a terminal stock

of money.

9A critical physical feature in modeling economic actvity using dynamic programming models is
how long a time is a period meant to represent? When dealing with commodity trade a day may be
a reasonable unit; but it is commodity and agent specific.
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4.6.1 The default penalty and fiat money

The existence of a default penalty Λ imposed by government whose dimensions are

(disutility of punishment)/Fiat, even though the penalty is by no means purely eco-

nomic but is determined by an intermix of law, politics and economics this links fiat

directly to preferences and hence to utility via the individual Λi.

4.6.2 An aside on uncertainty

Although we do not deal with exogenous uncertainty here, it must be noted that even

with any random variable without complete markets the importance of the default

mechanism is as a public good, that measures the joint willingness of a society to

absorb losses from individual behavior (see [18]).

4.6.3 Money as a measure

Although a unit of money to one individual is not identical in utility terms to that of

another individual it provides a unit that has the same purchasing power for all and

can be transferred with ease and provides a monotonic measure of wealth.

4.7 Ownership and initial conditions

A modeling problem is faced when initial conditions specify the individual ownership

of fiat money si. In the GE economy this money does not exist. In strategic dynamic

economies it exists. Intuitively it appears to be some form of ‘free energy’ or liquidity.

At an interior equilibrium it should be irrelevant, or at least invisible as the books

always balance. But in a GE model there is either no future, or it is taken care of by

rational expectations applied to an infinite horizon. There are two somewhat different

attractive ways we can construct playable games of a finite economy specifying how to

evaluate any fiat left over at the end:

1. We may assume that each agent i at the end of the game is required to return si

units of fiat to the referee. It is as though government has given each individual

i an interest free loan of the fiat for the duration of the game. If less is returned

the agent is bankrupt. Any excess money held has a terminal value. The final

14



wealth condition is:

ui + Πi

(
m∑
j=1

pjq
i
j −

m∑
j=1

bij − ρdi
)+

+Λi

(
m∑
j=1

pjq
i
j −

m∑
j=1

bij − ρdi
)−

(5)

2. or we could consider that the si are owned unencumbered. This leads to a final

wealth condition of

ui + Πi

(
si +

m∑
j=1

pjq
i
j −

m∑
j=1

bij − ρdi
)+

+Λi

(
si +

m∑
j=1

pjq
i
j −

m∑
j=1

bij − ρdi
)−

(6)

We limit our analysis to the second model as operationally fiat money is an asset

owned by the individual who has it. Thus we are embedding the model into an

infinite horizon world where history is given by the initial conditions, including

the fact that individuals may own some fiat money and the future is implicit in

their expectations.

4.8 The CE and TSNE solutions

Although we deal with a process model and a well defined game we look mathematically

only at equilibrium properties in order to compare model solutions. We consider TSNEs

and consider where they may or may not coincide with the relevant CEs of the general

equilibrium model associated with the SMG.

4.9 A disclaimer on learning

Any experimentation also calls for a consideration of learning dynamics. There is a

large, important and growing behavioral and game theory literature on learning [11],

[12] that we do not discuss as it requires more informational complexity than is given

here and is not directly relevant to the central theme of uniqueness studied here. In

15



our analysis because we deal only with a single period in which all agents make a

single simultaneous move, expectations can be treated as a parameter attached to a

linear separable utility term. A justification for this is given below in warning about a

common mistake concerning the role of a linear separable term in the utility function.

4.10 Two basic misinterpretations to be avoided

In proceeding from a static GE model to a multistage SMG model it is easy to fall into

two basic conceptual traps. The first deals with the concept of a dynamic solution and

equations of motion; the second concerns the existence of a linearly separable utility

term in the representation of preferences. Both are dealt with independently here.

4.10.1 Solutions: Structure, behavior and equations of motion

In an evolving system it is easy to intermix structure and behavior as, for example,

political behavior on one time scale can influence economic structure and hence eco-

nomic behavior proceeding on a different time scale. Our construct for a SMG assumes

the existence of individuals with preferences; but beyond that makes no behavioral

assumptions whatsoever concerning how they will behave. The structure of an indi-

vidual’s payoff function for an economy that lasts actively for T time periods and then

has a settlement date at t = T + 1 is given by:

16



U i =
T+1∑
t=1

U i
t = (7)

T∑
t=1

βt−1

{
uit + βΛi

(
sit + τ it +

m∑
j=1

pjtq
i
jt −

m∑
j=1

bijt − ρdit

)−}
(8)

+βT+1

 Πi
T

(
siT + τ iT + diT −

∑m
j=1 b

i
jT

)+

+Λi
(
siT + τ iT +

∑m
j=1 pjT q

i
jT −

∑m
j=1 b

i
jT − ρdiT

)−
 (9)

where sit+1 = sit + τ it + dit −
m∑
j=1

bijt if positive, (10)

or sit+1 = G > 0 if negative (11)

subject to

(
sit + τ it + dit −

m∑
j=1

bij

)
µit for t = 1, ..., T (12)

subject to

(
sit + τ it +

m∑
j=1

pjtq
i
jt −

m∑
j=1

bijt − ρdit

)
µt for t = 1, ..., T (13)

where 0 ≤ qijt ≤ aijt, b
i
jt ≥ 0, 0 ≤ dit ≤ θ

(
sit + τ it

)
(14)

The number G > 0 may be regarded as some small sum left to or given a bankrupt

so that she is not totally destitute and is able to get back into the game. In actual

bankruptcy rules where long run physical assets are involved these involve conventions

such as leaving craftsmen or farmers some of their elemental tools of trade. In the one

decision period model G is not relevant.

β = the time preference discount, where we assume 0 ≤ β ≤ 1.

We note in the equations above that as fiat had no intrinsic value, except as a

constraint it yields no consumption worth in any active market period. At the end of

active market time a salvage value for fiat is given.

4.10.2 Terminal conditions and separable utility

A basic misinterpretation of this work is to believe that it does nothing more than state

that with the existence of a durable commodity money that enters the utility function

as a linearly separable term automatically gives the conditions for the uniqueness of

the CE. It looks as if we do that, but there is a subtle key difference between what

we do and that interpretation that is present when we use only one active period and

17



a settlement day. This difference is made far clearer if we consider several periods

in a finite model, as is described immediately above. In particular the only use of

separability until the terminal conditions is in the assumptions of the separability of

the utility function from period to period. The links between the periods appear to be

linear only when the cash flow constraints are all interior. Bankruptcy can occur any

time after the first period and when it does it is evaluated at that period.

5 Solutions with the SMG

We utilize the TSNE solution, not because we believe in its sufficiency as a solution

concept, but because if nothing else, it shows the problems that exist even at the

simplest level of process model where there is only one decision period, i.e. T = 1

5.1 Government Lending Fiat

In order to introduce a money other than an accounting money we construct a strategic

market game (SMG) model with an initial distribution of fiat si and borrowing of more

fiat at an interest rate ρ > 0 set by the government. There are many institutional ways

to do so. We suggest two. The first stresses credit evaluation, and control. We note

it in an example. The second is simpler more laissez faire and utilized in our general

treatment.

Partially secured lending: It is assumed that the government is required to lend

fiat money to any individual who wishes to borrow with a credit limit for each such

that up to a multiple θ of an individual’s cash si,or di = θsi can be borrowed where

n∑
i=1

θsi ≤ B

is the limit on the total and θ > 0. This is a stylized partially secured lending.

The information and calculation requirements of this rule are minimal. All the

bank needs to know is the total amount of cash outstanding. When a request to

borrow arrives it requires that evidence is supplied by any requesting borrower i that

she has si.

Unlimited lending: The bank stands to lend any amount. Neither θ nor B

are relevant the naturally limiting factors are that the bank is passive and hence not
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pushing loans,and that loans cost a positive interest rate ρ 10.

A comment on the Lagrangians The GE and SMG models are mathematically

highly different, but under certain special circumstances they yield the same resource

distribution and relative prices. The equilibrium set for many of the SMG models will

tend to involve some boundary, and will be reflected by the Lagrangians differing from

those given by the CE.

5.2 Two Problems

We consider two problems, the first is relatively straightforward and is hardly surprising

but still requires careful formal proof as is given in the next section. It shows that when

we specialize from general equilibrium models to strategic market games with appro-

priate rational expectations initial and terminal conditions the welfare theorems hold.

The second item deals implicitly with disequilibrium, even a simple example breaks

into a morass of special cases as is illustrated in the appendix by direct computation

of examples for the many different boundary conditions involved.

Comment: With rational expectations settlement if Π = 0 prices are selected to

match market prices such that all fiat is removed from the system.

If the Π > 0 the SMG is still well defined but will generally have a boundary

solution and fiat money left over at settlement.

6 Existence and Equivalence

In this section’s analysis we are concerned with the case where there are an infinite

number of individuals of each of the n types (the “k = ∞ case” from Section 2). We

use xim+1 to denote agent type i’s final holding of the fiat money, which can be either

positive or negative. We assume that with the fiat money, type i’s consumption set is

extended from <m+ to <m+ × <. Then, the extension of ui to U i as given in (6) can be

written as

U i(xi, xim+1) = ui(xi) + Πi max{0, xim+1}+ Λi min{0, xim+1} (15)

for (xi, xim+1) ∈ <m+ ×<.

10This does not rule out the unlikely possibility of completely correlated massive borrowing that
could introduce knife edge equilibria.
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To prevent agents from purposely incurring debt by borrowing, we make the fol-

lowing assumption which also guarantees that U i is concave whenever ui is.

Assumption 1: Λi ≥ Πi for i = 1, 2, · · · , n.

As mentioned before,, a strategy for agent i is a list (qi1, · · · , qim, bi1, · · · , bim, di) of

quantities qij of commodity j agent i offers to sell, bij of the fiat money he bids for

commodity j, j = 1, · · · ,m, and loan amount di. The strategy is feasible if

0 ≤ di ≤ θ(si + τ i), 0 ≤ qij ≤ aij, b
i
j ≥ 0, j = 1, · · · ,m, (16)

si + τ i + di −
m∑
j=1

bij ≥ 0 (17)

For each commodity 1 ≤ j ≤ m, let Qj > 0 denote the total offer for sale and

Bj > 0 the total bid in units of the fiat money to buy commodity j by all consumers

other than agent i. The bundle (xi, xim+1) that agent i receives with strategy (qi, bi, di)

is given by

xij = aij − qij +
bij
pj
, 1 ≤ j ≤ m, xim+1 = si + τ i +

m∑
j=1

pjq
i
j −

m∑
j=1

bij − ρdi, (18)

where

pj =
Bj + bij
Qj + qij

, 1 ≤ j ≤ m. (19)

Lemma 1 Let (Q1, · · · , Qm, B1, · · · , Bm) be the profile of total offers and bids by

agents other than agent i. Assume Qj > 0 and Bj > 0 for all j. Then, the set of

bundles agent i can achieve via his feasible strategies is a concave curve.

Proof. Let (xi, xim+1) be an achievable bundle. Then, there exists a feasible strategy

(qi, bi, di) that together with (xi, xim+1) satisfies (18). Thus, for 1 ≤ j ≤ m,

pjq
i
j − bij = pj(a

i
j − xij) (20)

and by (19),

pjq
i
j − bij = Bj − pjQj. (21)

Combining (20) and (21),

pj =
Bj

aij +Qj − xij
. (22)
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Now, by (20), (22), and the last equation (determination of xim+1) in (18), we obtain

xim+1 = si + τ i +
m∑
j=1

(pjq
i
j − bij)− ρdi = si + τ i +

m∑
j=1

Bj(a
i
j − xij)

aij +Qj − xij
− ρdi. (23)

The concavity of the curve composed of agent is achievable bundles follows from (23).

Observe that the strategy profile at which no one bids nor offers is always a NE. We

consider active NEs in which there are non-zero offers and bids for some commodity.

A common approach for proving the existence of such NEs is to consider ε-modified

SMGs for ε > 0, in which an outside agency places a fixed offer of ε > 0 and a fixed

bid of ε > 0 for each of the m commodities. The existence of an active NE can be

established by first showing the existence of active NEs for ε-modified SMGs and the

considering the limits of such NEs as ε approaches to zero. This approach was adopted

in Dubey and Shubik [5]. By (16)-(18), the strategy set of each consumer is compact

and convex. With the concavity of agents’ utility functions and Lemma 1, the same

proof of existence of an active NE in Dubey and Shubik [5] can be applied to the present

setting. For this reason, we summarize the existence result in Theorem 1 below without

proof.

By (16), si + τ i + di ≤ si + τ i + θ(si + τ i) = (1 + θ)(si + τ i). Thus, agent i is

moneyed (i.e., endowed with the fiat money) if and only if si + τ i > 0. We say that

commodity j is desirable to agent i if ui is increasing in xij for any given quantities of

the other goods.

Theorem 1 Suppose (i) si + τ i > 0 for all i, (ii) each commodity is desirable for at

least two agents, and (iii) each commodity is endowed by at least two agents. Then,

there exists an active NE.

Dubey and Shapley [4] considered the equivalence between the Walrasian equilib-

rium allocations of the general equilibrium model and the Nash equilibrium allocations

of the strategic market game, when there is neither borrowing nor salvage value of the

fiat money. They showed that the equilibrium allocations are equivalent if the per unit

penalty is large enough relative to the marginal utilities of income, which are implied by

the Walrasian equilibrium allocations, are Nash equilibrium allocations. We show that

the equivalence continues to hold when the marginal utility of the salvage value is low

but the per unit of penalty is high relative to the marginal utilities of income implied

by the Walrasian equilibrium allocations. That is, when Assumption 1 is satisfied.
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The following assumption is adapted from Assumption A′ in Dubey and Shapley

[4] for our present setting.

Assumption 2: For any δ > 0, there exists a number κ(δ) > 0 such that for all

j = 1, 2, · · · ,m,
ui(xi + ∆ej)− ui(xi)

∆
< κ(δ)Πi.

for all sufficiently small ∆ > 0 and x ∈ <m+ with xj ≥ δ.

Essentially, Assumption 2 requires that for each type, the marginal utility of salvage

money relative to the marginal utilities of other goods be bounded from below, unless

consumptions of other goods are near zero levels.

For the following assumption, fix δ > 0 such that 0 < δ < minj
∫
aj and let

T1, T2, · · · , Tn denote the partition of T such that traders of Ti are identically charac-

terized by (<m, ui, ai, si, τ i).

Assumption 3: For each type i,

θ(si + τ i) ≥
m2κ(δ) max1≤j≤m

∫
aj

min1≤i≤n µ(Tt)
.

Assumption 3 means that each type has enough money from initial endowment and

borrowing. With Assumptions 1-3 in place, all the conditions required in Theorem 6 of

Dubey and Shapley [4] are satisfied. Consequently, the following equivalence theorem

holds.

Theorem 2 Assume Assumptions 1-3 are satisfied. Then, (i) the prices and alloca-

tions of any CE are achieved at some NEs; (ii) the CE prices and allocations of E
coincide with those achieved at open NEs.

Using Theorem 2, we can establish the following equivalence between PO and NE

allocations.

Theorem 3 Assume Assumptions 1-3 are satisfied. Then, any given PO allocation of

E can be a NE allocation for an expansion of E with suitable fiat money and taxes.

Proof. Let x = (x1, x2, · · · , xn) be a type-symmetric PO allocation for E with no fiat

money endowments nor taxes. Then, by the second fundament theorem of welfare eco-

nomics, there exists wealth transfers τ = (τ 1, τ 2, · · · , τn) such that x is a CE allocation

with these wealth transfers (see Mas-Colell et. al [13]). Next, set si = p · ai for all i,
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where p is the CE price vector with wealth transfers τ . Then, ((xi, xim+1)ni=1, (p, pm+1))

with pm+1 = 1 is also a CE with agent i’s utility function in (15), his commodity

endowment ai, fiat money endowment si, lump-sum tax τ i, and with both Λi and Πi

given by the agent i’s marginal utility of income (the Lagrangian multiplier) associated

with the CE. Notice that si + τ i > 0 whenever p ·xi > 0 for all i. By Theorem 2, x is a

commodity allocation of an open SE. Conversely, an open SE allocation is a competitive

equilibrium allocation from Theorem 2. Thus, it follows from the First Fundamental

Theorem of welfare economics that the open SE allocation is Pareto optimal.

7 Uniqueness and borrowing

We turn to the problem of uniqueness in GE and SMG models. Suppose that the

CEs are all normalized in such a way that the monetary wealth measure at each CE is

the same. Then, we conjecture that the vectors of the Lagrange multipliers associated

with the agents’ utility maximization problems in the CEs do not Pareto dominate

each other.

If the conjecture holds, then as shown in Qin and Shubik [14], for each CE of E , a

credit money can be instituted such that the CE is the unique CE for the extension of E
that includes the credit money with the marginal utility of agent i associated with the

CE of the original economy as default penalties. By Theorem 2, the open SEs of the

SMG model with the same credit money and default penalties are also unique, as long

as agents’ salvage values of the credit money does not exceed their default penalties.

We thus have:

Theorem 4 Let (x, p) be a CE of E and for i = 1, 2, · · · , n, let Πi and si be the

marginal utility of income and value of endowment of agent i associated with this

CE. Assume Πi satisfies Assumption 2 for i. Then, for (Λi, τ i)ni=1 and θ that satisfy

Assumptions 1 and 3, the open NE of the SMG is unique and coincides with the CE.

The three CE example in [16] is used in the examples below, as well as in an

experimental game. The solution illustrates the selection problem. In this one shot

game the referee announces its control variables, including its expectation on the future

value of money. In the experimental game run by Huber, Shubik and Sunder [7] this

helped to determine what was actually paid out to the subjects. The players knew the

promised settlement conditions before they moved 11.

11In actuality the government may not know much about individual utilities or endowments but at
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8 Volume of trade, cash flow and wealth

The financial volume of trade depends on the initial conditions involving the distri-

bution of goods and services, the amount of money and credit, and the technology of

trade. Here we have considered payments in fiat where the value of the fiat is supported

by a given valuation in the next period. Given this there are natural extreme upper

and lower bounds.to trade.

The absolute lower bound is 0, when the initial distribution is Pareto optimal and

no trade is needed. The upper bound is 100%, when preferences are such that each

sells all of her assets and buys other goods.

The volume of trade is highly institutional it depends heavily on the current

trading technology and the speed of clearance. Were trade all instantaneous all goods

would be liquid and the amount of government or bank money needed for trade would

be zero.12

9 An SMG version of Shapley-Shubik’s 3-NE Mar-

ket

Here we consider an example of a GE economy with three CEs together with an asso-

ciated SMG, and show how they are related.

9.1 The Original GE Model

The GE economy is that of Shapley and Shubik[16], a two-player, two-good economy

which has three equilibria. Player 1 ( “Ivan”) is endowed with 40 units of Good #1

(“rubles”). Player 2 (“John”) is endowed with 50 units of Good #2 (“dollars”). Their

utility functions are u1(x, y) = x + 100(1 − e−y/10) and u2(x, y) = y + 110(1− e−x/10)

respectively, where x represents the consumption of Good #1and y the consumption

of Good #2. The authors calculate Edgeworth’s contract curve as essentially the set of

Pareto optimal allocations (x, y) for Player 2 (“John”)13, for which y = x+50−10 ln 110,

any point in time it may estimate the future purchasing power of money.
12The formal study of liquidity requirements calls for the introduction of the details concerning the

bridge financing of the ∆t between when A has paid B, but B has not received the payment for use.
There is a large literature on bridging fnance and the risks in transactions from Adam Smith on many
references are given in [18],[15].

13It would seem more natural here to be defining x and y in terms of consumption for Player 1 (not
Player 2), but we stick with the convention from the Shapley-Shubik paper.
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4.83 ≤ x ≤ 40, plus some allocations where x = 40 (for any such allocation Player

1 receives (40 − x, 50 − y)). They also calculate the three equilibria for the economy,

given in the following table:

x y 40-x 50-y Ex Ratio Payoff 1 Payoff 2

Initial 0 50 40 0 - 40.00 50.00

CE1 7.74 10.74 32.26 39.26 5.07:1 133.69 70.01

CE2 26.83 29.82 13.17 20.18 0.75:1 199.88 132.30

CE3 36.78 39.77 3.22 10.23 0.28:1 167.27 146.99

Table 1: The three equilibria for the GE economy

The first two columns with numbers are the initial endowments/equilibrium con-

sumptions for Player 2, while the next two columns give those for Player 1..The “Ex

Ratio” column gives the exchange ratio between the two goods at the three CEs. Fi-

nally, the last two columns give the utility payoffs to the players initially and at each

of the three equilibria.

9.2 The SMG

Our “related SMG” is a special case of the general model from Section 2, in which

there are two types of player and a continuum of each type. So k =∞ and n = 2. We

also assume that ρ is arbitrarily high, so that no individual ever wants to borrow, so

that essentially there is no loan market. The utility functions and initial endowments

are those of Shapley and Shubik.

To formally define our SMG we may start with the above GE economy. But now

there are two types of players, a continuum of each type. The players are each infinites-

imally small; hence no individual’s actions can affect price (they are all “price takers).

Within each type, all the players are identical. Hence players of the first type have

the same utility function for the two goods, namely the above u1, while all the Type 2

players have u2. Also, the initial endowment of 40 units of Good #1is spread equally

over the continuum of players of Type 1, and the 50 units of Good #2 is spread equally

over the continuum of players of Type 2. Finally, each trader type has an aggregate

initial endowment of 1000 in fiat money, again spread equally among the individual

traders.

The strategies for the players are to make bids and put goods up for sale. Specifi-

cally, if i is a Type 1 player, his strategy is (bi, qi), where bi is the amount of money he

bids for Type 2 good and qi is the amount of his own endowment of Type 1 good that
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he puts up for sale. Similarly, if j is a Type 2 player her strategy is a vector (b
j
, qj),

where this time b
j
is the amount she bids for Type 1 good and qj the amount of her

own Type 2 good put up for sale. Prices are then formed by p =
∫
b
j∫
qi

for Good #1 and

p =
∫
bi∫
qj

for Good #2. Each player’s individual consumption (of the “opposite” good)

can then be recovered by dividing his/her bid by the appropriate price.

Since the players in each type are identical, we restrict our search to “type specific

noncooperative equilibrium (TSNE) outcomes”, i.e. equilibria in which all players of

the same type do the same thing and receive the same outcome. Hence we may identify

a strategy for the Type 1 players by (b, q), where b =
∫
biand q =

∫
qi. Similarly, we

may write a strategy for the Type 2 traders by (b, q). Again, see [15] for details.

Initial holdings are (40, 0, 1000) and (0, 50, 1000). We are now ready to formulate

the SMG. Traders of Type 1 solve the following optimization problem:

max
b,q

40− q + 100
(
1− e−b/10p̄

)
+ Π1(1000 + pq − b)

s.t. 1000− b ≥ 0 (λ)

b ≥ 0, 0 ≤ q ≤ 40

The objective function here is for Type 1 Traders’ aggregate utility, as the sum of utility

from the two traded goods plus the salvage value of the fiat at the end of the game (Π1

is the per unit salvage value for fiat). Since the bids for the traders cannot exceed the

initial cash on hand, we have a constraint (λ). Similarly, there is a constraint that the

Type 1 Traders cannot put more up for sale than their initial endowment. This is the

q ≤ 40.

Similarly, the Type 2 Traders solve the following

max
b,q̄

50− q̄ + 110
(

1− e−b/10p
)

+ Π2(1000 + p̄q̄ − b)

s.t. 1000− b ≥ 0 (λ)

b ≥ 0, 0 ≤ q̄ ≤ 50

Finally, the prices, bids, and quantities sold must satisfy the balance conditions

p =
b

q
and p =

b

q
.

This model is solved, for all values of Π1and Π2, in the Appendix. Note that there are
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four cases

Case 1.1: This is where both player types have a lot of money. Thus their “cash

flow constraints” (λ)and (λ) are both loose. The meaning of ‘a lot of money” is defined

precisely in the Appendix.

Case 1.2: Trader Type 2 has a lot of money, but Trader Type 1does not. Here (λ)

holds tightly while (λ)holds loosely. This holds if Π2 is relatively large and Π1small.

Case 1.3: Trader Type 1has a lot of money but Trader Type 2does not. Here

(λ)holds tightly while (λ)holds loosely. This tends to hold if Π1is relatively large and

Π2small.

Case 1.4: Now both trader types have little money. Here both (λ)and (λ)are both

tight. It holds if both Π1and Π2 are small.

We are now able to point out the correspondence between this model and the orig-

inal GE model. The contract curve in the GE Edgeworth box is the set of Pareto

optimal allocations at which both players could be optimizing their utilities, but where

supply does not necessarily equal demand. For the 3 CE economy the main part of the

contract curve is given as y = x + 50 − 10 ln 110, where x = Player 2’s consumption

of Good 1 and y = Player 2’s consumption of Good 2. In our SMG, to find the corre-

sponding outcomes, we need to look where there are no binding monetary constraints

(Case 1.1). Here Type 1 and Type 2 consume (40 − 10 ln
(

11Π1

Π2

)
, 10 ln

(
10Π2

Π1

)
) and

(10 ln
(

11Π1

Π2

)
, 50 − 10 ln

(
10Π2

Π1

)
) respectively. So, if we let x =Type 2′sconsumption

of Good 1and y =Type 2′sconsumption of Good 2,this is y = 50 − 10 ln
(

10Π2

Π1

)
and

x = 10 ln
(

11Π1

Π2

)
. But then y = 50 − 10 ln

(
10Π2

Π1

)
= 50 + 10 ln

(
Π1

10Π2

)
= 50 +

10 ln
(

11Π1

Π2

)
−10 ln 11−10 ln 10 = 50+x−10 ln 110. This is exactly the above Shapley-

Shubik formula for the contract curve.

Next, the set of equilibria for the economy is the set of points on the contract

curve for which supply equals demand, i.e. pq = b.14 In the Appendix, for Case 1.1

we calculate the equilibrium formulas p = 1
Π1 , q = 10 ln

(
11Π1

Π2

)
, and b = 10

Π2 ln
(

10Π2

Π1

)
.

Hence pq = b becomes 10
Π1 ln

(
11Π1

Π2

)
= 10

Π2 ln
(

10Π2

Π1

)
. Canceling the 10’s and rearranging

gives Π2

Π1 ln
(

11Π1

Π2

)
= ln

(
10Π2

Π1

)
. Now let γ = Π2

Π1 be the exchange ratio. Then this last

equation is γ ln
(

11
γ

)
= ln (10γ). As in [16] this has precisely three solutions, where

γ ∼= 5.07, γ ∼= .75, and γ ∼= .28.

For each of these equilibria, we observe that (unlike in the GE model, see Section

14This is “supply = demand” for Good #1; equivalently we could write pq = b for Good #2.
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2), it is NOT true that pan equilibrium vector implies that αp is also an equilibrium

vector, for any positive α. In fact there is an upper bound on the α, due to the

traders’cash flow constraints. For instance, for the second equilibrium above, where

γ = Π2

Π1 = .75, the cash flow constraint requires b ≤ 1000, which is 10
Π2 ln

(
10Π2

Π1

)
≤ 1000,

which is 1
Π2 ln (7.5) ≤ 100. But p is equal to 1

Π2 , so this gives p ≤ 49.6. And since
Π2

Π1 = p1

p2
= .75, we have p ≤ 37.2. These values of 37.2 and 49.6 we call the “top

feasible prices” for the equilibrium; any nonnegative (p, p) that is less than or equal to

(37.2, 49.6) can serve as the equilibrium prices, so long as p
p

= .75.15

By similar calculations, we can calculate the top feasible prices for the first equi-

librium as (129.1,25.5) and those for the third equilibrium as (27.2, 97.1).

Next, let us suppose Π2 is equal to 1. Then our three equilibria require p = 5.07,

p = .75, and p = .28 respectively, each with p = 1. The value of Π1must be 1
p
, which

is .20, 1.33, and 3.57 respectively for the three NEs. Next, q = 10 ln
(

11Π1

Π2

)
= 7.73,

26.86, and 36.71 respectively, and q = 10 ln
(

10Π2

Π1

)
= 39.26, 20.15, and 10.30. The

volume of trade in this model is given by pq (for the Type 1 traders) plus pq (for the

Type 2 traders), for a total of pq+pq. Under the three equilibria, this turns out to be

78.48, 40.30, and 20.58 respectively.

The optimal values of the Lagrangian multipliers λ and λ are zero.

9.3 Cash Flow and Wealth

Before continuing with further SMG examples we return to the GE model to consider

if there is any Mechanism in the CE formulation alone to select among equilibria. In

order to consider this we enlarge our above calculations as follows

p p̄ q q pq b = pq Net % Vol

NE1 5.07 1 7.73 39.26 39.26 39.26 0 .31

NE2 .75 1 26.86 20.15 20.15 20.15 0 .50

NE3 .28 1 36.71 10.30 10.30 10.30 0 .17

1-TO-1 1 1 23.03 23.98 23.03 23.98 .96 .52
Table 2

The four rows above correspond to our three NEs, and to a case where Π1 = Π2 =

p = p = 1. This is not an equilibrium, but rather a case where pq 6= b. The column

15We could also have started with the Type 2 traders’ cash flow constraint 1000 − b ≥ 0, which
would have given us the same bounds on p and p.
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marked “Net” is the inbalance, i.e the difference between pq and b. The last column “%

Vol” is the “ratio of the money value of trade to the money value of all assets”, which

is the volume of trade divided by 40p+50p. This is the percentage of liquidity required

to stay in Case 1.1. The fifth and sixth columns contain the goods volume of trade for

the two agent types. At each equilibrium, the money volumes are the same size for the

two types. However we can distinguish among the equilibria by noting that generically

there will be only one equilibrium with a minimum volume of trade relative to

the total worth of the resources at those prices.16 All that this says is that if the

government is ingenious enough to pick the right money supply and consumer price

forecast17 it can pick out a single price level with minimal liquidity needs. In the

example if s = s̄ = 39.26, there will be enough liquidity to handle all instances, and

trade relative to nonmonetary wealth is minimal.

Before adding more structure we observe that by definition the volume of trade is

less than or equal to total wealth 18. The immediate interpretation of the volume of

trade in a single period model of a monetary economy is as a cash flow constraint.

The CE model is too abstract to pick this up. Although one can select an arbitrary

price level of trade in accounting money the initial ownership of fiat is a datum and

is connected with the utility function by both the expectation of positive value at

settlement and by the disutility of a default penalty, but this does not hold here as

borrowing is not considerd.

9.4 The Experimental Game

Huber, Shubik, and Sunder [7] conducted (an approximation of) the above game as an

experiment in the “lab”19 Players’ moves were recorded in the four cases from Table

2, namely a) where Π1 = 1 and Π2 = 5.07, b) where Π1 = 1 and Π2 = .75, c) where

Π1 = 1 and Π2 = .28, and d) where Π1 = 1 and Π2 = 1. In case a) and case c), the

traders essentially behaved as they “should”, playing their NE strategies. In case d),

which is not an NE, the “Net” was about 1% of the volume of trade and so could not

16This does not provide any guidance to that equilibrium. In order to consider guidance, at least
some form of process model is required, and this must be provided by equations of motion applied to
the SMG.

17If lending is permitted, then a bankruptcy penalty is also required.
18In dynamics one has take care of wash sales (see [18]).
19The actual game played was slightly different from the game solved here inasmuch as the 1000

was deducted from payoffs made, but as this is a constant it does not influence the optimization if
the solution does not involve bankruptcy. Furthermore, there were only five players of each tiype in
the game, rather than the continuum in our model. .
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be rejected by our theory. However, in case b) this percentage was about 3% (instead

of the theory-predicting 0%). This seems to indicate that in this case, with Π1and Π2

so close to each other, that players might have acted as if they were the same, and this

dominated CE or NE considerations [7]

In the experiment noted [7] even without permitting individual borrowing we were

able to inroduce the possibility of default by reqiring that the initial supply of fiat be

returned to the government at settlement and one would be penalized for failing to do

so, but be given credit if one had more money. If Π and Λ were set equal there would

be no discontinuity in the marginal worth of fiat at the origin. If the marginal penalty

were larger than the marginal value of an extra purchase the lower bound on the price

level without bankruptcy would sink below the upper bound established by Π.

We now have a playable game with the government having set the total money

supply at s, named a default penalty Λ and supplied a prediction Π of the future

purchasing power of money.

The rules are such as if government had supplied (possibly too little or too much)

liquidity to all interest free, but requiring that it be returned at the end of the game.

Its distribution could be done randomly (like a Milton Friedman helicopter).

It follows there is large class of games where all CEs are feasible without borrowing,

all that is required is that the distribution of money and the expected terminal value

for money are such that all cash flow constraints are met.

9.5 Basins of Attraction and Excess Demand

An open question is: can we offer a measure of a finite domain of influence or basin of

attraction around each CE? Candidates for doing so are the maxima and minima of

the excess demands. They can be calculated from pq − b which may be expressed as

10

Π1
ln

(
11Π1

Π2

)
− 10

Π2
ln

(
10Π2

Π1

)
or this is the equivalent of finding the extrema of

Π2

Π1
ln

(
11Π1

Π2

)
− ln

(
10Π2

Π1

)
Set γ = Π2/Π1 taking the derivative wrt γ we obtain an approximate value in each

interval of γ = .46 and γ = 2.85
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The consumptions on the Pareto optimal surfaces are (8.26, 15.26) for Type 1 and

(31.74, 34.74)for Type 2 and (26.49, 33.50) for Type 1 and (13.51, 16.50)for Type 2 20.

As we do not address dynamics explicitly we cannot assume that the center CE

which is unstable under a simple first order price dynamics is also unstable under

other plausible dynamics (see [9]).

9.6 Examples with Lending

The variation of the money supply provides an obvious source of further control with

the need to introduce conditions on the quantity and price of money.

In the Appendix (Section 11.2) we lay down an extension of the above SMG, in

which banking is present..This parallels the banking models from [15], for a model with

different utility functions. We have solved this model, and plan to present our results

in a future paper..Here we remark that the solution with the Shapley-Shubik utility

functions is a lot more complicated (with more cases), owing to the nature of the utility

functions.

We can then extend this model to include strategic bankruptcy, much in the spirit

of the model in Chapter 8 of [15].

9.7 A Comment on the Price Level

With fiat money, the question of the price level becomes complex. In the usual CE

model the price level is homogeneous of order 0 or (·); with the SMG this is now no

longer has to be the case. A finite bankruptcy penalty puts a lower bound on the price

level and connects the monetary unit to utility and the amount of fiat plus credit sets

an upper bound on price at equilibrium [·]. If the expectations of the future value of

money γ∗Π are high enough for at least one individual there will be some individual

whose policy involves touching a financial transaction constraint.

Even at this level of simplicity the absolute price level is not always determined but a

continuum of knife edge equilibria may be obtained that do not survive perturbations21.

20A highly different way is by investigating the point at which the core splits into seperate points.
Kumar and Shubik [10] investigate the splitting of the core of this economy regarded as a cooperative
game.

21Furthermore in an actual considerations such as the relative prices among many durables with
different lifetimes appear to cut down on zones of knife edge equilibria.
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10 Concluding Remarks

The GE model is extremely parsimonious in the number of parameters it utilizes. The

SMG, even when presented with minimal mechanisms 22 requires many mechanisms

to channel economic process. These mechanisms call forth many parameters. It is a

natural property of the dynamics of trade to promote the existence of a money (for

proof see [2] and [3]).The presence of a money and a powerful government enable the

government to erect a control system over a fiat (or commodity) money supply. It

however, raises questions concerning government knowledge of the system it controls.

Government may easily set parameters that do not guide the system appropriately,

but may need error correction.

This power in particular enables a government to resolve the possibility of the

multiplicity of equilibria by changing constraints in the game thus resolving the deep

problem of the presence of multiple fixed points in a GE system not by a mathematical

analysis of the GE system, but by enlarging the problem to accommodate process in a

larger context. The presence of a loan market and flexible money supply influence the

adjustment 23.

A fundamental mathematical distinction between general equilibrium analysis with

stress on equilibrium and the SMG models here is that while the former stresses stat-

ics and equilibrium, and deals with equalities; the latter stresses the role of money,

inequalities and dynamics.

If the use of money involves any cost whatsoever there is an incentive for a society

to minimize to that cost and this is sufficient to select among multiple outcomes. The

ideal cash flow constraint is zero in the perfect clearinghouse in the sky. As technology

improves the transactions need for an outside money decreases.
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11 APPENDIX

In constructing the SMG associated with a 2 player type, 2 commodity model there are

4 minimal model cases without banking and 16 cases with simple banking we illustrate

the simplest no banking first. We utilize the specific model used above in Section 5.2.

11.1 Case 1: No Borrowing

There are two types of trader, with a continuum of agents of each type. Traders of the

first type solve the following utility maximization problem

max
b,q

40− q + 100
(
1− e−b/10p̄

)
+ Π1(1000 + pq − b) (24)

s.t. 1000− b ≥ 0 (λ)

b ≥ 0, 0 ≤ q ≤ 40

The notation here is as follows. The decision variables for the Type 1 traders are b =

the amount of fiat bid per unit for Good #2 and q = the amount of their own Good

#1 put up for sale. The other quantities present are p = the price per unit of Good

#1, p = the price per unit of Good #2, and Π1 = the per unit salvage value (“worth”)

of fiat at the end of the game for Type 1 players.

The first order condition (FOC) with respect to b is
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100
1

10p̄
e

−b
10p̄ − Π1 − λ = 0⇒ 10e−b/10p̄ = p̄(λ+ Π1) (25)

where λ is the multiplier associated with the constraint (λ). With respect to q we have

−1 + Π1p = 0⇒ p =
1

Π1
(26)

Meanwhile, the optimization problem for the Type 2 traders is as follows:

max
b,q̄

50− q̄ + 110
(

1− e−b/10p
)

+ Π2(1000 + p̄q̄ − b)

s.t. 1000− b ≥ 0 (λ)

b ≥ 0, 0 ≤ q̄ ≤ 50

New notations above are b = the amount of fiat bid by Type 2 players for Good #1,

q̄ = the amount of Good #2 put up for sale by Type 2 players, and Π2 = the per

unit salvage value of fiat at the end of the game for Type 2 players. The first-order

conditions, with respect to b̄ and q̄ respectively, are

11e−b/10p = p(λ+ Π2) (27)

and

p̄ =
1

Π2
(28)

Finally, the markets for Good #1 and Good #2 must “balance”, i.e. the amounts

bid, put up for sale, and the price must be related by the relations

p =
b

q
and p̄ =

b

q
. (29)

There are four cases to consider

Case 1.1: Both player types have a lot of money. Another way to say that

“both player types have a lot of money” is to assume that both Π1 and Π2 are large.

This ensures that they are not motivated to bid a lot (because the fiat itself is valuable

to them at the end of the game), and hence their cash flow constraints are loose. So

the multipliers λ = λ̄ = 0,

Then (25) ⇒ 10e−b/10p̄ = pΠ1 = Π1

Π2 ⇒ e−Π2b/10 = Π1

10Π2 ⇒ b = 10
Π2 ln

(
10Π2

Π1

)
. And
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q = b
p

= 10 ln
(

10Π2

Π1

)
.

Similarly, (27) ⇒ 11e−b/10p = pΠ2 = Π2

Π1 . So e−Π1b/10 = Π2

11Π1 ⇒ b = 10
Π1 ln

(
11Π1

Π2

)
.

And q = b
p

= 10 ln
(

11Π1

Π2

)
.

In general, the final consumption of the two goods for the two types are given by

(40 − q, q) for the Type 1 traders, and (q, 50 − q) for the Type 2 traders. Here, this

works out to be (40− 10 ln
(

11Π1

Π2

)
, 10 ln

(
10Π2

Π1

)
) and (10 ln

(
11Π1

Π2

)
, 50− 10 ln

(
10Π2

Π1

)
)

respectively.

This case holds if

1) b ≤ 1000⇒ 1
Π2 ln

(
10Π2

Π1

)
≤ 100.

2) b ≤ 1000⇒ 1
Π1 ln

(
11Π1

Π2

)
≤ 100.

3) b, q ≥ 0⇒ Π2

Π1
≥ 1

10

4) b, q ≥ 0⇒ Π1

Π2 ≥ 1
11

5) q ≤ 40⇒ ln
(

11Π1

Π2

)
≤ 4⇒ Π1

Π2 ≤ e4

11
∼= 4.963

6) q ≤ 50⇒ ln
(

10Π2

Π1

)
≤ 5⇒ Π2

Π1 ≤ e5

10
∼= 14.841

Example: Π1 = Π2 = 1. Then b = 10 ln 10, b = 10 ln 11, q = 10 ln 11, q = 10 ln 10,

p = p = 1.

Comment:This is the case where Π1 and Π2 are large, but roughly equal. The

“largeness” guarantees that conditions 1) and 2) above hold. If they are large but

NOT roughly equal, we have

Case 1.1A: Π1, Π2 large, Π1

Π2 ≤ 10
e5
∼= 1

14.841
. Then b, q = 0, q = 50, p = 1

Π2 , and

b = 50
Π2 The market for Good #1 breaks down because Type 2 traders have no incentive

to bid anything (they value the fiat too much). Meanwhile, the Type 2 traders put all

of their goods up for sale (in an effort to get even more money). Consumptions for the

two trader types are (40, 50) and (0, 0).

Case 1.1B: Π1, Π2 large, 10
e5
≤ Π1

Π2 ≤ 1
11

. Then b, q = 0, q = 10 ln
(

10Π2

Π1

)
, p = 1

Π2 ,

and b = 10
Π2 ln

(
10Π2

Π1

)
. The market for Good #1 is still out, but now the Type 2 traders

no longer put all of their goods up for sale. Consumptions are (40, 10 ln
(

10Π2

Π1

)
) and

(0, 50− 10 ln
(

10Π2

Π1

)
)

Case 1.1C: Π1, Π2 large, 1
11
≤ Π1

Π2 ≤ e4

11
∼= 4.963.. This is the “Π1 and Π2 roughly

equal” case from above.

Case 1.1D: Π1, Π2 large, e4

11
≤ Π1

Π2 ≤ 10. Then q = 40, b = 40
Π1 , p = 1

Π1 , p =
1

Π2 , q = 10 ln
(

10Π2

Π1

)
and b = 10

Π2 ln
(

10Π2

Π1

)
. Consumptions are (0, 10 ln

(
10Π2

Π1

)
) and
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(40, 50− 10 ln
(

10Π2

Π1

)
).

Case 1.1E: Π1, Π2 large, Π1

Π2 ≥ 10. Then b, q = 0, q = 40, p = 1
Π1 , and b = 40

Π1 . Now

the market for Good #2 breaks down because the Type 1 traders have no incentive to

bid. Consumptions are (0, 0) and (40, 50).

Case 1.2: Type 2 traders have “a lot of money”but Type 1 traders do

not. From the same logic as the introduction to Case 1.1, this means the multiplier λ

is positive while the multiplier λ is equal to zero. For this to happen typically Π1must

be much smaller than Π2.

Note that we again have conditions (26) and (28) which are p = 1
Π1 and p = 1

Π2 .

And then λ positive means constraint (λ) is tight, which is b = 1000. Hence q =
b
p

= 1000Π2. Next, we again have (27) ⇒ 11e−b/10p = pΠ2 = Π2

Π1 . So e−Π1b/10 =

Π2

11Π1 ⇒ b = 10
Π1 ln

(
11Π1

Π2

)
, with q = b

p
= 10 ln

(
11Π1

Π2

)
. Then, using (25), we calculate

λ = 10e−b/10p

p
− Π1 = 10Π2e−100Π2 − Π1. Consumptions for the two trader types are

again given by the formulas (40 − q, q) and (q, 50 − q), which here work out to be

(40− 10 ln
(

11Π1

Π2

)
, 1000Π2) and (10 ln

(
11Π1

Π2

)
, 50− 1000Π2).

The calculations above hold under the following conditions:

1) First and foremost, we need λ to be nonnegative, i.e Π1 ≤ 10Π2e−100Π2
. This

is the defining requirement for Case 1.2. For the rest of the conditions below, if they

don’t hold one must use a “subcase” as in Cases 1.1A - Case 1.1E above, where either

one type of agent puts all of their goods for sale, or else one of the goods markets

breaks down and nothing is sold.

2) b ≤ 1000⇒ 1
Π1 ln

(
11Π1

Π2

)
≤ 100.

3) b, q ≥ 0⇒ Π1

Π2 ≥ 1
11

.

4) q ≤ 40⇒ ln
(

11Π1

Π2

)
≤ 4⇒ Π1

Π2 ≤ e4

11
∼= 4.963

+5) q ≤ 50⇒ 1000Π2 ≤ 50⇒ Π2 ≤ .05

Example: Π1 = .001 and Π2 = .01. Then p = 1000, p = 100, b = 1000, b =

10000 ln 1.1 ∼= 953.1, q ∼= .953, q = 10, and λ ∼= .0357.

Case 1.3 Type 1 traders have “a lot of money” but Type 2 traders do

not. Now λ = 0 and λ > 0. Typically Π2 is a lot smaller than Π1.

We still have p = 1
Π1 and p = 1

Π2 . Next, λ > 0 means that constraint (λ) is tight,

which is b = 1000. Thus q = b
p

= 1000Π1. Next, (25) ⇒ 10e−b/10p = pΠ1 = Π1

Π2 . So

e−Π2b/10 = Π1

10Π2 ⇒ b = 10
Π2 ln

(
10Π2

Π1

)
. And q = b

p
= 10 ln

(
10Π2

Π1

)
. Finally, using (27), we

have λ = 11e−b/10p

p
− Π2 = 11Π1e−100Π1 − Π2. Consumptions for the trader types are

(40− 1000Π1, 10 ln
(

10Π2

Π1

)
) and (1000Π1, 50− 10 ln

(
10Π2

Π1

)
).
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The calculations above hold under the following conditions:

1) First and foremost, we need λ to be nonnegative, i.e Π2 ≤ 11Π1e−100Π1
. This

is the defining requirement for Case 1.3. For the rest of the conditions below, if they

don’t hold one must use a “subcase” as in Cases 1.1A - Case 1.1E above, where either

one type of agent puts all of their goods for sale, or else one of the goods markets

breaks down and nothing is sold.

2) b ≤ 1000⇒ 1
Π2 ln

(
11Π2

Π1

)
≤ 100.

3) b, q ≥ 0⇒ Π2

Π1 ≥ 1
10

.

4) q ≤ 50⇒ ln
(

10Π2

Π1

)
≤ 5⇒ Π2

Π1 ≤ e5

10
∼= 14.841

5) q ≤ 40⇒ 1000Π1 ≤ 40⇒ Π1 ≤ .04

Example: Π1 = .01 and Π2 = 1
900

= .0011. Then p = 100, p = 900, b =

9000 ln
(

10
9

) ∼= 948.24, b = 1000, q = 10, q ∼= 1.054, and λ ∼= .029.

Case 1.4: Both trader types have little money. This is λ > 0 and λ > 0.

This corresponds to both Π1and Π2 being small (and roughly equal), because in that

case traders have incentive to bid all of their money (because it won’t be worth much

at the end of the game).

Again we have p = 1
Π1 and p = 1

Π2 . The multipliers λ and λ. being positive means

that constraints (λ) and (λ) hold tightly; hence b = b = 1000. The balance conditions

(29) then give q = 1000Π1 and q = 1000Π2. Finally, we have λ = 10e−b/10p

p
− Π1 =

10Π2e−100Π2 − Π1 and λ = 11e−b/10p

p
− Π2 = 11Π1e−100Π1 − Π2. Consumptions for the

two trader types are (40 − 1000Π1, 1000Π2) and (1000Π2, 50 − 1000Π1) respectively.

The conditions in order for this case to hold are only that λ ≥ 0 and λ ≥ 0, i.e. that

Π1 ≤ 10Π2e−100Π2
and Π2 ≤ 11Π1e−100Π1

. But note that these conditions can both

hold only if Π1and Π2 are both small.

11.2 Case 2: A Model with Banking

An inkling of disequilibrium dynamics can be obtained in this one period model when

the possibility of borrowing is introduced. Among the reasons for borrowing is strategic

bankruptcy. It can take place to take advantage of regulation that sets bankruptcy

penalties too low.

Case 2.1 Borrowing without Bankruptcy

In our first model with banking, we consider a model in which the traders are not

allowed to go bankrupt. We define ρ as the exogenous rate of interest for loans in the

economy. New decision variables for the trader types d and d,, where d = the amount
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of loan to the Type 1 traders, to be paid back at the end of the game, and d = the

amount of loan to the Type 2 traders, to be paid back at the end of the game. The

utility maximization problem for Trader Type 1 is

max
b,q,d

40− q + 100
(
1− e−b/10p̄

)
+ Π1(1000− b+

d

1 + ρ
+ pq − d)

s.t. 1000 +
d

1 + ρ
− b ≥ 0 (λ)

1000 +
d

1 + ρ
− b+ pq − d ≥ 0 (µ)

b, d ≥ 0, 0 ≤ q ≤ 40

while for Trader Type 2 it is

max
b,q,d

40− q + 110
(

1− e−b/10p
)

+ Π2(1000− b+
d

1 + ρ
+ pq − d)

s.t. 1000 +
d

1 + ρ
− b ≥ 0 (λ)

1000 +
d

1 + ρ
− b+ pq − d ≥ 0 (µ)

b, d ≥ 0, 0 ≤ q ≤ 50

.....................................

Note that each trader type now has an extra constraint ((µ) and (µ)) respectively)

in their optimizations. These reflect the “no bankruptcy” requirement, i.e that when

accounts are settled at the end of the game, the traders must have a nonnegative

amount of money to their name.

With two constraints for each of the two trader types, there are now 4 multipliers

which could each be positive or zero. Hence there are 16 cases to consider. We have

done the analysis for all sixteen cases, and will present this in a future paper.
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