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Abstract

Randomized Controlled Trials (RCTs) enroll hundreds of millions of subjects and in-
volve many human lives. To improve subjects’ welfare, I propose a design of RCTs that
I call Experiment-as-Market (EXAM). EXAM produces a Pareto efficient allocation of
treatment assignment probabilities, is asymptotically incentive compatible for prefer-
ence elicitation, and unbiasedly estimates any causal effect estimable with standard
RCTs. I quantify these properties by applying EXAM to a water cleaning experiment
in Kenya (Kremer et al), 2011). In this empirical setting, compared to standard RCTs,
EXAM improves subjects’ predicted well-being while reaching similar treatment effect

estimates with similar precision.
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1 Introduction

Today is the golden age of Randomized Controlled Trials (RCTs). RCTs started as safety
and efficacy tests of farming and medical treatments, but have grown to become the society-
wide standard of evidence. RCTs are widespread in business and politics, as well as public
policy, the social sciences, and engineering.

RCTs are high-stakes. Firstly, a large number of individuals participate in RCTs. I find
that over 360 million patients and 22 million individuals participated in registered clinical
trials and social RCTs, respectively, during 2007-17. Second, many RCTs randomize high-
stakes treatments. For instance, in a glioblastoma therapy trial, the five-year death rate of
glioblastoma patients is 97% in the control group but only 88% in the treatment group (Stupp
et al), 2009). In expectation, therefore, the lives of up to 9% of the study’s 573 participants
depend on who receives treatments. Social RCTs also randomize critical treatments such as
basic incomeﬁl, high-wage job offers (Dal Bé et al), 2013), and HIV testing (Angelucci and
Bennett, 2017). This prompted some RCT participants to sue their experimenters.E

RCTs thus determine the fate of numerous people, giving rise to a long-standing dilemma:

How can a physician committed to doing what he thinks is best for each patient
tell a woman with breast cancer that he is choosing her treatment by something
like a coin toss? How can he give up the option to make changes in treatment
according to the patient’s responses? (“Patients’ Preferences in Randomized

Clinical Trials” by physician Marcia Angell)

Similar concerns motivated pioneering experimental designs to incorporate participant pref-
erences as a welfare measure into treatment assignment probabilities (Zelen, 1979; Angrist
and Imbeng, 1991; Chassang et al), 2012). Other prior designs respect another welfare
measure, i.e., predicted treatment effects (Zelen, 1969; Wei and Durham, 1978; Hu and
Rosenberger], 2003).

This paper develops an experimental design that optimally incorporates both of the two
welfare criteria (preferences and predicted effects), thus further alleviating the concern with
RCTs. This experimental design not only improves participant welfare, but also always

unbiasedly and often precisely estimates treatment effects.

! “8 basic income experiments to watch out for in 2017,” at http://www.businessinsider.com/
basic-income-experiments-in-2017-2017-1/#finland-2, retrieved in May 2019.

2 See, for example, Gelsinger . University of Pennsylvania about a gene-therapy clin-
ical trial and Grimes w. Kennedy-Krieger Institute about a social experiment that ran-
domly assigned lead reduction methods to housings. For details, see https://www.sskrplaw.

com/gelsinger-v-university-of-pennsylvania.html and https://www.courtlistener.com/opinion/
2386331/grimes-v-kennedy-krieger-institute-inc/, accessed in May 2019.
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[ start by defining experimental designs as procedures that determine each subject’s treat-
ment assignment probabilities based on data about two measures of welfare: (a) the predicted
treatment effect of each treatment on each subject and (b) each subject’s willingness-to-pay
(WTP) for each treatment. These complementary welfare measures are allowed to be het-
erogeneous and correlated with each other. In practice, the experimenter may estimate them
from prior experimental or observational data, or ask subjects to self-report them, especially
WTP.

I propose an experimental design that I call Exzperiment-as-Market (EXAM). 1 choose this
name because EXAM is an experimental design based on an imaginary centralized market,
inspired by the idea of competitive equilibrium from equal incomes (Friedman|, 1962; Hylland
and Zeckhausern, 1979; Budish et al., 2013; He et al, 2017; Mollner and Weyl, 2018). EXAM
uses this artificial market to Pareto optimally incorporate both predicted effects and WTP.

Specifically, EXAM randomly assigns treatments to subjects via the following hypotheti-
cal market created in the experimenter’s computer. EXAM first endows each subject with a
common artificial budget and lets her use the budget to purchase the most preferred (high-
est WTP) bundle of treatment assignment probabilities given their prices. The prices are
personalized so that each treatment is cheaper for subjects with better predicted effects of
the treatment. EXAM computes its treatment assignment probabilities as what subjects
demand at market clearing prices, where subjects’ aggregate demand for each treatment is
balanced with its supply or capacity (assumed to be exogenously given). EXAM finally
requires every subject to be assigned to every treatment with a positive probability.E

This virtual-market construction gives EXAM nice welfare and incentive properties.
EXAM has a Pareto optimality property, in that no other design makes every subject better-
off in terms of expected predicted effects of and WTP for assigned treatment. EXAM also
allows the experimenter to elicit WTP in an asymptotically incentive compatible way. That
is, when the experimenter asks subjects to self-report their WTP to be used by EXAM, every
subject’s optimal choice is to report her true WTP, at least for large experiments.H

Importantly, EXAM also allows the experimenter to unbiasedly estimate the same treat-
ment effects as standard RCTs do (in a finite sample and for a wide class of treatment
effect parameters). To see this, note that in the end, EXAM is an experiment stratified on

observable predicted effects and W'TP, in which the experimenter observes each subject’s

3 EXAM is executable even without WTP and predicted effects (when WTP and predicted effects are
unknown or irrelevant to the experimenter). When the experimenter uses neither WTP nor predicted effects,
EXAM reduces to the standard RCT. EXAM therefore nests the standard RCT.

4 T have to be satisfied with asymptotic incentive compatibility since exact incentive compatibility is
known to be incompatible with Pareto efficiency. The incentive analysis owes much to studies on the
incentive compatibility of competitive equilibria and experimental designs (Jackson, 1992; Chassang et all,
2012; Azevedo and Budish, 2017; He et all, 2017).



assignment probabilities (propensity scores). As a result, EXAM’s treatment assignment is
random (independent from potential outcomes) conditional on the observables. The condi-
tionally independent treatment assignment allows the experimenter to unbiasedly estimate
the average treatment effects conditional on observables. By integrating such conditional
effects, EXAM can unbiasedly estimate the (unconditional) average treatment effect and
other effects. This informational virtue materializes regardless of whether the experimenter
correctly predicts treatment effects and wrph

I also characterize the statistical efficiency in EXAM'’s average treatment effect estima-
tion. EXAM’s standard error is potentially smaller than that of RCTs, but in general, the
standard error comparison of EXAM and a typical RCT is ambiguous. This motivates an
empirical comparison of the two designs, which also allows me to confirm and quantify the
other welfare, incentive, and unbiasedness properties.

[ apply EXAM to data from a water cleaning experiment in Kenya (Kremer et all, 2011)).
Compared to RCTs, EXAM turns out to substantially improve participating households’
predicted welfare. Here, welfare is measured by predicted effects of clean water on child
diarrhea and revealed WTP for water cleaning. EXAM is also found to almost always
incentivize subjects to report their true WTP. Finally, EXAM’s data produces treatment
effect estimates and standard errors similar to those from RCTs. EXAM therefore produces
information that is as valuable for the outside society as that from RCTs f

Taken together, EXAM sheds light on a way economic thinking can “facilitate the ad-
vancement and use of complex adaptive (...) and other novel clinical trial designs,” a perfor-
mance goal by the US Food and Drug Administration (FDA) for 2018-2022.1 Experimental
design is a potentially life-saving application of economic market design (Roth, 2015). More
concretely, my analysis shows how best to use predicted treatment effects for experimental
design. The use of predicted effects for new experiments is established in medicine (Food
and Drug Administration, 2010) and business (White, 2012), and emerging in the social sci-
ences (Hahn et al], 2011) as important interventions such as deworming and conditional cash
transfers ask for repeated evaluations. EXAM combines the predicted-effects consideration
with another idea of respecting subjects” WTP for treatments.

After a review of related experimental designs, Section E outlines my motivation by

5 This experimental value of EXAM and competitive equilibrium from equal incomes echoes Abdulka-
diroglu et alf (2017) and Narita (2016), who highlight the informational values of a different sort of mechanism
design (centralized school choice with lotteries).

6 Along the way, I develop C++ and Python computer programs to implement EXAM with little com-
putational cost. A single execution of EXAM on data with 1540 subjects and 2 treatments takes less than
a minute on average with a standard personal computer.

i See https://www.fda.gov/downloads/forindustry/userfees/prescriptiondruguserfee/
ucm511438. pdf, retrieved in May 2019
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providing facts about the impact of RCTs on participant welfare. Section B develops the
EXAM experimental design, and Section @ shows its welfare and incentive properties. Section
H studies the experimental information embedded in EXAM and explains how to use data
from EXAM for causal inference. An empirical application is in Section B Finally, Section
B summarizes my findings, discusses their limitations, and outlines future directions. Proofs

are in Appendix @

1.1 Comparison with Existing Designs
Classical Experimental Design

The traditional experimental design literature (Cox and Cochran (1992), Athey and Imbens
(R017) Section 7) is as old as the very concept of RCTs. This literature focuses on how to
design experiments for maximizing information measured by the power of testing the null
hypothesis of no treatment effect and other measures. This focus on information continues
in much of the modern literature on sequential and adaptive experimental designs (Hahn et

all, 2011). My interest lies more in subject welfare.

Preference- and Response-adaptive Designs

With its interest in subject well-being measured by WTP and predicted effects, EXAM is
closer to younger and smaller strands of the literature on preference- and response-adaptive
experimental designs. Preference-adaptive designs reflect subject preferences in treatment
assignment probabilities. For example, Randomized Consent or Preference Trials (originally
proposed by Zelen (1979) and further advocated by Angrist and Imbeng ([1991)) randomize
subjects into two groups. In one group, subjects are allowed to choose the treatment or
the control based on their preferences. All subjects in the other group are assigned to the
control.

Selective Trials by Chassang et al, (2012) are more general preference-adaptive designs
where the treatment assignment probability is increasing in the WTP for the treatment.
Chassang et al. show their Selective Trials can be implemented as dominant-strategy mech-
anisms and are Blackwell more informative than RCTs in the limit. See also Bjorklund
(1988) for a related experimental design proposal. Other examples of preference-adaptive
designs are development economics RCTs that elicit and use subject preferences for treat-
ment (Ashraf et al), 2006; Cohen and Dupas, 2010; Ashraf et alj, 2010; Devoto et al/, 2012;
Dupas, 2014; Berry et all, 2018).

In complementary response-adaptive designs (reviewed by Hu and Rosenbergen (2006)

and Food and Drug Administration (2010)), the experimenter incorporates predicted treat-



ment effects into treatment assignment probabilities. For example, Play-the-Winner Rules
(Zelen, 1969; Wei and Durham, [1978) more likely assign a treatment to patients predicted
to have better treatment effects B

Building upon these prior ideas, EXAM integrates preference- and response-adaptive
designs into a single design. EXAM is formally shown to strike an optimal balance between
WTP and predicted effects without compromising incentive compatibility and experimental
information. EXAM thereby extends existing preference- and response-adaptive designs:
If the experimenter shuts down WTP consideration by assuming constant WTP, EXAM
simplifies to a Play-the-Winner Rule. Similarly, EXAM reduces to a Consent or Selective

Trial if the experimenter ignores predicted effects.

Multi-Armed Bandit Algorithms

EXAM shares much of its spirit with Multi-Armed Bandit (MAB) algorithms in computer
science, machine learning, and statistics (Bubeck and Cesa-Bianchi, 2012; Russo et al/, 2018):
Both MAB and EXAM strike a balance between exploration (gaining information) and
exploitation (improving subject or experimenter welfare). MAB algorithms are popular
in the web industry, especially for online ads, news, and recommendations (White, 2012).
There are many differences between MAB and EXAM. For example, MAB mostly ignores
incentive issues. In contrast, EXAM is formally and empirically shown to be nearly incentive
compatible. EXAM may also be easier to implement than MAB since the implementation of
MAB often requires a system for frequently observing outcome data and updating treatment

assignment.

Clinical Trial Practices and Regulations

Finally, clinical trial practitioners and regulators have long recognized ethical concerns with
RCTs, as highlighted in Marcia Angell’s quote in the introduction. Their concerns manifested
in regulations and practices that safeguard patients from excessive experimentation. Primary
examples include the following: informed consent, a “stopping rule” that requires a sequential
clinical trial to terminate if it becomes clear that its treatment is sufficiently better or worse
than the control (Friedman et al| (1998) chapters 2 and 16), and a “randomized phase-
in” design that assigns everybody to the treatment with randomized timing (Duflo et al.

(2007) section 3.3.2). EXAM complements these existing practices and specify treatment

8 The treatment assignment literature in econometrics (Manski, 2008; Kitagawa and Tetenov, 2018) and
medicine (Chakraborty and Moodid, 2013) attempts a related but distinct task of using experimental data to
optimally assign treatment to maximize welfare alone. See also related biostatistics developments on optimal
dynamic treatment regimes by Murphy (2003) and Robins et al] (2008) among others.



assignment probabilities conditional on deciding to conduct a trial at a point in time and

having subjects agreeing to participate in the trial.

2 Why Subject Welfare?

My goal is to design an experiment with an emphasis on subject welfare. Why should I
study subject well-being? This section provides normative and practical reasons. Here I
focus on the internal welfare of experimental subjects, leaving the external welfare of the

outside population to Sections B and B

Normative Considerations

First, RCTs involve a large number of subjects. To demonstrate it, I assembled data on clin-
ical trials registered in the WHO International Clinical Trials Registry Platform (ICTRP).E
ICTRP is the largest international clinical trial registry and subsumes domestic platforms
like ClinicalTrials.gov for the US.H Table m Panel a shows that the sum of sample sizes of
registered trials is over 360 million for 2007-2017. As for social and economic RCTs, I scraped
the American Economic Association’s registry to find the sum of sample sizes of registered
RCTs amounts to above 22 million for the last decade (Table m Panel b).

For such a large subject population, RCTs frequently randomize high-stakes treatment.
The high-stakes and occasionally life-threatening nature of many RCTs is highlighted by
examples in Table E In the first clinical trial (row i in Panel a), for example, a cholesterol-
lowering drug treatment was found to lower the 5-year death rate of heart disease patients
by about 30% relative to the baseline death rate in the control group. Other clinical trials in
Table E Panel a also report significant impacts on survival and other crucial outcomes. As
exemplified in Table P Panel b, social and economic RCTs also randomize treatment such as
cash transfers, health insurance, HIV testing, and police patrol, as well as other numerous
interventions related to childhood development, education, labor, and public finance (Fryer,
2017; Rothstein and von Wachter, 2017). These treatments are often found to have profound

treatment effects.

Practical Considerations

Practical considerations also motivate a care for subject welfare. The successful implemen-

tation of any RCT depends on subject choices, including whether subjects participate in the

9 http://www.who.int/ictrp/en/, retrieved in May 2019.
10 https://clinicaltrials.gov, retrieved in May 2019.
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RCT, whether subjects take up and use the assigned treatment, and whether subjects stay
in contact in a follow-up period. The RCT produces useful information only if participants
are active in each step. This prerequisite is hard to achieve, however. RCTs often suffer from
subject indifference or fear in the form of non-participation, non-compliance, and dropouts
before, during, and after experiments (Friedman et al| (1998) chapters 10 and 14, Duflo et
al. (2007) sections 4.3 and 6.4, Glennerster (2017) sections 2.1 and 2.2).

A welfare-conscious experimental design could alleviate non-participation, non-compliance,
and dropouts. Indeed, King et al| (2005) provide a clinical trial meta-analysis suggesting that
incorporating subject preferences makes subject recruitment easier. In a range of economet-
ric and theoretical models, welfare-enhancing treatment assignment is predicted to facilitate
compliance with treatment assignment (Bjorklund and Moffitt, 1987; Heckman and Vytlacil,
2005; Chan and Hamilton, 2006). Chan and Hamilton (2006) use AIDS trial data to find
that subjects experiencing better treatment effects are less likely to drop out.@

Finally, ethical experimental designs would ease collaboration with partner governments
and companies that may have an ethical and reputational concern with involvement in RCTs
(Glennerster| (2017) section 1).

3 Experiment-as-Market (EXAM)

3.1 Framework

The normative and practical importance of subject well-being prompts me to design an
experiment that balances subject welfare with experimental information. An experimental

design problem consists of:
o Experimental subjects iy, ..., 1,.
o Experimental treatments tqy,tq, ...,t,, where % is a placebo or control.

o Each subject i’s preference or WTP w; € R for treatment ¢ where w;; > w; means

subject i weakly prefers treatment t over . Let w; = (wy);.

o Each treatment t’s predicted treatment effect e;; € R for subject ¢ where e; > ey,

means treatment ¢ is predicted to have a weakly better effect than ¢ for subject i.

' Tn an effort to maximize the treatment take-up rate and minimize attrition, many field experiments
start with an expression-of-interest survey before randomization and recruit only survey respondents who
express strong interest. This recruitment practice causes external validity concerns. These concerns may
also be alleviated by replacing the experimenter’s discretionary selective recruitment with an experimental
design respecting subject welfare in a rule-based way. See also Hull (2018) and references therein for other
survey designs and analysis methods to deal with attrition.



When multiple outcomes matter, e; can be set to the predicted effect on a known

function of these outcomes. Let ¢; = (eti)t.@

[ assume e;; and wy; to be deterministic for simplicity. I normalize e;; and w;; by assuming
eri = Wi, = 0 for every subject 7. e; and w;; are therefore the predicted effect of ¢ and
WTP for t, respectively, relative to the control ty. This normalization is without loss of
generality because only differences in WTP and predicted effects matter for subject welfare
from treatments tg,...,t,,. Every experimental design discussed below produces the same
assignment probabilities with and without the normalization.

I use e;; and w;; as complementary welfare measures, one outcome- or treatment-effect-
based and one WTP-based. Each has an established role in economic welfare analysis,
especially because WTP is sometimes found to be weakly or even negatively correlated with
treatment effects (Walters, 2018). The medical literature more frequently studies treatment
effects but also acknowledges that patients often have heterogeneous preferences for treat-
ments (even conditional on treatment effects). This is especially the case for psychologically
sensitive treatments like abortion methods (Henshaw et all, 1993) and depression treatments
(Chilvers et al), 2001). In response to these findings, a US-government-endorsed movement
tries to bridge the gap between evidence-based medicine and patient-preference-centered
medicine (Food and Drug Administration, 2016). According to advocates, “patient-centered
care (...) promotes respect and patient autonomy; it is considered an end in itself, not merely
a means to achieve other health outcomes” (Epstein and Peters, 2009). My welfare criterion
echoes this trend and accommodates both outcome- and preference-based approaches.

Predicted effects and WTP may also be freely heterogeneous and correlated. This is
an important generality since evidence of correlation between treatment effects and WTP
is ample both in the social sciences and medicine (Preference Collaborative Review Group,
2008; Swift and Callahan, 2009). To be consistent with the evidence, the above setup allows

arbitrary correlation between predicted effects and WTP.

3.1.1 Where Do WTP and Predicted Effects Come From?

It is best to estimate predicted effects e;; from prior experimental or observational data. In
particular, the experimenter could use prior data to estimate heterogeneous treatment effects
conditional (stratified) on observable subject characteristics, and apply the estimates to each
subject i’s characteristics, producing predicted effects e;;. The most reliable data source is

a prior RCT of the same treatment. Subjects in the prior RCT can be different from those

12 Here I assume WTP and predicted effects are fixed and with cardinal meaning. See Appendices
and for discussions about what to do when WTP and predicted effects are uncertain or ordinal.



in the new experiment to be designed. Such sequential RC'Ts with the same treatment are
common in medicine and business, and are growing in the social sciences (e.g., many RCTs
for deworming). I illustrate the use of prior RCT data in my empirical application.

For WTP wjy;, there are a couple of possible sources. The experimenter may ask each
subject ¢ to self-report WTP w; in an incentive compatible way, as proposed by Zelen (1979)
and Chassang et al. (2012).E Alternatively, the experimenter may estimate WTP with
prior data on subjects’ treatment choices and their observable characteristics. Such data
allows the experimenter to estimate heterogeneous revealed WTP conditional on subject
characteristics. The WTP estimates then provide the experimenter with a prediction for
each subject i’s WTP given i’s characteristics. I conduct such demand estimation with a

discrete choice model in my empirical application in Section B@

3.2 Experimental Designs

Taking any experimental design problem as given, an experimental design specifies treatment
assignment probabilities (p;;) where p; is the probability that subject i is assigned to treat-
ment ¢ under the experimental design. The benchmark design is the standard Randomized

Controlled Trial, formalized as follows.

Definition 1 (Randomized Controlled Trial a.k.a. RCT). Randomized Controlled Trial is
an experimental design that assigns each subject ¢ to each treatment ¢ with the impersonal
treatment assignment probability pf¢T that is assumed to be written as pFT = ¢;/n for

some natural number ¢; < n.

The vast majority of clinical trials use RCT or similarly impersonalized randomization, an
empirical fact shown in Appendix and Appendix Table @@ I call ¢; pseudo capacity
or supply, and require experimental designs to satisfy the pseudo capacity constraint that
> pit < ¢ for every treatment ¢ = ty, ..., t,,. This pseudo capacity constraint is important
when treatment is expensive or hard to make and deliver.

I investigate welfare-enhancement with a design that 1 call Experiment-as-Market or
EXAM in short.

13 This self-reporting method raises the question of incentive compatibility. I study incentive compatibility
theoretically in Section and empirically in Section [.3.

4 Similar demand elicitation or estimation but for different purposes can be found in Ashraf et al) (2006);
Cohen _and Dupas (R010); Ashraf et all (2010); Kremer et al! (2011); Devoto et al| (2012); Dupasg (2014);
Berry et al| (2018).

15 A significant fraction of the real-world experiments are stratified. If the benchmark is an experiment
stratified on some variables, I would implement EXAM conditional on the stratifying variables, i.e., for each
subpopulation of subjects sharing the same stratifying variables. The subsequent comparison between RCT
and EXAM holds conditional on the stratifying variables.

10



Definition 2 (Ezperiment-as-Market a.k.a. EXAM). In the experimenter’s computer, dis-
tribute any common artificial budget b > 0 to every subject.E Find any price-discriminated
competitive market equilibrium, i.e., any treatment assignment probabilities (p};) and their

prices 7, with the following properties:E

o Effectiveness-discriminated treatment pricing: There exist a < 0 and S; € R for each
treatment ¢ such that the price of a unit of assignment probability to ¢ for subjects

with e;; = e € R is
e = Q€ + Bt-
e Subject utility maximization: For each subject i,

(pj;):e € argmax, cp >, PaWis 8.6 D, PitTie,, < b,

where p; = (py); and P = {p; € R™"| Zﬁto pi = 1 and |py| < p} where p is a large
enough number. ., is the price of a unit of the assignment probability to treatment
t for subject i. EXAM breaks ties or indifferences so that every subject i’s p; solves
the above problem with the minimum expenditure ), piim.,, while (pj,); = (pj,): for

any subjects ¢ and j with w; = w; and e; = e;, where recall w; = (wy); and e; = ().

+ Meeting capacity constraints: ) . pi, < ¢ for every treatment t = ¢4, ..., t,, and ), pj, <

¢, only if m,,, <0 for every 1.

Let € be a non-negative number such that the experimenter would like the assignment prob-

abilities to be always within [e,1 — ¢]. Take any € € [0, €] as given, where € = min; pF°7 is

the largest possible value of el 1 define EXAM’s treatment assignment probabilities as

pi(e) = (1 — q)pi, + qpi”,

where ¢ = inf{q’ € [0, 1]|(1 — ¢)pj; + ¢'pF°T € [e,1 — €] for all i and t}.

16 Any b, without loss of generality, results in the same assignment probabilities. It is also possible to let
the budget vary across subjects while obtaining the same theoretical results.

17 There may be multiple equilibria. I fix any equilibrium selection method.

18 The latter part is necessary to make sure that EXAM wastes treatment ¢ only when there is no enough
demand for ¢ even with a nonpositive price.

19 Why is € the largest possible value of €? Suppose € > € = min, prT. For any t € argmin, prT,
whenever p, < pECT T have

(1= +d'pi" & le,1— ¢

for any ¢’ € [0,1]. On the other hand, if ¢ < € then ¢’ = 1 guarantees that (1 — ¢')p}, + ¢'pF¢T = plicT ¢
[e,1 — €] for all  and ¢. Thus € must be between 0 and €.
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I name this experimental design Experiment-as-Market (EXAM) because EXAM ran-
domly assigns treatments to subjects via a synthetic centralized market. p}, can be seen as a
generalization or variation of the classic idea of competitive market equilibrium from equal
incomes (Friedman|, 1962; Hylland and Zeckhausern, 1979; Budish et al., 2013; He et al/, 2017
Mollner and Weyl, 2018).

More specifically, in Definition E, EXAM endows each subject with a common imaginary
budget. This budget has nothing to do with economic conditions subjects face in the real
world. EXAM then lets each subject use the budget to purchase one of the most preferred
bundles of treatment assignment probabilities, taking their prices as given. The prices are
personalized so that each treatment is cheaper for subjects predicted to benefit more from
the treatment. EXAM computes its treatment assignment probabilities as the resulting
personalized-price competitive market equilibrium.@ EXAM finally requires each subject to
get each treatment with a probability strictly between 0 and 1. This requirement is important
for EXAM to produce non-degenerate random assignments and unbiasedly estimate causal
treatment effects; some foundations for this desire for non-degenerate randomization can be
found in Proposition @ below, Blackwell and Girshick (11954) section 8.7, Imbens and Rubin
(2015) chapter 3, and Banerjee et al. (2017).EI

To sum up, the steps for implementing EXAM are as follows.

(1) Obtain predicted effects ey; if possible and relevant, as described in Section .
(2) Obtain WTP wy; if possible and relevant, as described in Section .

(3) Apply Definition E of EXAM to the data from steps 1 and 2, producing assignment
probabilities p (€).

EXAM is an enrichment of RCT using simple randomization. To see this, note that
EXAM allows the experimenter to turn off welfare considerations. For instance, if the exper-
imenter does not know or care about predicted effects, she would let e;; = e;; for all subjects
¢ and j and treatment ¢. Similarly, let w;; = wj; > 0 if WTP is unknown or irrelevant; I

make the common WTP positive for a minor technical reason (I need to make every subject

20 The first step of Definition E raises two questions, whether such an equilibrium exists and how to find
such an equilibrium. After positively solving the first existence question in Proposition P below, I develop
and implement a script to find an equilibrium in the empirical application in Section fj. See Budish et all
(2016) for a related algorithmic development on a different problem (MBA course allocation).

21 See Kasy (2016) for an argument against randomization. Definitions [l and P leave unspecified how to
draw a final treatment assignment from p*“7 and p(€), respectively. For the moment, my analysis applies
to any method to draw a treatment assignment. I impose more structures in SectionE and implement an
algorithm to draw an assignment in the empirical application in Section [f. For EXAM, it is known to
be always possible to draw a treatment assignment in a way consistent with p# (e) (Budish et al] (2013)’s
Theorem 1, the generalized Birkhoff-von Neumann Theorem).
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prefer each treatment over the control). For example, the experimenter may want to exclude
WTP when there is a concern that revealed or self-reported WTP may be distorted by igno-
rance, information frictions, or liquidity constraints. The following fact shows that EXAM

is equivalent to RCT when the experimenter ignores both WTP and predicted effects.

Proposition 1 (EXAM nests RCT). Suppose that WTP and predicted effects are unknown
or irrelevant so that wy = wj > 0 and ey = e for all subjects i and j and treatment t.
Then EXAM reduces to RCT using simple randomization, i.e., for every € € [0, €|, subject i,

and treatment t, I have
RCT

pir(€) = py
EXAM also extends other more sophisticated designs, such as the Play-the-Winner Rule
(Wei and Durham, 1978), Consent Trials (Zelen, 1979; Angrist and Imbens, 1991), and
Selective Trials (Chassang et all, 2012). These designs emerge if EXAM ignores either WTP
or predicted effects, but not both, as explained in Section @ The experimenter may
want to ignore WTP or predicted effects when they are unknown or unimportant from the

experimenter’s perspective.

4 Welfare and Incentive

4.1 Welfare

As opposed to the special case in Proposition m, the experimenter is often concerned about
WTP and predicted effects (as in studies reviewed in Section E) In such cases, EXAM differs

from RCT and is welfare-optimal in the following sense.

Proposition 2 (Existence and Welfare). There ezists p}, that satisfies the conditions in
Definition @ For any such p}, and any € € [0, €|, the resulting EXAM assignment probability
pi(€) satisfies the following property: There is no other experimental design (py) € P" with
pi € (6,1 — €| for all subject i and treatment t, > .py < ¢ for all t = tq,...,t,, and the
following better welfare property:

Zpith‘t > Zp;“t(e)wit and Zpiteti > ZPZ}(E)GW
t ¢ t t

for all i with at least one strict inequality.

Proposition P says that no other experimental design ex ante Pareto dominates EXAM in

terms of the expected WTP for and predicted effect of assigned treatment (while satisfying
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the random assignment and capacity Constraints).@ This ex ante Pareto optimality is known
to imply ex post Pareto optimality and “ordinal” ex ante optimality (Bogomolnaia and
Moulin, 2001).E In contrast, RCT fails to satisfy the welfare property as it ignores WTP
and predicted effects. T empirically quantify the welfare gap between RCTs and EXAM in

Section @

4.2 Incentive

Proposition E takes WTP w;; as given and assumes that it represents true WTP. In practice,
the experimenter often needs to elicit the WTP information w;; from subjects, raising an in-
centive compatibility concern. This section shows EXAM allows the experimenter to extract
WTP in an almost incentive compatible way. My analysis of incentive compatibility builds
upon the literature on incentive compatibility of competitive equilibria and experimental
designs (Jackson, 1992; Chassang et al., 2012; Azevedo and Budish, 2017; He et all, 2017).

Unfortunately, it is known that no experimental design satisfies the welfare property in
Proposition a and exact incentive compatibility for general problems (Hylland and Zeck-
hauser, 1979). This compels me to investigate approximate incentive compatibility in large
experimental design problems. Only for this section, consider a sequence of experimental
design problems (i1, ..., %, to,t1,...s tm, (€}))nen indexed by the number of subjects, n. Let
€" € [0,€") (where €" is € for the n-th problem) be the value of the bound parameter € the
experimenter picks for the n-th problem in the sequence. The set of treatments tg,t1, ..., 1,
is fixed, but everything else may change as n increases. This modeling with a fixed number
of treatments and an increasing number of subjects is consistent with real-world experiments
with only a few treatments but with hundreds of subjects or more.

To investigate the incentive structure in EXAM, imagine that subjects report their WTP
to EXAM. EXAM then uses the reported WTP to compute treatment assignment probabil-
ities. For the n-th problem in the sequence, let p:"(w;, e;, w_;, e_;; €") be EXAM’s treatment
assignment, probability vector for subject i when subjects report WTP (w;,w_;) and pre-

dicted effects are (e;, e_;) where w_; = (w;),2 and e_; = (e;);. 1 extend this notation to

22 Proposition E implies that EXAM is ex ante Pareto optimal for expected WTP alone if the experimenter
shuts down predicted effects by assuming e;; = e;; for all subjects i and j and treatment ¢. Similarly, EXAM
satisfies Pareto optimality for expected predicted effects alone when EXAM ignores WTP.

3 Ex post optimality means that no other (p;) has the following property: wi, > wix and e, > ey
always hold for all ¢ with at least one strict inequality, where ¢; and ¢; are treatments ex post assigned to ¢
under the alternative design (p;;) and EXAM, respectively. Ordinal ex ante optimality is a stronger property
that there is no other (p;;) such that for all affine transformations f and g, >, pit f(wir) > >, pji(€) f(wit)
and Y, pirg(eri) > D, i (€)g(er;) for all i with at least one strict inequality.
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the case where other subjects” WTP reports and predicted effects are random:

pi"(wy, e, Fi€) = / Pi(wy, e, w_g e €)X Pr{(w_;, e_;) ~yq Fd(w_;, e_;).
(w_i,e—; ) E(WXE)—1
Here Pr{(w_;,e_;) ~iq F'} denotes the probability that vector (w_;,e_;) = (wj,e€;);z is
realized from n — 1 iid draws (wj, e;) from the distribution ' € A(W x E). A(W x E) is the
set of full-support distributions over the WTP space W and the predicted effect space E. The
iid assumption is based on the idea that there are many subjects, so they do not distinguish
other subjects ex ante. Only for this section, I restrict WTP and predicted effects to belong
to finite sets W and FE, respectively, in any problem along the sequence. It is possible to
eliminate this simplifying assumption by using an alternative proof technique like He et al.

(2017)’s. This concept allows me to state an asymptotic incentive compatibility property.

Proposition 3 (Incentive). EXAM with WTP reporting is asymptotically incentive com-

), any
F e A(W x E), any 6 > 0, there exists ng such that, for any n > ng, any subject i, any

patible, i.e., for any sequence of experimental design problems with any € in [0, €"

predicted effect e;, any true and manipulated WTP values w; and w!, I have

*1 . n *M / . N
E it (wy, e, Fiy €) X wyy > E i (W, e, Fy€) X wy — 0.
t t

Proposition B says that EXAM approximately incentivizes every subject to report her
true WTP, at least for large enough experimental design problems. The experimenter using
EXAM can therefore ask subjects to report their true WTP without any deception. As
additional support for incentive compatibility, Section @ shows that EXAM is close to
incentive compatible in my empirical application only with a finite number of subjects. This
suggests asymptotic Proposition E is relevant even for real-scale problems.

For intuition, first consider a case with only one treatment ¢; that subject ¢ prefers
over the control 3. Why is there no incentive for subject ¢« to misreport a larger WTP
for t17 As long as subject ¢ prefers t; over ty, subject ¢ spends her entire budget b into
purchasing t; and gets an assignment probability of min{b/m;,,1}. Misreporting a larger
WTP would not affect this assignment probability, confirming the incentive compatibility.
More generally, exact incentive compatibility may break down in small problems; see Hylland
and Zeckhauser (1979) for such an example. Nevertheless, EXAM is always asymptotically
incentive compatible since there is no incentive to misreport when the prices are exogenously

fixed, which is approximately true when the number of subjects is large.

15



5 Information

Despite the welfare merit, EXAM also lets the experimenter estimate treatment effects as
unbiasedly and precisely as they would do in RCTs. To spell it out, I switch back to any
given finite problem with fixed WTP and predicted effects. I discuss not only bias but
also variance in treatment effect estimation. The finite-sample econometric comparison of
EXAM and RCT requires me to specify how each design draws a treatment assignment
from its assignment probabilities. For simplicity, only the main text assumes that pn, is
an integer for every t and p where n, = > | 1{pf(¢) = p} is the number of subjects with
assignment probability vector p and p, is the t-th element of p. Appendix generalizes the
definition and argument below to a general setting where pyn,, is any real number. Consider

the following method of drawing a deterministic treatment assignment.

Definition 2 (EXAM Continued). Starting from the end of Definition E in Section @, draw

a treatment assignment from pf(¢) as follows. For each assignment probability vector p,
o Uniformly randomly pick p,n, subjects from {i|p}(e) = p} and assign them to .

For each subsequent step k=1, ..., m,

e Step k: From the remaining n, — ?;Eé pin, subjects in {i|pf(e) = p}, uniformly

randomly pick p;,n, subjects and assign them to .

I assume that an RCT would draw a deterministic treatment assignment by a specialization
of the above method assuming every subject i to have p,(€) = pfT.

Suppose the experimenter is interested in the causal effect of each treatment on an out-
come Y;. Following the standard potential outcome framework for causal inference (Imbens
and Rubin, 2015), let Y;(t) denote subject i’s potential outcome that would be observed
if subject i receives treatment t. Let D; be the binary indicator that subject ¢ is ex post
assigned to treatment ¢. The observed outcome is written as Y; = >, D;;Y;(t). While Y;(?)
is assumed to be fixed, D;; and Y; are random variables, the distributions of which depend
on the experimenter’s choice of an experimental design. Let Y = (Y;), D; = (Dy):, and
D = (D).

The experimenter would like to learn any parameter of interest 6 of the distribution
of potential outcomes Y;(t)’s, many of which are unobservable. Formally, 6 is any mapping
6 : R™(m+1) 5 R that maps each possible value of (Y;(¢)) into the corresponding value of the

parameter. For example, § may be the average treatment effect (ATE;) of treatment ¢ over
i (Yi(t) = Yi(to))

n

control %, . The experimenter estimates 0 with an estimator 6(Y, D),
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a function only of observed outcomes and treatment assignments. Given any experimental

design (pi), I say an estimator 6(Y, D) is simple if 6(Y, D) can be written as
=D SO Dip) + ) DD G (Nt ) ip (D) (1)
i t p 7

Zi pz thY

Py iy 1{29@ é
Ny = Zi:pi:p D;; but not on individual Dy’s.

with experimental design p = (pi) and a simple estimator if there exists a simple estimator
(Y, D) such that

for some function f, f,(t) = and weights gy,y, which may depend on

I say parameter 6 is unbiasedly estimable

E(0(Y, D)|(pa)) = 6,

where E(-|(pi)) is expectation with respect to the distribution of D;; induced by experimental
design (p;;) given the fixed finite experimental design problem.@

EXAM turns out to be as informative as RCT in terms of the set of parameters unbiasedly
estimable with each experimental design and a simple estimator. Throughout this section,
assume p;n, > 1 for all t and p for which at least one subject ¢ has p}(e) = p. This assumption

is likely to hold when the experimenter uses coarse values of predicted effects and WTP.

Proposition 4 (Unbiased Estimability). If parameter 6 is unbiasedly estimable with RCT
pECT and a simple estimator, then 6 is also unbiasedly estimable with EXAM p},(€) with any

€ >0 and a simple estimator2d

Many key parameters, such as the average treatment effect, the treatment effect on the
treated, and the mean and variance of potential outcomes are known to be unbiasedly es-
timable with RCT and a simple estimator (see Appendix @)@ Proposition @ implies that

these parameters are also unbiasedly estimable with EXAM.

24 More formally, f : R x D x P — R where D = {d € {0,1}" "}, d; = 1} and P = {p;|i = i1, ..., in}.
Gipp' - NIPItm+1) 5 R for each t, p, and p’. I allow f and Jippr 0 use known elements of the experimental
design problem such as capacities ¢; and treatment assignment probabilities p;;. I do not allow é(Y, D) to
use unknown elements, especially potential outcomes.

25 T use this finite-sample framework throughout this section. The appendix provides an alternative large-
sample setting.

26 On the other hand, EXAM and RCT are not comparable in terms of Blackwell’s order (Blackwell and
Girshick, 1954) in my finite sample framework. This contrasts to the large sample analysis by Chassang et
al! (2012), where they compare their Selective Trial and RCT in terms of Blackwell’s order.

2T 1 define the treatment effect on the treated for experimental design (pi;) as
E(Z?ﬂ(Yi(t) — Yi(to))Dit

Z?Zl Dit
variance of potential outcomes as %Z? (Yi(t) — ,EJ LY;()? or - ! 12? L(Yi(t) — ,EJ Y1),
both of which are unbiasedly estimable with RCT and a simple estimator.

I <
|(pit)) while the mean of potential outcomes as —» ", Yj(t). I define the
n
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Corollary 1. The average treatment effect, the treatment effect on the treated, and the mean

and variance of potential outcomes are unbiasedly estimable with EXAM.

5.1 Unbiased ATE Estimation with EXAM Data

[ use the average treatment effect (ATE) to illustrate the intuition for and implementation of
Proposition @ and Corollary m Why is ATE unbiasedly estimable with EXAM? EXAM makes
all subjects share the same budget constraint. As a result, if subjects share the same predicted
effects and W'TP, these subjects solve the same utility maximization problem and purchase
the same vector of treatment assignment probabilities. EXAM therefore produces treatment
assignment that is independent from (unconfounded by) potential outcomes conditional on

predicted effects and WTP, which are observable to the experimenter:
(Yi(®)): L Dil(es, wit)e- (1)

With this conditional independence, EXAM fits into causal inference with stratified ex-
periments, selection-on-observables, and the propensity score, i.e., treatment assignment
probabilities conditional on observables (see Imbens and Rubin (2015) for an overview).
In particular, conditional independence (E]) implies that the same conditional independence
holds conditional on the propensity score (Imbens and Rubin (2015) section 12.3), which

EXAM computes as p;(e) = (p};(€)); and again known to the econometrician:
(Yi(t)): L Dilpi (e). (2)

This conditionally independent treatment assignment allows the experimenter to unbiasedly
estimate the conditional average treatment effects of each ¢ over ¢y conditional on observable
propensity scores p;(€),
> i1 H{pi(e) = ph(Yi(t) — Yi(to))
> Upi(e) = p} ’

which I denote by C AT E,; and is defined for each p such that at least one subject ¢ has p(e) =
p. These conditional-on-the-propensity-score effects are a version of Marginal Treatment
Effects (Bjorklund and Moffitt, 1987; Heckman and Vytlacil, 2005). Marginal Treatment
Effects are therefore estimable with EXAM’s data 3

28 To see this, as in Heckman and Vytlacil (2005), focus on an experimental design problem with only
one treatment ¢; compared to the control ¢o. Given EXAM’s assignment probability pj; (€), let R; ~ U[0,1]
with R; L (Yi(to),Yi(t1)). Write the treatment assignment as

Dit, = {R; < pjy, (€)}.
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By summing up such marginal or conditional effects, the experimenter can also back out
the (unconditional) ATE, the single most important causal object identified and estimated
by RCT. That is, with weights 6, = n,/n, I use CATE,;’s to get ATE as follows:

> 6,CATE, = ATE,.
p

Importantly, the key conditional independence properties @) and (E) hold regardless
of whether e;; and w;; coincide with the true treatment effects and WTP. In this sense,
like RCT, EXAM’s informational virtue is robust to any of the experimenter’s potential
misspecifications about predicted effects and wpkd

The above estimability argument motivates a strategy to estimate ATE with EXAM’s
data. As a warm-up, focus on {i|pf(¢) = p}, the subpopulation of subjects with propensity

vector p, and consider this regression on the subpopulation:

tm
Yi=qa,+ ZﬁptDit + €;.

t=t1

By the conditional independence property (E), OLS estimate Bpt from this regression is
unbiased for C AT E), for each treatment ¢ # ¢y. I then aggregate the resulting estimates Bpt’s
into Zp §pﬁpt, which I denote by Bf This B;‘ is a multinomial propensity score weighting
estimator that unbiasedly estimates the average treatment effect with its variance in an

analytical form.

Proposition 5 (Bias and Variance). Suppose that the data-generating experimental design
is EXAM p*(€) = (p,(€))i with any given e > 0. BF is an unbiased estimator of the average

treatment effect. In particular,

Su . 5

2
pto _S

ptto )
)
PNy ProTp p

B(F1"(0)) = ATE; and Var(Flp"(6)) = 3 53(

— Zz *(e)= }/;(t)
where Y,(t) = pi(9)=p is the mean of Y;(t) in the subpopulation with propensity p,
np

Note that E(Dy,) = pj;, () as desired. This model is a special case of Heckman-Vytlacil’s model with
local instrumental variable R; because R; is independent of (Y;(ta),Yi(t1).pj;, (€)) by construction while
R; can be correlated with (Y;(t),Y:(¢1)). As a result, Heckman and Vytlacil (2005)’s method allows the
experimenter to identify Marginal Treatment Effects with EXAM’s data. [Chassang et al! (2012) provide
a_similar discussion about their Selective Trial idea. See also Kowalski (2016); Mogstad and Torgovitsky
(2018) for recent developments in the marginal treatment effect method.

29 On the other hand, the welfare optimality in Proposition P is welfare-relevant only if the experimenter
predicts treatment effects and WTP well.
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2 ipr(0=p(Yi(t) = Yp(1))?
Sgt = G pnp —3 - is the variance of Y;(t) in the subpopulation, and Sﬁtt, =

D o=p(Yi(t) = Yi(t') — (Y (t) — Y3 (t)))?

n, —1

is the variance of Y;(t) — Y;(t') in the subpopula-

tion.

Though this variance expression is not identified in general, it provides guidance on when
the variance is likely to be large or small. In practice, statistical inference may be based on
randomization or large-sample inference.
Alternatively, empirical researchers may prefer a single regression controlling for propen-
sity vectors:
tm tm
Yi=a+ Z by Dy + Z cipy(€) + €, (3)
t=t1 t=t1
producing an alternative estimator l;;‘ As verified in the appendix, I;Z‘ is an unbiased estimator

of a differently weighted treatment effect:

) S ACATE,,
E(b7p*(e)) = ==
! Zp )\pt

Estimators like I;;‘ and B;‘ allow the experimenter to unbiasedly estimate key causal effects
with EXAM.

with weights Ay = 0,p:(1 — py). (4)

5.2 Power Comparison of EXAM and RCT

Does EXAM compete with RCT in terms of statistical efficiency in ATE estimation? With
RCT’s data, the most standard estimator of ATE of treatment ¢ over control t; is the
difference in the average outcome between subjects assigned to treatment ¢ and those assigned

to control tg:
sror _ 2 DiYi 30 DinyYi

' B Zz Dit Z@ Dito .

This BtRCT is a special case of Bz‘ when p,(e) = pFT. By Proposition H, therefore,

ROT g

unbiased for ATE with the following variance, confirming a classic result about RCT.

Corollary 2 (Imbens and Rubin (2015)’s Theorem 6.2).

2 2
Sty S S

Ct Ctq n

E(BtRCT|pRCT> — ATEt and V(BtRCT’pRCT> —

where S? = 2 (Yi(t) = Y(#)? and S2, = > (Yi(t) —Yi(t') — Y(t) - (t/)))z'

n—1 w = n—1
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Proposition H and Corollary E imply that EXAM may produce more precise ATE es-
timates (V (B¢[p*(€)) < V(BECT|pRCT)). Such a situation occurs if potential outcomes are
well correlated (positively or negatively) with EXAM’s treatment assignment probabilities,

as illustrated by the following example.

Example 1. Suppose there is only one treatment ¢, n = 40, and ¢;, = ¢;; = 20. Every
subject has Y;(ty) = 1. The subjects are divided into four groups A, B, C, and D of the same
size (10) based on their potential outcomes Y;(t1). Let Y;(¢1) = 1,2, 3, and 4 for anybody in
group A, B,C, and D, respectively. Assume the experimenter imperfectly predicts treatment
effects: e;;; = 0 for every i in group A or B while e;,; = 2 for group C or D. Let wy, > 0
for all subjects. EXAM with € < .2 gives the following treatment assignment probabilities@:
p;;,(€) = 0.2 for every i in groups A and B while pj, (¢) = 0.8 for groups C' and D. Under
RCT, pﬁCT = ptROCT = 20/40 = 0.5 for all subjects. Applying Proposition E and Corollary E

to this example, I have
V(Bi[p*(e)) = 0.013... < 0.032... = V(BECT|pRCT).

This example makes clear that information production in EXAM is not a diluted version
of that in RCT. EXAM’s ATE estimation is not only unbiased but also potentially more
precise than RCT’s; this is true even if the experimenter’s prediction of treatment effects
is imperfect. Appendix provides further support for this point by showing it remains
true in an asymptotic framework.

In general, however, the precision comparison of EXAM and RCT is ambiguous. There
are other examples with V(3ECT|pRT) < V(37|p*(€)); one such example with a binary
treatment ¢; vs. o is where pfi“" = pfiT = 0.5 for every i, p*(€) # p™“?, and there is no
correlation between potential outcomes and p*(¢). This ambiguity is common in precision
comparisons of experimental designs. This motivates me to empirically compare EXAM and
RCT’s estimation precision. The empirical application also allows me to verify and quantify

the welfare, incentive, and unbiasedness properties of EXAM.

15b

30 EXAM outputs these treatment assignment probabilities if I set o = 3 B¢, = bb, and B, = 0 given

any budget b.
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6 Empirical Application

6.1 Overview

My empirical test bed for EXAM is an application to a spring protection experiment in
Kenya. Waterborne diseases, especially diarrhea, remain the second leading cause of death
among children, comprising about 17% of child deaths under age five (about 1.5 million
deaths each year).@ The only quantitative United Nations Millennium Development Goal
is in terms of “the proportion of the population without sustainable access to safe drinking
water and basic sanitation,” such as protected Springs.@ Yet there is controversy about the
health impacts of spring protection. Experts argue that improving source water quality may
only have limited effects, since, for example, water is likely recontaminated in transport and
storage. These arguments were made in the absence of any randomized experiment.

This controversy motivated Kremer et al, (2011) to analyze randomized spring protec-
tion conducted by an NGO (International Children Support) in Kenya in the mid 2000s.
This experiment randomly selected springs to receive protection from the universe of 200
unprotected springs. The experimenter selected and followed a representative sample of
about 1500 households that regularly used some of the 200 springs before the experiment;
these households are experimental subjects. Kremer et al| (2011) found that spring protec-
tion substantially improves source water quality and is moderately effective at improving
household water quality after some recontamination. Diarrhea among children in treatment
households fell by about a quarter of the baseline level. T call this real experiment “Kremer
et al) (2011)’s experiment” and distinguish it from EXAM and RCT as formal concepts in
my model.

Kremer et al] (2011)’s experiment provides an ideal setup for empirically evaluating
EXAM. Their experiment is about a high-stakes treatment and produces rich data that
allows me to measure not only treatment effects but also subjects’” WTP for the treatment.
I consolidate Kremer et al| (2011)’s experimental data and my methodological framework to
empirically evaluate EXAM. Applying the language and notation of my model, experimental
subjects are households in Kremer et al| (2011))’s sample.@ The protection of the spring each

household uses at baseline is a single treatment ¢; while no protection is the control ¢,. Each

31 See UNICEF and WHO'’s joint document “Diarrhoea: Why Children Are Still Dying and What Can be
Done,” at http://apps.who.int/iris/bitstream/10665/44174/1/9789241598415_eng.pdf, retrieved in
May 2019.

32 See http://www.un.org/millenniumgoals/, retrieved in May 2019. Spring protection encases the
source of a natural spring in concrete, allowing water to flow from a pipe rather than seeping from the
ground. In this way, the water source is protected from human or animal waste.

33 Alternatively, it’s possible to interpret springs as the subjects in my model. The resulting analysis
produces similar results (available upon request).
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household i’'s WTP for better water access t; is denoted by w;,, which I estimate below.
I also estimate the heterogeneous treatment effect e;,; of spring protection ¢; on household
1’s child diarrhea outcome. Using this embedding, I implement EXAM and compare it
with RCT to see which is a better design of a hypothetical future experiment on the spring

protection treatment.

6.2 Treatment Effects and WTP
Treatment Effects

For executing EXAM, I need to measure w;;, and e;; and substitute them into EXAM. I
estimate heterogeneous treatment effects e;,; of access to better water in a similar way as
Kremer et al| (2011). This treatment effect estimation exploits additional details of Kremer
et al| (2011)’s experiment. The experimenter NGO aspired to eventually protect all the 200
springs but planned for the protection intervention to be phased in over four years due to
financial and administrative constraints. In each round, a subset of springs were randomly
picked to be protected. Figure I in Kremer et al, (2011)) details the timeline of the experiment.
This experimental scheme legitimizes the following OLS regression at the (child 4, spring j,

survey round t)-level:
Yiit = (01 + 02X;)Tje + o + o + wij + €, (5)

where Y;;; is the binary outcome indicating that child ¢ in a household drawing water from
spring j at baseline has diarrhea in survey round ¢. X; contains covariates of child i’s house-
hold (baseline latrine or sanitation density, diarrhea prevention knowledge score, mother’s
years of education). Every covariate is normalized to be mean zero so that the coefficient
¢1 can be interpreted as the average treatment effect. T}, is the binary treatment indicating
that spring j is treated in survey round ¢. oy, oy, and u,; are fixed effects. The treatment
effect is ¢1 + ¢2.X; and is heterogeneous across subjects with different covariates X;.

Estimates from the OLS regression (B) are in Table a The average treatment effect is
about 4.5% absolute reduction or about 25% relative reduction in the diarrhea outcome Y.
Households with higher scores in diarrhea prevention knowledge or mother’s education level
tend to have better treatment effects, although the relatively large standard errors argue
for caution in interpretation. This heterogeneity may be present because such households
are more likely to prefer and use protected springs, as suggested by a revealed preference
analysis below.

I then use the OLS estimates to predict the treatment effect for each household ¢ with
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i = (ﬁl + ngSQXZ-, where ngﬁl and Qgg are OLS estimates of ¢; and ¢, respectively. Kremer et
al) (2011)’s experiment randomized T}, and gives its coefficient estimate é;,; an interpreta-
tion as a causal effect. Estimated treatment effects é;,; exhibit significant heterogeneity, as

illustrated in Figure m Panel a.

WTP

I estimate heterogeneous WTP w;;, for the treatment as follows. In the experimental target
area, each household draws water from a water source the household chooses among multiple
sources in the neighborhood. This fact motivates a discrete choice model of households’ water
source choices, in which households trade off water quality against other source characteristics
such as proximity. This model produces revealed preference estimates of household WTP for
the spring protection treatment as a spring characteristic, which is identified by exogenous
variation in the treatment generated by Kremer et al| (2011)’s experiment.

Specifically, I use a mixed or random-coeflicient logit model ([Train (2003), chapter 6):
Uije = (Bi + 1 Xi)Tje — ciDij + 65 + €1, (6)

where Uj;; is household 4’s utility from source j in survey round ¢, and D;; is household
i’s roundtrip distance to spring j (measured in terms of minutes of walking time). f; and
¢; are random preference coefficients assumed to be distributed according to normal and
triangular distributions, respectively, with unknown parameters to be estimated. I restrict
the triangular distribution of ¢; to have the same mean and standard deviation, making
sure every houschold prefers proximity. d,’s are spring-type fixed effects. ¢;’s attempt to
capture the average preference for potentially unobserved spring type characteristics other
than treatment 7T} and distance D;;. €;;; is logit utility shocks iid according to the type
[ extreme value distribution with usual variance normalization to 7%/6. I estimate the
model with data on households’ spring choices (in the final survey round after random
spring protection) and a standard maximum simulated likelihood method, which T detail in
Appendix .

The mixed logit preference estimates are in Table @ Households have significant distaste
for distance and significant preferences for protected treatment springs (other characteristics
being equal). Not surprisingly, households with better diarrhea prevention knowledge scores
or higher education levels of mothers tend to have stronger revealed preferences for the spring
protection treatment. This heterogeneity is expected if such households are more conscious

of water quality.@

34 Tables E and @ show slight differences from Kremer et al’s estimates. It is because I include the same
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I then exploit the mixed logit estimates to estimate household i’'s WTP for treatment t;
as Wy, = BZ + 41X, where 4 is the mixed logit estimate of ~;. 5’@ is a value drawn from
the estimated distribution of the random coefficient 5;. The identification of v; and the
distribution of §; is helped by Kremer et al| (2011)’s experimental variation in protection
treatment T}, since otherwise Tj; is likely correlated with unobserved spring characteristics
€it, making it impossible to identify the WTP for spring protection alone.

Since 0, is in an elusive utility unit, I convert it into a more easily interpreted measure
in terms of time cost of water collection. To do that, I first compute @}, /¢;, where ¢; is
the mixed logit estimate of ¢; (the distaste coefficient on distance). Again, I bootstrap the
random coefficient ¢; from its estimated distribution. I then multiply it by each household’s
self-reported time cost of traveling for a unit of distance. This procedure gives me a time
cost measure of WTP for the treatment, w;,. This w;, is measured by workdays utility-
equivalent to by, .

The estimated WTP 1wy, is displayed in Figure m Panel b, showing the histogram of
simulated values of w;,. The median WTP is about 25 workday-equivalent. While both
WTP w;, and treatment effects é;,; show sizable heterogeneity, there turns out to be only
limited correlation between the two. This fact can be seen in the joint density plot in Figure
m Panel c, where there is a positive correlation between WTP w;;, and treatment effects é;,;,
but the magnitude of the correlation is small (R? is lower than 0.12 when I regress one on the
other). This demonstrates that WTP w;, and treatment effects é;,; contain different types
of information about subject welfare, suggesting the importance of respecting both WTP

and predicted effects separately. This is what EXAM attempts to do, as I explain next.

6.3 EXAM vs RCT

Now imagine somebody is planning a new experiment for further investigating the same
spring protection treatment. What experimental design should she use? Specifically, which is
better between RCT and EXAM? A full-fledged comparison of experimental designs requires
a meta-experiment that randomly assigns different designs to many experimental studies.
To circumvent the difficulties of such a meta-experiment, I resort to an alternative approach
exploiting the above WTP and treatment effect estimates.

My approach is to use the estimated WTP w;, and predicted effects é;,; to simulate
EXAM and compare EXAM with RCT in terms of welfare, information, and incentive prop-
erties. Throughout the comparison, I fix the set of subjects and treatments as in Kremer

et al) (2011)’s experiment. That is, there are 1540 households as subjects to be assigned

set of a small number of covariate interactions both in the OLS and mixed logit models while Kremer et al.
include different sets of covariate interactions and other controls in their models.
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either to the single water source protection treatment ¢; or the control ¢;. Set the treatment
capacity ¢, to be the number of households assigned to the treatment ¢; in Kremer et al’s
experiment (by the end of their survey period). I set the bound parameter ¢ to be 0.2; I
investigate how the results change under another value of € at the end. I fix predicted effects
et,i to their point estimate é;,;.

I simulate WTP with parametric bootstrap from the estimated distribution of wy,, i.e.,
the estimated mixed logit model (a) (conditional on each household’s fixed characteristics
X;). In this WTP simulation, I require all families with the same characteristics X; to share
the same WTP. After simulating w;,, I compute treatment assignment probabilities pf,(€)
by running EXAM on the bootstrapped data along with other fixed parameters such as the
treatment capacity.@ The algorithm I use for executing EXAM is described in Appendix
had

The simulation process for RCT is analogous except that the treatment assignment prob-
ability is fixed at pﬁCT = ¢, /n = .43. Note that this RCT is a hypothetical experimental
design in line with my Definition m and different from Kremer et al) (2011)’s experiment

involving additional real-world complications.

Welfare

I start with evaluating EXAM’s welfare performance. Use EXAM’s treatment assignment

probabilities pj, (€) to calculate two welfare measures for each household i:
wi = Zp;‘t(e)wit and e; = prt(e)eti.
t t

w; and e are empirical analogues of the two welfare measures in my theoretical welfare
analysis (Proposition E)

I find that EXAM improves on RCT in terms of the welfare measures w; and e, a result
reported in Figure E The figure draws the distribution of w} and e over households and
1000 bootstrap samples. Among other things, the mean of average WTP w; for assigned
treatments is about 89% or 9.4 workday-equivalent utilities higher under EXAM than it is
under RCT. Another interpretation of this WTP improvement is about 37% of the average
WTP for the treatment. Similarly, EXAM improves the mean of e by about 0.8% absolute

reduction or 42% reduction relative to RCT’s level. This predicted effect benefit amounts to

35 To make treatment assignment probabilities take a modest number of values, I coarsen the values of
WTP and predicted effects. Specifically, for each simulation and each of WTP and predicted effects, I first
group its values into four quartiles and then replace each household’s value by the median value within the
quantile group to which the household belongs.
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about 17% of the average treatment effect of the spring protection found by Kremer et al.

(2011) and Table J.

Information

Data from EXAM also allows me to obtain more or less the same conclusion about treat-
ment effects as RCT. To see this, [ augment the above counterfactual simulation with average
treatment effect estimation as follows: I first simulate w;;, and run EXAM to get treatment
assignment probabilities pf,(€). I use pj(¢) to draw a final deterministic treatment assign-
ment, denoted by a binary indicator D; indicating ¢ is ex post assigned to ¢;. I then simulate
counterfactual or predicted outcome Y; under D; by simulating the OLS model I estimate in

the last section:
Y, = ((/51 + ngS2Xi)Di + &; + (average of &, across all t) + (average of 4;; across all j),

where objects with a hat mean estimates of the corresponding parameters in regression
(H) I take the average of &;’s and 4;;’s to adapt regression (B) at the (7, 7j,t)-level to my
counterfactual simulation setting at the household-i-level. Note that the above expression is
the definition of Y;, not a regression. Finally, I use the above simulated Y; and D; to estimate

treatment effects with b* from this OLS regression:
Y; = a+bD; + cpjy, (€) + e,

where I control for propensity score pj; (€) to make treatment assignment D; random. This
regression is a stripped-down version of the regression strategy (a) in Section B I also
implement the other propensity-score-weighting estimator B *, again following the description
in Section B The procedure for RCT is analogous except that the treatment assignment
probability is fixed at pF7.

Program evaluation with EXAM turns out to be as unbiased and precise as that with
RCT. Figure a plots the distribution of the resulting treatment effect estimates b* and (%
over 1000 simulations. In line with Propositions @ and B, the means of b* and B* for EXAM
are indistinguishable from those under RCT. Both experimental designs successfully recover
Kremer et al| (2011)’s average treatment effect estimate (4.5% reduction in diarrhea; recall
column 1 in Table B)

Perhaps more importantly, the distributions of b* and B* for EXAM have similar stan-
dard deviations as those for RCT. This means that the two experimental designs produce

similar exact, finite-sample standard errors in their estimates b* and B* Variations of this
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observation are in Figure @, which shows the distribution of p values for the estimates b*.
The four panels use p values based on exact, non-robust, robust, and Abadie et al| (2017)’s
finite population causal standard errors, respectively, where the exact standard error means
the standard deviation in the distribution of b* in Figure a RCT produces slightly smaller p
values than EXAM, but the median p value is about 0.03 for RCT and about 0.04 for EXAM.
Both EXAM and RCT therefore detect a significant average treatment effect for a major-
ity of cases. Overall, EXAM appears to succeed in its informational mission of eliminating

selection bias and recovering ATE precisely enough.

Incentive

EXAM’s WTP benefits can be regarded as welfare-relevant only if EXAM provides subjects
with incentives to reveal their true WTP. I conclude my empirical analysis with an inves-
tigation of the incentive compatibility of EXAM. I repeat the following procedure many
times: As before, I simulate w;;, and run EXAM to get treatment assignment probabilities
pi(€). I then randomly pick one subject j as a WTP manipulator and one potential WTP
manipulation w, by j. I choose the manipulator j uniformly randomly among all sub-
jects. The manipulation w}, is either from N(wj;,,100), N(w;s,,1000), U(wjq,, wjs, + 100),
or U(wji, — 100, w;y,) where wjy, is j’s true WTP. These computational scenarios cover dif-
ferent types of misreporting, that is, both over-reporting and under-reporting with different
magnitudes. I run EXAM on the simulated data but with the WTP manipulation w’, to
get treatment assignment probabilities pl,(¢). I finally compute the true WTP gain from the

/.

manipulation w7, :

Aw = Zp;t(dwjt - Zp:t(e)wjt'
t t

EXAM is found to give subjects little incentive for WTP misreporting, empirically ver-
ifying Proposition E Figure H shows this by drawing the distribution of Aw over 1000
simulations and households. Across all scenarios, the WTP gain Aw from misreporting is
mostly negative and well below zero on average.

Ideally, T would like to compute the gains from the optimal (as opposed to random) WTP
manipulations. The optimal WTP manipulations are hard to find, however, since equilibrium
prices endogenously respond to WTP manipulations in a complex, unknown manner. As a
feasible exercise, Table H shows that even the most profitable manipulations in Figure B lead
to normalized gains Aw/w;;, smaller than 0.021. This result suggests that there are unlikely
to be manipulations that produce large gains.

Overall, in this empirical setting, EXAM provides subjects with stronger average incen-
tives for truthful WTP reporting than RCT does (because subjects in RCT are indifferent
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among all possible WTP reports). EXAM may therefore be better at eliciting reliable WTP
data.

Role of Design Parameters

Finally, I analyze how the results depend on the choice of design parameters, especially e,
which governs how close EXAM must be to RCT. With a smaller value of € = 0.1, the same
set of results as in Figures E—B and Table B are reported in Appendix Figures @—@ and
Table @ The results stay qualitatively the same between the two analyses. This confirms
the above baseline empirical analysis is robust.

Yet there is a key quantitative difference: Appendix Figure [A:l! with € = 0.1 finds
better welfare performance of EXAM compared to Figure @ with € = 0.2. On the other
hand, Appendix Figure and Figure @ suggest EXAM’s statistical efficiency deteriorates
as € drops from 0.2 to 0.1. This tradeoff is intuitive as smaller values of € allow EXAM’s
assignment probabilities to get away from RCT’s and focus more on welfare enhancement.
This welfare enhancement may come at the cost of diluted information. The parameter €
thus embodies the welfare vs information tradeoff among different versions of EXAM. This
observation raises an intriguing yet challenging methodological question of how to optimally

specify €. I leave this direction for future research.

7 Takeaway and Future Directions

Motivated by the high-stakes nature of many RCTs, I propose a data-driven, stratified experi-
ment dubbed Experiment-as-Market (EXAM). EXAM is a solution to a hybrid experimental-
design-as-market-design problem of maximizing participants’ welfare subject to the con-
straint that the experimenter must produce as much information and incentives as in RCTs
(Propositions E—E) These properties are then verified and quantified in an empirical appli-
cation where I simulate my design on a water source protection experiment. Taken together,
the body of evidence suggests that EXAM improves subject well-being with little informa-
tion and incentive costs. The demonstrated benefits are conservative in that they do not
incorporate potential additional benefits from EXAM for improving recruitment, compliance
with assigned treatment, and attrition (recall the discussion in Section E)

This paper takes a step toward introducing welfare and ethics into experimental de-
sign. This opens the door to several open questions. In ongoing work, I am implementing
EXAM in the field. This implementation raises practical questions, such as how to design
an easy-to-use interface through which EXAM interacts with subjects, as well as a fast and
scalable algorithm to implement EXAM, and how best to obtain predicted effects and WTP.
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The empirical and computational analysis in Section a is an effort to tackle these practical
challenges.

Econometrically and theoretically, this paper’s analysis is simplistic in many respects,
asking for a variety of extensions. Key extensions include introducing a decision-theoretic
framework with an explicit social welfare function for the experimenter; analyzing EXAM
in an instrumental variable setting where subjects may not comply with treatment assign-
ment; analyzing experimental designs with endogenous subject participation and dropout;
introducing monetary compensation and other contracts like informed consent; analyzing
EXAM’s dynamic or sequential properties; optimally choosing sample size and treatment
definitions (in addition to designing treatment assignment probabilities given the sample
size and treatment definition); considering information frictions and psychological elements
in patient preferences; and analyzing games among experimenters with experimental design

as an action or strategy. I leave these challenging directions for future research.
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Table 1: Magnitude of the RCT Landscape

(a) Registered Medical Clinical Trials & Sample Sizes

‘ Sample Period 2007-2017 May

Total Number of Clinical Trials Registered 296,597
Sum of Sample Sizes 367,902,580

(b) Registered Social and Economic Experiments & Sample Sizes

| Sample Period 2007-2017 May

Total Number of Economic RCTs Registered 1055
Sum of Sample Sizes 22,190,304

Notes: Panel a provides summary statistics of clinical trials registered in the WHO International Clinical
Trials Registry Platform (ICTRP, http://www.who.int/ictrp/en/, retrieved in May 2019). The sample
consists of clinical trials registered there between January 1st 2007 to May 30th 2017. I exclude trials with
registered sample size larger than five millions. Panel b provides summary statistics of economic RCTs
registered in the American Economic Association RCT Registry (https://www.socialscienceregistry.
org, retrieved in May 2019). The sample consists of RCTs registered there between January 1st 2007 to May
30th 2017 and where the unit of outcome measurement is an individual or a household. I focus on RCTs
with individual or household subjects in order to make it possible to sum up sample sizes. See Section P for
discussions about this exhibit and Appendix |A.3.1| for the detailed computational procedure.
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Table 3: OLS Regression Estimates of Heterogeneous Treatment Effects

Dependent Variable: Incidence of Child Diarrhea in Past Week

ey (@) 3) “ ®)
Main
Treatment -0.045%*%  -0.045%*%* -0.046%** -0.044*** -0.045%**
0.012) 0.012) 0.012) (0.012) 0.012)
Treatment * latrine density -0.061 -0.046
(0.069) (0.068)
Treatment * diarrhea prevention -0.012%%* -0.010%%*
(0.004) (0.004)
Treatment * mother's education -0.007*%*  -0.006*
(0.003) (0.003)
Observations 6,750 6,750 6,750 6,742 6,742
Mean of dependent variable in comparison group 0.193 0.193 0.193 0.193 0.193

Notes: This table shows OLS regression estimates of heterogeneous treatment effects of spring protection.
Data from all four survey rounds (2004, 2005, 2006, 2007), sample restricted to children under age three at
baseline (in 2004) and children born since 2004 in sample households. Diarrhea defined as three or more
“looser than normal” stools within 24 hours at any time in the past week. Different columns differ in the set
of baseline household characteristics interacted with the treatment indicator. Every household characteristic
is normalized to be mean zero so that the coefficient on the treatment indicator can be interpreted as the
average treatment effect. The gender-age controls include linear and quadratic current age (by month), and
these terms interacted with a gender indicator. I use specifications without additional controls. Stars *, **
and *** mean significance at 90%, 95%, and 99%, respectively, based on Huber-White robust standard errors
clustered at the spring level. See Section for the model description and discussions about this table.
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Table 4: Maximum Simulated Likelihood Estimates of Mixed Logit Model of Spring Choice

(1) (2) (3) 4
Main
Spring protection treatment indicator (Normal)
Mean 2.205%*%* 3 163%%* 2.999%** 3.516%**
(0.213) (0.235) (0.288) (0.308)
Standard Deviation 5426%F*F  57702%** 5.557%%%* 5.741%%%*
(0.298) (0.291) (0.405) (0.305)
Treatment * latrine density 7.533%** 2.751%%*
(0.939) (1.178)
Treatment * diarrhea prevention 1.080%** 0.565%**
(0.104) (0.095)
Treatment * mother's education 0.650%** 0.609***

(0.066) (0.069)
Distance to source, minutes walk (Restricted triangular)

Mean 0.222%%*  (0.220%**  (0.220%%*  (Q22]1***
(0.010) (0.010) (0.010) (0.010)

Standard Deviation 0.222%%*  (0.220%**  (0.220%%*  (22]***
(0.010) (0.010) (0.010) (0.010)

Source type: borehole/piped -1.079%%%  _1.047F*F -1 055%%*F  -1.054%**
(0.135) (0.136) (0.139) (0.133)

Source type: well -1.924%%% 1 954% %% ] 943%*¥ ] Q44%%*
(0.137) (0.131) (0.134) (0.131)

Source type: stream/river -1.422%%% ] 3RTHF*E 1 443%F%%k ] 3QFExk
(0.144) (0.141) (0.148) (0.143)
Source type: lake/pond -0.312 -0.313 -0.333 -0.299
(0.269) (0.273) (0.274) (0.406)
Number of observations 53427 53427 53427 53427

(water collection choice situations)

Notes: This table shows mixed logit estimates used for estimating heterogeneous WTP for the treatment.
Each observation is a unique water collection trip recorded in the final round of household surveys (2007). The
omitted water source category is non-program springs outside the target area of the experiment. Different
columns differ in the set of baseline household characteristics interacted with the treatment indicator. The
indicator for the spring that each household used at baseline is in the models, but its coefficient estimate
is not shown in the table. Standard errors are based on the information matrix with the Hessian being
estimated by the outer product of the gradient of the simulated likelihood at the estimated parameter value.
Stars *, ** and *** mean significance at 90%, 95%, and 99%. respectively. See Section for the model
description and discussions about this table. See Appendix for the estimation procedure to produce
these estimates.
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Figure 1: Treatment Effects and WTP for the Treatment

(a) Heterogeneity in Treatment Effects é;,; (b) Heterogeneity in WTP wj,
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(c) Correlation between Treatment Effects & WTP
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Notes: This figure shows the pattern of heterogeneity in estimated WTP w;;, and predicted treatment
effects é;,;. Panel a is about the predicted treatment effects é;,; measured in percentage point reduction
in the incidence of child diarrhea in the past week, while Panel b is about WTP for the spring protection
treatment w;, , measured by time cost of water collection in the unit of workdays. Both predicted effects é;,;
and WTP w;;, are based on the main statistical specifications including all of the interactions between the
treatment indicator and household characteristics (baseline latrine density, diarrhea prevention knowledge
score, and mother’s years of education). Panel ¢ demonstrates the correlation between WTP 0, and
predicted treatment effects é;,;. For the sake of visibility, I focus on the three standard deviations around
the mean. See Section @ for discussions about this figure. See Appendix for the detailed computational
procedure.
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Figure 2: EXAM vs RCT: Welfare

(a) Average WTP for Assigned Treatments w;
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Kolmogorov—Smirnov test: D = .246 , p-value = 0

(b) Average Predicted Effects of Assigned Treatments
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Kolmogorov—Smirnov test: D= .425 , p value= 0

Notes: To compare EXAM and RCT’s welfare performance, this figure shows the distribution of average
subject welfare over 1000 bootstrap simulations under each experimental design. Panel a measures welfare
with respect to average WTP w} for assigned treatments while Panel b with respect to average predicted
effects e} of assigned treatments. A dotted line indicates the distribution of each welfare measure for RCT
while a solid line indicates that for EXAM. Each vertical line represents mean. Kolmogorov-Smirnov tests
find the EXAM and RCT distributions to be significantly different both for w} and e!. Both predicted
effects é;,; and WTP w;;, are based on the main statistical specifications including all of the interactions
between the treatment indicator and household characteristics (baseline latrine density, diarrhea prevention
knowledge score, and mother’s years of education). See Section for discussions about this figure.
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Figure 3: EXAM vs RCT: Average Treatment Effect Estimates

(a) Distribution of Treatment Effect Estimates b*
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(b) Distribution of Average Treatment Effect Estimates 5*
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Notes: This figure compares EXAM and RCT’s causal inference performance by showing the distribution

of average treatment effect estimates under each experimental design. Grey bins indicate average treatment

effect estimates for RCT while transparent bins with black outlines indicate those for EXAM. The solid

vertical line indicates the mean for EXAM while the dashed vertical line indicates that for RCT. See Section
for discussions about this figure.
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Figure 4: EXAM vs RCT: p Values for b*

(a) Exact, Finite Sample p Values (b) Non-robust p Values
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Notes: This figure compares EXAM and RCT’s causal inference performance by showing the distribution
of p values accompanying treatment effect estimates b* under each experimental design. The p values are
based on exact, non-robust, robust, or |Abadie et al (l2017|)’s finite population causal standard errors. Grey
bins indicate p values for RCT while transparent bins with black outlines indicate those for EXAM. The
solid vertical line indicates median for EXAM while the dashed vertical line indicates that for RCT. See
Section for discussions about this figure.
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Figure 5: EXAM vs RCT: Incentive

(a) WTP manipulation ~ true WTP+N(0,100) (b) WTP manipulation ~ true WTP+N (0, 1000)
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(¢) WTP manipulation ~ true WTP+U(0,100) (d) WTP manipulation ~ true WTP+U(—100,0)
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Notes: This figure shows the histogram of true WTP gains from potential WTP misreporting to EXAM,
quantifying the incentive compatibility of EXAM. Different panels use different ways of drawing WTP
manipulations indicated by the panel titles. Each solid vertical line represents the mean WTP gain from
potential WTP misreporting to EXAM. The dash vertical line is for RCT, where the true WTP gain from
any WTP misreport is zero. See Section @ for discussions about this figure.
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A Appendix (For Online Publication)

A.1 Methodological Details

Throughout Appendix [A:l!, I impose the simplifying assumption that ), p},(e) € Z for every

t. It is possible to dispense with this assumption with additional notational burden.

A.1.1 Propositions @ and B: Generalizations

This section extends Proposition H to a general case where pin, (the expected number of
subjects with propensity vector p and assigned to treatment ¢ under EXAM) may not be an
integer. Let N, = ) . 1{p;(e) = p}D;y be a random variable that stands for the number
of subjects with propensity vector p and assigned to treatment ¢. Denote the realization of
Npe by nypy = 3, 1{p;j(€) = p}diyy where d;; is the realization of D;. Let n, be the greatest
integer less than or equal to pyn,. With this regularity condition, I extend Definition E as

follows to use EXAM to draw a deterministic treatment assignment and the associated n,,’s.

Definition 2 (EXAM Continued; Generalization). Starting from the end of Definition E
in Section @, draw a treatment assignment from pf,(e) as follows. First apply Budish et
al) (2013)’s algorithm (in their Appendix B) to draw (n,) € N that satisfy the following

properties (I detail their algorithm and its use below):

e ny, = peny, for all p and ¢ such that pn, € N.

Npt € {0y + 1} for all p and ¢ such that p;n, ¢ N.

> npr = ny, for all p.

>t = ;D (e) for all ¢.

o E(ny) = pn, for all p and t.

Given the drawn values of (n,), for each propensity vector p,
o [ uniformly randomly pick n,;, subjects from {i|p}(¢) = p} and assign them to .

For each subsequent step k =1,...,m,

e Step k: From the remaining n, — Zi’;g nye subjects, I uniformly randomly pick 7,

subjects and assign them to ;.
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When p;n, is an integer for all p and ¢, n,; = p;n, always holds for all p and ¢ so that this
generalized definition reduces to Definition P} in Section B With this extended Definition E,
Proposition @ holds as it is in the main text. I obtain the following characterization of the

variance of ATE estimator B: , which nests Proposition H in Section H

Proposition E (Generalization). Suppose that the data-generating process is EXAM p*(e) =
(pi(€))ir with any given € > 0. B;‘ is an unbiased estimator of the average treatment effect

with the following variance.

2 2 2

V) = 28] 3 [(G)0 e+ (52 ]

L1 Dy Top T Ty T )Pt T B n J
veltod)  t! Ry P

Zi:pf (e)=p Y; (t>

where recall that 6, = n,/n, Y,(t) =

S0 (Yi(8) = V()2

n, — 1 ~ ~
 Sirn i) = Yilt) = (() = T(t)))?
n, — 1

is the mean of Y;(¢) in the subpopulation

with propensity p, Sgt =

is the variance of Y;(t) in the subpopula-

tion, and 52, =

is the variance of Y;(t) — Y;(t)

in the subpopulation.

Using Budish et al, (2013)’s Algorithm

In the above generalized Definition B, I use Budish et al| (2013)’s algorithm to draw (n,:).
To do so, I embed my setting into their notation as follows: N = {p € [0,1]™"!| there
exists some subject i such that pf(e) = p} is the set of “agents” in their terminology. Let
O = {to,t1,...,tm} be the set of “objects” H = {H;,Ho} is a “constraint structure” where
Hi = HoUHY, Ho = {{(p,t)}penico}, Hi = {(p,t)|t € O}pen, and Ho = {(p,t)|p € N }teo-

Upper and lower constraints are as follows.
« ¢s=1and ¢ =0if s € H,.
¢ Qs =g, = = )y if s € H
© Gs=q = ;pule) =D, ny, if s € Ha.

Budish et al. (2013) show that applying their algorithm to this problem produces (z,)
such that n, = n,, + z;,; satisfies the properties in Definition E For completeness, I define
their algorithm; see their Appendix B for more details. I first construct a network flow as

follows. Let Q = {{(p,?)}penteo} and X = (z,)ueq. The set of vertices is composed of the
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source s and the sink s’, two vertices v, and v, for each element w € 0, and vg for each
SeH\ [(Upea{w}) U (N x O)]. T place (directed) edges according to the following rule.

o For each w € (2, an edge e = (v, v,/) is placed from v, to v,.

o For each k = 1,2, an edge e = (vg, vy ) is placed from S to S" # S where S, 5" € Hy,
if 8" c S and there is no S” € H;, where " C S” C S.

e An edge e = (s, vg) is placed from the source s to vg if S € H; and there is no S’ € H;
where S C 5.

e An edge e = (vg, ') is placed from vg to the sink s if S € Hy and there is no S’ € Hy
where S C 5.

I associate flow with each edge as follows. For each edge e = (v,,v,), I associate flow
x. = x,. For each e that is not of the form (v, v,,) for some w € Q, the flow x. is (uniquely)
set to satisfy the flow conservation, that is, for each vertex v different from s and s, the
sum of flows into v is equal to the sum of flows from v. I use this network flow to define the

following algorithm.

Definition 3 (Budish et al) (2013)’s Algorithm). If deg[X (H)] = |{S € H|z, € Z}| = |H|,

then stop the algorithm. Otherwise, move on to the following steps:
(1) Cycle-Finding Procedure

(a) Step 0: Since deg[X (#H)] < |H| by assumption, there exists an edge e; = (vy,v))
such that its associated flow x., is fractional. Define an edge fi; = (v, v}) from
vy to vl.

(b) Step t =1,...: Consider the vertex v; that is the destination of edge f;.
i) If v} is the origin of some edge fy € {f1,..., fi_1}, then stop. The procedure
has formed a cycle (fy, fyi1, ..., fi) composed of edges in {f1,..., fi}. Proceed to

Termination-Cycle Procedure below.

ii) Otherwise, since the flow associated with f; is fractional by construction and
the flow conservation holds at vj, there exists an edge €11 = (w1, U, ) # €
with fractional flow such that v} is either its origin or destination. Draw an edge
fe41 by fiq1 = epn if vf is the origin of ey and fii = (i, uss1) otherwise.

Denote fir1 = (vet1, Vi )-

(2) Termination-Cycle Procedure

48



1

.) which is the same as (),

(a) Construct a set of flows associated with edges (z
except for flows (2., )y <-<t, that is, flows associated with edges that are involved in
the cycle from the last step. For each edge e, such that f. = e, set méT = T, +a,
and each edge e, such that f. # e,, set a:; = Z,, — «, where a > 0 is the
largest real number such that the induced expected assignment X' = (z1).cq
still satisfies all constraints in H. By construction, z§ = zg if g is an integer,
and there is at least one constraint set S € H such that z} is an integer while x5
is not. Thus deg[X'(H)] >deg[X (H)].

2

) which is the same as (x.),

(b) Construct a set of flows associated with edges (z
except for flows (z, )v<r<t, that is, flows associated with edges that are involved in
the cycle from the last step. For each edge e, such that f, = e, set x; = Ze, — [,
and each edge e, such that f. # e, set x;T = T, + [, where § > 0 is the
largest real number such that the induced expected assignment X? = (z2),ecq
still satisfies all constraints in H. By construction, z% = zg if g is an integer,
and there is at least one constraint set S € H such that 2% is an integer while zg
is not. Thus deg[X?(H)] >deg[X (H)].

(¢) Set 7 by var+ (1 = 7)(—B) = 0, i.e., 7 = afﬁ.

(d) Decompose X into X = yX! + (1 —~)X?2.

Note that deg[X*(H)] >deg[X (H)] for both k = 1,2, implying that repeating the above
algorithm transforms the original X into a distribution over deterministic (x,;)’s where
every x, is an integer. The induced distribution can then be used to draw deterministic
() consistent with X. Budish et al| (2013)’s Theorem 1 and Appendix B show that the

resulting (z,;) has the property that n, = n, + x, satisfies the conditions in Definition E
A.1.2 Asymptotic Power Comparison of EXAM and RCT

Section H illustrates that EXAM’s ATE estimation is potentially more precise than RCT’s
in a finite sample. This appendix shows the same point in an asymptotic framework.

Sequence of Experimental Design Problems

Following Abadie et al) (2017)), I consider a sequence of finite populations of potential subjects
indexed by population size N. For each population N, I randomly sample subjects who
participate in the experiment. Let Ry, denote the indicator of subject ¢ being sampled from

population N, i.e., Ry; = 1 if 7 is sampled and Ry; = 0 otherwise. Denote the number
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of subjects by n = Zfil Ry ;. Given each finite population N, I consider a sequence of

experimental design problems, each of which consists of

A set of n experimental subjects {i|Ry,; = 1}.

Experimental treatments tg,t1, ..., .

Each treatment t’s pseudo capacity cy; € N with Ei;”to CNyt = M.

Each subject i’s WTP wy ;; for each i € {j|Ry; = 1}.

Each treatment t’s predicted treatment effect ey for each i € {j|Ry; = 1}.

Among these components, experimental treatments are nonrandom and do not depend on
N or n. The other elements are random because Ry, is random. I allow cy; to be random
even conditional on {i|Ry,; = 1}.

. along with the

----- m

I study a sequence of experimental designs py = (pn.it)i. Rv.i=1,t=to
sequence of experimental design problems. py is random because some of the components of
an experimental design problem is random. For each sampled experimental design problem
and each i € {j|Ry; = 1}, T use Dy = 1 to indicate that subject 7 is assigned to treatment
t, and Dy, = 0 to indicate that subject i is assigned to any other treatment or control.
The distribution of (Dy ;) depends on the algorithm to draw deterministic treatment as-
signments. Let Yy ;(t) be the fixed potential outcome of subject ¢ that would be observed
if ¢ is sampled from population N and assigned to treatment ¢. The observed outcome of
subject ¢ in the sample is Yy ,; = Zﬁto Dy YN i(t). T observe (Yn,;, Dy, wn, en,;) for each

subject ¢ in the sample.

Sequence of Parameters and Estimators

I consider a sequence of two parameters as estimands, the population average treatment effect

and the sample average treatment effect, defined as follows:
| XN L

Nt = I Z(YN,i(t) — Yi.(to)) and B3y = n Z Ryni(Yn,i(t) = Yna(to)).
i=1 i=1

Let B3 = (BX4,» -+ Be,,) and gaample — ( ]S\i;?ple, s f\i;r:fle)’. Note that £y} is nonrandom
while 3" ' is random due to the random sampling of a subject sample. I put the following

assumption.
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Assumption 1. There exist G sequences of nonempty subpopulations, {Px1},...,{Pnc},
such that for all N, (i) Pyu, ..., Png form a partition of population N, (ii) for all g, for all
i,j € Png, I have (Wn i, eni)e = (Wn e, enj)e, and (10i) if (Wi, enei)e = (WNjis €neg)e for

some 1 € Pyg and j € Py gy, then g=¢ .

Denote the size of Py, ..., Png by Ni,..., Ng, respectively. Let n, = ZiePNg Ry, be the
number of subjects sampled from subpopulation Py 4. Now consider two parameters defined

on subpopulation Py 4:

I
B, = — N D (Ywa(t) = Yu(to)) and ﬂfv‘f’;;“:— D Ryi(Yva(t) = Yaalto)).
9 icPn, 9 iePy g
Let BYY = (BRotys - Bivor,) and ﬁsample = ( f\}fz;fle,. . f\?zple)’. The population average

sample

treatment effect ﬁp 77 and the sample average treatment effect 53} can be written as the

weighted average of B and ByF ' respectively:

G N G
pop _gﬁpop and /Bsample _ @Bsample
Nt = N PNt n ONgt

g=1 g=1
As in Section B [ estimate both #y) and ﬂf\?f‘”le with

¢ n
R 95
51*\771: = Z E/B}k\[,gtg

g=1
where

B - Diepy, BNiDNaYni D iepy , BNiDNito YN,
N,gt — -
ZiEPN,g RN,iDN,it ZiEPNg RN,iDN,ito

I assume that if two subjects are in different subpopulations, EXAM gives them different as-

signment probabilities and puts them in different subsamples. Let B N.g (6 Nogtys -+ B]*V gt )

Asymptotic Distribution of BJ*V’t

To derive the asymptotic distribution of B}*VW I need a series of regularity conditions. I
first assume that each subject is sampled independetly with the same sampling probability,
and the expected sample size of each subsample goes to infinity as N goes to infinity. Let
dng = Ny/N.
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Assumption 2. (i) There is a sequence of sampling probabilities, py, such that for all
r e {0, 1}V,

N Ti _N i
Pr(Ry =) = p'=""(1 = py) 257,

(7t) For all g, Nypny — 00, pnv — p € [0,1] and x4 — d, € [0,1] as N — oc.

I apply EXAM to each realized experimental design problem to obtain treatment assignment
probabilities. Denote the assignment probabilities by p%(€). I impose the following restric-
tion on the distribution of capacities conditional on sample. Below expectations are taken
over Ry = (Rna, ..., Ry n)'s (eny) and (D).

Assumption 3. For all g, there is a sequence of constant vectors of size m + 1, qn 4, such
that Elpy (€)|Ry = 1] = qn g for allt, allr € {0,1}Y, and all i € Pyy N {jlr; = 1}.

For each subject i € Py 4N {k|Ryy = 0}, define py ;,(€) as piy ;;(€) = py ;:(€) for an arbitrary
J € PyyN{k|R; = 1}. T also define random variable Dy ;; with ¢ € {k|Ry = 0} such that
the following assumption is true and treatment assignments are independent across subjects

given assignment probabilities p} (€).

Assumption 4. (Dy.it)i=io,...tn, A0d (DN jt)i=to,..t. aT€ independent for anyi # j conditional

on Ry =r.
I put a few additional regularity conditions.

EHYN,i 4+5]

1
Assumption 5. Forall g, there exists some d > 0 such that the sequence N >
9

€PN g

1s bounded.

Now let XN,it = DN,it - E[DN,it]a DN,z‘ = (DN,i,tp ey DN,i,tm)/a XN,Z' = (XN,i,tla ---7XN,z’,tm>/a

and for each g,

1 Yni Yy
Ong = Fg Z E Xni XN
1€EPN,4 1 1

Assumption 6. For all g, Qn,4 — €y, where the limit is full rank.

Let 6N,it = YN,i(t) — YNﬂ‘(to) and /BN,i = (ﬁN,i,tla -u,BN,i,tm)/- FOI" all g and all 7 c PN,ga let

o 1
€Ny = Z D it (Yna(t) — ~ Z Ya(t)).

t=to 9 icPn
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_ 1 . 1
Let Agond = limy_oo N ZZ.GPNJ Var(Xy,€en,) and Aghw = limy_oo N >

€PN
g9 g

E(XN,iE?V,iX]/V,i)'

Assumption 7. For all g, A;"”d and Aghw exist and are positive definite.

ng Ny

Assumption 8. For all g, /n(— — N ) By 250 a5 N = 0.
n 9,

Proposition 6 (Asymptotic Distribution of B]*Vt) Suppose Assumptions B, @, B, , B, B‘, B

1
and [§ hold. Let H, = limy_o + Tiery, BOXXf,). Then,
g

\/E(B}k\/,tj - POP ) —>N(0 ‘/13])

*
where V7',

is the j-th diagonal element of Vi* = 25:1 OgHy H(pAS™ + (1 — p)ASh)H L.
\/_(BNt - sample) HN(O ‘/Q*M)

where V5, is the j-th diagonal element of Vy = Zngl OgHy 'ACMH !

Asymptotic Efficiency Comparison of EXAM and RCT

How does EXAM compare to RCT in terms of asymptotic standard errors? With RCT, the

estimator for ﬂ and Bstlmple .

Zi;RN,izl DN,itYN,i Ei:RN,,L:l DN,itoYN,i

ARCT __
Nt

Zi:RN7i:1 DN,it Zi:RN’Z':l DNvitO
AﬁgT is a special case of B?(V,t when wy ;s = wyj: > 0 and ey = enyy for all 4,7 and ¢ (recall
Proposition El) For this RCT special case, Assumption El holds with G = 1 and Py ; being the

set of all subjects. Assumption B also holds since \/ﬁ(@ ) By =0forall gand N. Let
n

1
Ni = PNi\PNi — N,illo i=1 1 N,i\t0), = HMN—o0 77 2 simy V ATLANGENi
eni = Dii(P pop)+Y (t0) = ZN Yivi(to), At =1i ~ i Var(Xyew,)

and A" = limpy_,o N Zfil E(X N’Zf?wX N.i)- Proposition B therefore implies the following

result.

Corollary 3 (Asymptotic Distribution of BﬁfT) Suppose Assumptions B, B, , B, B and H
1
hold with G = 1 and py; ;,(€) = cny/N foralli,t, and N. Let H = limy o0 N Sy

V(BT = 3R) <5 N0V,

1,57
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where VACT is the j-th diagonal element of VT = H=1(pAcnd 4 (1 — p)A“M)H

A sample d
VR(BRIT = BRT) = N (0, V%),

2,57

where VAT is the j-th diagonal element of V<" = H-1Ard g1,

To compare EXAM and RCT by their asymptotic variances, consider a simple situation

where there is only one treatment. For EXAM, let

2 S iem, (Vvalt) = Vg (1))?
Qo t = hm qNgt,Sgt— lim ’

N—oo Ng

and

Diepy, (YNi(t) = Yni(t') — (Yivg(t) — Yivg(t)))?

2 9.
Si = Jim, 7 ’
_ ; Yni(t)
where Yy ,(t) = 2ichy, ( . For RCT, let
Ny
N Y 2
-~ (Yva(t) — Ya(t
q = hm AN, S; = hm 2z (Yna(t) = Y (®)) and
—00 N
Sh = 1 S (Ywa(t) = Yiva(#) = (Y () = Ve (1)))?
= 1m s
N—oo N
- >y Yaa(t)
where gy = Elent/n] and Yy (t) = % I assume these limits exist.
Assumption 9. For all g, qg4,, Sgtl, Sgto and Sgtlt exist with qg4, € (0,1).

Assumption 10. ¢, S7, S;, and S7,  exist with g, € (0,1).

t1”

Corollary 4 (Binary Treatment Case). Suppose there is only one treatment t, to be compared
to the control tg. For EXAM, under Assumptions B, @, B, , B, , B, B and B,

NN

- < SQt SQt
\/ﬁ(/g}k\/,tl /B]pifozgl O’ Z 59 £ 2 S;tlt())) (7)
g=1 dg,t1 — gty
G
Ak sample Sgtl Ssto 2
\/E(BN,tl - BN t1 0’ Z 59 - Sgtlto))' (8)

— 7 g = dg,t:

For RCT, suppose Assumptions @, B, , B, B, Hand hold with G =1 and pyy ;;(€) = en /N
for all i and t. Then,

ARCT pOp d St21 52 2
\/ﬁ(/BN,tl - N,tl) N(O q_ + 1 —q - pStth)‘ (9)
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A S2 S?2
sample d 1
Vi(BRGT = BaTP) <= N0, th + ﬁ — Sht)- (10)

The asymptotic variance comparison of RCT and EXAM depends on the limiting dis-
tribution of potential outcomes and treatment assignment probabilities. As is the case with
other stratified experiments, EXAM may produce more precise ATE estimates than RCT
if potential outcomes are well correlated with EXAM’s treatment assignment probabilities.

The following example illustrates this possibility, providing an asymptotic analogue of Ex-

ample El

Example 2. Suppose there is only one treatment ¢1, and py = 1 for all N so that n = N with
probability one. Every subject has Y ;(¢y) = 0 for all N. The subjects in every population
are divided into four groups A, B, C' and D based on their potential outcomes Yy ;(t1). Let
Yni(t:) = 1,2,3, and 4 for anybody in group A, B, C' and D, respectively. Denote the
number of subjects in group A, B, C and D by N4, N, Nc and Np, respectively. The

sequences of pseudo capacities and the size of groups A, B, C' and D are as follows:

o If N =4k for some k € N, cy¢, = cnyy, = 2k and Ny = Np = No = Np = k.

o It N=4k+1 for some k € N, cny, = 2k, cnyy =2k +1, Ny =k+1and Ng = N¢ =
Np = k.

e f N=4k+2forsomek €N, cyyy =2k+1, cnyy =2k+1, Ny = Np=k+1and
No = Np =k.

e f N=4k+3forsomek €N, cyyy =2k+1, ey, =2k+2, Ny=Np=Nec=k+1
and Np = k.

Assume the experimenter imperfectly predicts treatment effects: ey;,; = 0 for every ¢ in
group A or B while ey,,; = 2 for every ¢ in group C' or D. Let wy;, = 1 for every ¢ in
group A or B and wy;, = 2 for every ¢ in group C' or D. There are two subpopulations,
Py and Py, such that ¢ € Py for every ¢ in group A or B and i € Py for every 7 in
group C' or D. For every N, EXAM with € < .2 gives the following treatment assignment
probabilities@: P, (€) = 0.2 for every i € Py, while pjy, (€) = 0.8 for every i € Pypo.
Under RCT, pRST = eny /N = qng,. Note that dy; = Ni/N = (Na+ Np)/N — 0.5,
dn2 = No/N = (Nc+ Np)/N — 0.5, gnisy, — 0.2, gnor, — 0.8 and gy, — 0.5 as N — 0.

156
N 8
b. Note that the capacity constraint holds, i.e., > ;7 py i, < Nty -

36 EXAM outputs these treatment probabilities if I set o = — , Bt, = 5b, and B, = 0 given any budget
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Applying Corollary @ to this example, I have

. 0.53125  1.25
aVar(By,,) = N < N

= aVar(ﬁAﬁ%T).

where aVar is the asymptotic variance relative either 53, or By" ' both of which pro-
duce the same asymptotic variance by p = 1. The above inequality means that EXAM’s
ATE estimation may be asymptotically more precise than RCT’s even if the experimenter

imperfectly predicts potential outcomes.

A.1.3 Uncertainty in Predicted Effects and Preferences

Unlike the baseline setting in the main body, the experimenter’s information about prefer-
ences and predicted effects may be uncertain and probabilistic. What experimental design
should the experimenter use with uncertain preferences and predicted effects? An uncertain
experimental design problem consists of experimental subjects, treatments, pseudo capacities,

and the following objects.

» Each subject i’s preference or WTP w; for treatment ¢t where w;; is a random variable.

o Each treatment t’s predicted treatment effect é;; for subject ¢ where é; is a random

variable.

w; and éy; are the experimenter’s statistical perceptions about WTP and predicted treatment
effect, respectively. Denote wy; = E(wy) and e,; = E(éy) where each expectation is with
respect to the distribution of w; and é;;, respectively.

When I apply EXAM to (w;, e4;), the resulting EXAM nests RCT, is efficient with respect
to (wy, ey;), is approximately incentive compatible, and is as informative as RCT in the same

senses as in Propositions m—a

A.1.4 Ordinal Predicted Effects and Preferences

The experimenter’s information about preferences and predicted effects may be ordinal.
What experimental design should the experimenter use with ordinal preferences and pre-
dicted effects? An ordinal experimental design problem consists of experimental subjects,

treatments, pseudo capacities, and the following objects.

o Each subject i’s ordinal preference 7-; for treatment ¢t where t —; ¢ means subject i

weakly prefers treatment ¢ over t'. >~; may involve ties and indifferences.
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o Each treatment t’s ordinal predicted treatment effect =, for subject i where i =; 7
means treatment ¢ is predicted weakly more effective for subject i than for subject #'.

Again, 7-; may involve ties and indifferences.

I consider the following adaptation of EXAM to this ordinal experimental design problem.

Definition 4 (Ordinal EXAM). (1) Create any cardinal WTP w], of each subject ¢ for

each treatment ¢ so that w}, > w;, if and only if ¢ >; ¢".

(2) Create any cardinal predicted effect of each treatment t for each subject ¢ so that

ey; > €, if and only if ¢ >, i’

(3) Run EXAM (as defined in Definition E) on (wi, e;;) to get treatment assignment prob-
abilities pif(e)

Ordinal EXAM nests RCT, is approximately incentive compatible, and is as informative
as RCT in the same senses as in Propositions El, , and @, respectively. For approximate
incentive compatibility, I modify the setting so that subjects report ordinal preferences >—; in-
stead of cardinal WTP w;,. Moreover, ordinal EXAM has the following nice welfare property

with respect to ordinal preferences and predicted effects.

Proposition 7. pi’(e) is ordinally efficient in the following sense. There is no other ex-
perimental design (py) with pi € [€,1 — €| for all subject i and treatment t, Y. py < ¢ for
all t = tq,...,t,,, and with the following better welfare property: For all cardinal WTP wy

consistent with ordinal 7; and all cardinal predicted effects e;; consistent with ordinal 7y, 1

~ot

> pawi =Y pip(wi and Y puen > pif(e)en
t t t t

for all i with at least one strict inequality.

have

A.2 Proofs

Proof of Proposition E

Suppose to the contrary that there exist some € € [0, €], 4, and ¢ such that pj(e) # pfi“T. Since
ey = ey for all subjects ¢ and j and treatment ¢, I have m,, = aey; + 5 = ey + 5 = Tte,,
for all subjects 7 and j and treatment ¢t. Combined with w;; = wj; for all subjects ¢ and j
and treatment ¢, this implies that any subjects ¢ and j face the same utility maximization

problem:
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argmax,, cp(D, PuWir .. D, PitTie,, < b) = arg maxpjep(zt Pjtwjt 8.t Y, PitThe,, < D).

This implies p,(e) = pj(€) # pf°" = ¢¢/n by the requirement in Definition E that (pf): =
(p3): for any 4 and j with w; = w; and e; = e;.

If pj,(€) = pji(€) > ci/n for some t # to, then Y7 | pj,(e) = npjy(€) > ncy/n = ¢;, which
implies > ", pj, > ¢ (since Y7 pf'“" = ¢;). This contradicts the capacity constraint in
the definition of p},. If p,(€) = pj;(€) < ¢;/n, then there is another treatment ¢’ # ¢ for which
pju(€) = piy(€) > ci/n since Y, ¢;/n = 3, pj,(e) = 1 for any subject j. This implies that
> i1 Pju(€) = npju(e) > nep /n = cp, again contradicting the capacity constraint if ¢’ # to.

The only remaining possibility is p}, (€) = pj;, (€) > ¢, /n > € > 0. This implies pj,(¢) =
pi(e) < crfn <1 — e for some t # to and so p}, = pj, < ¢¢/n (since pfi" = ¢;/n for any ).
But this is a contradiction since j can increase the value of her objective function ), pj;w;q
by changing p7, and p}, to pj, — d and pj, + 0, respectively, for small enough 6 > 0, since
wjr > wjs, = 0. Such pj, — 4 and p}, + ¢ satisfy the budget constraint since 7, < 0 for

every ¢ and so

Z p;t/’]rt/(:‘tlj + (p;to - 5)7Tt08t0j _I_ (p]t + 5 Wtetj ijt’ﬂ-tlet/ =

/0.t
Therefore, it cannot be the case that p¥, (¢) = pj; (€) > ¢, /n. Thus, for every e € [0, €, 1,
and ¢, it must be the case that p,(e) = pF¢T.

Proof of Proposition

EXAM always exists: It is enough to find (p},) that satisfies the conditions in Step (1) of
Definition E

Lemma 1. There exists (p},) that satisfies a weaker version of Definition @ that is the same
as Definition @ except that EXAM breaks ties or indifferences so that every subject i’s p;
solves the utility mazimization problem with the minimum expenditure y , pyTie, (but it is

not necessarily the case (pj;): = (pj,): for any i and j with w; = w; and e; = ;).

Proof of Lemma B Fix o at any negative constant a* < 0. Fix 8, = 0. Define a
space of possible values of 8 = (8,); by B = [, x [0,nb — a*el{e > 0}|™ where ¢ =
max{e;}. For any given v > 0, define the demand correspondence for each subject i by

p;(B,v) =argmaxp,cp ,(pPawi — Ypir(aey + Br)) st >, pu(aey + 5) < b. Define the
excess demand correspondence z,(-) : B — R™*! by

B) ={>_pi—clp; € p(B,7) for every i} = pi(8,7) —c
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where ¢ = (¢;). This correspondence z,(-) is upper hemicontinuous in # and convex-valued
because it is a linear finite sum of p;(/3,)’s, which are upper hemicontinuous and convex-

valued as shown below.

Step 1. For every subject i and v > 0, her demand correspondence pl(B3,7) is nonempty,

convex-valued, and upper hemicontinuous in [3.

Proof of Step B pi(f,7y) is convex-valued since for any p;, p; € pf(8,7) C P and § € [0,1], it
holds that p;; = dp; + (1 —0)p} is in pf(3,7) because the objective Y, psiwir — YPs,it (s +
Bi) = > (wi — y(a*ey + Bi))psie is linear and p;; satisfies the budget constraint because
dobsa(arey + B) = 63, pu(a’en + B) + (1 —0) X2, piy(aen + Br) < b+ (1 —d)b =b.
pi(/,7y) is non-empty and upper-hemicontinuous by the maximum theorem. To see this, note
that (1) the utility function is linear and (2) the correspondence from f to the choice set
{pi € P|> ,pi(a*ey + B;) < b} is both upper-hemicontinuous and lower-hemicontinuous as
well as compact-valued and nonempty ((pit)i=tot,....t,, = (1,0, ...,0) is for free and always in
the choice set). Thus the maximum theorem implies that p;(3,~) is non-empty and upper-

hemicontinuous, completing the proof of Step m [

Let ¢ = max ¢, and B = 0 x [—¢,n(b+ &) — a*el{é > 0}]™. Define a truncation function f :
B — B by f(8) =0 x (max{0, min{S, nb — a*€1{é > 0}}})i—,...s,,. Define correspondence
gy B — B by g’y(ﬁ) = f(B) + Zv(f(ﬁ))

Step 2. For ally >0, g, has a fived point B € g,(5).

Proof of Step @ 2, (f(B)) is upper hemicontinuous and convex-valued as a function of
B € B because f(-) is continuous and z,(-) is an upper hemicontinuous and convex-valued
correspondence, as explained above. This implies that g,(3) is upper hemicontinuous and

convex-valued as well. The range of g,(5) lies in B, ie., Gy : B — B. Tt is because

o f(B) =0 x (max{0, min{B;, nb — a*el{e > 0}}})i=t,..+,, € [0,nb — a*el{e > 0}]™!,
which is by nb — a*el{e > 0} > 0 (recall a* < 0).

e C=maxc > 1.

e 2,(f(B)) € [~ n]™" because, for any 3 € B and t, the excess demand z,(3) is at
least —¢ (since the supply of any treatment ¢ is ¢; < ¢ by definition) and at most n
(since there are n subjects and the demand for any treatment ¢ by any subject i is at

most 1).
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Finally, B is nonempty by —¢ < 0 < n(b+ &) < n(b+ ¢) — a*el{e > 0}. g (B) = f(B) +
2,(f(B)) is therefore an upper hemicontinuous, nonempty, and convex-valued correspondence
defined on the non-empty, compact, and convex set B. By Kakutani’s fixed point theorem,

there exists a fixed point 37 € g,(f}), proving Step E O

Step 3. For any sequence of v, > 0 with lim, .7, = 0, consider the associated sequence
of fized points B3 € g,,(85.). There exists a subsequence of (85 ) that converges to some
p*. Any such limit 5* is a fized point of go in the sense that B* € go(5*).

Proof of Step B The space of possible values of 32 is B = 3, x [0,nb — a*el{e > 0}]",
which is compact. The Bolzano-Weierstrass Theorem therefore implies the existence of a
convergent subsequence of (37 ).

The last part follows from * € lim, o g4, (5%) C go(5*), which I show below, where
lim,, 00 g+, (%) is the set-theoretic limit define by {8|lim, . 1{5 € ¢,,(8*)} = 1}. This
set-theoretic limit exists by the following reason: Since 5* € B and f(8*) = 5%, I have

51u(8) = F(8) + 2, (F(8) = B+ 2, (87) = B+ 3w (8 m) — .

For proving the existence of lim,,_,« ¢,,(8%), it is enough to show lim,,_,. p*(5*,7,) exists.
To show it, note that if p' € p*(8*,;) and p' ¢ p*(B8*,7x) for 7; > v > 0, then for all ~,
with v, > v > 0, I have

pt ¢ p (6" m),
which is true by the following reason: p' € p*(5*,v;) and p' ¢ p*(5*,vx) imply there exists

some p? satisfying the budget constraint and such that
Zp?twit - 'Vkp?t<05*eti + B:) > Zpiltwit - %pit(a*en + Bt)
t t

while

Zp?twit —Yipi(a’es + By) < Zp}twit — ypi(en + Br).
t ¢

Taking the difference between the last two equations results in
Zp?t(a*eti + Br) > Zpgt(a*etz‘ + Bt).
¢ ¢

Plugging this inequality back into an earlier expression, I get >, pZwy > >, pywi. There-
fore, p' € p*(8*,71). Note also that for any small € > 0 there exists infinitely many n such that
Yn < € and finitely many m such that ~,, > €. By a result from measure theory (Billingsley
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(2008) p.52), therefore, liminf, . p*(8*,v,) = limsup,,_,., p*(5*, v») and the set-theoretic
limit lim, o p* (8%, 7,) exists, implying by the above argument that lim,_, g, (8%) also
exists.

It only remains to prove limy, .. g, (8) C go(B) for all 3 € B. Suppose to the con-
trary there exist some b and § such that b € lim, o g, (8) but b ¢ go(8). Thus b €
limy, ,scargmaxy,cp (D, PuWi — YnPu( ey + Bi) s.t. D, pula’ey + By) < b) but there ex-
ists some b* satisfying the budget constraint such that >, bfw; > >, byw;. But this
implies lim,, oo Y, bfwi — Vb (aey + Bi) > lim,eo D, buwi — Ynbu(ae,; + B;) since
¥, — 0. This is a contradiction to the assumption b € lim,_,o ¢,,(3). It is thus true

that 5* € lim,,_,o0 g+, (6%) C go(B*), implying 8* € go(8*). O

Step 4. For the fized point B* = lim,, .o 83 of g(-), the associated price function vector
(e = e + f1(B*))e, where fi(5*) is the t-th element of f(B*), satisfies the conditions in

Lemma B

Proof of Step . By the definition of a fixed point and correspondence g(-), there exists
2* = (zf) € z(f(5*)) such that Bf = fi(8*) + z; for all . Fix any such z* and the associated

B*. 1t is enough to show that the associated equilibrium treatment assignment probability

vector (p};) with (p},); €argmax,.cp(d, puwi st. Y, piu(a*en + fi(8*)) < b) satisfies the
capacity constraint for every treatment t = ¢4, ...,t,,. For each treatment ¢, there are three

cases to consider:

Case 1: 8 < 0. Then f;(8*) = max{0, min{5;,nb — a*el{e > 0}}} = 0 and hence

B = fil(B*) + 2 implies 5 = z; = >, p}, — ¢, < 0, implying > . p}, < ¢, i.e., the capacity
constraint holds.

Case 2: ff € [0,nb — a*el{e > 0}]. By the definition of f, I have f;(6*) = 8;. Then
BF = fi(B*) + 2z} implies z; = 0, i.e., the capacity constraint holds with equality.

Case 3: 8 > nb — «a*¢l{e > 0}. Then f(5*) = nb — a*el{é > 0} and hence g} =
J:(8%)+ z; implies that z; = g —nb+a*el{e > 0} > 0, i.e., treatment ¢ is in excess demand

at price T, = a*e + f;(5*). However, for any possible predicted effect level e < e, I have

nb+a*(e—ée)>nb ife>0
e = e+ [;(87) = a’e + nb— a*el{e > 0} =
nb+ a*e > nb otherwise,

where the last inequality is by o < 0 and e < & < 0. Therefore, for each subject i,
Py < b/, < 1/n. This implies that ), p}; <1 < ¢, a contradiction.
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Finally, the construction of 8* as §* = lim,, 3} guarantees that every subject i’s

p; solves the utility maximization problem with the minimum expenditure ), pym.,, This
completes the proof of Step @ and Lemma EI 0
O

I use Lemma m to show there exists (p};) that satisfies the conditions in Definition E
Let (p},) be the assignment probability profile found in Lemma m Define I(w,e) = {i €
{i1,..,in}|w; = w,e; = e} be the set of subjects whose WTP and predicted effect vectors

are w and e, respectively. For each w, e, and ¢ € I(w,e), let

Pt = Liciwe) Pl
C H(we)

pi* solves the utility maximization problem in Step (1) of Definition E with the minimum
expenditure since Y, pifwy = >, piwy and Y, piFme, = Y, PiMe, < b. The above con-
struction guarantees that p* = p;* for any ¢ and j with w; = w; and e; = e;. p;* also
satisfies the capacity constraints by Y. p:* = Y. pi < ¢, for all ¢, where the last inequality

is by Lemma EI p;* thus satisfies the conditions in Definition a

EXAM is ex ante Pareto efficient subject to the randomization and capacity constraint:
Suppose to the contrary that there exists € € [0,€) such that pj(e) is ex ante Pareto
dominated by another feasible treatment assignment probabilities (pi(€));x € P" with
pit(€) € [e,1 — €| for all i and t and Y . py < ¢ for all t =t4,...,t,,,, i€,

o > pi(€)e >, pi(€)ey for all i and
o > pil€)wy > >, ph(e)w; for all
with at least one strict inequality. Let me use p;(€) to define the following treatment as-

signment probabilities:

pit = [pir(€) — qpfT)/(1 —q),

where ¢ = inf{q’ € [0, 1]|(1 — ¢')p; + ¢'pET € [¢,1 — €] for all i and ¢} is the mixing weight
used for defining and computing pZ,(€) in Definition E In other words, p;; are the treatment

assignment probabilities such that the following holds:

pir(€) = (1 — q)pir + qpi”.
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Since both p;(e) and pfi“T are in convex set P", p; is also in P" (note that oDt =

S pi(e) — qpfT] /(1 —q)) = (1 — q) /(1 — q) = 1 for every 7). For each i, I have
> pial€en =D pi(e)en & > (1 —q)pi + qpf e > Z qQ)p;, + apf T e
t t t
= Z(l — q)piteri > Z (1 = q)piren
t t
A Zpiteti > Zp:t@f%
t t

Similarly, for each i, [ have

szt €wy > szt €)Wy < Z pzt + qpt wlt > Z pzt + qpt )wit
@Z 1 — q@)puwi ZZ 1 — q)pjw;
t t
< Zpitwit > Z Di Wit
t t

Therefore, the assumption that p;(e) ex ante Pareto dominates pj,(€) implies that p; ex

ante Pareto dominates pj;, i.e.,

o > . pier > Y., pier for all ¢ and
. Zt PitWit = Zt phw; for all 4

with at least one strict inequality. There are two cases to consider.

Case 1: ), pies; > >, pieq; for some i. This implies

Z Zpiteti > Z Zp;‘kteti <~ Z Zpit(ﬂ'teti — b))/ o > Z Zp;‘kt(ﬂ'teti — b))/
t t i t i t i
(by the definition of m;. = ae + 3; with « # 0)

A Z Z DPitTtey, /O{ > Z Z p;-ktﬂteti/a
(since Z Pit = Z Pl =
g Z sztﬂtetz < Z Z DiiTte,, -

(since @ < 0 by Definition E
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I thus have

Z Zpitﬂ'te“ < Z prﬂten. (11)
t g t

However, it has also to be the case that ), pimie,, > D, PiyTe,, for any i since (a) Y, ppwi >
> Prw; by assumption and (b) (pf): is (a mixture of) the cheapest among all feasible as-

signment probability vectors that ¢ most prefers under prices (m.):. and budget b. Thus

Dot D i DitThey = D > i PiTie,» @ contradiction to inequality (@)

Case 2: Y, pw;, > >, piw;, for some i. Since i most prefers (p3,): among all assignment
probability vectors in P™ that satisfies the budget constraint under prices (7 )z, the strictly
more preferred treatment assignment probability vector (p;); must violate the budget con-
straint, i.e., >, pymte,; > b > >, p3 e, Where the second weak inequality comes from the
assumption that (p3 ), satisfies the budget constraint under prices (). Moreover, for any
other subject @ # 1, Y, PitTie, = D, PiyTie,, Since (pf;); is (a mixture of) the cheapest among
all assignment probability vectors in P that ¢ most prefers under prices (m ). and budget
b. 1 thus have

Z DitTte,; T Z Z DitTte,; > Z pi}ﬂtet; + Z Z DiiTte,; < Z Z DitTte,; > Z Z DiiTtey, -
t t Pt

it t it t i
However, by the logic described in Case 1, the assumption (>, piey > >, pher for all 7)

implies that > . >, puTie,, < D i > DiiTie,, & contradiction.

Therefore, p},(e) with any € € [0, €) is never ex ante Pareto dominated by another treatment

assignment probabilities (pi(€));+ € P™ with p;(€) € [e,1 — €] for all i and t.
R
Proof of Proposition

The proof uses intermediate observations.

Lemma 2. EXAM is “envy-free,” i.e., for any experimental design problem, any e € [0,€),

any subjects i and j with ey = e, for allt,
S piwn > 3 p(ew
t t

Proof of Lemma @ In Definition , all subjects have the same budget and any subjects ¢
and j with e; = e;; face the same price m, of treatment ¢. For any subjects ¢ and j with

ew = e for all ¢, therefore, (pj,); satisfies i’s budget constraint and ), pjwy > 2, pjwi.
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This implies the desired conclusion since

D phwa = phwi e (1=a) > piwa+¢ Y pTwe = (1—q) > phwi+q Y pf wa
t t t t t t
= Zﬁt(e)wit > Zp;t(E)wit,
t t

where the first equivalence is by pf¢T = pli“T = ¢, /n. O

Lemma 3. EXAM with WTP reporting is “semi-anonymous.” That is, for any sequence of
experimental design problems, any n with any €* € [0,€"), any subjects i and j with e; = ey;
for all't, let (w;,w;, w_g; ;1) be a permutation of (w;, w;, w_g; ;1) obtained by permuting i and

Jj’s WTP reports w; and w;. Semi-anonymity means that

*70 .om\ __ _*n .on

pi" (Wi, wj, w_gi 3 €") = pi"(wj, wi, wogi jy; €"),
*1 .on\ __ *n ..n
p;" (Wi, wj, w535 €") = pi"(wj, wi, w_g 535 €"), and

pl:n(wla Wy, W—{4,5}5 En) = pl:n(wja Wi, W—{4,5}5 En)’ fO’/’ all k 7& i, J

Proof of Lemma B In Definition E of EXAM, all subjects have the same budget and any
subjects 7 and j with e; = e;; face the same price m, of treatment ¢. For any subjects 4
and j with e; = e;; for all ¢, therefore, given any w_y; 3, subject ¢ with WTP report w;
solves the same constrained utility maximization problem as subject j with WTP report w;
does. Therefore, p;™(w;, wj, w_g;51;0) = pi™(wj, wi, w_g;53;0) and p;™ (ws, wy, w_g; 41;0) =
™ (wj, wi, w_g j3;0). This implies semi-anonymity since
p;" (Wi, wi, W_gi jy; ") = (1= q")p;" (wi, wy, W—14,5}; 0) + qnleCTn
= (1= ¢")p}" (wj, wi, w_g,33;0) + ¢"pFe™™

__ _*n ..n
:p] (wj7wiawf{i,j}7€ )7

where ¢" is the mixing probability ¢ for the n-th problem in the sequence of experimental
design problems while pfi“™™ = plFCT" = ¢ /n. The last line follows from the fact that

(2

the switch of w; and w; have no effect on the utility maximization problem for any other

k£, u

Lemmas E and a imply Proposition B by using Theorem 1 of Azevedo and Budish (2017)

(precisely, a generalization of their Theorem 1 in their Supplementary Appendix B).
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A Statistical Lemma and Its Proof

Lemma 4. Assume a sample of m subjects is uniformly randomly drawn (i.e., every com-
bination of m subjects occurs with equal probability) from the fized finite population of n

subjects with a fixed vector of a variable (Xl, ..., X3). Denote the random sample by I. Let

1 1 1 .
Zz lX“U _n—l i= 1(X M) B=— ZzGIX ando _m—l iEI(Xi_IU’)Z'
Then
V(p) = D52 and E(6%) = o°.
nm

1 1
Proof of Lemma . Let W; = 1{i € I} so that i = — " | X;W; and 62 = ] Yo (Xi—
m m —

{)2W;. Then E(W;) = E(W?) - % for all 4, implying V(W;) = % — (B2 =

(—1)

—m(n —m) for

all 7. Since E(W;W;) = for any i # j, it is the case that for any 7 # 7,

OOU(Wi, W]) = E[(Wz - E)(WJ -

It follows that
R 1 =
V(i) = -V (3 X
i=1

- %(i XV (W) + Zn: > XiX;Cov(Wi, W)

i=1 j;éi
1 —
:mzm” ZX2 n?n—l ;;XX
= Y
i=1 =1 j#i
. n 1 n
X D XD
1= =1 j5=1 =1

n

n—m, n
= X2 —
n2m (n—lz !

i=1 i=1 j=1
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= n_lZX“—ZXMX
_ n_12X“—2X2F+iZ )

n—m 2 1
- X?——X X; X))
n—m u 1 &
= — X, —— X)?
nm(n—l);( n; 3)
:n—mUQ'
nm
For the other part,
1 n
E(6%) = ——E(Y (Xi— p)*W;
(6%) = g BOS(K — W
1 n
=——F XPW; — 22X, Wi + > W
— O i+ W)

i=1
1 ~ ~2 ~2
= mE(E:XZ Wi = 2mp”= + mp©)

:; ZX2W mi?)

m —

= LS X vy + B

=1

1 m n—m
= —(— X2 — 5 2
2 X ot )

where the third last equality is by E(j1) = p while the second last equality is by the definition
of o2. [

Proof of Proposition @

The proof uses the following lemma.

Lemma 5. There exists estimator éEXAM’t such that E(@AEXAMAp*(e)) = E(figer(t)?|pficT)
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_ Zz DitYi

where figcr(t) = . with Dy being the treatment assignment indicator under RCT.
t

1 1
Proof of Lemma B Let py = =Y " Yi(t) and S = — S (Yi(t) — pe)?. T have
n n—

E(firer(®)?p"°T) = Var(figer()|p"°T) + E(firer(t)|p™cT)?

IOy
ncg
n — ¢ -
= Yi(t
e, n—lz n,ut +:U't
n—c 1i n(c—1) ,
Yi(t)® + "t (13)

n—lctnl1 n—l)

where the second equality holds by the first part of Lemma @ and the fact that E(figcr(t)|pfcT) =
ot
Below I construct unbiased estimators with EXAM’s data for each term in the right-

hand side of equation (), that is, ZZ LYi(t)? and gZ. T then combine these estimators

into developing an unbiased estimator for E(fircr(t)?[pReT) (

- 1 1
eter) with EXAM. Under EXAM p*(e), 0hy = — >° ) — 37, (o=, Yi Dix unbiasedly estimates
n pe

which I interpret as a param-
1 )

—> " Yi(t)? because

n

E(0u|p*(e Z Z Yi(t)"E(Dylp*(€))
e

ipZ
Xy
P ipl(e)=

- v

Next I obtain an unbiased estimator for 47 under EXAM p*(e). Recalln, = Y1 | 1{p}(e) =
P (6)=p Dit is

a random variable that stands for the number of subjects with assignment probability vector

p} is the number of subjects with assignment probability vector p and Ny =) ..

1
p and assigned to treatment ¢. Let p,, = — Zi_p,_ﬁ © Yi(t), iexamp = — Zi,p,_ﬁ (O=p Y;D;,
np g ptnp e

=p 3
Ty Z}ifnjﬂEXAMpt Note that p; = Ep %um. By Definition B (3), con-

ditional on (N,), every deterministic treatment assignment consistent with (V,;) happens

and fipxam: = 2
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with equal probability. This implies that
E(Dit|(Npt) = (npe), pi(€) =p) = —.

In addition, conditional on (N,:) = (n,), the set {i : pi(¢) = p, D;x = 1} can be regarded
as a random sample of n,, subjects from the subpopulation of n, subjects with propensity

vector p. Applying the first part of Lemma @, I have

1 . n, —n
VGT(N— YiDi|(Npt) = (npt), p*(€)) = p—ptsit,
Pt o TepTipt
i:p} (€)=p
1
where S = — Zi:p: o=pYi(t) — ppt)?. Tt follows from the above expressions that
P

Z Y;E(Dy|(Ny) = (ny), p*(e))

E(fipx ampt| (Npt) = (npe), 0" (

pt P ipr(e)=p
1 n n
=— > owpEory,, (14)
ptnp i:p¥(e)=p ’I’LP ptnp

and

Var(isx apl (V) = () 0°(6) = (222) Var(5— 30 ViDal (Nye) = (1), 1°()

Py pto. %

_ ( Tt )2”p —rtg2 (15)

Py TpTpt

Definition B (3) also implies that treatment assignments are independent across subpopula-
tions with different propensities conditional on (NN,). Hence, figx At is independent across

p conditional on (N,). I have

Eixaneal (V) 27(€) = B 2 imscansn)’| Vor) = ()17 (6)

p

— ZZ npnp ptan (mx ampr| (Npt), (€)>ptnp E(fipx anpt|(Npt), p*(€))

Tyt
P p#p P

Pinp\? *
4 Z n—g( . j) (i x antpnl (Nor) = (30, 9°(€))

= Z Z Ll /Mptﬂp’t + Z n2 < tnp>2(var(ﬂEXAM,pt‘<Npt> = (npt)’p*(e))

Npt
P p'#p P
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+ E(fipx amptl(Npe) = (n), 0" (€))?)

NpMyy j2%0) Nt \ 2Ny — Nyt Ny \ 2
=2, p2 “pt“P’t+Z 2( p) {( . ) ; pS;t+< - > uit}
n NpNipt

p p'#p ptnp ptnp
NNy ’fl n —-n
= 3 o+ 30 S
P p'#p

_ (Z L) + Z " prr n’ipts2

—u+§ nn” vt g
t pt’
NpNpt

where I use the independence of figxanp across p conditional on (N,) for the second
equality, equation () for the third and the fourth equalities and equation (@) for the
fourth equality. By the law of iterated expectations,

E(ﬂ%XAM,t|p*<€)) = E<E<ﬂ2EXAMt’< ) p*(€))lp*(€))

1
= 7 + Z —‘p €) — —)Sﬁt
np
1 1.,
- ,Ut + Z by + 71 ) + m(ptnp - ﬂpt) - n_p)spt
n 1— tnp + 21, )
oy +Zn2 e e (16)
where the third equality holds because Definition E (3) implies
- Py + T if Npt = Ty
Pr(Npe = ny|p™(€)) = { pinyp — 1y if np =n, + 1
0 otherwise.
. . . 9 9 _ Pillp 2
Now consider an unbiased estimator for S3;. Let Spt = Zi,p,ﬁ(e):p(Yg—— fExanpt) Dit.
~ biny — 1 i Npt
This Sgt is unbiased for Szt, because
E(Splp*(€)) = E(E{Sp|(Np), " (€)}p* (€))
N, —1 1 1
= B[ F{ Y Vim 5= D YiDu)*Dal (N, p(e) }p"(€)]
Py — 1 Npt —1 N Npt N .
i:p} (€)=p Jpi(e)=p
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where the first equality holds by the law of expected iterations, I use the second part of
Lemma @ for the third equality and the fact that E(Ny|p*(¢)) = pin, for the fourth equality.
Combining this with equation (@), I obtain an unbiased estimator for pi2: G = i3y 4 Mt —
nf) L —piny + 2,
Zp ﬁ( th<ﬂpt +1)

for E(jirer(t)*[p"T):

1. 4
— —)Sgt. By equation (@), the following is an unbiased estimator
np

n—c » nleg—1)4

6 = —t 4,
EXAM,t ( 1t (n—1)e 2t

n—1)¢

]

Let D; be the set of all feasible deterministic treatment assignments for subject i, i.e.,
D; = {d; = (), € {0, 1" > diy = 1}.
t

Let DEXAM and DECT be the sets of deterministic treatment assignments that happen
with a positive probability under EXAM and RCT, respectively. That is, DFXAM = {d; €
D;| Pr(d;|p*(€)) > 0} and DECT = {d; € D;|Pr(d;|p"°T) > 0}, where Pr(d;|(pis)) is the
probability that d; occurs under experimental design (p;;). With Definition B, D;; = 1 holds
with a positive probability for every ¢ and ¢ both under EXAM and RCT, implying

DRCT — pEXAM _ . (17)

With the support equivalence property (), I am ready to show the proposition. Recall
that given any experimental design (pi), I say an estimator 6(Y, D) is simple if 0(Y, D) can

be written as

0V, D) = 3" F(i Dip) + 3037 g it (1)

— Ziipz:P DyY;
P2 iy Wpi = p} i
rameter 6 is unbiasedly estimable with RCT pf°T and a simple estimator %¢T(Y, D) =

for some function f, weights gy,,’s, and fi,(t) Suppose that pa-
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Zi (i, prﬁCT) + Zt gtﬂ%%CT@):
E(0R°T(Y, D)[p"°T) = 6. (18)

Note that g; is constant since for RCT, the only potential randomness in g; comes from
(>°; Dit)r, which is the same as the constant pseudo-capacity vector (c;);. Now consider
another estimator for EXAM:

Pr(D; |pRCT)

éEXAM(Y, D)= P (Dilp ()

f(}/;7 DlapﬁCT + théEXAM,t-
t

With the knowledge of the original estimator 67T (Y, D), it is possible to compute §EX4M (Y, D)
since Pr(D;|p°T) and Pr(D;|p*(e)) are known to the experimenter. This #¥X4M (Y, D) is
unbiased for # under EXAM:

E(0"*M (Y, D)|p(e))

Pr Dz RCT A %
= E(Z Mf(y;’ Dy, p") + theEXAM,t|p (€))
i ¢

Pr(D;|p*(e))
Pr(d; |pRCT) RCT RCT
= P dz * N 7 7 27 NN }/z dz 27
Z Z I'( |p (6)) Pr(dl|p*(e)) f( ( p; + th :U’RC’T )
i dieDiEXAM
=> " > Pr(dfp™ ) f(Yildi), di, pT) + Y g (e (1))
i d;eDECT i

= B(E"(Y, D)[p"")
pu— 07

where Y;(d;) = ), d;Yi(t) is the value of observed outcome Y; when D; = d;, the second
equality is by Lemma E, the third equality is by the support equivalence property (@), and
the last equality is by the unbiasedness assumption (@) This means that 05X4M (Y, D) is
an unbiased estimator for § under EXAM p*(¢). To complete the proof of Proposition @, it

only remains to show EX4M (Y, D) is a simple estimator under EXAM.

Lemma 6. 05XAM(Y, D) is a simple estimator under EXAM p*(e).

Proof of Lemma H First note that

. nyp n
S;t Z YDy — 2 Z YDtht MEXAMpt+ Z pt p EXAMptD)

Ptn
p zpz(e i:p; (e)=p i:p; (e)=p
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ptn ) .
Z Yiz it — 2 :u]2EXAM,pt)‘

ptn
P i:p¥(€)=p

I therefore have

éEXAM,t
on—c¢ 4 n(ct—l)é
(-1 (n — 1)y
__n- 2 n(e,—1) ., nf) L —pinyp + 21,
= (n— l)ctﬁ Z Zzp (©) pY th+( “De, (HEXAM,t_Zp ﬁ( ﬂpt(npt 1)
n—c n(e, — 1) Ny PeTy .
_ » Y2D, { np Pelp 2
Zp Z'L:pi (e)=p (n . 1)Ctnpt i t T (n _ 1)Ct (Zp n Npt MEXAM,pt)

— Prty + 20y ! 1 2 (ptnp)Q 2 }
—) Y Dy
pt(—pt +1) np piny, — 1 (ipy p; (€)=p N NEXAM,pt)

pt
n—c (ce — 1)n 1—pny+2n, 1

—Z

fry - _ _ 1 }/’LQD/L
Zp Zl.pi (6)—17( (n — 1)Ctnpt (n — l)ctn(ptnp — 1) ﬂpt(ﬂpt + 1) np)) t
n(c —1) { Ty Py Pyl
T (n— 1), Z Z n2 Ny Ny PREXAM pthEX AM p't

ny 1—pmy+2n, 1 1 (pny)? .,
+ L )
Z ( _pt(_pt + 1) np Piny — 1 N :uEXAM,pt

=D 0D i a1 YDy + 32,3 (c0 = Dy pip [EXAMptIEX AM,p't
p Lipf(e)=p 1Pt p Lap'#p (n — 1)Ctanth’t P ;

> —(Ct — 1)n2pf L L= by 21 LT )x A pt
P (n—1)einNy Ny th(ﬂpt +1) n, piny — 1 P

_ 2 « «
=2 Qupr ey Die + 32,0 QopprtiEX AM pt EX AM 't

where n,, is the greatest integer less than or equal to p;n, and

n—oc (e — 1)n§ L —piny + 20, 1 )
a = —_ PR —
1pt (n—1enpe (n— em(pmy, — 1) th(ﬂpt +1) Ny
(ce — D)ngn2piph ifp £y
a ) (n— l)ctnN Nt p7p
Zpp't — ¢ — Dnip? 1 1 — pin, +2n 1 1
o i (1, (L bt ) itp=

(n — L)eenNyt - Npg @pt(ﬂpt +1) - ”_p peny — 1

It follows that
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éEXAM(}/’ D)
PI" DZ RCT N
&;fﬁﬁ, D;, pFeT) + Y 90ex Ay

f(lfu Dza pﬁCT)_FZt gt&lpf(e)t)/;QDit]—i_Zt gt Zp Zp/ @2pp/t,aEXAM,pt,aEXAM,p’t

= Zz f* (}/Z) Di; pz) + Zt Zp Zp/ gtpp’ﬂEXAM,ptﬂEXAM,p’ty

Pr Dz pRCT
PriD‘Ip*(e)))f(Yi,Dz,p?CT) + 200 9101, Y Dig and gy = geazppe.

Therefore, EXAM (Y, D) is a simple estimator under EXAM p*(¢). O

where f*(Yi, Dz’>pi) =

Proof of Corollary E

The mean of potential outcomes for treatment ¢ is unbiasedly estimable with RCT and a
DY,

simple estimator by the following reason. Let 6(Y, D) = Z?:l . O(Y, D) is a simple
c
. pRCT}/i( ) !
unbiased estimator by E(0(Y, D)[pf¢T) =5"" “t—2r = — Zl LYi(t).

Ct
ATE of treatment ¢ over control ¢, is also unblasedly estlmable with RCT and a simple

DuY, DY
estimator. To see this, let (Y, D) = Y21 (——t — =

Ct Cto
it follows from the above argument for the mean potential outcome that E(8(Y, D)[pf¢T) =

%2?1 Yi(t) — %271 Yi(to) = > (Yi(t) — Y;(to)).

The variance of potential outcomes for treatment t is unbiasedly estimable with RCT

). This is a simple estimator, and

and a simple estimator. Consider two possible definitions of the variance of potentlal out-
comes: §7 = ST (Vi(1) — S, Vi(0)? and SF = & ST (Vi) — - S, V()
To see that S? is unbiasedly estlmable with RCT and a simple estimator, let 0.(Y,D) =
p— S Diu(Y; — figer(t))?, where j(t) = C%Z?ZI D;Y;. Since I can write 6,(Y, D) as

n Dz Y;Z &
HI(YJD):Z : :

z:1013—1 Ct—l

{i%(t), this is a simple estimator with

Dz‘tYiz . Ct
Ct — 1 9 = Ct — 1

f(Yi, Diypi) = and gy = 0 for all ¢’ # t.

For RCT, {i : D;y = 1} can be seen as a random sample of ¢; subjects from the population
of n subjects. Using Lemma @, I obtain E(6,(Y, D)|pRCT) = 2.
To see that Z? is also unbiasedly estimable with RCT and a simple estimator, let

R 1D, Y?
0,(Y, D) = U A

1. R . _
6,(Y, D). Since I can write 02(Y, D) as 65(Y,D) = >, =2

n ¢ —1
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n—1 c¢
L_[2(t), this is a simple estimator with

n ¢ —1
—1D;Y? —1
f(Yz',Di,pi)Zn i ,gtz—n “ and gy = 0 for all ¢’ # t.
n ¢ —1 n ¢ —1
. 1 1
It follows that E(f,(Y, D)|pRCT) = = E(f.(Y, D)|pRcT) = =252 = Y22,

Finally, I consider the unbiased estimability of the average treatment effect on the treated
(ATT) with RCT and EXAM. I first define ATT of ¢ over ty conditional on the treatment

assignment being d as

> iy (Ya(t) = Yi(to))di
Z?:1 dit '

[ define ATT of t over ty for experimental design (p;;) as

E (Z?l(ﬁ(w —Y;(to))Da |(p2t)> ‘

ATT(t|d) =

ATT(t|(pir)) = E(ATT(t|D)(pit))

Z?:l Dy
For RCT,
1 — 1 «
ATT (t|p"") = o > (Yilt) = Yi(to) )" = - > (Yi(t) - Yi(ty)) = ATE.
i=1 i=1

Since ATE is unbiasedly estimable with RCT and a simple estimator, ATT is also unbiasedly
estimable with RCT. For EXAM,

n

1
ATT(tlp"(e)) = =7 2_(Yi(t) — Yi(to))pi;(e)
Z'pit<6> ZZI '
s S X v
Zt p zpz(e
Zzpt”p S Z (Yi(t) - Yi(to))
Pile)m t 5,
ptnp
—=CATE,,.
Z Z p’Lt ) "
Since % is known to the experimenter and CATE,, is unbiasedly estimable with
i Pit\€
EXAM and Bpt, ATT is unbiasedly estimable with EXAM and Pty Bpt

"2 ivi(e)
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Proof of Proposition B

I define N, = >, 1{p;(e) = p}D;; as a random variable that stands for the number of
subjects with propensity vector p and assigned to treatment ¢. Denote the realization of N,
by nye = Y2, {pi(€) = p}dy. Recall that n, is defined as the greatest integer less than or
equal to pn, (the expected number of subjects with propensity vector p and assigned to
treatment ¢). Define N as the set of all (n,) that satisfy the following:

o ny =mn, for all p and ¢ such that pyn, € N.

Npt € {0y + 1} for all p and ¢ such that pn, ¢ N.

> npr = ny, for all p.

>t = ;D (e) for all ¢

I also define D(n,;) as the set of deterministic treatment assignments where the realization
of (Npt) is (np):

D(n,) = {d € {0, 1}”X(m+1)|z di =1 for every i and Z 1{p; () = p}dit = ny for every p and t}.
t i

The method of drawing deterministic treatment assignments in Definition E in Section B and
Appendix satisfies the following properties.

Lemma 7 (Small Support). The support of (Ny) is included by N .

Lemma 8 (Conditional Uniformity). Conditional on any (ny) in the support of (Ny), every

deterministic treatment assignment consistent with (n,) happens with equal probability:

D(ny)| =t if d € D(ny
Pr(D = dl(Ny) = (mye),p(e)) = 4 /Pl A€ Dl

0 otherwise.

To show the mean part of Proposition B, note that by Lemma B, every feasible treatment

assignment occurs equally likely conditional on (NN,) so that for every p, t and ¢ with p}(e) =
D, n
E(Die|(Nyt) = (1), P} (€) = p) = (19)

p

I therefore have

E(B;(Nyt) = (), pi (€) = p)
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Zépﬂpt = (nya), P} (€) = p)
= Z%E(Bpﬂ(Npt) — (1), p2(€) = p)

= a3 10100 = H - P 050 = (i) =
-3, Z Lt (e) = ) (E(Ditl(Npt) = (npt), Pi(€) = P)Yi(t) — E(Dity|(Npt) = (npr), Py (€) = p)Y;‘(tO))

Tipt Tpto

SO MR (/T )YilE) (/) Yil)

Tpt Mptg

= 25 —Zl{pz €) = p}(Yi(t) — Yi(to)
= Zap(JAT -

where I use equation () for the fifth equality. By the law of iterated expectation, I conclude

E(Bf|p*(e)) = ELE(B;|(Nyt) = (ny), p"(€))p" (e)]
Za CATEy|p’(e)]

= Z 5,C AT E,,
p

For the variance part of Proposition B, I prove the general version given in Appendix .
For notational simplicity, I make conditioning on p*(¢) implicit. By the law of total variance,

V(37) can be written as:
V(57) = E(V(BII(Np))) + V(BB (Nye)))-
As T show above, E(53{|(Ny)) = 3, 6,C AT E,,, implying V(E(5;|(Ny))) = 0. Thus
V(57) = E(V (B |(Nye))- (20)

To show that E(V (5|(N,))) is equal to the expression in Proposition B, [ introduce a lemma.

Lemma 9. For all (ny) in the support of (Ny),

. S2 52 S?
V(5 52 pt “pto  “ptto )
eIy () Z <npt Moptg Tp )

p
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Proof of Lemma B By Lemma E, treatment assignments are independent across subpopula-
tions with different propensities conditional on (Np). Bpt is therefore independent across p

conditional on (NNV,). Hence,
V(B:KNpt) (mpt)) Z 5pt| = (npt))
= Z(S;V(BptKNpt) = (npt))-

. S2, 52 S?
It is therefore enough to show that V(B |(Np) = (ny)) = =2 + -2 — P For notational
pt  Tpte  Tp

simplicity, I make conditioning on (N,;) = (n,;) implicit. Let P be a random set of subjects

with propensity vector p and assigned to either treatment ¢ or ¢y, i.e.,

17 = {ilpi(e) = p and Dy + Dy, = 1},

n
IP%0 takes on ( P ) values equally likely, a consequence of Lemma B By the law of
nptﬂ— Tptg

total variance, V(8,;) can be written as:

V(Byt) = E(V (Bl 1710)) + V (E(Byul 17™0)). (21)

Conditional on IP" = ] the randomness in Bpt comes from the randomness in choosing n,,
subjects assigned to treatment ¢ and n,, subjects assigned to treatment ¢, from the set I of
Nyt + Ny, SUbjects. Every combination occurs with equal probability, so the standard results
of binary-treatment RCT (Theorems 6.1 and 6.2 in [mbens and Rubin (2015)) apply:

1

EB JPto — [y = — — Yi(t) — Yi(to)),
(B )= oo 2000 Vi)
2 2
V(B t|]ptt0 =1)= Spt“ + SpfoU o Sptt0|l
’ Mt Tpto Nt + Nty ’

where 52 bTE Sz?to\f and S%, . are the variances of Y;(?), Yi(to) and Yi(t) — Yi(to), respectively,
conditional on the set of subjects I. Regarding n,,, n, +nyu,, and Y;(t) —Y;(ty) as performing

the roles of n,m, and X; in Lemma @, respectively, I use Lemma @ to get

3 1 Np = N — Nt
V(E(By|IP" =) =V(—— Yi(t) — Yi(t _ Ty Plo 62
(Bl = 1) = Vi S0 — vl)) = sy,

2 2 2
B — 1y = Zs) | EGr)  Ewr) _ Sy Shy __ Sho
Topt Mot Npt + Nptg Nt Nty Tpt + Tty
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where the last equality is by the second part of Lemma @ Combining these with equation
S2 52 g2
IhaveVﬁt _ et | Zpto _ Pptto _
(®2). ]

Tipt npto p

By Lemma H, Nyt can take on either n, or n, + 1. Since Ny has expectation p;n,, the

marginal distribution for each NV,; must be

1-— by + Ept if Npt = ﬂpt
Pr<Npt - npt) = \ Pty — th if Npt = ﬂpt +1 (22)
0 otherwise.

Using equation (@), Lemma Q, and equation (@), I have

Sk 52 S2
LOLC )

Pto
S2, S2
= 2 t tt
=20 X B(y) -y
P t'ef{to,t} pt P
SQ/ 82/ SQ
S E ()0 -w e+ ()] S}
p ST Ry Ny

Proof of Equation (@)

I prove equation (@) with two lemmas below.

Lemma 10. E(B|p*(e)) = > MtCATEy, for all t where B, is the OLS estimate of By in

this regression:

Y, = Z B.Dj; + Z Cpl{p;(e) = p} + Ei. (23)

t=t1

Proof of Lemma . I reparametrize the regression as follows with (B, D,), where D, =
Cp + Zi:tl Btpt-

Y, = ZBt it — pzt + ZD 1{]71 p} + Ei. (24)

t=t1

This reparametrization does not change B,. Note also that Y; can be written as follows.
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tm

Y= Upj(e) = p}Yp(0) + Y > 1{pi(e) = p}CATE,Diy + pui,
p

p t=t1

_ > Hpile) = p}Yi(0)
where Y,(0) = S 1 () = p)

OLS estimates (B;, D,) of (By, D,) in regression (@) can be written as follows.

and >, 1{p;(e) = p}p; = 0 for every p. Therefore, the

(B;, D,) = arg min Z[Z 1{p;(e) = p}Y,(0) + Z Z {p;(e) = p}CATE,; Dy

(BtvDP) i p p t=t1
tm
— > Bi(Dis — pi(e ZD 1{p;(e) = p})*
t=t1
tm tm
= argmin > D 1pi(e) = p}(Yy(0) = Dpy+ > CATE,Di) = > Bu(Dit — py(e))]’
bEr) 4 p t=ty t=t1
tm
= argmin Y ({3 1{pi(€) = pH,(0) = D, + Y CATE,D, 2
(Bt,Dp) i p t=ty
tm tm
—2§me Y,(0) = Dp+ Y  CATE.D;t) Y Bi(Dis — pjy(e))
t=t1 t=t1
+ {Z By(Di — pjy(€)}?]
t=t1
tm
= arg ml)nz {Z 1{p:(e) Y,(0) = D, + Y CATE,D;)}?
Bt Dp t=t1

—ZZl{pf(e):p}ZCAT tthZm:Bt Dy — pi(e +{ZBt it — Dy(€))}’]

t=t1 t=t1 t=t1

because Y .(D; — pj(€)) = 0. Minimizing this over B, leads to

2. 2 Upi(€) = pyCATEp Diy (D pé‘t(E)).

b= > (Du — ()2

Because P(Dy — 1) — >p 2 Hpi 7(;f) =pivale)

> Upi(e) = pipj(e)

Pi(@ =plDa = 1) = =S 10 = )o@

80



it follows that the numerator is equal to Zp pe(1 —p)6,CATE,, and that the denominator
is equal to > pi(1 — p;)d,. This implies that E(B|p*(e)) = >y At CAT Ey. O

Lemma 11. B, = l;;k for any t and any realization of treatment assignment Dy;.

Proof of Lemma . By the Frisch-Waugh-Lovell theorem, the OLS estimates of (@) can be
obtained by regressing each of Y; and D;; on the fully-saturated propensity score controls and
then using the residuals from these regressions as the dependent and independent variables
for a bivariate regression that omits the propensity score controls. Consider the auxiliary
regressions that produce these residualized variables: they have D;; on the left hand side,
with a saturated control for pf(e) on the right. By the law of iterated expectations, the

conditional expectation function associated with this auxiliary regression is
E[Ditp; (€)] = piz(e)-

In other words, the conditional expectation function E[Dy|p;(¢€)] is linear in regressors pf(€),
so it and the associated auxiliary regression function coincide (note that I use a saturated
model for pf(e)). Therefore, regression (B), which additively separably and linearly controls

for p},(€)’s, produces the same estimate as regression () O

Proof of Proposition B

The proof uses the following lemma.
Lemma 12. Suppose Assumptions B, B, B, , B’, Ia, and H hold. For all g, as N — o0,
Q% 0 d - con, ehw —
V(B g = BRE) == N0, Hy (pAS™ + (1 — p) A H ).
Dk sample d — con —
VTg(Br g — By ™) = N(0, H A H ),
Proof of Lemma . This result is a consequence of Theorem 3 of Abadie et al| (2017).
To verify their assumptions hold, fix any g, and regard subpopulation Py, as the entire
population. Note that N, — oo as N — oo by Assumption E (ii). Dy; and 1 in my

notation correspond to Uy; and Zy; in Abadie et al| (2017). Their Assumption 3 holds by

the following reason: For all g and i € Py,
Pr((DN,it)t:to,...,tm = di’RN = 7’) = E[Pr((DN,it)t:tg,.“,tm = dilRN =T, (CN,t))‘RN = 7”]

= B phea(e)1du = 1|y = 1]

t=to
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tm
= ZQN,g,tl{dit =1},

t=to

where the third equality holds by my Assumption B Then, Pr((DN it)ieto., . tm = di) =

-----

..........

tion
N N

Pr((Dyt) = (d;)|Ry =) HPT ((Dnit)t=to,... =d;|Rn =) HPF((DN,z‘t)t:to ..... tm = di),
=1 =1

and

Pr((Dy.e) = (d:)) = E[Pr((Dwa) = (d)|By = )] = [ [ Pr((Dwvie)iton..t = di)-

=1

Therefore, (Dn1t)t—ty...tms > (DN.Nt)t=to,...t,, are jointly independent from each other, and
independent of Ry. Assumption 3 in Abadie et al. (2017) therefore holds. Since E[Dy ;] =
(qNgt1s s AN gt ) fOr @ € Py 4, Assumption 7 in Abadie et al| (2017) holds. Note that

tm
Z Dy YN (t Z Dy it(Yni(t) — Yni(to)) + Z Dy iYn,i(to) = D;\QiﬁN,i + Yn.i(to),
t=to t=t1 t=to

implying Assumption 8 in Abadie et al| (2017) holds. I next show that my gy and 57" le

ecausal and ecausal,sample

are equal to their , respectively. To make it explicit that gsausal and

lsampl I,sampl :
Oy vary across g in our setting, denote them by 634 and """, Since

E[Xy,;| =0 and E[Xy;X},] is constant across i € Py g,

1
ot = Z EXniXy,]) 1F Z E[XniYn]

ZEPN g9 g 7:GPN,g

- <E[XN,1X5V,11>-1Ni S BXoi( Dy + Yivalto))

g €PN g
1

v Z E[Xni((Xn; + E[Dn,]) By, + Yni(to))]

9 iEPN,g

— (B[Xya X))
_ 1
— (Bl X ) B Xh - Y B

9 1€EPN 4

= 5%,
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and

causal,sample __ -1 1
Oy e = Z Ry iB[XniXyl) " — D RiE[XniYw
9 iePy 4 9 iePy.,
= (B[Xn1Xy4l)” Z R B[ Xni(Xni + E[Dy.)) B + Yaa(to))]
’LEPNg
= (E[XN,lXJ'v,l])_lE[XN,lXM > RyiB.
lGPNg
ﬁsample.

Note that v§%**! in Abadie et al, (2017)’s notation is

causal - Z YNZ = Z [D;V,I/BNJ + YN,Z(tU)] [DNI /BPOP —|— -_— Z YN'L tO .
ZGPN g ZGPN g lGPN .9
For i € F)N’g7

o 1
eni = Dy (Bni — BYo) + Yi(to) — N Z Y i(to)

9 iGPth

- 1
= Z Dy a(Yni(t) — Yni(to)) — D 055" + Y i(to) — N Z Yn.i(to)

t=t1 9 iePy,g
1
= YNz D?\/ Zecausal ﬁ Z YN,i<t0)
9 1€PN ,9
— YNz XN 2eca,usal [DN . BPOP o Z YNz tO
ZGPN g

. / causal causal
- YN i XN 19 fYNg

Y

1
where the last equality is by 754" = E[D}y ]88+~ N, > iepy, Yn.i(lo) shown above. It only

remains to check Abadie et al| (2017)’s Assumption 5 holds. Since || Xy ;|| < Zigtl | X nvat| <

1
i2t1(|DN,z‘t| + [piva(e)]) < 2 with probability one for all 4, FZ%PN& B[ Xnil*] <
g
1 1
N, Zz‘ePN,g 1 =1 for all N and for any § > 0. Hence, the sequences Fg Zz’ePN,g E[|Yn ],

1 1
N ZiePN’g E[[| Xnl[**], and N Zz‘ePN,g E[||1]|**?] are uniformly bounded under my As-

g g
sumption B Applying Abadie et al) (2017)’s Theorem 3 gives me Lemma . ]

,,,,,
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s ooy (DN,Nt)t=to,... 1., are jointly independent from each other and independent of Ry (a conse-
quence of my Assumption @) Notice that E[n/N] = E[3.~ | Ryi]/N = py and Var(n/N) =
Var(X N, Ryi)/N? = pn(1 — pn)/N — 0. Thus, n/N £+ py. Similarly, ny/N, —= py.
The continuous mapping theorem implies \/n,/n = \/dn,4(ny/Ny)/(n/N) - /9. 1 have

G
V(B = BR) = V(Y B - Z Sz )

B
g=1 e 9=1 " N
G n n N,

=D I v (By = ARG) + V(- = BR)

~Ls N(0, Z S H H(pA™ 4 (1 — p)AS™YH 1),

g=1
where the last convergence is by /n,/n 2, \/@ , Lemma @, and Assumption B Similarly,

G G

VB = B = V(YD B, = D )
g=1 g=1

- \/—Z BNg . Bsample)

= Z [W (Brvg = O™ )

1 A cond
L5 N(0 ,Z(ngg ACMH ),

g=1
where the last convergence is by /ng/n NELN \/5_9 and Lemma .

Proof of Corollary @

Note that
eni = Dy, Yni(t1) — Ya(t1)) + (1 — Dy ) (Yni(to) — Y (to)).
I have

E[Xneni] = Pr(Dyi = 1)(1 — qng)(Yai(ts) — Ya(t1)) + Pr(Dai = 0)(—gn ) (Yovi(to) — Y (to))
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= qni (1 — qnay) Yaa(t) — Y (ty) — (Yai(to) — Ya(to))),

and

E[X% . €x:) = Pr(Dyi = 1)(1 = qn, )*(Yai(t) — Yn(t1))? + Pr(Dyi = 0)(—qs, ) (Yavilto)
= gy (1= qna ) (Yovi(tr) = Y (t1))? + (1 = g ) a5, (Yova(to) — Yo (to))*.

_ 1
I therefore get A" = th_m ¥ S BE(XZ k) = an (1 — )22 + (1 — qy)¢? S2, and

Acond = Aehv _Timpy o — sz\il E[Xnieni]? = A — g2 (1 — q,,)*SE,,- T also have

E[X%,] = Pr(Dy; = 1)(1 = qny,)? + Pr(Dyi = 0)(—qns,)?
= QN,t1<1 - QN,t1)a

and E follow from substituting

. . 1
leading to H = limy_oe - S0, B[XF,] = 41 (1 - g,): ). (@)
(B and . follow from Corollary

the above observations into Proposition B Analogously,

N
g

Proof of Proposition B

By Proposition E, there is no other experimental design (p;;) with p;; € [e, 1 —¢] for all subject
i and treatment ¢ and such that ), pywi, > >, pi7(e)wi, for all ¢ and Y, piey; > >, pif(€)el,
for all 7 with at least one strict inequality. w}, and e}, are consistent with ordinal 77; and 77,
respectively. Therefore, there is no other experimental design (p;;) such that for all cardinal
WTP w; consistent with ordinal 2—; and all cardinal predicted effects e;; consistent with
ordinal 77, I have Y, pywi > >, pi? (€)wy, for all i and ), pue; > >, piy (€)ey; for all i with

at least one strict inequality.

A.3 Empirical Details
A.3.1 Why Subject Welfare? Data

Table EI Panel a is based on data I assemble from the WHO International Clinical Trials
Registry Platform (ICTRP) at http://www.who.int/ictrp/en/, retrieved in May 2019. I
first use the “date of registration” variable to define the year associated with each trial.
Starting from the universe of trials registered between January 1st 2007 to May 31st 2017,
I exclude outlier trials with registered sample size greater than 5 millions. Some trials come

with sample size classified as “Not Specified.” I set their sample size as zero. This makes
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my total sample size calculation conservative. For a trial that does not have a well-defined
trial phase, I classify its trial phase as “Not Specified.” Finally, for each trial, I define its
“Geographical Region” according to which country runs the registry including that trial.
Many registries like ClinicalTrial.gov recruit subjects in multiple countries under the same
trial ID, making it challenging to pin down the physical location of each trial.

Table m Panel b is based on data I assemble from the American Economic Association’s
registry (AEA registry) for randomized controlled trials at https://www.socialscienceregistry.
org, retrieved on May 27th, 2017. From the AEA registry, I obtain information about each
experiment such as the sample size, the year when the experiment was conducted, the coun-
try where the experiment was conducted, registered keywords, and the randomization unit.
When some information is missing, I manually enter it by referring to accompanying doc-
uments such as experimental design descriptions and abstracts. I classify an item as “Not
specified” when I cannot specify it even after the manual procedure. When the sample size
of an experiment is unspecified, I set the sample size as zero. This makes my total sample
size calculation conservative. I use the “starting date of experiment” to define the year as-
sociated with each trial. Finally, for each trial, I define its “Geographical Region” according
to the country in which the experiment was conducted. I include all registered experiments
conducted during 2007-2017 period.

A.3.2 Do Clinical Trials Use Simple Randomization?

Do clinical trials randomize treatment as in Definition m of RCT? I provide an answer to
this question using the Clinical Trial Registry India (CTRI). To my knowledge, CTRI is
the only major clinical trial registry that provides data about randomization methods in
clinical trials. I assembled data about individual clinical trials including the date the trial
was conducted and the method used to randomize subjects into control or treatment groups.
The data includes trials spanning from October 9th, 2007 to October 9, 2017. I removed trials
with sample size 0 and trials that have been classified as “NA” for randomization method.
According to the CTRI description manual, the relevant variable (“method of generating

random sequence”) takes some of the following categories:

o Computer generated randomization: A machine randomly assigns the subject or subject

group to a study or treatment group.

o Permuted block randomization (fixed): Participants are randomly allocated in a way
that maintains a covariate balance across treatment groups. Allocation occurs by
assigning a specified number of participants to a block that has a specified number of

treatment assignments. In this case, the block size is fixed.

86


https://www.socialscienceregistry.org
https://www.socialscienceregistry.org

Permuted block randomization (variable): Same method as permuted block random-

ization (fixed), but with varying block sizes.

Random number table: Each subject or subject group is assigned a number, and a

random number table determines if the subject is assigned to a control or treatment

group.

Coin toss, lottery, toss of dice, shuffling cards etc.: Based on a coin toss, the subject,

or subject group is placed in either a control or treatment group.

Stratified randomization: In order to control for covariates (patient characteristics
which might affect the outcomes), a stratum is generated for each combination of
covariates, and subjects are assigned to the appropriate strata of covariates. After all
subjects are assigned to strata, simple randomization is performed within each stratum

to assign subjects to a treatment or control group.

Stratified block randomization: Same method as stratified randomization, but once
patients are assigned to their strata, permuted block randomization is performed within

each stratum.

Adaptive randomization: Adaptive randomization, like stratified randomization, takes
covariates into account. In the “minimization method,” for example, a new patient is
sequentially assigned to the group with the fewest number of existing patients with

the same covariates, making covariates balanced across groups.

Other: 179 trials listed “Other” as the method of randomization

The popularity of each randomization method is described in Appendix Table [A:l! The

table shows that 85% of all trials use one of the impersonal simple randomization methods

that do not take patient covariate or past data into account. This suggests that Definition

m of RCT is a reasonable approximation to most clinical trials.

A.3.3 Treatment Effects and Preferences: Details

Sample Restriction in Treatment Effect Estimation (Table )

For the OLS regressions in Table H, I impose the same sample restriction as Kremer et al. and

exclude the following children: children not at Intent-to-Treat springs, i.e., springs found to

be nonviable after treatment random assignment, children in households that receive water

guards in 2007, children not in representative households (defined as households that are
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named at least twice by all users of a given spring when survey enumerators ask spring
users at a spring to name households that also use the same spring), children above age 3 at
baseline and children above age 3 when they join the sample in later rounds, children whose
anthropometric (weight, height, BMI) and age data are flagged as having serious error, and
children in households with missing data on whether they use the identified spring exclusively

or use multiple springs.

Estimation of the Mixed Logit WTP Model (Table @)

With the random utility function (B), choice likelihoods take the following form (Train (2003),
chapter 6):

P(Oijt = 1|‘9,71, 5j) = / =P ((ﬁl ki %Xiﬂ% _ CiDij ki 5j) f(ﬁu Cz‘|9)d(5¢7 Ci)

Gien) 2oner P ((Bi +11Xi)The — ¢iDip, + dn)

where 05 € {0, 1} is the indicator that household i chooses source j in trip ¢t among alterna-
tives h € H and f(5;, ¢;|0) is the mixing distribution parametrized by 6. f(5;,¢;|0) is taken
to be the normal distribution with unknown mean and variance for the spring protection
treatment coefficient f; and the triangular distribution (restricted to be nonnegative) for the
distance coefficient ¢;. I use the quasi Newton method to maximize a simulation approxima-
tion of the joint likelihood )

maximum simulated likelihood estimates é, A1, and 5]-. I compute standard errors using the

ijtP(oijt = 1/0, 71, 6;) with respect to 0,71, and J;, producing
information matrix with the Hessian being estimated by the outer product of the gradient

of the simulated likelihood at the estimated parameter value.

Simulation of WTP (Figure El Panel b and Subsequent Figures)

I create simulated WTP data for Figure m Panel b and subsequent figures with parametric

bootstrap below.

(1) Simulate a value of the distance coefficient ¢ ~ T’ m’cmgular(ﬁ) for each household
group sharing the same characteristics where 9D is the point estimate of the parameter
of the distance coefficient distribution, i.e., the estimated mean and standard deviation.
To correct for potential measurement error in distance, follow Kremer et al| (2011)’s
method and multiply the distance coefficient by -1/0.38, where 0.38 is the correlation
across survey rounds in the reported walking distance to the reference spring and is
taken to be the size of measurement error from recall error. See Kremer et al) (2011)’s
Section IV.B for details.
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(2) Draw a value of the treatment coefficient w ~ N (fi, ) for each household group sharing
the same characteristics where i and & are the point estimates of mean p and standard

deviation o of the treatment coefficient distribution.

(3) Compute the ratio w/c as WTP for the treatment in terms of minutes of walking
time. Follow Kremer et al! (2011)’s method to get WTP in terms of the number of
workdays taken to walk to the spring in a year. Specifically, multiply the ratio by
(32 x 52)/(60 x 8) where 32 x 52 is the average number of water trips taken by a
household per year and 60 x 8 is the number of minutes per workday. See Kremer et
al| (2011)’s Section IV.B for details.

A.3.4 EXAM vs RCT: Algorithm Details

In this section, I describe the details of the algorithm I use for computing EXAM’s treatment
assignment probabilities pf;(€) in my empirical application in Section @ I first define sub-
routines and then call them together at the end to perform the main computation. Though
simple, this algorithm works well in my application: The market clearing error, defined as
Voo Ooiph — @)?/ >, ¢, is smaller than 0.005 in all simulation runs.
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Algorithm 1 Experimental as Market (EXAM)

Input: n the number of subjects, m the number of treatments, (¢;) € N treatment ¢’s
pseudo capacity with ), ¢, = n, (w;) subject i’'s WTP for treatment ¢, (e;;) treatment
t’s predicted treatment effect for subject ¢, b the budget constraint

Output: (p;) treatment ¢’s assignment probability for subject i, (a*, 8}) parameters deter-
mining treatment t’s equilibrium price of the form 7}, = a*e + 3}, error,,;, minimized
market clearing error relative the total capacity of treatments

1: function INITIALALPHA( )

2: a < generate random number ~ Uniform(—b, 0) > set the value of a
3: return o
4: function INITBETA( )
5: Bty 0
6: for each t =t4,...,t,, do
7 B; < generate random number ~ Uniform(—b, b) > set the initial value of 3,
8: return () > return an m-dimensional vector
9: function PRICE(«q, (5;)) > get the price of treatment ¢
10: for each i,t =tq,...,t,, do
11: Tty = Qi + By
12: return (7., ) > return the n x m price matrix
13: function DEMAND((7e,,)) > get subject ¢’s demand for treatment ¢
14: for each ¢ do > perform utility maximization for each subject i
15: (pit)e < arg max Y, wiPi 8.6 D, Tpe,Dit < b
(pit)t€P
16: return (p;) > return the n x m demand matrix
17: function EXCESSDEMAND((p;t)) > get the excess demand for treatment ¢
18: for each t =t4,...,t,, do
19: dy < Y . pit — ¢t
20: return (d) > return the m-dimensional excess demand vector
21: function CLEARINGERROR((d;)) > get the market clearing error
22: if d; < 0 for all ¢t then
23: return 0
24: else
25: eITor — /Y, d7/ >, ¢
26: return error > return the market clearing error
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27: 63 < b/50

28: function BETANEW((f;, d;))

29:
30:

31:

for each t =t4,...,t,, do
B < B + didg

return (57")

32: function CLEARMARKET( )

33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:

50:
51:
52:
53:
54:
55:
56:
57:
58:

59:
60:
61:
62:

a < INITIALALPHA( )
(B:) < INITBETA( )
(ﬂ-teti) A PRICE(O{, (ﬁt))
(pit) < DEMAND((ye,,))
(d;) < EXCESSDEMAND((p;))
error <— CLEARINGERROR((d}))
€ITOT iy, $— €ITOTr
ClearingThreshold < 0.01
IterationThreshold < 10
iterations <— 0
while True do
if iterations > IterationThreshold then
« < INITIALALPHA( )
(Br) < INITBETA( )
iterations < 0
else
(B¢) < BETANEW((5;), (d}))
(ﬂ-teti) A PRICE(O‘7 (515))
(pit) < DEMAND((, )
(d;) < EXCESSDEMAND((p;t))
error <— CLEARINGERROR((d;))
if error < error,,;, then
€ITOT iy $— €ITOr
a* — «a
(67) = (B)
(Pi) < (Pit)
if error,,;,, < ClearingThreshold then
break
iterations +=1
return ((p},), o, (5;), error,,)

> scaling factor for 3;’s to set new prices

> recalibrate 3;’s to set new prices

> the main function

> initialize the minimum of clearing error
> threshold for the market clearing error
> threshold for iteration times

> initialize iteration time count

> start new equilibrium research

> the new prices reduce the error

> return the outputs
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A.3.5 Additional Tables and Figures

Table A.1: Do Clinical Trials Use Simple Randomization?

Frequency of Randomization Methods in Clinical Trial Registry India (CTRI)

Randomization Methods % Subgroup %
Simple Randomization

Computer generated randomization 63%
Permuted block randomization, fixed 5%
Random number table 6% 85%
Coin toss 8%
Permuted block randomization, variable 2%

Adaptive or Stratified Randomization

Stratified block randomization 5%

Stratified randomization 3% 9%
Adaptive randomization 1%

Other 6% 6%
Total interventional trials 5733

Notes: This table shows summary statistics of the popularity of different randomization methods in clinical
trials, based on the Clinical Trial Registry India (CTRI). The data includes trials spanning from October
9th, 2007 to October 9, 2017. I removed trials with sample size 0 and trials that have been classified as
“NA” for randomization method. See Appendix for discussions about this table.
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Table A.2: A Selection of High-stakes RCTs (Continued from Table E)

(a) Medical Clinical Trials

‘ Subjects Sample Size
i Coronary Heart Disease Patients 4444 Individuals
ii Patients with Elevated Intraocular Pressure 1636 Individuals
iii | HIV Negative Gay Men and Transgender Women 2499 Individuals
iv Serodiscordant Couples 1763 Couples
v Postmenopausal Women 16608 Individuals

(b) Social and Economic Experiments

‘ Subjects Sample Size
I Poor Households in Kenya 940 Households
II Crime Hot Spots in Minneapolis 110 Spots
III Unmarried Women in Malawi 1007 Individuals
v Uninsured Individuals in Oregon 12229 Individuals
V | Public Sector Job Applicants in Mexico 350 Job Vacancies

Notes: This is a continuation of Table B This table lists examples illustrating the high-stakes nature of
certain RCTs. See the following references for the details of each RCT:

Panel a Study i: Scandinavian Simvastatin Survival Study Group and Others (1994)

Panel a Study ii: Kass et al! (2002)

Panel a Study iii: Grant et al. (2010)

Panel a Study iv: Cohen et al| (2011))

Panel a Study v: Writing Group for the Women’s Health Initiative Investigators and Others (2002)
Panel b Study I: Haushofer and Shapirg (2016)

Panel b Study II: Sherman and Weisburd (11995)

Panel b Study III: Angelucci and Bennett (2017)

Panel b Study IV: Baicker et al| (2013)

Panel b Study V: Dal Bé et al] (2013), where the control is a lower wage job offer.

See Section E for discussions about this table.
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Figure A.1: EXAM vs RCT: Welfare (Robustness Check with € = 0.1)

(a) Average WTP for Assigned Treatments w;
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Kolmogorov—Smirnov test: D = .249 , p-value = 0

(b) Avg Predicted Effects of Assigned Treatments e}

Cumulative Distribution Functions
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Kolmogorov—Smirnov test: D= .426 , p value= 0

Notes: This figure reports the same results as Figure E except that this figure sets € to 0.1. To compare
EXAM and RCT’s welfare performance, this figure shows the distribution of average subject welfare over 1000
bootstrap simulations under each experimental design. Panel a measures welfare with respect to average
WTP w} for assigned treatments while Panel b with respect to average predicted effects e} of assigned
treatments. A dotted line indicates the distribution of each welfare measure for RCT while a solid line
indicates that for EXAM. Each vertical line represents mean. Kolmogorov-Smirnov tests find the EXAM
and RCT distributions to be significantly different both for w; and e;. Both predicted effects é;,; and WTP
w;¢, are based on the main statistical specifications including all of the interactions between the treatment
indicator and household characteristics (baseline latrine density, diarrhea prevention knowledge score, and
mother’s years of education). See Section for discussions about this figure.
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Figure A.2: EXAM vs RCT: ATE Estimates (Robustness Check with € = 0.1)

(a) Distribution of Average Treatment Effect Estimates b*
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(b) Distribution of Average Treatment Effect Estimates 5*
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Notes: This figure reports the same results as Figure E except that this figure sets € to 0.1. This figure
compares EXAM and RCT’s causal inference performance by showing the distribution of average treatment
effect estimates under each experimental design. Grey bins indicate average treatment effect estimates for
RCT while transparent bins with black outlines indicate those for EXAM. The solid vertical line indicates
mean for EXAM while the dashed vertical line indicates that for RCT. See Section @ for discussions about
this figure.
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Figure A.3: EXAM vs RCT: p Values (Robustness Check with € = 0.1)

(a) p Values for b* (Exact, Finite Sample)
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(b) p Values for b* (Non-robust)
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Notes: This figure reports the same results as Figure H except that this figure sets € to 0.1. This figure
compares EXAM and RCT’s causal inference performance by showing the distribution of p values
accompanying average treatment effect estimates b* under each experimental design. The p values are based

on exact, non-robust, robust, or |Abadie et alJ (

017|)’s standard errors. Grey bins indicate p values for

RCT while transparent bins with black outlines indicate those for EXAM. The solid vertical line indicates
median for EXAM while the dashed vertical line indicates that for RCT. See Section for discussions

about this figure.
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Figure A.4: EXAM vs RCT: Incentive (Robustness Check with € = 0.1)

(a) WTP manipulation ~ true WITP+N(0,100) (b) WTP manipulation ~ true WTP+N (0, 1000)
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(¢c) WTP manipulation ~ true WTP+U(0,100) (d) WTP manipulation ~ true WIP+U(—-100, 0)
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Notes: This figure reports the same results as Figure a except that this figure sets € to 0.1. This figure shows
the histogram of true WTP gains from potential WTP misreporting to EXAM, quantifying the incentive
compatibility of EXAM. Different panels use different ways of drawing WTP manipulations indicated by
the panel titles. Each solid vertical line represents the mean WTP gain from potential WTP misreporting
to EXAM. The dash vertical line is for RCT, where the true WTP gain from any WTP misreport is zero.
See Section for discussions about this figure.
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