
Yale University Yale University 

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale 

Cowles Foundation Discussion Papers Cowles Foundation 

6-1-2018 

Intertemporal Price Discrimination in Sequential Quantity-Price Intertemporal Price Discrimination in Sequential Quantity-Price 

Games Games 

James D. Dana Jr. 

Kevin R. Williams 

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series 

 Part of the Economics Commons 

Recommended Citation Recommended Citation 
Dana, James D. Jr. and Williams, Kevin R., "Intertemporal Price Discrimination in Sequential Quantity-Price 
Games" (2018). Cowles Foundation Discussion Papers. 133. 
https://elischolar.library.yale.edu/cowles-discussion-paper-series/133 

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar – A 
Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation 
Discussion Papers by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at 
Yale. For more information, please contact elischolar@yale.edu. 

https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/cowles-discussion-paper-series
https://elischolar.library.yale.edu/cowles
https://elischolar.library.yale.edu/cowles-discussion-paper-series?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/cowles-discussion-paper-series/133?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu


COWLES FOUNDATION DISCUSSION PAPER NO.

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
YALE UNIVERSITY

Box 208281
New Haven, Connecticut 06520-8281

http://cowles.yale.edu/

INTERTEMPORAL PRICE DISCRIMINATION IN SEQUENTIAL QUANTITY-PRICE 
GAMES

By

James D. Dana Jr. and Kevin R.Williams

June 2018
Revised March 2019

2136R2



Intertemporal Price Discrimination in Sequential Quantity-Price Games

James D. Dana Jr.

Northeastern University∗
Kevin R. Williams

Yale University†

March 2019‡

Abstract

When firms first choose capacity and then compete on prices in a series of advance-
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1 Introduction

In many oligopoly markets, such as the airline, entertainment, hotel, and sports indus-

tries, firms choose capacity long before they set price. Seminal research by Kreps and

Scheinkman (1983) and Davidson and Deneckere (1986) analyzes sequential quantity-

price games and characterizes when the Cournot model is a valid prediction in these

games. However, an important limitation of this research is that it considers only one

pricing or sales period; yet, in all of the aforementioned industries, consumers purchase

in advance and firms adjust their prices over time.

In this paper, we develop an oligopoly model of sequential quantity-price games with

multiple sales periods and a perishability date. We use the model to characterize the

pricing behavior of firms competing in multiple advance-purchase markets, and, more

specifically, we explore the conditions required for intertemporal price discrimination to

arise in an oligopoly setting.

We highlight two contributions. First, absent additional commitments made by firms,

strong competitive forces drive equilibrium prices—advance-purchase prices—to be flat

over time. That is, extending the findings of Kreps and Scheinkman (1983) and Davidson

and Deneckere (1986) to multiple sales periods creates a costless arbitrage opportunity,

resulting in intense price competition, which prevents firms from utilizing intertemporal

price discrimination. This is true regardless of whether demand becomes more or less

elastic over time, though, we highlight some important asymmetries between these two

cases. Second, we enrich the model by incorporating inventory controls, or sales limits

assigned to set prices. We show that firms will choose to set inventory controls in order to

engage in intertemporal price discrimination, but only if demand becomes more inelastic

over time. Inventory controls allow for increasing prices as well as higher profits for firms,

even when there is no uncertainty about demand. Thus, although inventory controls have

been studied extensively in the context of demand uncertainty, we show that they can also

be used for a different purpose: to facilitate price discrimination in oligopoly markets.
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In our baseline model, firms sell a homogeneous good and have no private information.

Firms first choose capacity levels—a capacity constraint common across periods—and

then compete on price in a series of sequential markets. The timing of the game is such

that remaining capacities are observed, and then firms simultaneously choose prices.

Transactions are observed and the game repeats with updated remaining capacities. After

the final period, no further sales can take place, and unsold inventory is scrapped.

We assume that there is a continuum of consumers who are each assigned to one of

the sequential markets. We allow the elasticity of demand to change over time, both

increasing and decreasing; we emphasize several results in which demand becomes more

inelastic over time. This case is appealing because prices tend to rise over time in many

applications, including entertainment and sporting events, airlines, trains, and hotels.

Also, when prices are increasing, consumers do not have an incentive to wait until later

periods to purchase. We employ more-restrictive assumptions under the scenario of

increasing price elasticity.

For tractability, we analyze a model with two advance-purchase sales periods, although

we do discuss extending the analysis to any finite number of periods in an extension. The

challenge in solving our game, as well as the sequential quantity-price games studied

by Kreps and Scheinkman (1983) and Davidson and Deneckere (1986), is that quantity-

constrained price games often have mixed-strategy equilibria. Solving our game is even

more challenging because we consider more than one sales period. We make the analysis

simpler and more intuitive by focusing on sufficiently high costs of capacity—a scenario

also considered in the prior literature on sequential quantity-price games. Doing so

ensures that equilibrium capacity choices will be sufficiently small and that the equilibrium

strategies in the price game will be pure strategies both on and off the equilibrium path.

Our first main result is that there exist strong competitive forces that prevent intertem-

poral price discrimination. Equilibrium prices are flat over time, even when consumers

who arrive later have a higher willingness to pay. Equilibria with increasing prices do not
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exist because individual firms have an incentive to raise their price in the early period—

shifting early sales to its competitors— in order to sell more in the later period, when

consumers are less price-sensitive and the equilibrium price is higher. Similarly, equilibria

with decreasing prices do not exist because individual firms have an incentive to lower

price in the early period, shifting high-priced sales to itself and low-priced sales to its

rivals later.

Because firms can costlessly shift their capacity across periods (or markets), our result

may not seem surprising. But recall that if firms could choose how much of their capacity

to allocate to each market, then they would equate the marginal revenues, and not the

prices, in the two markets. We show that with more than one pricing period, the sequential

capacity-then-price game is different from the Cournot model, even though it is the same

as the Cournot model with just one pricing period.

We characterize sufficient conditions under which uniform prices arise as the unique

pure-strategy equilibrium outcome. With a uniform price, sales are equal to the Cournot

quantity associated with aggregate demand—the sum of demands over time. Although

the flattening of prices occurs whether the elasticity of demand is increasing or decreasing

over time, we show that there exist important asymmetries in the sufficient conditions for

uniform pricing in the two scenarios.

We then enrich the model by allowing firms to implement unit-sales limits, or inven-

tory controls, in conjunction with price setting. Inventory controls have been studied

extensively in the context of demand uncertainty as a means to more efficiently allocate

scarce capacity (Talluri and Van Ryzin 2006, McGill and Van Ryzin 1999). We show that

they can be used to facilitate intertemporal price discrimination. We analyze a game that

differs from the baseline model in the price stage. In the game with inventory controls,

firms simultaneously decide sales limits as well as prices in each of the sequential markets.

We show that firms commit to the use of inventory controls in order to increase profits,

but only when the elasticity of demand decreases over time. In this case, equilibria exist
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in which prices are increasing because inventory controls curtail firms’ abilities to shift

demand to their competitors in the early, lower-priced period. Firms sell their Cournot

output in each period, and so prices rise over time because demand becomes less elastic.

In contrast, when the elasticity of demand increases over time, inventory controls do not

change equilibrium prices.

We also discuss a number of extensions. The first extension is to consider product

differentiation. When products are differentiated, prices are no longer uniform across

time, as firms benefit from the inability to shift all of the demand using very small price

changes. However, the strategic incentives explored in this paper are still present. We

provide an example that shows that products must be highly differentiated for prices

to increase substantially across periods. Our results suggest that inventory controls are

particularly valuable when products are close substitutes; they allow firms to target the

market in which consumers are less price-sensitive. We also discuss generalizing the

model to include aggregate demand uncertainty and more than two sales periods.

1.1 Related Literature

This paper contributes to three strands of the economics literature.

First, we analyze a model of price competition with capacity constraints (Levitan

and Shubik 1972, Allen and Hellwig 1986, Osborne and Pitchik 1986, Klemperer and

Meyer 1986, Acemoglu, Bimpikis, and Ozdaglar 2009). As in Kreps and Scheinkman

(1983) and Davidson and Deneckere (1986), our firms choose capacity and then price,

but unlike earlier research, we consider more than one pricing period. Our results are

also related to Van den Berg, Bos, Herings, and Peters (2012), who consider a two-period

quantity game with capacity constraints, with and without commitment. However, our

main focus is on the way firms use prices to shift rivals’ sales from the higher-price to

the lower-price period, which does not happen in their sequential quantity game because

quantity decisions do not affect the way that their rivals’ capacity is allocated across
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periods, as price decisions do in our model.1

Second, we analyze intertemporal price discrimination. Stokey (1979) is a seminal

paper that shows that monopoly intertemporal price discrimination is not always feasible.

Several more-recent papers find that price adjustments over time are profitable in environ-

ments with deadlines and limited capacity (Gallego and van Ryzin 1994, Su 2007, Board

and Skrzypacz 2016, Dilmé and Li 2018). This is particularly true when consumers learn

their preferences over time, as in Akan, Ata, and Dana (2015) and Ata and Dana (2015).

Important empirical contributions to the literature on intertemporal price discrimina-

tion and, more generally, price adjustments over time, include Nair (2007) on video games,

Sweeting (2012) on stadium seats, and Hendel and Nevo (2013) on storable goods. Much

of our focus is on prices that increase as a deadline draws closer (such as for a scheduled

event or a scheduled departure time), a pattern found in many airline studies (Puller,

Sengupta, and Wiggins 2012, Lazarev 2013, McAfee and te Velde 2007, Williams 2018).2

Finally, our work is related to the literature on inventory controls (see Littlewood (1972),

Belobaba (1987), Belobaba (1989) and Weatherford and Bodily (1992), and surveys by

Talluri and Van Ryzin (2006) and McGill and Van Ryzin (1999)). While prior research views

inventory controls as a tool for managing aggregate demand uncertainty, we establish that

they also facilitate intertemporal price discrimination in oligopoly markets when firms

prefer to set prices that increase over time. Airlines, hotels, theaters, and trains utilize

inventory controls.

2 The Model

Consider an oligopoly with n firms selling a homogeneous good to a continuum of con-

sumers in a series of advance-purchase sales markets. For tractability, we consider just

1Also see Benassy (1989) and Reynolds and Wilson (2000) for related pricing games and De Frutos and
Fabra (2011) and Aguirre (2017) for quantity games.

2Fare increases in the final weeks before departure are consistent with intertemporal price discrimination,
and also with theoretical models of demand uncertainty (Prescott 1975, Eden 1990, Dana 1999).
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two selling periods, t = 1, 2, and describe adding more selling periods in an extension.

We assume that consumers cannot postpone their purchasing decisions but, instead, are

exogenously assigned to purchase in either the first or the second sales period. However,

this assumption can be relaxed by assuming that some consumers learn their prefer-

ences in period one and some in period two, and consumers choose when to purchase

(Dana 1998, Akan, Ata, and Dana 2015).3 But, this would imply that firms never set prices

that decline over time since consumers would prefer to wait and buy when prices are

lower. Although our results under increasing price elasticity are unchanged by relaxing

this assumption, consumers’ ability to wait would curtail intertemporal price discrimina-

tion if demand were to become more elastic.

Each firm’s strategy consists of three choices, capacity and two prices, denoted by Ki,

pi
1, and pi

2, where subscripts denote time, and, when necessary, superscripts denote the

individual firm. The game proceeds in three stages or periods (see Figure 1). First, in stage

zero, firms simultaneously choose their capacities, Ki
≥ 0. The vector of initial capacities is

denoted by K. The common cost per unit of capacity is c ≥ 0. We assume that the marginal

cost of production for each unit sold is zero. Then, in stage one, firms simultaneously

choose prices denoted by the vector p1. Consumers who purchase in stage one then make

their purchase decisions. Sales, q1 ≥ 0, are constrained only by the firms’ first-period

capacities, K1 = K, and firms’ remaining capacities, K2 = K − q1 ≥ 0, are carried forward

to the next period. That is, the capacity constraint is common across periods. In stage two,

firms simultaneously choose prices denoted by the vector p2, and then consumers who

purchase in stage two make their purchase decisions. Sales, q2 ≥ 0, are constrained only

by the firms’ residual capacities, K2. Capacity not used in stage two, K2 − q2, is scrapped

with value zero. We ignore discounting.

Because we assume a continuum of heterogeneous consumers with unit demands, and

3In this version of the model, some consumers prefer to purchase in the second period because they do
not know their demand until the second period, while other consumers prefer to purchase in the first period,
even with the option to wait, because they know their demands early and anticipate that the firms’ prices will
be higher if they wait.
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Figure 1: Timing of the Game

Stage 0 Stage 1 Stage 2

Firms choose K

Capacity
K1

= K

Capacity
K2

= K1
−

q1

Firm
s choose p1

Firm
s choose p2

q1
is realized

q2
is realized

END

goods are homogeneous, we can represent preferences using market demand functions.

The market demands in each period, denoted by D1(p1) and D2(p2), respectively, are

strictly decreasing and differentiable functions. And we let p1(q) and p2(q) denote the

inverse demands associated with D1(p) and D2(p). We let DTot(p) = D1(p) + D2(p) denote

the total demand when the price is the same in both periods, and pTot(q) denote the

associated inverse total demand when q units of total output are sold at a uniform price.

We also assume that the market demand functions are associated with concave revenue

functions. That is, we assume that p′′t (qt)qt + 2p′t(qt) < 0,∀t = 1, 2, where qt denotes total

sales in period t. Let ηt(p) = D′t(p)p/Dt(p) denote the price elasticity of demand in period t.

We now describe how firm i’s individual demand is derived from these market demand

functions, given the prices of all firms. Products are homogeneous, so consumers purchase

at the lowest price available, as long as their valuation exceeds the price. If firms set

different prices, then a firm with a higher price can have positive sales only if all of the

firms with lower prices have sold all of their capacity. If two or more firms charge the

same price, then those firms divide the sales equally, subject to their capacity constraints.

How much the firm with the higher price sells—that is, the residual demand after the

lower-priced firm sells all of its capacity—depends on the rationing rule. The residual

demand function is written RDt
(
pi

t; p−i
t ,K

−i
t

)
, where the arguments are firm i’s own price,
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pi
t, and vectors of all of the other firms’ prices and current capacities, denoted p−i

t and K−i
t ,

respectively. This is the total residual demand at price pi
t, which is split among all firms

charging pi
t.

Our results hold for both the efficient rationing rule and the proportional rationing

rule. The efficient rationing rule specifies that the lowest-price unit for sale (after other

lower-priced units are gone) goes to the remaining consumer with the highest willingness

to pay. Equivalently, under the efficient rationing rule, the residual demand function is

RDt(pi
t; p−i

t ,K
−i
t ) = Dt(pi

t) −
∑

j: p j
t<pi

t

K j
t ,∀t = 1, 2, (1)

where the summation is over all firms j that charge a lower price than firm i, and where

−i denotes other firms. The proportional rationing rule specifies that lowest-price unit

for sale (after all other lower-priced units are gone) is equally likely to be sold to every

remaining consumer whose willingness to pay exceeds the price. Equivalently, under the

proportional rationing rule, the residual demand function is

RDt(pi
t; p−i

t ,K
−i
t ) = Dt(pi

t)

1 − ∑
j:p j<pi

K j
t

Dt(p
j
t)

 ,∀t = 1, 2. (2)

In both cases, the residual demand describes demand at price pi. If only firm i charges

price pi, then firm i’s demand at pi is given by the residual demand function, and its sales

are the smaller of residual demand and its capacity. If more than one firm charges pi, then

the residual demand is divided among the firms, subject to firms’ capacity constraint.

Note that the rationing rules determine how sales are allocated to different firms

within each period, but not how sales are allocated across periods. If early buyers have

higher valuations, then it is natural to think that rationing is efficient and that demand

becomes more elastic over time. Similarly, when demand is less elastic in period two,

then proportional rationing may be more compelling. However, we do not assume a link
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between rationing rules and the change in the demand elasticity. Instead, we derive results

that are independent of the rationing rule, but depend on whether demand becomes more

or less elastic over time.

If there were just one pricing period, and the game ended at the end of stage one,

then we know from Kreps and Scheinkman (1983), who analyze efficient rationing, and

Davidson and Deneckere (1986), who analyze proportional rationing, that the pricing

subgame has a unique Nash equilibrium. Both of these papers characterize the equilibrium

profits of the pricing subgame for all capacity choices, including subgames in which the

equilibrium prices were in mixed strategies.

Kreps and Scheinkman (1983) and Davidson and Deneckere (1986) both show that if

firms choose sufficiently small capacity, then pricing subgame has a unique pure-strategy

equilibrium in which all prices equal the market-clearing price. They also show that for

sufficiently high capacity costs, every pricing subgame in which firms earn positive profits

has a pure-strategy equilibrium. Far from being a special case, the sufficient conditions are

just that the cost of capacity is large enough that firms never find it profitable to choose so

much capacity that the marginal revenue function is negative. That is, firms collectively

choose capacities smaller than the revenue-maximizing capacity.

A particularly enlightening example is the case of constant elasticity demand, or p(q) =

q1/ε. In this case, marginal revenue is strictly positive for all q if |ε| > 1, because p(q)+p′(q)q =

(1 + 1/ε)q1/ε, which is positive and decreasing for all q when |ε| > 1 and is negative for

all q when |ε| < 1. This means that in both the models by Kreps and Scheinkman (1983)

and Davidson and Deneckere (1986), with constant elasticity demand and |ε| > 1, the

equilibrium of every pricing subgame is the market-clearing price, regardless of the firms’

capacity choices in the first stage. The pricing subgame never has a mixed-strategy

equilibrium, so the unique equilibrium of the quantity-price game with either efficient or

proportional rationing is the Cournot equilibrium. This is true regardless of the rationing

rule, as long as demand is sufficiently elastic, or |ε| > 1, for every price (Madden 1998).
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Because we have two pricing periods, characterizing the equilibria of the pricing

subgame is considerably more challenging than in Kreps and Scheinkman (1983) and

Davidson and Deneckere (1986), and simply bounding profits without solving for the

equilibrium is also more challenging. To simplify our analysis, we focus solely on the

case in which capacity costs are sufficiently large so that all of the pricing subgames have

pure-strategy equilibria.

Besides making it easy to derive the equilibrium prices and profits in all of our sub-

games, another benefit of assuming high capacity costs are that we can easily derive

identical results for both the efficient and proportional rationing rules. Recall that in both

Kreps and Scheinkman (1983) and Davidson and Deneckere (1986), when firms’ capacities

are small—specifically, smaller than the revenue-maximizing capacity or, equivalently,

smaller than a monopolist’s output if capacity were free—the price is always equal to

the market-clearing price and this is independent of the rationing rule. This is because

the marginal revenue is positive in the pricing stage even when firms act as monopolists,

which implies that marginal revenue must be positive for each individual firm. Thus,

firms can never increase their profits by setting a price above the market-clearing price.

We can focus on pure-strategy equilibria of the pricing subgames by making two

assumptions. The first assumption guarantees that marginal revenue is positive in the

second pricing period, even if every firm chooses not to sell any of its capacity in the first

period. We guarantee this by assuming that DTot(c), the total demand at the competitive

price—that is, the demand when firms set price equal to the marginal cost of capacity—is

less than the output sold by a zero-cost monopolist in the second period. This is clearly

true if the cost of capacity, c, is sufficiently large.

Assumption 1. The total competitive output with capacity costs c is smaller than the capacity

that maximizes industry revenue, or, equivalently, smaller than the second-period monopoly output
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when the firm has zero capacity costs. That is,

argmax
q

p2(q)q > DTot(c).

We provide two examples to highlight the potential restrictiveness, or lack of restrictive-

ness, of Assumption 1.

Example: With constant elasticity demand—p(q) = q1/ε each period and |ε| > 1—a

monopolist with zero cost of capacity produces an infinite output, so Assumption 1 is

trivially satisfied. Marginal revenue is strictly positive for all q, so marginal revenue is

positive in period two for q = DTot(c), for any value c > 0. Formally, this is because

p(q) + p′(q)q = (1 + 1/ε)q1/ε, which is strictly positive for all ε < 1 and for all finite q > 0.

Example: To see that Assumption 1 can be restrictive, but not unreasonably so, consider

the case of linear demand, p(q) = a − bq, and assume that demand is the same in both

periods. Then, DTot(c) = 2 · ((a − c)/b), and the monopoly output in the second period

(with zero capacity costs) is a/(2b). Thus, Assumption 1 holds if, and only if, c > (3/4)a.

The second assumption places a mild and intuitive restriction on firms’ strategies. We

assume that the firms’ total capacity does not exceed the capacity that would be produced

if the market were perfectly competitive—that is, total capacity is less than DTot(c).

Assumption 2. Firms’ capacities are less than total demand at the perfectly competitive price, or∑
i Ki
≤ DTot(c).

The interpretation of Assumption 2 is similar to that of an equilibrium refinement.

That is, we characterize the unique equilibrium within this restricted strategy set and

show that it is in the interior of the set—
∑

i Ki < DTot(c). While we do not formally show

that every deviation outside of this set isn’t profitable, we do show that profits are zero

and decreasing in capacity on the border of the set.

Assumption 2 can be difficult to relax because characterizing firms’ profits and their

subgame equilibrium mixed strategies in a model with two pricing periods is difficult.
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We hypothesize that dropping Assumption 2 does not alter the equilibrium strategies, or

introduce any new equilibria. That is, no equilibrium exists in which firms choose more

capacity than they would choose in a perfectly competitive market. If firms produced that

much capacity and sold all of it, total profits would be negative. And it is also difficult

to see how firms could benefit from such a large capacity if it is not all sold. Of course,

unused capacity might be an effective off-the-equilibrium path instrument for punishment;

however, that is not the case here. Finally, note that there are alternatives to Assumption 2.

For example, we could assume that each firm’s capacity is less than DTot(c)/n and obtain

the same results. This alternative, and others, are stronger, but they have the advantage

that we are not placing restrictions on firms’ strategies that depend on other firms’ actions.

Together, Assumptions 1 and 2 imply that the firms’ total capacity is always less than

argmaxq p2(q)q, which implies that the firms’ remaining capacity in period two is always

less than argmaxq p2(q)q, and that the equilibrium price in the final pricing period is always

the market-clearing price. This means that both on and off of the equilibrium path, every

final-period subgame has a unique pure-strategy equilibrium.

For several reasons, it is helpful to distinguish between the case in which demand

becomes more inelastic over time and the case in which demand becomes more elastic

over time. While we establish results for both scenarios, for convenience, we state the

former case as the following explicit assumption.

Assumption 3. Demand becomes more inelastic over time, so |η2(p)| < |η1(p)| for all p > 0.

Assumption 3 is reasonable in advance-purchase markets when consumers with less-

elastic demand purchase later. This happens, for example, when consumers’ purchase

decisions require planning, and planning is less costly for consumers with more-elastic

demands. As a consequence, the demand elasticity decreases over time—this has empirical

support for the airline and theater industries, for example.
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3 A Benchmark Result

Before characterizing the equilibrium of the game, we consider a useful benchmark.

Imagine that firms set price just once or, more precisely, that firms are constrained to

set the same price in stage two as in stage one—that is, pi
2 = pi

1,∀i. So, firms choose K

in stage zero and p1 in stage one, and the price in stage two is constrained to also be p1.

Then, K must be the symmetric Cournot output (the Cournot output when demand is

D1 + D2). This is because Assumptions 1 and 2 imply that the equilibrium price in the

pricing subgame is always equal to the market-clearing price, so the stage zero capacity

game reduces to a standard Cournot model. We show this in the following lemma. The

proof is in the Appendix.

Lemma 1. Under either the efficient or the proportional rationing rule, if Assumption 1 holds,

and given any capacities that satisfy Assumption 2, the equilibrium price chosen by all firms in the

pricing subgame is the market-clearing price—that is, the price such that D1(p) + D2(p) =
∑

i Ki.

The lemma implies that firms must choose the Cournot output.4 So, as in the Cournot

model, as the number of firms goes to infinity, the price converges to the cost of capacity,

c, and the total capacity and sales converges to D1(c) + D2(c). Hence, we refer to c as the

competitive price.

In the next section, we consider the model when firms can set different prices in each

period, and when the elasticity is higher (or lower) in stage 2, so that setting different

prices generates higher profits.

4 Equilibrium Characterization

We now solve the full model as described in Section 2. We solve the three-stage game (the

capacity decision in stage zero, the price decision in stage one, and the price decision in

stage two) by backwards induction. All proofs appear in the Appendix.
4 We need to also assume that pTot(q) q is concave in order for the Cournot equilibrium to be unique.
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4.1 The Pricing Subgames

We first characterize equilibrium prices in the second pricing period. Lemma 2 states that

in the second period, firms set prices to clear the market.

Lemma 2. Under either the efficient or the proportional rationing rule, if Assumption 1 and

Assumption 2 hold, then in any subgame perfect equilibrium (SPE) of the three-stage game, the

price in the second selling period clears the market.

Lemma 2 allows us to easily characterize all of the pure-strategy subgame-perfect equilibria

of the pricing subgame. Note that we typically state that an equilibrium is unique when

all equilibria have the same outcomes and payoffs for all players. Also, Lemma 1 shows

that the unique equilibrium of the second stage is a uniform price, so no mixed-strategy

equilibria of the subgame exist; however, we simplify the solution of the game by focusing

on pure-strategy equilibria of the three-stage game.

Next, we characterize pure-strategy equilibria of the two-period pricing subgame.

Note that no symmetric equilibrium exists in the pricing subgame in which firms charge

different prices in the two periods, p1 and p2. If p1 < p2, a firm could profitably deviate

to a slightly higher price in period one. The firm’s period-one sales would fall discretely

(possibly to zero); its period-two sales would rise discretely; and its transacted prices

would change by an arbitrarily small amount. Its profits would be higher. Similarly, if

p1 > p2, then a firm could profitably deviate to a slightly lower price in period one. The

firm’s period-one sales would rise discretely (possibly rise to its capacity); its period-two

sales would fall discretely; and its transacted prices would change by an arbitrarily small

amount. Its profits would be strictly higher.

Proposition 1, below, shows that there are two types of pure-strategy subgame perfect

equilibria in the pricing subgame. In a uniform-price equilibrium, prices are the same

across firms and periods. Since the market clears in the second period (Lemma 2), any

uniform-price equilibrium must satisfy D1(p∗) + D2(p∗) =
∑

i Ki, so the uniform price is
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unique. In asymmetric-price equilibria, a single firm sells in the first period; the first-

period price is lower than the second-period price; and all other firms sell only in the

second period.

Asymmetric-price equilibria have a particular form. Only one firm, firm i, sells in the

first period. Let pi
1 and qi

1 denote its first-period price and quantity, where

pi
1 = argmax

p∈[p1(Ki),∞]
pD1(p) + p2

∑
i

Ki
−D1(p)

 (Ki
−D1(p)

)
, (3)

or, equivalently,

qi
1 = argmax

q∈[0,Ki]
p1(q)q + p2

∑
i

Ki
− q

 (Ki
− q

)
. (4)

In both expressions, the firm’s output is constrained so that first-period sales do not exceed

Ki. The second-period price is higher than pi
1 and is given by

p2 = p2

∑
i

Ki
−D1(pi

1)

 . (5)

Proposition 1. Under either the efficient or the proportional rationing rule, if Assumptions 1 and

2 hold, then every pure-strategy SPE of the pricing subgame is either a uniform-price equilibrium

or an asymmetric-price equilibrium satisfying Equations (3), (4) and (5). When a uniform-price

equilibrium exists, it is the unique pure-strategy SPE. And

1. when η1(p) = η2(p),∀p > 0, a uniform-price equilibrium exists and is the unique pure-

strategy SPE;

2. when |η1(p)| < |η2(p)|,∀p > 0, or when demand becomes more elastic over time, a uniform-

price equilibrium may exist, and an asymmetric-price equilibrium never exists; and

3. when |η1(p)| > |η2(p)|,∀p > 0, or when demand becomes less elastic over time, either a

uniform-price or an asymmetric-price equilibrium exists, but not both; at most, n asymmetric-

price equilibria exist.
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Intuitively, asymmetric-price equilibria exist because a lower price in the first pricing

period increases sales in the first period, leading to less output sold and a higher second-

period price. But a firm can increase its profit in this way only if the elasticity is decreasing

and only if it has sufficient capacity to meet all of the first-period demand, plus some

additional capacity to sell at the higher second-period price. Other firms free ride and sell

only in the second-pricing period at the higher price.

Asymmetric-price equilibria are more likely to exist when one firm chooses more

capacity than its rivals in stage zero. And the uniform-price equilibrium is less likely to

exist when one firm chooses significantly more capacity than its rivals. The incentive to

deviate to a lower price is increasing in the deviating firm’s capacity, decreasing in the

rival firms’ capacity, increasing in the elasticity of first-period demand, and decreasing in

the size of first-period demand.

Proposition 1 holds whether the elasticity is increasing or decreasing. That is, in either

case, price competition puts pressure on firms to equalize prices across the two markets.

We will emphasize the important fundamental asymmetries between increasing- and

decreasing-elasticity models later in the paper.

Although Proposition 1 shows that asymmetric-price equilibria of the pricing subgame

may exist, Assumption 4 below implies that only a uniform-price equilibrium exists when

the demand elasticity is decreasing over time. This relatively weak assumption implies

that no firm has enough capacity to profitably deviate from the symmetric uniform-price

equilibrium.

Assumption 4 requires that demand in the second pricing period not be too inelastic

relative to demand in the first pricing period. Demand in the second pricing period is

less elastic than in the first pricing period when Assumption 3 holds; Assumption 4 limits

how inelastic demand can be in the final period.
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Assumption 4. The elasticities of demand and capacities satisfy

η2(p)
η1(p)

>
Ki∑n

j=1 K j ,∀p > 0, i = 1, ...,n. (6)

The next proposition, Proposition 2, shows that under our additional assumptions,

Assumption 3 and Assumption 4, the unique subgame perfect equilibrium of the two-

period pricing subgame is the uniform-price equilibrium.

Proposition 2. When Assumptions 1-4 hold, the unique subgame-perfect pure-strategy equilib-

rium of the pricing subgame is a uniform-price equilibrium.

Intuitively, when the demand elasticity is decreasing, deviating to a lower price from

a uniform price is profitable for a monopolist if it raises the second-period profit by more

than it lowers the first-period profit. However, since rivals free ride and sell only in period

two, an oligopoly firm that deviates from a uniform price, by lowering its first-period

price, earns, at most, 1/nth of the second-period industry profits. The oligopoly firm

that deviates cannot increase its profit unless it can increase the second-period industry

profits by at least n times the decrease in its first-period profit. For such a deviation

to be profitable, the first-period demand must be at least n times more elastic than the

second-period demand. Assumption 4 guarantees that such a deviation is not profitable.

Strong competitive pressures also exist when demand becomes more elastic over time;

however, the existence of a unique uniform pricing equilibrium is more nuanced. Proposi-

tion 3 describes two sufficient conditions for the existence of a uniform-price equilibrium:

Proposition 3. When Assumptions 1-2 hold, and when demand becomes more elastic over time

(the opposite of Assumption 3), then the unique subgame-perfect pure-strategy Nash equilibrium

of the pricing subgame is a uniform-price equilibrium when

D1(p) <
∑
j,i

K j,∀i, (7)
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under both proportional or efficient rationing, or, alternatively, when

η1(p)
η2(p)

> max
i=1,...,n

Ki∑n
j,i K j ,∀p > 0, i = 1, ..,n, (8)

under efficient rationing.

The first condition in Proposition 3 guarantees that no firm is sufficiently large to

act as a residual monopolist in the first period, and, hence, a price increase by one firm

cannot affect any other firm’s profit—it merely shifts sales to other firms at the first-

period price. The second condition in Proposition 3 is analogous to Assumption 4 and

guarantees that no profitable deviation exists, but it holds only under efficient rationing.

Under proportional rationing, a uniform-price equilibrium may not exist when first-period

demand is large relative to second-period demand. If equation (7) does not hold, then

a firm with enough capacity can profitably deviate to a higher price in period one. If a

uniform-price equilibrium does not exist, then no pure-strategy equilibrium of the pricing

subgame exists.

Note that our results reveal an asymmetry between the case in which demand becomes

less elastic and the case in which demand becomes more elastic over time. When demand

becomes more elastic, the only potentially profitable deviation from a uniform-price equi-

librium is to lower price in the first period; when demand becomes less elastic, the only

potentially profitable deviation is to increase price in the first period. However, in the

former case, deviating is profitable only when a firm’s capacity is sufficiently larger than

that of rival firms so it can have significant market share in the second period when prices

are higher. In the latter case, deviating is profitable only if it induces all rival firms to sell

all of their capacity in the first period.

Another asymmetry is the existence of pure-strategy equilibrium. We have shown

that when demand becomes less elastic over time, the non-existence of a uniform-price

equilibrium implies the existence of an asymmetric-price equilibrium. However, there is

18



no analogy when demand becomes more elastic over time. If a uniform-price equilibrium

does not exist, then firms prefer to set higher prices in the first period, but no pure-strategy

equilibrium exists with declining prices.

4.2 The Initial Capacity Choice

Proposition 2 is an important result of the paper. It specifies that for any allocation of

initial capacity satisfying Assumption 4, oligopoly firms cannot price discriminate when

the demand conditions are such that a monopolist clearly would price discriminate.

We now consider what happens when firms choose their initial capacity optimally. We

replace Assumption 4, which is a restriction on firms’ capacities, with Assumption 5, which

is a restriction on the elasticities of demand. Assumption 5 is weaker: it is equivalent to

Assumption 4 when the firms’ capacities are symmetric. Proposition 4 establishes that

Assumption 5 is sufficient to guarantee that in the full game—that is, when the firms

choose capacities in stage zero—the unique subgame perfect equilibrium is a uniform-

price equilibrium.

Assumption 5. The elasticity of demand satisfies

η2(p)
η1(p)

>
1
n
,∀p > 0.

Proposition 4. Under Assumptions 1-3 and Assumption 5, and when the total revenue function,

pTot(q)q, is concave, the unique pure-strategy subgame perfect Nash equilibrium of the full game is

a uniform-price equilibrium, and equilibrium capacity and profits are equal to the Cournot capacity

and profits given demand D1(p) + D2(p).

Proposition 4 implies that intertemporal price discrimination is impossible when de-

mand becomes more inelastic over time. Unless the decrease in the magnitude of the

demand elasticity is very large, firms will choose symmetric capacities, and prices will be

uniform over time.
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If demand becomes more elastic over time, then the equilibria need not have uniform

prices, even under Assumptions 1, 2, and 5. The sufficient conditions for a uniform-price

equilibrium to exist are significantly stronger because firms can no longer easily break an

increasing price equilibrium by deviating to a higher price and forcing rivals to sell more

low-priced units.

5 Inventory Controls

In the previous section, we showed that when demand becomes more inelastic over time,

firms produce the same Cournot capacity and set the Cournot price in both periods, as if

there were just one period with demand D1(p) + D2(p). This is true even though profits

would be higher if firms could price discriminate.

We now show that inventory controls make it possible for firms to price discriminate

and earn higher profits, but only if demand becomes more inelastic over time. We model

inventory controls as an upper bound on quantities sold, and we allow firms to set

inventory controls when they set their price. That is, firms first choose their initial capacity,

and then, in each of the two subsequent periods, simultaneously choose both their price

and an inventory control. The game is shown in the figure below.

Figure 2: Timing of the Game with Inventory Controls

Stage 0 Stage 1 Stage 2

Firms choose K

Capacity
K1

= K

Capacity
K2

= K1
−

q1

Firm
s choose p1

and IC1

Firm
s choose p2

and IC2

q1
is realized

q2
is realized

END
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Inventory controls allow firms to limit the number of units available so that its avail-

ability exactly matches the number of units it expects to sell in period one. Thus, by

utilizing inventory controls, firms can ensure that if a rival deviates to a higher price in

period one, their own sales will not increase.

The logic above holds only when demand becomes more inelastic over time because

inventory controls place a cap, not a floor, on sales. Thus, inventory controls highlight

another natural asymmetry that arises between increasing and decreasing elasticity of

demand: Inventory controls can prevent a rival from increasing a firm’s sales by deviating

to a higher price, but they cannot prevent a rival from lowering a firm’s sales by deviating

to a lower price.

Proposition 5. Under Assumptions 1-3 and Assumption 5, then under either the efficient or

the proportional rationing rule, a subgame perfect Nash equilibrium of the model with inventory

controls exists in which all firms set the Cournot price and set inventory controls equal to the

Cournot quantity in each selling period. Profits are strictly higher in this equilibrium than in the

uniform-price equilibrium.

In the equilibrium described in Proposition 5 firms commit to inventory controls that

are equal to each firm’s equilibrium sales in each period. Inventory controls do not

restrict output on the equilibrium path, but they do act as a strategic commitment device

because they constrain the firm’s off-the-equilibrium-path output. In equilibrium, firms

sell their Cournot output in each period, and so prices rise over time because demand

becomes less elastic. Without inventory controls, firms set a constant price across the

two periods, and sales are equal to the Cournot quantity associated with the aggregate

demand, D1(p) + D2(p). In the equilibrium with inventory controls, firms set prices equal

to the Cournot quantities in each period—that is, the Cournot output associated with

demand D1(p1) in period one and the Cournot output associated with demand D2(p2) in

period two.

The model with inventory controls does have other equilibria. In particular, the
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symmetric capacity, uniform-price equilibrium characterized in Proposition 4 may still be

a subgame perfect equilibrium of the inventory control game. Even when it is not, there

are many different increasing price paths that inventory controls can support. We think

that it is natural for firms to coordinate on the Cournot quantities, but the point is that

they can price discriminate and earn higher profits using inventory controls.

Example: We illustrate the impact of inventory controls on prices and profits in an

example with linear demand, pt = at − btqt, and constant cost per unit of capacity, c.

Suppose that the firms can choose capacity independently for each period (as if the two

periods were separate markets). Then, the Cournot profits with price discrimination are

given by

Πdiscr. =
(b2(a1 − c)2 + b1(a2 − c)2)

(b1b2(n + 1)2)
,

and the Cournot profits with uniform pricing are

Πuniform =
(b2(a1 − c) + b1(a2 − c))( b2a1+b1a2

b1+b2
− c)

(b1b2(n + 1)2)
.

And profits are higher with discrimination (see the Appendix for more details),

Πdiscr. −Πuniform = b2(a1 − c)2 + b1(a2 − c)2
− (b2(a1 − c) + b1(a2 − c))

(
b2a1 + b1a2

b1 + b2
− c

)
=

1
b1 + b2

(b2(a1 − c)(b1(a1 − a2) + b1(a2 − c)b2(a2 − a1))

=
b1b2

b1 + b2
((a1 − c)(a1 − a2) + (a2 − c)(a2 − a1)) =

b1b2

b1 + b2
(a1 − a2)2 > 0.

6 Model Extensions

6.1 Alternative Timing of Inventory Controls

Inventory controls can also be modeled other ways, including allowing firms to commit

to inventory controls before setting price. If firms can commit to inventory controls before
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announcing prices, inventory controls serve two functions. First, they prevent rival firms

(−i firms) from raising their price in order to increase firm i’s sales when the price is low.

And, second, they limit firm i’s sales in period one. The latter is important and impacts

equilibrium strategies, but, collectively, firms want to set increasing prices and sell more in

period one than they do in the uniform-price equilibrium, so commitment does not help

firms to unilaterally increase profits in obvious ways.

If firms could announce and commit to their inventory controls in each period before

any firm sets price, then Proposition 4 would still hold. In this case, if each firm set an

inventory control equal to the Cournot output, this would result in the Cournot prices,

and no unilateral inventory control deviation would affect the subsequent prices. But

this timing may also eliminate the uniform-price equilibrium. In a duopoly model, a

unilateral inventory control would curtail the rival’s incentives to raise price and cause

the rival to equate marginal revenue across the two periods, even when the rival had not

set an inventory control itself.

6.2 Product Differentiation

Differentiation does not alter firms’ incentive to attempt to shift demand to competitors in

the early period. However, product differentiation makes it more costly to shift demand.

With undifferentiated products, a small price change shifts all of the demand. With

differentiated products, the firm’s price increase must be larger, and have a first-order

effect on its profits in order to significantly impact a rival’s sales.

Product differentiation also introduces increased complexity, so we focus our attention

on two firms in a symmetric environment, and give intuition instead of analyzing the

equilibrium of the model. We also maintain the assumption that capacity is sufficiently

small that firms always set market-clearing prices in the second period.

Product differentiation results in equilibrium subgame prices that are no longer uni-

form over time; however, prices are flatter—as a function of the degree of product
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Figure 3: Intertemporal Price Discrimination as a Function of Product Differentiation

(a) Prices Across Periods (b) Competition vs. Joint-Profit Maximization

Notes: Example constructed using a random utility model (logit) with two firms and two periods. Product differentiation
is increasing towards the right of the plots. (a) The light dashed line corresponds to the own-price elasticity for a constant
price offered by both firms. As products become increasingly differentiated, the difference between p1 and p2 increases. (b)
Shows the change in price (p2 − p1) of competition model versus the joint-profit maximization model. Prices are flatter in
the competition model, as the gap between the two models grows with the degree of differentiation.

differentiation—than joint-profit-maximizing prices (for example, see Figure 3, where the

left plot shows increasing differences in prices across periods as product differentiation in-

creases). To see this, consider two firms, A and B, and let the inverse demand functions be

PA
1 (qA

1 , q
B
1 ), PB

1 (qA
1 , q

B
1 ), PA

2 (qA
2 , q

B
2 ), and PB

2 (qA
2 , q

B
2 ). Joint-profit-maximizing firms would set

marginal revenue equal to the shadow cost of capacity in each of the four product markets,

so
∂p j

i (q
j
t ,q
− j
t )

∂q j
t

q j
t + p j

t(q
j
t , q
− j
t ) = λ,∀t = 1, 2; j = A,B. Suppose that the joint-profit-maximizing

prices are increasing over time.

Contrast these prices with the prices that would be set by two competing firms given

the same initial capacity. If Firm A sets a higher price than the joint-profit-maximizing

firm, it will sell less in the first period and, hence, more in the second period. Sales for

Firm B are higher in the first period, and it has less to sell in the second period; thus, in

the second period, its price is higher and Firm A’s demand is higher. Because it ignores

the loss for Firm B, Firm A has an incentive to set a higher first-period price than the joint-

profit-maximizing monopolist. Firm B has a similar incentive, and, in equilibrium, both
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firms’ prices will be flatter relative to joint-profit-maximizing prices (see the right panel in

Figure 3). It is also worth noting that prices might still be perfectly flat if sufficiently many

consumers were indifferent between the firms – a symmetric increasing price equilibrium

does not exist because either firm could strictly increase profits with an arbitrarily small

price increase.

6.3 Aggregate Demand Uncertainty

Inventory controls are generally described as a tool for managing demand uncertainty, so

it is important to describe how the model can be extended to include such uncertainty. To

generate intuition, we describe an extension in which just first-period demand is uncertain.

A monopolist sets the first-period price before learning the first-period demand and sets

a second-period price to clear the market.

A simple way to add uncertainty to the model is assume that realized demand can be

high or low in the first period, but is known to be high in the second period. In this case,

a monopolist choosing capacity optimally would set a lower price (based on expected

demand) in the first period.

However, the monopoly prices are not an equilibrium with competing firms, even

if the firms have the same capacity as the monopolist. Because the monopoly prices

increase in expectation, competing firms prefer to sell more of their capacity in the second

period, when the expected price is higher. And any firm can shift a discrete amount of

its first-period sales to its rival through an arbitrarily small price increase in period one.

Thus, expected prices must be equal in the two periods in any symmetric pure-strategy

equilibrium.

6.4 Many Periods

An obvious limitation of the paper is that we consider only two pricing periods. One

challenge to extending Propositions 2 and 3 to many periods is that it requires stronger
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assumptions than Assumptions 1 and 2 to ensure that firms play pure strategies for all

histories of the game. Another limitation is the potential for multiple equilibria.

One way to consider many periods would be to focus on a duopoly model with

constant elasticity demand, but to allow the demand elasticity to become more inelastic

over time. Thus, sufficient conditions could be derived under which the last m periods

have a uniform-price equilibrium for all capacities. Then, going from m to m + 1 periods

is similar to going from one to two periods in our analysis above, because the m-period-

subgame price is always the market-clearing price. The only challenge is that those

sufficient conditions are no longer on the initial capacities.

In particular, consider a three-period model. Here, it is possible to describe conditions

under which a uniform price is the unique outcome: on the equilibrium path, the final two

pricing periods of the three-period game are equivalent to our analysis above, so prices

must be equal in the final two periods as long as capacities are sufficiently equal. More

importantly, the intuition that firms can profit from shifting lower-priced sales to their

rivals still holds, which is why sustaining increasing prices is difficult.

7 Conclusion

We establish that inventory controls can facilitate intertemporal price discrimination in

oligopoly. We consider an advance-purchase, sequential-pricing model with complete

information. When a single firm is in the market, and demand becomes more inelastic

over time, the firm can clearly charge higher prices to late-arriving consumers. However, in

our oligopoly model, strong competitive forces arise. Individually, firms have an incentive

to move their capacity to the period with the highest price. That is, firms have an incentive

to shift sales to their rivals in early periods, when consumers have lower willingness to

pay, in order to capture increased sales in later periods, when consumers have higher

willingness to pay. Consequently, we find that firms will compete on price until prices are

equalized across the selling periods, even though firms have market power and benefit
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from increasing prices.

In order for firms to coordinate price increases when late-arriving consumers have

higher willingness to pay, they must shield themselves from these strong competitive

forces. By committing to a cap on their sales in each of the sequential markets, which they

can do with inventory controls, firms are able to implement increasing prices, even in an

oligopoly. There is extensive research in economics and operations research on the use of

inventory controls as a tool to manage uncertain demand, but here, we show that they are

also a tool to facilitate intertemporal price discrimination.
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A Appendix

Proof of Lemma 1:

Proof. Suppose not. Then some firm is charging a price not equal to the market-clearing

price (and trade takes place at that price).

First, suppose, instead, that some firm is charging a price strictly below the market-

clearing price. Let pL be the lowest price offered by any firm. Clearly, any firm offering to

sell at pL sells all of its capacity. It either sells all of its capacity in period one, or its sales

in period 1 are equal to D1(pL); then, in period two the demand for its product is D2(pL),

and since pL is below the market clearing price, D1(pL) + D2(pL) exceeds all firms’ capacity

by Assumptions 1 and 2, which clearly exceeds each individual firm’s capacity. But then

there must exist a strictly higher price at which the same firm sells all of its capacity and

earns strictly higher profits, which is a contradiction.

Now suppose, instead, that some firm sets a price strictly above the market-clearing

price with strictly positive probability. Let pH be the highest price offered in equilibrium

with positive probability, which implies that at least one firm offering to sell at pH does

not sell all of its capacity.

If two or more firms set a price of pH with strictly positive probability, then a firm that

does not sell off of its capacity can decrease its price to pH − ε and strictly increase its sales

and profits, which is a contradiction.

If, at most, one firm is charges the price pH with strictly positive probability, then any

firm charging pH earns profit equal to pHRD1(pH; p−i,K−i
1 )+D2(pH) if its sales are positive in

period one, and it earns a profit equal to pHRD2(pH; p−i,K−i
2 ) otherwise, where p−i and K−i

are the other firms’ prices and capacities, and K−i
2 is the other firms’ remaining capacity at

the start of stage 2. Clearly, the firm will not sell all of its capacity in either case, because pH

exceeds the market-clearing price, and, as shown above, other firms are all setting prices

above the market-clearing price, so total consumption must be less than available capacity.
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Consider for a moment the firm’s profits if rivals are playing pure strategies.

Under the efficient rationing rule, if the firm charging pH has positive sales in period

one, then the derivative of profit with respect to price is RD1(pH; p−i,K−i) + pHD′1(pH) +

D2(pH) + pHD′2(pH), which is negative because RD1(p; p−i,K−i) < D1(p), because pD′1(p) +

D1(p) < 0, and because pD′2(p) + D2(p) < 0. The second and third statements are true

because, by Assumption 1, D1(pH) + D2(pH) is less than the revenue-maximizing output

(marginal revenue is positive). So, lowering price below pH increases profit, which is a

contradiction.

Under the efficient rationing rule, if the firm charging pH has zero sales in period one,

then the derivative of profit with respect to price is D2(pH) + pHD′2(pH), which is negative

because, by Assumption 1, D2(pH) is less than the revenue-maximizing output (marginal

revenue is positive). So, lowering price below pH increases profit, which is a contradiction.

However, rival firms may be playing mixed strategies, so the firm’s expected profit is

a weighted average of the profit functions above, all of which are higher at a lower price,

so we have a contradiction.

Under the proportional rationing rule, if the firm charging pH has positive sales in

period one, then the derivative of profit with respect to firm i’s price is

RD1(p; p−i,K−i) + pHRD′1(pH; p−i,K−i) + pHD2(pH) + D′2(pH) =(
pHD′1(pH) + D1(ph)

) 1 −∑
j,i

K j

D2(p j)

 +
(
pD′2(p) + D2(p)

)
, (9)

which is negative because pHD′1(pH) + D1(pH) < 0 and pHD′2(pH) + D2(pH) < 0. These are

both true because, by Assumption 1, D1(pH) + D2(pH) is less than the revenue-maximizing

output. So, lowering price below pH increases profit, which is a contradiction.

Under the proportional rationing rule, if the firm charging pH has zero sales in period
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one, then the derivative of profit with respect to firm i’s price is

RD2(p; p−i,K−i
1 ) + pHRD′2(pH; p−i,K−i

1 ) =(
pHD′1(pH) + D1(ph)

) 1 −∑
j,i

K j

D2(p j)

 +
(
pD′2(p) + D2(p)

)
(10)

which is negative because pHD′1(pH) + D1(pH) < 0 and pHD′2(pH) + D2(pH) < 0. This is true

because D1(pH) + D2(pH) is less than the revenue-maximizing output. So lowering price

below pH increases profit, which is a contradiction.

Again, if rivals are playing mixed strategies, then the firm’s expected profit is a

weighted average of the pure-strategy profit functions above, all of which are higher

at a price below pH, so we have a contradiction. �

Proof of Lemma 2:

Proof. Suppose not, so some firm is charging a price not equal to the market-clearing

price. First, suppose, instead, that some firm is charging a price strictly below the market-

clearing price with positive probability. Let pL be the lowest price offered in equilibrium

with positive probability. Clearly, any firm offering to sell at pL sells all of its capacity

(because pL is below the market-clearing price), but then there must exist a strictly higher

price at which the same firm sells all of its capacity and earns strictly higher profits, which

is a contradiction.

Now suppose, instead, that some firm charges a price strictly above the market-clearing

price with positive probability. Let pH be the highest price offered in equilibrium with

positive probability. Clearly, at least one firm offering to sell at pH does not sell all of its

capacity (because pH is above the market-clearing price).

If two or more firms charge pH with strictly positive probability, then at least one of

the firms does not sell all of its capacity, and that firm can decrease its price to pH − ε and

strictly increase its sales and profits, which is a contradiction.
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If zero or one firm is charging the price pH with strictly positive probability, and if

other firms are playing pure strategies, then a firm charging pH earns profits equal to

pRD2(p; p−i,q−i), where p−i and q−i are the other firms’ prices and remaining capacities.

Under the efficient rationing rule, the derivative of profit with respect to price is

RD2(p; p−i,q−i) + pD′2(p), which is negative because RD2(p; p−i,q−i) < D2(p) and because

pD′2(p) + D2(p) < 0. This is true because, by Assumption 1 and Assumption 2, D2(p) is less

than the revenue-maximizing output. So, lowering price below pH increases profit, which

is a contradiction.

Under the proportional rationing rule, the derivative of profit with respect to firm

i’s price is RD2(p; p−i,q−i) + pRD′2(p; p−i,q−i) =
(
pD′2(p) + D2(p)

) [
1 −

∑
j,i

q j

D2(p j)

]
, which is

negative because pD′2(p) + D2(p) < 0. This is true because D2(p) is less than the revenue-

maximizing output. So, lowering price below pH increases profit, which is a contradiction.

Finally, because the firm charging pH earns high profits at a lower price regardless of

the prices that the rivals set, the argument above also holds when rivals are playing mixed

strategies. �

Proof of Proposition 1:

Let pL = mini pi
1 denote the lowest equilibrium price offered in period one.

By Lemma 1, under Assumption 1 and Assumption 2, for any history of the game, all

firms with positive remaining capacity in the final period charge the market-clearing price

in the second-period subgame.

The proof of the proposition proceeds as a series of eight claims.

1) In any pure-strategy equilibrium of the pricing subgame, pL ≤ p2.

Suppose not, so pL > p2. It follows that every firm has positive expected sales in equilib-

rium, because firms with zero sales earn profits equal to p2Ki, and they can earn strictly

higher profits by deviating to pL − ε in period one.
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Suppose that pL > p2 and that every firm has positive sales in period one. We claim

that it follows that every firm with positive sales must be charging pL. Otherwise, some

firm j has positive sales and is charging a price p j > pL. Let K̂ =
∑

i|pi=pL
Ki denote the

total capacity at price pL, where, clearly, D1(pL) > K̂, because firm j’s residual demand is

positive at p j > pL. But this implies that there exists a strictly positive ε such that a firm i

charging pL can deviate to a higher price, pL + ε, and still sell all of its capacity, which is a

contradiction.

However, if pL > p2, and all firms with positive sales in period one are charging pL, then

for sufficiently small ε, any firm with excess capacity in period one can strictly increase its

profit by deviating to a first-period price of pL − ε. The deviating firm sells strictly more at

a first-period price that is arbitrarily close to pL and sells less at a second-period price that

is arbitrarily close to p2, and pL > p2, so its profits are strictly higher. So, pL ≤ p2.

2) In any pure-strategy equilibrium of the pricing subgame, when pL is offered by two or more firms

in period one, then pL = p2.

Suppose not, so pL < p2, and pL is offered by two or more firms. Let firm i be one

of these firms. Then, firm i’s profit can be written as pLxi + p2

(
Ki
− xi

)
, where xi =

min
{
RD1

(
pL; pL,

∑
j,i|p j=pL

K j
)
,Ki

}
is firm i’s sales at pL.

If firm i deviates to a slightly higher price, pL + ε, its profit is

(pL + ε) min

RD1

pL + ε; pL,
∑

j,i|p j=pL

K j

 ,Ki


+ p̂2(·) max

Ki
− RD1

pL + ε; pL,
∑

j,i|p j=pL

K j

 , 0
 , (11)

where p̂2(·) is the market-clearing price in period two, which is a continuous and decreasing

function of the capacity remaining after period one.
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If xi = Ki, then firm i’s profit is clearly higher since pL + ε > pL and p̂2(·) > pL, so all of

firm i’s sales are at a higher price, and its sales volume doesn’t change.

If, on the other hand, xi < Ki and RD1(pL; pL,
∑

j,i|p j=pL
K j) < Ki, then the same deviation

is still profitable for firm i because

lim
ε→0

RDi
1

pL + ε; pL,
∑

j,i|p j=pL

K j

 ≤ RDi
1(pL; pL,

∑
j,i|p j=pL

K j) < Ki,

since RD is decreasing in price (for either rationing rule), and so the limit of (11) as ε goes

to 0 is

pL lim
p↓pL

RDi
1(p; pL,

∑
j,i|p j=pL

K j) + p2

Ki
− lim

p↓pL
RDi

1(p; pL,
∑

j,i|p j=pL

K j)

 .
Profits are higher because the firm sells more units at p2 and fewer units at pL and p2 > pL.

A deviation is profitable, which is a contradiction, so either pL = p2, or only one firm

charges pL.

3) If pL = p2, then the equilibrium is a uniform-price equilibrium.

Suppose not, so some firm j sets a price p j > pL = p2 in period one and has strictly positive

sales. The residual demand at p j is strictly positive, which implies that firms charging pL

sell all of their capacity, and that the residual demand in a neighborhood of pL must also

be strictly positive. Therefore, for sufficiently small ε, if a firm charging pL deviates to

pL + ε, it is still able to sell all of its capacity (for either rationing rule), so its profits are

higher, which is a contradiction.

4) There exists, at most, one uniform-price equilibrium of the pricing subgame (the total sales and

the transaction prices in each period are unique).

Given the capacity, the price and volume of sales in a uniform-price equilibrium are

uniquely defined, because only one price satisfies D1(p) + D2(p) =
∑

i Ki.
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5) If |η1(p)| = |η2(p)|,∀p, then a uniform-price equilibrium exists and is the unique pure-strategy

subgame perfect equilibrium.

Consider the unique candidate uniform-prime equilibrium. So, p1 = p2 = p, and no firm

has positive sales at any other price in either period. This equilibrium clearly exists when

no firm has an incentive to deviate in period one.

Deviating to a higher price in period one is profitable only if the demand is strictly

more elastic in the second pricing period. When elasticity does not change, deviating

to a higher first-period price lowers industry profit – given the industry capacity and

Assumption 4, industry profit is clearly lower when the first-period price is higher than

the second-period price – and the deviating firm’s share of first-period revenue falls, and

its share of second-period revenue rises, so the change in revenue for the deviating firm

must be smaller than for other firms, and so the deviating firm’s profit must fall.

Deviating to a lower price in period one can be profitable only if the demand is strictly

less elastic in period two. When elasticity does not change, then deviating to a lower

first-period price lowers industry profits. And the deviating firm’s market share in the

first period rises relative to other firms’, so the deviating firm’s profit must fall.

6) If |η1(p)| < |η2(p)|,∀p, so demand becomes more elastic over time, then any pure-strategy subgade

perfect equilibrium is a uniform-price equilibrium, but a pure-strategy equilibrium may not exist.

As above, consider the unique candidate uniform-prime equilibrium.

As above, deviating to a lower price in period one can be profitable only if the demand

is strictly less elastic in period two. When elasticity does not change, then deviating to a

lower first-period price lowers industry profits. And the deviating firm’s market share in

the first period rises relative to other firms’, so the deviating firm’s profit must fall.

If deviating to a higher price is profitable in period one, then no uniform-price equi-

librium exists.

And, clearly, no other pure-strategy equilibrium can exist because, by claim 1, no
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pure-strategy equilibrium exists in which prices strictly decline for any firm. And when

the demand becomes more elastic over time, no pure-strategy equilibrium can exist in

which prices strictly increase for any firm because, charging the lowest period-one price

can increase industry profits and increase the firm’s own profits by raising its price.

7) If |η1(p)| > |η2(p)|,∀p, so demand becomes less elastic over time, then all pure-strategy sub-

game perfect equilibria are either uniform-price or asymmetric-price, and either a uniform-price

equilibrium or an asymmetric price equilibrium, exists, but not both.

As above, consider the unique candidate uniform-prime equilibrium.

As in claim 5 above, deviating to a higher price in period one is profitable only if the

demand is strictly more elastic in the second pricing period. When demand becomes less

elastic, then deviating to a higher first-period price lowers industry profit; the deviating

firm’s share of first-period revenue falls, and its share of second-period revenue rises, so

the change in revenue for the deviating firm must be smaller than for other firms, and,

thus, the deviating firm’s profit must fall. So, a uniform-price equilibrium exists if and

only if no deviation to a lower first-period price is profitable for any firm.

Suppose that a deviation to a lower price is profitable for some firm; then, it is clearly

also profitable for the firm with the largest capacity. Let i denote the firm with the largest

capacity; let pi
1 denote the firm’s profit-maximizing deviation in period one; and let p̂2

denote the resulting second-period market-clearing price.

Then, pi
1 and p̂2 represent an asymmetric-price equilibrium. Firm i sells in both periods,

and all other firms sell only in period two. Clearly, firm i has no incentive to deviate since,

by construction, pi
1 is its best response. And if any other firm can increase its profits by

charging a price less than pi
1, then it follows that firm i can also increase its profit by

deviating to that same price, in which case pi
1 is not firm i’s profit-maximizing price, which

is a contradiction.
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8) There exist, at most, n asymmetric-price equilibria.

We show that there exists, at most, one asymmetric-price equilibrium in which firm i is

the low-priced firm in period one (or, more strictly speaking, such equilibria differ only in

the prices of firms with zero sales).

In an asymmetric-price equilibrium, if firm i is the low-priced firm, then it is the only

firm with positive sales in period one. Let p denote firm i’s price.

If p > pi
1, then firm i can profitably deviate to pi

1. If p < pi
1, then, because π(p) is concave

and maximized at pi
1, it follows that firm i is strictly better off increasing its price. So, p

does not describe a situation in which an asymmetric-price equilibrium exists.

Therefore, the only asymmetric-price equilibrium that exists in which firm i is the

low-priced firm in the first period is given by (3) and (5).

Proof of Proposition 2:

Proof. Let Ki denote each firm’s capacity, and let p̃ denote the unique uniform price defined

by Dtot(p̃) = D1(p̃) + D2(p̃) =
∑n

i=1 Ki.

Consider a deviation to a lower price in the first pricing period. If D1(p̃) ≥ maxi Ki,

then a deviation to a lower price is not profitable, because any firm that cuts its price in

period one will sell all of its capacity at the lower deviation price and, hence, earn strictly

lower profits.

If D1(p̃) < maxi Ki, then for any firm i such that Ki
≤ D1(p̃), a deviation to a lower

price will not be profitable by the same argument. When Ki > D1(p̃), then a deviation to

a lower price can increase the market-clearing price in period two, and can increase the

firm’s profits, but only if demand is becoming less elastic over time, so firms jointly prefer

to set prices that increase over time.

Let firm i be the deviating firm, and let p2(·) denote the second-period market-clearing

price as a function of remaining capacity. Firm i’s problem is to choose a price pi < p̃ or,

38



equivalently, a quantity qi = D1(pi) to maximize

π̂i(qi; p̃,K) = qip1(qi) + p2

 n∑
i=1

Ki
− qi

 (Ki
− qi

)
, (12)

subject to qi
∈

(
D1(p̃),Ki

]
– higher output levels are not feasible, and lower output levels

are inconsistent with a lower first-period price. The first-order condition is

dπ̂(qi; p̃,K)
dq

= p1(qi) + qip′1(qi) − p2

 n∑
i=1

Ki
− qi

 − p′2

 n∑
i=1

Ki
− qi

 (Ki
− qi) = 0, (13)

or

dπ̂(qi; p̃,K)
dq

= p1(qi)
(
1 +

1
η1(p1(qi))

)
(14)

− p2

 n∑
i=1

Ki
− qi


1 +

1

η2

(
p2

(∑n
i=1 Ki − qi

)) Ki
− qi∑n

i=1 Ki − qi

 = 0.

Clearly, the objective function, equation (12), is concave, so (14) implies that a devia-

tion to a lower price is profitable if and only if limq↓D1(p̃)
dπ̂(q;p̃,K)

dq > 0 or, equivalently,

limp↑p̃
dπ̂(D1(p);p̃,K)

dq > 0. But, clearly,

lim
p↑p̃

dπ̂(D1(p); p̃,K)
dq

< p1(D1(p̃))
(
1 +

1
η1(p1(D1(p̃))

)
− p2

 n∑
i=1

Ki
−D1(p̃)


1 +

1

η2

(
p2

(∑n
i=1 Ki −D1(p̃)

)) Ki∑n
i=1 Ki


because Ki

−q
(∑n

i=1 Ki−q) <
Ki∑n

i=1 Ki . Since p1(D1(p̃)) = p2

(∑n
i=1 Ki

−D1(p̃)
)

= p̃, it follows that a

deviation to a lower price is not profitable if

1
η1(p1(D1(p̃)))

−
1

η2

(
p2

(∑n
i=1 Ki −D1(p̃)

)) Ki∑n
i=1 Ki

< 0 ⇐⇒
η2(p̃)
η1(p̃)

>
Ki∑n

i=1 Ki
, (15)
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or, equivalently, if Assumption 4 holds. If demand in the second period is too much more

inelastic, a deviation will be profitable.

Now consider a deviation to a higher price. If D1(p̃) <
∑

j,i K j, for all i, then no firm’s

deviation to a higher price can have any effect on first- or second-period sales. The firms

that do not deviate can meet all of the demand at the price p̃.

If, on the other hand, D1(p̃) >
∑

j,i K j, for some i, then some firm or firms can deviate

to a higher price and have positive sales; however, even a monopolist would not find such

a deviation profitable when demand is becoming less elastic over time, so no firm will

deviate to a higher price. �

Proof of Proposition 3

Let Ki denote each firm’s capacity, and let p̃ denote the unique uniform price defined by

Dtot(p̃) = D1(p̃) + D2(p̃) =
∑n

i=1 Ki.

Suppose that Assumptions 1 and 2 hold, and suppose that demand becomes more

elastic over time.

First, consider a deviation to a lower price in the first period. When demand becomes

more elastic over time, even a monopolist does not find this profitable, so no firm can

increase its profits by selling at a lower price, even if it raises the second-period price for

a portion of its sales.

Now consider a deviation to a higher price in the first period. If D1(p̃) ≤
∑

j,i K j, then

if firm i deviates to a higher price, it has zero sales in period one and still sells all of its

output at the uniform price in the second pricing period, so its profits are the unchanged.

So, D1(p̃) ≤
∑

j,i K j
∀i, is a sufficient condition for a uniform-price equilibrium to exist.

If, on the other hand, D1(p̃) >
∑

j,i K j, for some i, then, when firm i deviates to a higher

price, its rivals sell all of their output at a price p̃, so its rivals’ profits are unchanged.

In this case, firm i acts as a residual monopolist. We can think of the firm as a residual

monopolist selling to consumers who are not served at price p̃. So, firm i’s problem is to
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choose a price pi > p̃ to maximize

π̂i(pi; p̃,K) = piRD1(pi, p̃,K−i) + p2

(
Ki
− RD1(pi, p̃,K−i)

) (
Ki
− RD1(pi, p̃,K−i)

)
, (16)

or, equivalently, to choose a quantity qi to maximize

π̂i(qi; p̃,K) = qipr
1

qi,
∑
j,i

K j

 + p2

(
Ki
− qi

)
·

(
Ki
− qi

)
, (17)

where pr
1 is the inverse of the residual demand function.

The objective function is concave for both rationing rules, so a price increase is prof-

itable if and only if

lim
pi↓p̃

dπ̂i(qi; p̃,K)
dq

∣∣∣∣∣∣∣
qi=D1(pi)−

∑
j,i K j

< 0. (18)

This implies that profits increase as the firm restricts its output and drives price up above

p̃. This derivative is given by

dπ̂i(qi; p̃,K)
dq

= pr
1(qi) + qi

dpr
1(qi)

dq
− p2

(
Ki
− qi

)
− p′2

(
Ki
− qi

)
(Ki
− qi), (19)

or

dπ̂i(q; p̃,K)
dq

= pr
1(qi)

1 +
qi

pr
1(qi)

dpr
1(qi)

dq

 − p2

(
Ki
− qi

) [
1 + p′2

(
Ki
− qi

) Ki
− qi

p2
(
Ki − qi)] , (20)

so for efficient rationing, which implies that
dpr

1(qi)
dq =

dp1(qi)
dq , it follows that

lim
pi↓p̃

dπ̂(qi; p̃,K)
dq

∣∣∣∣∣∣
qi=D1(pi)−

∑
j,i K j

= p̃

 1
η1(p̃)

D1(p̃) −
∑

j,i K j

D1(p̃)
−

1
η2(p̃)

 . (21)

Hence, if η1(p̃)
η2(p̃) >

D1(p̃)−
∑

j,i K j

D1(p̃) , then no deviation is profitable.
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And, clearly, η1(p̃)
η2(p̃) >

Ki∑
j,i K j is sufficient for a uniform-price equilibrium to exist. That is,

if demand in the first period is too inelastic compared to demand in the second period, a

deviation will be profitable.

Proof of Proposition 4:

Under Assumptions 1, 2 and 5, if a subgame perfect equilibrium exists in which every

firm chooses K∗ units of capacity, then, by Proposition 2, the unique subgame perfect

equilibrium of the pricing subgame is a uniform-price equilibrium. Moreover, for all firm

capacities in a neighborhood of K∗, Assumption 5 and Proposition 2 imply that the unique

subgame perfect equilibrium of the pricing subgame is a uniform-price equilibrium, so

the first-stage profit function for firm i can be written as

Πu(Ki; K−i) =

ptot

∑
j

K j

 − c

 Ki, (22)

where K−i is the capacity of the other firms.

Firm i’s capacity, Ki, maximizes firm i’s profits only if Ki = K∗ is the solution to

∂Πu(Ki; K∗)
∂Ki = ptot((n − 1)K∗ + Ki) − c + p′tot((n − 1)K∗ + Ki)Ki = 0, (23)

which is concave and has a unique solution, Ki(K∗), which is decreasing in K∗. So, (23)

uniquely defines a symmetric solution K∗, and it is easy to see that K∗must be exactly equal

to the Cournot quantity associated with n firms, production cost c, and demand Dtot(p).

So, we have shown that Ki = K∗ is local best response. Next, we show that Ki = K∗ is the

global best response when rival firms choose K∗.

Suppose that Ki < K∗. If a uniform-price equilibrium exists when firm i chooses Ki and

other firms choose K∗, then firm i’s profits are given by (22), and so firm i’s profits at Ki are

strictly lower than at K∗.
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If a uniform-price equilibrium does not exist, then, by Proposition 1, an asymmetric-

price equilibrium must exist. Under Assumption 5, firm i cannot profit by deviating from

the uniform-price equilibrium even if its capacity is K∗, so firm i is not the low-priced firm

in the first period. The only asymmetric-price equilibrium that can exist is one in which

one of firm i’s rivals is the firm that sells at the low price in the first period. There are n− 1

such equilibria because any of the n − 1 firms with capacity K∗ can set the low price in the

first period.

Firm i’s profit in all of these asymmetric-price equilibria is

Πa(Ki; K∗) =
[
p2

(
(n − 1)K∗ + Ki

−D1(p1)
)
− c

]
Ki, (24)

where p1 is the price charged in the first period, and so p1 maximizes

D1(p1)p1 + p2

(
(n − 1)K∗ + Ki

−D1(p1)
) (

K∗ −D1(p1)
)
. (25)

Firm i’s first-order-condition is

p′2
(
(n − 1)K∗ + Ki

−D1(p1)
) (

1 −D′1(p1)
dp1

dKi

)
+ p2

(
(n − 1)K∗ + Ki

−D1(p1)
)
− c = 0. (26)

Because p1 < p2, D(p1) is greater than first-period sales at the uniform price. This implies

that n− 1 firms are each selling less than K∗ −D(p̃)/n in period two, where p̃ is the uniform

price. In this case, ignoring the impact of Ki on p1, firm i’s best response is greater than

K∗ −D(p̃)/n, which implies that Ki > K∗, which is a contradiction. And, as Ki increases, the

optimal first-period price falls (dp1/dKi < 0). Thus, ignoring the impact of Ki on p1 does

not alter the result. Deviating to a lower Ki is still not profitable.

Now suppose that Ki > K∗. Again, the equilibrum of the pricing subgame may be

an asymmetric-price equilibrium or a uniform-price equilibrium. If it is a uniform-price

equilibrium, then, by the same argument, profits are strictly lower.
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If it is an asymmetric-price equilibrium, then it must be an asymmetric-price equilib-

rium in which firm i sets a low price in the first period. This is because an asymmetric-price

equilibrium exists only if a firm wants to deviate from the uniform-price equilibrium, and

equation (15) tells us that a firm wants to deviate only if η2(p)/η1(p) exceeds its share of

capacity. But, by Assumption 5, this happens only if the capacity share exceeds 1/n and

only if firm i’s share of capacity exceeds 1/n.

So, if firm i deviates to Ki > K∗, then its profit must be

max
p1

D1
(
p1

)
p1 + p2

(
(n − 1)K∗ + Ki

−D1
(
p1

)) (
Ki
−D1

(
p1

))
.

Rewriting this as a function of quantity yields

max
q1

p1(q1)q1 + p2

(
(n − 1)K∗ + Ki

− q1

) (
Ki
− q1

)
. (27)

Thus, the firm’s profit in stage one is

max
q1

p1(q1)q1 + p2

(
(n − 1)K∗ + Ki

− q1

) (
Ki
− q1

)
− cKi, (28)

and its maximized profit in stage one is

max
q1,K1

p1(q1)q1 + p2

(
(n − 1)K∗ + Ki

− q1

) (
Ki
− q1

)
− cKi, (29)

which we can rewrite using a change of variables (q2 = Ki
− q1) as

max
q1,q2

p1(q1)q1 − cq1 + p2
(
(n − 1)K∗ + q2

)
q2 − cq2. (30)

Therefore, q1 is the first-period monopoly output. and q2 is the second-period best response

to (n− 1)K∗. But this is not an equilibrium unless p1 < p2 or, equivalently, the Lerner index
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in the first period is smaller than the Lerner index in period 2, or

p′1(q1)q1

p1(q1)
<

p′2
(
(n − 1)K∗ + q2

)
q2

p2
(
(n − 1)K∗ + q2

) (31)

1
|η1(p1)|

<
1

|η2(p2)|
q2

((n − 1)K∗ + q2
(32)

or
η2(p2)
η1(p1)

<
q2

((n − 1)K∗ + q2
, (33)

which violates Assumption 5 because q2 < K∗. So, this is a contradiction. Hence, there

exists no profitable deviation for any firm.

Proof of Proposition 5:

Proof. Let ki
t denote the inventory control for firm i in period t.

Consider an equilibrium in which, on the equilibrium path, firms choose capacity

equal to the sum of the Cournot capacity in each period, qC
1 + qC

2 , then set the Cournot

price, pC
t in each period, and set ki

t = qC
t in each period, so inventory controls are set equal

to the Cournot output in each period.

Off of the equilibrium path, firms set the market-clearing price in the last period. In

the first period, given capacity, firms set the price pi
1 and the inventory control ki

1, which

correspond to the Cournot price and quantity. That is, firms allocate their capacity across

periods one and two as if they were playing a Cournot game in each period with a capacity

constraint across the two periods. Frims set price equal to the Cournot price associated

with the firms’ allocations, and they set the inventory control equal to that allocation.

More formally, firms equate the marginal revenue of output across the two periods.

Clearly, no deviation is profitable in the final period. That is, in every subgame,

firms set the market-clearing price and a non-binding inventory control. This is because

Lemma 2 holds, so any second-period price not equal to the market-clearing prices are not
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sequentially optimal – the presence of inventory controls does not change this result.

Now consider a deviation by firm i to a lower price in the first selling period. Assump-

tion 3 implies that pC
1 < pC

2 , so a small decrease in firm i’s first-period price discontinuously

increases its first-period sales, decreases its second-period sales, and decreases its prof-

its. More generally, if firm i had a profitable deviation to a lower price in period one,

then that price would define an asymmetric-price equilibrium, but by Proposition 2, an

asymmetric-price equilibrium does not exist. So, no deviation to a lower price is profitable.

Suppose, instead, that firm i deviates to a higher price in the first period. Under

the efficient rationing rule, the residual demand function facing the deviating firm is

RDi
1(pi; p − i1, q − i1) = D1(p) − (n − 1)qC

1 . This is because rival firms’ inventory controls,

k j
1 = qC

1 (if any firm deviates in stage zero, then k j
1 equals then adjust Cournot output given

the new capacity constraint.

Since the shadow cost of capacity is c on the equilibrium path (and, more generally, is

equalized across both periods), firm i’s first-period profit function is (D1(pi)−(n−1)qC
1 )(pi
−c)

or, equivalently, (p1((n−1)qC
1 +qi)−c)qi where p1 is the first period inverse demand function.

Thus, the optimal price deviation is given by the first-order condition, which is

p′1
(
(n − 1)qC

1 + q
)

q + p1

(
(n − 1)qC

1 + q
)

= c.

But this implies that q = qC
1 and that the optimal price and quantity are the first-period

Cournot output (or, more generally, the output that equalizes the marginal revenue across

the two periods), so no deviation to a higher price is profitable.

Under proportional rationing, the deviating firm’s residual demand function is

RDi
1(pi; pC

1 , q
C
1 ) = D1(pi)

1 − (n − 1)qC
1

D1(pC
1 )

 =
1
n

D1(pi),

since D1(pC
1 ) = nqC

1 . The shadow cost of capacity is c on the equilibrium path (and, more

generally, is equalized across the two periods), so firm i’s first-period profit function is
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1
n D1(p)(p−c), or, equivalently, p1(nq)−c)q. The first-order condition is p1

(
nq

)
+p′1

(
nq

)
q = c,

which implies that q = qC
1 , so no deviation to a higher price is profitable.

In stage zero, firms choose capacity expecting to equalize marginal revenue across

periods one and two, and it is easy to see that Ki = qC
1 + qC

2 is a best response to K j = qC
1 + qC

2

for all j , i. �

Cournot Model with linear demand and with and without discrimination

First, suppose that p = a − bq; firms have constant cost c; and there are n firms. Cournot

output for each of n firms is (a− c)/b(n + 1), so the total Cournot output is (a− c)n/b(n + 1);

the Cournot price is (a + nc)/(n + 1), and the Cournot profit of each firm is (a− c)2/b(n + 1)2.

Now consider two markets and suppose that firms sell in both markets and that

demands are p1 = a1− b1q1 and p2 = a2− b2q2. Then, if the demands are combined into one

with the same price, demand is qTot = a1/b1 + a2/b2 − p
(

1
b1

+ 1
b2

)
or b1b2qTot = b2a1 + b1a2 −

p (b1 + b2) or p = b2a1+b1a2
b1+b2

−
b1b2

b1+b2
qTot, so Cournot profit is ( b2a1+b1a2

b1+b2
− c)2(b1 +b2)/(b1b2(n+1)2)

or (b2a1 + b1a2 − (b1 + b2)c)( b2a1+b1a2
b1+b2

− c)/(b1b2(n + 1)2) or (b2(a1 − c) + b1(a2 − c))( b2a1+b1a2
b1+b2

−

c)/(b1b2(n + 1)2)

If the markets are separate and firms set different quantities (and prices) in each market,

then the Cournot profits are (a1 − c)2/(b1(n + 1)2) + (a2 − c)2/(b2(n + 1)2) or, equivalently,(
b2(a1 − c)2 + b1(a2 − c)2

)
/(b1b2(n + 1)2).
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