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Abstract 

This paper provides the first estimates of within-industry heterogeneity in energy and 
CO2 productivity for the entire U.S. manufacturing sector. We measure energy and 
CO2 productivity as output per dollar energy input or per ton CO2 emitted. Three 
findings emerge. First, within narrowly defined industries, heterogeneity in energy and 
CO2 productivity across plants is enormous. Second, heterogeneity in energy and CO2 

productivity exceeds heterogeneity in most other productivity measures, like labor or 
total factor productivity. Third, heterogeneity in energy and CO2 productivity has im-
portant implications for environmental policies targeting industries rather than plants, 
including technology standards and carbon border adjustments. 
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Regulating Mismeasured Pollution: 
Implications of Firm Heterogeneity for Environmental Policy 

Eva Lyubich Joseph S. Shapiro Reed Walker 
UC Berkeley Yale University UC Berkeley 

elyubich@berkeley.edu joseph.shapiro@yale.edu rwalker@berkeley.edu 

This paper provides the first estimates of within-industry heterogeneity in energy and 

CO2 productivity for industries spanning the entire U.S. manufacturing sector. We define 

energy and CO2 productivity as log dollars of output per dollar of energy input or per ton 

of CO2 emitted.1 Three key takeaways emerge. First, within narrowly defined industries, 

heterogeneity across plants in energy and CO2 productivity is enormous. For example, given 

one dollar of energy inputs, a plant at the 90th percentile of a typical industry’s energy pro-

ductivity distribution produces 580 percent more output than a plant at the 10th percentile 

of the same industry. Second, these values significantly exceed heterogeneity in most other 

measures of productivity. For example, the corresponding 90-10 differences for labor and 

total factor productivity are 400 percent and 150 percent, respectively. Third, heterogeneity 

in energy and CO2 productivity has important implications for industry-based environmen-

tal regulations. Many countries have considered pairing a carbon tax on domestic output 

with a tariff on imports that is proportional to the carbon content of the imports. We show 

that an industry-based carbon tariff, which abstracts from within-industry heterogeneity, 

will substantially differ from the correct (plant-level) Pigouvian tax for many plants. 

Many existing environmental regulations and standards apply uniformly across plants 

within an industry. For example, the U.S. Clean Air Act requires plants in regulated indus-

tries and regions to meet an industry-level technology standard by installing “Best Avail-

able Control Technologies.” Similarly, the Clean Water Act’s Industrial Effluent Guidelines 

require plants to meet an industry-level technology standard. Several tradable permit mar-

1Energy and CO2 productivity are the inverse of energy and CO2 intensity. We use the former metric to 
facilitate comparisons to other single-factor and total-factor productivity measures. 
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kets use industry-level rebates to compensate firms.2 Due to substantial data requirements, 

researchers and policy makers have a limited understanding of the extent of producer het-

erogeneity in energy and CO2 productivity. We show that plants within an industry have 

very different pollution emissions rates, and therefore, such industry-level regulations will be 

too stringent for some plants and too lenient for others. 

We use confidential, plant-level data from the U.S. Census of Manufacturers (CM) and 

the Manufacturing Energy Consumption Survey (MECS) to explore this heterogeneity. We 

distinguish about 375 6-digit NAICS industries. One industry, for example, manufactures 

carbon black; another makes ethyl alcohol. Our main results calculate plant-level energy 

expenditures on raw fuels and electricity as reported in CM and MECS. We also calculate 

plant-level CO2 emissions by converting each fuel consumption choice to CO2 equivalents 

using emissions factors (e.g., tons CO2 emitted per ton of coal burned). 

A few estimates near the paper’s end analyze carbon tariffs. These estimates account 

for energy consumption and emissions required to produce intermediate inputs that are used 

for final good production, sometimes called “indirect emissions.” For example, in most of 

the paper, emissions for the cookware industry include coal, gas, oil, and electricity used 

to shape a pan. Indirect emissions for the cookware industry also include fossil fuels used 

to make aluminum, which is then purchased as an intermediate input to make a pan. We 

calculate indirect emissions in two separate ways. The first is standard: we invert the U.S. 

input-output table to compute the dollars of coal, oil, and natural gas inputs required to 

produce a dollar of output in each industry. This accounts for energy used to produce inputs, 

and energy used to produce the inputs to inputs, etc. Our second measure of indirect energy 

is non-standard: we use plant-level data on the dollar value of each individual material input 

the plant uses, along with associated industry codes for each material, which are all part 

of the CM Materials Trailer. We combine this information with the inverted input-output 

2California’s AB-32 cap-and-trade distributes additional permit allocations to energy intensive, trade-
exposed industries using an industry-level assistance factor to help combat against regulatory leakage. These 
assistance factors are applied at the industry-level when determining permit allocations for a facility. 
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table to calculate indirect energy and emissions separately for each plant. 

This paper builds on several literatures. One explores the implications of firm heterogene-

ity for environmental policy and either argues for market-based instruments like pollution 

taxes or cap-and-trade markets (Carlson, Burtraw, Cropper, and Palmer, 2000; Goulder 

and Parry, 2008) or analyzes industry-based regulation in Melitz-type settings when firms 

are heterogeneous (Shapiro and Walker, 2016). Several papers within this literature specifi-

cally analyze border adjustments (Cosbey, Droege, Fischer, and Munnnings, 2017; Kortum 

and Weisbach, 2017). This paper also relates to work analyzing the efficiency of imper-

fectly targeted environmental policies (Jacobsen, Knittel, Sallee, and van Benthem, 2017). 

A related literature shows that total factor productivity is heterogeneous within narrowly-

defined or homogenous industries (Syverson, 2011); other work interprets heterogeneity as 

factor misallocation (Hsieh and Klenow, 2009). Existing analysis of heterogeneity in energy 

productivity is limited, though includes studies of a subset of energy-intensive, trade-exposed 

sectors (Gray and Metcalf, 2017). The remainder of the paper discusses data, methodology, 

and results. 

1 Data and Methodology 

We measure plant-level energy inputs using data from the 2007 CM and the 2006 MECS. 

The CM includes about 350,000 U.S. manufacturing plants operating in 2007, while MECS 

includes a probabilistic sample of around 15,000 plants. We join MECS and the CM at 

the plant level, using a unique plant identifier. Our MECS estimates use survey weights to 

make statistics represent the broader manufacturing sector. The CM reports each plant’s 

value of shipments, capital stock, production hours, and expenditure on electricity, fuels, and 

materials. We exclude “administrative records” since many of their values are imputed. We 

also exclude records where output, fuel expenditures, or electricity expenditures are imputed, 

or where any variable value exceeds 100 times the 99th percentile of the distribution of values. 
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The CM and MECS both report plant-level expenditure on fuels and on electricity, which 

we use to compute CO2 emissions. MECS further reports physical quantities and expendi-

tures for each fuel, which we convert to CO2 (see Appendix for details). Since the CM does 

not report expenditures by fuel type, we use MECS to calculate industry-level averages of 

CO2 per dollar of fuel expenditure, and we multiply each CM establishment’s fuel expen-

diture by these averages. For electricity inputs, we use the EPA’s eGrid database, which 

assigns annual total output emissions rates (CO2 per KWh) to 26 regions of the country, to 

calculate the mean marginal emissions based on plant location of electricity consumption. 

We account for indirect emissions only in our estimates of carbon tariffs. We do this in 

two separate ways. First, we use the 2007 U.S. benchmark input-output data of the Bureau 

of Economic Analysis. We invert the input-output table to compute the total dollars of coal, 

oil, and natural gas inputs required to produce a dollar of output in each industry. We apply 

emissions coefficients from the Energy Information Agency and Environmental Protection 

Agency (EPA) to calculate the total CO2 emitted per dollar of output in an industry. Our 

second measure of indirect emissions comes from the CM Materials Trailer, which provides 

plant-level detail on the dollar value of each material input, along with associated input 

industry codes. We multiply these expenditures by the corresponding industry emissions 

rate from the inverted input-output table. Thus, while emissions rates are constant across 

intermediate input industries, plant-level variation in intermediate input intensity generates 

additional heterogeneity in energy and emissions productivity. 

We use all these data to construct multiple measures of energy and emissions productivity. 

For comparability with common productivity measures, we construct productivity measures 

as the log of the value of shipments per dollar of direct energy input, or per metric ton 

of CO2 emitted. We also discuss estimates that define productivity as log dollars of value 

added per unit of energy input or CO2 emissions in the appendix. We calculate value added 

by subtracting expenditures on capital, labor, materials, and energy from the plant’s total 

value of shipments. 
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For each industry, we measure productivity heterogeneity by calculating the 90th and 

10th percentile of energy and CO2 productivity across plants within the same industry.3 We 

also compute the within-industry standard deviation of all productivity measures for each of 

the 375 industries. Lastly, we summarize these industry-level dispersion measures by taking 

the unweighted mean across all industries. This latter statistic provides some insight on 

within-industry heterogeneity in productivity for the mean industry. 

2 Results 

Table 1 shows the mean and dispersion of seven different productivity measures. This table 

accounts for only “direct” CO2 or other inputs at a plant. Columns 1-6 calculate productiv-

ity as the log of the plant’s value of shipments divided by some measure of a plant’s factor 

demand, CO2 emissions, or intermediate inputs. Columns 2 and 3 report value of shipments 

per ton of CO2 produced, where CO2 is calculated using the CM and MECS samples, re-

spectively. Columns 4-6 report other single factor productivity measures, as indicated in the 

column headings. Column 7 presents statistics from a total factor productivity index.4 

Panel A of Table 1 shows mean productivity levels. For example, column 1 implies that 

energy costs are roughly 1.5 percent of output value (0.015 = 1/ exp(4.16)) for the mean 

plant in our sample, since the log of output per dollar energy input is 4.16.5 Panel B of 

Table 1 summarizes the industry-level dispersion measures. The first row presents the mean 

of the within-industry 90-10 ratio, taken across all industries in our sample. The second row 

of Panel B shows the standard deviation of the within-industry 90-10 ratio, taken across all 

industries. The third row shows the difference between the 90th percentile industry and the 

10th percentile industry of this within-industry 90-10 dispersion measure. Panel C shows 

3To respect confidentiality requirements for 90-10 statistics, we use each industry’s mean and standard 
deviation of the respective productivity measure to simulate the 90th and 10th percentile using a normal 
distribution. Estimates using the simulated data are nearly identical to those from the underlying microdata. 

4This index uses a Cobb-Douglas production technology with three inputs: labor, capital, and materials. 
Output elasticities for each input are constructed from industry-level revenue shares (Syverson, 2011). 

5We report this calculation for energy productivity but not other columns because not all other inputs 
are measured in dollars (e.g., labor is in terms of worker hours). 
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Table 1: Single and Total Factor Productivity Statistics 

Direct 
Energy 
(1) 

CO2 

[CM] 
(2) 

CO2 

[MECS] 
(3) 

Labor 
(4) 

Capital 
(5) 

Materials 
(6) 

TFP 
(7) 

Panel A: Industry-Wide Statistics 

Mean 
SD 

4.16 
0.94 

8.42 
1.16 

8.80 
1.15 

4.51 
0.83 

1.01 
0.95 

0.95 
0.66 

1.81 
0.56 

Panel B: Within-Industry 90-10 Difference in Productivity 

Mean 
SD 
p90-10 

1.92 
0.47 
1.21 

2.27 
0.57 
1.46 

2.27 
1.17 
3.01 

1.63 
0.45 
1.16 

2.22 
0.50 
1.27 

1.34 
0.61 
1.58 

0.92 
0.39 
0.99 

Panel C: Within-Industry Standard Deviation of Productivity 

Mean 
SD 
p90-10 

0.75 
0.18 
0.47 

0.89 
0.22 
0.49 

0.89 
0.46 
1.14 

0.64 
0.18 
0.44 

0.87 
0.19 
0.43 

0.52 
0.24 
0.55 

0.36 
0.15 
0.33 

Notes: Panel A means and SD are computed from plant-level CM and MECS observations. Panel B 

statistics are calculated using the 375 within-industry 90-10 dispersion measures. Panel C statistics are 

calculated using the 375 within-industry standard deviation measures. See text for details. 

similar values, but using within-industry standard deviations. 

Panels B and C of Table 1 show substantial heterogeneity in output per dollar of energy 

expenditure or per ton of CO2 emitted, which is the paper’s first main finding. The top-left 

entry in Panel B, for example, shows that given a dollar of energy inputs in the industry with 

the mean energy productivity dispersion, a plant at the 90th percentile of the within-industry 

energy productivity distribution produces 580 percent more output than a plant at the 10th 

percentile of that within-industry distribution does. Dispersion in CO2 productivity is even 

wider, at 2.27 log points (870 percent difference). The standard deviation of energy and of 

CO2 productivity within the average industry is 0.75 to 0.89 log points, respectively. 

Panels B and C also show the paper’s second main finding: dispersion in CO2 and energy 

productivity is larger than dispersion in most other productivity measures. Both panels show 

that dispersion in energy and CO2 productivity is more than twice as large as dispersion in 
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total factor productivity (TFP). Typically, single-factor productivity measures are more dis-

persed than TFP, but Table 1 shows that dispersion in energy and CO2 productivity exceeds 

dispersion in other single-factor productivity measures like labor or material productivity.6 

Dispersion in energy and capital productivity is more similar, though worth interpreting 

cautiously since the durability of capital investments makes the value of the capital stock 

difficult to measure. All pairwise t-tests (not shown for space) reject the hypothesis that 

dispersion in energy and CO2 productivity equals dispersion in the other productivity levels. 

Appendix Table A1 shows similar conclusions from value added productivity measures. 

It may be unsurprising that CO2 productivity varies so much, since differences in fuel 

inputs, variation across the grid in the CO2 intensity of electricity generation, and related 

forces make CO2 more variable than energy expenditure. It is more surprising that energy 

productivity varies more than other single-factor productivity measures, since even though 

some fuels are dirtier than others, one might expect plants to use similar amounts of energy 

to produce a single unit of output. Panel A of Table 1 shows that mean productivity for 

energy and labor are similar, so the difference in dispersion is not driven by scale effects. 

Figure 1 demonstrates the paper’s first two conclusions. This graph plots the distribution 

of industry-level 90-10 dispersion measures. Each of the roughly 375 observations underlying 

one of these lines is an industry; the value of each observation equals the within-industry 

90-10 productivity ratio. The mean of the CO2 distribution (dark solid line) lies above the 

mean of all other productivity dispersion measures, demonstrating that CO2 dispersion for 

the average industry is greater than dispersion in the other productivity measures. The 

greater width of the CO2 distribution relative to the TFP and labor distributions shows 

that within-industry dispersion in CO2 productivity is more variable across industries than 

within-industry dispersion in TFP or labor productivity. 

6The greater dispersion of single factor productivity compared to TFP stems from cross-plant differences 
in factor intensities. For example, if one plant has a greater labor share than another plant due to lower local 
wages, the two plants may have the same TFP but different labor productivity. Differences across plants in 
factor prices (e.g., wages) generally affect single-factor productivity but not TFP (Syverson, 2011). 
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Figure 1: Dispersion of Within-Industry 90-10 Productivity Measures 

Notes: Each kernel density plot was created using the approximately 375 6-digit NAICS dispersion measures 

for the corresponding productivity measure. Kernel densities have been censored at the 5th and 95th 

percentiles in accordance with U.S. Census Bureau disclosure avoidance. 

Implications for Carbon Tariffs 

In many countries, policymakers have proposed import tariffs proportional to the carbon 

content of imported goods in order to guard against emissions leakage.7 These are often 

referred to as carbon border adjustments or carbon tariffs. 

Table 2 reports the level and distribution of the external cost of CO2 emissions per dollar 

of output. If another country imposed a carbon tariff on imports from the U.S., the social 

cost of carbon (SCC) per dollar output provides one measure of the relevant tariff. We 

assume a standard SCC of $40 per metric ton of CO2. Each column represents a different 

method of calculating CO2 per dollar of output. Column 1 presents direct emissions from 

fuels plus electricity per dollar of output using CM data. Column 2 adds indirect emissions 

to the direct emissions estimates from column 1, where indirect emissions are calculated by 

inverting the industry-level input-output table.8 Adding industry-level indirect emissions 

7This type of policy was in the Waxman-Markey bill that passed the U.S. House but not the Senate in 2009. 
In 2017, France, Mexico, and Canada discussed imposing one on the U.S. after the Trump Administration 
announced it was withdrawing from the Paris Treaty on Climate Change. California has just implemented 
such a measure for government purchase decisions (the Buy Clean California Act). 

8Total emissions are the sum of direct and indirect emissions. Direct emissions come from plant-level 
data. Indirect emissions come from the input-output table. Note that the input-output table provides both 
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changes the mean externality (Panel A) but not the within-industry dispersion (Panels B-

C). Column 3 shows the same direct plus indirect emissions estimates from column 2 but 

uses MECS rather than CM to measure direct plant-level emissions. While MECS is a 

smaller sample than CM, it contains plant-level information on the types of fossil fuels used. 

Column 4 replaces the industry-level indirect emissions estimates used in columns 2 and 

3 with indirect emissions calculated using the CM Materials Trailer. Column 4 uses plant-

level information on input purchases to calculate indirect emissions. For each input material, 

however, it only accounts for the industry average of direct emissions of that input material 

and not its indirect emissions. Column 5 is similar to column 4, but for each material input, 

it calculates total (not just direct) emissions of each input using the inverted input-output 

table. Column 6 is similar to column 5 but uses MECS to measure direct emissions. 

Panel A of Table 2 shows that the external cost of CO2 emissions for the mean plant is 

2 to 8 percent of product value. Column 2 suggests that a uniform Pigouvian carbon tariff 

imposed on imports from U.S. manufacturers should be around 4 percent. In the first row of 

Panels B-C, column 2 shows that the mean industry has a 90-10 SCC difference of 0.06. This 

implies that even if a carbon tariff were imposed based on industry-specific means instead 

of the economy-wide 4 percent, many plants would have a carbon tariff which is well below 

the appropriate plant-level tax, whereas others would face a tax rate that is far too high. 

Comparing columns 3 and 5 of Panel B shows that using plant-level records of intermediate 

good purchases from CM, rather than industry-level records from the input-output table, 

approximately doubles both the 90-10 and standard deviation measures of dispersion. 

Figure 2 plots the distribution of industry-level 90-10 differences in SCC per dollar output. 

This shows the main conclusions from Table 2 visually. Many industries have high 90-10 

differences, and this distribution of dispersions has a long right tail which is understated 

by our censoring at the 5th and 95th percentile. Thus, a Pigouvian tax based on industry 

averages would still miss significant heterogeneity in true SCC per dollar of output. 

direct and indirect emissions for an industry. We subtract the industry-level direct emissions from total 
industry-level emissions to get our measure of indirect emissions. 
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Table 2: Social Costs of Carbon Per Dollar of Output 

(1) (2) (3) (4) (5) (6) 

Panel A. Industry-Wide Statistics 

Mean 0.019 0.041 0.034 0.044 0.077 0.071 
SD 0.048 0.050 0.032 0.062 0.110 0.075 

Panel B: Within-Industry 90-10 Diff. in SCC/$ 

Mean 0.060 0.060 0.051 0.089 0.142 0.120 
SD 0.204 0.204 0.102 0.205 0.221 0.128 
p90-10 0.523 0.523 0.261 0.526 0.567 0.329 

Panel C: Within-Industry Std. Dev. of SCC/$ 

Mean 0.023 0.023 0.020 0.035 0.056 0.047 
SD 0.080 0.080 0.040 0.080 0.086 0.050 
p90-10 0.035 0.035 0.045 0.053 0.073 0.097 

Direct Source CM CM MECS CM CM MECS 
Indirect Source BEA BEA CM CM CM 
Leontief Inverse X X X X 

Notes: Panel A means and SD are computed from plant-level CM and MECS observations. Panel B 

statistics are calculated using the 375 within-industry 90-10 dispersion measures. Panel C statistics are 

calculated using the 375 within-industry standard deviation measures. Each column computes SCC per 

dollar of output using different inputs, as indicated in the column headings and table footers. A column 

represents either direct or total emissions, where direct emissions come from either the CM or MECS, and 

indirect emissions come from either the BEA I-O table or the CM Material trailer. See text for details. 

Detailed analyses of carbon tariffs have noted many challenges, ranging from legal ambi-

guity to information burdens. This paper uses plant-level data to highlight another tradeoff— 

while a plant-specific tariff would impose a large information burden, an industry-level tariff 

would have substantial targeting errors stemming from firm heterogeneity. 

3 Discussion and Conclusions 

The records used for this paper are the most detailed data we are aware of that cover the 

entire U.S. manufacturing sector. The plant-level granularity and detailed information on 

plant-level input purchases reveal significant heterogeneity in energy and CO2 productiv-
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Figure 2: Dispersion in SCC Per Dollar Output 

Notes: Each kernel density plot was created using the approximately 375 6-digit NAICS dispersion measures 

for the corresponding emissions intensity measure. Densities are censored at the 5th and 95th percentiles. 

ity, which exceeds heterogeneity for most other measures of single-factor and total factor 

productivity. 

However, there are at least three reasons why our approach may understate the true ex-

tent of heterogeneity. First, we do not observe the full upstream set of plants that contribute 

to final output for a given plant in our data. Instead, we assign industry-level emission and 

energy intensities to construct our indirect emission and energy measures.9 If supplying 

plants are significantly different in terms of emissions or CO2 productivity, then we would 

understate heterogeneity. Second, our productivity estimates are based on revenues and not 

quantities. This should lead to underestimates of dispersion since more productive plants 

tend to have lower prices. Lastly, by excluding “administrative records” and other imputes 

from the CM, we are missing many of the smallest manufacturing establishments which 

might contribute to even more within-industry heterogeneity.10 

9Even when we observe plant-level input purchases, we only observe the industry of those inputs and not 
the specific plant. 

10It is worth noting that while these reasons suggest we are understating true heterogeneity, any remaining 
measurement error after excluding imputed observations could lead to overstatement of true heterogeneity. 
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How large are the welfare consequences of this heterogeneity for policies like technology 

standards or carbon tariffs that target industries and not plants? What are the economic 

reasons why energy productivity is more widely dispersed than labor or total factor pro-

ductivity? How would decreasing factor misallocation across firms affect CO2 emissions? 

Finally, what does heterogeneity in CO2 productivity imply about heterogeneity in marginal 

abatement costs? We leave these important questions for future work. 
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Online Appendix to: Regulating Mismeasured Pollution: 
Implications of Firm Heterogeneity for Environmental Policy 

Eva Lyubich, Joseph S. Shapiro, and Reed Walker 

Appendix A Additional Tables 

Table A1: Descriptive Statistics of Industry-Level Characteristics - Value Added 

Direct 
Energy 
(1) 

CO2 

[CM] 
(2) 

CO2 

[MECS] 
(3) 

Labor 
(4) 

Capital 
Stock 
(5) 

Materials 
(6) 

Panel A. Industry-Wide Statistics 

Mean across all plants 
SD across all plants 

3.63 
1.07 

7.89 
1.28 

8.25 
1.30 

3.95 
0.77 

0.47 
0.98 

0.37 
1.00 

Panel B. Within-Industry 90-10 Productivity Diff. 

Mean 
SD 
p90-10 

2.20 
0.54 
1.39 

2.53 
0.59 
1.51 

2.47 
1.28 
3.27 

1.76 
0.56 
1.43 

2.43 
0.53 
1.37 

2.33 
0.76 
1.95 

Panel C. Within-Industry Productivity Standard Dev. 

Mean 
SD 
p90-10 

0.86 
0.21 
0.50 

0.99 
0.23 
0.53 

0.96 
0.50 
1.28 

0.68 
0.22 
0.51 

0.95 
0.21 
0.44 

0.91 
0.30 
0.63 

Notes: Panel A means and SD are computed from plant-level CM and MECS observations. Panel B 

statistics are calculated using the 375 within-industry 90-10 dispersion measures. Panel C statistics are 

calculated using the 375 within-industry standard deviation measures. See text for details. 
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Table A2: Social Costs of Carbon Per Dollar of Value Added 

(1) (2) (3) (4) (5) (6) 

Panel A. Summary Stats, CM 

Mean across all plants 0.06 0.13 0.11 0.33 0.74 0.76 
SD across all plants 2.72 2.72 0.31 4.48 8.78 6.51 

Panel B. Within-Industry 90/10 Productivity Diff. 

Mean 0.55 0.55 0.24 3.44 7.70 3.50 
SD 4.22 4.22 1.49 28.37 65.82 16.33 
p90-10 10.81 10.81 3.82 72.73 168.77 41.88 

Panel C. Within-Industry Productivity Std. Dev. 

Mean 0.21 0.21 0.10 1.34 3.0 1.37 
SD 1.64 1.64 0.58 11.06 25.67 6.37 
p90-10 0.18 0.18 0.14 1.37 3.31 1.63 

Direct Source CM CM MECS CM CM MECS 
Indirect Source BEA BEA CM CM CM 
Leontief Inverse X X X X 

Notes: Panel A means and SD are computed from plant-level CM and MECS observations. Panel B 

statistics are calculated using the 375 within-industry 90-10 dispersion measures. Panel C statistics are 

calculated using the 375 within-industry standard deviation measures. Each column computes SCC per 

dollar of output using different inputs, as indicated in the column headings and table footers. A column 

represents either direct or total emissions, where direct emissions come from either the CM or MECS, and 

indirect emissions come from either the BEA I-O table or the CM Material trailer. See text for details. 

Appendix B Data 

Appendix B.1 Direct Energy and Emissions 

The main text describes how we construct the analysis sample. Here we describe a few 
additional sample restrictions designed to limit measurement error. 

For each variable in the raw data, the final sample excludes observations that are more 
than 100 times larger than the 99th percentile value. We do not apply this rule to ratios, 
e.g., this restriction is applied to CO2 and to output, where output is inventory adjusted, 
but not to CO2 productivity. The final sample also excludes plants that report zero or have 
missing values for any of our variables,11 and plants that do not report positive values for at 
least one material in the materials trailer. Finally, the sample excludes establishments that 

11In cases where electricity kWh variables are missing in MECS but not CM, we use CM values to calculate 
total emissions in MECS. 
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are unique in their industry after all the above restrictions, since we cannot compute 90-10 
dispersions or standard deviations for these industries. 

We calculate emissions from fuel use by multiplying each establishment’s consumption 
by fuel-specific emissions factors. We assign these emissions factors using data from the 
EPA when possible and from the EIA otherwise. We treat acetylene, hydrogen, and waste 
and byproduct gases as zero emissions. For emissions from electricity, we assign CO2 per 
MWh using the EPA’s eGRID dataset. We match eGRID regions to counties and compute 
emissions from electricity at the establishment level by multiplying each establishment’s 
electricity consumption with the corresponding emissions factor from eGRID. In cases where 
a county overlaps with several eGRID regions, we take an unweighted mean of emissions 
intensities across the relevant eGRID regions. For observations in the CM that are missing 
the county variable, we take the unweighted mean of emissions factors across counties within 
the state. We do not account for process emissions. 

Appendix B.2 Indirect Emissions 

We use the BEA’s 2007 benchmark Make Table, Use Table, and Import Table to construct 
an industry-level input-output (I-O) table. The BEA tables distinguish between industries 
and commodities to reflect the fact that some industries produce commodities other than the 
primary product of that industry (known as secondary commodities). We use tables after 
redefinitions, which in certain cases reallocate secondary commodity outputs to the industry 
in which they are the primary product, because this makes industries more homogenous.12 

In practice most I-O codes in the benchmark analysis represent both a commodity and an 
industry. Exceptions to this are four commodities which are not industries (scrap goods, 
non-comparable imports, used and second-hand goods, and rest-of-world adjustment), and 
nine industries corresponding to different types of government enterprises. In cases where a 
government industry has an analog in private industry – for example federal electric utilities 
– the BEA assigns both the public and private industries’ commodity outputs to the private 
industry’s commodity code. 

The make table is an industry-by-commodity table, with each element mij represent-
ing industry i’s output of commodity j, in nominal dollars. The use (and import) tables 
are commodity-by-industry tables, with each element uij representing the total (imported) 
amount of commodity i used in industry j’s production, also in nominal dollars. In addition 
to the commodity-by-industry pairs, the use table contains three value added rows (com-
pensation of employees; taxes on production and imports less subsidies; and gross operating 
surplus) and 20 final demand columns. These additional rows and columns play an impor-
tant role in ensuring that total inputs equal total outputs, but they are not rows or columns 
of the final I-O table. The use and import tables are available from the BEA at producer 
values and purchaser values – we use producer values throughout to maintain consistency 
with the make table. We construct a domestic use table by subtracting import values from 
the use table. 

The BEA combines crude oil and natural gas extraction into one industry (code 211000). 

12The BEA reallocates secondary output from an industry to the industry in which it is the primary 
product when the two industries’ input structures differ significantly 
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We split this industry into two, in order to treat oil and natural gas extraction separately. 
We assign all of the petroleum refineries commodity produced by the original industry to 
the new crude oil industry, and we assign all of the industrial gas manufacturing commodity 
produced by the original industry to the new natural gas industry. The rest of commodity 
output is assigned such that total production of gas and crude oil are proportional to their 
overall production according to the EIA. We assume that the commodity input mix for each 
of the two new industries is the same, with levels proportional to industry output, and we 
maintain oil and gas extraction as one commodity. 

We normalize elements of the make table by commodity totals to generate a “market 
shares” table, in which each element sij is the proportion of commodity j produced by 
industry i. Analogously, we normalize elements of the domestic use table by industry totals 
to generate a direct requirements table, in which each element dij is the proportion of industry 
j’s production made up by commodity i. Because we are interested only in combustible fuel 
use, we adjust direct requirements values by proportions of fuel used for combustion using 
EIA values.13 

We generate the industry level I-O matrix by multiplying the market share matrix by 
the direct requirements matrix. The elements of this matrix are how much of each input an 
industry uses to produce one dollar of output. Thus equilibrium is defined by: 

X = AX + Y 

where X is an industry-length vector of gross production, Y is an industry-length vector of 
final demand, and A is the I-O matrix. We can rearrange to get 

X = (I − A)−1Y 

(I − A)−1 is referred to as the Leontief inverse. Using the Leontief inverse, we can calculate 
how much output is necessary in total from every industry to meet a given vector of final 
demand. 

Thus, we calculate total emissions embedded in the production necessary to meet a unit 
of demand for goods from a given industry by left multiplying the Leontief Inverse by a 
row vector of the raw emissions intensities for coal, crude oil, and natural gas, which we 
get from the EPA. Since we are using CM data to calculate a more granular measure of 
direct emissions from production, we calculate indirect embedded emissions by subtracting 
emissions from the direct requirements from the total emissions: X 

IndirectEmissionsj = TotalEmissionsj − (DirectEmissionsj × InputOutputji) 
i 

where the direct emissions vector is calculated from the total emissions vector, resetting all 
values to 0 except those corresponding to utilities and fuel industries. 

After creating the BEA-level emissions intensities, we convert from BEA industry defini-
tions to NAICS industry definitions using the concordance provided by the BEA. If multiple 
BEA industries correspond to a single NAICS industry, we take BEA output-weighted means 
to calculate a unique NAICS industry value. If a BEA industry gets split into multiple NAICS 

13These are calculated as a proportion of first use energy consumption and not total energy consumption. 
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industries, all NAICS industries get the same value. There are several BEA industries that 
don’t have corresponding NAICS codes—importantly, the BEA considers government util-
ities and private utilities separately, and only the private utility gets mapped to a NAICS 
utility code. 

We use the indirect emissions calculated from the BEA to account for the full embedded 
emissions of production in two ways. One is through addition of the intermediate emissions 
intensities, by industry, to direct emissions intensities from CM. The second uses the CM 
Materials Trailer, which identifies material inputs into production by establishment. We use 
the BEA emissions intensity values to calculate the direct and the total emissions embedded 
in material inputs. The direct emissions capture the industry averages for emissions from 
fuel and electricity use in the production of materials. The indirect emissions use the full 
Leontief inverse to capture all emissions generated throughout the economy in the produc-
tion of the materials, on average by industry. We add these to CM emissions intensities to 
calculate two versions of total emissions productivity based on material inputs. In compiling 
data from the CM Materials Trailer, we assign zero emissions to unspecified materials inputs 
(the “other industry” category). The fact that these “other industry” inputs represent a 
reasonable share of all inputs provides another reason why our estimates understate true 
dispersion in energy and CO2 productivity. 
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