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Abstract

Randomized Controlled Trials (RCTs) enroll hundreds of millions of subjects and in-
volve many human lives. To improve subjects’ welfare, I propose an alternative design
of RCTs that I call Experiment-as-Market (EXAM). EXAM Pareto optimally randomly
assigns each treatment to subjects predicted to experience better treatment effects or
to subjects with stronger preferences for the treatment. EXAM is also asymptotically
incentive compatible for preference elicitation. Finally, EXAM unbiasedly estimates
any causal effect estimable with standard RCTs. I quantify the welfare, incentive, and
information properties by applying EXAM to a water cleaning experiment in Kenya
(Kremer et al., [2011). Compared to standard RCTs, EXAM substantially improves
subjects’ predicted well-being while reaching similar treatment effect estimates with

similar precision.
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1 Introduction

Today is the golden age of Randomized Controlled Trials (RCTs; equivalently, randomized
experiments or A /B tests). RCTs started as safety and efficacy tests of farming and medical
treatments (Gawl 2009), but they have grown to become the society-wide standard of evi-
dence. RCTs are widespread in business and politics (Siroker and Koomen, 2013), as well
as public policy (Gueron and Rolston, [2013), the social sciences (Duflo et al., |2007; |Gerber
and Green, 2012), and engineering.

RCTs are high-stakes on multiple fronts. Firstly, a large number of individuals partici-
pate in RCTs. For example, I find that over 360 million patients and 22 million individuals
participated in registered clinical trials and social RCTs, respectively, during 2007-17. For
such a large subject pool, many RCTs randomize high-stakes and even life-or-death treat-
ment. For instance, in a glioblastoma therapy trial, the five-year death rate of glioblastoma
patients is 97% in the control group but only 88% in the treatment group (Stupp et al.
2009). In expectation, therefore, the lives of up to 9% of its 573 participants depend on who
receives treatments. Social RCTs also randomize critical treatment such as basic incomdy
high-wage job offers (Dal B6 et al., 2013), and HIV testing (Angelucci and Bennett, 2017).
This high-stakes nature even prompted some RCT participants to sue their experimentersE]

RCTs thus determine the fate of numerous people, giving rise to an ethical dilemma:

How can a physician committed to doing what he thinks is best for each patient
tell a woman with breast cancer that he is choosing her treatment by something
like a coin toss? How can he give up the option to make changes in treatment
according to the patient’s responses? (“Patients’ Preferences in Randomized Clin-
ical Trials” by physician and prior editor-in-chief of the New England Journal of
Medicine, Marcia Angell)

This paper develops and implements an experimental design that improves subject wel-
fare while unbiasedly and precisely estimating treatment effects. I start with defining experi-
mental designs as procedures to determine each subject’s treatment assignment probabilities
based on data about two measures of welfare: (a) the predicted treatment effect of each
treatment on each subject and (b) each subject’s willingness-to-pay (WTP) for each treat-

ment. These complementary welfare measures are allowed to be freely heterogeneous and

1“8 basic income experiments to watch out for in 2017, at http://www.businessinsider.com/
basic-income-experiments-in-2017-2017-1/#finland-2, retrieved in March 2018.

4 See, for example, Gelsinger w. University of Pennsylvania about a gene-therapy clin-
ical trial and Grimes wv. Kennedy-Krieger Institute about a social experiment that ran-
domly assigned lead reduction methods to housings. For details, see https://www.sskrplaw.

com/gelsinger-v-university-of-pennsylvania.html/and https://www.courtlistener.com/opinion/
2386331/grimes-v-kennedy-krieger-institute-inc/}, accessed in March 2018.
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correlated with each other. In practice, the experimenter may estimate them from prior
experimental or observational data or ask subjects to self-report them, especially WTP.

I propose an experimental design that I call Exzperiment-as-Market (EXAM). 1 choose this
name because EXAM is an experimental design based on an imaginary centralized market,
inspired by the long-standing idea of competitive market equilibrium from equal incomes
(Friedman) 1962} Varian, 1974; Hylland and Zeckhauser, [1979; Budish et al., [2013; He et
al, 2017). EXAM uses this artificial market to Pareto optimally incorporate both predicted
effects and WTP, extending prior pioneering designs that respect predicted effects or WTP,
but not both (Wei and Durham, [1978; |Zelen, 1979; |Angrist and Imbens, (1991 |(Chassang et
al., 2012).

Specifically, EXAM randomly assigns treatments to subjects via the following hypotheti-
cal market created in the experimenter’s computer. EXAM first endows each subject with a
common artificial budget and lets her use the budget to purchase the most preferred (high-
est WTP) bundle of treatment assignment probabilities given their prices. The prices are
personalized so that each treatment is cheaper for subjects with better predicted effects of
the treatment. EXAM computes its treatment assignment probabilities as what subjects
demand at market clearing prices, where subjects’ aggregate demand for each treatment
is balanced with its supply or capacity (assumed to be exogenously given). EXAM finally
requires every subject to be assigned to every treatment with a positive probabilityﬂ

This virtual-market construction gives EXAM nice welfare and incentive properties.
EXAM has a Pareto optimality property in that no other design makes every subject better-
off in terms of expected predicted effects of and WTP for assigned treatment. EXAM also
allows the experimenter to elicit WTP in an asymptotically incentive compatible way. That
is, when the experimenter asks subjects to self-report their WTP to be used by EXAM,
every subject’s optimal choice is to report her true WTP, at least for large experimentsf_f]

Importantly, EXAM also allows the experimenter to unbiasedly estimate the same treat-
ment effects as standard RCTs do (in a finite sample and for a wide class of treatment
effect parameters). To see this, note that EXAM gives everybody the same budget. If
subjects share the same predicted effects and WTP, therefore, the subjects purchase the
same distribution of treatment assignment. In other words, EXAM’s treatment assignment
is random (independent from potential outcomes) conditional on observable predicted effects

and WTP. As in causal inference with stratified experiments and selection-on-observables

3 EXAM is executable even without WTP and predicted effects (when WTP and predicted effects are
unknown or irrelevant to the experimenter). When the experimenter uses neither WTP nor predicted effects,
EXAM reduces to the standard RCT. EXAM therefore nests the standard RCT.

4 The incentive analysis owes much to studies on the incentive compatibility of competitive equilibria and
experimental designs (Jackson| 1992 |(Chassang et al.| |2012; |Azevedo and Budish} 2017; He et al., [2017)).



(Imbens and Rubin, 2015), the conditionally independent treatment assignment allows the
experimenter to unbiasedly estimate the average treatment effects conditional on observables.
By integrating such conditional effects, EXAM can unbiasedly estimate the (unconditional)
average treatment effect and other effects. This informational virtue materializes regardless
of whether the experimenter correctly predicts treatment effects and WTPE]

I also characterize the statistical efficiency in EXAM’s average treatment effect estima-
tion. EXAM'’s standard error is potentially smaller than RCTs’, but in general, the standard
error comparison of EXAM and a typical RCT is ambiguous. This motivates an empirical
comparison of the two designs, which also allows me to verify and quantify the other welfare,
incentive, and unbiasedness properties.

I apply EXAM to data from a water cleaning experiment in Kenya (Kremer et al., 2011).
Compared to RCTs, EXAM turns out to substantially improve participating households’
predicted welfare. Here, welfare is measured by predicted effects of clean water on child
diarrhea and revealed WTP for water cleaning. EXAM is also found to almost always
incentivize subjects to report their true WTP. Finally, EXAM’s data produces treatment
effect estimates and standard errors similar to those from RCTs. EXAM therefore produces
as valuable information as RCTs do for the whole society and future generations [

Taken together, EXAM sheds light on a way economic thinking can “facilitate the ad-
vancement and use of complex adaptive (...) and other novel clinical trial designs,” a per-
formance goal by the federal Food and Drug Administration (FDA) for 2018-2022['] Experi-
mental design is a potentially life-saving application of economic market design (Roth) 2015]).
More concretely, my analysis shows how best to use predicted treatment effects for experi-
mental design. The use of predicted effects for new experiments is established in medicine
(Food and Drug Administration, [2010) and business (White, [2012)), and emerging in the
social sciences (Hahn et al., 2011) as important interventions such as deworming and con-
ditional cash transfers ask for repeated evaluations. EXAM combines the predicted-effects
consideration with another idea of respecting subjects’ WTP for treatments.

After a review of related experimental designs, Section [2] outlines my motivation by pro-
viding facts about the impact of RCT's on participant welfare. Section |3|develops the EXAM

experimental design, and Sections {4| shows its welfare and incentive properties. Section

5 This experimental value of EXAM and competitive equilibrium from equal incomes echoes |Abdulka-
diroglu et al.[(2017)) and |[Narita[ (2016, who highlight the informational values of a different sort of mechanism
design (centralized school choice with lotteries).

6 Along the way, I develop a computer program to implement EXAM with little computational cost. A
single execution of EXAM on data with 1540 subjects and 2 treatments takes only 6 minutes on average
with a standard personal computer.

7 See https://www.fda.gov/downloads/forindustry/userfees/prescriptiondruguserfee/
ucmb11438.pdf}, retrieved in March 2018
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studies the experimental information embedded in EXAM and explains how to use data
from EXAM for causal inference. An empirical application is in Section [} Finally, Section

summarizes my findings, discusses their limitations, and outlines future directions. Proofs

are in Appendix [A.2]

1.1 Comparison with Existing Designs
Classical Experimental Design

The traditional experimental design literature (Cox and Cochran| (1992), |Athey and Imbens
(2017)) Section 7) is as old as the very concept of RCTs. This literature focuses on how to
design experiments for maximizing information measured by the power of testing the null
hypothesis of no treatment effect and other measures. This focus on information continues
in much of the modern literature on sequential and adaptive experimental designs (Hahn et

al., 2011). My interest lies more in ethics and welfare.

Preference- and Response-adaptive Designs

With its interest in subject well-being measured by WTP and predicted effects, EXAM is
closer to younger and smaller strands of the literature on preference- and response-adaptive
experimental designs. Preference-adaptive designs reflect subject preferences into treatment
assignment probabilities. For example, Randomized Consent or Preference Trials (originally
proposed by |Zelen| (1979) and further advocated by |Angrist and Imbens (1991))) randomize
subjects into two groups. In one group, subjects are allowed to choose the treatment or
the control based on their preferences. All subjects in the other group are assigned to the
control.

Selective Trials by (Chassang et al. (2012, 2015) are more general preference-adaptive
designs that let the treatment assignment probability increase in the WTP for the treatment.
See also [Bjorklund (1988) for a related experimental design proposal. Other examples of
preference-adaptive designs are development economics RCTs that elicit and use subject
preferences for treatment (Ashraf et al., 2006}, (Cohen and Dupas| 2010; |Ashraf et al., [2010;
Devoto et al., [2012; Dupas, 2014). Many of their designs are preference adaptive.

In complementary response-adaptive designs (reviewed by Hu and Rosenberger (2006)
and |[Food and Drug Administration (2010))), the experimenter incorporates predicted treat-
ment effects into treatment assignment probabilities. For example, Play-the-Winner Rules
(Zelen, 1969; Wei and Durham, [1978)) more likely assign a treatment to patients predicted

to have better treatment effects ]

8 The treatment assignment literature in econometrics (Manski, 2008) and medicine (Chakraborty and



| Building upon these prior ideas, EXAM attempts to integrate preference- and response-|

ladaptive designs into a unified design. With help from economic theory and causal infer-|

lence, EXAM is formally shown to strike an optimal balance between W'T'P and predicted|

leftects without compromising incentive compatibility and experimental information. EXAM]|

thereby extends existing preference- and response-adaptive designs: If the experimenter|
shuts down W'TP consideration by assuming constant WTP, EXAM simplifies to a Play-the-|

Winner Rule. Similarly, EXAM reduces to a Consent or Selective Trial it the experimenter|

ignores predicted effects and uses constant predicted effects. |

Multi-Armed Bandit Algorithms |

EXAM shares much of its spirit with Multi-Armed Bandit (MAB) algorithms in computer|
science, machine learning, and statistics (Bubeck and Cesa-Bianchi, 2012): Both MAB and|

EXAM attempt to strike a balance between exploration (information) and exploitation (sub-|

ject or experimenter welfare). MAB algorithms are popular in the web industry, especially|

for online ads, news, and recommendations (White, |2012). Among the many differences|
between MAB and EXAM, MAB mostly ignores incentive issues. In contrast, EXAM i

fformally and empirically shown to be nearly incentive compatible. |

|Clinical Trial Practices and Regulations |

|Clinical trial practitioners and regulators have long recognized ethical concerns with RCTs,|

las highlighted in Marcia Angell’s quote in the introduction. Their concerns resulted in|

regulations and practices that safeguard patients from excessive experimentation. Primary|

lexamples are informed consent, a “stopping rule” that requires a sequential clinical triall

to terminate if it becomes clear that its treatment is sufficiently better or worse than the|

control (Friedman et al. (1998) chapters 2 and 16), and a “randomized phase-in” designl

that assigns everybody to the treatment with randomized timing (Duflo et al./ (2007) section|

3.3.2). EXAM complements these existing practices by providing guidance about how to|

ispecify treatment assignment probabilities conditional on deciding to conduct a trial at a

particular point in time and having a pool of subjects agreeing to participate in the trial. |

2013) attempts a related but distinct task of using experimental data to optimally assign treatment
to maximize welfare alone. See also related biostatistics developments on optimal dynamic treatment regimes
by Murphy (2003) and Robins et al.| (2008) among others.




2 Why Subject Welfare?

My goal is to design an experiment with an emphasis on subject welfare. Why should I

study subject well-being? This section provides normative and practical reasons.

Normative Considerations

First, RCTs involve a large number of subjects. I assemble data on clinical trials registered
in the WHO International Clinical Trials Registry Platform (ICTRP)F]ICTRP is the largest
international clinical trial registry and subsumes domestic platforms like ClinicalTrials.gov
for the US| Table[l] Panel a shows that the sum of the sample sizes of trials registered there
is over 360 million for 2007-2017. As for social and economic RCTs, I scraped the American
Economic Association’s registry to find the sum of sample sizes of registered RCTs amounts
to above 22 million for the last decade (Table [1] Panel b)[!]

For such a large subject population, RCTs frequently randomize high-stakes treatment.
The high-stakes and occasionally life-threatening nature of many RCTs is highlighted by
examples in Table . In the first clinical trial (row i in Panel a), for example, a cholesterol-
lowering drug treatment was found to lower the 5-year death rate of heart disease patients
by about 30% relative to the baseline death rate in the control group. Other clinical trials in
Table 2] Panel a also report significant impacts on survival and other crucial outcomes[”| As
exemplified in Table 2| Panel b, social and economic RCT's also randomize treatment such as
cash transfers, health insurance, HIV testing, and police patrol, as well as other numerous
interventions related to childhood development, education, labor, and public finance (Fryer,
2017; Rothstein and von Wachter], 2017)). As expected, these treatments are often found to

have profound treatment effects.

9 http://www.who.int/ictrp/en/, retrieved in March 2018.

10 https://clinicaltrials.gov, retrieved in March 2018.

11 More detailed statistics are in Appendix Tables It is important to note that the figures
in Table |1| are likely to underestimate the total scale of the RCT landscape. Many countries (such as
Australia and Japan) do not legally require clinical trials to register (as of March 2018). Even when trials
are required to register, the expected fine for failing to do so is often negligible compared to the total
trial cost; see Stat News’ article, “Failure to report: A STAT investigation of clinical trials reporting,”
at https://www.statnews.com/2015/12/13/clinical-trials-investigation/| retrieved in March 2018.
As a consequence of these regulatory loopholes, there is likely a “dark pool” of clinical trials never reflected in
any public database like ICTRP (Goldacre, |2014). Consistent with this hypothesis, as legal and institutional
pressures for trial registration mount, the annual numbers of registered trials and subjects are rapidly growing
(about 14 million in 2007 vs. 72 million in 2016 for the number of subjects; see Appendix Figure [A1)). This
means that these figures will likely be larger in the next decade.

12 The medical ethics literature reviews other examples (Shamoo and Resnik! (2009)) chapters 12 and 13).
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Practical Considerations

Practical considerations also motivate a care for subject welfare. The successful implemen-
tation of any RCT depends on subject choices, including whether subjects participate in the
RCT, whether subjects take up and use the assigned treatment, and whether subjects stay
in contact in a follow-up period. The RCT produces useful information only if participants
are active in each step. This prerequisite is hard to achieve, however. RCTs often suffer from
subject indifference or fear in the form of non-participation, non-compliance, and dropouts
before, during, and after experiments (Friedman et al.| (1998) chapters 10 and 14, Duflo et
al.| (2007) sections 4.3 and 6.4, Glennerster| (2017) sections 2.1 and 2.2).

A welfare-conscious experimental design could alleviate non-participation, non-compliance,
and dropouts. Indeed, King et al. (2005) provide a clinical trial meta-analysis suggesting that
incorporating subject preferences makes subject recruitment easier. In a range of economet-
ric and theoretical models, welfare-enhancing treatment assignment is predicted to facilitate
compliance with treatment assignment (Bjorklund and Moffitt], |1987; Heckman and Vytlacil,
2005; |Chan and Hamilton, 2006). Chan and Hamilton| (2006) use AIDS trial data to find
that better-off subjects experiencing better treatment effects are less likely to drop outF_gl

Finally, ethical experimental designs would ease collaboration with partner governments
and companies that may have an ethical and reputational concern with involvement in RCT's
(Glennerster| (2017)) section 1).

3 Experiment-as-Market (EXAM)

3.1 Framework

The normative and practical importance of subject well-being prompts me to design an
experiment that balances subject welfare with experimental information. An experimental

design problem consists of:

e Experimental subjects iy, ..., 0,.

e Experimental treatments tq,tq,...,t,, where t; is a placebo or control.

13 In an effort to maximize the treatment take-up rate and minimize attrition, many field experiments
start with an expression-of-interest survey before randomization and recruit only survey respondents who
express strong interest. This recruitment practice causes external validity concerns. These concerns may
also be alleviated by replacing the experimenter’s discretionary selective recruitment with an experimental
design respecting subject welfare in a rule-based way. See also [Hulll (2018]) and references therein for other
survey designs and analysis methods to deal with attrition.



e Each subject ¢’s preference or WTP w; € R for treatment ¢ where w;; > w; means

subject i weakly prefers treatment ¢ over . Let w; = (w;);.

e Each treatment t’'s predicted treatment effect e; € R for subject ¢ where e; > ey,
means treatment ¢ is predicted to have a weakly better effect than ¢’ for subject 1.
When multiple outcomes matter, e;; can be set to the predicted effect on a known

function of these outcomes. Let ¢; = (eti)tm

I normalize e;; and w; by assuming e;; = wy, = 0 for every subject 7. e; and wy
are therefore the predicted effect of ¢ and WTP for ¢, respectively, relative to the control
to. This normalization is without loss of generality because only differences in WTP and
predicted effects matter for subject welfare from treatments to,...,t,,. Every experimental
design discussed below produces the same assignment probabilities with and without the
normalization.

I use e;; and w;; as complementary welfare measures, one outcome- or treatment-effect-
based and one WTP-based. Each has an established role in economic welfare analysis. The
medical literature more frequently studies treatment effects but also acknowledges that pa-
tients often have heterogeneous preferences for treatments (even conditional on treatment
effects). This is especially the case for psychologically sensitive treatments like abortion
methods (Henshaw et al., [1993)) and depression treatments (Chilvers et al., 2001). In re-
sponse to these findings, a US-government-endorsed movement tries to bridge the gap be-
tween evidence-based medicine and patient-preference-centered medicine (Food and Drug
Administration, 2016)). According to advocates, “patient-centered care (...) promotes respect
and patient autonomy; it is considered an end in itself, not merely a means to achieve other
health outcomes” (Epstein and Peters, [2009). My welfare criterion echoes this trend and
accommodates both outcome- and preference-based approaches.

Predicted effects and WTP may also be freely heterogeneous and correlated. This is
an important generality since evidence of correlation between treatment effects and WTP
is ample both in the social sciences and medicine (Preference Collaborative Review Group),
2008; [Swift and Callahan, 2009)). To be consistent with the evidence, the above setup allows

arbitrary correlation between predicted effects and WTP.

3.1.1 Where Do WTP and Predicted Effects Come From?

It is best to estimate predicted effects ey from prior experimental or observational data.

In particular, the experimenter would use prior data to estimate heterogeneous treatment

14 Here I assume WTP and predicted effects are fixed and with cardinal meaning. See Appendices
and for discussions about what to do when WTP and predicted effects are uncertain or ordinal.

9



effects conditional on observable subject characteristics and apply the estimates to each
subject i’s characteristics, producing predicted effects e;;. The most reliable data source is
a prior RCT of the same treatment, where subjects in the prior RCT can be different from
those in the new experiment to be designed. Such sequential RCTs with the same treatment
are common in medicine (Friedman et al., [1998) and business (Siroker and Koomen, 2013))
and are growing in the social sciences (e.g., many RCTs for deworming). I illustrate the use
of prior RCT data in my empirical application.

For WTP w;, there are a couple of possible sources. The experimenter may ask each
subject 7 to self-report WTP w;, as proposed by Zelen (1979)) and |Chassang et al. (2012)@
Alternatively, the experimenter may estimate WTP with prior data on subjects’ treatment
choices and their observable characteristics. Such data allows the experimenter to estimate
heterogeneous revealed WTP conditional on subject characteristics. The WTP estimates
then provide the experimenter with a prediction for each subject i’s WTP given ¢’s charac-
teristics. I conduct such demand estimation with a discrete choice model in my empirical

application in Section [6]['Y]

3.2 Experimental Designs

Taking any experimental design problem as given, an experimental design specifies treatment
assignment probabilities (p;) where p; is the probability that subject i is assigned to treat-
ment ¢ under the experimental design. The benchmark design is the standard Randomized

Controlled Trial, formalized as follows.

Definition 1 (Randomized Controlled Trial a.k.a. RCT). Randomized Controlled Trial is
an experimental design that assigns each subject 7 to each treatment ¢ with the impersonal
treatment assignment probability pf¢T that is assumed to be written as pF? = ¢;/n for

some natural number ¢; < n.

The vast majority of clinical trials use RCT or similarly impersonalized randomization, an
empirical fact shown in Appendix and Appendix Table [A.06] I call ¢; pseudo capacity
or supply and require experimental designs to satisfy the pseudo capacity constraint that
ZZ. pit < ¢ for every treatment t = tq,...,t,,. This pseudo capacity constraint is important
when treatment is expensive or hard to make and deliver.

I investigate welfare-enhancement with a design that I call Experiment-as-Market or

EXAM in short.

15 This self-reporting method raises the question of incentive compatibility. I study incentive compatibility
theoretically in Section and empirically in Section

16 Similar demand estimation but for different purposes can be found in |Ashraf et al.| (2006); (Cohen and
Dupas| (2010); |Ashraf et al| (2010); [Kremer et al.| (2011)); Devoto et al.| (2012); Dupas| (2014).

10



Definition 2 (Ezperiment-as-Market a.k.a. EXAM). In the experimenter’s computer, dis-
tribute any common artificial budget b > 0 to every subject. Find any price-discriminated
competitive market equilibrium, i.e., any treatment assignment probabilities (p},) and their

prices 7, with the following properties:ﬂ

e Effectiveness-discriminated treatment pricing: There exist @ < 0 and §; € R for each
treatment ¢ such that the price of a unit of probability of assignment to t for subjects

with e;; = e € R is
e = Q€ + ﬂt-
e Subject utility maximization: For each subject i,

(Pj;): € argmax,, cp >, PitWir 8-t Y, PitTre,; < b,

where p; = (py); and P = {p; € R™!] Zizto pi = 1 and |py| < p} where p is a large
enough number. 7, is the price of a unit of the probability of assignment to treatment
t for subject i. EXAM breaks ties or indifferences so that every subject i’s p} solves
the above problem with the minimum expenditure ), i, while (pj,): = (pj,): for

any subjects ¢ and j with w; = w; and e; = e;.

e Meeting capacity constraints: ), p}, < ¢, for every treatment ¢ = ¢4, ..., ¢, and ). p}, <
¢, only if my.,, < 0 for every i[F|

Define EXAM’s treatment assignment probabilities as

pi(e) = (1 — q)pl, + qpic”,

where ¢ = inf{q’ € [0,1]|(1 — ¢)p}; + ¢pFT € [e,1 — €] for all i and t}. Here € € [0,¢] is a

parameter fixed by the experimenter where € = min; pF¢7 is the largest possible value of EE

I name this experimental design Experiment-as-Market (EXAM) because EXAM ran-

domly assigns treatments to subjects via a synthetic centralized market. p, in Step 1 can

17 There may be multiple equilibria. I fix any equilibrium selection method.
18 The latter part is necessary to make sure that EXAM wastes treatment ¢ only when there is no enough
demand for ¢ even with a nonpositive price.
19 Why is € the largest possible value of €? Suppose ¢ > & = min; pF¢?. Then, for any ¢ € arg min, p“T,
whenever p}, < pF¢T | T have
(1= ¢}y + d'pf" & e, 1— ]
1 RCT RCT ¢

for any ¢’ € [0,1]. On the other hand, if € <€, then ¢’ = 1 guarantees that (1 — ¢')p%; + ¢'p; =p
[e,1 — ¢] for all ¢ and ¢. Thus € must be between 0 and &.
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be seen as a generalization or variation of the classic idea of competitive market equilibrium
from equal incomes (Friedman)| [1962; Varian, 1974; Hylland and Zeckhauser, |1979; |Budish
et al., 2013; He et al., 2017).

More specifically, in Step 1 of Definition [2, EXAM endows each subject with a common
imaginary budget. EXAM then lets each subject use the budget to purchase one of the most
preferred bundles of treatment assignment probabilities, taking their prices as given. The
prices are personalized so that each treatment is cheaper for subjects predicted to benefit
more from the treatment. EXAM computes its treatment assignment probabilities as the
resulting personalized-price competitive market equilibriumm EXAM finally requires each
subject to get each treatment with a probability strictly between 0 and 1, as done in Step 2.
This requirement is important for EXAM to produce non-degenerate random assignments
and unbiasedly estimate causal treatment effects; some foundations for this desire for non-
degenerate randomization can be found in Propositionbelow, Blackwell and Girshick! (1954))
section 8.7, fmbens and Rubin| (2015) chapter 3, and [Banerjee et al| (2017) 7]

To sum up, the steps for implementing EXAM are as follows.

(1) Obtain predicted effects e; if possible and relevant, as described in Section m
(2) Obtain WTP wy if possible and relevant, as described in Section [3.1.1]

(3) Apply Definition [2| of EXAM to the data from steps 1 and 2, producing assignment
probabilities p (€).

EXAM is an enrichment of RCT. To see this, note that EXAM allows the experimenter to
turn off welfare considerations. For instance, if the experimenter does not know or care about
predicted effects, she would let e;; = e;; for all subjects ¢ and j and treatment ¢. Similarly, let
wi = wj; > 0if WTP is unknown or irrelevant; I make the common WTP positive for a minor
technical reason. For example, the experimenter may want to exclude WTP when there is
a concern that revealed or self-reported WTP may be distorted by ignorance, information
frictions, or liquidity constraints. The following fact shows that EXAM is equivalent to RCT
when the experimenter ignores both WTP and predicted effects.

20 The first step of Definition [2] raises two questions, whether such an equilibrium exists and how to find
such an equilibrium. After positively solving the first existence question in Proposition 2] below, I develop
and implement a script to find an equilibrium in the empirical application in Section [6] See [Budish et al.
(2016) for a related algorithmic development on a different problem (MBA course allocation).

#! Definition [2| leaves unspecified how to draw a final treatment assignment from p(€). It is known to
be always possible to draw a treatment assignment in a way consistent with p# (e) (Budish et al.| (2013))’s
Theorem 1, the generalized Birkhoff-von Neumann Theorem). For the moment, my analysis applies to any
method to draw a treatment assignment. I impose more structures in Section [5] and implement an algorithm
to draw an assignment in the empirical application in Section @
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Proposition 1 (EXAM nests RCT). Suppose that WTP and predicted effects are unknown
or irrelevant so that wy = wj; > 0 and ey = ey for all subjects i and j and treatment t.
Then EXAM reduces to RCT, i.e., for every € € [0, €], subject i, and treatment t, I have

pi(€) = prT'

EXAM also extends other more sophisticated designs, such as the Play-the-Winner Rule
(Wei and Durham| [1978), Consent Trials (Zelen, 1979; |Angrist and Imbens| |1991), and
Selective Trials (Chassang et al.,2012). These designs emerge if EXAM ignores either WTP
or predicted effects, but not both, as explained in Section

4 Welfare and Incentive

4.1 Welfare

As opposed to the special case in Proposition [, the experimenter is often concerned about
WTP and predicted effects (as in studies reviewed in Section[2)). In such cases, EXAM differs

from RCT and is welfare-optimal in the following sense.

Proposition 2 (Existence and Welfare). There exists pf, that satisfies the conditions in
Definition @ For any such p}, and any € € [0, €|, the resulting EXAM assignment probability
pi(€) satisfies the following property: There is no other experimental design (py) € P™ with
pit € [e,1 — €] for all subject i and treatment t, > . pu < ¢ for all t = ty,...,t,, and the
following better welfare property:

Zpith’t > prt(e)wit and Zpiteti > Zp;kt(e)eti
t t t t

for all i with at least one strict inequality.

Proposition [2| says that no other experimental design ex ante Pareto dominates EXAM in
terms of the expected WTP for and predicted effect of assigned treatment (while satisfying
the random assignment and capacity Constraints)@ This ex ante Pareto optimality is known
to imply ex post Pareto optimality and “ordinal” ex ante optimality (Bogomolnaia and
Moulin), 2001)17_3] In contrast, RCT fails to satisfy the welfare property as it ignores WTP

22 Proposition [2|implies that EXAM is ex ante Pareto optimal for expected WTP alone if the experimenter
shuts down predicted effects by assuming e;; = e;; for all subjects ¢ and j and treatment ¢. Similarly, EXAM
satisfies Pareto optimality for expected predicted effects alone when EXAM ignores WTP.

3 Ex post optimality means that no other (p;) has the following property: wi;, > wix and e, > ey

13



and predicted effects. I empirically quantify the welfare gap between RCTs and EXAM in
Section [6.3

4.2 Incentive

Proposition [2| takes WTP w;; as given and assumes it to represent true WTP. In practice,
the experimenter often needs to elicit the WTP information w; from subjects, raising an in-
centive compatibility concern. This section shows EXAM allows the experimenter to extract
WTP in an almost incentive compatible way. My analysis of incentive compatibility builds
upon the literature on incentive compatibility of competitive equilibria and experimental
designs (Jackson, [1992; |(Chassang et al., 2012; |Azevedo and Budish| 2017; |He et al., [2017)).

Unfortunately, it is known that no experimental design satisfies the welfare property in
Proposition 2| and exact incentive compatibility for general problems (Hylland and Zeck-
hauser), [1979). This compels me to investigate approximate incentive compatibility in large
experimental design problems. Only for this section, consider a sequence of experimental
design problems (i1, ..., in, to,t1, s tm, (€}'))nen indexed by the number of subjects, n. Let
€" € [0,€") (where €" is € for the n-th problem) be the value of the bound parameter € the
experimenter picks for the n-th problem in the sequence. The set of treatments t,tq, ..., 1,
is fixed, but everything else may change as n increases. This modeling with a fixed number
of treatments and an increasing number of subjects is consistent with real-world experiments
with only a few treatments but with hundreds of subjects or more.

To investigate the incentive structure in EXAM, imagine that subjects report their WTP
to EXAM. EXAM then uses the reported WTP to compute treatment assignment probabil-
ities. For the n-th problem in the sequence, let p:™(w;, e;, w_;, e_;; €") be EXAM’s treatment
assignment probability vector for subject ¢ when subjects report WTP (w;, w_;) and pre-
dicted effects are (e;,e_;) where w_; = (w;);» and e_; = (e;);. 1 extend this notation to

the case where other subjects’ WTP reports and predicted effects are random:

pi"(wi, e, Fie) = / pi"(wi, e, w_g, e € ) xPr{(w_i, e_;) ~iig F}d(w_;,e_;).
(w—j,e—;)E(WXE)—1

Here Pr{(w_;,e_;) ~uq F'} denotes the probability that (w_;,e_;) is realized from n —

1 iid draws from the distribution F' € A(W x E), where A(W x E) is the set of full

support distributions over the WTP space W and the predicted effect space E. Only for

always hold for all ¢ with at least one strict inequality, where ¢; and t] are treatments ex post assigned to ¢
under the alternative design (p;:) and EXAM, respectively. Ordinal ex ante optimality is a stronger property
that there is no other (p;;) such that for all affine transformations f and g, >, pir f(wir) > >, 0j;(€) f(wit)
and ), pirg(en) > >, piy(€)g(ey) for all i with at least one strict inequality.
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this section, for simplicity, I restrict WTP and predicted effects to belong to finite sets W
and F, respectively, in any problem along the sequence. This concept allows me to state an

asymptotic incentive compatibility property.

Proposition 3 (Incentive). EXAM with WTP reporting is asymptotically incentive com-
patible, i.e., for any sequence of experimental design problems with any € in [0,€"), any
F e A(W x E), any 6 > 0, there exists ng such that, for any n > ng, any subject i, any

predicted effect e;, any true and manipulated WTP values w; and w!, I have

*T . n *T / . n
§ Dit (wi7ei7F7€ ) X Wit Z E Dit (wi7€i7F)€ ) X Wi — 6
t t

Proposition (3] says that EXAM approximately incentivizes every subject to report her
true WTP, at least for large enough experimental design problems. The experimenter using
EXAM can therefore ask subjects to report their true WTP without any deception. As
additional support for incentive compatibility, Section shows that EXAM is close to
incentive compatible in my empirical application only with a finite number of subjects. This
suggests asymptotic Proposition (3] is relevant even for real-scale problems.

For intuition, first consider a case with only one treatment ¢; that subject ¢ prefers over
the control 3. Why is there no incentive for subject i to misreport a larger WTP for ¢;7 As
long as subject ¢ prefers t; over ty, subject ¢ spends her entire budget b into purchasing ¢,
and gets an assignment probability of b/m;,. Misreporting a larger WTP would not affect
this assignment probability, confirming the incentive compatibility. More generally, exact
incentive compatibility may break down in small problems. Nevertheless, EXAM is always
asymptotically incentive compatible since there is no incentive to misreport when the prices

are exogenously fixed, which is approximately true when the number of subjects is large.

5 Information

Despite the welfare merit, EXAM also lets the experimenter estimate treatment effects as
unbiasedly and precisely as RCT does. To spell it out, I switch back to any given finite
problem and discuss not only bias but also variance in treatment effect estimation. To
compare EXAM and RCT’s empirical content, I need to specify how each design draws a
deterministic treatment assignment from its assignment probabilities. For simplicity, assume
that pyn, is an integer for every ¢ and p where n, = > ., 1{pi(¢e) = p} is the number of
subjects with assignment probability vector p and p; is the ¢-th element of p. Appendix
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generalizes the definition and argument below to a general setting where p;n, is any real

number. Consider the following method of drawing a deterministic treatment assignment.

Definition [2] (EXAM Continued). Starting from the end of Definition 2]in Section [3.2] draw

a treatment assignment from pf(¢) as follows. For each assignment probability vector p,
e Uniformly randomly pick py,n, subjects from {i|p}(e) = p} and assign them to .
For each subsequent step k=1, ..., m,

e Step k: From the remaining n, — Ei;é pin, subjects in {i[p;(e) = p}, uniformly

randomly pick p;, n, subjects and assign them to ;.

I assume RCT to draw a deterministic treatment assignment by a specialization of the above
method assuming every subject i to have pj () = pFCT.

Suppose the experimenter is interested in the causal effect of each treatment on an out-
come Y;. Following the standard potential outcome framework for causal inference (Imbens
and Rubin| 2015)), let Y;(¢) denote subject i’s potential outcome that would be observed if
subject i receives treatment t. Let D; be the binary indicator that subject i is ex post
assigned to treatment ¢. The observed outcome is written as Y; = >, D;;Y;(t). While Y;(?)
is assumed to be fixed, D;; and Y; are random variables, the distributions of which depend
on the experimenter’s choice of an experimental design. Let Y = (Y;), D; = (Dy);, and
D = (D).

The experimenter would like to learn any parameter of interest 6 of the distribution
of potential outcomes Y;(t)’s, many of which are unobservable. Formally, # is any mapping
6 : R™(m+1) 5 R that maps each possible value of (Y;(¢)) into the corresponding value of the
parameter. For example, § may be the average treatment effect (ATE;) of treatment ¢ over

2im (Yi(t) = Yi(to))

n
a function only of observed outcomes and treatment assignments. Given any experimental

control %, . The experimenter estimates ¢ with an estimator é(Y, D),

design (pi), I say an estimator 6(Y, D) is simple if O(Y, D) can be written as

0(Y,D) = Z f(Yi, Di,pi) + Z Z thpp’((Npt))ﬂp(t)ﬂp’(t)

— Zi:pi:p DZt}/Z
oy Hpi=p)

Ny = Zi:pi:p D;; but not on individual Dit’s.ﬁ I say parameter 6 is unbiasedly estimable

for some function f, fi,(t) and weights ¢y,,y, which may depend on

24 More formally, f : R x D x P — R where D = {d € {0,1}""|>",d; = 1} and P = {p;|i = i1, ..., in}-
Gipp' N IPItm+1) 5 R for each t, p, and p’. T allow f and gtppr o use known elements of the experimental
design problem such as capacities ¢; and treatment assignment probabilities p;;. I do not allow é(Y, D) to
use unknown elements, especially potential outcomes.
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with experimental design p = (pir) and a simple estimator if there exists a simple estimator

~

0(Y, D) such that
E(0(Y, D)|(pa)) = 6,

where E(-|(pi)) is expectation with respect to the distribution of D;; induced by experimental
design (pir).

EXAM turns out to be as informative as RCT in terms of the set of parameters unbiasedly
estimable with each experimental design and a simple estimator. Throughout this section,

assume p;n, > 1 for all p and ¢.

Proposition 4 (Unbiased Estimability). If parameter 0 is unbiasedly estimable with RCT
pECT and a simple estimator, then 0 is also unbiasedly estimable with EXAM p,(¢) with any

¢ >0 and a simple estimator”|

Many key parameters, such as the average treatment effect, the treatment effect on the
treated, and the mean and variance of potential outcomes are known to be unbiasedly es-
timable with RCT and a simple estimator (see Appendix |A.2)) @ Proposition [4| implies that

these parameters are also unbiasedly estimable with EXAM.

Corollary 1. The average treatment effect, the treatment effect on the treated, and the mean

and variance of potential outcomes are unbiasedly estimable with EXAM.

5.1 Unbiased ATE Estimation with EXAM Data

[ use the average treatment effect (ATE) to illustrate the intuition for and implementation
of Proposition [ and Corollary [l Why is ATE unbiasedly estimable with EXAM? EXAM
makes all subjects share the same budget constraint. As a result, if subjects share the same
predicted effects and WTP, these subjects solve the same utility maximization problem and
purchase the same vector of treatment assignment probabilities. EXAM therefore produces
treatment assignment that is independent from (unconfounded by) potential outcomes con-

ditional on predicted effects and WTP, which are observable to the experimenter:

(Yi(t): L D;l(er, wit)s. (1)

25 On the other hand, EXAM and RCT are not comparable in terms of Blackwell’s order (Blackwell and
Girshick], [1954) in my finite sample framework. This contrasts to the large sample analysis by |Chassang et
al.| (2012), where they compare their Selective Trial and RCT in terms of Blackwell’s order.

26T define the treatment effect on the treated for experimental design (pi;) as

p( iz (Yil0) = Yi(to)) D
2oi= D | 1 1 1
variance of potential outcomes as - S (Vi) — p > Yi(t)? or — S (Vi) — - i Yi(t)?

both of which are unbiasedly estimable with RCT and a simple estimator.

1
|(pir)) while the mean of potential outcomes as EZ:;lYi(t). I define the
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With this conditional independence, EXAM fits into causal inference with stratified ex-
periments, selection-on-observables, and the propensity score, i.e., treatment assignment
probabilities conditional on observables (see [Imbens and Rubin| (2015) for an overview).
In particular, conditional independence implies that the same conditional independence
holds conditional on the propensity score (Imbens and Rubin| (2015) section 12.3), which

EXAM computes as pf(€) = (p};(€)); and again known to the econometrician:
(Yi(t)e L Dylp;(e). (2)

This conditionally independent treatment assignment allows the experimenter to unbiasedly
estimate the conditional average treatment effects of each t over ¢y conditional on observable

propensity scores p;(e),

> i Hpi(e) = p}(Yi(t) — Yi(to))
>im1 Hpi(e) = p}

which I denote by CATE,;. These conditional-on-the-propensity-score effects are a version
of Marginal Treatment Effects (Bjorklund and Moffitt, |1987; [Heckman and Vytlacil, 2005]).
Marginal Treatment Effects are therefore estimable with EXAM’s data”|

By summing up such marginal or conditional effects, the experimenter can also back out

for each p,

the (unconditional) ATE, the single most important causal object identified and estimated
by RCT. That is, with weights d, = n,/n, I use CATE,;’s to get ATE as follows:

> 6,CATE, = ATE,.
p

Importantly, the key conditional independence properties and hold regardless
of whether e; and w; coincide with the true treatment effects and WTP. In this sense,
like RCT, EXAM’s informational virtue is robust to any of the experimenter’s potential
misspecifications about predicted effects and WTP.@

2T To see this, as in [Heckman and Vytlacil (2005), focus on an experimental design problem with only
one treatment ¢; compared to the control ¢o. Given EXAM’s assignment probability pj, (e), let R; ~ U [0,1]
with R; 1L (Yi(to),Yi(t1)), Zi =1 — R;, and V; = 1 — pj; (e). Write the treatment assignment as

Dty = {Ri <pjy, ()} = {1 — R 2 1 = p, (6)} = {Zi = Vi}.

Note that E(1{Z; > V;}) = pj;, (¢) as desired. This model is a special case of Heckman-Vytlacil’s model
with local instrumental variable Z; because Z; is independent of (Y;(to),Y:(¢1), Vi) by construction while
Vi can be correlated with (Y;(t9),Yi(t1)). As a result, Heckman and Vytlacil (2005)’s method allows the
experimenter to identify Marginal Treatment Effects with EXAM’s data. |Chassang et al.| (2012) provide
a similar discussion about their Selective Trial idea. See also [Kowalski| (2016[); Mogstad and Torgovitsky
(2018)) for recent developments in the marginal treatment effect method.

%% On the other hand, the welfare optimality in Proposition [2| is welfare-relevant only if the experimenter
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The above estimability argument motivates a strategy to estimate ATE with EXAM’s
data. As a warm-up, focus on {i|p;(¢) = p}, the subpopulation of subjects with propensity

vector p, and consider this regression on the subpopulation:

tm

ifi = Oy + Z 6ptDit + €;.

t=t1

By the conditional independence property 1' OLS estimate Bpt from this regression is
unbiased for CAT' E), for each treatment ¢ # ¢y. I then aggregate the resulting estimates Bpt’s
into Zp 5p3pt, which I denote by B;k This B;f is a multinomial propensity score weighting
estimator that unbiasedly estimates the average treatment effect with its variance in an

analytical form.

Proposition 5 (Bias and Variance). Suppose that the data-generating experimental design
is EXAM p*(€) = (p,(€))i with any given e > 0. B is an unbiased estimator of the average

treatment effect. In particular,

S S S

ptto )
)
Pty DPioTp p

E(Bf|p*(e)) = ATE, and Var(5;|p* (e Z 52<

Zz pz (e) Y; (t)

where Y,(t) = is the mean of Y;(t) in the subpopulation with propensity p,
Tp
Diro—p(Yilt) = Yy (1))
Sy = ] r is the variance of Yi(t) in the subpopulation, and S5, =
n, —
Dt (o—p(Yi(t) = Yi(t') — (Y (t) — Y3 (t)))?
PilO=p . r g is the variance of Y;(t) — Y;(t') in the subpopula-
n, —
tion.

Alternatively, empirical researchers may prefer a single regression controlling for propen-

sity vectors:

_G+th zt+zctpzt ) + e, (3)

t=t1 t=t1
producing an alternative estimator b;. As verified in the appendix, b; is an unbiased estimator

of a differently weighted treatment effect:

> AwCATE,
ZP )\pt

predicts treatment effects and WTP well.

E(b;1p*(e) =

" with weights A\t = 0,pe(1 — pr). (4)
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Estimators like l;;“ and Bt* allow the experimenter to unbiasedly estimate key causal effects
with EXAM. See Angrist (1998)) for a related discussion about regression and weighting

estimators.

5.2 Power Comparison of EXAM and RCT

Does EXAM compete with RCT in terms of statistical efficiency in ATE estimation? With
RCT’s data, the most standard estimator of ATE of treatment ¢ over control ty is the
difference in the average outcome between subjects assigned to treatment ¢ and those assigned

to control tg:
sror _ 2 DiYe 35 DinyYi

' B Zz Dy Zz Dy, .
This BET is a special case of 8 when p3(€) = pf°T. By Proposition , therefore, BRCT is

unbiased for ATE with the following variance, confirming a classic result about RCT.

Corollary 2 (Imbens and Rubin| (2015)’s Theorem 6.2).

JRCT | RCT srer mery St Sh St
E(BECT|pRCTY = ATE, and V(BECT|pRCT) = 2L 4 Zho _ Tt

where S? = Zi(yig)__ly@)y and SZ, = > (Yi(t) — YQ(t;z : 1(Y(t) - Y(t’)))z'

Proposition [5] and Corollary [2] imply that EXAM may produce more precise ATE es-
timates (V (5¢[p*(€)) < V(BECT|pRCT)). Such a situation occurs if potential outcomes are
well correlated (positively or negatively) with EXAM’s treatment assignment probabilities,

as illustrated by the following example.

Example 1. Suppose there is only one treatment ¢, n = 40, and ¢;, = ¢;;, = 20. Every
subject has Y;(tp) = 1. The subjects are divided into four groups A, B, C, and D of the same
size (10) based on their potential outcomes Y;(t1). Let Y;(t1) = 1,2,3, and 4 for anybody in
group A, B,C, and D, respectively. Assume the experimenter imperfectly predicts treatment
effects: e;;; = 0 for every i in group A or B while e;,; = 2 for group C or D. Let wy, > 0
for all subjects. EXAM with € < .2 gives the following treatment assignment probabilities?}
p;;,(€) = 0.2 for every i in groups A and B while pj, (¢) = 0.8 for groups C' and D. Under
RCT, pﬁCT = pﬁCT = 20/40 = 0.5 for all subjects. Applying Proposition |5/ and Corollary

15b

29 EXAM outputs these treatment assignment probabilities if I set v = — g B, = bb, and By, = 0 given

any budget b.
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to this example, I have
V(Bi[p*(e)) = 0.013... < 0.032... = V(BECT|pRCT).

This example makes clear that information production in EXAM is not a diluted version
of that in RCT. EXAM’s ATE estimation is not only unbiased but also potentially more
precise than RCT’s; this is true even if the experimenter’s prediction of treatment effects
is imperfect. Appendix provides further support for this point by showing it remains
true in an asymptotic framework.

In general, however, the precision comparison of EXAM and RCT is ambiguous. There
are other examples with V(BECT|pRCT) < V(B:|p*(€)); one such example with a binary
treatment ¢; vs. o is where pii“" = pfiT = 0.5 for every i, p*(€) # p™“?, and there is no
correlation between potential outcomes and p*(e). This ambiguity is common in precision
comparisons of experimental designs. This motivates me to empirically compare EXAM and
RCT’s estimation precision. The empirical application also allows me to verify and quantify

the welfare, incentive, and unbiasedness properties of EXAM.

6 Empirical Application

6.1 Overview

My empirical test bed for EXAM is an application to a spring protection experiment in
Kenya. Waterborne diseases, especially diarrhea, remain the second leading cause of death
among children, comprising about 17% of child deaths under age five (about 1.5 million
deaths each year).lﬂ The only quantitative United Nations Millennium Development Goal
is in terms of “the proportion of the population without sustainable access to safe drinking
water and basic sanitation,” such as protected springs.[if] Yet there is controversy about
spring protection’s health impacts. Experts argue that improving source water quality may
have only limited effects since, for example, water is likely recontaminated in transport and
storage. These arguments were made in the absence of any randomized experiment.

This controversy motivated Kremer et al.| (2011)) to analyze randomized spring protec-
tion conducted by an NGO (International Children Support) in Kenya in the mid 2000s.

30 See UNICEF and WHO'’s joint document “Diarrhoea: Why Children Are Still Dying and What Can be
Done,” at http://apps.who.int/iris/bitstream/10665/44174/1/9789241598415_eng.pdf, retrieved in
March 2018.

31 See http://www.un.org/millenniumgoals/, retrieved in March 2018. Spring protection encases the
source of a natural spring in concrete, allowing water to flow from a pipe rather than seeping from the
ground. In this way, the water source is protected from human or animal waste.
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This experiment randomly selected springs to receive protection from the universe of 200
unprotected springs. The experimenter selected at baseline and followed afterward a rep-
resentative sample of about 1500 households that regularly used some of the 200 springs
before the experiment; these households are experimental subjects. |Kremer et al. (2011))
find that spring protection substantially improves source water quality and is moderately
effective at improving household water quality after some recontamination. Diarrhea among
children in treatment households falls by about a quarter of the baseline level. I call this real
experiment ‘Kremer et al.| (2011)’s experiment” and distinguish it from EXAM and RCT as
formal concepts in my model.

Kremer et al.| (2011)’s experiment provides an ideal setup for empirically evaluating
EXAM. Their experiment is about a high-stakes treatment and produces rich data that
allows me to measure not only treatment effects but also subjects” WTP for the treatment.
I consolidate Kremer et al. (2011))’s experimental data and my methodological framework
to empirically evaluate EXAM. With the language and notation of my model, experimental
subjects are households in [Kremer et al. (2011)’s sample. The protection of the spring each
household uses at baseline is a single treatment ¢; while no protection is the control ;. Each
household i’'s WTP for better water access t; is denoted by w;,, which I estimate below.
I also estimate the heterogeneous treatment effect e;,; of spring protection ¢; on household
1’s child diarrhea outcome. Using this embedding, I implement EXAM and compare it with
RCT to see which is a better design of a hypothetical future experiment about the spring

protection treatment.

6.2 Treatment Effects and WTP
Treatment Effects

For executing EXAM, I need to measure w;;, and e;; and substitute them into EXAM. I
estimate heterogeneous treatment effects e;,; of access to better water in a similar way as
Kremer et al.| (2011). This treatment effect estimation exploits additional details of Kremer
et al.| (2011))’s experiment. The experimenter NGO aspired to eventually protect all the 200
springs but planned for the protection intervention to be phased in over four years due to
financial and administrative constraints. In each round, a subset of springs were randomly
picked to be protected. Figure I in Kremer et al.|(2011]) details the timeline of the experiment.
This experimental scheme legitimizes the following OLS regression at the (child 4, spring j,

survey round t)-level:
Yiit = (01 + 02X;)Tje + o + o + wij + €, (5)
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where Y;;; is the binary outcome indicating that child ¢ in a household drawing water from
spring j at baseline has diarrhea in survey round ¢. X; contains covariates of child 7’s house-
hold (baseline latrine or sanitation density, diarrhea prevention knowledge score, mother’s
years of education). T}; is the binary treatment indicating that spring j is treated in sur-
vey round t. a;,aq, and u;; are fixed effects. The treatment effect is ¢1 + ¢2X; and is
heterogeneous across subjects with different covariates Xj;.

Estimates from the OLS regression are in Table |3l The average treatment effect is
about 4.5% absolute reduction or about 25% relative reduction in the diarrhea outcome Y.
Households with higher scores in diarrhea prevention knowledge or mother education tend to
have better treatment effects, although the relatively large standard errors argue for caution
in interpretation. This heterogeneity may be because such households are more likely to
prefer and use protected springs, as suggested by a revealed preference analysis below.

I then use the OLS estimates to predict the treatment effect for each household i with
€10 = (ﬁl + QEQXZ‘, where le and gZA>2 are OLS estimates of ¢; and ¢, respectively. [Kremer et
al.| (2011)’s experiment randomized 7T}, and gives its coefficient estimate é,,; an interpreta-
tion as a causal effect. Estimated treatment effects é;,; exhibit significant heterogeneity, as
illustrated in Figure [I] Panel a.

WTP

I estimate heterogeneous WTP w;;, for the treatment as follows. In the experimental target
area, each household draws water from a water source the household chooses among multiple
sources in the neighborhood. This fact motivates a discrete choice model of households’ water
source choices, in which households trade off water quality against other source characteristics
such as proximity. This model produces revealed preference estimates of household WTP for
the spring protection treatment as a spring characteristic, which is identified by exogenous
variation in the treatment generated by |[Kremer et al. (2011))’s experiment.

Specifically, I use a mixed or random-coefficient logit model (Train| (2003), chapter 6):
Uije = (Bi + 11.Xi)Tje — ¢iDij + 65 + €je, (6)

where U, is household 4’s utility from source j in survey round ¢ and Dj;; is household
i’s roundtrip distance to spring j (measured in terms of minutes of walking time). f; and
¢; are random preference coefficients assumed to be distributed according to normal and
triangular distributions, respectively, with unknown parameters to be estimated. I restrict
the triangular distribution of ¢; to have the same mean and standard deviation, making sure

every household prefers proximity. ¢; are spring-type fixed effects in the spirit of Berry et
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al| (1995) and attempt to capture the average preference for potentially unobserved spring
type characteristics other than treatment 7}, and distance D;;. € is logit utility shocks iid
according to the type I extreme value distribution with usual variance normalization to 72/6.
[ estimate the model with data on households’ spring choices (in the final survey round after
random spring protection) and a standard maximum simulated likelihood method (Train
(2003), chapter 10), which I detail in Appendix [A.3.3]

The mixed logit preference estimates are in Table [4 Households have significant distaste
for distance and significant preferences for protected treatment springs (other characteristics
being equal). Not surprisingly, households with better diarrhea prevention knowledge scores
or mother education tend to have stronger revealed preferences for the spring protection
treatment. This heterogeneity is expected if such households are more conscious of water
qualityf?

I then exploit the mixed logit estimates to estimate household i’'s WTP for treatment ¢,
as Wy, = BAZ + A1 X;, where BAZ and 4; are mixed logit estimates of ; and =, respectively.

I bootstrap the random coefficient BZ from its estimated distribution. The identification of

/

wj,, is helped by Kremer et al| (2011))’s experimental variation in protection treatment 7},

since otherwise Tj; is likely correlated with unobserved spring characteristics €;;;, making it
impossible to identify the WTP for spring protection alone.

Since 1wy, is in an elusive utility unit, I convert it into a more easily interpreted measure
/
it

the mixed logit estimate of ¢; (the distaste coefficient on distance). Again, I bootstrap the

in terms of time cost of water collection. To do that, I first compute W}, /¢;, where ¢; is
random coefficient ¢; from its estimated distribution. I then multiply it by each household’s
self-reported time cost of traveling for a unit of distance. This procedure gives me a time
cost measure of WTP for the treatment, w;,. This w;, is measured by workdays utility-
equivalent to 1y, .

Estimated WTP w;, is in Figure [I| Panel b, showing the histogram of simulated values
of w;;,. The median WTP is about 25 workday-equivalent with substantial heterogeneity.
While both WTP 1w, and treatment effects é;,; show sizable heterogeneity, there turns out
to be only limited correlation between the two. This fact can be seen in the joint density plot
in Figure (1| Panel c, where there is a positive correlation between WTP w;;, and treatment
effects é;,;, but the magnitude of the correlation is small (R? is lower than 0.12 when I
regress one on the other). This demonstrates that WTP w;, and treatment effects é;;

contain different types of information about subject welfare, suggesting the importance of

32 Tables |3 and 4] show slight differences from Kremer et al.’s estimates. It is because I include the same
set of a small number of covariate interactions both in the OLS and mixed logit models while Kremer et al.
include different sets of covariate interactions and other controls in their models.
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respecting both WTP and predicted effects separately. This is what EXAM attempts to do,

as I explain next.

6.3 EXAM vs RCT

Now imagine somebody is planning a new experiment for further investigating the same
spring protection treatment. What experimental design should she use? Specifically, which is
better between RCT and EXAM? A full-fledged comparison of experimental designs requires
a meta-experiment that randomly assigns different designs to many experimental studies. To
circumvent the difficulty with such a meta-experiment, I resort to an alternative approach
exploiting the above WTP and treatment effect estimates.

My approach is to use the estimated WTP w;, and predicted effects é;,; to simulate
EXAM and compare EXAM with RCT in terms of welfare, information, and incentive prop-
erties. Throughout, I fix the set of subjects and treatments as in |[Kremer et al.| (2011)’s
experiment. That is, there are 1540 households as subjects to be assigned either to the
single water source protection treatment ¢; or the control #y. Set the treatment capacity c;,
to be the number of households assigned to the treatment ¢; in Kremer et al.’s experiment
(by the end of their survey period). I set the bound parameter € to be 0.2; I investigate how
the results change under another value of € at the end. I fix predicted effects e;; to their
point estimate é;,;.

I simulate WTP with parametric bootstrap from the estimated distribution of w;,, i.e.,
the estimated mixed logit model (6)) (conditional on each household’s fixed characteristics
X;). In this WTP simulation, I require all families with the same characteristics X; to share
the same WTP. After simulating w;,, I compute treatment assignment probabilities pf,(€)
by running EXAM on the bootstrapped data along with other fixed parameters such as the
treatment capacity.ﬁ The algorithm I use for executing EXAM is described in Appendix
A3

The simulation process for RCT is analogous except that the treatment assignment prob-
ability is fixed at pﬁCT = ¢, /n = .43. Note that this RCT is a hypothetical experimental
design in line with my Definition (1| and different from [Kremer et al. (2011)’s experiment

involving additional real-world complications.

33 To make treatment assignment probabilities take a modest number of values, I coarsen the values of
WTP and predicted effects. Specifically, for each simulation and each of WTP and predicted effects, I first
group its values into four quartiles and then replace each household’s value by the median value within the
quantile group to which the household belongs.
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Welfare

I start with evaluating EXAM’s welfare performance. Use EXAM’s treatment assignment

probabilities pj, (€) to calculate two welfare measures for each household i:
wi = Zp;‘t(e)wit and e = prt(e)eti.
t ¢

w; and e are empirical analogues of the two ex ante welfare measures in my theoretical
welfare analysis (Proposition [2)).

I find EXAM to improve on RCT in terms of the welfare measures w; and e, a result
reported in Figure 2} The figure draws the distribution of w; and e} over households and
1000 bootstrap samples. Among other things, the mean of average WTP w; for assigned
treatments is about 89% or 9.4 workday-equivalent utilities higher under EXAM than it is
under RCT. Another interpretation of this WTP improvement is about 37% of the average
WTP for the treatment (about 25 workdays). Similarly, EXAM improves the mean of e}
by about 0.8% absolute reduction or 42% reduction relative to RCT’s level. This predicted
effect benefit amounts to about 17% of the average treatment effect of the spring protection
found by Kremer et al|(2011) and Table 3] Kolmogorov-Smirnov tests find the EXAM and
RCT distributions to be significantly different both for w; and e;. This suggests EXAM’s

welfare optimality (Proposition [2)) is quantitatively and empirically relevant.

Information

Data from EXAM also allows me to obtain more or less the same econometric conclusion
about treatment effects as RCT. To see this, I augment the above counterfactual simulation
with average treatment effect estimation as follows: I first simulate wy,, run EXAM to
get treatment assignment probabilities pj(€), and use pf(e) to draw a final deterministic
treatment assignment, denoted by a binary indicator D; indicating 7 is ex post assigned to
t1. I then simulate counterfactual or predicted outcome Y; under D; by simulating the OLS

model I estimate in the last section:
Y, = (gz@l + $2Xi)Di + &; + (average of &; across all t) + (average of ;; across all j),

where objects with a hat mean estimates of the corresponding parameters in regression
. I take the average of &’s and ;;’s to adapt regression at the (i, 7,t)-level to my
counterfactual simulation setting at the household-i-level. Note that the above expression is

the definition of Y;, not a regression. Finally, I use the above simulated Y; and D; to estimate
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treatment effects with b* from this OLS regression:
Yi=a+0bD; + Cpftl(E) + €,

where I control for propensity score pj; (€) to make treatment assignment D; conditionally
random. This regression is a stripped-down version of the regression strategy in Section
. I also implement the other propensity-score-weighting estimator B*, again following the
description in Section 5] The procedure for RCT is analogous except that the treatment
assignment probability is fixed at pF¢T.

Program evaluation with EXAM turns out to be as unbiased and precise as that with
RCT. Figure [3| plots the distribution of the resulting treatment effect estimates b* and (%
over 1000 simulations. In line with Propositions [4| and , the means of b* and B* for EXAM
are indistinguishable from those under RCT. Both experimental designs successfully recover
Kremer et al.| (2011))’s average treatment effect estimate (4.5% reduction in diarrhea; recall
column 1 in Table [3)).

Perhaps more importantly, the distributions of b* and 5’* for EXAM have similar stan-
dard deviations as those for RCT. This means that the two experimental designs produce
similar exact, finite-sample standard errors in their estimates b* and B* Variations of this
observation are in Figure , which shows the distribution of p values for the estimates b*.
The four panels use p values based on exact, non-robust, robust, and /Abadie et al. (2017))’s
finite population causal standard errors, respectively, where the exact standard error means
the standard deviation in the distribution of b* in Figure . RCT produces slightly smaller
p values than EXAM, but the median p value is about 0.03 for RCT and about 0.04 for
EXAM. This means that both EXAM and RCT detect a significant average treatment effect
for a majority of cases. Overall, EXAM appears to succeed in its informational mission of
eliminating selection bias and recovering ATE precisely enough. EXAM is thus as good as

RCT at contributing to the knowledge and welfare of the society outside the experiment.

Incentive

EXAM’s WTP benefits can be regarded as welfare-relevant only if EXAM provides subjects
with incentives to reveal their true WTP. I conclude my empirical analysis with an inves-
tigation of the incentive compatibility of EXAM. I repeat the following procedure many
times: As before, I simulate wy, and run EXAM to get treatment assignment probabilities
pi(€). I then randomly pick one subject j as a WTP manipulator and one potential WTP
manipulation w’, by j. I choose the manipulator j uniformly randomly among all sub-
jects. The manipulation w’, is either from N(wj,, 100), N (wjq,,1000), U(w;q,, w;r, + 100),

Jt1
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or U(wji, — 100, w;;,) where wj, is j’s true WTP. These computational scenarios cover dif-
ferent types of misreporting, that is, both over-reporting and under-reporting with different
magnitudes. I run EXAM on the simulated data but with the WTP manipulation w/, to
get treatment assignment probabilities pl,(¢). I finally compute the true WTP gain from the

. : ;o
manipulation wy, :

Aw = Zp;t(e)wjt - Zp;t(e)wjt'
t t

EXAM is found to give subjects little incentive for WTP misreporting, empirically ver-
ifying Proposition Figure [p] shows this by drawing the distribution of Aw over 1000
simulations and households. Across all scenarios, the WTP gain Aw from misreporting is
mostly negative and well below zero on average. This further suggests that EXAM may pro-
vide subjects with stronger average incentives for truthful WTP reporting than RCT does
(because subjects in RCT are indifferent among all possible WTP reports). EXAM may
therefore be better at eliciting reliable WTP data "]

Role of Design Parameters

Finally, I analyze how the results depend on the choice of design parameters, especially e,
which governs how close EXAM must be to RCT. With a smaller value of € = 0.1, the same
set of results as in Figures[2}[5] are reported in Appendix Figures[A.2}{A.5] These figures show
qualitatively the same results as Figures do. This confirms the above baseline empirical
analysis is robust.

Yet there is a key quantitative difference: Appendix Figure with ¢ = 0.1 finds
better welfare performance of EXAM compared to Figure [2| with ¢ = 0.2. On the other
hand, Appendix Figure and Figure [4f suggest EXAM’s statistical efficiency deteriorates
as € drops from 0.2 to 0.1. This tradeoff is intuitive as smaller values of ¢ allow EXAM’s
assignment probabilities to get away from RCT’s and focus more on welfare enhancement,
which may come at the cost of diluted information. The parameter € thus embodies the
welfare vs information tradeoff among different versions of EXAM. This observation raises
an intriguing yet challenging methodological question of how to optimally specify €. I leave

this direction for future research.

34 Appendix Table shows that even the most profitable manipulations lead to normalized gains
Aw/wj, smaller than 0.025. This suggests that there are unlikely to be manipulations that produce large
gains.
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7 Takeaway and Future Directions

Motivated by the high-stakes nature of many RCTSs, I propose a data-driven stratified experi-
ment dubbed Experiment-as-Market (EXAM). EXAM is a solution to a hybrid experimental-
design-as-market-design problem of maximizing participants’ welfare subject to the con-
straint that the experimenter must produce as much information and incentives as standard
RCTs do (Propositions . These properties are then verified and quantified in an em-
pirical application where I simulate my design on a water source protection experiment.
Taken together, the body of evidence suggests that EXAM improves subject well-being with
little information and incentive costs. The demonstrated benefits are conservative in that
they do not incorporate potential additional benefits from EXAM for improving recruitment,
compliance with assigned treatment, and attrition (recall the discussion in Section .

This paper takes a step toward introducing welfare and ethics into experimental design.
This opens the door to several open questions. Practically, the most crucial step is to
implement EXAM in the field. In order to make EXAM and other ethical experimental
designs workable in practice, it is important to design an easy-to-use interface through which
EXAM interacts with subjects as well as an algorithm to implement EXAM. A related
question is how best to obtain predicted effects and WTP in practice. The brief empirical
and computational analysis in Section [6] is an effort to tackle these practical challenges.

Econometrically and theoretically, this paper’s analysis is simplistic in many respects,
asking for a variety of extensions. Key extensions include analyzing EXAM in an instrumen-
tal variable setting where subjects may not comply with treatment assignment; analyzing
experimental designs with endogenous subject participation and dropout; introducing mon-
etary compensation and other contracts like informed consent; analyzing EXAM’s dynamic
or sequential properties; optimally choosing sample size and treatment definitions (in ad-
dition to designing treatment assignment probabilities given the sample size and treatment
definition); considering information frictions and psychological elements in patient prefer-
ences; and analyzing games among experimenters with experimental design as an action or

strategy. I leave these challenging directions for future research.
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Table 1: Magnitude of the RCT Landscape

(a) Registered Medical Clinical Trials & Sample Sizes

| Sample Period 2007-2017 May

Total Number of Clinical Trials Registered 296,597
Sum of Sample Sizes 367,902,580

(b) Registered Social and Economic Experiments & Sample Sizes

| Sample Period 2007-2017 May

Total Number of Economic RCTs Registered 1055
Sum of Sample Sizes 22,190,304

Notes: Panel a provides summary statistics of clinical trials registered in the WHO International Clinical
Trials Registry Platform (ICTRP, http://www.who.int/ictrp/en/, retrieved in March 2018). The sample
consists of clinical trials registered there between January 1st 2007 to May 30th 2017. I exclude trials with
registered sample size larger than five millions. Panel b provides summary statistics of economic RCTs
registered in the American Economic Association RCT Registry (https://www.socialscienceregistry.
org, retrieved in March 2018). The sample consists of RCTs registered there between January 1st 2007 to
May 30th 2017 and where the unit of outcome measurement is an individual or a household. I focus on RCTs
with individual or household subjects in order to make it possible to sum up sample sizes. See Section
for discussions about this exhibit and Appendix for the detailed computational procedure. Additional

results are in Appendix Figure and Tables
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Table 3: OLS Regression Estimates of Heterogeneous Treatment Effects

Dependent Variable: Incidence of Child Diarrhea in Past Week

ey 2) 3) “ &)
Main
Treatment -0.045%** -0.045%**% -0.046%** -0.044%** -0.045%**
0.012) 0.012) 0.012) (0.012) 0.012)
Treatment * latrine density -0.061 -0.046
(0.069) (0.068)
Treatment * diarrhea prevention -0.012%%* -0.010%*
(0.004) (0.004)
Treatment * mother's education -0.007*%*  -0.006*
(0.003) (0.003)
Observations 6,750 6,750 6,750 6,742 6,742
Mean of dependent variable in comparison group 0.193 0.193 0.193 0.193 0.193

Notes: This table shows OLS regression estimates of heterogeneous treatment effects of spring protection.
Data from all four survey rounds (2004, 2005, 2006, 2007), sample restricted to children under age three at
baseline (in 2004) and children born since 2004 in sample households. Diarrhea defined as three or more
“looser than normal” stools within 24 hours at any time in the past week. Different columns differ in the
set of baseline household characteristics interacted with the treatment indicator. The gender-age controls
include linear and quadratic current age (by month), and these terms interacted with a gender indicator. I
use specifications without additional controls. Stars *, ** and *** mean significance at 90%, 95%, and 99%,
respectively, based on Huber-White robust standard errors clustered at the spring level. See Section [6.2] for
the model description and discussions about this table.
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Table 4: Maximum Simulated Likelihood Estimates of Mixed Logit Model of Spring Choice

(1) 2) (3) 4)
Main
Spring protection treatment indicator (Normal)
Mean 2.205%*%* 3 163%%* 2.999%** 3.516%**
(0.213) (0.235) (0.288) (0.308)
Standard Deviation 5426%%*F  57702%** 5.557%%%* 5.741%%%*
(0.298) (0.291) (0.405) (0.305)
Treatment * latrine density 7.533%** 2.751%*
(0.939) (1.178)
Treatment * diarrhea prevention 1.080%** 0.565%**
(0.104) (0.095)
Treatment * mother's education 0.650%** 0.609%**

(0.066) (0.069)
Distance to source, minutes walk (Restricted triangular)

Mean 0.222%*%%  (0220%*%*  (0.220%%*%  (.221%**
(0.010) (0.010) (0.010) (0.010)

Standard Deviation 0.222%*%%  (0220%%*  (.220%%*%  (.221%**
(0.010) (0.010) (0.010) (0.010)

Source type: borehole/piped -1.079%%*%  _1.047F**F -1 055%**%  -1.054%**
(0.135) (0.136) (0.139) (0.133)

Source type: well -1.924%%% 1 954%*% ] 943%** ] Q44%**
(0.137) (0.131) (0.134) (0.131)

Source type: stream/river -1.422%%% ] 3TH*E 1 443F%%k ] 3QFE*k
(0.144) (0.141) (0.148) (0.143)
Source type: lake/pond -0.312 -0.313 -0.333 -0.299
(0.269) (0.273) (0.274) (0.406)
Number of observations 53427 53427 53427 53427

(water collection choice situations)

Notes: This table shows mixed logit estimates used for estimating heterogeneous WTP for the treatment.
Each observation is a unique water collection trip recorded in the final round of household surveys (2007). The
omitted water source category is non-program springs outside the target area of the experiment. Different
columns differ in the set of baseline household characteristics interacted with the treatment indicator. The
indicator for the spring that each household used at baseline is in the models, but its coefficient estimate
is not shown in the table. Standard errors are based on the information matrix with the Hessian being
estimated by the outer product of the gradient of the simulated likelihood at the estimated parameter value.
Stars *, ** and *** mean significance at 90%, 95%, and 99%, respectively. See Section for the model
description and discussions about this table. See Appendix [A:3.3] for the estimation procedure to produce
these estimates.
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Figure 1: Treatment Effects and WTP for the Treatment

(a) Heterogeneity in Treatment Effects é;,; (b) Heterogeneity in WTP wj,
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Notes: This figure shows the pattern of heterogeneity in estimated WTP w;, and predicted treatment
effects é;,;. Panel a is about the predicted treatment effects é;,; measured in percentage point reduction
in the incidence of child diarrhea in the past week, while Panel b is about WTP for the spring protection
treatment w;, , measured by time cost of water collection in the unit of workdays. Both predicted effects é;,;
and WTP w;;, are based on the main statistical specifications including all of the interactions between the
treatment indicator and household characteristics (baseline latrine density, diarrhea prevention knowledge
score, and mother’s years of education). Panel ¢ demonstrates the correlation between WTP 0, and
predicted treatment effects é;,;. For the sake of visibility, I focus on the three standard deviations around
the mean. See Section[6.2|for discussions about this figure. See Appendix[A.3.3|for the detailed computational
procedure.
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Figure 2: EXAM vs RCT: Welfare

(a) Average WTP for Assigned Treatments w}
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Kolmogorov—Smirnov test: D = .246 , p-value =0

(b) Average Predicted Effects of Assigned Treatments e
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Kolmogorov—Smirnov test: D= .425 , p value= 0

Notes: To compare EXAM and RCT’s welfare performance, this figure shows the distribution of average
subject welfare over 1000 bootstrap simulations under each experimental design. Panel a measures welfare
with respect to average WTP w} for assigned treatments while Panel b with respect to average predicted
effects e] of assigned treatments. A dotted line indicates the distribution of each welfare measure for RCT
while a solid line indicates that for EXAM. Each vertical line represents mean. Both predicted effects é;,;
and WTP w;;, are based on the main statistical specifications including all of the interactions between the
treatment indicator and household characteristics (baseline latrine density, diarrhea prevention knowledge
score, and mother’s years of education). See Section for discussions about this figure.
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Figure 3: EXAM vs RCT: Average Treatment Effect Estimates

(a) Distribution of Treatment Effect Estimates b*
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Notes: This figure compares EXAM and RCT’s causal inference performance by showing the distribution
of average treatment effect estimates under each experimental design. Grey bins indicate average treatment
effect estimates for RCT while transparent bins with black outlines indicate those for EXAM. The solid
vertical line indicates the mean for EXAM while the dashed vertical line indicates that for RCT. See Section
[6.3] for discussions about this figure.
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Figure 4: EXAM vs RCT: p Values for b*

(a) Exact, Finite Sample p Values (b) Non-robust p Values
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Notes: This figure compares EXAM and RCT’s causal inference performance by showing the distribution
of p values accompanying treatment effect estimates b* under each experimental design. The p values are
based on exact, non-robust, robust, or |[Abadie et al.| (2017))’s finite population causal standard errors. Grey
bins indicate p values for RCT while transparent bins with black outlines indicate those for EXAM. The
solid vertical line indicates median for EXAM while the dashed vertical line indicates that for RCT. See

Section [6.3] for discussions about this figure.
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Figure 5: EXAM vs RCT: Incentive

(a) WTP manipulation ~ true WTP+N(0,100) (b) WTP manipulation ~ true WTP+N (0, 1000)
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Notes: This figure shows the histogram of true WTP gains from potential WTP misreports to EXAM,
quantifying the incentive compatibility of EXAM. Different panels use different ways of drawing WTP
manipulations indicated by the panel titles. Each solid vertical line represents the mean WTP gain from
potential WTP misreports to EXAM. The dash vertical line is for RCT, where the true WTP gain from
any WTP misreport is zero. See Section for discussions about this figure.
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A Appendix (For Online Publication)

A.1 Methodological Details

Throughout Appendix[A.1] T impose the simplifying assumption that Y, pj;(e) € Z for every
t. It is possible to dispense with this assumption with additional notational burden.

A.1.1 Propositions (4] and [5 Generalizations

This section extends Proposition [5| to a general case where p;n, (the expected number of
subjects with propensity vector p and assigned to treatment ¢ under EXAM) may not be
an integer. Let Ny, = >, 1{p;(e) = p}D;; be a random variable that stands for the number
of subjects with propensity vector p and assigned to treatment ¢. Denote the realization of
Ny by npe = 32, 1{pj(¢) = p}dy where dy is the realization of Dj. Let n,, be the greatest
integer less than or equal to pyn,. With this regularity condition, I extend Definition [2| as

follows to use EXAM to draw a deterministic treatment assignment and the associated n,;’s.

Definition 2| (EXAM Continued; Generalization). Starting from the end of Definition
in Section , draw a treatment assignment from p(¢) as follows. First apply Budish et
al. (2013))’s algorithm (in their Appendix B) to draw (n,) € N that satisfy the following

properties (I detail their algorithm and its use below):
e n, = pn, for all p and ¢ such that p;n, € N.
® ny € {n,,n, + 1} for all p and ¢ such that p;n, ¢ N.
o > . ny =ny, for all p.
o > Nyt =) ;Dile) for all ¢.
o E(ny) = pin, for all p and ¢.
Given the drawn values of (n,), for each propensity vector p,

e | uniformly randomly pick n,, subjects from {i|p}(e) = p} and assign them to .

For each subsequent step k=1, ..., m,

e Step k: From the remaining n, — Zi’;;; nye subjects, I uniformly randomly pick 7,

subjects and assign them to t;.
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When p;n, is an integer for all p and ¢, n,; = p;n, always holds for all p and ¢ so that this
generalized definition reduces to Definition [2] in Section 5 With this extended Definition 2]
Proposition [4] holds as it is in the main text. I obtain the following characterization of the

variance of ATE estimator B: , which nests Proposition [5(in Section .

Proposition [5|(Generalization). Suppose that the data-generating process is EXAM p*(e) =
(ph(€))ir with any given € > 0. BA; is an unbiased estimator of the average treatment effect

with the following variance.

SQt, G2 ” SQtt
ﬁt|p 252{ Z [( . >(1_pt/np+npt’)+< £ 1>(pt’np_ﬂpt/)]_ P 0}.
t'e{to,t} Bty Ny + np

Zi:p;‘ (e)=p Y; (t)

where recall that 6, = n,/n, Y, (t) is the mean of Y;(¢) in the subpopulation

"p
i (9—p(Yi(t) = V(1))
with propensity p, Sy, = P : r is the variance of Y;(¢) in the subpopula-
ny, — ) B
i o=pYilt) = Yi(t) — (Y1) — Y,(t)))?
tion, and S, = 2i9=p 1 d r is the variance of Y;(t) — Y;(t')
ny, —

in the subpopulation.

Using Budish et al.| (2013)’s Algorithm

In the above generalized Definition [2 I use Budish et al. (2013))’s algorithm to draw (n,).
To do so, I embed my setting into their notation as follows: N = {p € [0,1]™"}| there
exists some subject i such that p}(e) = p} is the set of “agents” in their terminology. Let
O = {to,t1,...,t;m} be the set of “objects.” H = {H;,Hs} is a “constraint structure” where

Hi = HoUHY, Ho = {{(p. ) }pentcot, H1 = {(p, )|t € O}pen, and Ha = {(p,t)|p € N }hieo.
Upper and lower constraints are as follows.

° qszlandgs:OifSE”Ho.
e J,=q :np—ztﬂptifse’}-l’l.
© G.=q = .pile)— Dt if s € H,.

Budish et al.| (2013]) show that applying their algorithm to this problem produces (z,:)
such that ny, = n,, + x, satisfies the properties in Definition [2| For completeness, I define
their algorithm; see their Appendix B for more details. I first construct a network flow as

follows. Let Q = {{(p,?)}penteco} and X = (z,)uecq. The set of vertices is composed of the

45



source s and the sink s’, two vertices v, and v, for each element w € 0, and vg for each
SeH\ [(Upea{w}) U (N x O)]. T place (directed) edges according to the following rule.

e For each w € Q, an edge e = (v, v,) is placed from v, to v,,.

e For each k = 1,2, an edge e = (vg,vg ) is placed from S to S” # S where S, 5" € Hy,
if S € S and there is no S” € H;, where " C 8" C S.

e An edge e = (s,vg) is placed from the source s to vg if S € H; and there is no S" € H,
where S C S".

e An edge e = (vg, §') is placed from vg to the sink s" if S € Hy and there is no S" € H,
where S C 5.

I associate flow with each edge as follows. For each edge e = (v,,v,), I associate flow
x. = x,. For each e that is not of the form (v, v,,) for some w € Q, the flow x. is (uniquely)
set to satisfy the flow conservation, that is, for each vertex v different from s and s, the
sum of flows into v is equal to the sum of flows from v. I use this network flow to define the

following algorithm.

Definition 3 (Budish et al| (2013)’s Algorithm). If deg[X (H)] = |{S € H|z, € Z}| = |H|,

then stop the algorithm. Otherwise, move on to the following steps:
(1) Cycle-Finding Procedure

(a) Step 0: Since deg[X (H)] < |H| by assumption, there exists an edge e; = (vy,v))
such that its associated flow z., is fractional. Define an edge f1 = (vy,v]) from
v1 to vl.

(b) Step t =1,...: Consider the vertex v; that is the destination of edge f;.
i) If v, is the origin of some edge fy € {fi,..., fi_1}, then stop. The procedure
has formed a cycle (fy, fyy1, ..., ft) composed of edges in {fi, ..., fi}. Proceed to

Termination-Cycle Procedure below.

ii) Otherwise, since the flow associated with f; is fractional by construction and
the flow conservation holds at v, there exists an edge e;41 = (U1, U ) # €
with fractional flow such that v; is either its origin or destination. Draw an edge
fe41 by fiz1 = e if v is the origin of e,y and fi41 = (uj,, us41) otherwise.

Denote fir1 = (vit1, iy )-

(2) Termination-Cycle Procedure
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1

2) which is the same as (z.),

(a) Construct a set of flows associated with edges (z
except for flows (., )y <-<¢, that is, flows associated with edges that are involved in
the cycle from the last step. For each edge e, such that f, = e, set wé = Z., +Q,
and each edge e, such that f, # e,, set :13;7 = T,, — a, where o > 0 is the
largest real number such that the induced expected assignment X' = (zl).ecq
still satisfies all constraints in H. By construction, x5 = zg if 25 is an integer,
and there is at least one constraint set S € H such that x} is an integer while x5
is not. Thus deg[X*(H)] >deg[X (H)].

2

) which is the same as (z.),

(b) Construct a set of flows associated with edges (z
except for flows (x., )y<-<t, that is, flows associated with edges that are involved in
the cycle from the last step. For each edge e, such that f, = e,, set x; = Z.. — [,
and each edge e, such that f, # e,, set x; = T, + (3, where § > 0 is the
largest real number such that the induced expected assignment X? = (z2).ecq
still satisfies all constraints in H. By construction, 2% = zg if zg is an integer,
and there is at least one constraint set S € H such that z% is an integer while zg
is not. Thus deg[X?(H)] >deg[X (H)].

(c) Set v by va+ (1 —v)(=p) =0, ie., v= af—ﬁ'

(d) Decompose X into X =yX! + (1 —~)X2.

Note that deg[X*(H)] >deg[X (H)] for both k = 1,2, implying that repeating the above
algorithm transforms the original X into a distribution over deterministic (x,;)’s where
every z, is an integer. The induced distribution can then be used to draw deterministic
() consistent with X. Budish et al.| (2013)’s Theorem 1 and Appendix B show that the
resulting (z,;) has the property that n, = n,, + x,; satisfies the conditions in Definition .

A.1.2 Asymptotic Power Comparison of EXAM and RCT

This section shows that EXAM’s ATE estimation is potentially more precise than RCT’s
even in an asymptotic framework. This observation provides additional support for the finite

sample discussion in Section [5]

Sequence of Experimental Design Problems

Following Abadie et al.|(2017)), I consider a sequence of finite populations of potential subjects
indexed by population size N. For each population N, I randomly sample subjects who
participate in the experiment. Let Ry, denote the indicator of subject ¢ being sampled from

population NV, i.e., Ry; = 1 if 7 is sampled and Ry; = 0 otherwise. Denote the number
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of subjects by n = Z@Nﬂ Ry ;. Given each finite population /N, I consider a sequence of

experimental design problems, each of which consists of

A set of n experimental subjects {i|Ry; = 1}.

e Experimental treatments ¢y, tq, ..., L.

Each treatment t’s pseudo capacity cy; € N with EiZtOcNﬁt =n.

Each subject i’'s WTP wy ;; for each ¢ € {j|Rn,; = 1}.

Each treatment t’s predicted treatment effect ey, for each i € {j|Rn; = 1}.

Among these components, experimental treatments are nonrandom and do not depend on
N or n. The other elements are random because Ry, is random. I allow cy; to be random
even conditional on {i|Ry,; = 1}.

I study a sequence of experimental designs py = (pn.it)i: Ry.i=1,t=to,...t, along with the

sequence of experimental design problems. py is random because some of the components of
an experimental design problem is random. For each sampled experimental design problem
and each i € {j|Ry; = 1}, T use Dy = 1 to indicate that subject 7 is assigned to treatment
t, and Dy, = 0 to indicate that subject 7 is assigned to any other treatment or control.
The distribution of (Dy ) depends on the algorithm to draw deterministic treatment as-
signments. Let Yy ,(t) be the fixed potential outcome of subject ¢ that would be observed
if ¢ is sampled from population N and assigned to treatment ¢. The observed outcome of
subject ¢ in the sample is Yy ,; = Zizto Dy itYni(t). T observe (Yn i, Dy, wn i, en,;) for each

subject 7 in the sample.

Sequence of Parameters and Estimators

I consider a sequence of two parameters as estimands, the population average treatment effect

and the sample average treatment effect, defined as follows:

N N
1 1
Nt = N Z(YN,i(t) — Yi(to)) and By7P'e = n Z Ry i(Yn(t) — Ya(to))-
i=1 i=1
Let g7 = (ﬁﬁ,o,fl, s Bﬁfjfm)' and Bf\?mple = ( ]S\?,lele, s JS\Z%’IG)’. Note that /Bﬁgf is nonrandom

while Sy ' is random due to the random sampling of a subject sample. I put the following

assumption.

48



Assumption 1. There exist G sequences of nonempty subpopulations, {Px1},...,{Png},
such that for all N, (i) Py, ..., Png form a partition of population N, (ii) for all g, for all
i,j € Png, I have (Wn i, eni)e = (Wn e, enj)e, and (1ii) if (Wi, enei)e = (WNjes €neg)e for

some i € Pyg and j € Py gy, then g=¢'.

Denote the size of Py, ..., Png by Ni,..., Ng, respectively. Let n, = ZiePNg Ry, be the
number of subjects sampled from subpopulation Py ,. Now consider two parameters defined

on subpopulation Py 4:

I
B, = — N > (Ywa(t) = Yu(to)) and ﬂfv‘f’;zp@:— > Ryi(Yva(t) = Yaalto)).
9 icPy, 9 iePy g
Let B0 = (B tys - Bivor,) and 6sample = ( f\}fz;fle,. . f\?;ﬁple)’. The population average

sample

treatment effect ﬁp 77 and the sample average treatment effect 53} can be written as the

weighted average of B and ByF ' respectively:

G N G
pop _gﬁpop and ﬂsample _ @Bsample
Nt = N PNt o ONgt

g=1 g=1
As in Section [5] I estimate both S} and ﬁf\??lple with

< n
R 95
51*\771: = Z EB;V,gt’

g=1
where

b~ Y e Py, BENDN it YN, D oic Pry BNADNito YN,
N,gt — -
> iepy,, BniDnit > iepy., BniDnitg

I assume that if two subjects are in different subpopulations, EXAM gives them different as-

signment probabilities and puts them in different subsamples. Let 3 N (6 Nogtys o Bz*v i)

Asymptotic Distribution of Bfw

To derive the asymptotic distribution of BA]*V,t, I need a series of regularity conditions. I
first assume that each subject is sampled independetly with the same sampling probability,
and the expected sample size of each subsample goes to infinity as N goes to infinity. Let
dng = N,/N.
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Assumption 2. (i) There is a sequence of sampling probabilities, py, such that for all
r e {0, 1}V,

N Ti N r;
Pr(Ry =) = o= (1 = py) VR

(11) For all g, Nypn — 00, pn — p € [0,1] and dy 4 — 6, € [0,1] as N — oo.

I apply EXAM to each realized experimental design problem to obtain treatment assignment
probabilities. Denote the assignment probabilities by pi(€). T impose the following restric-
tion on the distribution of capacities conditional on sample. Below expectations are taken
over Ry = (Rna, ..., Ry n)'s (eny) and (Dy ).

Assumption 3. For all g, there is a sequence of constant vectors of size m + 1, qn 4, such
that Elpy(€)|Ry = 1] = qngq for all t, all v € {0,1}", and all i € Py 0 {j|r; = 1}.

For each subject i € Py, N{k|Rny = 0}, define py ;,(€) as py ;,(€) = piy j,(€) for an arbitrary
Jj € PyyN{k|R, = 1}. T also define random variable Dy ; with i € {k|R) = 0} such that
the following assumption is true and treatment assignments are independent across subjects

given assignment probabilities p} (€).

Assumption 4. (Dyit)i=ty,. 4, and (Dnjt)i=t, are independent for any i # j condi-

mo T N Ny b=l tm

tional on Ry = .
I put a few additional regularity conditions.

1
Assumption 5. For all g, there exists some 6 > 0 such that the sequence A ZiePN’g E[|Yai|**]

18 bounded. !

Now let XN,it = DN,it - E[DN,it], DN,Z' = (DN,i,tla ) DN,i,tm)/> XN,i = (XN,i,tU ---,XN,i,tmya

and for each g,

. Y Y
QN,g = 3T Z E XN7, XNZ
9 1€PN 4 1 1

Assumption 6. For all g, Q4 — Qg, where the limit is full rank.

Let 6]\[’“ = YN,i(t) — YNﬂ‘(to) and /BN,i = (ﬁN,i,tU "'7BN,i,tm)/' FOI" all g and all 7 c PN,ga let

o 1
€Ny = Z D it (Yna(t) — ~ Z Ya(t)).

t=to 9 icPn g
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| 1 o1 1
Let Agond — 11mN_>OO F ZZ‘EPN,g VCLT(XN7Z'€N7Z') and Agh = th—>oo F ZiEPN,g E(XN7iE?V7’L‘X]/V7i)'

g g

Assumption 7. For all g, Agond and Aghw exist and are positive definite.

N,
Assumption 8. For all g, \/ﬁ(@ - Wg)ﬁf\,"z 250 as N — oo.
n :

Proposition 6 (Asymptotic Distribution of BA]*W) Suppose Assumptions @ @ @ @ Ij
) 1
andH hold. Let Hy = limpy_,o Fg Zz’ePN,g E(XniXy,;)- Then,
D% 0] d *
\/E(BN,tj - ﬁr,fj) — N0, Vij)a

*
where V7',

is the j-th diagonal element of Vi* = 2521 OgHy  (pAS™ + (1 — p)ASh)H L.
o sample d *
\/ﬁ(ﬁN,tj - N,tjpl ) — N(0, ‘/2,jj)7
where V5, is the j-th diagonal element of Vy = Zggzl OgHy 'ACMH
Asymptotic Efficiency Comparison of EXAM and RCT

How does EXAM compare to RCT in terms of asymptotic standard errors? With RCT, the

. le -
estimator for S3% and 53" is

Zi:RN,izl DN,itYN,’L' Zi?RN,i=1 DN,’L'tO YN,’L'

Zi:RNﬂﬂzl DN,it Zi:RN,iﬂ DN,ito

ARCT __
Nt —

AﬁgT is a special case of B]*V’t when wy ;s = wyj: > 0 and ey = eny; for all 4,5 and ¢ (recall
Proposition. For this RCT special case, Assumption holds with G = 1 and Py being the

N,
set of all subjects. Assumption E also holds since \/ﬁ(% - Wg)ﬁﬁ’f; =0 for all g and N. Let

o 1 _ 1
eni = Dy i(Bni—BR7) +Yni(to) — N SV Ya(to), A = limy o0 N S Var(Xwgen,)

1
and A" = limpy_, N SV UE(X Ni€xi XN ,). Proposition |§| therefore implies the following
result.
Corollary 3 (Asymptotic Distribution of Bﬁ(iT) Suppose Assumptz’onsl% @ @ Ia and I]
hold with G = 1 and pyy ;;(€) = cn/N foralli,t, and N. Let H = limy N SN E(XniXy,;)-

5 d
\/ﬁ( ]}\%f,CtV]T - ]%jg) — N(Oa‘/ll,%j?T)a
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where VACT is the j-th diagonal element of VT = H=1(pAcnd 4 (1 — p)AM)H L,

A sample d
VR(BRIT = BRT) = N (0, V5T,

2,59
where VAT is the j-th diagonal element of VT = H-1Ard g1,
To compare EXAM and RCT by their asymptotic variances, consider a simple situation

where there is only one treatment. For EXAM, let

. 2 . ZiePN,g (YN,i(t) - YN,g (t))2
Gge = M gngp, Sp = lim

N—oo Ng

and

Diepy, (YNi(t) = Yni(t') — (Yivg(t) — Yivg(t)))?

2 .
Sgttr = ]\}5{1)0 N, 5
= Zz YNJ‘(t)
where Yy ,(t) = EPN]’\g[ . For RCT, let

g

S (Viva(t) — Yoe(8)? and
N

. 2 .
, = lim gy, S; = lim
q N—)ooq bt N—oo

> (Yva(t) = Ywva(t) — (Y (t) — Ya(t)))”

2 9.
S = Jim, N >
N
_ Yt - .
where gy = Elcn/n| and Yn(t) = w [ assume these limits exist.

and S?

gtito

Assumption 9. For all g, qg4,, SZ,, S2 exist with qg4, € (0,1).

gti1’ ~gto

Assumption 10. ¢, S7,, S; and S, exist with ¢, € (0,1).

Corollary 4 (Binary Treatment Case). Suppose there is only one treatment ty to be compared
to the control ty. For EXAM, under Assumptions|1}[4 [3, [4 [3, [0 [T [§ and[9,

G 2 2
Ax 0 d S 1 S 0
\/ﬁ(/BN,tl - /8%51) N(07 Z 5!]( “ + 1 _gt - pS;tlto))' (7)
g=1 QQ,tl QQ,tl
A l d ¢ S2t 52t 2
V(B = B ) = N(0, Y 0g(— + —"— = S5 4.)). (8)

1 qQ)tl 1 - qg’tl

Q

For RCT, suppose Assumptz’ons@ @ @ @ @ and hold with G =1 and pjy ;(¢) = cn/N
for all v and t. Then,

) 52 52
0! d 1
VRGBS = BRE) == N0, 4+ 18- — oS, ©)
1 1
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A S2 S2
sample d 1
Vi(BRGT = BaTPe) <= N, th + ﬁ — Sht)- (10)

The asymptotic variance comparison of RCT and EXAM depends on the limiting distri-
bution of potential outcomes and treatment assignment probabilities. EXAM may produce
more precise ATE estimates than RCT if potential outcomes are well correlated with EXAM’s
treatment assignment probabilities. The following example illustrates this possibility, pro-

viding an asymptotic analogue of Example

Example 2. Suppose there is only one treatment ¢;, and py = 1 for all N so that n = N with
probability one. Every subject has Yy (o) = 0 for all N. The subjects in every population
are divided into four groups A, B, C' and D based on their potential outcomes Yy ;(t1). Let
Yni(t1) = 1,2,3, and 4 for anybody in group A, B, C' and D, respectively. Denote the
number of subjects in group A, B, C' and D by N4, N, N¢ and Np, respectively. The

sequences of pseudo capacities and the size of groups A, B, C' and D are as follows:
o If N =4k for some k € N, cyyy = cny, = 2k and Ny = Ng = No = Np = k.

o If N =4k +1 for some k € N, cyyy = 2k, cnyy, =2k +1, Ny =k +1 and Np = No =
Np = k.

o If N =4k + 2 for some k € N, cny, =2k + 1, cny, =2k +1, Ny = Np=k+1 and
Ne = Np = k.

o I[f N =4k +3forsome k €N, enyy =2k+1, cnyy =2k +2, Ny=Np=Nec=k+1
and Np = k.

Assume the experimenter imperfectly predicts treatment effects: ey ,,; = 0 for every ¢ in
group A or B while ey,,; = 2 for every ¢ in group C' or D. Let wy;, = 1 for every 7 in
group A or B and wy;, = 2 for every ¢ in group C' or D. There are two subpopulations,
Pn and Py, such that ¢ € Py for every ¢ in group A or B and i € Py for every 7 in
group C' or D. For every N, EXAM with € < .2 gives the following treatment assignment
probabilitieﬂ: P, (€) = 0.2 for every i € Py, while pjy, (€) = 0.8 for every i € Pypo.
Under RCT, pRST = eny /N = qng,. Note that dyy = Ni/N = (Na + Np)/N — 0.5,
dn2 = Ny/N =(Nc+ Np)/N — 0.5, gnit, — 0.2, qyoy, — 0.8 and gy, — 0.5 as N — oo.
Applying Corollary [] to this example, I have

0.53125 - 1.25
N N

aVar(BX,’tl) = = aVaT’(Bﬁfff)-

15b
35 EXAM outputs these treatment probabilities if I set o = —%, B¢, = bb, and B, = 0 given any budget

b. Note that the capacity constraint holds, i.e., vazl PNit, S CNty-
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where aVar is the asymptotic variance relative either 537} or By" '“ hoth of which pro-
duce the same asymptotic variance by p = 1. The above inequality means that EXAM’s
ATE estimation may be asymptotically more precise than RCT’s even if the experimenter

imperfectly predicts potential outcomes.

A.1.3 Uncertainty in Predicted Effects and Preferences

Unlike the baseline setting in the main body, the experimenter’s information about prefer-
ences and predicted effects may be uncertain and probabilistic. What experimental design
should the experimenter use with uncertain preferences and predicted effects? An uncertain
experimental design problem consists of experimental subjects, treatments, pseudo capacities,

and the following objects.

e Each subject i’s preference or WTP w; for treatment ¢ where w;; is a random variable.

e Each treatment t’s predicted treatment effect €; for subject ¢ where € is a random

variable.

w; and € are the experimenter’s statistical perceptions about WTP and predicted treatment
effect, respectively. Denote wy; = E(wy) and e; = E(é;) where each expectation is with
respect to the distribution of w; and éy;, respectively.

When I apply EXAM to (w;, €4;), the resulting EXAM nests RCT, is efficient with respect
to (wy, 1), is approximately incentive compatible, and is as informative as RCT in the same

senses as in Propositions [IH5

A.1.4 Ordinal Predicted Effects and Preferences

The experimenter’s information about preferences and predicted effects may be ordinal.
What experimental design should the experimenter use with ordinal preferences and pre-
dicted effects? An ordinal experimental design problem consists of experimental subjects,

treatments, pseudo capacities, and the following objects.

e Each subject i’s ordinal preference 7—; for treatment ¢ where ¢ 7-; t' means subject i

weakly prefers treatment ¢ over t'. ~~; may involve ties and indifferences.

e Fach treatment t’s ordinal predicted treatment effect -, for subject i where i 7=, 7
means treatment ¢ is predicted weakly more effective for subject i than for subject 4’.

~; may involve ties and indifferences.

Again, -
I consider the following adaptation of EXAM to this ordinal experimental design problem.
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Definition 4 (Ordinal EXAM). (1) Create any cardinal WTP w}, of each subject i for

each treatment ¢ so that wj, > w}, if and only if ¢ >, ¢".

(2) Create any cardinal predicted effect of each treatment ¢ for each subject i so that

ey; > e, if and only if ¢ >; 7'

(3) Run EXAM (as defined in Definition [2|) on (w},, €};) to get treatment assignment prob-
abilities pi?(e)

Ordinal EXAM nests RCT, is approximately incentive compatible, and is as informative
as RCT in the same senses as in Propositions [T}, [3] and [4], respectively. For approximate
incentive compatibility, I modify the setting so that subjects report ordinal preferences —; in-
stead of cardinal WTP w;,. Moreover, ordinal EXAM has the following nice welfare property

with respect to ordinal preferences and predicted effects.

Proposition 7. p;?(e) is ordinally efficient in the following sense. There is no other ex-
perimental design (py) with pi € [€,1 — €] for all subject i and treatment t, Y . py < ¢ for
all t = ty,...,t,,, and with the following better welfare property: For all cardinal WTP wy

consistent with ordinal 7—; and all cardinal predicted effects e;; consistent with ordinal =y, I

~ot ~

> pawi =Y pif(wi and Y puen > pif(e)en
t t t t

for all v with at least one strict inequality.

have

A.2 Proofs

Proof of Proposition

Suppose to the contrary that there exist some € € [0, €, 7, and ¢ such that pj (¢) # pF°T. Since

ey = ey for all subjects i and j and treatment ¢, I have m.,, = aey + 0 = aeyj + By = mye,,
for all subjects ¢ and j and treatment ¢. Combined with w; = wj; for all subjects ¢ and j
and treatment ¢, this implies that any subjects ¢ and j face the same utility maximization

problem:

argmax,, ¢ p(D_, PuWir 8.t D, PitTie,, < b) = arg maxpjep(zt PiWye St D, PitTie,; < D).

This implies p,(e) = pjy(e) # pfi“" = ¢;/n by the requirement in Definition [2] that (p},); =
(pj¢)¢ for any i and j with w; = w; and e; = e;.
If pj,(e) = pjy(e) > c/n for some t # to, then Y 7, pj,(e) = npj,(e) > ney/n = ¢, which

implies Y 7, 5, > ¢ (since 3", p“" = ¢;). This contradicts the capacity constraint in
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the definition of pj;. If pj,(e) = pj;(¢) < c;/n, then there is another treatment ¢’ # ¢ for which
Piy(€) = piu(€) > ci/n since Y, ¢;/n = 3, pji(e) = 1 for any subject j. This implies that
Z;;l pju(€) = npju(€) > ney /n = cp, again contradicting the capacity constraint if ¢’ # .
The only remaining possibility is p}, (€) = pj;, (€) > ¢,/n > € > 0. This implies p,(e) =
pi(e) < ¢/n <1 —efor some t # ty and so p}, = pj, < ¢;/n (since pfi" = ¢;/n for any 7).
But this is a contradiction since j can increase the value of her objective function ), pj;w;,
by changing p7, and p}, to pj, — d and pj, + 0, respectively, for small enough 6 > 0, since
wj; > Wi, = 0. Such pj, — ¢ and pj, + 0 satisfy the budget constraint since m,, < 0 for

every ¢ and so

> Pumve,, + (P — O er, + (D5 + O ie, <O pluve,, < b.
t'#to,t t/

Therefore, it cannot be the case that p¥, (¢) = pj (€) > ¢, /n. Thus, for every e € [0, €, 1,

and ¢, it must be the case that p(e) = pFcT.

Proof of Proposition

EXAM always exists: 1t is enough to find (pj;) that satisfies the conditions in Step (1) of
Definition [21

Lemma 1. There exists (p,) that satisfies a weaker version of Definition[] that is the same
as Definition [ except that EXAM breaks ties or indifferences so that every subject i’s p;
solves the utility maximization problem with the minimum expenditure ), puTie,, (but it is
not necessarily the case (pj;): = (Pj): for any i and j with w; = w; and e; = ¢;).

Proof of Lemma [ Fix « at any negative constant o* < 0. Fix 8, = 0. Define a
space of possible values of 8 = (5;); by B = [, x [0,nb — a*el{e > 0}]™ where ¢ =
max{e;}. For any given v > 0, define the demand correspondence for each subject i by

pi(B,7) =argmaxy,cp >, (pPawi — Ypiu(a'e, + Bi)) st >, pu(a¥ey + ) < b. Define the
excess demand correspondence z,(-) : B — R™"! by

2,(B) = {sz —c|p; € pi(B,) for every i} = pr(ﬁ,y) —c

where ¢ = (¢;). This correspondence z,(-) is upper hemicontinuous in # and convex-valued
because it is a linear finite sum of p;(/3,v)’s, which are upper hemicontinuous and convex-

valued as shown below.

Step 1. For every subject i and vy > 0, her demand correspondence p;(3,7) is nonempty,

convex-valued, and upper hemicontinuous in [3.

56



Proof of Step[1 p;(B,7) is convex-valued since for any p;, p; € p;(8,7) C P and § € [0,1], it
holds that ps; = dp; + (1 —0)p} is in p} (B, y) because the objective Y, psirwir — Yps,it (0 er; +
B) = >, (wi — y(a*ey + Bi))psa is linear and ps,; satisfies the budget constraint because
Yo bsat(aten + Br) = 03, pi(atey + Br) + (1 —0) >, piy(a¥ey + Br) < db+ (1 —6)b = b.
pi(B,7) is non-empty and upper-hemicontinuous by the maximum theorem. To see this, note
that (1) the utility function is linear and (2) the correspondence from /5 to the choice set
{pi € P|>_,pit(a*ey; + B;) < b} is both upper-hemicontinuous and lower-hemicontinuous as
well as compact-valued and nonempty ((pit)i=t,4,....4,, = (1,0,...,0) is for free and always in
the choice set). Thus the maximum theorem implies that p;(3,) is non-empty and upper-

hemicontinuous, completing the proof of Step [I O

Let ¢ = max¢, and B =0 x [—¢,n(b + &) — a*el{é > 0}]". Define a truncation function f :
B — B by f(B) =0 x (max{0, min{S;, nb — a*el{e > 0} }})i=s, . +,,. Define correspondence
gy : B = B by g,(8) = f(B8) + 2,(f(8))-

Step 2. For ally >0, g, has a fized point 35 € gv(ﬂf;).

Proof of Step . 2,(f(B)) is upper hemicontinuous and convex-valued as a function of g € B
because f(-) is continuous and z,(-) is an upper hemicontinuous and convex-valued cor-
respondence, as explained above. This implies that g,(83) is upper hemicontinuous and

convex-valued as well. The range of g,(5) lies in B, ie., Gy - B — B. Tt is because

e f(8) =0 x (max{0, min{5;, nb — a*el{e > 0}} })i=t, 1. € [0,nb— a*el{e > 0},
which is by nb — a*el{e > 0} > 0 (recall a* < 0).

e c =maxc > 1.

e 2,(f(B)) € [~ n]™t" because, for any 3 € B and t, the excess demand z () is at
least —¢ (since the supply of any treatment ¢ is ¢, < ¢ by definition) and at most n
(since there are n subjects and the demand for any treatment ¢ by any subject 7 is at

most 1).

Finally, B is nonempty by —¢ < 0 < n(b+ &) < n(b+ ¢) — a*el{e > 0}. ¢,(3) = f(B) +
2,(f(B)) is therefore an upper hemicontinuous, nonempty, and convex-valued correspondence
defined on the non-empty, compact, and convex set B. By Kakutani’s fixed point theorem,
there exists a fixed point 83 € g,(f}), proving Step ]

Step 3. For any sequence of v, > 0 with lim, v, = 0, consider the associated sequence
of fized points B3 € g,,(B5,). There exists a subsequence of (85 ) that converges to some
p*. Any such limit 5* is a fized point of go in the sense that B* € go(5*).
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Proof of Step @ The space of possible values of 32 is B = B, x [0,nb — a*el{e > 0}]™,
which is compact. The Bolzano-Weierstrass Theorem therefore implies the existence of a
convergent subsequence of (37 ).

The last part follows from (* € lim,_,o g4, (5*) C go(5*), which I show below, where
lim,, o0 gy, (5%) is the set-theoretic limit define by {f]lim, . 1{f € ¢,,(6*)} = 1}. This
set-theoretic limit exists by the following reason: Since 5* € B and f(5*) = 5%, I have

9 (B7) = F(B") + 2, (f(87) = B+ 24, (B7) = B+ D _pi(B"7m) — e

For proving the existence of lim,,_,« ¢, (8%), it is enough to show lim,,_,. p*(5*,7,) exists.
To show it, note that if p' € p*(8*,7;) and p' ¢ p*(8*,y) for v; > v > 0, then for all v,
with v > v > 0, I have

Pt ¢ p (65 m),

which is true by the following reason: p' € p*(8*,v;) and p' ¢ p*(8*,vx) imply there exists

some p? satisfying the budget constraint and such that

Zp?twit — Wepi (@ en + Bi) > Zpiltwit — i (e + Br)

t t

while
2 2 * 1 1 *
E PiWir — Vi (a e + By) < E PiWir — ViPir (" esi + By).

t t

Taking the difference between the last two equations results in
Zp?t(a*eti + 6i) > szlt(a*eti + Bt).
t t

Plugging this inequality back into an earlier expression, I get >, pZwy > >, pyw;. There-
fore, p' & p*(8*,71). Note also that for any small € > 0 there exists infinitely many n such that
Yn < € and finitely many m such that ~,, > €. By a result from measure theory (Billingsley
(2008) p.52), therefore, liminf, ., p*(8*,7,) = limsup,,_, . p*(5*,7,) and the set-theoretic
limit lim,_, p*(8*, ) exists, implying by the above argument that lim,_,. g,,(8") also
exists.

It only remains to prove lim, .. g+, (5) C go(B) for all 5 € B. Suppose to the con-
trary there exist some b and  such that b € lim, o g, (8) but b ¢ go(8). Thus b €
lim,,_,ocargmaxy,cp (D, PiuWit — YnPi(en + Bi) st >, pu(a¥ey + i) < b) but there ex-
ists some b* satisfying the budget constraint such that ), bjw; > >, byw;. But this
implies lim,,_,o0 Y, bwi — Yubl(afey + i) > limy, oo D, bpwir — Ynbi(a*ey + Bi) since
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V¥ — 0. This is a contradiction to the assumption b € lim, g, (3). It is thus true
that 8 € limy, 00 g4, (87) C go(87), implying 8" € go(8”). O
Step 4. For the fived point * = lim,, 0 (), of g(+), the associated price function vector
(e = e + f1(B%)), where fi(B*) is the t-th element of f(B*), satisfies the conditions in

Lemma [1.

Proof of Step . By the definition of a fixed point and correspondence ¢g(-), there exists
2* = (2f) € z(f(5*)) such that Bf = fi(8*) + z; for all . Fix any such z* and the associated
£*. 1t is enough to show that the associated equilibrium treatment assignment probability
vector (p};) with (p},); €argmax,,cp(d, puwa st. Y, pu(a*ey + fi(8*)) < b) satisfies the
capacity constraint for every treatment t = ¢4, ...,t,,. For each treatment ¢, there are three

cases to consider:

Case 1: 8 < 0. Then f;(8*) = max{0, min{s;,nb — a*el{e > 0}}} = 0 and hence

By = fi(B*) + 2 implies f; = z; = > . pf; — ¢ < 0, implying Y . pl < ¢, i.e., the capacity
constraint holds.

Case 2: 5 € [0,nb — a*el{e > 0}]. By the definition of f, I have f;(5*) = ;. Then
B = fi(B*) + 2z implies z; = 0, i.e., the capacity constraint holds with equality.

Case 3: 87 > nb— a*el{e > 0}. Then f;(5*) = nb — a*el{e > 0} and hence g} =
f:(8%)+ 2 implies that 2 = f —nb+a*el{e > 0} > 0, i.e., treatment ¢ is in excess demand

at price T, = a*e + f;(6*). However, for any possible predicted effect level e < e, I have

nb+a*(e—e)>nb ife>0
e = e+ fi(6%) = a*e +nb— a’el{e > 0} =
nb+ a*e > nb otherwise,

where the last inequality is by o < 0 and e < € < 0. Therefore, for each subject 1,
Pl < b/mpe,, < 1/n. This implies that ). p;, <1 < ¢, a contradiction.

Finally, the construction of 8* as §* = lim,, 0[] guarantees that every subject i’s

p; solves the utility maximization problem with the minimum expenditure ), p;m.,, This
completes the proof of Step ] and Lemma O
O

I use Lemma [1] to show there exists (p}) that satisfies the conditions in Definition [2]
Let (p},) be the assignment probability profile found in Lemma [I] Define I(w,e) = {i €
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{i1,...yin}|w; = w,e; = e} be the set of subjects whose WTP and predicted effect vectors

are w and e, respectively. For each w, e, and ¢ € I(w,e), let

k% __ Zie[(’w,e) p;k

b =
[I(w,e)

p;* solves the utility maximization problem in Step (1) of Definition [2| with the minimum
expenditure since ), pfw,; = >, piwy and Y, pF e, = Y, DiTie,, < b. The above con-
struction guarantees that p;* = pj* for any ¢ and j with w; = w; and e; = ¢;. p;* also
satisfies the capacity constraints by > . pi* = Y. pf < ¢ for all ¢, where the last inequality
is by Lemma . pi* thus satisfies the conditions in Definition

EXAM is ex ante Pareto efficient subject to the randomization and capacity constraint:
Suppose to the contrary that there exists € € [0,€) such that pj(e) is ex ante Pareto
dominated by another feasible treatment assignment probabilities (pi(€));: € P™ with
pi(€) € [e,1 —¢| for all ¢ and t and ), py < ¢ for all t =4, ..., 1, i€,

o > .pit(e)er > >, i (€)ey for all ¢ and
o > .pir(e)wy > >, ph(€)wy for all i

with at least one strict inequality. Let me use p;(€) to define the following treatment assign-

ment probabilities:

Pit = [pit< ) - qprT]/(l - Q),

where ¢ = inf{q’ € [0,1]|(1 — ¢)p}, + ¢'pE°T € [¢,1 — €] for all i and ¢} is the mixing weight
used for defining and computing pj(¢) in Definition . In other words, p;; are the treatment

assignment probabilities such that the following holds:

pit(€) = (1 — @)pu + qpfe”.

Since both p;(e) and pfi“T are in convex set P", p; is also in P™ (note that Y, py =

Supie(e) — qplT] /(1 — q)) = (1 — q)/(1 — q) = 1 for every i). For each i, I have
> pal)en =Y pile)en Z((l — q)pir + api " Jer > Z Q)pi; + i e
t t
Z q)piteri > Z q)pieti
= Zpiteti > Zpiteti-
t t
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Similarly, for each i, I have
> pulQwi =Y pi(wi & Y (1= @)pu+ apf wi > > (1= @)pj, + o/ wi
t t t t
= Z(l — q)PirWi > Z(l — q)pj;wa
t t
<~ sz‘th’t > Zp;}wit-
t t

Therefore, the assumption that p;(e) ex ante Pareto dominates pj,(€) implies that p;; ex

ante Pareto dominates pj, i.e.,
o > puew > Y, phew for all i and

o > puwy > Y, prw; for all i

with at least one strict inequality. There are two cases to consider.

Case 1: ), pe; > ), 156y for some i. This implies

DD puen > DD paen = Y Y PilTie, = B)/a> Y Y pilme, = Bi)/a
o o t(byzthe definition of 7, ztae; 8, with a % 0)
& Z Z PitTie,, /0 > Z Z Dl Trens ]
e Y - an
@2 szmem < Z 2 i

(since o < 0 by Definition [2))

I thus have

DD PitTe <)) Pirey (11)
t t i

However, it has also to be the case that ), pumie,, > Y, PiyTie,, for any i since (a) >, piywi >
> Diwie by assumption and (b) (p},): is (a mixture of) the cheapest among all feasible as-

signment probability vectors that ¢ most prefers under prices (m): and budget b. Thus
Dot D i DitThey = Dy > i PiTee,» @ contradiction to inequality .

Case 2: ), pwy, > ), piw;, for some i. Since 7 most prefers (p,): among all assignment

probability vectors in P™ that satisfies the budget constraint under prices (7 )s ., the strictly
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more preferred treatment assignment probability vector (p;); must violate the budget con-
straint, i.e., >, DitTte,. > b > > P3,Tte,;, where the second weak inequality comes from the
assumption that (p?); satisfies the budget constraint under prices (). Moreover, for any
other subject @ # @, >, DitTie, = Y PitTtes; Since (pj;); is (a mixture of) the cheapest among
all assignment probability vectors in P that i most prefers under prices (m.):. and budget
b. 1 thus have

Z DitTte,; + Z Z DitTte,; > Z pgﬂtet; + Z Zp;(tﬂ-teti a4 Z Z DitTte,; > Z Z DitTtey, -
¢ t Pt

i# L t i# ¢ i
However, by the logic described in Case 1, the assumption (>, puey > >, pier for all 7)

implies that >, >, DuTie,, < D i D s PiiTie,» & contradiction.

Therefore, p},(e) with any € € [0, €) is never ex ante Pareto dominated by another treatment

assignment probabilities (pi(€));+ € P™ with p;(€) € [e,1 — €] for all i and ¢.

Proof of Proposition

The proof uses intermediate observations.

Lemma 2. EXAM is “envy-free,” i.e., for any experimental design problem, any e € [0,€),

any subjects i and j with e;; = ey for all t,
ijt(e)wit > Zp;t(€>wit'
t t

Proof of Lemma[4 In Definition [2| all subjects have the same budget and any subjects i
and j with e; = e;; face the same price m, of treatment ¢. For any subjects ¢ and j with
ey = e for all ¢, therefore, (p;ft)t satisfies 4’s budget constraint and ), pjwi > >, P Wit

This implies the desired conclusion since

D phwa = phwi < (1—a) > phwa+¢ Y pTwi = (1—9) > phwi+q Y pf wa
t t t t t t
< ZPZ&(G)U}# 2 Zp;t(e)wit:
t t

where the first equivalence is by pf¢T = pli“T = ¢, /n. O

Lemma 3. EXAM with WTP reporting is “semi-anonymous.” That is, for any sequence of

experimental design problems, any n with any €" € [0,€"), any subjects i and j with ey; = ey;
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for allt, let (w;, wj, w_g jy) be a permutation of (w;j, w;, w_y; ;3) obtained by permuting i and

Jj’s WTP reports w; and w;. Semi-anonymity means that

*MN . -n _ %7 . N
pi" (wiy wi, wgi gy €°) = P (wy, wi, w_gi jy; €"),
X7 . n _ *N . N
p] (wiijvwf{i,j}ae ) =D; (wjawiwa{i,j}ve )7 and

pzn(wm Wy, W—{4,5}5 En) = pzn(wﬁ Wiy W—_{5,5}3 En)a Jor all k 7£ i ]

Proof of Lemma[3 In Definition [2] of EXAM, all subjects have the same budget and any
subjects ¢ and j with e; = e;; face the same price m. of treatment ¢. For any subjects 4
and j with e; = e for all ¢, therefore, given any w_y; ;;, subject ¢ with WTP report w;
solves the same constrained utility maximization problem as subject j with WTP report w;
does. Therefore, p;™(w;, wj, w_g;;1;0) = pi™(w;, wi, w_;53;0) and pi™ (wy, wy, w_g 41;0) =
p;" (w;, wi, w_g j3; 0). This implies semi-anonymity since
i (wi wi, wogi gy €) = (1= ¢")pi" (Wi, wyy w-gi gy 0) +¢"p ™
= (1= ¢")p;" (wy, wi, w3533 0) + ¢"p;""

__ *n .on
:pj (wiji;w—{i,j}ae )7

where ¢" is the mixing probability ¢ for the n-th problem in the sequence of experimental
design problems while pFCTn" = prT" = ¢'/n. The last line follows from the fact that

the switch of w; and w; have no effect on the utility maximization problem for any other
k#1i,7. O

Lemmas [2 and [3] imply Proposition [3| by using Theorem 1 of |Azevedo and Budish| (2017))

(precisely, a generalization of their Theorem 1 in their Supplementary Appendix B).

A Statistical Lemma and Its Proof

Lemma 4. Assume a sample of m subjects is uniformly randomly drawn (i.e., every com-
bination of m subjects occurs with equal probability) from the fized finite population of n
subjects with a fized vector of a variable (X1, ..., X,,). Denote the random sample by I. Let
1 ., o n .1 o1 .
/;’hz S i X ot = Vi (Xi—p)® = =3 X and 6% = ———= 37, (Xi = )",
en,

n—1
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1 1
Proof of Lemma. Let W; = 1{i € I} sothat o = — Y"1 | X;W; and 6° = 7 Yo (Xi—
m m —

{)?W;. Then E(W;) =

all 7. Since E(W;W;) =

It follows that

E(W2) = % for all ¢, implying V(W) = % _ (%)2 _ m(nn; m) for
-1
—m(m ) for any ¢ # j, it is the case that for any ¢ # j,
n(n —1)
m m
m m m
= E(WW)) = —E(W)) = —E(W:) +(—)° (12)
— m(m — 1) _ (T)Q
~ n(n—1) n
__m(n—m)
o n2(n—1)
1 n
— VO Xiw)
i=1
1 <« n
OO XIVW) + 7Y XX Cov (W, W)
=1 i=1 j#i
1 m(n—m) <= oy
ﬁ( n2 ZXi_nQn—l ZZXX
=1 i=1 jAi
n—m  —
O X;
n?m — o
n—m 1 n
X2 X2
n2m (; ? ~ n — 1 ; ’L)

n

%w—%m A

i=1
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= o°.
nm
For the other part,
. 1 - .
E(6%) = mE(Z(Xz — 1)*W)
i=1
1 n
=—F X? 2X; 12
— (;( W; = 2X; Wi+ °W5))
= ZXQ s — 2mpi? + mp?)
1 2 -2

=1

= (X - (Vi) + [EG])

=1

1 m n—1m
= —(— X2 — 5 2
(Y P )

where the third last equality is by E(j1) = p while the second last equality is by the definition
of o2. O]

Proof of Proposition

The proof uses the following lemma.

Lemma 5. There exists estimator QAEXAMi such that E(éEXAMAp*(e)) = E(figer(t)?|pficT)

Z D,Y;

Cy

where figer(t) = with Dy, being the treatment assignment indicator under RCT.

1 1
Proof of Lemma H Let puy = - Sor, Yi(t) and S7 = — o (Yi(t) — pe)?. T have
n R

E(firer(®)?1p") = Var(firer(®)|p"") + E(firor (t)|pCT)?

n — ¢ 2 2
- St + /,I/t
nce

n—«c¢

= ne, n—lZY _nﬂt "‘Mt
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- —1
o ZY e D (13)

(n—1)ein 4 n—l)

where the second equality holds by the first part of Lemmafd]and the fact that E(jigcr(t)|pic?) =
Ht-

Below I construct unbiased estimators with EXAM’s data for each term in the right-

1
hand side of equation 1' that is, — > "', Y;(¢)* and p7. I then combine these estimators
n

RC’T) (

into developing an unbiased estimator for E(fipcr(t)?|p which I interpret as a param-

- 1 1
eter) with EXAM. Under EXAM p*(e), e = —>°, — > - (0=, Y?D;; unbiasedly estimates
n 2 o

1
= 3" Yi(t)* because
n

A 1 1
E(0u|p™(e)) = EZE Yi(t)"E(Dulp*(€))
p i:p} (e)=p
1 1
SRy e
p i:p} (e)=p

=2 X vy
P ipi(e)=p

=Y v

Next I obtain an unbiased estimator for 47 under EXAM p*(e). Recalln, = Y0, 1{p}(e) =
p} is the number of subjects with assignment probability vector p and N, = Zi:p%(g):p Dy is

a random variable that stands for the number of subjects with assignment probability vector
Zi:p;‘ (9=p YiDit
Ny PN n
Ttp Pty Pipxamp. Note that py = > —p,. By Definition 2| (3), con-
n Ny Pn
t

ditional on (NN, ), every deterministic treatment assignment consistent with (XN,

1
p and assigned to treatment ¢. Let p,, = — Zi:p*(e):p Yi(t), iexamp = —
np ' Dinp

and fipxam; = zp
happens
with equal probability. This implies that

E(Di|(Npt) = (np), i (€) = p) = Dt

In addition, conditional on (N,:) = (n,), the set {i : pf(e) = p, D;y = 1} can be regarded

as a random sample of n, subjects from the subpopulation of n, subjects with propensity
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vector p. Applying the first part of Lemma[d] I have

Ny — My
VCZ?” Z YiDit|(Npi) = (nyn), p*(€)) = ngta
b iy
1
where S, = — D it (o)=pYilt) = ppe)?. Tt follows from the above expressions that
n, — P
Efpxararl(Npr) = ()7 (€) = = > YiB(Dal (Nyr) = (), 9" (€)
U i ()=p
1 Nyt Tt
= y, ot e 14
ptnp . Z np ptnp'upt, ( )
isp? (©=p
and
N * n
Var(juexasssel (Nye) = (mye) 7' () = (2 ) V(- Z YiDil (V) = (mye), 9 (6))
b 7 (e)=p
= ()™ nptsz (15)
by TNt P

Definition [2] (3) also implies that treatment assignments are independent across subpopula-
tions with different propensities conditional on (N,). Hence, figx A is independent across

p conditional on (V). I have

B Vo)1 (6) = B 2 T mxanon)’| Nor) = () (6)

= Z Z npnp ptan PJEXAM,pt

p p'#p

5 () Bl ) = .10

=30 T i + Z - (pt””) (Var(fexasprl (Nye) = (mpe). 2°(€)

P p'#p

+ E(ftex ampt|(Npt) = (npt) P (e))?)

NpTy DNy Npt \2Tp — Nt o Npt \2 o
- o () (e (2
Z Z 2 > Mpthyp't Z 2 piny . pt en ot

P p'#p

TLN/ n n n
-3 g+ 3 S

p p'#p

(V)2 (NP B antarel (Vo) 7(0))

np/t
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_ (Z L) + Z i ”’;1 ni”tSQ

B M 1 Tl np TLpt
t § pt )
'I’L n pt

where I use the independence of fipxanpt across p conditional on (N,) for the second
equality, equation for the third and the fourth equalities and equation for the
fourth equality. By the law of iterated expectations,

E(ﬂ2EXAM,t|p*(€)> = E(E(/lJzEXAMt’( ) p*(€))|p*(€))

—m+23 —w () — —)s2,

Mp
—“HLZ — Penp + 1) + . (ptnp—nt)—i)Szt
n, +1 -7 n,
n 1— tnp +2n,,
= Sy 16
= My +Zn2 +1) np) pty ( )
where the third equality holds because Definition [2 (3) implies
L —piny +ny if ny = ny,
Pr(Npt = npt|p* (6)) =\ Py — 1y if Npt = Ny + 1
0 otherwise.
Now consider an unbiased estimator for S%. Let 52, = L > (Y-—ptn
w consider an unbi imator for S;. = o —1 2=y

This 32 is unbiased for S?

o

B(S2p() = B3 (N0), ' (O} (©)
SELE B Y M 2 Y0P () ()

—1
Piltp ip} (e)=p

because

Ny —1
— B SA(0)
7
_ Dy — 1 o
peny — 1 pt
_ S2

pt?

where the first equality holds by the law of expected iterations, I use the second part of
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Lemma for the third equality and the fact that E(N|p*(e)) = pin, for the fourth equality.
Combining this with equation , I obtain an unbiased estimator for 1i?: 0 = ik anry —
5 n_i(l — PNy + 20,
P'n? ﬂpt<ﬂpt +1)
for E(firor(t)*|p™T):

1.x
— —)S},. By equation , the following is an unbiased estimator
My

Let D; be the set of all feasible deterministic treatment assignments for subject ¢, i.e.,
D; = {d; = (diy): € {0, 1} ) " dyy = 1}.
t

Let DEXAM and DECT be the sets of deterministic treatment assignments that happen
with a positive probability under EXAM and RCT, respectively. That is, DFXAM = {d;
D;| Pr(d;|p*(€)) > 0} and DECT = {d; € D;|Pr(d;[p"°T) > 0}, where Pr(d;|(pi)) is the
probability that d; occurs under experimental design (p;;). With Definition , D;; = 1 holds
with a positive probability for every ¢ and ¢ both under EXAM and RCT, implying

DRCT — pEXAM _ . (17)

With the support equivalence property , I am ready to show the proposition. Recall
that given any experimental design (p;), I say an estimator (Y, D) is simple if 0(Y, D) can

be written as

HA(Y', D) = Z f(Yz, Diapi) + Z Z Z gtpp’ﬂp(t>ﬂp’ (t)

o Zi:pi:p DltY;
pe i Hpi = p} )
rameter 0 is unbiasedly estimable with RCT pf“? and a simple estimator %7 (Y, D) =

Zi (s, Dz‘zszCT) + Zt gtﬂ%%c:r@):

Suppose that pa-

for some function f, weights g,y ’s, and fi,(¢)

E(OFCT (v, D)|pfcT) = 6. (18)

Note that g; is constant since for RCT, the only potential randomness in g; comes from

(>, Dit)s, which is the same as the constant pseudo-capacity vector (c;);. Now consider

69



another estimator for EXAM:

Pr(D;|p™cT)

éEXAM<Y, D)= —Pr(Di\p*(e))

f(y;, Dz,pZRCT )+ Z gtéEXAM,t-
t

With the knowledge of the original estimator 67T (Y, D), it is possible to compute §EX4M (Y, D)
since Pr(D;|pf°T) and Pr(D;|p*(e)) are known to the experimenter. This #¥XAM (Y, D) is
unbiased for § under EXAM:

E(6"XM(Y, D)|p"(e))

PI'(DZ ’pRCT) RCT ~
=B —"__fv;,D «
( Pr(DZ]p*(e)) f( i» Vi Ps + zt:gteEXAM,t|p (€>)
Pr(d;|p"“T) RCT pRCT
= Pr(d;|p*(e)) =————= f(Yi(d;)
Z Z I'( ’L|p (6))Pr(d,|p*(e))f( ’L( 1 Zapz +th :uRC’T )
? diGDiEXAM
=3 > Pr(dilp" ) F(Yildi), di, pFT) + Y g it (1))
i diGDZB‘CT t

= BE"T(Y, D)|p")

where Y;(d;) = ), d;Yi(t) is the value of observed outcome Y; when D; = d;, the second
equality is by Lemma [5 I, the third equality is by the support equivalence property , and
the last equality is by the unbiasedness assumption 1’ This means that §EXAM (Y, D) is
an unbiased estimator for 6 under EXAM p*(¢). To complete the proof of Proposition , it

only remains to show EX4M (Y, D) is a simple estimator under EXAM.

Lemma 6. 05XAM(Y, D) is a simple estimator under EXAM p*(c).

Proof of Lemmal. First note that

DPinly pn 2.
Sﬁt— Z YDy — 2 Z Ytht ,UEXAMpt+ Z tp %XAM,ptDit)

tn—l
Piltp i:p} (€)=p i:pf i:p} (e)=p

Ptn) A
Z Yi2 it Np N%XAMpt)
zpz(e)

ptnp

I therefore have

Opxans
on—c¢ n(ct—l)é
T =D T (n=1)e
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n— n(e,—1) . n2 1—pn,+2n, 1 .
- Z zlp *le)= i D2t+ (M%XAM,t_Zp p( £ __)Szt)

(n — 1)ct n m n? Ny (n, +1)  ny
= 2 p Dispt(e)=p myﬂlt + %{(Zp %%Zf fEXAMpt)?
1-— +2 1 1 2
_Z n ( _pf(til; n 17)1 n_p m(zz P (e Yzth — (p;\Zi) ﬂ}ZEXAM,pt)}
_ Zp Zi;p;(e):p( n—c (et — l)nfJ 1L —piny + 20, B i))Y;QDit

(n—Dempe (0 — L)em(pm, — 1) N (1 + 1) Ny

n NNyt DeTlpy DNy
4 (_ y ){Z Z P 2p Py Py Fsx At LB X ANy

(n n Npt N’t
o l—pmpy+2n, 1. 1 (pm)? }
* Zp n? ( Nt (ﬂpt + 1) Np Py — 1 N HEx

(ce = D)nznpep)y .
= Zp Zi:pf €)=p alPtY Dlt + Z Zp '+£p ( 1)ctnN tN " HEXAMptHEX AM,p't
pi-'p

(ce—Dnppt , 1 1—pmy+2n, 1. 1
o (2 g
P (n—1)einNy Ny th(ﬂpt +1) n, piny, — 1 EXAMpt

+2

_ 2 -~ N
= i Gy Yy Die + D2, D Qopprt AEX AM ptEX AM 't

where n,, is the greatest integer less than or equal to pyn, and

o n-a (ce — 1)n2 1—pny+2n, 1
Lt = — =
" = Demp (= Demlpimy =1\ mu(mt D ny
(ce — L)n2n2pip;
¢ ,
o — (n—l)ctn ftN/t itp#p
2pp't = ¢ — 1n 1 1 —pin, +2n 1 1
R

(n — LNy Ny Ny (12 + 1) - np pinp — 1

It follows that
éEXAM(Y D)
Pr(D;|pfc” R
= Zz Wf(mv Dzapf%CT) + Zt gteEXAM,t

Pr(D; |pRCT) RCT 2 S P
= ZZ[W <Yz‘, Dlvpz )+Zt gtalp:f(e)t}/;j Dit]+2t gt Zp Zp/ Q2pp't LEX AM ptWEX AM p't

= ZZ f*(Yi, Di»pi) + Zt Zp Zp/ gtpp’ﬂEXAM,pt,aEXAM,p’ta
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Pr(D; pRCT
Wf(n’D“pFCT) + Zt gtalpitY?Dit and Gitpp' = GtQopp't-

Therefore, 0EXAM (Y, D) is a simple estimator under EXAM p*(e). O

where f*(Yi, Dy, p;) =

Proof of Corollary

The mean of potential outcomes for treatment ¢ is unbiasedly estimable with RCT and a
DuY;  ; : ,
1 Q(Y, D) is a simple

simple estimator by the following reason. Let 6(Y, D) = Z?Zl

t
RCTY

unbiased estimator by E(8(Y, D)[p"°T) = 1| p Vi) 1 Zl LYi(0).
C
ATE of treatment ¢ over control ¢, is also unblasedly estlmable with RCT and a simple

DuY;  DuY;
estimator. To see this, let §(Y, D) = o o
Cy Ct,

it follows from the above argument for the mean potential outcome that E (é(Y, D
n Zi:l Y;(t) T Zi:l Yxto) = : :

The variance of potential outcomes for treatment ¢ is unbiasedly estimable with RCT

*). This is a simple estimator, and

Ip"eT) =

and a simple estimator. Consider two possible definitions of the variance of potent1a1 out-
comes: S = = S (V(#) — - S0 V(1) and $F = S (Vi(0) — S0 ()
To see that S? is unbiasedly estlmable with RCT and a simple estimator, let 0.(Y,D) =

! o Di(Y; — figer(t))?, where f(t) = %Z?_l D;Y;. Since I can write 6,(Y, D) as

Cy — 1 )

A n thY Ct
0,(Y,D)=>" -

1( ) ) Zz:l cr — 1 ¢ — 1

(%(t), this is a simple estimator with

D7
f(Yi, Diypi) = — g = — “_ and gy =0 for all ¢/ # .
Ct—l Ct—l

For RCT, {i : Dy = 1} can be seen as a random sample of ¢; subjects from the population
of n subjects. Using Lemma , I obtain E(0,(Y, D)[pR°T) = 52,

To see that Z? is also unbiasedly estimable with RCT and a simple estimator, let
n—1: A A o n—1DuY?

0,(Y,D) = 6,(Y, D). Since I can write 05(Y, D) as 62(Y,D) = > ", I
n ¢ —
-1
n “ fi2(t), this is a simple estimator with
n ¢ —1
—1DyY? —1
f(Y:iaDiapi>:n & :Qt:—n “ and gy = 0 for all t' # t.
n c¢—1 n c¢—1

A 1. —1
It follows that E(f,(Y, D)|pRCT) = L= E(6,(Y, D)pRcT) = = =52 = 32,
n n

Finally, I consider the unbiased estimability of the average treatment effect on the treated
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(ATT) with RCT and EXAM. I first define ATT of ¢ over ¢, conditional on the treatment

assignment being d as

> (Yi(t) = Yi(to))dis
Z?:1 dit '

[ define ATT of t over t, for experimental design (p;;) as

ATT(t|(py)) = E(ATT(t|D)|(psr)) = E(Z?—I(Yi(t) — Yi(to)) Dt |(pz‘t)>.

ATT(t|d) =

Z?:l Dy
For RCT,
1 & l —
ATT(Up") = = ST((1) = Vilto)pi" = S (Vlt) = Yilto)) = ATE.
i=1 i=1

Since ATE is unbiasedly estimable with RCT and a simple estimator, ATT is also unbiasedly
estimable with RCT. For EXAM,

n

Z%W) Z(Yi(t) — Y;(to))pj(€)

Z pzt Z Z ) )pt

D zpz(e

PNy N v
Zzpn) wr(zwmw Yi(to))

ptnp
—CATE,.
Z Z p’Lt ) m

ATT(t|p"(€)) =

n
Since % is known to the experimenter and CATE, is unbiasedly estimable with
i Pit(€

EXAM and Bpt, ATT is unbiasedly estimable with EXAM and Zp Zptnp © ﬁpt
1 zt

Proof of Proposition

I define N, = >, 1{pf(e) = p}D; as a random variable that stands for the number of
subjects with propensity vector p and assigned to treatment ¢. Denote the realization of N
by nye = Y, 1{p;j(€) = p}dy. Recall that n, is defined as the greatest integer less than or
equal to pn, (the expected number of subjects with propensity vector p and assigned to

treatment t). Define A as the set of all (n,;) that satisfy the following:

& Ny =1y for all p and ¢ such that psn, € N.
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® ny € {n,,n, + 1} for all p and ¢ such that p;n, ¢ N.
o >, ny =n, for all p.

o > Nyt =) Dile) for all ¢,
I also define D(n,;) as the set of deterministic treatment assignments where the realization

of (Npt) is ()

D(n,) = {d € {0, 1}“X(m+1)|z dy =1 for every i and Z 1{p; () = p}dit = ny for every p and t}.
t i

The method of drawing deterministic treatment assignments in Definition [2]in Section [5| and

Appendix satisfies the following properties.
Lemma 7 (Small Support). The support of (Ny) is included by N .
Lemma 8 (Conditional Uniformity). Conditional on any (ny) in the support of (Ny), every

deterministic treatment assignment consistent with (n,) happens with equal probability:

D(ny)|™ if d € D(ny
PT(D:d|(Npt):<npt)7p*(€)): | (p)' f € ( )

0 otherwise.

To show the mean part of Proposition [5 note that by Lemma 8] every feasible treatment

assignment occurs equally likely conditional on (V) so that for every p, t and ¢ with p}(e) =

P,
E(Dit|(Ny) = (nye), pi(€) = p) = 2~ (19)

I therefore have

E(Bf|(Npe) = (npe), p}(€) = p)
= E() 0,8l (Nyt) = (nye), pi(€) = p)

=" G, B(Butl (Nye) = (nye), P} (€) = p)

- A3 0700) ~ P~ 000 = 000 =

= Z5PZ {pi(e) = p}(E(D”‘(NPt> = (npt), pi (€) = p)Yi(t) B E(Dit,|(Npt) = (npe), pi(€) = p)}/;.(to))

Tipt Tpto

_ Z(SP Z 1{]3:(6) _ p}(<npt/np>}/i(t) _ (npto/np) (to))

Tipt Tptg
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—Zé —Zl{pz €) = pH(Yi(t) — Yi(to))
— ZépCAT ot

where I use equation for the fifth equality. By the law of iterated expectation, I conclude

E(ffz‘lp*(e))=E[E(BZ‘I(N ) = (), p7(€))[p" ()]
Zd CATEp|p*(e)]

= Z 6,C AT E,,
p

For the variance part of Proposition [5] I prove the general version given in Appendix [A.T.1]
For notational simplicity, I make conditioning on p*(¢) implicit. By the law of total variance,

V(B;f) can be written as:

V(B7) = E(V(B;1(Not)) + V(E(B; | (Nor)))-

As T show above, E(53{|(Ny)) = 3=, 0,C AT Ey, implying V(E(3f|(Ny))) = 0. Thus

V(5;) = BV (B;|(Nyw)))- (20)
To show that E(V (5;](N,¢))) is equal to the expression in Proposition , I introduce a lemma.

Lemma 9. For all (ny) in the support of (Npy),
. S2 52 52
V(3 (n 52( pt | Ppto ptto>'
(B110%0) = () = 85 (2 4 T2 =

P

Proof of Lemma[9 By Lemma 8] treatment assignments are independent across subpopula-
tions with different propensities conditional on (Ny). Bpt is therefore independent across p

conditional on (NN,). Hence,
V(B |(Npe) = (m0)) Z ol (Nyt) = (132)
= Zép?v(ﬁptKNpt) = (npt))-

A St A CAR
It is therefore enough to show that V(8| (Np) = (1)) = =2 + -2 — “P%0 For notational
npt npto My
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simplicity, I make conditioning on (N,;) = (n,) implicit. Let I*" be a random set of

subjects with propensity vector p and assigned to either treatment ¢ or ¢y, i.e.,

170 = {i[p;(e) = p and Dy + Dy, = 1}.

n
IP"0 takes on ( P ) values equally likely, a consequence of Lemma . By the law of
nptA+ Nipt

total variance, V(f,:) can be written as:
V(Byt) = E(V (Bl 1)) + V(BB I7")). (21)

Conditional on [P = I, the randomness in Bpt comes from the randomness in choosing n,,
subjects assigned to treatment ¢ and n,,, subjects assigned to treatment ¢, from the set I of
Nyt + Ny, SUbjects. Every combination occurs with equal probability, so the standard results
of binary-treatment RCT (Theorems 6.1 and 6.2 in Imbens and Rubin| (2015)) apply:

3 1
E(fy|IPt =) = —— Yi(t) — Yi(ty)).
Bl = 1) = L S04 = i)
A S2 S92 52
V(ﬁpt|[ptto = I) — pt|L + pto\[ . ptio|I 7
npt npto npt + npto

where S2,;, 5%, and 2, are the variances of Y;(t), Yi(to) and Y;(t) — Yi(to), respectively,
conditional on the set of subjects I. Regarding n,, ny 4+ nyu,, and Y;(t) —Y;(ty) as performing

the roles of n,m, and X; in Lemma [4] respectively, I use Lemma [ to get

N 1 Np — Nt — N
V(EBy|IP =1) = V(——— Y (Yi(t) = Yi(ty))) = L—#Plog2
(BBl = 1) = V(o 3060 = Vi) = 2R,
R E(S? E(S? E(S? 52 S2 S2
E(V(ﬁptuptto _ I)) _ ( pt\[) 4 ( pt0|1) . ( ptt0|1) _ Pt + pto ptto ’
Tpt Tipto Tpt + Tpto Tipt Tipto Tipt + Mptg

where the last equality is by the second part of Lemma [ Combining these with equation

N S92 S2 92
, I have V(B,) = Zpt | Ppto _ Pptho .

Tipt  Tlpty p

By Lemma |Z|, Ny can take on either n, or n, + 1. Since N, has expectation p;n,, the
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marginal distribution for each NV,; must be

L —piny +ny if ny =mny,
Pr(Npe = ny) = ¢ piny, — 0y if npy = n, + 1 (22)
0 otherwise.

Using equation , Lemma @, and equation , I have

V() :E{;ag(%+%_%>}

-S{ 3 m(3) - %)

t/
t'ef{to,t} p

_ ; (5;{ Z [(Szt’><1 — pyny —l—@pt/) + <th/pi 1>(Pt'”p - @pt’>:| _Z_ZO}'

n
veftoty P

Proof of Equation (4
I prove equation with two lemmas below.

Lemma 10. E(B|p*(e)) = > p MtCATEy for all t where B, is the OLS estimate of B, in

this regression.:

Y, = zm: B,D; + Z Cpol{pi(e) = p} + E;. (23)

t=t1 p

Proof of Lemma . I reparametrize the regression as follows with (By, D,), where D, =
Cy + 3207, Bipe.

Vi =3 BiDu — i) + 3 Dyl pi(e) = p} + B (24)

t=t1

This reparametrization does not change B,. Note also that Y; can be written as follows.

Vo= ST Um0 = p1Yp(0) + 305 1{pi(e) = phCATEy Dy + g,

p t=t1

_ X {pi(e) = p}Yi(0)
where Y,(0) = > Hpi(e) = p}

and >, 1{p;(e) = p}u; = 0 for every p. Therefore, the

7



OLS estimates (B;, D,) of (By, D,) in regression (24)) can be written as follows.

(By, D,) = arg mmz Z {p;(e) = p}Y,(0) + Z Z {p;(e) = p}CATE,;D;

(Bt Dp) p t=t1
- Z By(Dis — pjy(e Z D,1{p; () = p}I*
t=t1
tm tm

= ag ml)n Z Z 1{pi(e) = p}(Yp(0) = Dy + Y CATE,Dy) = Y Bi(Diu — pip(e)))’

(B¢,Dp t=t1 t=t1

tm

= arg mmz {Z 1{p; (e Y,(0) — D, + Z CATE, Dy}

(Bt,Dp)

t=t1

-2 10700 = 030 -, +2m:CAT D) S BuDi — ()

t=t1 t=t1

+ {Z By(Di — pj(€)}]

tm

= arg mlnz {Z {p; (e Y,(0) — D, + Z CATE,Dy)}?

Bt Dp i t=t1

—23 1{pi(e) p}ZGATEptDnZBt it — D(e +{ZBt it — P (€)}]

t=t1 t=t1 t=ty

because > .(D; — pj;(€)) = 0. Minimizing this over B, leads to

B > >, Upi(e) = pyCATEy Dy (Dir — piy(€))
t >oi(Dis — pii(e))? '
>y 2 Upile) = pipi(e)

Because P(D;; = 1) = and
n

> Hpi(e) = ptpj(e)
> e 2o H(pi(e) = a3pi(e)’

it follows that the numerator is equal to Zp pe(1 — pt)0,CATE,; and that the denominator
is equal to > py(1 — p;)d,. This implies that E(By[p*(€)) = 3, \pCATE,. O

P(pi(e) =p|Dy =1) =

Lemma 11. B, = 13;* for any t and any realization of treatment assignment Dj;.

Proof of Lemma . By the Frisch-Waugh-Lovell theorem, the OLS estimates of can be

obtained by regressing each of Y; and D;; on the fully-saturated propensity score controls and
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then using the residuals from these regressions as the dependent and independent variables
for a bivariate regression that omits the propensity score controls. Consider the auxiliary
regressions that produce these residualized variables: they have D;, on the left hand side,
with a saturated control for pf(e) on the right. By the law of iterated expectations, the

conditional expectation function associated with this auxiliary regression is

E[Dulp;(€)] = pi(e).

In other words, the conditional expectation function E[Dy|p; ()] is linear in regressors pf(€),
so it and the associated auxiliary regression function coincide (note that I use a saturated
model for pf(e)). Therefore, regression (3)), which additively separably and linearly controls

for p%,(e)’s, produces the same estimate as regression ([23)). O

Proof of Proposition [6]

The proof uses the following lemma.

Lemma 12. Suppose Assumptions([1, [3 [ [4 [3, [0, and[7 hold. For all g, as N — oo,

Q* 0 d — con ehw _
Vg (Brg = BRE) == N(0, Hy  (pAS™ + (1 — p) A H ).
D sample d _ con _
g (Br g = BRTP) =5 N0, Hy P AL H Y.

Proof of Lemma[13 This result is a consequence of Theorem 3 of [Abadie et al| (2017).
To verify their assumptions hold, fix any ¢, and regard subpopulation Py, as the entire
population. Note that N, — oo as N — oo by Assumption [2| (ii). Dy, and 1 in my
notation correspond to Uy; and Zy; in |Abadie et al.| (2017). Their Assumption 3 holds by

the following reason: For all g and i € Py,
PT((DN,z‘t)t:to,...,tm = di|RN = 7“) = E[PT((DN,z‘t)t:to,...,tm = dilRN =T, (CN,t))|RN = 7’]

= B3 piva(e) i = 1R =]

t=to

tm
= ZQN,g,tl{dit =1},

t=to

where the third equality holds by my Assumption . Then, Pr((Dnit)i=to,..tn, = di) =
EPr((Dyit)i=to....t, = dil Ry = 1)] = Pr((Dn.it)t=t....t,, = di| Ry = ). Under my Assump-

79



tion []

N N
Pr((Dy) = (di)|Ry = 1) = [ [Pr(Dnit)i=to.tn. = dil Ry = 1) = [ [ PrU(Dwit)i=ton..t = di),
=1 =1
and
N
Pr((Dna) = (di)) = E[Pr((Dy;) = (d)|Ry = )] = [ [ Pr((Dwie)i=to, ..t = di)-
=1

Therefore, (Dn1t)t—to...tms > (DN.Nt)t=to,...t,, are jointly independent from each other, and
independent of Ry. Assumption 3 in Abadie et al. (2017) therefore holds. Since E[Dy ;| =
(N.gtrs -3 AN gt,,) for i € Py ,, Assumption 7 in [Abadie et al.| (2017) holds. Note that

tm tm
Z Dy YN (t Z Dy it(Yn,i(t) — Yni(to)) + Z Dy itYn,i(to) = vaﬂﬂN,z' + Yn.i(to),
t=to t=t1 t=to

implying Assumption 8 in |Abadie et al. (2017) holds. I next show that my 3" and 57" le

are equal to their #5254 and §50***>**™' respectively. To make it explicit that gsavsal and

ecausal,sample

Since

. . I, sampl
vary across g in our setting, denote them by f5u** and 63",

E[Xy,;] =0 and E[Xy,; X}, is constant across i € Py g,

causa 1 1
fausal = ( Z ElXniXiil) " 5 D ElXwYil
’LEPNg g iEPN,g

= (BIXna X)) 5 3 BIXnuDy b + Yislto))]

9 iEPN,g

= (BlXwa X)) 5 3 ElXwa((Xs + EDw ) B+ Yivalto))]

9 iEPN,g

= (E[XN,lXJ/V,l])ilE[XNJX;Vl > B

’LEPN g
= (PP
N,g

and

ecm;sal ,sample __ Z RNz XN ’LX]/V’L Z RNz XN zYN z]

’LEPNg ’LEPNg

(E[XN1X Z RNz [XNl((XN1+E[DN1]> 6N2+YNl<t0))]

’LEPNg
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= (BE[Xna1Xya])™ 1E[XNle\n > RyiBwa

’LGPNg

/Bsample

Note that v§%**! in |Abadie et al.| (2017)’s notation is

causal _ Z [Yyi] = N Z E[DYy iBn:+ Yni(to)] = E[Dy ] 18+ Z Y,i(to).
ZGPNg 9 i€Pn,y ZGPNg
For 1 € PN7g,
Y 1
ENg = Dﬁvz(ﬁNz - Bgf]gj) + YN,i(tO) TN Z YN’i(tO)
7 7 Ng ’iGPN,g

- 1
= Z D it(Ynu(t) — Yni(to)) — Dﬁvﬂmwal + Yi(to) — N Z Yn.i(to)

t=t1 9 iePyyg
1
_ YN ; D?\[ Zecausal F Z YN,Z’ (tO)
9 ZGPN’Q

— YN ; XN 2ecausal [DN ) BPOP Z YN ; t[)

’LEPN g
— YN : XN Z‘9causal fy]c\z[zzsalj

1

where the last equality is by 7§54 = E[D)y,]6%% + N > iepy, Yn.i(lo) shown above. It only

remains to check Abadie et al. (2017)’s Assumption 5 holds. Since || Xy, < i o [ Xvie] <

: . o1
o t1(|DNzt| + |pn.i(€)]) < 2 with probability one for all 4, FZZEPN& 11X wal[440] <
g
1 1
E ZiePN’g 1 =1 for all N and for any > 0. Hence, the sequences Fg ZiePN‘g E[|Yn|**],

1 1
N ZiePN’g E[[| Xn[**], and N Zz‘ePN,g E[||1]]**°] are uniformly bounded under my As-

g g
sumption . Applying Abadie et al.| (2017))’s Theorem 3 gives me Lemma . O

-----

s (DN, Nt)t—to....tn, are jointly independent from each other and independent of Ry (a conse-
quence of my Assumption. Notice that E[n/N] = E[>.I, Ry.]/N = py and Var(n/N) =
Var(vazl Ryi)/N? = pn(1 — pn)/N — 0. Thus, n/N 2= py. Similarly, n,/N, - px.
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The continuous mapping theorem implies \/n,/n = \/dn,4(ny/Ny)/(n/N) - /9. 1 have

\/_(5N 5pop)_\/_zngﬁjvg Z pop

_ Sy _ gpop - g Ny gpop
n[y n(ﬁzvg ﬁNg>+Z(n N)ﬁzvg]
g=1 g=1
G
N,
-2 (B — B + V(= SERY)

g=1
where the last convergence is by y/n,/n NEN \/(5—9 , Lemma , and Assumption . Similarly,

G G
V(B = BT) = VD By = DL BN

gl g=1

_ \/—Z BNg o ﬁsample)

= Z \f V(B — Bagmie)

1 A cond
L N ,Z(ngg Acmd g,

g=1
where the last convergence is by y/ng/n RN \/5_g and Lemma .

Proof of Corollary

Note that

eni = Dy, Yni(t) — Ya(t1)) + (1 — Dy ) (Yni(to) — Y (to)).

I have

E[Xneni] = Pr(Dyi = 1)(1 = qny, ) (Yai(t) — Y (t1)) + Pr(Dyi = 0)(—gn, ) (Yavi(to) — Y (to))
= qni (1 — qnay) Yvi(t) — Y (t) — (Yai(to) — Ya(to))),
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and

E[X%€x:) = Pr(Dyi = 1)(1 = qn, )*(Yaa(t) — Yn(t1))? + Pr(Dyi = 0) (=g, )*(Yavi(to)
= gy (1= qna ) (Yovi(tr) = Y (t1))? + (1 — g ) aR s, (Yva(to) — Yo (to))*.

_ 1
I therefore get A = th_m ¥ S E(XZ k) = an (1 — )22 + (1= q,)¢? S2, and

Acond = Aehv _Timpy o — sz\il E[Xnieni]? = A — g2 (1 — q,,)*SE,,- T also have

E[X},] =Pr(Dys=1)(1 — qny)” + Pr(Dys = 0)(—gqnn)°
= QN,t1<1 - QN,t1)7

leading to H = limy_,00 — ZZ VEXR ] = a1 — ). D and 1 follow from substituting
the above observations mto Proposition @ Analogously, (9) and (10]) follow from Corollary

Bl

Proof of Proposition

By Propositionl 2| there is no other experimental design (p;;) with p;; € [, 1 —¢] for all subject
i and treatment ¢ and such that ), pywj, > >, pi?(e)w, for all i and >, puey; > >, piP(€)ey,;
for all ¢ with at least one strict inequality. w}, and e}, are consistent with ordinal 77; and 77,
respectively. Therefore, there is no other experimental design (p;;) such that for all cardinal
WTP w;; consistent with ordinal 2—; and all cardinal predicted effects e;; consistent with
ordinal 77, I have ), pywi > >, piy (€)wy for all i and ), pue,; > >, piy (€)ey; for all i with

at least one strict inequality.

A.3 Empirical Details
A.3.1 Why Subject Welfare? Data

Table [1] Panel a, Appendix Figure Panel a, and Appendix Tables are based on
data I assemble from the WHO International Clinical Trials Registry Platform (ICTRP) at
http://www.who.int/ictrp/en/| retrieved in March 2018. I first use the “date of registra-
tion” variable to define the year associated with each trial. Starting from the universe of
trials registered between January 1st 2007 to May 31st 2017, I exclude outlier trials with
registered sample size greater than 5 millions. Some trials come with sample size classified as
“Not Specified.” I set their sample size as zero. This makes my total sample size calculation

conservative. For a trial that does not have a well-defined trial phase, I classify its trial phase

33
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as “Not Specified.” Finally, for each trial, I define its “Geographical Region” according to
which country runs the registry including that trial. Many registries like ClinicalTrial.gov
recruit subjects in multiple countries under the same trial ID, making it challenging to pin
down the physical location of each trial.

Table [1] Panel b, Appendix Figure Panel b, and Appendix Tables and are
based on data I assemble from the American Economic Association’s registry (AEA registry)
for randomized controlled trials at https://www.socialscienceregistry.org, retrieved on
May 27th, 2017. From the AEA registry, I obtain information about each experiment such
as the sample size, the year when the experiment was conducted, the country where the
experiment was conducted, registered keywords, and the randomization unit. When some
information is missing, I manually enter it by referring to accompanying documents such as
experimental design descriptions and abstracts. I classify an item as “Not specified” when I
cannot specify it even after the manual procedure. When the sample size of an experiment
is unspecified, I set the sample size as zero. This makes my total sample size calculation
conservative. I use the “starting date of experiment” to define the year associated with each
trial. Finally, for each trial, I define its “Geographical Region” according to the country in
which the experiment was conducted. I include all registered experiments conducted during
2007-2017 period.

A.3.2 Do Clinical Trials Use Simple Randomization?

Do clinical trials randomize treatment as in Definition [1| of RCT? I provide an answer to
this question using the Clinical Trial Registry India (CTRI). To my knowledge, CTRI is
the only major clinical trial registry that provides data about randomization methods in
clinical trials. I assembled data about individual clinical trials including the date the trial
was conducted and the method used to randomize subjects into control or treatment groups.
The data includes trials spanning from October 9th, 2007 to October 9, 2017. I removed
trials with sample size 0 and trials that have been classified as “NA” for randomization
method. According to the CTRI description manual, the relevant variable (“method of

generating random sequence”) takes some of the following categories:

o Computer generated randomization: A machine randomly assigns the subject or subject

group to a study or treatment group.

e Permuted block randomization (fized): Participants are randomly allocated in a way
that maintains a covariate balance across treatment groups. Allocation occurs by
assigning a specified number of participants to a block that has a specified number of

treatment assignments. In this case, the block size is fixed.
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Permuted block randomization (variable): Same method as permuted block random-

ization (fixed), but with varying block sizes.

Random number table: Each subject or subject group is assigned a number, and a

random number table determines if the subject is assigned to a control or treatment

group.

Coin toss, lottery, toss of dice, shuffling cards etc.: Based on a coin toss, the subject,

or subject group is placed in either a control or treatment group.

Stratified randomization: In order to control for covariates (patient characteristics
which might affect the outcomes), a stratum is generated for each combination of
covariates, and subjects are assigned to the appropriate strata of covariates. After all
subjects are assigned to strata, simple randomization is performed within each stratum

to assign subjects to a treatment or control group.

Stratified block randomization: Same method as stratified randomization, but once
patients are assigned to their strata, permuted block randomization is performed within

each stratum.

Adaptive randomization: Adaptive randomization, like stratified randomization, takes
covariates into account. In the “minimization method,” for example, a new patient is
sequentially assigned to the group with the fewest number of existing patients with the

same covariates, making covariates balanced across groups.

Other: 179 trials listed “Other” as the method of randomization

The popularity of each randomization method is described in Appendix Table [A.6] The

table shows that 85% of all trials use one of the impersonal simple randomization methods

that do not take patient covariate or past data into account. This suggests that Definition

of RCT is a reasonable approximation to most clinical trials.

A.3.3 Treatment Effects and Preferences: Details

Sample Restriction in Treatment Effect Estimation (Table |3))

For the OLS regressions in Table[3], I impose the same sample restriction as Kremer et al. and

exclude the following children: children not at Intent-to-Treat springs, i.e., springs found to

be nonviable after treatment random assignment, children in households that receive water

guards in 2007, children not in representative households (defined as households that are
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named at least twice by all users of a given spring when survey enumerators ask spring
users at a spring to name households that also use the same spring), children above age 3 at
baseline and children above age 3 when they join the sample in later rounds, children whose
anthropometric (weight, height, BMI) and age data are flagged as having serious error, and
children in households with missing data on whether they use the identified spring exclusively

or use multiple springs.

Estimation of the Mixed Logit WTP Model (Table

With the random utility function (), choice likelihoods take the following form (Train| (2003),
chapter 6):

P(ojjy = 110,m,6;) = / exp ((8i + 1 Xi)Tj — ¢iDij + 6;) f(Bi,ci0)d(Bi, ;)

Gic) 2oner P ((Bi +711Xi)The — ciDip + 01)

where 05 € {0, 1} is the indicator that household i chooses source j in trip ¢t among alterna-
tives h € H and f(f;, ¢|0) is the mixing distribution parametrized by 6. f(5;,¢;|0) is taken
to be the normal distribution with unknown mean and variance for the spring protection
treatment coefficient 8; and the triangular distribution (restricted to be nonnegative) for the
distance coefficient ¢;. I use the quasi Newton method to maximize a simulation approxima-
tion of the joint likelihood Zijt P(0;;t = 1|0,7, ;) with respect to 0,7, and J;, producing
maximum simulated likelihood estimates 6,41, and d,. I compute standard errors using the
information matrix with the Hessian being estimated by the outer product of the gradient

of the simulated likelihood at the estimated parameter value.

Simulation of WTP (Figure (1| Panel b and Subsequent Figures)

I create simulated WTP data for Figure [1| Panel b and subsequent figures with parametric
bootstrap below.

(1) Simulate a value of the distance coefficient ¢ ~ Tm'angular(ﬁ) for each household
group sharing the same characteristics where 6D is the point estimate of the parameter
of the distance coefficient distribution, i.e., the estimated mean and standard deviation.
To correct for potential measurement error in distance, follow Kremer et al.| (2011)’s
method and multiply the distance coefficient by -1/0.38, where 0.38 is the correlation
across survey rounds in the reported walking distance to the reference spring and is
taken to be the size of measurement error from recall error. See Kremer et al.| (2011))’s
Section IV.B for details.
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(2) Draw a value of the treatment coefficient w ~ N (i, &) for each household group sharing
the same characteristics where i and ¢ are the point estimates of mean p and standard

deviation o of the treatment coefficient distribution.

(3) Compute the ratio w/c as WTP for the treatment in terms of minutes of walking
time. Follow Kremer et al.| (2011)’s method to get WTP in terms of the number of
workdays taken to walk to the spring in a year. Specifically, multiply the ratio by
(32 x 52)/(60 x 8) where 32 x 52 is the average number of water trips taken by a
household per year and 60 x 8 is the number of minutes per workday. See Kremer et
al.| (2011)’s Section IV.B for details.

A.3.4 EXAM vs RCT: Algorithm Details

In this section, I describe the details of the algorithm I use for computing EXAM’s treatment
assignment probabilities pf;(€) in my empirical application in Section . I first define sub-
routines and then call them together at the end to perform the main computation. Though
simple, this algorithm works well in my application: The market clearing error, defined as
Voo O vl — @)?/ >, ¢, is smaller than 0.005 in all simulation runs.
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Algorithm 1 Experimental as Market (EXAM)

Input: n the number of subjects, m the number of treatments, (¢;) € N treatment ¢’s
pseudo capacity with >, ¢; = n, (w;) subject i’s WTP for treatment ¢, (e;;) treatment
t’s predicted treatment effect for subject i, b the budget constraint

Output: (p},) treatment ¢’s assignment probability for subject i, (a*, ;) parameters deter-
mining treatment ¢’s equilibrium price of the form 7}, = a*e + 3}, error,,;, minimized
market clearing error relative the total capacity of treatments

1: function INITIALALPHA( )

2: a < generate random number ~ Uniform(—b,0) > set the value of a
3: return «

4: function INITBETA( )

5: 5t0 < O

6: for each t =t4,...,t,, do

7: B; < generate random number ~ Uniform(—b, b) > set the initial value of f;
8: return (5;) > return an m-dimensional vector
9: function PRICE(«q, (5;)) > get the price of treatment ¢
10: for each i1,t =t4,....t,, do

11: Tiey; = ey + By

12: return (m.,,) > return the n x m price matrix
13: function DEMAND((7e,,;)) > get subject i’s demand for treatment ¢
14: for each ¢ do > perform utility maximization for each subject 7
15: (pit); < arg max Yo WitDit 86 >, Tye, it < b

Pit)t

16: return (p;) > return the n x m demand matrix
17: function EXCESSDEMAND((p;t)) > get the excess demand for treatment ¢
18: for each t =t4,...,t,, do

19: dt < Zz Pit — G
20: return (d;) > return the m-dimensional excess demand vector
21: function CLEARINGERROR((d})) > get the market clearing error
22: if d; < 0 for all ¢t then
23: return 0
24: else
25: error <— />, d?/ >, ¢
26: return error > return the market clearing error
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27: 6 < b/50

28: function BETANEW((f;, d;))

29:
30:

31:

for each t =t4,...,t,, do
B < B + didg

return (57")

32: function CLEARMARKET( )

33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:

50:
51:
52:
53:
54:
95:
56:
57:
58:

59:
60:
61:
62:

a < INITIALALPHA( )

(Br) < INITBETA( )

(Wteti) A PRICE(O&, (ﬁt))

(pit) ¢~ DEMAND((mee,, )

(d;) < EXCESSDEMAND((p;))
error <— CLEARINGERROR((dy))
€TTOT, iy $— €rror
ClearingThreshold < 0.01
IterationThreshold < 10
iterations < 0

while True do

if iterations > IterationThreshold then

a < INITIALALPHA( )
(Br) < INITBETA( )
1terations < 0

else

(6:) = BETANEW((5:) , (dr))

(Trteti> — PRICE(Oé, (ﬁt))
(pit) « DEMAND((my))
(d;) < EXCESSDEMAND((p;t))
error <— CLEARINGERROR((d;))
if error < error,,;, then

€ITOr iy ¢— €Iror

af —

(67) = (Br)

(Vi) < (i)

if error,,;, < ClearingThreshold then

break
iterations += 1
return ((p;;,), o, (8;), errorp,my)

> scaling factor for ;s to set new prices

> recalibrate 3;’s to set new prices

> the main function

> initialize the minimum of clearing error
> threshold for the market clearing error
> threshold for iteration times

> initialize iteration time count

> start new equilibrium research

> the new prices reduce the error

> return the outputs
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A.3.5 Additional Tables and Figures

Figure A.1: Magnitude of Parts of the RCT Landscape: Details

(a) Registered Medical Clinical Trials & Sample Sizes: Time Evolution
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(b) Registered Social & Economic RCTs & Sample Sizes: Time Evolution
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Notes: Panel a provides summary statistics of clinical trials registered in the WHO International Clinical
Trials Registry Platform (ICTRP, http://www.who.int/ictrp/en/, retrieved in March 2018). The sample
consists of clinical trials registered there between January 1st 2007 to May 30th 2017. 1 exclude trials with
registered sample size larger than five millions. Panel b provides summary statistics of economic RCTs
registered in the American Economic Association RCT Registry (https://www.socialscienceregistry.
org, retrieved in March 2018). The sample consists of RCTs registered there between January 1st 2007 to
May 30th 2017 and where the unit of outcome measurement is an individual or a household. I focus on
RCTs with individual or household subjects in order to make it possible to sum up sample sizes. See Section
[2] for discussions about this exhibit and Appendix [A23.1] for the detailed computational procedure.
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Table A.6: Do Clinical Trials Use Simple Randomization?

Frequency of Randomization Methods in Clinical Trial Registry India (CTRI)

Randomization Methods % Subgroup %
Simple Randomization

Computer generated randomization 63%

Permuted block randomization, fixed 5%

Random number table 6% 85%

Coin toss 8%

Permuted block randomization, variable 2%

Adaptive or Stratified Randomization

Stratified block randomization 5%

Stratified randomization 3% 9%
Adaptive randomization 1%

Other 6% 6%
Total interventional trials 5733

Notes: This table shows summary statistics of the popularity of different randomization methods in clinical
trials, based on the Clinical Trial Registry India (CTRI). The data includes trials spanning from October
9th, 2007 to October 9, 2017. I removed trials with sample size 0 and trials that have been classified as
“NA” for randomization method. See Appendix for discussions about this table.
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Table A.7: A Selection of High-stakes RCTs (Continued from Table

(a) Medical Clinical Trials

‘ Subjects Sample Size
i Coronary Heart Disease Patients 4444 Individuals
ii Patients with Elevated Intraocular Pressure 1636 Individuals
iii | HIV Negative Gay Men and Transgender Women 2499 Individuals
iv Serodiscordant Couples 1763 Couples
v Postmenopausal Women 16608 Individuals

(b) Social and Economic Experiments

‘ Subjects Sample Size
I Poor Households in Kenya 940 Households
II Crime Hot Spots in Minneapolis 110 Spots
III Unmarried Women in Malawi 1007 Individuals
v Uninsured Individuals in Oregon 12229 Individuals
V | Public Sector Job Applicants in Mexico 350 Job Vacancies

Notes: This is a continuation of Table This table lists examples illustrating the high-stakes nature of
certain RCTs. See the following references for the details of each RCT:

Panel a Study i: |[Scandinavian Simvastatin Survival Study Group and Others| (1994))

Panel a Study ii: [Kass et al.| (2002)

Panel a Study iii: |Grant et al.| (2010))

Panel a Study iv: |Cohen et al.| (2011))

Panel a Study v: Writing Group for the Women’s Health Initiative Investigators and Others| (2002)
Panel b Study I: [Haushofer and Shapiro| (2016])

Panel b Study II: [Sherman and Weisburd| (1995)

Panel b Study III: |Angelucci and Bennett| (2017])

Panel b Study IV: [Baicker et al.| (2013)

Panel b Study V:|Dal B6 et al.| (2013)), where the control is a lower wage job offer.

See Section [2 for discussions about this table.
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Figure A.2: EXAM vs RCT: Welfare (Robustness Check with € = 0.1)

(a) Average WTP for Assigned Treatments w}

Cumulative Distribution Functions
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E(WTP) Measured by Time Cost of Water Collection (Unit: Workdays)

EXAM |

Kolmogorov—Smirnov test: D = .249 , p-value = 0

(b) Avg Predicted Effects of Assigned Treatments e

Cumulative Distribution Functions
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|
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|
|

|
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EXAM |

Kolmogorov—Smirnov test: D= .426 , p value= 0

Notes: This figure reports the same results as Figure [2] except that this figure sets € to 0.1. To compare
EXAM and RCT’s welfare performance, this figure shows the distribution of average subject welfare over 1000
bootstrap simulations under each experimental design. Panel a measures welfare with respect to average
WTP w} for assigned treatments while Panel b with respect to average predicted effects e} of assigned
treatments. A dotted line indicates the distribution of each welfare measure for RCT while a solid line
indicates that for EXAM. Each vertical line represents mean. Both predicted effects é;,; and WTP w;¢, are
based on the main statistical specifications including all of the interactions between the treatment indicator
and household characteristics (baseline latrine density, diarrhea prevention knowledge score, and mother’s
years of education). See Section for discussions about this figure.
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Figure A.3: EXAM vs RCT: ATE Estimates (Robustness Check with ¢ = 0.1)

(a) Distribution of Average Treatment Effect Estimates b*
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(b) Distribution of Average Treatment Effect Estimates 3*
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‘— RCT [ EXAM ‘

Notes: This figure reports the same results as Figure [3] except that this figure sets € to 0.1. This figure
compares EXAM and RCT’s causal inference performance by showing the distribution of average treatment
effect estimates under each experimental design. Grey bins indicate average treatment effect estimates for
RCT while transparent bins with black outlines indicate those for EXAM. The solid vertical line indicates
mean for EXAM while the dashed vertical line indicates that for RCT. See Section [6.3] for discussions about

this figure.
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Figure A.4: EXAM vs RCT: p Values (Robustness Check with € = 0.1)

(a) p Values for b* (Exact, Finite Sample) (b) p Values for b* (Non-robust)
@y @ !
8 | s |
g 8
e e
B S ° 3 : P 3 ;
P-values of ATE Estimates (b, Exact) P-values of ATE Estimates (Non-robust)
(¢) p Values for b* (Robust) (d) p Values for b* (]Abadie et al.'7 |2017[)
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P-values of ATE Estimates (Robust) P-values of ATE Estimates (AAIW)

i (&1 I — EXAM‘

‘— RCT ——— EXAM‘

Notes: This figure reports the same results as Figure [4] except that this figure sets € to 0.1. This figure
compares EXAM and RCT’s causal inference performance by showing the distribution of p values
accompanying average treatment effect estimates b* under each experimental design. The p values are based
on exact, non-robust, robust, or Abadie et al| (2017)’s standard errors. Grey bins indicate p values for
RCT while transparent bins with black outlines indicate those for EXAM. The solid vertical line indicates
median for EXAM while the dashed vertical line indicates that for RCT. See Section for discussions

about this figure.
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Figure A.5: EXAM vs RCT: Incentive (Robustness Check with € = 0.1)

(a) WTP manipulation ~ true WTP+N (0, 100) (b) WTP manipulation ~ true WTP+N (0, 1000)
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(¢) WTP manipulation ~ true WTP+U(0,100) (d) WTP manipulation ~ true WTP+U(—100, 0)
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Notes: This figure reports the same results as Figure [5]except that this figure sets € to 0.1. This figure shows
the histogram of true WTP gains from potential WTP misreports to EXAM, quantifying the incentive
compatibility of EXAM. Different panels use different ways of drawing WTP manipulations indicated by
the panel titles. Each solid vertical line represents the mean WTP gain from potential WTP misreports to
EXAM. The dash vertical line is for RCT, where the true WTP gain from any WTP misreport is zero. See
Section [6.3] for discussions about this figure.
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