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ASYMPTOTIC THEORY FOR NEAR INTEGRATED PROCESSES

DRIVEN BY TEMPERED LINEAR PROCESSES∗

By Farzad Sabzikar, Qiying Wang and Peter C. B. Phillips

Iowa State University, University of Sydney, and Yale University, University of Auckland,

University of Southampton, Singapore Management University

This paper develops an asymptotic theory for near-integrated

random processes and some associated regressions when the errors

are tempered linear processes. Tempered processes are stationary

time series that have a semi-long memory property in the sense that

the autocovariogram of the process resembles that of a long memory

model for moderate lags but eventually diminishes exponentially fast

according to the presence of a decay factor governed by a temper-

ing parameter. When the tempering parameter is sample size depen-

dent, the resulting class of processes admits a wide range of behav-

ior that includes both long memory, semi-long memory, and short

memory processes. The paper develops asymptotic theory for such

processes and associated regression statistics thereby extending ear-

lier findings that fall within certain subclasses of processes involving

near-integrated time series. The limit results relate to tempered frac-

tional processes that include tempered fractional Brownian motion

and tempered fractional diffusions. The theory is extended to pro-

vide the limiting distribution for autoregressions with such tempered

near-integrated time series, thereby enabling analysis of the limit

properties of statistics of particular interest in econometrics, such as

unit root tests, under more general conditions than existing theory.

Some extensions of the theory to the multivariate case are reported.

1. Introduction. Consider a time series that is generated by the model

(1.1) Y (t) = a Y (t− 1) +X(t), t = 1, 2, ..., N ; Y (0) = 0,

where a is an unknown parameter and {X(j)}j∈Z is a stationary error process. The observable

time series Y (t) in (1.1) is called a near integrated process (or integrated process) when a lies in

an O(N−1) vicinity of unity (or a = 1). Such models have proved useful in applications in many

disciplines where observed data show evidence of persistence or randomly wandering behavior.

An extensive body of theory now exists concerning the asymptotic properties of data generated

by (1.1) and estimators, test statistics and confidence intervals for the autoregressive coefficient a.

Central to much of this theory is the limit behavior of the ordinary least squares (OLS) estimator

(1.2) â =

∑N
t=1 Y (t)Y (t− 1)∑N

t=1 Y
2(t− 1)

,

∗Phillips acknowledges research support from the Kelly Fund at the University of Auckland.

Keywords and phrases: Tempered linear process, least squares, ARTFIMA, tempered fractional Ornstein-

Uhlenbeck process, invariance principle, near integrated process, tempered fractional calculus, semi-long range

dependence.
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which has been studied under many different assumptions on the structure of the error process

X(t).

Assuming a = aN := exp{c/N}, c ∈ R, in model (1.1), and {X(j)}j∈Z to be weakly dependent

errors that satisfy under certain moment and mixing conditions, Phillips [38, Theorem 1] showed

that as N → ∞

N(âN − a)
d−→

[ ∫ 1

0
(Jc(s))

2 ds
]−1[ ∫ 1

0
JcdB + δ

]
(1.3)

=
[ ∫ 1

0
(Jc(s))

2 ds
]−1{Jc(1)2

2
− c

∫ 1

0
Jc(s)

2ds−
σ2X
2

}
,(1.4)

where σ2X = E(X(0))2, σ2 =
∑

t∈Z EX(0)X(t) is the long-run variance ofX(t), δ =
∑

t∈N+
EX(0)X(t) =

(σ2 − σ2X)/2 is a one-sided long run covariance of X(t), and Jc(r) is a linear diffusion (Ornstein-

Uhlenbeck) process with Wiener integral

(1.5) Jc(r) =

∫ r

0
e(r−s)cB(ds),

based on Brownian motion B(·) with variance σ2.

Buchmann and Chan [9] extended this result to the case where the {X(j)}j∈Z are strongly

dependent (long memory) errors. In fact, Theorem 2.1 of [9] implies that

N1∧(1+2d)(âN − a)
d−→ 1∫ 1

0 Jc,d(s)
2 ds


Jc,d(1)

2

2 − c
∫ 1
0 Jc,d(s)

2ds, 0 < d < 1
2 ,

Jc(1)2

2 − c
∫ 1
0 Jc(s)

2ds− σ2
X
2 , d = 0

− (Γ(d+1))2σ2
X

2 , −1
2 < d < 0,

(1.6)

where Jc,d(r) is a fractional diffusion process with representation

(1.7) Jc,d(r) =

∫ r

0
e(r−s)cBd(ds).

Here Bd(s) is a fractional Brownian motion (fBM) with moving average representation

Bd(s) =
1

Γ(d+ 1)

∫
R

[
(s− x)d+ − (−x)d+

]
B(dx).

Recently, Sabzikar and Surgailis [45] introduced a class of linear processes called tempered

linear processes with semi-long memory properties intermediate between those of long and short

memory. A tempered linear process has moving average form

(1.8) Xd,λ(t) =
∞∑
k=0

e−λkbd(k)ζ(t− k), t ∈ Z

in an i.i.d. innovation process {ζ(t)} with Eζ(0) = 0 and Eζ2(0) = 1, and with coefficients bd(k)

regularly varying at infinity as kd−1, viz.,

(1.9) bd(k) ∼ cd
Γ(d)

kd−1, k → ∞, cd ̸= 0, d ̸= 0,

where d ∈ R is a real number, d ̸= −1,−2, . . . , and λ > 0 is the tempering parameter. A spe-

cial case of such processes that has been studied in [33, 44, 45] is the two-parameter class of
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tempered fractionally integrated processes depending only on the parameters (d, λ), denoted by

ARTFIMA(0, d, λ, 0). This class has no autoregressive or moving average component and extends

to the tempered process case the well-known class of fractionally integrated autoregressive mov-

ing average processes, denoted ARFIMA(0, d, 0). Section B in the Appendix provides definitions

and some essential properties of ARTFIMA(p, d, λ, q) processes, various specializations, and mul-

tivariate extensions. In what follows and given the generality of (1.8), we will mainly focus on

ARTFIMA(0, d, λ, 0) processes.

When the value of the tempering parameter λ is small, an ARTFIMA(0, d, λ, 0) process has

an autocovariances resembling that of a long memory process out to a large number of lags but

eventually decaying exponentially fast. In [19] this behavior was termed semi-long memory. Such

processes have empirical relevance for modelling time series that are known to display various

degrees of long memory with autocovariances that decay slowly at first but ultimately decay

much faster, such as the magnitude or certain powers of financial returns (see, for example, [24]).

A specific focus in the present paper is the limit theory associated with the estimator âN in

the regression model (1.1) when the error process follows a tempered linear process given by (1.8)

and allowance is made for sample size dependence in the tempering parameter λ = λN . This

framework extends the usual local to unity asymptotic theory to accommodate a wide class of

long memory, intermediate memory, and short memory processes. We consider the following two

scenarios:

(a) The parameter λ is independent of the sample size N ; and

(b) The parameter λ = λN depends on N with limN→∞NλN = λ∗ ∈ [0,∞].

These cases are analyzed in Section 3 of the paper and the results are summarized as follows. For

case (a) the limit distribution of N(âN − a) follows (1.3) and has the form of a ratio of quadratic

functionals of the linear diffusion process (1.5). In case (b) the limit distribution depends on the

value of λ∗. If λ∗ ∈ (0,∞), then the limit distribution modifies (1.6) with the fBM process replaced

by a Gaussian stochastic process called tempered fractional Brownian motion of the second kind

(TFBM II). But if λ∗ = 0, then (1.6) continues to hold. On the other hand, if λ∗ = ∞, the limit

distribution may be written in terms of functionals of standard Brownian motion but these take

different forms in the cases d > 0, d = 0 and d < 0 with d ̸= N−; moreover, except for the case

d = 0, this limit differ from that of Phillips [38]. The details are given in Theorem 3.3 below.

It is well-known that the process fBM is related to the usual fractional calculus operator. In fact,

fractional noise may be interpreted as a fractional integral (derivative) of white noise when 0 <

d < 1
2 (respectively, −1

2 < d < 0) – see [36] for details. A new version of fractional calculus called

tempered fractional calculus has been proposed in [14, 44], which usefully relates to tempered

fBM. Indeed, working from the Weyl or Riemann-Liouville definition of a fractional operator, a

tempered fractional derivative (or integral) replaces the usual power law kernel by a power law

kernel scaled by an exponential tempering factor – see [14, 30, 44] for a detailed development. The

tempering factor produces a more tractable mathematical object. This tempering factor can be

made arbitrarily light and the resulting operator approximates the usual fractional derivative to

any desired degree of accuracy over a finite interval. The increment of TFBM II is called tempered

fractional Gaussian noise (TFGN II) and it can be shown that TFGN II is the tempered fractional

integral (derivative) of the white noise. Readers are referred to [44, 46] for more details on these
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connections.

Phillips [40] extended the asymptotic results in [38] to the multivariate case by introducing the

concept of near-integrated vector processes. Let Y(t) be a multiple time series that are generated

by the model

(1.10) Y(t) = AY(t− 1) +X(t),

with

A = exp{N−1C},

where {X(t)} is a weakly stationary sequence of random m-vectors that satisfies some mixing

conditions, and C is a fixed real m×m matrix. If ÂN is the least squares estimate of A in (1.10),

Theorem 4.1 in [40] shows that, as N → ∞,

(1.11) N(ÂN −A)
d−→

{∫ 1

0
dBJ ′

C + Λ′
}[∫ 1

0
(JC(s))J

′
C(s) ds

]−1
,

where JC(r) is a vector diffusion process with stochastic integral representation

(1.12) JC(r) =

∫ r

0
e(r−s)CB(ds),

B(s) is m-vector Brownian motion with covariance matrix Ω =
∑

t∈Z EX(0)X(t)′, the long-run

variance matrix of X(t), and Λ =
∑

t∈N+
EX(0)X(t)′ is the one-sided long run covariance matrix

of X(t). Motivated by (1.11), a result that has proved useful in the study of nonstationary vector

autoregressions and power functions for tests of cointegrating rank in econometrics, we consider

the regression model (1.10) in the more general setting where the error process follows a strongly

tempered linear process. We first establish multivariate invariance principles for the vector of

partial sums of {Xd,λ(j)}, where d = (d1, . . . , dm) and λ = (λ1, . . . , λm) – see Theorem 4.1 below.

Then, using these results, we develop the limit theory for the sample moments of the tempered

near integrated time series (1.10) with additive vector process {Xd,λ(j)} – see Theorem 4.3.

Finally, we derive the limit distribution of the ordinary least squares (OLS) regression estimates

of the vector time series (1.10) when the errors are strongly tempered – see Theorem 4.2. We

emphasize that the approach used to derive asymptotic results for N(ÂN −A) in the multivariate

case in Section 4 is not simply an extension of the univariate case – see Remark 4.4 below and

Phillips [42] for this distinction.

In the above and in what follows, we use the notation
d−→ ,

d
= , and

fdd−→ ,
fdd
= for weak

convergence and equality of distributions, and finite-dimensional weak convergence and equal-

ity, respectively. We also write ⇒ for weak convergence of random processes in the Skorohod

space equipped with J1-topology, see [6], and use the notation N± := {±1,±2, . . . },R+ :=

(0,∞), (x)± := max(±x, 0), x ∈ R, and
∫

:=
∫
R. Lp(R) (p ≥ 1) denotes the Banach space

of measurable functions f : R → R with finite norm ∥f∥p =
( ∫

|f(x)|pdx
)1/p

. The matrix

diag(η1, . . . , ηm) is m×m diagonal with entries η1, . . . , ηm. Throughout this paper, all asymptotic

results apply as N → ∞.

2. Tempered fractional processes. Let {B(t)}t∈R be a two-sided real-valued Brownian

motion on the real line, a process with stationary independent increments such that B(t) has a
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Gaussian distribution with mean zero and variance σ2|t| for all t ∈ R, for some σ > 0. Define an

independently scattered Gaussian random measure B(dx) with control measure m(dx) = σ2dx

by setting B[a, b] = B(b)−B(a) for any real numbers a < b, and then extending to all Borel sets.

Then the stochastic integrals I(f) :=
∫
R f(x)B(dx) are defined for all functions f : R → R such

that
∫
f(x)2dx <∞ as Gaussian random variables with mean zero and covariance E[I(f)I(g)] =

σ2
∫
f(x)g(x)dx – see for example [47, Chapter 3].

A fractional Brownian motion (fBM) is a Gaussian stochastic process with the moving average

representation

(2.1) Bd(t) =
1

Γ(d+ 1)

∫
R

[
(t− x)d+ − (−x)d+

]
B(dx),

where the memory parameter d satifies −1
2 < d < 1

2 . The properties of Bd(t) are explored in detail

in [47, Chapter 7]. Meeerschaert and Sabzikar [31] and Sabzikar and Surgailis [46] introduced

tempered fractional Brownian motion (TFBM) and tempered fractional Brownian motion of the

second kind (TFBM II) respectively. A TFBM is a Gaussian stochastic process with the moving

average representation

(2.2) Bd,λ(t) =

∫
R

[
(t− x)d+ e−λ(t−x)+ − (−x)d+ e−λ(−x)+

]
B(dx)

where d > −1
2 and λ > 0. A TFBM II is a Gaussian stochastic process defined by

(2.3) BII
d,λ(t) =

∫
R
hd,λ(t, x)B(dx),

where

(2.4) hd,λ(t;x) = (t− x)d+ e−λ(t−x)+ − (−x)d+ e−λ(−x)+ + λ

∫ t

0
(s− x)d+ e−λ(s−x)+ ds, y ∈ R

for d > −1
2 and λ > 0. TFBM and TFBM II reduce to fBM when λ = 0 and −1

2 < d < 1
2 . In

this paper, since our results relate closely to TFBM II, it will be useful to summarize the basic

properties of BII
H,λ(t). Readers are referred to [46] for the details.

Proposition 2.1 (i) TFBM II BII
H,λ in (2.3) has stationary increments, such that

(2.5)
{
BII

d,λ(ct)
}
t∈R

fdd
=

{
cd+

1
2BII

d,λt(t)
}
t∈R

for any scale factor c > 0 and is not a self-similar process.

(ii) TFBM II BII
d,λ in (2.3) has a.s. continuous paths.

(iii) For d > 0, the covariance function of TFBM II BII
d,λ is given by

(2.6) EBII
d,λ(t)B

II
d,λ(s) = C(H,λ)

∫ t

0

∫ s

0
|u− v|d−

1
2Kd− 1

2
(λ|u− v|)dv du,

where C(d, λ) = 2
√
πΓ(d)(2λ)d−

1
2
, d > 0, and λ > 0. Here Kν(x) is the modified Bessel function of

the second kind (see [1, Chapter 9]).
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Remark 2.2 For d > 1
2 the integrand in (2.6), viz.,

(2.7)
1

√
πΓ(d)(2λ)d−

1
2

|u− v|d−
1
2Kd− 1

2
(λ|u− v|)

is the Matérn covariance function (in one dimension) with shape parameter ν = d− 1
2 > 0, scale

parameter λ > 0, and variance parameter 1, see e.g. ([7], (1.1)). Note that the integral in (2.6)

diverges when −1
2 < d < 0. A more complex representation of the covariance function of BII

d,λ is

available for the case −1
2 < d < 0, but it is not needed in the present paper.

Next, we define the following stochastic process that plays an important role in the limit distri-

bution theory.

Definition 2.3 A tempered fractional Ornstein-Uhlenbeck (OU) process of the second kind (TFOU

II) is defined as

(2.8) JII
c,d,λ(r) =

∫ r

0
e(r−s)cdBII

d,λ(s),

where {BII
d,λ(s)}s∈R is the TFBM II given by (2.3) .

Lemma 2.4 Let JII
c,d,λ be the TFOU II given by (2.8). Then JII

c,d,λ is a Gaussian stochastic process

with zero mean and finite variance.

Remark 2.5 It can be shown that TFOU II is the unique solution of the following Langevin

equation driven by a TFBM II process

(2.9) dJII
c,d,λ(r) = cJII

c,d,λ(r)dr + θdBII
d,λ(r).

under the initial condition ξIId,λ = θ
∫ 0
−∞ ecrdBII

d,λ(r).

We close this section with a discussion of the tempered fractionally integrated process that is a

special case of tempered linear process given by (1.8). An ARTFIMA(0, d, λ, 0) class of tempered

fractionally integrated processes, generalizing the well-known ARFIMA(0, d, 0) class, is defined

by

(2.10) Xd,λ(t) = (1− e−λB)−dζ(t) =

∞∑
k=0

e−λkω−d(k)ζ(t− k), t ∈ Z

with coefficients given by power expansion (1 − e−λz)−d =
∑∞

k=0 e
−λkω−d(k)z

k, |z| < 1, where

ω−d(k) :=
Γ(k+d)

Γ(k+1)Γ(d) for d ∈ R\N− and Bx(t) = x(t−1) is the backward shift. Due to the presence

of the exponential tempering factor e−λk the series in (1.8) and (2.10) converges absolutely a.s.

and in Lp under general assumptions on the innovations and thereby defines a strictly stationary

process.

Remark 2.6 (i) Time series in the ARTFIMA(0, d, λ, 0) class have covariance function

(2.11) γd,λ(k) = EX0,d,λ,0(0)X0,d,λ,0(k) =
e−λkΓ(d+ k)

Γ(d)Γ(k + 1)
2F1(d, k + d; k + 1; e−2λ),

where 2F1(a, b; c; z) is the Gauss hypergeometric function (see e.g. [22]). Moreover,

(2.12)
∑
k∈Z

∣∣γd,λ(k)∣∣ <∞,
∑
k∈Z

γd,λ(k) = (1− e−λ)−2d
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and

(2.13) γd,λ(k) ∼ Akd−1e−λk, k → ∞, where A = (1− e−2λ)−dΓ(d)−1.

(ii) From (2.13) it is evident that for small values of λ the covariance function of the ARTFIMA

model may resemble the covariance function of a long memory model out to a large number of

lags but eventually decays exponentially fast. [19] termed such behavior ‘semi long-memory’ and

noted that models generating such time series may have empirical relevance for capturing certain

long-run features of financial returns ([24]).

(iii) The ARTFIMA(0, d, λ, 0) class can be extended to ARTFIMA(p, d, λ, q) in two different ways,

as explained in Appendix B. However, the present paper mainly focuses on the ARTFIMA(0, d, λ, 0)

class.

3. Near integrated processes with ARTFIMA innovations. This section develops

asymptotic theory for near-integrated processes with ARTFIMA innovations and for autoregres-

sion with such processes. We first study the asymptotic theory for the sample moments of data

generated by the autoregression (1.1) when a = exp{c/N} and X = Xd,λ is ARTFIMA(0, d, λN , 0)

given by (2.10) with Eζ(0) = 0 and Eζ2(0) = 1. These results are employed to obtain the limit

distribution of the fitted autoregressive coefficient âN , which depends on the TFOU II process –

see Theorem 3.3 below. In the following, to simplify notation we write Jc = JII
c,0,0 and Jc,d = JII

c,d,0

where JII
c,d,λ is the TFOU II process given by (2.8).

Lemma 3.1 (i) Let λ∗ = ∞, d ∈ R \ N−. Then

N−1/2λdNY [Ns] ⇒ Jc(s)

on D[0, 1] and

N−2λ2dN

N∑
t=1

Y 2(t− 1)
d−→

∫ 1

0
Jc(s)

2 ds.

(ii) Let λ∗ = 0 and −1
2 < d < 1

2 . Then

N−(d+1/2)Y [Ns] ⇒ Γ(d+ 1)−1Jc,d(s)

on D[0, 1] and

N−(2d+2)
N∑
t=1

Y 2(t− 1)
d−→ Γ(d+ 1)−2

∫ 1

0
Jc,d(r)

2 dr.

(iii) Let λ∗ ∈ (0,∞) and d > −1
2 . Then

N−(d+ 1
2
)Y [Ns] ⇒ Γ(d+ 1)−1JII

c,d,λ∗(s)

on D[0, 1] and

N−(2d+2)
N∑
t=1

Y 2(t− 1)
d−→ Γ(d+ 1)−2

∫ 1

0
JII
c,d,λ∗(r)2dr.
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The following proposition is used in deriving the limit distributions in Theorem 3.3, c.f., [45,

Proposition 5.1].

Proposition 3.2 Let Xd,λN
≡ X0,d,λN ,0 be an ARTFIMA(0, d, λN , 0) process in (2.10) with i.i.d.

innovations {ζ(t)},Eζ(0) = 0,Eζ2(0) = 1, fractional parameter d ∈ R \N− and tempering param-

eter λN → 0. Moreover, let E|ζ(0)|p <∞, for some p > 2. Then

1

N

N∑
t=1

X2
d,λN

(t)
p−→ Γ(1− 2d)

Γ2(1− d)
, d < 1/2,(3.1)

λ2d−1
N

N

N∑
t=1

X2
d,λN

(t)
p−→ Γ(d− 1/2)

2
√
π Γ(d)

, d > 1/2,(3.2)

1

N | log λN |

N∑
t=1

X2
d,λN

(t)
p−→ 1

π
, d = 1/2.(3.3)

Theorem 3.3 Consider the AR(1) model

Y (t) = aY (t− 1) +Xd,λ(t),

where a = aN = exp{c/N} and the error process {Xd,λ(j)}j∈Z is given by (2.10). Assume {ζ(t), t ∈
Z} are i.i.d. innovations Eζ(0) = 0,Eζ2(0) = 1,E|ζ(0)|p < ∞, for some p > 2 ∨ 1/(d + 1/2),

fractional parameter d ∈ R \ N−, and tempering parameter λN > 0 satisfying limN→∞NλN =

λ∗ ∈ [0,∞]. Let âN be the OLS estimator of the parameter a given by (1.2).

(i) (Strongly tempered errors.) Let λ∗ = ∞, d ∈ R \ N−. Then

min(1, λ−2d
N )N(âN − a)

d−→ 1

2
∫ 1
0 Jc(s)

2 ds


Jc(1)

2 − 2c
∫ 1
0 (Jc(s))

2ds, d > 0,

Jc(1)
2 − 2c

∫ 1
0 Jc(s)

2ds− 1, d = 0,

−Γ(1−2d)
Γ(1−d)2

, −1
2 < d < 0,

where Jc(s) = JII
c,0,0(s) is given by (2.8).

(ii) (Weakly tempered errors.) Let λ∗ = 0 and −1
2 < d < 1

2 . Then

N1∧(1+2d)(âN − a)
d−→ 1

2
∫ 1
0 (Jc,d(s))

2 ds


(Jc,d(1))

2 − 2c
∫ 1
0 (Jc,d(s))

2ds, 0 < d < 1
2 ,

(Jc,d(1))
2 − 2c

∫ 1
0 (Jc,d(s))

2ds− 1, d = 0

−Γ(d+1)2Γ(1−2d)
Γ(1−d)2

, −1
2 < d < 0,

where Jc,d = JII
c,d,0(s) is given by (2.8).

(iii) (Moderately tempered errors.) Let 0 < λ∗ <∞ and d > −1
2 . Then

N1∧(1+2d)(âN − a)
d−→ 1

2
∫ 1
0 (J

II
c,d,λ∗(s))2 ds


(JII

c,d,λ∗(1))2 − 2c
∫ 1
0 (J

II
c,d,λ∗(s))2ds, d > 0,

(JII
c,d,λ∗(1))2 − 2c

∫ 1
0 (J

II
c,d,λ∗(s))2ds− 1, d = 0

−Γ(d+1)2Γ(1−2d)
Γ(1−d)2

, −1
2 < d < 0,

where JII
c,d,λ∗(s) is given by (2.8).
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4. Near integrated multiple time series with strongly tempered innovations. In this

section, we extend Theorem 3.3 to the multivariate case when the errors are strongly tempered. We

first establish a multivariate generalization of the invariance principles for tempered fractionally

integrated processes due to Sabzikar and Surgailis [45] – see Theorem 4.1 below. We then obtain

limit theory for the sample moments of a near integrated vector process with strongly tempered

errors.

Let ζ(t) = (ζ1(t), ..., ζm(t))′, t ∈ Z, be a time series of iid random vectors with Eζ(t) = 0 and

covariance matrix Ω. Define a random m-vector of tempered linear processes

(4.1) Xd,λ(t) =
(
Xd1,λ1(t), . . . , Xdm,λm(t)

)′

such that, as in (1.8), Xdi,λi
(t) is given by,

Xdi,λi
(t) =

∞∑
k=0

e−λikbdi(k)ζi(t− k), bdi(k) ∼
cdi

Γ(di)
kdi−1.

Define the vector partial sums

(4.2) Sd,λ
N (t) :=

[Nt]∑
k=1

Xd,λ(k), t ∈ [0, 1].

Throughout this section, for all i = 1, . . . ,m, we assume di > 0, the tempering parameter

λi ≡ λi,N → 0 as N → ∞ and

(4.3) lim
N→∞

Nλi,N = ∞.

Following [45], Xdi,λN
is called strongly tempered. We further assume cdi = 1, i = 1, ...,m, for

convenience of presentation.

Our first result is the weak convergence of Sd,λ
N (t), extending [45] from univariate to multivariate

settings. Unlike [45], only the second moment is required to establish the limit theory in this

case. Let DN = diag(N− 1
2λd11 , · · · , N− 1

2λdmm ) and B(t) = (B1(t), . . . , Bm(t))′ be m-dimensional

Brownian motion with covariance matrix Ω.

Theorem 4.1 We have

DN Sd,λ
N (t) ⇒ B(t),(4.4)

on DRm [0, 1].

For the multiple times series Y(t) = (Y1(t), ..., Ym(t))′, t ≥ 1, generated by

Y(t) = AY(t− 1) +Xd,λ(t), Y(0) = 0,

where A = diag(exp{c1/N}, . . . , exp{cm/N}), as in [39], the coefficient matrix A can be estimated

by vector autoregression giving

ÂN =
[ N∑
t=1

Y(t)Y(t− 1)′
][ N∑

t=1

Y(t− 1)Y(t− 1)′
]−1

.

The next theorem gives a partial multivariate generalization of Theorem 3.3.
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Theorem 4.2 Suppose that E||ζ(0)||4 <∞ and λiN/λjN → ηij ∈ [0,∞] as N → ∞. Then,

NDN (ÂN −A)D−1
N

d−→
[ ∫ 1

0
dB(s)JC(s)

′ +∆
][ ∫ 1

0
JC(s)JC(s)

′ds
]−1

,

where JC(s) =
(
Q1s, ..., Qms

)′
with Qjs =

∫ s
0 e

(s−u)cdBj(u) and ∆ = (∆ij)m×m with

∆ij =


1
2Eζ

2
i (0), if i = j,

E
[
ζi(0)ζj(0)

]
Γ(d1)Γ(d2)

∫∞
0 xdj−1e−xdx

∫∞
ηij x

ydi−1e−ydy, if i ̸= j.

Note that Dij = E
[
ζi(0)ζj(0)

]
if i ̸= j and ηij = 0, and Dij = 0 if i ̸= j and ηij = ∞.

Let Ŷ(t) = DN Y(t). Note that 1
N

∑N
t=1 Ŷ(t− 1) Ŷ(t− 1)′ =

∫ 1
0 Ŷ([Ns])Ŷ([Ns])′ds and

NDN (ÂN −A)D−1
N =

[ N∑
t=1

DNXd,λ(t) Ŷ(t− 1)′
][ 1

N

N∑
t=1

Ŷ(t− 1) Ŷ(t− 1)′
]−1

.

Theorem 4.2 follows directly from the continuous mapping theorem and the following theorem.

Theorem 4.3 Suppose that E||ζ(0)||4 <∞ and λiN/λjN → ηij ∈ [0,∞] as N → ∞. We have

(
Ŷ([Ns]),

N∑
t=1

DNXd,λ(t) Ŷ(t− 1)′
)
⇒

(
JC(s),

∫ 1

0
dB(s)JC(s)

′ +∆
)
,(4.5)

on DRm [0, 1]×Rm×m.

Remark 4.4 In the proof of Theorem 4.3, we need to investigate asymptotics for components

of the form
λ
di
i λ

dj
j

N

∑N
t=1Xdi,λi

(t)Yj(t − 1), which seems difficult without assuming λi,NN → ∞
when i ̸= j. As a consequence, we have been unable to establish Theorem 4.2 in the weakly and

moderately tempered errors cases in the present work. We plan to investigate this case in later

research.

5. Proofs. Proof of Lemma 2.4 First we note that

JII
c,d,λ(r) =

∫ r

0
e(r−s)cBII

d,λ(ds) =

∫
R
ecx1{0<x<r}B

II
d,λ(dx) =

∫
R

(
Id,λ− f

)
(y)B(dy),

where f(x) = ecx1{0<x<r}. Therefore, using Definition A.4, JII
c,d,λ is well-defined if we show that

f ∈ A1. That is (i) f ∈ L2(R) and (ii)
∫
R
∣∣(Id,λ− f

)
(y)

∣∣2dy < ∞. The first condition (i) obviously

holds. For the second one, use the Plancherel Theorem to see that ∥Id,λ− f∥22 = ∥F
[
Id,λ− f

]
∥22 < ∞

for all d > −1
2 , where F [f ](f) = f̂(k) = 1√

2π

∫
R e

−ikxf(x)dx is the Fourier transform of function

f . In fact, we have

∥F
[
Id,λ− f

]
∥22 =

∫
R
|f̂(k)|2(λ2 + k2)−2d

=
1

2π

∫
R

1− 2ecr cos kr + e2cr

2π(c2 + k2)
(λ2 + k2)−ddk

which is finite if d > −1
2 .
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Proof of Lemma 3.1. The idea of the proof is to use the continuous mapping theorem and Theorem

4.3 of Sabzikar and Surgaillis (2017), i.e., on D[0, 1],

Sd,λN
N ([Ns]) := N− 1

2λdN

[Ns]∑
j=1

Xd,λN
(j)

⇒


BII

0,0(s), under (i)
1

Γ(d+1)B
II
d,0(s), under (ii)

1
Γ(d+1)B

II
d,λ∗(s), under (iii)

.(5.1)

We only prove (i). The other derivations are similar and the details are omitted. The second

part of (i) is simple. In fact, by noting that

N−2λ2dN

N∑
t=1

Y 2(t− 1) =

∫ 1

0

( λdN√
N
Y ([Ns])

)2
ds+ oP (1),

the result follows from the first part of (i), i.e.,
λd
N√
N
Y ([Ns]) ⇒ Jc(s) and the continuous mapping

theorem.

To prove
λd
N√
N
Y ([Ns]) ⇒ Jc(s), it suffices to show

(a) the tightness of
λd
N√
N
Y ([Ns]), and

(b) finite dimensional convergence of
λd
N√
N
Y ([Ns]).

Let Sd,λN
N (0) = 0. For any 0 ≤ m < n, we have

λdN√
N

(Y (n)− Y (m))

=

n∑
k=m+1

e(n−k)c/N (Sd,λN
N (k)− Sd,λN

N (k − 1)) +
[
e(n−m)c/N − 1

] λdN√
N
Y (m)

= Sd,λN
N (n)− e(n−m)c/NSd,λN

N (m) + (ec/N − 1)
n∑

k=m+1

e(m−k)c/NSd,λN
N (k)

+
[
e(n−m)c/N − 1

] λdN√
N
Y (m).(5.2)

This yields (by letting m = 0)

λdN√
N

max
1≤k≤N

|Y (k)| ≤ max
1≤k≤N

|Sd,λN
N (k)|

[
1 +N(ec/N − 1)

]
≤ C max

1≤k≤N
|Sd,λN

N (k)|,

and, for any 0 ≤ s < t ≤ 1,

λdN√
N

|Y ([Nt])− Y ([Ns])| ≤ |Sd,λN
N ([Nt])− Sd,λN

N ([Ns])|+ C (t− s) max
1≤k≤N

|Sd,λN
N (k)|.

As a consequence, we have proved the tightness of
λd
N√
N
Y ([Nt]), 0 ≤ t ≤ 1, since Sd,λN

N ([Nt]), 0 ≤
t ≤ 1, is tight due to (5.1).
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We next prove the finite dimensional convergence of
λd
N√
N
Y ([Ns]). Without loss of generality,

we only show
λd
N√
N
Y (N)

d−→ Jc(1), since the general situation is a natural application of the

Cramér-Wold device. Note that

λdN√
N
Y (N) =

N∑
k=1

e(N−k)c/N (Sd,λN
N (k)− Sd,λN

N (k − 1))

= Sd,λN
N (N) +N(ec/N − 1)

∫ (N−1)/N

0
e(N−1−[Ns])c/NSd,λN

N ([Ns])ds.

It follows from N(ec/N − 1) → c, e(N−1−[Ns])c/N → e(1−s)c uniformly in s ∈ [0, 1] and (5.1) that

λdN√
N
Y (N)

d−→ BII
0,0(1) + c

∫ 1

0
e(1−s)cBII

0,0(s)ds = Jc(1),

as required. The proof of Lemma 3.1 is complete. �

Proof of Theorem 3.3. The idea is to use Lemma 3.1 and the continuous mapping theorem. Since

all derivations are similar, we only prove part (i) with d > 0 in detail.

When d > 0, min(1, λ−2d
N ) = 1 and then

min(1, λ−2d
N )N(âN − a) =

N−1λ2dN
∑N

t=1 Y (t− 1)Xd,λN
(t)

N−2λ2dN
∑N

t=1 Y
2(t− 1)

(5.3)

Note that

Y 2(N) =
(
e2c/N − 1

) N∑
t=1

Y 2(t− 1) +

N∑
t=1

Xd,λN
(t)2 + 2ec/N

N∑
t=1

Y (t− 1)Xd,λN
(t).

We may write

N−1λ2dN

N∑
t=1

Y (t− 1)Xd,λN
(t)

=
1

2
e−c/NN−1λ2dN Y

2(N)− 1

2
e−c/NN(e2c/N − 1)N−2λ2dN

N∑
t=1

Y 2(t− 1)− 1

2
N−1e−c/Nλ2dN

N∑
t=1

(Xd,λN
(t))2

=: I11 −
1

2
e−c/NN(e2c/N − 1)I12 + I13.

Using the continuous mapping theorem and part (i) in Lemma 3.1, we see that

(I11, I12)
d−→

(1
2

(
Jc(1)

)2
,

∫ 1

0

(
Jc(s)

)2
ds
)
.

Employing this result in (5.3), together with I13
p−→ 0 by Proposition 3.2, we have

min(1, λ−2d
N )N(β̂N − β) =

I11 − 1
2N(e2c/N − 1)e−c/NI12 + I13

I12

d−→
[ ∫ 1

0
(Jc(s))

2 ds
]−1 (1

2

(
Jc(1)

)2
− c

∫ 1

0
(Jc(s))

2 ds
)
,

as required.

�

Proof of Theorem 4.1. It suffices to show
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(i) the tightness of
λ
di
i√
N

∑[Nt]
k=1 Xdi,λi(k), i = 1, ...,m; and

(ii) the finite dimensional convergence of

DN Sd,λ
N (t) =

( λd1
1√
N

[Nt]∑
k=1

Xd1,λ1(k), ...,
λdm
m√
N

[Nt]∑
k=1

Xdm,λm(k)
)
.

Let bk = e−λ1kbd1(k), A1,m =
∑m

j=1 ζ1(j)
∑m−j

k=0 bk and A2,m =
∑m

j=1

∑∞
k=0 bk+jζ1(j). Since, for

any 0 ≤ t ≤ 1,

[Nt]∑
k=1

Xd1,λ1(k) =

[Nt]∑
k=1

k∑
j=−∞

bk−jζ1(j) = A1,[Nt] +A2,[Nt],(5.4)

the tightness of
λ
d1
1√
N

∑[Nt]
k=1Xd1,λ1(k) follows from the following proposition, which will be proved

in Section 6.

Proposition 5.1
λ
d1
1√
N
A1,[Nt], 0 ≤ t ≤ 1, is tight and

E max
1≤m≤N

|A2,m| = o(1)λ−d1
1

√
N.(5.5)

The proof for the tightness of
λ
di
i√
N

∑[Nt]
k=1Xdi,λi

(k), i = 2, ...,m, is similar.

We next prove the finite dimensional convergence of DN Sd,λ
N (t), which easily follows from the

following claim: for any fixed 0 < t < 1,

λdii√
N

[Nt]∑
k=1

Xdi,λi
(k) =

1√
N

[Nt]∑
k=1

ζi(k) + oP (1), i = 1, 2, ...,m.(5.6)

due to the the classical result: on DRm [0, 1],

SN (t) :=
( 1√

N

[Nt]∑
k=1

ζ1(k), · · · ,
1√
N

[Nt]∑
k=1

ζm(k)
)
⇒ B(t).(5.7)

In fact, by recalling (5.4), we may write (without loss of generality, assume t = 1 and i = 1)

N∑
k=1

Xd1,λ1(k) =

N∑
k=0

bk

N∑
j=1

ζ1(j) +A2,N −
N∑
j=1

ζ1(j)

N∑
k=N−j

bk

:=
N∑
k=0

bk

N∑
j=1

ζ1(j) +A2,N −A3,N .

It is readily seen by using (6.1) of Lemma 6.1 in Section 6 that

λd11

N∑
k=0

bk =
λd11
Γ(d1)

N∑
k=1

kd1−1e−λ1k + o(1)

= 1 + o(1)

Similarly, by using (6.5) of Lemma 6.1, we get

EA2
2N + EA2

3N ≤ 2
∞∑
j=0

( N∑
k=1

bk+j

)2
= o(1)λ−2d1

1 N,
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i.e.,
λ
d1
1√
N
(|A2N | + |A3N |) = oP (1). Combining there facts, we have established (5.6) with i = 1.

The other cases are similar. The proof of Theorem 4.1 is now complete. �

Proof of Theorem 4.2. It follows from Theorem 4.1 and Theorem 4.3. �

Proof of Theorem 4.3. It only needs to be shown that, for all 1 ≤ i, j, l ≤ m,(
Ŷ(t),

λdii λ
dj
j

N

N∑
k=1

Xdi,λi
(k)Yj(k − 1)

)
⇒

(
JC(t),

∫ 1

0
QjsdBi(s) + ∆ij

)
,(5.8)

jointly on DR3m [0, 1]. Due to (5.6), we have

DN Sd,λ
N (t) = SN (t) + oP (1),

where SN (t) is defined as in (5.7). On the other hand, Ŷ(t) = DN Y(t) can be presented as a

functional of DN Sd,λ
N (t) as in (5.2) (taking m = 0 and n = [Ns]). It is readily seen, by using the

same arguments as in the proof of Lemma 3.1, that result (5.8) will follow if we prove(
SN (t),

λdii λ
dj
j

N

N∑
k=1

Xdi,λi
(k)Yj(k − 1)

)
⇒

(
B(t),

∫ 1

0
QjsdBi(t) + ∆ij

)
,(5.9)

jointly on DR3m [0, 1].

We only prove (5.9) with i = 2, j = 1 and m = 2. Due to linearity, extensions to the general

m > 2 case and to joint convergence are straightforward and the details are omitted for brevity.

Let bk = e−λ1kbd1(k) and ck = e−λ2kbd2(k) as in the proof of Theorem 4.1. Recall that

Xd1,λ1(k) =
∞∑
j=0

bjuk−j ,

where uk−j = ζ1(k − j), bj ∼ 1
Γ(d1)

jd1−1 e−λ1j , λ1 ≡ λ1N ;

Xd2,λ2(k) =

∞∑
j=0

cjwk−j ,

where wk−j = ζ2(k − j), cj ∼ 1
Γ(d2)

jd2−1 e−λ2j , λ2 ≡ λ2N ; and

Y1(k) = ec/NY1(k − 1) +Xd1,λ1(k), Y1(0) = 0, c ≥ 0

=
k∑

s=1

e(k−s)c/NXd1,λ1(k).

As in (3.1)-(3.3), (4.1)-(4.2) and (4.4) of Davidson and Hashimzade (2009), we may write

N∑
t=1

Xd2,λ2(t)Y1(t− 1) =: G1N +G2N +G3N ,

where

G1N =

N−1∑
t=1

t∑
s=1

e(t−s)c/N
t∑

m=−∞

min(s,m)∑
i=−∞

bs−ict−muiwm+1

=

N−1∑
m=−∞

qmNwm+1
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with qmN =
∑m

i=−∞ am,i ui and

am,i := am,i(N) =

N−1−m∑
k=max(1−m,0)

ck

k+m−i∑
j=max(1−i,0)

e(k+m−i−j)c/Nbj ;

G2N =

N−1∑
t=1

t∑
s=1

e(t−s)c/N
∞∑
k=0

bkck+t−s+1us−kws−k;

G3N =
N−1∑
t=1

t∑
s=1

e(t−s)c/N
∞∑
k=0

∞∑
j=k+t−s+2

bkcjus−kwt+1−j

=

N−1∑
i=−∞

hi−1,Nui,

with hi,N =
∑i

m=−∞ em,iwm and

em,i := em,i(N) =

N−1−i∑
s=max(1−i,0)

bs

N−m∑
t=s+i+1−m

e(t−s−i−1+m)c/Nct.

Next let

âm,i = e(m−i)c/N
N−1−m∑

k=0

ekc/Nck

N∑
j=k+m−i+1

e−jc/Nbj

+e(m−i)c/N
N−1∑

k=N−m

ekc/Nck

N∑
j=0

e−jc/Nbj ,

ãm,i = e(m−i)c/N
N−1∑
k=0

ekc/Nck

N∑
j=0

e−jc/Nbj .

Note that am,i = ãm,i − âm,i. We further have

G1N =
N−1∑

m=−∞
qmNwm+1

=

N−1∑
m=1

qmN,1wm+1 +

N−1∑
m=1

qmN,2wm+1 +

0∑
m=−∞

qmNwm+1

=

N−1∑
m=1

q̃mN,1wm+1 −
N−1∑
m=1

q̂mN,1wm+1 +

N−1∑
m=1

qmN,2wm+1 +

0∑
m=−∞

qmNwm+1

=: G1N,1 −G1N,2 +G1N,3 +G1N,4,

where qmN,1 =
∑m

i=1 am,i ui, qmN,2 = qmN − qmN,1 =
∑0

i=−∞ am,i ui, q̂mN,1 =
∑m

i=1 âm,i ui and

q̃mN,1 =

m∑
i=1

ãm,i ui =

N−1∑
k=0

ekc/Nck

N∑
j=0

e−jc/Nbj

m∑
i=1

e(m−i)c/N ui

After these preliminaries, result (5.9) with i = 2 and j = 1 will follow if we prove the following

propositions.
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Proposition 5.2 We have

(
SN (t),

1√
N

[Nt]∑
i=1

e([Nt]−i)c/N ui

)
⇒

(
B(t), Q1t

)
,(5.10)

on DR3 [0, 1] in the Skorohod topology, and

λd11

N∑
j=0

e−jc/Nbj → 1, λd22

N−1∑
k=0

ekc/Nck → 1.(5.11)

Proposition 5.3 We have

N−1 λd11 λ
d2
2

(
|G1N,2|+ |G1N,3|+ |G1N,4|+ |G3N |

)
= oP (1),(5.12)

Proposition 5.4 Suppose that E||ζ(0)||4 <∞ and λ2N/λ1N → η21 as N → ∞. We have

N−1 λd11 λ
d2
2 G2N = ∆21 + oP (1).(5.13)

Indeed, by noting that G1N,1, N ≥ 1, forms a martingale sequence, Proposition 5.2, together

an application of Kurtz and Protter (1991) [also see Jacod and Shiryaev (2003)], yield that(
SN (t),

λd11 λ
d2
2

N
G1N,1

)
⇒D

(
B(t),

∫ 1

0
Q1tdB2(t)

)
.

This result, together with Propositions 5.3 and 5.4, imply the required (5.9) with i = 2 and j = 1.

The proof of Theorem 4.3 is then complete.

�

The proofs of Propositions 5.2 - 5.4 will be given in next section.

6. Proofs of Propositions . Except where mentioned explicitly, the notations are the same

as in previous sections. We start with the following lemma, which plays a key role in the proofs

of the three propositions.

Lemma 6.1 (a) For any d > 0 and 0 < λn → ∞, we have

∣∣ 1
n

[na]∑
s=1+[nb]

e[γn]/n e−λn s/n(s/n)d−1 −
∫ a

b
eγ e−λnuud−1du

∣∣∣ = o(1),(6.1)

uniformly for 0 ≤ b < a ≤ A0 for some A0 <∞, as n→ ∞.

(b) For any d > 0 and 0 < λ ≡ λN → 0 satisfying λN → ∞,

N∑
k=1

kd−1e−λk = O(λ−d),

∞∑
k=N

kd−1e−λk = o(λ−d)(6.2)

and unformly for 0 ≤ s < t ≤ 1,

N∑
m=0

( [Nt]−[Ns]+m∑
k=1+m

kd−1e−λk
)2

≤ C λ−2dN(t− s).(6.3)
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(c) For any d > 0 and 0 < λ ≡ λN → 0 satisfying λN → ∞, we have

N∑
m=1

( ∞∑
k=m

k2d−2e−2λk
)1/2

= o(1)λ−d
√
N.(6.4)

∞∑
m=0

( N+m∑
k=1+m

kd−1e−λk
)2

= o(1)λ−2dN,(6.5)

Proof. (6.1) is a well-known result. The proof of result (6.2) is simple. Result (6.3) follows from

N∑
m=0

( [Nt]−[Ns]+m∑
k=1+m

kd−1e−λk
)2

≤ C N1+2d

∫ 1

0

(∫ t−s+x

x
yd−1e−λNydy

)2
dx

≤ C λ−2dN
(∫ t−s

0
+

∫ 1

t−s

)(∫ λN{(t−s)+x}

λNx
yd−1e−ydy

)2
dx

≤ C λ−2dN (t− s)
(∫ ∞

0
sd−1e−sds

)2

+C λ−2dN

∫ 1

t−s

[
e−λNx(λNx)d−1λN(t− s)

]2
dx

≤ C1 λ
−2dN (t− s) + C λ−2d+1N2(t− s)2

∫ ∞

λN(t−s)
e−2xx2(d−1)dx

≤ C1 λ
−2dN (t− s) + C λ−2dN(t− s)

∫ ∞

λN(t−s)
e−2xx2d−1dx

≤ C2λ
−2dN (t− s).

Similarly, (6.4) follows from

N∑
m=1

( ∞∑
k=m

k2d−2e−2λk
)1/2 ≤ C

N∑
j=1

( ∫ ∞

j
x2d−2e−2λxdx

)1/2
≤ C λ1/2−d

N∑
j=1

( ∫ ∞

jλ1

x2d−2e−2xdx
)1/2

≤ C λ1/2−dN

∫ 1

0

( ∫ ∞

λNy
x2d−2e−2xdx

)1/2
dy

≤ C λ−1/2−d

∫ λN

0

( ∫ ∞

y
x2d−2e−2xdx

)1/2
dy

= o(1)λ−d
√
N,

due to λN → ∞, where we have used the fact:∫ ∞

0

( ∫ ∞

y
x2d−2e−2xdx

)1/2
dy

≤
∫ ∞

0
y−1/2e−y/2dy

( ∫ ∞

0
x2d−1e−xdx

)1/2
<∞.
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We finally prove (6.5). As in the proof of (6.3), we have

N∑
m=0

( N+m∑
s=1+m

sd−1e−λs
)2

≤ C N1+2d

∫ 1

0

(∫ 1+x

x
sd−1e−λNsds

)2
dx

≤ C λ−2dN
(∫ 1/(λN)1/2

0
+

∫ 1

1/(λN)1/2

)(∫ ∞

λNx
sd−1e−sds

)2
dx

≤ C λ−2dN (λN)−1/2
(∫ ∞

0
sd−1e−sds

)2
+ C λ−2dN

(∫ ∞

(λN)1/2
sd−1e−sds

)2

= o(1)λ−2dN,(6.6)

as λN → ∞. On the other hand, it is readily seen that

∞∑
m=N

( N+m∑
s=1+m

sd−1e−λs
)2

≤
∞∑

m=N

m2de−2λm

≤ C λ−2d−1

∫ ∞

λN
x2de−xdx = o(1)λ−2dN,(6.7)

as λN → ∞. Hence (6.5) follows from (6.6) and (6.7). �

We now turn to the proofs of the propositions. Recall that

ui = ζ1(i), wi = ζ2(i), bj ∼
1

Γ(d1)
jd1−1 e−λ1j , cj ∼

1

Γ(d2)
jd2−1 e−λ2j .

Proof of Proposition 5.1. It follows from (6.4) that

E max
1≤m≤N

|A2,m| ≤
N∑
j=1

E
∣∣∣ ∞∑
k=0

bk+juj

∣∣∣ ≤ (Eu20)1/2
N∑
j=1

( ∞∑
k=j

b2k
)1/2

= o(1)× λ−d1
1

√
N,

i.e., (5.5) is proved. To prove the tightness of
λ
d1
1√
N
A1,[Nt], we first assume E|u0|2+δ <∞ for some

δ > 0. Since, for any m1 < m2,

A1,m2 −A1,m1 =

m2∑
j=m1+1

uj

m2−j∑
k=0

bk +

m1∑
j=1

uj

m2−j∑
k=m1+1−j

bk,

classical arguments yield [see, for instance, Lemma 1 of Gorodetskii (1977)] that

E
∣∣A1,[Nt2] −A1,[Nt1]

∣∣2+δ

≤ CE|u0|2+δ
( [Nt2]∑

j=[Nt1]+1

[ [Nt2]−j∑
k=0

bk
]2

+

[Nt1]−1∑
j=0

[ [Nt2]−[Nt1]+j∑
k=j+1

bk
]2)(2+δ)/2

≤ C
(√
N/λd11

)2+δ
(t2 − t1)

1+δ/2,
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for any 0 ≤ t1 < t2 ≤ 1, due to (6.2) and (6.3). This yields the tightness of
λ
d1
1√
N
A1,[Nt], 0 ≤ t ≤ 1,

by Theorem 15.6 of Billingsley (1968).

We next prove the tightness of
λ
d1
1√
N
A1,[Nt] without the restriction: E|u0|2+δ <∞ for some δ > 0.

In fact, by Major (1976), we may redefine {uk, k ≥ 1} on a richer probability space together with

a sequence of independent normal random variables {Yk, k ≥ 1} with EY1 = 0 and EY 2
1 = σ21 such

that for all ϵ > 0,

P
(

max
1≤k≤N

∣∣Sk − Zk

∣∣ ≥ ϵ
√
N
)
→ 0,(6.8)

as N → ∞, where Sk =
∑k

j=1 uj and Zk =
∑k

j=1 Yj . Result (6.8), together with (6.2), implies the

tightness of
λ
d1
1√
N
A1,[Nt]. Indeed, by letting ZN,m =

λ
d1
1√
N

∑m
j=1 Yj

∑m−j
k=0 bk, we have

λd11√
N
A1,m − ZN,m =

λd11√
N

m∑
k=1

bm−k

(
Sk − Zk

)
for any 1 ≤ m ≤ N . Since ZN,[Nt], 0 ≤ t ≤ 1, is tight as proved above, the tightness of

λ
d1
1√
N
A1,[Nt]

follows from

max
1≤m≤N

∣∣∣ λd11√
N
A1,m − ZN,m

∣∣∣ ≤ C
1√
N

max
1≤m≤N

|Sk − Zk|λd11
N∑
k=1

bk = oP (1),

due to (6.8) and (6.2). The proof of Proposition 5.1 is now complete. �

Proof of Proposition 5.2. The proof of (5.10) is similar to that of Lemma 3.1 but simpler. The

proof of (5.11) is similar to (6.9) below and the details are omitted. �

Proof of Proposition 5.3. We only prove N−1λd11 λ
d2
2 |G2N | = oP (1) . The other results are similar

but simpler. By using the independence of (uk, wk), we have

EG2
3N =

N−1∑
i=−∞

Eh2i−1,NEu21

=

N−1∑
i=−∞

i−1∑
m=−∞

e2m,i−1Eu21Ew2
1

≤ C

N−1∑
i=−∞

i−1∑
m=−∞

( N−1−i∑
s=max(1−i,0)

bs

N−m∑
t=s+i+1−m

ct

)2

≤ C
N−1∑
i=1

i−1∑
m=−∞

(N−1−i∑
s=0

bs

N−m∑
t=s+i+1−m

ct

)2
+ C

∞∑
i=0

∞∑
m=i+1

( N+i∑
s=1+i

bs

N+m∑
t=s−i+m

ct

)2

≤ C
( N∑

s=0

bs

)2
N∑
i=1

∞∑
m=1

(N+m−i∑
t=1+m

ct

)2
(by using transformation i−m→ m)

+C
∞∑
i=0

∞∑
m=i+1

( N+i∑
s=1+i

bs

N+m∑
t=1+m

ct

)2

≤ C
[
N

( N∑
s=0

bs

)2
+

∞∑
i=0

( N+i∑
s=1+i

bs

)2] ∞∑
m=0

( N+m∑
t=1+m

ct

)2
.
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Now, it follows from (6.2) and (6.5) of Lemma 6.1 that

EG2
3N = o(1)×N2λ−2d1

1 λ−2d2
2 ,

i.e., N−1λd11 λ
d2
2 |G3N | = oP (1) as required. �

Proof of Proposition 5.4. Write

AN =

N−1∑
t=1

t∑
s=1

e(t−s)c/N
N∑
k=0

bkck+t−s+1.

By recalling the definition of bk and ck, it follows from (6.1) and λ1N → ∞ and λ2N → ∞ that

AN =
N−1∑
s=1

N∑
k=0

bk

N−1−s∑
t=0

etc/Nck+t+1

∼ N1+d1+d2

Γ(d1)Γ(d2)

∫ 1

0

∫ 1

0

∫ 1−s

0
xd1−1e−λ1Nxeyc(y + x)d2−1e−λ2N(y+x)dydxds

∼ Nλ−d1
1 λ−d2

2

Γ(d1)Γ(d2)

∫ 1

0

∫ λ1N

0

∫ λ2N(1−s+x)

λ2x/λ1

xd1−1e−xeyc/λ2Nyd2−1e−ydydxds

∼ Nλ−d1
1 λ−d2

2

Γ(d1)Γ(d2)

∫ ∞

0

∫ ∞

λ2x/λ1

xd1−1e−xyd2−1e−ydydx

∼ Nλ−d1
1 λ−d2

2


1, if λ2/λ1 → 0,

1
Γ(d1)Γ(d2)

∫∞
0

∫∞
ηx x

d1−1e−xyd2−1e−ydydx,

if λ2/λ1 → 0 < η21 <∞
o(1), if λ2/λ1 → ∞.

(6.9)

This, together with the fact that

|EG2N −ANEu1w1| ≤ E(u1w1)
N−1∑
t=1

t∑
s=1

∞∑
k=N+1

bkck+t−s+1

≤ CN

∞∑
k=N+1

kd1−1e−λ1k
∞∑

k=N+1

kd2−1e−λ2k = o(1)×Nλ−d1
1 λ−d2

2 ,

due to (6.2), yields

N−1λd11 λ
d2
2 EG2N = ANE

[
ζ1(0)ζ2(0)

]
= ∆21 + o(1)

Result (5.13) will follow if we prove

G2N − EG2n = oP
[
Nλ−d1

1 λ−d2
2

]
.(6.10)

In fact, by noting

G2N − EG2n =

N−1∑
t=1

t∑
s=1

e(t−s)c/N
s∑

k=−∞
bs−kct−k+1ηk

=

N−1∑
k=−∞

ηk

N−1∑
t=max{1,k}

t∑
s=max{1,k}

e(t−s)c/Nbs−kct−k+1,
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where ηk = ukwk − E(ukwk), we have

E
(
G2N − EG2n

)2 ≤ Eη21
N−1∑
k=1

( N∑
t=1

ct−k+1

)2( t∑
s=1

bs−k

)2
+

∞∑
k=0

(N−1∑
t=1

ct+k+1

)2( t∑
s=1

bs+k

)2

≤ CN λ−2d1
1 λ−2d2

2 ,

due to (6.2) - (6.5) and Eη20 ≤ 4(Eu40)1/2(Ew4
0)

1/2 <∞. This yields (6.10). The proof fo Proposition

5.4 is complete. �
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APPENDIX

A. Stochastic integration with respect to TFBM II . In this section, we define the

stochastic integral of a non-random function f with respect to TFBM II by applying the con-

nection between tempered fractional calculus and TFBM II. Recall from [30] that the (positive

and negative) tempered fractional integrals (TFI) and tempered fractional derivatives (TFD) of

a function f : R → R are defined by

(A.1) Iκ,λ± f(y) :=
1

Γ(κ)

∫
f(s)(y − s)κ−1

± e−λ(y−s)±ds, κ > 0

and

(A.2) Dκ,λ
± f(y) := λκf(y) +

κ

Γ(1− κ)

∫
(f(y)− f(s))(y − s)−κ−1

± e−λ(y−s)±ds, 0 < κ < 1,

respectively. The TFI in (A.1) exists a.e. in R for each f ∈ Lp(R) and defines a bounded linear

operator in Lp(R), p ≥ 1 ([30], Lemma 2.2). The TFD in (A.2) exists for any absolutely continuous

function f ∈ L1(R) such that f ′ ∈ L1(R); moreover, it can be extended to the fractional Sobolev

space

(A.3) W κ,2(R) :=
{
f ∈ L2(R) :

∫
(λ2 + ω2)κ|f̂(ω)|2 dω <∞

}
,

where f̂ denotes the Fourier transform of f . See ([30], Theorem 2.9 and Definition 2.11).

The following proposition shows that TFBM II can be written as a stochastic integral of

TFI/TFD of the indicator function of the interval [0, t]. We refer the reader to see [46] for the

details. For t < 0, let 1[0,t](y) := −1[−t,0](y), y ∈ R.

Proposition A.1 Let d > −1
2 , λ > 0, and t ∈ R. Then

(A.4) BII
d,λ(t) = Γ(d+ 1)


∫
Id,λ− 1[0,t](y)B(dy), d > 0,∫
D−d,λ
− 1[0,t](y)B(dy), −1

2 < d < 0.

Now we discuss a general construction for stochastic integrals of non-random functions with

respect to TFBM II. For a standard Brownian motion {B(t)}t∈R on (Ω,F , P ), the stochastic

integral I(f) :=
∫
f(x)B(dx) is defined for any f ∈ L2(R), and the mapping f 7→ I(f) defines an

isometry from L2(R) into L2(Ω), called the Itô isometry:

(A.5) ⟨I(f), I(g)⟩L2(Ω) = Cov[I(f), I(g)] =
∫
f(x)g(x) dx = ⟨f, g⟩L2(R).

Define E as the space of elementary functions

(A.6) f(u) =

n∑
i=1

ai1[ti,ti+1)(u),

where ai, ti are real numbers such that ti < tj for i < j. It is natural to define the stochastic

integral

(A.7) Id,λ(f) =

∫
R
f(x)BII

d,λ(dx) =
n∑

i=1

ai

[
BII

d,λ(ti+1)−BII
d,λ(ti)

]
.



24

Now, assume d > 0. It follows immediately from Proposition A.1 that for f ∈ E , the stochastic

integral

Id,λ(f) =

∫
R
f(x)BII

d,λ(dx) =

∫
R

(
Id,λ− f

)
(x) B(dx)

is a Gaussian random variable with mean zero, such that for any f, g ∈ E we have

⟨Id,λ(f), Id,λ(g)⟩L2(Ω) = E
(∫

R
f(x)BII

d,λ(dx)

∫
R
g(x)BII

d,λ(dx)
)

=

∫
R

(
Id,λ− f

)
(x)

(
Id,λ− g

)
(x) dx,

(A.8)

in view of (A.4), when d > 0, and the Itô isometry (A.5).

Based on (A.8), we define the following class of functions:

Definition A.2

(A.9) A1 :=

{
f ∈ L2(R) :

∫
R

∣∣∣(Id,λ− f
)
(x)

∣∣∣2 dx <∞
}
,

for d > 0 and λ > 0.

Theorem A.3 Given d > 0 and λ > 0, the class of functions A1, defined by (A.9), is a linear

space with the inner product

(A.10) ⟨f, g⟩A1
=

∫
R

(
Id,λ− f

)
(x)

(
Id,λ− g

)
(x) dx

The set of elementary functions E is dense in the space A1.

We omit the proof of Theorem A.3 since it is similar to [30, Theorem 3.5].

We now define the stochastic integral with respect to TFBMII for any function in A1 in the

case where d > 0.

Definition A.4 For any d > 0 and λ > 0, we define

(A.11)

∫
R
f(x)BII

d,λ(dx) :=

∫
R

(
Id,λ− f

)
(x) B(dx)

for any f ∈ A1.

Next we investigate stochastic integrals with respect to TFBMII in the case −1
2 < d < 0. It

follows from (A.4) that the stochastic integral (A.7) can be written in the form

Id,λ(f) =

∫
R
f(x)BII

d,λ(dx) =

∫
R
D−d,λ
− f(x) B(dx)

for any f ∈ E . Then Id,λ(f) is a Gaussian random variable with mean zero, such that

⟨Id,λ(f), Id,λ(g)⟩L2(Ω) = E
(∫

R
f(x)BII

d,λ(dx)

∫
R
g(x)BII

d,λ(dx)
)

=

∫
R

(
D−d,λ
− f

)
(x)

(
D−d,λ
− g

)
(x) dx

(A.12)

for any f, g ∈ E , using (A.7) and the Itô isometry (A.5). Equation (A.12) suggests the following

space of integrands for TFBM II in the case −1
2 < d < 0.
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Definition A.5

(A.13) A2 :=
{
f : φf = D−d,λ

− f for some φf ∈ L2(R)
}
.

for any −1
2 < d < 0.

Theorem A.6 Given −1
2 < d < 0 and λ > 0, the class of functions A2, defined by (A.13), is a

linear space with the inner product

(A.14) ⟨f, g⟩A2
=

∫
R

(
D−d,λ
− f

)
(x)

(
D−d,λ
− g

)
(x) dx

The set of elementary functions E is dense in the space A2.

We omit the proof of Theorem A.6 since it is similar to [30, Theorem 3.10].

We now define the stochastic integral with respect to TFBM II for any function in A2 in the

case where −1
2 < d < 0.

Definition A.7 For any −1
2 < d < 0 and λ > 0, we define

(A.15)

∫
R
f(x)BII

d,λ(dx) :=

∫
R

(
D−d,λ
− f

)
(x) B(dx)

for any f ∈ A2.

B. Tempered fractional linear processes. This section outlines the univariate ART-

FIMA class of processes, introduces the vector autoregressive tempered fractionally moving aver-

age (VARTFIMA) class, and discusses some of its properties.

The univariate ARTFIMA (p, d, λ, q) was introduced and discussed in [44] based on tem-

pered fractional difference operator. Here we recall some definitions and primary properties of

ARTFIMA(p, d, λ, q) class in the univariate case. A tempered fractional difference operator is

defined by

(B.1) ∆d,λf(x) = (I − e−λB)df(x) =
∞∑
j=0

ωd,λ(j)f(x− j)

where d > 0, λ > 0, and

(B.2) ωd,λ(j) := (−1)j
(
d

j

)
e−λj where

(
d

j

)
=

Γ(1 + d)

j!Γ(1 + d− j)

using the gamma function Γ(d) =
∫∞
0 e−xxd−1 dx. Using the recurrence property Γ(d+1) = dΓ(d),

we can extend (B.1) to non-integer values of d < 0. By a common abuse of notation, we call this

a tempered fractional integral.

If λ = 0, then equation (B.1) reduces to the usual fractional difference operator. See [34, 44]

for more details.

Definition B.1 The discrete time stochastic process {Xt}t∈Z is called an autoregressive tempered

fractional integrated moving average time series, denoted by ARTFIMA(p, λ, d, q), if {Xt} is a

stationary solution with zero mean of the tempered fractional difference equations

(B.3) Φ(B)∆d,λXt = Θ(B)ζt,
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where Zt is a white noise sequence (i.i.d. with E[ζt] = 0 and E[ζ2t ] = σ2), d /∈ Z, λ > 0, and

Φ(z) = 1 − ϕ1z − ϕ2z
2 − . . . − ϕpz

p, and Θ(z) = 1 + θ1z + θ2z
2 + . . . + θqz

q are polynomials of

degrees p, q ≥ 0 with no common zeros.

Remark B.2 Assuming polynomials Φ(·) and Θ(·) have no common zeros and

(B.4)
∣∣Φ(z)∣∣ > 0 and

∣∣Θ(z)
∣∣ > 0

for |z| ≤ 1, it can be shown that the ARTFIMA(p, d, λ, q) process is causal and invertible.

Remark B.3 Another version of tempered fractionally integrated process was defined in [45] as

follows: The discrete time stochastic process {X∗
t }t∈Z is called ARTFIMA(p, d, λ, q) process with

innovation process Z(t) if

(B.5) X∗
t =

∞∑
k=0

e−λka−d(k)ζt−k, t ∈ Z

where the coefficients ad(k) are the coefficients of ARFIMA(p, d, q). That is

(B.6) ad(k) =
k∑

s=0

ωd(k)ψ(k − s),

where ωd(k) = Γ(k−d)
Γ(k+1)Γ(d) , and ψ(j) are the coefficients of the power series

∑∞
j=0 ψ(j)z

j =

Θ(z)/Φ(z), |z| ≤ 1.

(ii) When p = q = 0, Xt and X
∗
t are the same time series. However, in general, they are different

stochastic processes. For instance,Xt has the spectral density fX(ν) = σ2

2π
|Θ(e−iν)|2
|Φ(e−iν)|2

∣∣1− e−(λ+iν)
∣∣−2d

for −π ≤ ν ≤ π, while X∗
t has the spectral density fX(ν) = σ2

2π
|Θ(e−(λ+iν))|2

|Φ(e−(λ+iν))|2
∣∣1− e−(λ+iν)

∣∣−2d
for

the same range of ν.

We now proceed to define the vector ARTFIMA model. First, let X(t) be a real-valued covari-

ance stationary m-vector time series generated by the following model:

(B.7)


(1− e−λ1B)d1 . . . 0

...
. . .

...

0 . . . (1− e−λmB)dm




X1t − EX1t

...

Xmt − EXmt

 =


u1t
...

umt

 ,

where d1, . . . dm, λ1, . . . , λm are the memory and tempering parameters respectively, B is the

lag operator, and ut = (u1t, . . . , umt)
′ is a covariance stationary process. By assuming ut is

a vector autoregressive integrated moving average (VARIMA) process, we can define a vector

autoregressive tempered fractionally integrated moving average (VARTFIMA) process as follows.

Suppose ut = (Φ(B))−1Θ(B)ζ(t), where Φ(B) = Φ0−
∑p

i=1ΦiB
i and Θ(B) = Θ0+

∑q
i=1ΘiB

i

are (m×m) matrix polynomials in B. A VARTFIMA model is defined by

Φ(B)∆d,λ(B)(X(t)− µ) = Θ(B)ζ(t),

where µ = (EX1t, . . . ,EXmt)
′ = (µ1, . . . , µm)′ is the m × 1 mean vector, ζ(t) is m-dimensional

vector with E(ζ(t)) = 0 and covariance matrix Ω. The operator ∆d,λ(B) is the m ×m diagonal

matrix given by (B.7).

The following remark gives the autocovariance function of X(t) and its asymptotic form for

large lags when p = q = 0.
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Remark B.4 (i) If da ∈ R \ N− and λa > 0 for all a = 1, . . . ,m and the spectral density matrix

fuu(ω) of ut is continuously differentiable, then

(B.8) [Γxx]ab =
2fuaub

(0)e−λbkΓ(k + db) 2F1(da, k + db; k + 1; e−(λa+λb))

Γ(k + 1)Γ(db)
.

(ii) As k → ∞, we have

(B.9) [Γxx]ab ∼ Kab e
−λbkkdb−1,

where Kab =
2fuaub

(0)
(
1−e−(λa+λb)

)−da

Γ(db)
.

(iii) Assuming λa = λb = 0 in (B.8), we have the specialization

[Γxx]ab ∼
2fuaub

(0)Γ(1− da − db) sinπdb
k1−da−db

, k → ∞,

which is the asymptotic behavior of the elements of the autocovariance matrix in the untempered

case, see [41, Section 2.1] or [43, Theorem 1].
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