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Abstract. Many applications involve a censored dependent variable and an endogenous in-
dependent variable. Chernozhukov et al. (2015) introduced a censored quantile instrumental
variable estimator (CQIV) for use in those applications, which has been applied by Kowalski
(2016), among others. In this article, we introduce a Stata command, cqiv, that simplifes ap-
plication of the CQIV estimator in Stata. We summarize the CQIV estimator and algorithm,
we describe the use of the cqiv command, and we provide empirical examples.

Keywords: st0001, cqiv, quantile regression, censored data, endogeneity, instrumental variable,
control function.

1 Introduction
Chernozhukov et al. (2015) introduced a censored quantile instrumental variable (CQIV) estimator.
In this article, we introduce a Stata command, cqiv, that implements the CQIV estimator in Stata.
Our goal is to facilitate the use of the cqiv command in a wide set of applications.

Many applications involve censoring as well as endogeneity. For example, suppose that we are
interested in the price elasticity of medical expenditure, as in Kowalski (2016). Medical expenditure
is censored from below at zero, and the price of medical care is endogenous to the level of medical
expenditure through the structure of the insurance contract. Given an instrument for the price of
medical care, the CQIV estimator facilitates estimation of the price elasticity of expenditure on
medical care in a way that addressess censoring as well as endogeneity.

The CQIV estimator addresses censoring using the censored quantile regression (CQR) approach
of Powell (1986), and it addresses endogeneity using a control function approach. For computation,
the CQIV estimator adapts the Chernozhukov and Hong (2002) algorithm for CQR estimation. An
important side feature of the cqiv stata command is that it can also be used in quantile regression
applications that do not include censoring or endogeneity.

In section 2, we summarize the theoretical background on the CQIV command, following Cher-
nozhukov et al. (2015). In section 3, we introduce the use of the CQIV command. We provide an
empirical application with examples that involve estimation of Engel curves, as in Chernozhukov
et al. (2015).

2 Censored quantile IV estimation
Assumption 1. (Model) We observe {Yi, Di,Wi, Zi, Ci}ni=1, a sample of size n of independent and
identically distributed observations from the random vector (Y,D,W,Z,C), which obeys the model
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assumptions

Y = max(Y ∗, C), (1)

Y ∗ = QY ∗(U | D,W, V ) = X ′β0(U), (2)

D = QD(V |W,Z), (3)

where X = x(D,W, V ) with x(D,W, V ) being a vector of transformations of (D,W, V ), QY ∗(u |
D,W, V ) is the u-quantile of Y ∗ conditional on (D,W, V ), QD(v | W,Z) is the v-quantile of D
conditional on (W,Z), and

U ∼ U(0, 1) | D,W,Z, V,C,
V ∼ U(0, 1) |W,Z,C.

Assumption 1 considers a triangular system, where Y ∗ is a continuous latent response variable,
Y is an observed response variable obtained by censoring Y ∗ from below at the level determined
by the variable C, D is the continuous regressor of interest, W is a vector of covariates, possibly
containing C, V is a latent unobserved variable that accounts for the possible endogeneity of D,
and Z is a vector of “instrumental variables” excluded from the equation for Y ∗.1

Under Assumption 1, Chernozhukov et al. (2015) introduce the estimator for the parameter
β0(u) as

β̂(u) = arg min
β∈Rdim(X)

1

n

n∑
i=1

1(Ŝ′iγ̂ > ς)ρu(Yi − X̂ ′iβ), (4)

where ρu(z) = (u − 1(z < 0))z is the asymmetric absolute loss function of Koenker and Bassett

(1978), X̂i = x(Di,Wi, V̂i), Ŝi = s(X̂i, Ci), s(X,C) is a vector of transformations of (X,C), ς is a

positive cut-off, and V̂i is an estimator of Vi which is described below.
The estimator in (4) adapts the algorithm of Chernozhukov and Hong (2002) developed for the

censored quantile regression (CQR) estimator to a setting where there is possible endogeneity. As
described in Chernozhukov et al. (2015), this algorithm is based on the following implication of the
model:

P (Y ≤ X ′β0(u) | X,C,X ′β0(u) > C) = P (Y ∗ ≤ X ′β0(u) | X,C,X ′β0(u) > C) = u,

provided that P (X ′β0(u) > C) > 0. In other words, X ′β0(u) is the conditional u-quantile of the
observed outcome for the observations for which X ′β0(u) > C, i.e., the conditional u-quantile of
the latent outcome is above the censoring point. These observations change with the quantile index
and may include censored observations. Chernozhukov et al. (2015) refer to them as the “quantile-

uncensored” observations. The multiplier 1(Ŝ′iγ̂ > ς) is a selector that predicts if observation i
is quantile-uncensored. For the conditions on this selector, consult Assumptions 4(a) and 5 in
Chernozhukov et al. (2015).

cqiv implements the censored quantile instrumental variable (CQIV) estimation which is com-
puted using an iterative procedure where each step takes the form specified in equation (4) with

a particular choice of 1(Ŝ′iγ̂ > ς). We briefly describe this procedure here and then provide a
practical algorithm in the next section. The procedure first selects the set of quantile-uncensored
observations by estimating the conditional probabilities of censoring using a flexible binary choice

1We consider a single endogenous regressor D in the model and in the cqiv procedure.
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model. Since {X ′β0(u) > C} ≡ {P (Y ∗ ≤ C | X,C) < u}, quantile-uncensored observations have
conditional probability of censoring lower than the quantile index u. The linear part of the con-
ditional quantile function, X ′iβ0(u), is estimated by standard quantile regression using the sample
of quantile-uncensored observations. Then, the procedure updates the set of quantile-uncensored
observations by selecting those observations with conditional quantile estimates that are above their
censoring points, X ′iβ̂(u) > Ci, and iterate.

cqiv provides different ways of estimating V , which can be chosen with option firststage(string).
Note that if QD(v | W,Z) is invertible in v, the control variable has several equivalent representa-
tions:

V = ϑ0(D,W,Z) ≡ FD(D |W,Z) ≡ Q−1D (D |W,Z) ≡
∫ 1

0

1{QD(v |W,Z) ≤ D}dv, (5)

where FD(D | W,Z) is the distribution of D conditional on (W,Z). For any estimator of FD(D |
W,Z) or QD(V | W,Z), denoted by F̂D(D | W,Z) or Q̂D(V | W,Z), based on any parametric or
semi-parametric functional form, the resulting estimator for the control variable is

V̂ = ϑ̂(D,W,Z) ≡ F̂D(D |W,Z) or V̂ = ϑ̂(D,W,Z) ≡
∫ 1

0

1{Q̂D(v |W,Z) ≤ D}dv.

Let R = r(W,Z) with r(W,Z) being a vector of transformations of (W,Z). When string is
quantile, a quantile regression model is assumed, where QD(v |W,Z) = R′π0(v) and

V =

∫ 1

0

1{R′π0(v) ≤ D}dv.

The estimator of V then takes the form

V̂ = τ +

∫ 1−τ

τ

1{R′π̂(v) ≤ D}dv, (6)

where π̂(v) is the Koenker and Bassett (1978) quantile regression estimator which is calculated
within cqiv using the built-in qreg command in Stata, and and τ is a small positive trimming
constant that avoids estimation of tail quantiles. The integral in (6) can be approximated numeri-
cally using a finite grid of quantiles.2 Specifically, the fitted values for pre-specified quantile indices
(whose number nq is controlled by option nquant(#)) are calculated, which then yields

V̂i =
1

nq

nq∑
j=1

1{R′iπ̂(vj) ≤ Di}.

For other related quantile regression models that can alternatively be used, see Chernozhukov et al.
(2015).

When string is distribution, ϑ0 is estimated using distribution regression. In this case we
consider a semiparametric model for the conditional distribution of D to construct a control variable

V = FD(D |W,Z) = Λ(R′π0(D)),

2The use of the integral to obtain a generalized inverse is convenient to avoid monotonicity problems in v 7→ R′π̂(v)
due to misspecification or sampling error. Chernozhukov et al. (2010) developed asymptotic theory for this estimator.
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where Λ is a probit or logit link function; this can be chosen using option ldv1(string) where string
is either probit or logit. The estimator takes the form

V̂ = Λ(R′π̂(D)), (7)

where π̂(d) is the maximum likelihood estimator of π0(d) at each d (see, e.g., Foresi and Peracchi
(1995), and Chernozhukov et al. (2013)).3 The expression (7) can be approximated by considering
a finite grid of evenly-spaced thresholds for the conditional distribution function of D, where the
number of thresholds nt is controlled by option nthresh(#). Concretely, for threshold dj with
j = 1, ..., nt,

V̂i = Λ(R′iπ̂(dj)), for i’s s.t. dj−1 ≤ Di ≤ dj with d0 = −∞ and dnt
=∞,

where π̂(dj) is probit or logit estimate with D̃i(dj) = 1{Di ≤ dj} as a dependent variable and Ri
as regressors.

Lastly, when string is ols, a linear regression model D = R′π0 + V is assumed and V̂ is a
transformation of the OLS residual:

V̂i = Φ((Di −R′iπ̂)/σ̂), (8)

where Φ is the standard normal distribution, π̂ is the OLS estimator of π0, and σ̂ is the estimator of
the error standard deviation. In estimation of (4) using cqiv, we assume that the control function

V̂ enters the equation through Φ−1(V̂ ). To motivate this, consider a simple version of the model
(2)–(3):

Y ∗ = β00 + β01D + β02W + Φ−1(ε), ε ∼ U(0, 1)

where Φ−1 denotes the quantile function of the standard normal distribution, and also assume that
(Φ−1(V ), Φ−1(ε)) is jointly normal with correlation ρ0. From the properties of the multivariate
normal distribution, Φ−1(ε) = ρ0Φ−1(V ) + (1 − ρ20)1/2Φ−1(U), where U ∼ U(0, 1). This result
yields a specific expression for the conditional quantile function of Y ∗:

QY ∗(U | D,W, V ) = X ′β0(U) = β00 + β01D + β02W + ρ0Φ−1(V ) + (1− ρ20)1/2Φ−1(U), (9)

where V enters the equation through Φ−1(V ).

2.1 CQIV algorithm
The algorithm recommended in Chernozhukov et al. (2015) to obtain CQIV estimates is similar
to Chernozhukov and Hong (2002), but it additionally has an initial step to estimate the control
variable V . This step is numbered as 0 to facilitate comparison with the Chernozhukov and Hong
(2002) 3-Step CQR algorithm.

For each desired quantile u, perform the following steps:

0. Obtain V̂i = ϑ̂(Di,Wi, Zi) from (6), (7) or (8) and construct X̂i = x(Di,Wi, V̂i).

1. Select a set of quantile-uncensored observations J0 = {i : Λ(Ŝ′iδ̂) > 1− u+ k0}, where Λ is a

known link function, Ŝi = s(X̂i, Ci), s is a vector of transformations, k0 is a cut-off such that

0 < k0 < u, and δ̂ = arg maxδ∈Rdim(S)

∑n
i=1{1(Yi > Ci) log Λ(Ŝ′iδ)+1(Yi = Ci) log[1−Λ(Ŝ′iδ)]}.

3Chernozhukov et al. (2013) developed asymptotic theory for this estimator.
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2. Obtain the 2-step CQIV coefficient estimates: β̂0(u) = arg minβ∈Rdim(X)

∑
i∈J0 ρu(Yi − X̂ ′iβ),

and update the set of quantile-uncensored observations, J1 = {i : X̂ ′iβ̂
0(u) > Ci + ς1}.

3. Obtain the 3-step CQIV coefficient estimates β̂1(u), solving the same minimization program
as in step 2 with J0 replaced by J1.4

Remark 1 (Step 1). To predict the quantile-uncensored observations, a probit, logit, or any other
model that fits the data well can be used. cqiv provides option ldv2(string) where string can be
either probit or logit. Note that the model does not need to be correctly specified; it suffices
that it selects a nontrivial subset of observations with X ′iβ0(u) > Ci. To choose the value of k0, it

is advisable that a constant fraction of observations satisfying Λ(Ŝ′iδ̂) > 1 − u are excluded from

J0 for each quantile. To do so, one needs to set k0 as the q0th quantile of Λ(Ŝ′iδ̂) conditional on

Λ(Ŝ′iδ̂) > 1− u, where q0 is a percentage (10% worked well in our simulation with little sensitivity
to values between 5 and 15%). The value for q0 can be chosen with option drop1(#).

Remark 2 (Step 2). To choose the cut-off ς1, it is advisable that a constant fraction of observations

satisfying X̂ ′iβ̂
0(u) > Ci are excluded from J1 for each quantile. To do so, one needs to set ς1 to

be the q1th quantile of X̂ ′iβ̂
0(u) − Ci conditional on X̂ ′iβ̂

0(u) > Ci, where q1 is a percentage less
than q0 (3% worked well in our simulation with little sensitivity to values between 1 and 5%). The
value for q1 can be chosen with option drop2(#).5

Remark 3 (Steps 1 and 2). In terms of the notation of (4), the selector of Step 1 can be expressed

as 1(Ŝ′iγ̂ > ς0), where Ŝ′iγ̂ = Ŝ′iδ̂−Λ−1(1− u) and ς0 = Λ−1(1− u+ k0)−Λ−1(1− u). The selector

of Step 2 can also be expressed as 1(Ŝ′iγ̂ > ς1), where Ŝi = (X̂ ′i, Ci)
′ and γ̂ = (β̂0(u)′,−1)′.

2.2 Weighted Bootstrap Algorithm
Chernozhukov et al. (2015) recommend obtaining confidence intervals through a weighted bootstrap
procedure, though analytical formulas can also be used. If the estimation runs quickly on the desired
sample, it is straightforward to rerun the entire CQIV algorithm B times weighting all the steps by
the bootstrap weights. To speed up the computation, a procedure is proposed that uses a one-step
CQIV estimator in each bootstrap repetition.

For b = 1, . . . , B, repeat the following steps:

1. Draw a set of weights (e1b, . . . , enb) i.i.d from the standard exponential distribution or another
distribution that satisfies Assumption 6.

2. Reestimate the control variable in the weighted sample, V̂ eib = ϑ̂eb(Di,Wi, Zi), and construct

X̂e
ib = x(Di,Wi, V̂

e
ib).

4As an optional fourth step, one can update the set of quantile-uncensored observations J2 replacing β̂0(u) by

β̂1(u) in the expression for J1 in step 2, and iterate this and the previous step a bounded number of times. This
optional step is not incorporated in cqiv command, as Chernozhukov et al. (2015) find little gain of iterating in
terms of bias, root mean square error, and value of Powell objective function in their simulation exercise.

5In practice, it is desirable that J0 ⊂ J1. If this is not the case, Chernozhukov et al. (2015) recommend altering
q0, q1, or the specification of the regression models. At each quantile, the percentage of observations from the full
sample retained in J0, the percentage of observations from the full sample retained in J1, and the percentage of
observations from J0 not retained in J1 can be computed as simple robustness diagnostic tests. The estimator β̂0(u)
is consistent but will be inefficient relative to the estimator obtained in the subsequent step because it uses a smaller
conservative subset of the quantile-uncensored observations if q0 > q1.
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3. Estimate the weighted quantile regression: β̂eb (u) = arg minβ∈Rdim(X)

∑
i∈J1b eibρu(Yi−β′X̂e

ib),

where J1b = {i : β̂(u)′X̂e
ib > Ci + ς1}, and β̂(u) is a consistent estimator of β0(u), e.g., the

3-stage CQIV estimator β̂1(u).

Remark 4 (Step 2). The estimate of the control function ϑ̂eb can be obtained by weighted least
squares, weighted quantile regression, or weighted distribution regression, depending upon which
string is chosen among ols, quantile, or distribution in option firststage(string).

Remark 5 (Step 3). A computationally less expensive alternative is to set J1b = J1 in all the
repetitions, where J1 is the subset of selected observations in Step 2 of the CQIV algorithm. This
alternative is not considered in the cqiv routine, because while it is computationally faster, it
sacrifices accuracy.

3 The cqiv command
3.1 Syntax
The syntax for cqiv is as follows:

cqiv depvar
[
varlist

]
(endogvar = instrument)

[
if
] [

in
] [

weight
] [

, quantiles(numlist)

censorpt(#) top uncensored exogenous firststage(string) exclude nquant(#)

nthresh(#) ldv1(string) ldv2(string) corner drop1(#) drop2(#) viewlog

confidence(string) bootreps(#) setseed(#) level(#) norobust
]

3.2 Description
cqiv conducts CQIV estimation. This command can implement both censored and uncensored
quantile IV estimation either under exogeneity or endogeneity. The estimators proposed by Cher-
nozhukov et al. (2015) are used if CQIV estimation or QIV without censoring estimation are imple-
mented. The estimator proposed by Chernozhukov and Hong (2002) is used if CQR is estimated
without endogeneity. Note that all the variables in the parentheses of the syntax are those involved
in the first stage estimation of CQIV and QIV.

3.3 Option
Model

quantiles(numlist) specifies the quantiles at which the model is estimated and should contain
percentage numbers between 0 and 100. Note that this is not the list of quantiles for the first stage
estimation with quantile specification.

censorpt(#) specifies the censoring point of the dependent variable, where the default is 0; inap-
propriately specified censoring point will generate errors in estimation.

top sets right censoring of the dependent variable; otherwise, left censoring is assumed as de-
fault.

uncensored selects uncensored quantile IV (QIV) estimation.
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exogenous selects censored quantile regression (CQR) with no endogeneity, which is proposed
by Chernozhukov and Hong (2002).

firststage(string) determines the first stage estimation procedure, where string is either quantile
for quantile regression (the default), distribution for distribution regression (either probit or
logit), or ols for OLS estimation. Note that firststage(distribution) can take a considerable
amount of time to execute.

exclude excludes exogenous regressors other than instruments from the first stage estimation.

nquant(#) determines the number of quantiles used in the first stage estimation when the es-
timation procedure is quantile; default is 50, that is, total 50 evenly-spaced quantiles from 1/51
to 50/51 are chosen in the estimation; it is advisable to choose a value between 20 to 100.

nthresh(#) determines the number of thresholds used in the first stage estimation when the
estimation procedure is distribution; default is 50, that is, total 50 evenly-spaced thresholds
(i.e., the sample quantiles of depvar) are chosen in the estimation; it is advisable to choose a value
between 20 and the value of the sample size.

ldv1(string) determines the LDV model used in the first stage estimation when the estimation
procedure is distribution, where string is either probit for probit estimation (the default), or
logit for logit estimation.

ldv2(string) determines the LDV model used in the first step of the second stage estimation,
where string is either probit (the default), or logit.

CQIV estimation

corner calculates the (average) marginal quantile effects for censored dependent variable when the
censoring is due to economic reasons such are corner solutions. Under this option, the reported
coefficients are the average corner solution marginal effects if the underlying function is linear in
the endogenous variable, i.e., the average of 1{QY ∗(U | D,W, V ) > C}∂DQY ∗(U | D,W, V ) =
1{x(D,W, V )′β0(U) > C}∂Dx(D,W, V )′β0(U) over all observations. If the underlying function is
nonlinear in the endogenous variable, average marginal effects must be calculated directly from the
coefficients without corner option. For details of the related concepts, see Section 2.1 of Cher-
nozhukov et al. (2015). The relevant example can be found in Section 3.5.

drop1(#) sets the proportion of observations q0 with probabilities of censoring above the quantile
index that are dropped in the first step of the second stage (See Remark 1 above for details); default
is 10.

drop2(#) sets the proportion of observations q1 with estimate of the conditional quantile above
(below for right censoring) that are dropped in the second step of the second stage (See Remark 2
above for details); default is 3.

viewlog shows the intermediate estimation results; the default is no log.
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Inference

confidence(string) specifies the type of confidence intervals. With string being no, which is the
default, no confidence intervals are calculated. With string being boot or weightedboot, either
nonparametric bootstrap or weighted bootstrap (respectively) confidence intervals are calculated.
The weights of the weighted bootstrap are generated from the standard exponential distribution.
Note that confidence(boot) and confidence(weightboot) can take a considerable amount of
time to execute.

bootreps(#) sets the number of repetitions of bootstrap or weighted bootstrap if the confidence(boot)
or confidence(weightboot) is selected. The default number of repetitions is 100.

setseed(#) sets the initial seed number in repetition of bootstrap or weighted bootstrap; the
default is 777.

level(#) sets confidence level, and default is 95.

Robust check

norobust suppresses the robustness diagnostic test results. No diagnostic test results to suppress
when uncensored is employed.

3.4 Saved results
cqiv saves the following results in e():

Scalars
e(obs) number of observations
e(censorpt) censoring point
e(drop1) q0
e(drop2) q1
e(bootreps) number of bootstrap or weighted bootstrap repetitions
e(level) significance level of confidence interval

Macros
e(command) name of the command: cqiv
e(regression) name of the implemented regression: either cqiv, qiv, or cqr
e(depvar) name of dependent variable
e(endogvar) name of endogenous regressor
e(instrument) name of instrumental variables
e(firststage) type of first stage estimation
e(confidence) type of confidence intervals

Matrices*
e(results) matrix containing the estimated coefficients, mean, and lower and upper

bounds of confidence intervals
e(quantiles) row vector containing the quantiles at which CQIV have been estimated
e(robustcheck) matrix containing the results for the robustness diagnostic test results; see

Table B1 of Chernozhukov et al. (2015)
*Note that the entry complete denotes whether all the steps are included in the procedure; 1 when they are, and 0
otherwise. For other entries consult the paper.

3.5 Examples
We illustrate how to use the command by using some examples. For the dataset, we use a household
expenditure dataset for alcohol consumption drawn from the British Family Expenditure Survey
(FES); see Chernozhukov et al. (2015) for detailed description of the data. Using this dataset, we
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are interested in learning how alcohol share of consumption (alcohol) is affected by (logarithm of)
expenditure (logexp), controlling for the number of children (nkids). For the endogenous expen-
diture, we use disposable income, i.e., (logarithm of) wages (logwages), as an excluded instrument.
The dataset (alcoholengel.dta) can be downloaded from SSC as follows:

. ssc describe cqiv

. net get cqiv

The first line will show the dataset as accessible via the second line of the command. The second
line will then download alcoholengel.dta to the current working directory. Given this dataset,
we can generate part of the empirical results of Chernozhukov et al. (2015):

. cqiv alcohol logexp2 nkids (logexp = logwages nkids), quantiles(25 50 75)

(output omitted )

Using cqiv command, the QIV estimation can be implemented with uncensored option:

. cqiv alcohol logexp2 nkids (logexp = logwages nkids), uncensored

(output omitted )

And the CQR estimation with exogenous option:

. cqiv alcohol logexp logexp2 nkids, exogenous

(output omitted )

Here are more possible examples with different specifications and options. Outputs are all
omitted.

. cqiv alcohol logexp2 (logexp = logwages), quantiles(20 25 70(5)90) firststage(ols)

. cqiv alcohol logexp2 (logexp = logwages), firststage(distribution) ldv1(logit) exclude

. cqiv alcohol logexp2 nkids (logexp = logwages nkids), confidence(weightboot) bootreps(10)

. cqiv alcohol nkids (logexp = logwages nkids), corner

In the second line of the examples, the option exclude is used. In this particular example,
logexp2 cannot be included in the first-stage regression when distribution regression is imple-
mented. This is because logexp2 is a monotone transformation of logexp, and thus the distribution
estimation yields a perfect fit.
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