POSTILLA

Published from 1950 to 2004, the short papers of the Postilla series reported on original research by the Yale Peabody Museum of Natural History’s curators, staff, and research associates, and their colleagues, in the natural science disciplines represented by the collections of the Museum’s curatorial divisions.

The Postilla series, which ceased publication with Number 232 (2004), was incorporated into the journal Bulletin of the Peabody Museum of Natural History, available from BioOne Complete at https://bioone.org/.

Yale Peabody Museum scholarly publications are archived through EliScholar, a digital platform for scholarly publishing provided by Yale University Library at https://elischolar.library.yale.edu/.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/
SOME SHALLOW WATER AHERMATYPIC CORALS FROM BERMUDA

JOHN W. WELLS
Postilla includes results of original research on systematic, evolutionary, morphological, and ecological biology, including paleontology. Syntheses and other theoretical papers based on research are also welcomed. Postilla is intended primarily for papers by the staff of the Peabody Museum or on research using material in this Museum.

Postilla is published at frequent but irregular intervals. Manuscripts, orders for publications, and all correspondence concerning publications should be directed to:

Publications Office
Peabody Museum of Natural History
New Haven, Conn., 06520, U.S.A.

Lists of the publications of the Museum are available from the above office. These include Postilla, Bulletin, Discovery, and special publications. Postilla and the Bulletin are available in exchange for relevant publications of other scientific institutions anywhere in the world.

Inquiries regarding back numbers of the discontinued journal, Bulletin of the Bingham Oceanographic Collection, should be directed to:

Walter J. Johnson, Inc.
111 Fifth Avenue
New York, N.Y. 10003.
SOME SHALLOW WATER AHERMATYPIC CORALS

FROM BERMUDA

JOHN W. WELLS

Department of Geological Sciences, Cornell University, Ithaca, New York 14850

(Received January 13, 1971; revised February 2, 1972)

ABSTRACT

Four ahermatypic scleractinian corals from shallow water in caves in Bermuda are described: Astrangia solitaria (Lesueur), Coenocyathus goreau sp. nov., Guynia annulata Duncan, and Rhizopsammia bermudensis sp. nov.
INTRODUCTION

Although the living hermatypic coral fauna of the Bermuda reef tract is now fairly well known (Laborel, 1966), the only record of shallow water ahermatypic species from this area is a brief reference by Verrill (1901, p. 183) to a small *Astrangia*, that may have been *A. solitaria*, mentioned in a letter to Verrill by G. Browne Goode. The present note is a small addition to this almost unknown part of the Bermuda coral fauna, although a number of species have been recorded from deeper water (Moseley, 1881; Verrill, 1901; Squires, 1959).

In the summer of 1966, during the course of a seminar directed by K. E. Chave at the Bermuda Biological Station (NSF Grant GB-3066), R. N. Ginsburg, E. A. Shinn and J. H. Schroeder blasted some reefs in the North Lagoon (Ginsburg, Shinn and Schroeder, 1967). As a by-product of this investigation, Dr. Schroeder recognized the presence of several corals, living and dead, in cavities in the reef rock and kindly sent them to me.

The corals in question were found in two blasted reefs (Haversack East and Haversack West) at the North East Breakers, about 3.5 nautical miles east of North Rock (HO Chart 27, U.S. Naval Hydrographic Office).

ORDER SCLERACTINIA

SUBORDER FAVIINA

FAMILY RHIZANGIIDAE

Genus *Astrangia* Milne Edwards and Haime 1848

Astrangia solitaria (Lesueur) 1817

Figures 1–5

FIGS. 2, 3. Calices of YPM No. 8496. ×4.
FIG. 4. Lateral aspect of corallite of YPM No. 8496. ×4.

Astrangia solitaria Duncan, 1890. J. Linn. Soc. London Zool. 20; 569.

Astrangia solitaria Duerden, 1902. Mem. Natur. Acad. Sci. 8; 522; pl. 5, figs. 43–45; pl. 6, fig. 47.

Astrangia solitaria van der Horst, 1927. Bijdragen tot de Dierkunde 25; 159.

The best description of this species is that by Pourtalès (1871). Increase is mainly by extratentacular budding from the stolonlike expansions between the bases of corallites and occasionally from the sides of corallites, followed by eventual loss of organic connection between polyps. The cylindrical corallites are as much as 20 mm in height with calicular diameters of 3–4 mm. All septae dentate, about 36 in number.

MATERIAL. YPM No. 8496 (Figs. 1–4), from blasted boiler ESE of North Rock, Bermuda, less than 0.7 m below low tide; also YPM No. 8497 (Fig. 5), from cavity in reef rock, North East Breakers (Haversack West), Bermuda: recently dead, with Coenocyathus goreaudi and Guynia annulata.

DISTRIBUTION. Widely spread in shallow water in western Atlantic and West Indies: Guadeloupe (types), Barbados, St. Thomas, Puerto Rico, Haiti, Jamaica (1.5–43 m); Cuba; Florida Reefs, off Florida 573 m (but dead specimens, Pourtalès, 1871); Honduras; Panama; Bahia, Brazil; Fernanda de Noronha.

SUBORDER CARYOPHYLLIINA
FAMILY CARYOPHYLLIDAE
Genus Coenocyathus Milne Edwards and Haime 1848
Coenocyathus goreaudi sp. nov.

Figures 6–10

DESCRIPTION. Small, subfasciculate colonies, increasing by extratentacular budding from the edge–zone on sides of corallites well below the calicular margin. Corallites gently tapering, up to 20 mm in height with equal, flat,

FIGS. 7, 8. Calices of holotype, YPM No. 8498. ×4.

FIGS. 9, 10. *Coenocyathus goreau* sp. nov. YPM No. 8499. North East Breakers (Haversack West). Recently dead colony. ×1.

FIGS. 11, 12: *Guynia annulata* Duncan. YPM No. 8497. North East Breakers (Haversack West), Bermuda. Recently dead corallites attached to *Coenocyathus goreau* (FIG. 11) and *Astrangia solitaria* (FIG. 12). ×16.
strongly granulated costae corresponding to all septa and tending to become obsolete below calice margin. Calices circular, deep, 4–6 mm in diameter, averaging 4.5 mm. Septa arranged 8/8/16–18, nearly equal in thickness, laterally granulated, free on inner edges; the eight primary septa more exert than the rest and extending nearly to the columella, the eight secondaries slightly less exert, bearing prominent, stout, crispate pali, and the 16–18 tertiary septa still shorter, extending less than half-way to the columella. Columella composed of two (occasionally one) stout, crispate columns shorter than the encircling pali. In very young corallites 0.4 mm in diameter, there are 6 septa; at 0.7 mm there are 12, arranged 6/6 with a single columnellar tubercle. The full complement of 8/8/16 septa is attained at a rather late stage: at 3 mm some calices have 6/6/12 septa with 6 pali, and others from the same stock have 32 septa with 8 pali at the same diameter.

The polyps of the holotype were pale pink when alive.

HOLOTYPE. YPM No. 8498 (Figs. 6–8), from cavity in reef rock North East Breakers (Haversack East), Bermuda. Another colony, YPM No. 8499 (Figs. 9, 10), recently dead, is from Haversack West.

DISTRIBUTION. Known at present only from cavities in reef rock in area of the North East Breakers, Bermuda.

REMARKS. Living species of Coenocyathus occur typically in the Mediterranean eastern Atlantic, with the exception of the present species, C. boweri Vaughan (1906) from California, and C. sagamiensis Eguchi (1968) from Sagami Bay, Japan. Duchassaing’s specimen of C. cylindrus from Guadeloupe (1870), preserved in the Paris Museum, is not Coenocyathus but is identical to Caryophyllia maculata Pourtalès, a quasi–colonial species, as is also Coenocyathus bartschi Wells (1947).

Coenocyathus goreaui, named in honor of the late T. F. Goreau, is readily distinguished from the other Recent species (C. cylindrus Milne Edwards and Haime, C. dohrni Doederlein, C. giesbrechti Doederlein, and C. lobatus Chevalier) by the octameral arrangement of septa and pali in mature calices, and by its smaller mature corallites. In these respects it is like the Pacific Caryophyllia octopali Vaughan (1907), a solitary form, and C. octopali var. incerta Vaughan which is quasi-colonial. Caryophyllia rugosa Moseley (1881) is another small octameral species from the Pacific with strongly wrinkled or rugose epitheca.

FAMILY GUYNIIDAE
Genus Guynia Duncan 1873
Guynia annulata Duncan 1873

Figures 11–14

FIG. 15. *Rhizopsammia bermudensis* sp. nov. Holotype, YPM No. 8500. North East Breakers (Haversack East), Bermuda. ×1. (At extreme right center is solitary corallite of *Coenocyathus goreau*).

FIG. 16, 17. *Rhizopsammia bermudensis* sp. nov. Calices of holotype. ×4.

This inconspicuous, photophobic coral, whose polyp has not yet been observed, is very easily overlooked. Its very small size, scolecoid growth form, deep calice and lateral attachment give it the aspect of calcareous worm tubes amongst which it commonly occurs, but from which it is distinguished by the whitish spots on the thin wall and the presence of septa. The Bermuda specimens and some from Jamaica appear to have 12 rather than 16 septa, a condition, if constant, that might indicate a distinct species, although some Jamaican examples have 16. In his original description of the species, Duncan noted that of the specimens from the one haul on Adventure Bank, three had 12 septa. Zibrowius (1968) noted 12 septa in specimens from caves near Marseilles.

MATERIAL. YPM No. 8497 (Figs. 11–14), from cavity in reef rock, North East Breakers (Haversack West), Bermuda: recently dead, associated with Astrangia solitaria and Coenocyathus goreau.

DISTRIBUTION. Mediterranean: Adventure Bank, 178 m (types); Santorin (Thera), Cyclades Is.; Crete, 30 m; off Marseilles in caves, 3 m; Bermuda; West Indies: Barbados, 183 m, Saba Bank, 274 m, Martinique, 591 m, Jamaica, 60–80 m.

SUBORDER DENDROPHYLLIINA
FAMILY DENDROPHYLLIIDAE
Genus Rhizopsammia Verrill 1869
Rhizopsammia bermudensis sp. nov.

Figures 15–17

DESCRIPTION. Colonial, encrusting, increasing by extratentacular budding from reptant edge-zone. Corallites low (5–10 mm), slightly compressed-cylindrical (6 × 8 mm), irregularly spaced 2–10 mm apart, extensively interconnected basally by thin, expanded coenosteum. Calices deep (2–4 mm). Corallite walls thin, porous, with low, rounded, equal costae corresponding to the septa and extending over the coenosteum. Septa in four
complete cycles (48); those of the first cycle exsert, peripherally spongy, axially imperforate, laterally and marginally smooth. All other septa non-exsert, highly perforate, inserted following the Pourtalès plan characteristic of most dendrophylliids. Columella deep, elongate, slender, formed by union of trabecular processes from the septa of the first two cycles.

The polyps of the holotype were a rich salmon pink when alive.

HOLOTYPE. YPM No. 8500 (Figs. 15–17). Cavity in reef rock, North East Breakers (Haversack East), Bermuda.

DISTRIBUTION. Known at present only from region of the North East Breakers, Bermuda.

REMARKS. Until very recently, when Chevalier (1966) described a new species of *Rhizopsammia* from West Africa, living species of this genus were thought to be confined to the tropical Pacific from Panama westward to Indonesia. The present species further increases the known range of the genus.

The corallites of *R. bermudensis* are much larger than those of the West African form, *R. manuelensis* Chevalier, the only other Atlantic species, and have more septa and a less robust columella. Of the Pacific species, *R. pulchra* Verrill (Panama), *R. minuta* van der Horst (Indonesia, Japan, and Marshall Islands), and *R. nuda* van der Horst (Singapore), all have smaller corallites. *R. verrilli* van der Horst (Indonesia) and *R. chamissoi* Wells (Bikini Atoll) have larger calices and stouter columellas.

LITERATURE CITED

INFORMATION FOR AUTHORS

REVIEW
The Publications Committee of the Peabody Museum of Natural History reviews and approves manuscripts for publication. Papers will be published in approximately the order in which they are accepted; delays may result if manuscript or illustrations are not in proper form. To facilitate review, the original and one carbon or xerox copy of the typescript and figures should be submitted. The author should keep a copy.

STYLE

FORM
Maximum size is 80 printed pages including illustrations (= about 100 manuscript pages including illustrations). Manuscripts must be typewritten, with wide margins, on one side of good quality 8½ x 11” paper. Double space everything. Do not underline anything except genera and species. The editors reserve the right to adjust style and form for conformity.

TITLE
Should be precise and short. Title should include pertinent key words which will facilitate computerized listings. Names of new taxa are not to be given in the title.

ABSTRACT
The paper must begin with an abstract. Authors must submit completed BioAbstract forms; these can be obtained from the Postilla editors in advance of submission of the manuscripts. Follow the International Codes of Zoological and Botanical Nomenclature.

ILLUSTRATIONS
Must be planned for reduction to 4½ x 7” (to allow for running head and two-line caption). If illustration must go sideways on page, reduction should be to 4 x 7⅛”. All illustrations should be called “Figures” and numbered in arabic, with letters for parts within one page. It is the author’s responsibility to see that illustrations are properly lettered and mounted. Captions should be typed double-spaced on a separate page.

FOOTNOTES
Should not be used, with rare exceptions. If unavoidable, type double-spaced on a separate page.

TABLES
Should be numbered in arabic. Each must be typed on a separate page. Horizontal rules should be drawn lightly in pencil; vertical rules must not be used. Tables are expensive to set and correct; cost may be lowered and errors prevented if author submits tables typed with electric typewriter for photographic reproduction.

REFERENCES
The style manuals mentioned above must be followed for form and for abbreviations of periodicals. Double space.

AUTHOR’S COPIES
Each author receives 50 free copies of his Postilla. Additional copies may be ordered at cost by author when he returns galley proof. All copies have covers.

PROOF
Author receives galley proof and manuscript for checking printer’s errors, but extensive revision cannot be made on the galley proof. Corrected galley proof and manuscript must be returned to editors within seven days.

COPYRIGHT
Any issue of Postilla will be copyrighted by Peabody Museum of Natural History only if its author specifically requests it.