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Abstract

This paper studies the asymptotic properties of empirical nonparametric regres-
sions that partially misspecify the relationships between nonstationary vari-
ables. In particular, we analyze nonparametric kernel regressions in which a
potential nonlinear cointegrating regression is misspecified through the use of a
proxy regressor in place of the true regressor. Such regressions arise naturally in
linear and nonlinear regressions where the regressor suffers from measurement
error or where the true regressor is a latent variable. The model considered
allows for endogenous regressors as the latent variable and proxy variables that
cointegrate asymptotically with the true latent variable. Such a framework in-
cludes correctly specified systems as well as misspecified models in which the
actual regressor serves as a proxy variable for the true regressor. The sys-
tem is therefore intermediate between nonlinear nonparametric cointegrating
regression (Wang and Phillips, 2009a, 2009b) and completely misspecified non-
parametric regressions in which the relationship is entirely spurious (Phillips,
2009). The asymptotic results relate to recent work on dynamic misspecification
in nonparametric nonstationary systems by Kasparis and Phillips (2012) and
Duffy (2014). The limit theory accommodates regressor variables with autore-
gressive roots that are local to unity and whose errors are driven by long memory
and short memory innovations, thereby encompassing applications with a wide
range of economic and financial time series.
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1 Introduction

Kernel regression methods are commonly used in empirical research when theory
suggests no obvious model specification or when there is uncertainty about a given
parametric specification and tests of that specification against a general nonpara-
metric alternative may be desired. Time series models typically involve additional
uncertainties about temporal dependence, nonstationarity, or memory properties of
the variables in the regression. Such properties may be assessed by prior estimation
or tests, but with the additional consequence of pre-test implications for inference. It
is therefore desirable to have econometric methods of estimation and testing that ac-
commodate a wide range of temporal dependence characteristics in the data. Recent
research has shown that standard methods of nonparametric kernel regression may
be conducted when the regressor has nonstationary characteristics of unknown and
unspecified form, including autoregressive unit root, local unit root, or fractional unit
root properties (Wang and Phillips, 2009a, 2009b, 2011, 2016 — hereafter WP; Dutffy,
2014; Gao and Dong, 2017). In nonstationary cases an important aspect of this work
is that the results apply even when the regressor is endogenous, thereby including
nonparametric cointegrating regressions.

The present paper extends these results to include nonparametric cointegrating
regressions in which the true regressor is a latent variable and a proxy variable is
used in the empirical regression in place of the latent variable. Such regressions arise
naturally when the true regressor is measured with error and/or when the proxy
variable cointegrates asymptotically with the true latent variable. In this framework,
the nonparametric nonstationary model suffers simultaneously from endogeneity of
the latent regressor variable and measurement error in the observed proxy regressor.
Such a framework is intermediate between correctly specified nonlinear nonparametric
cointegrating regressions of the type studied in WP (2009a, 2009b) and completely
spurious nonparametric regressions such as those in Phillips (2009). Important special
cases of the present framework include nonparametric nonstationary systems in which
the regressor is dynamically misspecified, as in the work by Kasparis and Phillips
(2012), or similar nonstationary systems in which the true variable is measured with
a stationary error, as in Duffy (2014).

The asymptotic results reveal the effects of misspecification, including the asymp-
totic bias, in nonparametric nonstationary regression. In certain cases such as when
the true regression function is convex, the direction of the bias may be determined.!
In general, when linkages between the observed regressor and the latent variable are
‘close’, in a sense that will be made precise, an empirical nonparametric regression

has a clear interpretation in terms of its pseudo-true value limit as a local average of

'In recent work on linear dynamic systems with nonstationary regressors Duffy and Hendry (2018)
analyzed the effects of measurement error and were able to sign these effects in certain special cases.



the true cointegrating regression function. The findings of the paper therefore con-
tribute in several ways to our present understanding of nonparametric cointegrating
regression theory. They are particularly helpful in appreciating the combined impact
of endogeneity and measurement error in such regressions.

The results of the paper also complement a large literature of recent microecono-
metric work on nonparametric estimation in the setting of an endogenous regressor
and independently identically distributed (iid) data. In such models, instrumental
variable methods and regularization techniques are used to overcome the inconsis-
tency of standard nonparametric estimation by kernel or sieve methods (e.g., Hall
and Horowitz, 2005; Horowitz, 2011; Chen and Reiss, 2011). When the explanatory
variable suffers from measurement error, these methods are typically inconsistent even
in the iid setting. Schennach (2004) studied such problems of nonparametric regres-
sion in the presence of measurement error, but without addressing endogeneity of the
regressor. Most recently in this literature, Ausumilli and Otsu (2018) have developed
wavelet basis methods for dealing simultaneously with an endogenous regressor that
is measured with error, showing that the impact of measurement error is to reduce the
(already slow) convergence rate of nonparametric IV estimation. The results of the
present paper show that in the nonstationary time series setting under endogeneity
and measurement error, the standard nonparametric kernel estimator is convergent
at the usual rate but to a local average of the nonparametric cointegrating regression
function.

The paper is organized as follows. Section 2 describes the latent variable non-
parametric model of cointegration studied here. This model involves dual sources of
endogeneity that arise from (i) the use of a proxy variable in the empirical regression,
leading to measurement error, as well as (ii) inherent endogeneity in the regressor.
Section 3 provides assumptions under which the asymptotics are developed and gives
the limiting stochastic processes that are involved in the limit theory. Section 4 pro-
vides a general result on the limit behavior of sample nonlinear functionals, which
extends many existing results on weak convergence to local time. This result is ap-
plied to deliver asymptotic results for sample covariance functionals that appear in
latent variable nonparametric cointegrating regressions with a proxy variable regres-
sor. Section 5 gives a law of large numbers and asymptotic distribution theory for
such regressions, extending the limit theory in WP (2009b, 2016) for correctly spec-
ified cointegrated models to the latent variable case. Section 6 concludes. Proofs of
the main results are given in Appendix A and supplementary results in Appendix B.

Throughout the paper, we make use of the following notation: for z = (1, ..., z4),
||z|| = ijl |z;|. We denote constants by C,Ci, ..., which may be different at each
appearance.



2 Partially Misspecified Cointegrated Models

We suppose that two nonstationary variables (z;,y;) are linked according to the non-

parametric regression model
2t :m(yt)_l_/r’t? t=1,..,n (21)

where m is an unknown function and 7, is a zero mean stationary disturbance whose
properties are detailed below. In such models, it is natural to employ kernel regres-
sion methods to estimate the function m. When g, is an integrated, near-integrated or
fractionally integrated process, the model (2.1) is now commonly known as a nonlin-
ear nonparametric cointegrating regression. The model may be estimated by kernel
regression just as in stationary regression cases.

Importantly, and in contrast to stationary nonparametric regression, such kernel
regression is consistent even when the regressor 1, is endogenous. The reason for
this robustness to endogeneity in the regressor, as explained in WP (2009b), is that
nonstationary regressors such as unit root processes have a wandering character that
assists in tracing out the true regression function. In effect, a nonstationary regressor
such as y; serves as its own instrument in nonparametric kernel regresion by delineat-
ing the shape of a smooth curve m as y varies over the entire real line by virtue of
the recurrence of the limit process corresponding to a standardized version of 3;. This
advantage might suggest that such nonparametric regressions might also show some
degree of immunity even to measurement error in the regressor. However, Kasparis
and Phillips (2012) discovered that this is not so by demonstrating that dynamic
misspecifiction in the timing of the regressor dependence produces inconsistency in
nonlinear nonparametric regressions, a result that differs markedly from paramet-
ric linear cointegrated regression where the dynamic timing of the regressor has no
asymptotic import. Our following analysis reveals the effects of misspecification of
a nonlinear regression function in a wide range of nonstationary cases that include
measurement error in the regressor.

To fix ideas, we suppose that the regressor y; in the true model (2.1) is latent and
unavailable to the econometrician, whereas another variable x; is observed and is used
in the regression in place of y;. The fitted nonparametric regression then has the form

2 = M) + 7, (2.2)
where
i) = ikl = a)/h T nKl(@ = 2)/h] YL mly) K~ )/h)
St Kl —a)/h] Y, Kl(x— x)/h] 2o K@ —x)/h]
P, S,

: >or1 Kl(xy — x)/h)] * S K[(w —2)/h) (2.3)



We study the asymptotic behavior of the fitted nonparametric regression function
m(z) under certain regularity conditions that prescribe the relationship between x;
and the latent variable y; and the generating mechanism of (x4, v;,7,). Analysis of
(2.3) requires consideration of two components. The asymptotic behavior of the first
component follows in much the same way as for a correctly specified system, which
is given in WP (2009b). The second component embodies the effects of the misspec-
ification in the numerator S,. Its asymptotic behavior involves the study of sample

covariances of the form

Sn= Y mlye) Kl(we — ) /B =Y mlye) K[y, (x; — )], (2.4)

where v,, = 1/h,, — o0, corresponding to a bandwidth sequence h = h,, — 0 as the
sample size n — oo. Importantly, (2.4) depends on two nonstationary time series
(ys, ;) , so that the limit theory for sample function S,, depends on any linkages
involved in the generating mechanism of these two series. We now proceed to analyze
sample functions involving such sample covariances of nonlinear functions of related
nonstationary variables (y;, z;) . To begin, we define the conditions on these variables,

the regression function in (2.1), and the properties of the errors 7,.

3 Assumptions and Preliminaries

Let \; = (€;,¢;),1 € Z be a sequence of iid random vectors with E\g = 0, E||\||> <
oo and limy o [t]%] [[Ee| + |Ee"®|] < oo for some a > 0. The variates A; form
primitive innovations in linear processes that are described below. We make use of
the following assumptions about the components of (2.1) and (2.2) for the development
of the asymptotic theory in our main results.

Al. x, = p,x_1 + &, where p, = 1 — tn~! for some constant 7 > 0, and &, =
Z;io ¢;€r—j. The coefficients ¢, k > 0, satisfy one of the following conditions:

LM: ¢, ~ k=" p(k),1/2 < < 1 and p(k) is a function slowly varying at oc;
SM: >0 o |dpl <ooand ¢ =D 77 ¢, # 0.
A2, (1) U = Z;O:o %’ A;c—j with % = (¢1j7¢2j) satisfying Z;io(Wlﬂ + |¢2j|) < 090
(ii) The random array {v, } satisfies the bounding inequality [v,x| < d, > 77, (b1 sl +

|baj er,—j|) where the coefficients b; = (by;,bo;) themselves satisfy > o ([bry] +
|bg;|) < oo and the scalar sequence 9,, — 0, as n — 0.

A3. m(z,y) is a real function on R? satisfying the following conditions:



(i) E|m(t,u1)|, where u; is given in A2, is bounded and integrable;

(ii) there exist 6 > 0, integers o, f > 1 and a bounded and integrable function
T'(x) such that, for all z,y,t € R and |y| <1,

m(z,y +vt) —m(z,y)| <+ QL+ 1+ y)) (). (3.5)

Assumption A1 allows for nearly integrated autoregressive transforms of short and
long memory linear processes, a general linear process set up that has been widely used
in the nonparametric nonstationary time series literature — see WP (2009a, b, 2011,
2016) and Wang (2014, 2015). Assumption A2 ensures that uy is a stationary linear
process and v, is an asymptotically negligible random component that plays a role
in bounding one of the components of the misspecification error in our main result.
By virtue of the boundedness and integrability requirement of E|m(¢,u;)| given in
A3 (i) there exists a finite constant ¢, such that the function m(¢, ¢o) is bounded and
integrable. This fact will be used in the proofs that follow without further reference.

Assumption A3 (ii) is a weak condition of uniform continuity for multi-argument
functions. It is easy to verify in applications. To give an illustration, we introduce
the following simpler condition A4.

A4 (i) For some given function f, there exist 6 > 0 and integers o, > 1 such
that, for all y,¢ € R and |vy| <1,

|+t = FW)] < CH° (141t (1+ |y); (3.6)

(i) [ K(z)dz =1 and (1 4 |z|*™)K () is bounded and integrable, where

a, [ are given in (3.6).

It is readily seen that functions such as f(y) = |y|®, 1/(1 + |y|¥) satisfy (3.6). Then,
if K(z) and f(y) satisfy A4, it follows that

m(z,y) = K(z) f(x+y) and K(z)[f(y) (3.7)

satisfy (3.5). As will become apparent in what follows, the role of the function m(z,y)
in applications is to provide a linkage between the observable time series z; and the
latent variable y; in the model (2.1) and fitted regression (2.2). This linkage function
allows for potential cointegrating links between y; and x; as well as measurement error.
Corollary 4.1 below details a typical linkage function of this type and shows how the
limit theory of sample covariance functionals of two nonstationary time series that is
given in our Theorem 4.1 can be applied to analyze misspecification components such
as those arising from the second term in (2.3).

To complete this section, we define some stochastic processes that appear in the
limit theory. In the following, let d, = wvar(37_,¢;) and, for ¢ > 0, define the



continuous stochastic processes
t
Zy = W(t) +7'/ e "W (5)ds,
0

Bs/s_,(t), under LM,
Wit - 3/2-u(t)
Bi3(t),  under SM,

where By (t)} is fractional Brownian motion with Hurst exponent H. In this event, it
is well known that 7, is a fractional Ornstein-Uhlenbeck process, having continuous
local time which we denote by Ly (¢,x). We further have the following asymptotic

orders
3-2u 2
c, >~ p*(n), under LM,
(Eeg) " d,, ~
»*n, under SM,
where ¢, = m JS (@ + 1) *dx (e.g., see Giraitis et al., 2012, or Wang et

al., 2003). Finally, it is known (Jeganathan, 2008; WP, 2009a) that the functional
law Z,|n¢) = Z: holds in the Skorohod space D [0,1] for the standardized element
Znk = x1/d, where k = |nt| is the integer part of nt.

4 Sample Limit Theory for Nonlinear Functionals

Our first main result concerns the limit behavior of a standardized sample mean
functional of a nonlinear function with multiple arguments that involve stationary and
nonstationary processes. Such functionals turn out to be very useful in determining
asymptotics for sample covariance functionals such as (2.4) that appear in misspecified
fitted nonparametric regressions like (2.2). The following result is given in a general

form to enhance its usefulness both in the present context and other applications.

Theorem 4.1. In addition to A1-A3, suppose that B||\o|[™**24+8} < 00 where
and (3 are given as in (3.5) of A3. For any ¢, — oo with ¢,/n — 0 and z € R, we

have

n 0o

m[cn(Znt + €,2), ue + ve| —p / my(t)dt L(1, 2), (4.8)

t=1 -

where Zny = x/dp, mi(t) = Em(t,uq) and

Cn
n

- Ly(r,0), ifcd, —0,
LZ(T7Z) = Z( )

Ly(r,—z), ifc, =1.



Remark 1. An important element of the proof of Theorem 4.1 involves demon-
strating that the sample mean functional can be asymptotically approximated so that
the residual difference

n

Cn
Rn = E |:m (CnZnt7 U + Vnt) —ma (Cn ng) = 0P<1>' (49)
t=1

The rate at which R, converges to zero heavily depends on the sequence 9, given
in A2 (ii). Indeed, by letting m(z,y) = K(x)y, where v,; = §, |¢| and K satisfies
certain smoothness conditions, as in Proposition 7.2 of WP (2016), it is readily seen

that
Cn

Ry =N K (cuZu) (e + baler]) = Op(8,).
t=1

n

This rate cannot be improved. The representation (4.9) suggests that the existence of a
limit distribution for the sample mean functional in (4.8), and hence that of a suitably
standardized version of (2.4), relies on the validity of an asymptotic approximation
of the form (4.9). Indeed, it seems unrealistic to consider the asymptotic distribution
of sample functionals such as (4.8), at least in this framework, except in cases where
the approximating residual element R,, has the property that v,; —p 0 so that (4.9)
holds with some convergence rate. In some specialized cases of the latter situation,
the asymptotic behavior of R,, is known and has been considered in WP (2016) and
Duffy (2014) for some particular functions m(z,y), specifically m(x,y) = K(z)y. It
would be interesting to consider more general extensions of this framework in which
residual elements such as R,, do not necessarily have the property that v,; —p 0 and
where the approximating component is not necessarily of the form m;. Such exten-
sions would assist in analyzing spurious nonparametric regressions with nonstationary
series, which have been considered in a special case by Phillips (2009), as discussed
below. But such an extension seems beyond the scope of our present methods and is
therefore left as a challenge for future work.

Remark 2. In spite of this limitation, Theorem 4.1 still provides a very general
extension of existing results on convergence of sample functions to quantities that in-
volve scaled local time, as is apparent from the form of (4.8). In previous research, WP
(2009a, 2009b) [see also Jeganathan (2008) and Chapter 1 of Wang (2015)] established
similar results for the statistic 2 Y7 | K [c(Zpe + ¢,2)] m( Mg, <. Ao ), Where myg is
a fixed constant. Moving toward a general formulation of m(x,y), for x; satisfying A1
with 7 = 0 and the coefficients ¢, satisfying the SM condition, Duffy (2014) provided
a result for n™/2 31" m(zy,u;) under a strong smoothness condition on m(z,y).
Our Theorem 4.1 has the advantage that it allows for nearly integrated long memory
as well as short memory linear processes, which are now widely used in the applied
literature, in addition to processes that satisfy some general linkage relationships, as

will be apparent in our applications below. Furthermore, our formulation of m(z,y)



enables easy implementation of Theorem 4.1 to several useful practical applications,
as is indicated in the following corollaries.

Corollary 4.1. Let y = Quk Tk + Vng + Ug, where maxi<p<y, |np — ao| — 0, as
n — 00, for some ag € R. If, in addition A1, A2 and A4, Bl||\||>2ee+8} < o0
where o and [ are given as in (3.6). Then, for any fived v € R,

% > fy) K[(x — ) /h] —p Bf (a0 @+ ur) L(1,0), (4.10)

whenever h := h, — 0 and d,,/nh — 0. When h = 1, we have

o

% > f) Kz —x) —p / Ef(aot +apz +ui) K(t)dt Lz(1,0).  (4.11)
t=1 o

Remark 3. Phillips (2009) gave the first investigation of asymptotics for sample
covariance functionals of the form Y;" | f(y) K[(x; — 2)/h] where both z; and y, are
I(1) processes. The argument in that work essentially imposed independence between
the time series z; and y; so that there was no linkage at all between the variables,
thereby extending the standard spurious linear regression framework (Phillips, 1986;
Granger and Newbold, 1974) to nonparametric regression. The limit distribution in
that spurious nonparametric regression framework for x; and y; differs from Corollary
4.1 in this paper where there is an explicit linkage between the variables. In partic-
ular, the situation considered here is that y; is “close” to being linearly cointegrated
with z; with an asymptotically constant coefficient and a stationary shift subject to
an asymptotically negligible error. This present framework corresponds to the re-
placement of a latent variable y; in a nonparametric regression with a proxy variable
x; whose long term properties are closely related but are measured with error. In
this setting, the limit distribution given in (4.11) still involves the local time of the
Gaussian process Z; associated with the weak limit of the process Z,,, based on
standardized versions of the sample observations x|, . It is not clear at the moment
if more general versions of a spurious regression type of result exist under the same
setting of Phillips (2009) but without imposing independence between z; and ;.

Remark 4. Kasparis and Phillips (2012) investigated the asymptotics of S, :=
i1 f(2era) K [(z:— x)/h] under certain strict conditions on z;, essentially requiring
x; to be a random walk with iid innovations. As a direct consequence of Theorem
4.1, we may establish similar results under less restrictive conditions. To illustrate,
for some d > 1, let

d
Y = Z Qi (J)Thtj,  where max i<i<n |ou(j) — o] — 0. (4.12)

—d<j<d
j=—d



Note that, for any 57 > 1,
Thij = Ppliaj—1 T84 = o = Ppli+ ZPZL_Z&%

_ —1 —1 o _ -7 —J7+t
Tk—j = Pn Th—j+1 — Py fk—j+1 = o = Pp Tk — E [N SR

We may therefore write

j d j—1
Ye = Tk Z ank(7)Ph, + Z i ( )Zp{;iflﬁ-i - Zank(—j) Zpﬁjﬂfk—z’
]__d = o =
= Tk Z ank P] + Z gk-‘rl Z ank Z ék i+1 Z ank J+Z !
j=—d
= TR0+ Ung + U, (4.13)

where, by letting d,, = max 1<i<n | (j) — ;| + max_q<j<q |p}, — 1], we have
~a<j<d ==

. awliph =) a;+0(

j=—d j=—d
d d d d

E Skt E :aj - E Ek—it1 E Q_j,
i=1 j=i i=1 j=i

and

d d
Vni| < Z |€ il Z ’@nkU)ﬂZﬁ - O‘J”
+Z’£k Z—H‘Z |k (=)o = oy

d

< Co, Z (1€psal + 1€6—is1)-

i=1

Now suppose that §, = > ¢;e; with 37 |¢;] < co and ¢ = 3772 ¢, # 0, so
that z;, satisfies A1 with SM memory. Since d,, — 0, it is readily seen from (4.13)
that v, and u; given in (4.12) satisfy A2. As an immediate consequence of Corollary
4.1, we have the following result.

Corollary 4.2. Suppose that A1 with coefficients satisfying SM holds. Suppose also
that A4 holds and B||\o|[P®{20+8} < oo, where o and B are given as in (3.6). Then,

10



for any fizred x € R and y; defined in (4.12),

= D ) K =)/

d d d

d d
—D qﬁ’l(Eeg)’lﬂEf(x Z Ozj—i—Z@Zozj —Zf—iﬂzaﬁ')
i=1 j=i

j=—d =1 j=i

xLgz(1,0), (4.14)

whenever h — 0 and n*h — oo. In particular, we have

ﬁ X_: flm)K (xt_iz_ x) H%(Eelg)l/z B {f(fc + X_: @-)} Ly(1,0),
ﬁ Z_: f(za) K (xt_il— x)Hng(Ejg)l/?E {f(:c — Zgj)} Lz(1,0).

Using (4.11), results for h =1 can be derived similarly. The details are omitted.

5 Applications

This section develops a nonparametric regression application of our limit theory for
sample covariance functionals of nonstationary time series. Except where mentioned
explicitly, the notation used here is the same as in Sections 2-3.

Suppose that the time series (z;,z;) are observed but the real data generating

process has the form
2= g(Y) T My Yo = Qu Ty + Vg + Uy, (5.15)

where g(x) is an unknown regression function, z;, u; and v, satisfy A1 and A2, and

7, is an error process defined by
m=Y 0\,
=0
with 0; = (015, 03;) satisfying Y2 j/4(|61;| + |02;]) < co. We further assume that
B, = max |a,, — 1] — 0. asn — oo,

1<k<n

This formulation involves a nonparametric regression model with latent endogenous
regressor variable y; that is observed with error via a proxy variable x; that is asymp-
totically linked through an approximate cointegrating relation to 3;. The resulting

11



fitted regression is a partially misspecified nonlinear nonparametric cointegrating re-
gression.

Since data on only (2, ;) is observed, standard kernel estimation of the function

g leads to
Kz, —
g($> _ Z 2t [(zt .T)/h] :
> K[(zy — x)/h]
where K is a non-negative kernel function and the bandwidth h := h,, — 0. The

following result shows the limit behavior of g(z).

Theorem 5.1. If, when f(x) is replaced by g(x), A4 holds and B||\o|[P*{2*0+5} < oo

where o and B are given in A4, then

9(z) —p g1(z) :=Bg(z + u1), (5.16)
for any fized x and h — 0 satisfying d,,/nh — 0.

Remark 5. Since, in general, gi(z) # g(x), the nonparametric estimate §(x)
will usually produce an inconsistent estimate of g(z). Moreover, if g(x) is sufficiently
smooth so that ¢”(¢) > 0 for any ¢ € R %, we have g;(x) > g(x), indicating a positive
bias in this misspecified nonparametric regression. When g is linear, g;(x) = g(x) and
g(z) is consistent, just as in linear cointegrating regression with stationary measure-
ment error. When ¢ is nonlinear, the limit expression (5.16) is still informative. In this
case the pseudo true regression function ¢, (z) = Eg (x+u1) represents a local average
value of g around its value at x where the weighted average is taken with respect to
the density of the measurement error u in (5.15). The nature of the asymptotic bias
g1(z) — g(x) then depends on the degree of nonlinearity of g in conjunction with the
shape and support of the density of the measurement error.

Remark 6. Under somewhat stronger conditions on g(x), us, a,i, and 6, it is
possible to establish the asymptotic distribution of R, (z) := §(z) — ¢g1(x). Indeed, we
may establish Theorem 3.2 below by making use of the following assumption.

A5. (i) For some integer 5 > 1, when x,y € R and ¢ is sufficiently small, we have
l9(z + ty) — g(x)| < CI(1+ |27)(1 + [y));

(i) [°° K(x)dz =1 and K(z) has a finite compact support;
(iii) 2y is defined as in Al and uy = Z;io Y; )\;_j, where the coefficents v, =

(¥15,1y;) satisfy that 3577 [|v)]] < oo and n327% [[¢]]* = o(1) with
v = (n/d,)° for some § < 1/3;

1

?Taylor expansion yields g(z +u1) = g(z) + ¢'(z)ur + 3¢ (§)ui for some ¢ between = and z +uy,

and the claim follows from ¢”(£) > 0, Eu; = 0 and Eu? > 0.
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(iv) nh/d, — oo, nh?®/d, — 0 and 3, + &, = O(h);
(v) E|M]|* < .

Theorem 5.2. Under A5, for any fixed x, we have
n /2
(3" Kl —2)/m) " [9(2) = 91(@)] —p AN(0,1), (5.17)
k=1

where A = E[ny + g(z +u1) — g1 (33)]2 7o K2 (y)dy.

Remark 7. WP (2016) established (5.17) without investigating the effect of
misspecification in the model, thereby imposing the conditions that u, = v,; = 0,
and a,; = 1 on the present framework. Duffy (2014) allowed for u; # 0, while still
imposing v,,; = 0 and a,,;, = 1, but requiring 7 = 0 for the time series x; defined in A1
and requiring the coefficients ¢, to have SM memory, thereby restricting attention
to I (1) time series. Our Theorem 5.2 provides a general result for nonparametric
regression under misspecification that allows for nearly integrated short and long
memory latent variables that are observed with error. This result substantially extends
the existing literature on nonparametric nonstationary regression to a latent variable
framework that covers many potential time series applications in econometric work in

which measurement error effects may be expected.

6 Conclusion

The present framework focuses on latent variable nonparametric cointegrating regres-
sions which are partially misspecified through the presence of measurement error or
the use of proxy variables in the regression. The limit theory reveals that such regres-
sions lead to bias in estimation yet may be interpreted as estimating locally weighted
averages of the true regression function and are amenable to inference. The latent
variable framework does not include fully spurious nonparametric regresssion systems
of the type studied in Phillips (2009). Extensions to such systems are of interest not
only from the perspective of completing the limit theory for linear spurious regression
(Phillips, 1986) to include nonlinear nonparametric regression but also because the
present results seem close to the limit of what is possible for partially misspecified
regressions arising from latent variable measurement error. It is therefore of interest
to understand how gross misspecification, as distinct from partial misspecification due
to measurement error, affects such regressions with randomly trending variables.
Nonparametric regressions offer empirical researchers considerably more flexibility
than linear regressions in establishing ‘empirical relationships’. Given the well-known

tendency of trending variables to produce plausible regression findings in the absence
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of an underlying relationship between the variables, it is important to understand
the implications of conducting nonparametric regressions with such variables when
the linkages between the variables are no longer as ‘close’ as the partially misspec-
ified linkages studied in the present paper. What the present paper does show is
that when there are ‘close’ linkages between the observed regressor and the latent
variable, an empirical nonparametric regression has a clear interpretation in terms
of a local average relationship of the true regression function. In this sense, there is
useful interpretable information that can be recovered from the pseudo-true value in

nonparametric nonstationary regression with latent variables.

7 Appendix A: Proofs of the main results

We first introduce two lemmas that play a key role in the proofs of our main results.
Notation is the same as in previous sections except where explicitly mentioned.

Lemma 7.1. Let p(x, z1, ..., T,) be a real function of its components and ty, ..., t, € Z,
where m > 0. There exists an my > 0 such that the following results hold.

(1) For any h >0 and k > 2m + mq, we have

Ch [
< 20

Elp(wk/ha )\t17 (XY >\t7n)

Elp(t, A1, ..., Am)|dt. (7.18)

k —00

(i1) For any h >0, k—j>2m+mg and j+1<ty,...t, <k, we have

Ch [*
B |p(a/h Mo M) | F]] < / Blp(t, Ay oo A)ldt. (7.19)
—J —00

(111) If in addition Ep(t, A1, ..., A\m) = 0 for any t € R, then
|E [p(.fk/h, >\t17 teey >‘tm> | ‘/TJ} }

Ch El?;min{tl,...,tm} ‘¢‘ 0o m
= = : / B{p(y, Aty M) DIl dy. (720)
k—j —00 =1

The proof of Lemma 7.1 is similar to Lemma 2.1 of Wang (2015). See, also,
Lemma 8.1 of Wang and Phillips (2016). A proof of (7.20) is given in Appendix B for
convenience. Note that, for any ay, by and m > 1,

[e.o] o0 oo

(D Janbel)™ < (3 lawl)™™ > lawl bx]™, (7.21)

by Holder’s inequality. A simple application of (7.18) yields that
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(1) if B||A\1]|™ < oo, then

n

> (1 [wa[™)p(i/h) = Op(nh/dy); (7.22)

t=1

(i) if B[\ || < oo, then

> A (L + [wne™)p(e /) = Op(nh/dy,), (7.23)

for any h > 0 and j € Z, where p(z) is a bounded integrable function and w,; =

oo ! . . .
Y reo Cnk g, With cup = (¢ 1k, Cnok) satisfying

sup Z ‘Cn lk‘ + ‘Cn2k‘)

n>k0

Results (7.22) and (7.23) will be directly used in the following proofs without further
explanation.

Lemma 7.2. If, in addition to A5, Eg(u;) =0, then

% S K (e - )/1], (Z_z)l/g S [+ glue)] K [(a — )/H]
—p  (Lz(1,0), apN x Lz(1,0)"/?), (7.24)

where af = B[n, + g(ul)]2 and N ~ N(0,1) independent of Lz(1,0).
Proof. For any m > 0, let w,, = 37" 0¥, and 0, = > 0;\;,_;. By noting
Eg(u;) = Eg(uy) = 0, we may write

n

Z [ + g(ue)] K[ (¢ —x)/h]

t=1

Z Nt + 9(Umt) Eg(umt)] K[(xt - $)/h} + Ry + Rpo
=1

where R, = > 1, (1, — 1) K [(z¢ — 2)/h] and

Ryo = Z {g (ut) = g(tmt) E[Q(Ut) - g(umtﬂ } K[@t - x)/h]

For any m > 0, it follows from Wang and Phillips (2009a, 2009b) that

(% Z K |[(z¢ — x)/h], (%)1/2 Z [t + 9(imt) — Bg(tme)] K (2 — x)/hD

t=1

—p (Lz(1,0),a,N x Lz(1,0)?), (7.25)
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where a2, = E[n,,1 + 9(um1) — BEg(tm)] 2. Result (7.24) will follow if we prove
dy, = ag, (7.26)
as m — oo, and, for i = 1 and 2,
R,; = op[(nh/dn)l/z}, (7.27)

as n — oo first and then m — oo.

We only prove (7.27) for i = 2. The proof of (7.27) for i = 1 is similar [see, (8.13)
of Wang and Phillips (2016), for instance]. Due to A5 and Eg(u;) = 0, the proof of
(7.26) is trivial. We omit the details. To prove (7.27) for i = 2, we write

Ry2 = Rps + Rpa, (7.28)

where, for v,, given in A5 (iii),

R,z = Z {Q(Ut) — g(ty,) — E[Q(Ut) - Q(Uunt)} } K[(% - x)/h]

Rus = Y {g(un,e) = 9(tme) = Blg(uy,e) — g(ume)] } K[ (2 — x) /1]

Note that w; —w,,; = >, | ¥;A,_;. By using A5 and (7.22) with m = 2, it
follows from the Holder’s inequality that

[Rus| < C > up = | (14 [y K [(20 — ) /2]

+C ZEHut — Upt| (L4 |te|”) } K[(2r — ) /]

t=1

€ (3 e =) {320 ) (e — )]}

IN

O (D I Y- K [(a — ) /1]

J=Vn

= {0 3 1)V [0k ) 5 2 )}
= op [(”h]/dnysl/ﬂ'
Taking this into (7.28), to prove (7.27) for i = 2, it suffices to show that
Ro4 = op[(nh/d,)"?], (7.29)

as n — oo first and then m — oo.
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To prove (729)7 let gt = g(ul/nt) _g(umt) —-F [g(ul/nt) _g(umt)] and Vin = 2Vn+m07
where my is defined as in Lemma 7.1. We may write

Vin

<Z+ Z ) K (2 — 2)/h] := Rys + Rys. (7.30)

= t= V1n+1

It is readily seen that, by recalling v, = (n/d,)° for some § < 1/3 and |g;| <
C 327 [N (L4 [ume|?) Dy AB(),

Vin

|R.5| < C Z |9:| K [(ze — z)/h] = Op(vyuh/d,,) = OP[(nh/dn)l/Q}. (7.31)
t=1
As for R, we have

BRY = Y B{guo K[(x,— )0 K (- 2)/h] )

Vin

= 2 z": (Z-l- Z Z ) {9t9t+s [(xt_x)/h}K[(xtJrs_x)/h}}

t=vin+1 s=0 s=mo+1 s=v1inp+1

= Aln + Agn + Agn. (732)

Using |g:| < C 3272 [N ;| (1+ [ume|?) again, it follows from (7.23) with m = 1+ 3
(< 25) that, whenever v,, > m,

n

A < Cmg Y Elg| K[(z—x)/h]

t=vip+1

< Cmo Y Y B{wN (1 + Junul ) K [(2 — 2)/B] }

j=mit=vip+1

Cih Y (gl + o) D> a7

<
j=m t=vin+1
< O Wyl +15l) (nh/dn) = o(nh/d,). (7.33)

as n — oo first and then m — oo. Similarly, it follows from Lemma 7.1(ii) and (7.23)
with m = 1 + (3 that

Vin

An| < C Z > B{lodr (o =0/ BK (s = )/1]|7)

Vin

< C Z E{|g:| K [(z; — 2)/h] } Z h/d,
= 0(1) (hyn/dl,n) (nh/d,) = o(nh/d,). (7.34)
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As for Ag,, by Lemma 7.1 (iii) and the conditional arguments,

Bl < Y B{la K[l )/n]| [Blo K G~ 2)/h] | £}

t—s>2vn+mo

" h i h

< Cv,h(1+logn)(nd,/h) = o(nd,/h), (7.35)

due to hv,(1+logn) = o(nh?/d,)? = o(1). Combining (7.32)-(7.35), R.s = op[(nh/d,)"/?]
as n — oo first and then m — oo. This, together with (7.30) and (7.31), implies (7.29).
The proof of Lemma 7.2 is now complete. O

Proof of Theorem 4.1. We start with some preliminaries. Let A; =} 7, (Jooy|+
|1hy;]), where I is chosen so large that A; < 1. Due to

-1 oo
/
up = ( E + E )@ﬁj At_j = wae + wa,  say,
Jj=0  j=l

it follows from (3.5) that, for any = € R,
Im(z,ue) — mlz, uy)| < T(x) A7 (1 + Juul®) (14 A7 Jugal®). (7.36)

By recalling (7.21) and Ag = » 77 ([44] + thy;]) < o0, we further have

-1 I
B
T4 Juul” < 14 (Z |thy;lle—| + Z |¢2j||77t7j|>
=0 =0

-1

< 14+Cp Ag_l Z (|¢1j||€t—j|ﬁ + |¢2j||77t7j|5)

J=0
-1

< 14Cs > (Il + 1g,]) A1, (7.37)

Jj=0

and, by letting o* = max{«, 2},

1+ A7 o] < 24 A7 |

—a*/2 o
< 24 4 /(ZWJUHWH+Z|¢2jH77t—j‘>
j=l j=l

o0

< 24 Cyr Alz_la*_l Z (|¢1j||€t—j|a* + |¢2j||7]t—j|a*)
=0
< 24 Cpe Z (|¢1g| + |¢2j|) X511, (7.38)

=0

where C3 and C,+ are constants depending only on 3 or «, respectively.
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Similarly, for any x, xq € R, we have
S T(l’> (1 + |£U0|ﬁ) (1 + |Ul 1t — I0|a)

-1
< Caa:OT Z |¢1]| + |1/}2] ||)‘t—j||aa (739>
7=0

|m(z, u1e) — m(z, zo)|

where C, ,, is a constant depending only on « and xg
We are now ready to prove Theorem 4.1. First assume v, = 0. This restriction
will be removed later. For convenience of notation, we further assume z = 0. The

removal of the restriction z = 0 is standard and so details are omitted

Em(z, u;1;). We may write

Let my(x) =
Cn
— m Cn ntvut = Sn + St + San,
A
where 9, = = Zt ma(cn Znt),
o
Sln = — |:m(Cn ng, Ut) - m(cn Znt, ul,lt):| )
-
o
Son = 37 e Zue, i) — malen Zus)]

It follows from Corollary 2.3 (i) of Wang (2015) that, for any [ > 1

Sn —d / mll(t) dth(LO)

Since, by (7.36)-(7.38),
Elm(t,ui) — m(t,un)| < T APEQ+ |unl®) (1+ A7 [uga]®)
< CT(t) A,

we have [%°|my(t) — my(t)|dt < CA 7 T(t)dt — 0, ie.,

/ may(t)dt —>/ my(t)dt, as | — oc.

Hence, to prove (4.8) with v, = 0, it suffices to show that

i=1, 2 (7.40)

Sin = OP(1)7

as n — oo first and then | — oo.
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The proof of (7.40) for i = 1 is simple. Indeed, due to (7.36)-(7.38) and E||\o|[m@{2f} <
00, it follows from Lemma 7.1 (i) with h = d,,/¢,, and m = 0 that

Chn e
ElSi| < = > Blmlcn Zu, w) = mlen Zn, )

IA

A % Y B+ A ) (1 [wl®) T e Zo)

t=1

C’A?/2 sup C—”ZE(1+||)\t_i|

0, 20,i7]

IN

) (L4 [ |l?) T (en Zue)

< CAP(1+ % Y dt) <A o,

t=mo

as n — oo first and then | — oo, which implies (7.40) with i = 1.

We next prove (7.40) with ¢ = 2. Write p(z,y) = m(z,y) —my (). First note that,
by the boundedness and integrability of E|m(z,u,)|, there exists a finite constant
such that m(z, x¢) is bounded and integrable. For this z, it follows from (7.39) that,
forany [ > 1 and = € R,

p(e i)l < Im(e,eo)| + Couy lg(a |Z (18350 + 1ohas1) (Ao 1 + Bl 1)
< 0<1+||At_j||“+E||At_j||°‘)- (7.41)

Furthermore, for any [ > 1 and x € R,

Elp(z, wa)|(1+ ) le;]) < CB{|m(a, uu)(1+ ) lel)}

j=1 j=1
-1

< COfmla o) +g(x) Y (In] + [hay]) E{ I[Nl 1+Z|e]
7=0

< Cilm(z,m0) + T(z)] = CilTi(z), say. (7.42)

It is readily seen that T)(z) = m(x,x¢) + T'(z) is bounded and integrable. Similarly,
for any [ > 1 and x € R, we have

Elp(z,uu))* < 2B/m(z, u)|?
-1
< C [m2<$7$0) + T?(t) (|77Z)1j| + |¢2j|) E||\—;| >
=0

< Gy [m(z,20) + T(z)] = CoTi(z). (7.43)

Due to (7.41), we have
Ep?(cn Znk, u k) < C (7.44)

20



for any £ > 1. Due to (7.42) and (7.43), it follows from Lemma 7.1 (i) with h = d,, /¢,
and m = [ that

E(‘p(annka ul,lk:)l + |p(Cnan7 ul,1k>’2)

d, *
< C / E(lp(t, u)| + Ip(t, un)[*)dt
Cn dk —00
< C d, (7.45)
>~ 1 Cr dkv '

for any k > 2l + my. Similarly, by (7.42) and Lemma 7.1 (iii) with h = d,/c,, we
have

B [p(cnZnk, wiar) | Fil|

Cdn 35105 [ l
< j=0 J/ E\p(t,ulyll)\(l+2]ej\)dt
o =

2
Cn dk_j

Cdnl Y5019l

2
Cn dk_j

(7.46)

for any k — j > 20 4+ my.

Result (7.40) with ¢ = 2 can now be proved by using standard conditional argu-
ments as those of Lemma 2.2 (ii) in Wang (2015). A outline is given as follows.

For each [ > 1, we have

E‘Sgn = (%)2 Z E{p(cn Znsy ul,ls)p(cn Znt7 ul,lt)}

s,t=1

— (C_N)Q ( Z + Z ) E{p(cn Zns, Was) P(Cn Znt, Ul,lt)}

n
[t—s|<2l4+mg  |t—s|>2l4+mg

= A1n + A2n-
Using (7.44) and (7.45), we have

Cn
|A1n| < (_)2 Z E{p2(0n Znsa ul,ls) +p2(cn Znt» ul,lt)}

n
[t—s|<2l4+mg

< ClarmP(Ey e Y @ )]
[t—s]|<214+mo
e [(l + mg)cp N ((l+m0)cn)2]'

n n
Using (7.45)-(7.46) and conditioning arguments, it follows that

Aol < 2(2) 3 B{Ip(en Zuss wan)l [B[p(cn Zuw, wase) | 7|}
n t—s>2l+mo
l n n
B o1 1
< CZZ|¢J-|EZCZ— > 7
j=0 s=1 % t=s420 (5
d, logn

IN

Cl

n
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Combining all these estimates, it follows that

E‘S’%n S A1n‘FA2n

1
< ¢ dnloen

= 4 Cl [(l +7T7Llo)cn 4 ((l +Zlo)cn)2}

— 0,

as n — oo first and then | — oo, yielding (7.40) with i = 2.
The proof of (4.8) with v, = 0 is now complete. We next remove the restriction
vnr = 0. In fact, by (3.5), we have

n

% Zm(cn Zntaut + Vnt)

t=1

= 2 mfen Zusw) +O0() D0 (L ") (1 + [l Tew Zur), (7:47)

n
t=1 t=1

where vy = 3772 (J@1; €| + @25 14—;)- Note that
(L4 v ) (1 + el ) < (14 2) "7,
where @, = Y27 (04 |ex—s] + 025 |1;,—;]) with
b1 = ’W1j| + le’ and 0y; = |902j| + W2j|- (7.48)

As 0,, — 0, result (4.8) follows from that of the first part with v, = 0 and (7.22)
with h = d,/c,.
The proof of Theorem 4.1 is now complete. O

Proof of Corollary 4.1. We first prove (4.10). For any given z, write r,; =
o + U + Vi and Kpp = (e — )T + K. Since yy = hag(xy — x)/h + Ky and
Fnt = Bt — ap)x/B,, + Knt, where B, = maxj<g<n |nr — ), it follows from (3.6)
that

[f () = f(En) | < [f(ye) = F(Rn)| + 1f (Fne) = (5|
< OB [1+ | (|2 — 2| /0)*] (1 + [F]”)
OB (14 |217) (1+ [rinel”)
< Coa (B +8)) (L [w]”) [L+ (|2 — 2l /R)], (7.49)

where C, , is a constant depending only on « and z, and

Uy = Z (045 lex—;i| + 025 Imi_1)
=0

with 01; = |901j| + |77Z)1j| and 0y; = |<P2j| + |¢2j|a as given in (7.48).
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Let K1(s) = (14 |s|*)K(s). It follows from (7.49) and (7.22) with p(s) = Ki(s)
that

o S ) K [ — )]

= O S Pl K (e~ a)/H] + O+ 53) < 37 (1 i) Ko — )]

t=1
- ;f(ﬁm) K[(z — 2)/h] + 0p(1),
due to h — 0 and 3,, — 0. Result (4.10) now follows from (4.8) with
m(t,y) = K(t) f(awz +y), cn=dy/h, ¢, =1/d,, z=—ux.
The proof of (4.11) is similar. Indeed, in this case we may write
Y = Bl — o)/ B, + coxe + wp + Uiy,
and it follows from (3.6) that

|f(ye) — flaoms + up + vy
C’Bi (1 + |xt|a) (1 + |aoxy + up + Vnt|’8)

<
S Cx,aﬁz (1 + |$t - x’a-{-ﬁ) (1 + |ﬂt|,8)’

implying that (letting K»(s) = (1 + |s|*"?) K (s))

S F ) K~ 2)

= Z_;L tzl flaoxs + up + vnt) K(l't - -77) + 0(52) Z_;L tzl (1+ ’at|6) Ky [(mt - :U)/h]
dn

- Z flaoxy + ug + vpy) K(a:t — x) +op(1).
=1

Result (4.11) follows from (4.8) with
m(t,y) = K(t) flapr + aot +y), ¢ =d,, c,=1/d,, z=—uz.

The proof of Corollary 4.1 is now complete. O
Proof of Theorem 5.1. We may write
K[(x; —x)/h K[(xy —z)/h
i(z) = 2 mKl(we —x)/h] | 3 g(y) K(xe — x)/h]

2. K(w —x)/h] 2. Kl(z —x)/h]
= Rln + Rgn. (750)
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As in Wang and Phillips (2016) (see, also, Lemma 7.2), it is easy to show that Ry, =
Op[(nh*)'/*]. On the other hand, a simple application of Corollary 4.1 yields that

{nh ZK $t—33/h hzgyt $t—1')/h]}
. {LZ(1,0), Eg(z + u;) x LZ(1,0)}. (7.51)

The result (5.16) follows from the continuous mapping theorem. O

Proof of Theorem 5.2. We may write

> 9(ye) Kl(we —2)/h] = yar + yuo,

where

= ) g(e+u) K[(z —2)/h]
s = > (90 + v+ w) = gz + w)| K[(w — ) /h]

Due to A5 (i), (iv) and the fact that K(z) has a finite compact support, for any fixed

x we have

[nal < Co Y (lavmellee — ] + loms = 1]+ 8a) (14 e *) (1 + |Gl K [(2, — ) /D]

< Co(h+ By +00) > (14 ) (1 + | K [(z, — x) /]

k=1
1/2
= Op[(h—f‘ﬁn‘f‘(sn)?;_f] = op [(Z_f) ] )

where @; = ) 77 (Jo1; €x—j| + |2 n1—;|) and we have used Holder’s inequality and
(7.22). Taking these facts into (7.50), simple calculations show that (5.17) will follow

if we prove

dp &
EZK[(xt—x nh l/QZwt (z¢ — x)/h]
t=1
—p  (Lz(1,0),AN x Lz(1,0)?), (7.52)

where w; = 1, +g(x+u;) — Eg(x+u;) and N ~ N(0, 1) independent of Lz(1,0). This
follows from a simple application of Lemma 7.2, since §(y) = g(x +y) — Eg(z + uy)
still satisfies A5(i) with Eg(u;) = 0 for any fixed x € R. O
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8 Appendix B: Proof of (7.20)

Note that

k J
Tp—T; = Z P+ Z(Pﬁ_i o)
i=1

i=j+1
= Z o ( Z + Z )Eufbi—u“‘Z(Pﬁﬂ = )&
i=j+1 u=j7+1 U=-—00 =1
We may have
T = Tijk + Tojk, (8.53)
where x4, = Zf:jH € ay,; with

k
k—u .
Qi = E P Pu—i = Gk,
u=1

and 9, depends only on €, €;_1, ...

Let A,, = Z;’;l €;ak—¢, and Yir = Tk — A,,. Tt is readily seen that there exists
an mg > 0 such that, whenever k — j > 2m +mo, 0 < a1 < E(y};,)*/d;_; < ay < oo,
where a; and a, are constants. As a consequence, similar arguments as in the proof
of Theorem 2.18 of Wang (2015) [In particular, see part (ii), the fact F, and (2.66)]
yields that, whenever k — j > 2m +my, yj;/dy—; has a density function v (x), which

is uniformly bounded over = by a constant C' and
sup |vk(z +u) — v(z)] < Cmin{ju|, 1}. (8.54)
This, together with (8.53) and the independence of ¢;, implies that

E{p(mk/h, Ay Aty ) | fj} = E{p[(l’gjk + A, —I—y;k)/h, Aty s ...,)\tm] | .7-}}
= E{/ p[(332jk + Ay + di—jy) /Ry Aoy ---7)\tm] vir(y) dy | ~7:J}

h > — AN, + hy

—T2jk
- E{ Mor o N ) v j
dk—j e p<y7 t1 tm) y]k:( dk'fj

) \J—“j}dy. (8.55)
As x5, depends only on €j,€;_1, ..., and j+ 1 <ty,...,t,, <k, we have

—Zoik + h
E{p(y, Atys ooy Aty ) ij(%) |*7:J}
—J

o B
v (Y B Ay ) ) = 0.

di_;
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Taking this fact into (8.55) and using (8.54), we have

|E{p(ﬂfk/h, )\tl, ceey Atm)

Fi}]

h o0
S dk ] / E{p(ya )‘tn cey )\tm)
i S
—Toj; — A + hy — Tk + hy
(=) — v () | dy
Ch [* )
< 2 [ B{b A il . 13} dy
k—j J—oco
Ch Zk;min{tl ..... tm } |¢| 0o m
< ! Odi ' ’ / E{|p(y7 Al?"‘a)‘m)| Z|€J|}dy7

as required. O
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