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Self-Similarity
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October 23, 2018

Abstract

We derive bounds on the scope for a confidence band to adapt to the unknown

regularity of a nonparametric function that is observed with noise, such as a regression

function or density, under the self-similarity condition proposed by Giné and Nickl

(2010). We find that adaptation can only be achieved up to a term that depends on

the choice of the constant used to define self-similarity, and that this term becomes

arbitrarily large for conservative choices of the self-similarity constant. We construct a

confidence band that achieves this bound, up to a constant term that does not depend

on the self-similarity constant. Our results suggest that care must be taken in choosing

and interpreting the constant that defines self-similarity, since the dependence of adap-

tive confidence bands on this constant cannot be made to disappear asymptotically.

1 Introduction

Consider the problem of constructing a confidence band for a function that is observed with

noise, such as a regression function or density. It will be convenient to state our results in

the white noise model

Y (t) =

∫ t

0

f(s) ds+ σnW (t), σn = σ/
√
n

∗email: timothy.armstrong@yale.edu.
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which maps to the regression or density setting with n playing the role of sample size (Brown

and Low, 1996; Nussbaum, 1996). Here f : R → R is an unknown function, W (t) is a

standard Brownian motion and Y (t) is observed with σn treated as known. To obtain good

estimates and confidence bands, one must impose some regularity on the function f . This

is typically done by assuming that f is in a derivative smoothness class, such as the Hölder

class FHöl(γ,B), which formalizes the notion that the γth derivative is bounded by B:

FHöl(γ,B) = {f : for all t, t′ ∈ R, |f (bγc)(t)− f (bγc)(t′)| ≤ B|t− t′|γ−bγc}

where bγc denotes the greatest integer strictly less than γ. We are interested in constructing

a confidence band for f on an interval, which we take to be [0, 1]. A confidence band is a

collection of random intervals Cn(x) = Cn(x;Y ) for x ∈ [0, 1] that depend on the data Y

observed at noise level σn = σ/
√
n. Following the standard definition, we say that Cn(·) is a

confidence band with coverage 1− α over the class F if

inf
f∈F

Pf (for all x ∈ [0, 1], f(x) ∈ Cn(x)) ≥ 1− α (1)

where Pf denotes probability when Y (t) is drawn according to f . Although we focus on the

interval [0, 1], to avoid boundary issues, we will assume that Y (t) is observed on the entire

real line (our results will also hold if Y (t) is observed on an open set containing [0, 1]).

Using knowledge of the class FHöl(γ,B), one can construct estimators and confidence

bands that are near-optimal in a minimax sense. In practice, however, it can be difficult to

specify γ and B a priori. This has lead to the paradigm of adaptation: one seeks estimators

and confidence bands that are nearly optimal for all γ and B in some range without a

priori knowledge of γ or B. Such procedures are called “adaptive.” Unfortunately, while

it is possible to construct estimators that adapt to the unknown value of γ and B, (see

Tsybakov, 1998, and references therein), it follows from Low (1997) that adaptive confidence

band construction over derivative smoothness classes is impossible.

To recover the possibility of adaptive confidence band construction, Giné and Nickl (2010)

propose an additional condition known as “self-similarity” (see also Picard and Tribouley,

2000), which uses a constant ε > 0 to rule out functions such that the level of regular-

ity is statistically difficult to detect. Imposing these additional conditions leads to a class

Fself-sim(γ,B, ε) ( FHöl(γ,B). Giné and Nickl (2010) derive confidence bands that are rate-

adaptive to the unknown parameter γ over these smaller classes, and they show that the

set FHöl(γ,B)\ ∪ε>0 Fself-sim(γ,B, ε) of functions ruled out by this assumption (as ε→ 0) is
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small in a certain topological sense. A subsequent literature has further examined the use of

self-similarity and related assumptions in forming adaptive confidence bands (see references

below).

These results provide a promising approach to constructing a confidence band such that

the width reflects the unknown regularity γ of the function f . However, these confidence

bands require a priori knowledge of other regularity parameters, including ε, either explicitly

or through unspecified constants and sequences that must be chosen in a way that depends

on ε in order to guarantee coverage for a given sample size or noise level. Furthermore,

these choices have a first order asymptotic effect on the width of the confidence band, and

making an asymptotically conservative choice by taking ε = εn → 0 leads to a slightly slower

rate of convergence. This has led to some concern about whether self-similarity assumptions

can lead to a “practical” approach to confidence band construction (see, for example, the

discussion on pp. 2388-2389 of Hoffmann and Nickl, 2011): while self-similarity removes

the need to specify the order γ of the derivative, currently available methods still require

specifying other regularity parameters. Can one construct a confidence band that is fully

adaptive without specifying any of the regularity parameters γ, B or ε?

An implication of the results in this paper is that it is impossible to achieve such a goal. In

particular, we show that a confidence band that is adaptive over classes Fself-sim(γ,B, ε) over

a range of γ or B must necessarily pay an adaptation penalty proportional to ε−1/(2γ+1). As a

consequence, adaptive confidence bands in self-similarity classes require explicit specification

of the self-similarity constant ε, and taking ε = εn → 0 requires paying a penalty in the rate.

On the other hand, once ε is given, one can construct a confidence band that is “practical”

in the sense that it is valid for a fixed sample size or noise level in Gaussian settings, and it

does not depend on additional unspecified constants or sequences once ε is given.

To describe these results formally, let In,α,F denote the set of confidence bands that satisfy

the coverage requirement (1). Subject to this coverage requirement, we compare worst-case

length of Cn over a possibly smaller class G. Letting length(A) = supA− infA denote the

length of a set A, let

Rβ(Cn;G) = sup
f∈G

qβ,f

(
sup
x∈[0,1]

length(Cn(x))

)
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where qβ,f denotes the β quantile when Y ∼ f . Following Cai and Low (2004), define

R∗n,α,β(G,F) = inf
Cn(·)∈In,α,F

Rβ(Cn;G)

to be the optimal worst-case length over G of a band with coverage over F , where G ⊆ F .

A minimax confidence band over the set F is one that achieves the bound R∗n,α,β(F ,F).

Given a family F(j) of function classes indexed by a regularity parameter j ∈ J , the goal of

adaptive confidence band construction is to find a single confidence band Cn(·) that is close

to achieving this bound for each F(j), while also maintaining coverage 1− α for each F(j)

(so that Cn(·) ∈ In,α,∪j∈JF(j)). Suppose that a confidence band Cn(·) achieves this goal up to

a factor An(j):

Cn(·) ∈ In,α,∪j∈JF(j) and Rβ(Cn;F(j)) ≤ An(j)R∗n,α,β(F(j),F(j)) all j ∈ J .

We will call such a band adaptive to j up to the adaptation penalty An(j). If the adapta-

tion penalty is bounded as a function of n, we will say that the confidence band is (rate)

adaptive (this corresponds to what Cai and Low (2004) call “strongly adaptive”). Note

that R∗n,α,β(F(j),∪j∈JF(j))/R∗n,α,β(F(j),F(j)) provides a lower bound for the adaptation

penalty of any confidence band Cn(·).
For Hölder classes, R∗n,α,β(FHöl(γ,B),FHöl(γ,B)) decreases at the rate (n/ log n)−γ/(2γ+1).

A confidence band that is rate adaptive to γ would achieve this rate simultaneously for all γ in

some set [γ, γ] while maintaining coverage over ∪γ∈[γ,γ]FHöl(γ,B). However, as noted above,

the results of Low (1997) imply that this is impossible. Indeed, R∗n,α,β(FHöl(γ,B),∪γ′∈[γ,γ]FHöl(γ
′, B))

decreases at the rate (n/ log n)−γ/(2γ+1) for each γ ∈ [γ, γ], so the adaptation penalty for

Hölder classes is of order (n/ log n)γ/(2γ+1)−γ/(2γ+1), which is quite severe.

To salvage the possibility of adaptation, Giné and Nickl (2010) proposed augmenting

the Hölder condition with an auxiliary condition. We will focus here on the version of this

condition based on convolution kernels. Let r = bγc, and let K be a convolution kernel with

finite support, satisfying Condition 1(a) in Giné and Nickl (2010):

K is symmetric, integrable of bounded variation with finite support and∫
RK(u) du = 1,

∫
R u

`K(u) du = 0 all ` = 1, . . . , r.
(2)

The last condition means that K is a kernel of order (at least) r. The kernel estimate of

f(x0) with bandwidth h, given by f̂(x0, h) =
∫

1
h
K((x− x0)/h) dY (x0), has bias

∫
1
h
K((x−

x0)/h)f(x) dx− f(x0). An upper bound on this bias for functions in FHöl(γ,B) follows from

4



standard calculations (see Lemma 3.4):

sup
x0∈[0,1]

∣∣∣∣∫ 1

h
K((x− x0)/h)f(x) dx− f(x0)

∣∣∣∣ ≤ CK,γBh
γ (3)

where CK,γ = 1
(r−1)!

∫
|K(u)|

∫ 1

s=0
|u|γsγ−r(1−s)r−1 ds du for r ≥ 1 and CK,γ =

∫
|K(u)||u|γ du

for r = 0. Giné and Nickl (2010) impose such a bound on bias directly, along with

an analogous lower bound. For K satisfying (2) with r = bγc and h, b1, b2 > 0, let

FGN(γ, b1, b2) = FGN(γ, b1, b2;K,h) denote the set of functions f satisfying Condition 3

of Giné and Nickl (2010): for all h ≤ h,

b1h
γ ≤ sup

x0∈[0,1]

∣∣∣∣∫ 1

h
K((x− x0)/h)f(x) dx− f(x0)

∣∣∣∣ ≤ b2h
γ. (4)

Since we will also be imposing Hölder conditions, which, as noted above, satisfy the upper

bound with b2 = CK,γB, it is natural to make the lower bound proportional to B as well,

by taking b1 = εB for some ε > 0. To this end, let Fself-sim(γ,B, ε) = Fself-sim(γ,B, ε;K,h)

be the set of functions in FHöl(γ,B) such that the lower bound in (4) holds with b1 = εB

for all h ≤ h. By the discussion above, this is equivalent to defining Fself-sim(γ,B, ε;K,h) =

FHöl(γ,B) ∩ FGN(γ, εB,CB;K,h) for any C ≥ CK,γ. We will refer to ε as a “self-similarity

constant,” and we will call the class Fself-sim a “self-similarity class.” Note that, by defining

ε to be (up to a constant) the ratio of the upper and lower bounds on the bias, we are

separating the role of self-similarity and the smoothness constant. In particular, the self-

similarity constant is scale invariant. See Section 2.3 for alternative formulations of the

notion of a “self-similarity constant.”

Our main results are efficiency bounds that have implications for the adaptation penalty

An(γ,B) for confidence bands that adapt to the regularity parameters (γ,B) over a rich

enough set J in the self-similarity class Fself-sim(ε, γ, B). In particular, our results imply the

existence of a constant C∗ > 0 such that, for large enough n, the adaptation penalty for

any confidence band must satisfy the lower bound C∗ε
−1/(2γ+1) < An(γ,B). Furthermore,

we construct a confidence band with adaptation penalty An(γ,B) < C∗ε−1/(2γ+1), where

C∗ < ∞ (the constants C∗ and C∗ do not depend on ε but may depend on the set J over

which adaptation is required). For the lower bounds, we consider separately the cases of

adaptation to B with γ known (i.e. J = γ × [B,B]) and adaptation to γ with B known

(i.e. J = [γ, γ] × B). In both cases, the lower bound gives the same ε−1/(2γ+1) term. We

also consider the possibility of “adapting to the self-similarity constant” and find that that
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this is not possible: if we allow ε to be in some set [ε, ε], then we obtain a lower bound

proportional to ε−1/(2γ+1).

To our knowledge, this paper is the first to derive lower bounds for adaptative confidence

bands under self-similarity conditions. A related question, addressed by Hoffmann and Nickl

(2011) and Bull (2012), is whether the self-similarity conditions themselves can be weakened.

Regarding upper bounds, our results relate to the literature deriving confidence bands under

self-similarity conditions. Giné and Nickl (2010) propose a confidence band that has coverage

over f ∈ Fself-sim(εn, γ, B) for a range of (γ,B), where εn → 0 with the sample size, and

they show that it is adaptive up to a penalty An(γ,B) where An(γ,B) → ∞ slowly with

the sample size n. Our lower bounds show that a penalty of this form is unavoidable if one

takes εn → 0. Bull (2012) and Chernozhukov et al. (2014) propose confidence bands have

coverage over self-similarity classes with ε fixed, and they show that these confidence bands

are fully rate adaptive (i.e. the adaptation penalty An(γ,B) is bounded as n increases).

Checking whether the adaptation penalty for these confidence bands takes the optimal form

C∗ε−1/(2γ+1) for small ε appears to be difficult, and we derive upper bounds using a different

confidence band (although the confidence band we propose builds on ideas in these papers;

see Section 2.4).

2 Adaptation Bounds for Self-Similar Functions

This section states our main results. We first give lower bounds for adaptation, separating

the role of adaptation to the constant B and the exponent γ. We then construct a confidence

band that achieves these bounds, up to a constant that does not depend on the self-similarity

constant ε, simultaneously for all γ and B on bounded intervals. Finally, we provide lower

bounds for an alternative formulation of the problem, and a discussion of our results.

2.1 Lower Bounds

We now give bounds for adaptation over the classes Fself-sim(γ,B, ε). Proofs of the lower

bounds in this section are given in Section 3. We first consider adaptation to the constant

B.

Theorem 2.1. Let γ > 0, 0 < B ≤ B ≤ B and let 0 < 2α < β < 1. Let K be a kernel that

satisfies
∫
K(u)|u|γ du 6= 0 as well as (2). There exist hK depending only on the kernel K as
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well as CK,γ,∗ > 0 and ηK,γ > 0 depending only on K and γ such that, for any ε ≤ ε′ < ηK,γ,

R∗n,α,β

(
Fself-sim(γ,B, ε′;K,hK),∪B′∈[B,B]Fself-sim(γ,B′, ε;K,hK)

)
≥ (1 + o(1))CK,γ,∗min{ε−1B,B}

1
2γ+1

(
σ2
n log(1/σn)

)γ/(2γ+1)
.

We now consider adaptation to γ with B known. To avoid notational clutter, we nor-

malize B to one.

Theorem 2.2. Let 0 < γ < γ ≤ γ ≤ 1 and let 0 < 2α < β < 1. Let K be a nonnegative

kernel that satisfies (2). There exist CK,∗ > 0, hK > 0 and ηK > 0 depending only on the

kernel K such that, for all 0 < ε ≤ ε′ ≤ ηK,

R∗n,α,β

(
Fself-sim(γ, 1, ε′;K,hK),∪γ′∈[γ,γ]Fself-sim(γ′, 1, ε;K,hK)

)
≥ (1 + o(1))CK,∗ε

−1
2γ+1

(
σ2
n log(1/σn)

)γ/(2γ+1)
.

It follows from Theorems 2.1 and 2.2 that adaptive confidence bands must pay an adap-

tation penalty proportional to ε−1/(2γ+1). Furthermore, these results show that one cannot

“adapt to the self-similarity constant:” if we require coverage for ε-self-similarity, then the

adaptation penalty is proportional to ε−1/(2γ+1), even for functions that are ε′-self-similar

with ε′ > ε.

Note that both of these results place additional on the kernel K. Theorem 2.1 imposes the

condition
∫
K(u)|u|γ du 6= 0. Theorem 2.2 requires a positive kernel, and restricts attention

to γ ≤ 1. Such assumptions are helpful in constructing functions that satisfy the lower

bound in (4), since they guarantee that functions that behave like x 7→ |x − x0|γ for some

x0 satisfy this bound. Given that the lower bound in (4) depends heavily on the kernel K

(see the discussion on pp. 1134-1135 of Giné and Nickl, 2010), it appears difficult to proceed

without some conditions along these lines.

2.2 Achieving the Bound

We now turn to upper bounds. Both of these bounds can be achieved simultaneously for

all γ ∈ [γ, γ] and B ∈ [B,B] by a single confidence band, up to an additional term that

depends only on K and the range [γ, γ]. We first state the upper bound, and then describe

the confidence band that achieves it. Let ‖K‖ =
√∫

K(t)2 dt denote the L2 norm of K.
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Theorem 2.3. Let 0 < B < B and 0 < γ < γ be given, and let K be a kernel that satisfies

(4). Let CK = supγ∈(0,∞) CK,γ where CK,γ is the constant defined after (3) (note that CK is

finite). There exists a confidence band Cn(·) and a sequence δn → 0 such that, with probability

converging to one uniformly over ∪γ∈[γ,γ] ∪B∈[B,B] Fself-sim(ε, γ, B), supx∈[0,1] length(Cn(x)) is

bounded by (1 + δn) times

2

(
log n

n

)γ/(2γ+1)(
2σ2‖K‖2

2γ + 1

)γ/(2γ+1)

(C
2

KB/ε)
1/(2γ+1)

[
(2γ)1/(2γ+1) + (2γ)−2γ/(2γ+1)

]
and f(x) ∈ Cn(x) all x ∈ [0, 1].

We will construct a confidence band such that the conclusions of this theorem hold with

Fself-sim(γ,B, ε) replaced by FGN(γ, εB,CKB). Since Fself-sim(γ,B, ε) ⊆ FGN(γ, εB,CKB)

for each γ and B, this gives a stronger result.

Let f̂(x, h) =
∫

1
h
K((t − x)/h) dY (t) and let Khf(x) =

∫
1
h
K((t − x)/h)f(t) dt. Let

∆(h, h′; f) = supx∈[0,1] |Khf(x) −Kh′f(x)| and ∆̂(h, h′) = supx∈[0,1] |f̂(x, h) − f̂(x, h′)|. For

f ∈ FGN(γ, εB,CKB), we can obtain a bound on the bias using ∆(h1, h2). First, note that

CKB[(ε/CK)hγ1 − h
γ
2 ] ≤ sup

x∈[0,1]

|Kh1f(x)− f(x)| − sup
x∈[0,1]

|Kh2f(x)− f(x)| ≤ ∆(h1, h2; f)

≤ sup
x∈[0,1]

|Kh1f(x)− f(x)|+ sup
x∈[0,1]

|Kh2f(x)− f(x)| ≤ CKB[hγ1 + hγ2 ] (5)

where the second and third inequalities are applications of the triangle inequality. For

0 < γ` < γu, define

a(ε, h1, h2, h, γ`, γu) = max
{

(ε/CK) min{(h1/h)γu , (h1/h)γ`} −max{(h2/h)γu , (h2/h)γ`}, 0
}
.

If γ` ≤ γ ≤ γu and a(ε, h1, h2, h, γ`, γu) > 0, then a(ε, h1, h2, h, γ`, γu) ≤ (ε/CK)hγ1−h
γ
2

hγ
so that,

for any f ∈ FGN(γ, εB,CKB),

|Khf(x)− f(x)| ≤ CKBh
γ ≤ CKB

(ε/CK)hγ1 − h
γ
2

a(ε, h1, h2, h, γ`, γu)
≤ ∆(h1, h2; f)

a(ε, h1, h2, h, γ`, γu)
(6)

where the last inequality uses (5).

The upper bound on the bias in Equation (6) allows the construction of a confidence

band for f from a confidence interval [γ̂`, γ̂u] for γ along with confidence bands for Khf(x)

and ∆(h1, h2). If these confidence bands are uniform over the bandwidths h, h1 and h2 as
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well, then we can minimize the width of the band over these bandwidths. Let c(h) and

c(h, h′) be critical values satisfying

|f̂(x, h)−Khf(x)| ≤ c(h) all x ∈ [0, 1], h ∈ (0, h] (7)

and

|∆̂(h, h′)−∆(h, h′; f)| ≤ c̃(h, h′) all h, h′ ∈ (0, h] (8)

with some prespecified probability for all f ∈ ∪γ∈[γ,γ] ∪B∈[B,B] FGN(γ, εB,CKB). Let ĥ, ĥ1

and ĥ2 be data dependent bandwidths that are contained in (0, h] with probability one. It

follows from (6) that, on the event that γ ∈ [γ̂`, γ̂u] and (7) and (8) both hold, the band

f̂(x, ĥ)±

[
c(ĥ) +

∆̂(ĥ1, ĥ2) + c̃(ĥ1, ĥ2)

a(ε, ĥ1, ĥ2, ĥ, γ̂`, γ̂u)

]

contains f(x) for all x ∈ [0, 1]. Since the bandwidths can be data dependent, we can simply

choose them to be approximate minimizers of the length of this band. Let ĥ, ĥ1 and ĥ2 be

chosen so that

c(ĥ) +
∆̂(ĥ1, ĥ2) + c̃(ĥ1, ĥ2)

a(ε, ĥ1, ĥ2, ĥ, γ̂`, γ̂u)
≤ (1 + ηn) inf

h,h1,h2∈(0,h]

[
c(h) +

∆̂(h1, h2) + c̃(h1, h2)

a(ε, h1, h2, h, γ̂`, γ̂u)

]
,

where ηn is a sequence of positive constants converging to zero, and we use the convention

that ∆̂(h1,h2)+c̃(h1,h2)
a(ε,h1,h2,h,γ̂`,γ̂u)

is equal to +∞ if a(ε, h1, h2, h, γ̂`, γ̂u) = 0, so that the infimum is only

over h, h1, h2 such that a(ε, h1, h2, h, γ̂`, γ̂u) > 0. The half-length of this band is then bounded

by

(1 + ηn) inf
h,h1,h2∈(0,h]

[
c(h) +

CKB(hγ1 + hγ2) + 2c̃(h1, h2)

a(ε, h1, h2, h, γ̂`, γ̂u)

]
(9)

on the event that γ ∈ [γ̂`, γ̂u] and (7) and (8) both hold (here we use the upper bound in

(5)).

It remains to choose c(h), c̃(h, h′), γ̂` and γ̂u. By Theorem 2.1 of Dumbgen and Spokoiny
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(2001), there exists a random variable Z (which is finite almost surely) such that

|f̂(x, h)−Khf(x)|

≤
{
Z(log e/(2Rh))−1/2[log log(ee/(2Rh))] + (2 log(1/(2Rh)))1/2

}
/
[√

nh/(σ‖K‖)
]

for all x ∈ [0, 1] and h ∈ (0, h] almost surely, where [−R,R] is the support of the kernel K.

Since the distribution of Z does not depend on f , we can use it to form a critical value.

Let α̃n be a given sequence and let qn denote the 1 − α̃n quantile of Z. Let c(h) be given

by the right hand side of the above display with Z replaced by qn. For the confidence band

for ∆(h, h′; f), let c̃(h, h′) = c(h) + c(h′). It then follows from simple arguments using the

triangle inequality that the event (7) implies (8).

To form a confidence interval for γ, let h̃1,n, h̃2,n and b̃n satisfy the conditions of Theorem

A.1 in Appendix A (for example, we can take h̃1,n = 1/ log n, h̃2,n = 1/(log n)2 and b̃n =

log log log n.). Let γ̂ = −∆̂(h̃1,n, h̃2,n)/ log h̃−1
1,n. Let γ̂` = γ̂ − b̃n/ log h̃−1

1,n and let γ̂u =

γ̂ + b̃n/ log h̃−1
1,n. Then [γ̂u, γ̂`] contains γ with probability approaching one uniformly over

f ∈ ∪B∈[B,B],γ∈[γ,γ]FGN(γ, εB,CKB). Furthermore, if qn increases slowly enough, it can be

shown using the upper bound (9) for the width of this confidence band that the bound in

Theorem 2.3 holds for this band. We provide details of the calculations in Appendix A, as

well as a proof that [γ̂`, γ̂u] is a valid confidence band.

2.3 Alternative Definition of Self-Similarity Constant

We have defined Fself-sim(γ,B, ε;K,h) = FHöl(γ,B) ∩ FGN(γ, εB,CK,γB;K,h), where CK,γ

is a constant that is large enough so that the upper bound in (4) is implied by the Hölder

condition. With this definition, the self-similarity constant ε gives the ratio between the

upper and lower bounds in (4). The coverage condition takes the union of these classes with

ε fixed, so that large values of the Hölder constant require proportionally large values of the

lower bound.

Alternatively, one could fix the lower bound b1 = εB when taking the union of these

classes. This leads to the class F self-sim(γ,B, b1) = FHöl(γ,B) ∩ FGN(γ, b1, CK,γB;K,h) =

Fself-sim(γ,B, b1/B). Of course, this does not change the conclusion of Theorem 2.2 (adap-

tation to γ with B fixed) since the formulation of this problem remains the same. For

adaptation to B, however, we obtain a different formulation, with coverage required over the

class ∪B∈[B,B]F self-sim(γ,B, b1) = FHöl(γ,B) ∩ FGN(γ, b1, CK,γB;K,h) = F self-sim(γ,B, b1) =

Fself-sim(γ,B, b1/B). As the next theorem shows, this leads to a much more negative result:
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adaptation to the Hölder constant is completely impossible.

Theorem 2.4. Under the conditions of Theorem 2.1, there exist hK depending only on the

kernel K as well as CK,γ,∗ > 0 and ηK,γ > 0 depending only on K and γ such that, for any

b1 < ηK,γB,

R∗n,α,β
(
FHöl(γ,B) ∩ FGN(γ, b1, CK,γB;K,hK),FHöl(γ,B) ∩ FGN(γ, b1, CK,γB;K,hK)

)
≥ (1 + o(1))CK,γ,∗B

1
2γ+1

(
σ2
n log(1/σn)

)γ/(2γ+1)
.

2.4 Discussion

The confidence band in Section 2.2 follows Bull (2012) and Chernozhukov et al. (2014) in

constructing an upper bound on bias and using this to widen the confidence interval (see also

Donoho (1994) and Schennach (2015) for applications of this idea in other settings). Our

approach builds on this important work. In contrast to these papers, which derive bounds

on the bias of an estimator with bandwidth selected using Lepski’s method, we bound the

bias directly for each bandwidth and use the width of the resulting confidence band to

choose the bandwidth (although the two approaches are related, since the bound on the bias

ultimately comes from comparisons of estimates at different bandwidths, either explicitly in

our approach, or implicitly through the use of Lepski’s method to choose the bandwidth).

This makes it easier to derive explicit bounds, and it may be needed to get the optimal form

Cε−1/(2γ+1) of the adaptation penalty (Bull (2012) and Chernozhukov et al. (2014) show that

their procedures are adaptive up to a constant, but do not derive how this constant depends

on ε).

An alternative approach to ensuring coverage, used by Giné and Nickl (2010), is under-

smoothing, which uses a bandwidth sequence for which variance slightly dominates bias. As

noted by Bull (2012) and Chernozhukov et al. (2014), this leads to a slightly slower rate

of convergence, so that the confidence band is not fully adaptive. Our lower bounds shed

some light on this question: one must always pay an adaptation penalty of order ε−1/(2γ+1)

when ε is fixed, which means that letting ε = εn → 0 requires paying a penalty in the rate.

In practice, however, for any given finite sample size n, one only achieves coverage over a

class Fself-sim corresponding to some εn > 0; undersmoothed confidence bands choose such

a sequence implicitly. To make this transparent, one can explicitly specify εn, and report a

confidence band that is valid for the given self-similarity constant and noise level, even if the

“asymptotic promise” states that εn → 0 (while our arguments do not formally cover the

11



case where ε = εn → 0, it appears that they could be extended to allow εn → 0 at a slow

enough rate).

There has been some discussion in the literature of whether or how self-similarity condi-

tions can lead to a practical approach to constructing confidence bands. If “practical” means

that the confidence band should not require the user to choose any regularity constants a

priori, then our results show that the answer is “no.” On the other hand, if one sees the self-

similarity constant as an interpretable object, then we need not be so pessimistic. Indeed,

the confidence band we construct is “practical” in the sense that it has valid coverage for

a given noise level without relying on conservative constants or sequences (except, perhaps,

in forming an initial confidence interval for γ; this can be replaced with a priori bounds

[γ, γ], although it appears that a consistent estimate is needed to get the optimal form of

the adaptation penalty).

It is helpful to contrast the role of self-similarity conditions in our setting with regularity

conditions used to construct confidence intervals for the mean of a univariate random vari-

able. To form a non-trivial confidence interval for the mean of a univariate random variable,

one must place some conditions on the tails of the distribution (Bahadur and Savage, 1956).

One approach is to choose some δ > 0, and assume that the 2 + δ moment is bounded

by 1/δ. Subject to this coverage requirement, the optimal width of the confidence interval

does not depend on δ asymptotically: adding and subtracting the 1 − α/2 quantile of a

normal distribution times the sample standard deviation leads to an asymptotically valid

confidence interval regardless of the particular choice of δ > 0. Thus, one can state that

this confidence interval is asymptotically valid and optimal under a bounded 2 + δ moment,

without worrying about the exact choice of δ. Our results show that this is not the case

with self-similarity constants: no single confidence band is asymptotically valid and optimal

under ε-self-similarity for all ε.

3 Proofs of Lower Bounds

This section proves Theorems 2.1, 2.2 and 2.4. To obtain these results, we begin with bounds

on minimax testing.
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3.1 Bounds Based on Minimax Testing

For sets F and G, let dtest(F ,G) denote the maximum difference between minimax power

and size of a test of H0 : F vs H1 : G:

dtest(F ,G) = sup
φ

inf
f∈F , g∈G

|Egφ(Y )− Efφ(Y )|

where Ef denotes expectation under the function f , and the supremum is over all tests φ

based on Y observed at noise level σn (i.e. all measurable functions with range [0, 1]). The

following lemma allows us to obtain bounds on R∗n,α,β using bounds on dtest. The lemma

is essentially Lemma 6.1 in Robins and van der Vaart (2006), with the conclusion of the

argument stated nonasymptotically.

Lemma 3.1. Let α, β and R̃ be given and let G ⊆ F . Suppose that

for some f0 ∈ G, dtest

(
{f0},F ∩ {f : sup

x∈[0,1]

|f(x)− f0(x)| ≥ R̃}

)
< β − 2α.

Then R∗n,α,β(G,F) ≥ R∗n,α,β({f0},F) ≥ R̃.

Proof. Suppose, to get a contradiction, that R∗n,α,β({f0},F) < R̃. Then there exists a

confidence band Cn(·) ∈ In,α,F with R = Rβ(Cn; {f0}) = qβ,f0
(
supx∈[0,1] length(Cn(x))

)
< R̃,

so that

Pf0

(
sup
x∈[0,1]

length (Cn(x)) > R

)
= 1− Pf0

(
sup
x∈[0,1]

length (Cn(x)) ≤ R

)
≤ 1− β. (10)

Let us abuse notation slightly and let Cn denote the set of functions f contained in the

confidence band Cn(·), so that f ∈ Cn iff. f(t) ∈ Cn(t) all t ∈ [0, 1]. Let φ = 1 if there exists a

function f satisfying f ∈ F ∩{f : supx∈[0,1] |f(x)− f0(x)| ≥ R̃} with f ∈ Cn. It is immediate

from the definition of this test and the assumption that Cn(·) ∈ In,α,F that

inf
f∈F∩{f :supx∈[0,1] |f(x)−f0(x)|≥R̃}

Efφ ≥ 1− α (11)

(i.e. the test has minimax power at least 1−α for H1 : F∩{f : supx∈[0,1] |f(x)−f0(x)| ≥ R̃}).
Now consider the level of the test for H0 : {f0}. We have

Ef0φ(Y ) = Ef0φ(Y )I(f0 ∈ Cn) + Ef0φ(Y )I(f0 /∈ Cn) ≤ Ef0φ(Y )I(f0 ∈ Cn) + α
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by the converage condition. The event φ(Y )I(f0 ∈ Cn) implies that Cn contains both f0 and

a function f1 with f1 ∈ F and supx∈[0,1] |f1(x) − f0(x)| ≥ R̃. This, in turn, implies that

supx∈[0,1] length(Cn(x)) ≥ R̃ > R on this event so that, by (10), the probability of this event

under f0 is bounded by 1−β. Thus, by the above display, Ef0φ(Y ) ≤ 1−β+α. Combining

this with (11), it follows that inff∈F∩{f :supx∈[0,1] |f(x)−f0(x)|≥R̃}Efφ−Ef0φ ≥ 1−α−1+β−α =

β − 2α, which contradicts the assumptions of the theorem.

We will use bounds in this testing problem where, for some interval [a, b] ⊆ [0, 1], f0 and

a set of alternative functions fn,1, . . . , fn,Mn are constructed on [a, b] so that f0(x) = 0 for

x ∈ [a, b] and, for each k, fn,k is in the Hölder class with larger constant or smaller exponent,

and supx∈[a,b] |fn,k(x)| = cn, where cn is a sequence converging to zero. This follows arguments

in Lepski and Tsybakov (2000). We then extend these functions so that their behavior on

another interval ensures self-similarity. For adaptation to the Hölder constant B, we can take

the functions to be equal outside of the interval [a, b], so that the result follows immediately.

For the first step, we use the following result, which is immediate from slight modifications

of arguments in Lepski and Tsybakov (2000).

Lemma 3.2. Let a, b, γ, γ, B and B be given with a < b, 0 < γ ≤ γ <∞ and 0 < B ≤ B <

∞, and let κ be a function with κ ∈ FHöl(1, γ) for all γ ∈ [γ, γ], with κ(0) > 0 and with finite

support. Let F̃(γ,B, a, b) denote the class of functions in FHöl(γ,B) that are equal to zero

outside of [a, b]. Let η > 0 be given and let cn(γ,B) = (1−η)C(γ,B, κ) (σ2
n log(1/σn))

γ/(2γ+1)

where C(γ,B, κ) =
[

4
2γ+1

B1/γ
(∫

κ(u)2 du
)−1
] γ

2γ+1
κ(0). Then

lim
n→∞

sup
γ∈[γ,γ],B∈[B,B]

dtest({0}, F̃(γ,B, a, b) ∩ {f : sup
x∈[a,b]

|f(x)| = cn(γ,B)}) = 0.

Proof. Let [−Aκ, Aκ] denote a set containing the support of κ. Following p. 34 of Lepski

and Tsybakov (2000), let C = (1− η)C(γ,B, κ), and let

hn =

(
(1− η)C(γ,B, κ)

Bκ(0)

)1/γ (
σ2
n log(1/σn)

)1/(2γ+1)
,

Mn =

⌊
b− a

2Aκhn

⌋
− 1, xn,k = a+ (2k − 1)Aκhn, k = 1, . . . ,Mn

fk,n(x) = Bhγnκ

(
x− xn,k
hn

)
.

By construction, the support of each fk,n is nonoverlapping with and contained in [a, b].

14



Also, the variance of
∫ b
a
fk,n(x) dY (x) is

B2h2γ
n

∫
κ

(
x− xn,k
hn

)
dx = B2h2γ+1

n

∫
κ(u)2 du =: s2

n.

The problem of testing between H0 : f = 0 and H1 : f ∈ {fn,1, fn,2, . . . , fn,Mn} is therefore

equivalent to the problem of testing

H0 : µ = 0Mn vs H1 : µ ∈ {(sn/σn)e1, . . . , (sn/σn)eMn} (12)

where ek is the kth basis vector in RMn . Since each fk,n is contained in the set F̃(γ,B, a, b)∩
{f : supx∈[a,b] |f(x)| = cn(γ,B)}, bounds in this testing problem translate to bounds on

dtest({0}, F̃(γ,B, a, b) ∩ {f : supx∈[a,b] |f(x)| = cn(γ,B)).

For n larger than a constant that depends only on (b − a)/(2Aκhn), we have Mn ≥
(b− a)/(3Aκhn) so that

2 logMn ≥ 2 log h−1
n − 2 log[(b− a)/(3Aκ)] =

(
4

2γ + 1
+ K̃n(γ,B, κ, a, b)

)
log(1/σn)

where K̃n(γ,B, κ, a, b) is a term with supγ∈[γ,γ],B∈[B,B] K̃n(γ,B, κ, a, b)→ 0. We have

s2
n

σ2
n

=

[
B2

∫
κ(u)2 du

]
h2γ+1
n σ−2

n =

[
B2

∫
κ(u)2 du

](
(1− η)C(γ,B, κ)

Bκ(0)

)(2γ+1)/γ

log(1/σn)

= (1− η)(2γ+1)/γ 4

2γ + 1
log(1/σn).

Thus, for δ smaller than a constant that depends only on γ and γ, we have, for n greater than

some constant that depends only on γ, γ, B, B, κ, a and b, (s2
n/σ

2
n)/(2 logMn) ≤ (1 − δ).

Once this holds, supγ∈[γ,γ],B∈[B,B] dtest({0}, F̃(γ,B, a, b) ∩ {f : supx∈[a,b] |f(x)| = cn(γ,B)) is

bounded by the largest possible difference between level and minimax power for the testing

problem (12) with s2
n/σ

2
n given by 2(1− δ) logMn. This converges to zero by arguments on

pp. 35-36 of Lepski and Tsybakov (2000).

Note that optimizing the function κ for a given γ gives the sharp asymptotic testing

constant in Lepski and Tsybakov (2000). In particular, when applying the lemma with a

fixed γ, we can let κ = κ∗γ be the function that solves the optimal recovery problem (4) in

Lepski and Tsybakov (2000). (Note that this simplifies the expression since
∫
κ∗γ(u)2 du = 1

by definition.)
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Lemma 3.2 gives a bound for testing {0} (the singleton set with the zero function) vs

F̃(γ,B, a, b) ∩ {f : supx∈[a,b] |f(x)| = c}. This is not immediately useful for our purposes,

since these sets contain functions that do not satisfy the lower bound required for inclusion

in FGN(γ, b1, b2;K,h) for any h, γ, b1 and b2. Instead, we will consider testing problems in

which a function that is zero on [a, b] but sufficiently nonsmooth outside of [a, b] is added to

each of these sets. For this, the following lemma will be useful. For a function f : R → R,

let ‖f‖ =
√∫

f(t)2 dt denote the L2 norm of the function f .

Lemma 3.3. For any functions f0 and g0 and sets F and G,

dtest(F + {f0},G + {g0}) = dtest(F ,G + {g0 − f0})

≤ dtest(F ,G) + sup
α

[Φ (‖f0 − g0‖/σn − z1−α)− α] ≤ dtest(F ,G) + ‖f0 − g0‖/σn.

Proof. The first equality follows since f0 can be added or subtracted from Y before perform-

ing any test, so that the supremum over tests φ(Y ) is the same as the supremum over tests

φ(Y − f0). For the first inequality, note that

dtest(F ,G + {g0 − f0}) = sup
φ

inf
f∈F , g∈G

|Eg+f0−g0φ(Y )− Efφ(Y )|

≤ sup
φ

inf
f∈F , g∈G

[|Eg+f0−g0φ(Y )− Egφ(Y )|+ |Egφ(Y )− Efφ(Y )|] .

For any g, the first term is bounded by supφ |Eg+f0−g0φ(Y ) − Egφ(Y )| which, using the

Neyman-Pearson lemma and some calculations (see Example 2.1 in Ingster and Suslina,

2003), can be seen to be equal to

sup
α

[Φ (‖f0 − g0‖/σn − z1−α)− Φ(z1−α)] ≤ ‖f0 − g0‖/σn,

where the inequality follows from Taylor’s theorem, since the derivative of the standard

normal cdf is bounded by 1/
√

2π ≤ 1.

3.2 Constructing Functions in Self-Similarity Classes

We now construct functions contained in the classes FGN(γ, b1, b2;K,h). Let g̃0,γ,1(t) denote

the function that is zero (−∞, 0] and has bγcth derivative equal to tγ−bγc on [0, 1], and bγcth
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derivative equal to 1 on [1,∞):

g̃0,γ,1(t) =


0 t < 0

1
γ(γ−1)...(γ−bγc+1)

tγ 0 ≤ t < 1

1
γ(γ−1)...(γ−bγc+1)

tbγc t ≥ 1

(we define γ(γ − 1) . . . (γ − bγc+ 1) to be equal to 1 when bγc = 0). For t0 ∈ R and A > 0,

let g̃t0,γ,A(t) = Ag̃0,γ,1(t− t0). Given γ, δ, ε and A with 0 < δ < γ ≤ 1 and 0 < ε ≤ 1, let

f̃0,γ,δ,ε,1(t) =


0 t < 0

max{tγ, εtγ−δ} 0 ≤ t < 1

1 t ≥ 1

=



0 t < 0

εtγ−δ 0 < t < t̃

tγ t̃ ≤ t < 1

1 t ≥ 1

where t̃ = t̃(ε, δ) = ε1/δ and let f̃t0,γ,δ,ε,A(t) = Af̃0,γ,δ,ε,1(t − t0) for any t0 ∈ R and A > 0.

Note that g̃t0,γ,A ∈ FHöl(γ,A) and, for 0 < γ ≤ 1, f̃t0,γ,δ,ε,1 ∈ FHöl(γ − δ, A). For γ ≤ 1,

g̃t0,γ,A(t) and f̃t0,γ,δ,ε,A are equal outside of the set [t0, t0 + ε1/δ].

We now show that adding functions in F̃(γ,B, a, b) to these functions gives functions that

are in the class FHöl and FGN for appropriate constants. First, as noted by Giné and Nickl

(2010), the upper bound in (4) holds for an appropriate constant for any Hölder continuous

function. We record this fact in the following lemma.

Lemma 3.4. Let K be a kernel that satisfies (2) with r = bγc. Then, for f ∈ FHöl(γ,B),

h > 0 and any x0, ∣∣∣∣∫ 1

h
K((x− x0)/h)f(x) dx− f(x0)

∣∣∣∣ ≤ CK,γBh
γ

where CK,γ = 1
(r−1)!

∫
|K(u)|

∫ 1

s=0
|u|γsγ−r(1−s)r−1 ds du for r ≥ 1 and CK,γ =

∫
|K(u)||u|γ du

for r = 0.

Proof. In the case where r ≥ 1,∫
1

h
K((x− x0)/h)f(x) dx− f(x0)

=
1

(r − 1)!

∫
K(u)

∫ 1

s=0

[f (r)(x0 + suh)− f (r)(x0)](uh)r(1− s)r−1 ds du (13)
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where we use a Taylor expansion and the assumptions on the kernel (see Equation 1.18, p.

14 in Tsybakov, 2009). If f ∈ FHöl(γ,B), then the absolute value of (13) is bounded from

above by

1

(r − 1)!

∫
|K(u)|

∫ 1

s=0

B|suh|γ−r|uh|r(1− s)r−1 ds du = CK,γBh
γ

as required. For r = 0, we have
∫

1
h
K((x − x0)/h)f(x) dx − f(x0) =

∫
K(u)(f(uh + x0) −

f(x0)) du which is bounded in absolute value by Bhγ
∫
|K(u)||u|γ du = BhγCK,γ for f ∈

FHöl(γ,B).

The next two lemmas show that adding g̃t0,γ,A or f̃t0,γ,δ,ε,A to functions in F̃(γ,B, a, b)

gives Hölder continuous functions that satisfy the self-similarity condition (4).

Lemma 3.5. Let 0 ≤ a < b < t0 < 1 and γ > 0. Let K be a kernel that satisfies∫
K(u)|u|γ 6= 0 as well as (2). There exists a hK,t0,b depending only on t0, b and the kernel

K, as well as a constant CK,γ depending only on K and γ such that for any A > 0, B > 0

and f ∈ F̃(γ,B, a, b),

f + g̃t0,γ,A ∈ FHöl(γ,B + A) ∩ FGN(γ, CK,γA,CK,γ(A+B);K,hK,t0,b)

where CK,γ is defined in Lemma 3.4

Proof. Note that g̃t0,γ,A ∈ FHöl(γ,A) and f ∈ FHöl(γ,B), which implies g̃t0,γ,A + f ∈
FHöl(γ,A+B). This also gives the upper bound in (4) with b2 = Cγ,K(A+B), as required.

Thus, it remains to verify the lower bound in (4) with b1 = CK,γA for an appropriate con-

stant CK,γ > 0. This follows with CK,γ =
∫∞

0
K(u)uγ du/[γ(γ − 1) . . . (γ − bγc + 1)] =∫

K(u)|u|γ du/[2γ(γ − 1) . . . (γ − bγc + 1)] since, for h small enough so that the support of

K is bounded by max{t0 − b, 1− t0}/h,∫
1

h
K((x− t0)/h)[f(x) + g̃t0,γ,A(x)] dx− [f(x) + g̃t0,γ,A(t0)]

=

∫
1

h
K((x− t0)/h)g̃t0,γ,A(x) dx− g̃t0,γ,A(t0) =

A

γ(γ − 1) . . . (γ − bγc+ 1)

∫ ∞
0

K(u)(uh)γ du.

Lemma 3.6. Let 0 ≤ a < b < t0 < 1. Let K be nonnegative kernel that satisfies (2). There

exists a hK,t0,b depending only on t0, b and the kernel K, as well as constants CK and CK

depending only on K such that the following holds.
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For any A > 0, B > 0, ε > 0, 0 < γ − δ < γ ≤ 1 and f ∈ F̃(γ,B, a, b),

f + f̃t0,γ,δ,ε,A ∈ FHöl(γ − δ, A+B) ∩ FGN(γ − δ, CKAε,CK(A+B);K,hK,t0,b)

and

f + g̃t0,γ,A ∈ FHöl(γ,B + A) ∩ FGN(γ, CKA,CK(A+B);K,hK,t0,b).

Proof. The upper bound follows from the same arguments as in the proof of Lemma 3.5,

since f̃t0,γ,δ,ε,A ∈ FHöl(γ − δ, A), and by noting that the constant CK,γ in Lemma 3.4 is

bounded uniformly over 0 ≤ γ ≤ 1. For the lower bound, we have, for h small enough that

the support of K is bounded by max{t0 − b, 1− t0}/h,∫
1

h
K((x− t0)/h)[f(x) + f̃t0,γ,δ,ε,A(x)] dx− [f(t0) + f̃t0,γ,δ,ε,A(t0)]

= A

∫ ∞
x=t0

1

h
K((x− t0)/h) max{(x− t0)γ, ε(x− t0)γ−δ} dx ≥ hγ−δAε

∫ ∞
0

K(u)uγ−δ du,

where the inequality uses the fact that K is nonnegative. This is bounded from below by

AεCKh
γ−δ where CK =

∫∞
0
K(u)u du (again using nonnegativity of K). The lower bound

for f + g̃t0,γ,A follows by noting that the constant CK,γ in Lemma 3.5 is bounded from below

uniformly over 0 < γ ≤ 1.

3.2.1 Testing Bounds for Self-Similar Functions

According to Lemma 3.5, we can obtain bounds for adaptation to the Hölder constant subject

to coverage over self-similarity classes using the classes F̃(γ,B, a, b) + {g̃t0,γ,A}. Similarly,

Lemma 3.6 allows us to obtain bounds for adaptation to the Hölder exponent using the

classes F̃(γ,B, a, b) + {f̃t0,γ,δ,ε,A}. To obtain these bounds, we can use the results from

Section 3.1. We begin with a bound that will be useful for adaptation to the constant.

Lemma 3.7. Let K be a kernel that satisfies (2) and let γ > 0, A > 0, B > 0 and

0 < a < b < t0 < 1. Let

cn =

(
4

2γ + 1

) γ
2γ+1

B
1

2γ+1κ∗γ(0)
(
σ2
n log(1/σn)

)γ/(2γ+1)

where κ∗γ is the function that solves the optimal recovery problem (4) in Lepski and Tsybakov
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(2000). Then, for any η > 0,

lim
n→∞

dtest

(
{g̃t0,γ,A},

{
F̃(γ,B, a, b) + {g̃t0,γ,A}

}
∩ {f : sup

x∈[a,b]

|f(x)| ≥ cn(1− η)}

)
= 0.

Furthermore, if β > 2α,

R∗n,α,β

(
{g̃t0,γ,A}, F̃(γ,B, a, b) + {g̃t0,γ,A}

)
≥ (1 + o(1))cn.

Proof. The first statement is immediate from Lemma 3.2 and Lemma 3.3, along with the

fact that
{
F̃(γ,B, a, b) + {g̃t0,γ,A}

}
∩{f : supx∈[a,b] |f(x)| ≥ cn(1− η)} = F̃(γ,B, a, b)∩{f :

supx∈[a,b] |f(x)| ≥ cn(1 − η)} + {g̃t0,γ,A} (since g̃t0,γ,A(x) = 0 for x ∈ [a, b]). The second

statement is immediate from the first statement and Lemma 3.1.

For adaptation to the exponent, we will use testing bounds for the classes {f̃t0,γ,δn,ε,A} and

F̃(γ,A, a, b) + {g̃t0,γ,A} where δn is a sequence converging to zero. To obtain these bounds

using Lemma 3.2 and Lemma 3.3, we need to bound ‖f̃t0,γ,δn,ε,A− g̃t0,γ,A‖/σn, and to compute

the limit of (σ2
n log(1/σn))

(γ−δn)/(2(γ−δn)+1)
. It turns out that setting δn to decrease at rate

1/ log n gives bounds for both terms.

Lemma 3.8. Let δn = Cn/ log n where Cn = (1− bn)(2γ + 1) log ε−1 with bn = 1/(log n)1/2

and let γ ∈ (0, 1]. Then

‖f̃t0,γ,δn,ε,A − g̃t0,γ,A‖2/σ2
n → 0.

Proof. For any δ ∈ [0, γ),

‖f̃t0,γ,δ,ε,A − g̃t0,γ,A‖2 = A2

∫ ε1/δ

t=0

(εtγ−δ − tγ)2 dt = A2

∫ ε1/δ

t=0

(ε2t2(γ−δ) + t2γ − 2εt2γ−δ) dt

= A2

[
ε2

2(γ − δ) + 1
t2(γ−δ)+1 +

1

2γ + 1
t2γ+1 − 2ε

2γ − δ + 1
t2γ−δ+1

]ε1/δ
t=0

= A2

[
ε2

2(γ − δ) + 1
ε[2(γ−δ)+1]/δ +

1

2γ + 1
ε(2γ+1)/δ − 2ε

2γ − δ + 1
ε(2γ−δ+1)/δ

]
= A2

[
1

2(γ − δ) + 1
ε(2γ+1)/δ +

1

2γ + 1
ε(2γ+1)/δ − 2

2γ − δ + 1
ε(2γ+1)/δ

]
≤ 4A2ε(2γ+1)/δ.
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Plugging in δn = Cn/ log n, dividing by σ2
n and taking logs gives

log
[
‖f̃t0,γ,δn,ε,A − g̃t0,γ,A‖2/σ2

n

]
≤ 2γ + 1

δn
log ε+ log(4A2)− log(σ2/n)

=

(
(2γ + 1) log ε

Cn
+ 1

)
log n+ log(4A2/σ2) =

−bn
(1− bn)

log n+ log(4A2/σ2),

which diverges to −∞, so that exponentiating gives a sequence that converges to zero, as

required.

Lemma 3.9. Let C > 0 and let δn = Cn/ log n where Cn → C. Then

lim
n→∞

(σ2
n log(1/σn))

(γ−δn)/(2(γ−δn)+1)

(σ2
n log(1/σn))γ/(2γ+1)

= exp

(
C

(2γ + 1)2

)
Proof. First, note that

γ − δn
2(γ − δn) + 1

− γ

2γ + 1
= − δn

[2(γ − δn) + 1](2γ + 1)
= − δn

(2γ + 1)2
(1 + o(1)).

Thus,

(σ2
n)

γ−δn
2(γ−δn)+1

− γ
2γ+1 = (σ2

n)
− δn

(2γ+1)2
(1+o(1))

= (1 + o(1))n
δn

(2γ+1)2
(1+o(1))

= exp

(
δn

(2γ + 1)2
(1 + o(1)) log n

)
= exp

(
C

(2γ + 1)2
(1 + o(1))

)
.

For the other term, we have

[log(1/σn)]
γ−δn

2(γ−δn)+1
− γ

2γ+1 = [log σ−1 + (1/2) log n]O(1/ logn)

= exp
(
O(1/ log n) log[log σ−1 + (1/2) log n]

)
which converges to one as n→∞.

Plugging in the constant C = (2γ + 1) log ε−1 used in Lemma 3.8 gives exp
(

C
(2γ+1)2

)
=

ε−1/(2γ+1). With these results in hand, we can state a lemma that bounds the scope for

adaptation to the Hölder exponent.

Lemma 3.10. Let K be a kernel that satisfies (2) and let 0 < γ ≤ 1, ε ∈ (0, 1), A > 0,

B > 0 and 0 < a < b < t0 < 1. Let δn = Cn/ log n where Cn = (1− bn)(2γ + 1) log ε−1 with
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bn = 1/(log n)1/2, as in Lemma 3.8. Let

cn = ε−1/(2γ+1)

[
4

2γ + 1

(∫
κ∗(u)2 du

)−1
] γ

2γ+1

A
1

2γ+1κ∗(0)
(
σ2
n log(1/σn)

)γ/(2γ+1)

where κ∗ is a function in FHöl(1, 1) with support contained in (−1/2, 1/2). Then, for any

η > 0,

lim
n→∞

dtest

(
{g̃t0,γ,A},

{
F̃(γ − δn, A, a, b) + {f̃t0,γ,δn,ε,A}

}
∩ {f : sup

x∈[a,b]

|f(x)| ≥ cn(1− η)}

)
= 0.

Furthermore, if 0 < 2α < β < 1,

R∗n,α,β

(
{g̃t0,γ,A},

{
F̃(γ − δn, A, a, b) + {f̃t0,γ,δn,ε,A}

}
∪ {g̃t0,γ,A}

)
≥ (1 + o(1))cn.

Proof. First, note that, since f̃t0,γ,δn,ε,A(x) = 0 for x ∈ [a, b],
{
F̃(γ − δn, A, a, b) + {f̃t0,γ,δn,ε,A}

}
∩

{f : supx∈[a,b] |f(x)| ≥ cn(1 − η)} = F̃(γ − δn, A, a, b) ∩ {f : supx∈[a,b] |f(x)| ≥ cn(1 − η)} +

{f̃t0,γ,δn,ε,A}. By Lemma 3.3,

dtest

(
{g̃t0,γ,A}, F̃(γ − δn, A, a, b) ∩ {f : sup

x∈[a,b]

|f(x)| ≥ cn(1− η)}+ {f̃t0,γ,δn,ε,A}

)

≤ dtest

(
{0}, F̃(γ − δn, A, a, b) ∩ {f : sup

x∈[a,b]

|f(x)| ≥ cn(1− η)}

)
+ ‖f̃t0,γ,δn,ε,A − g̃t0,γ,A‖/σn.

The second term converges to zero by Lemma 3.8. By Lemma 3.2, the first term will

converge to zero so long as lim supn→∞
cn(1−η)

C(γ−δn,A,κ∗)(σ2
n log(1/σn))(γ−δn)/[2(γ−δn)+1] < 1, which holds

by Lemma 3.9 and the fact that C(γ − δn, A, κ∗) → C(γ,A, κ∗) (note that κ∗ ∈ FHöl(1, γ)

for all γ ∈ (0, 1]). This proves the first statement of the lemma, which immediately gives the

second statement by Lemma 3.1.

3.3 Adaptation to the Hölder Constant

We first state a general result, which we then use to prove Theorems 2.1 and 2.4.

Theorem 3.1. Let γ > 0. Let K be a kernel that satisfies
∫
K(u)|u|γ 6= 0 as well as (2).

There exists a hK depending only on the kernel K, as well as constants CK,γ and CK,γ
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depending only on K and γ such that for any A > 0, B > 0 and 0 < 2α < β < 1,

R∗n,α,β
(
FHöl(γ,A) ∩ FGN(γ, CK,γA,CK,γ(A+B);K,hK),

FHöl(γ,B + A) ∩ FGN(γ, CK,γA,CK,γ(A+B);K,hK)
)

≥ (1 + o(1))

(
4

2γ + 1

) γ
2γ+1

B
1

2γ+1κ∗γ(0)
(
σ2
n log(1/σn)

)γ/(2γ+1)
.

Proof. Let a, b and t0 be any constants that satisfy the conditions of Lemma 3.5 (say,

a = 1/4, b = 1/2 and t0 = 3/4). By Lemma 3.5, we can choose CK,γ and CK,γ such that

F̃(γ,B, a, b) + {g̃t0,γ,A} ⊆ FHöl(γ,B + A) ∩ FGN(γ, CK,γA,CK,γ(A+B);K,hK,t0,b)

and

g̃t0,γ,A ∈ FHöl(γ,A) ∩ FGN(γ, CK,γA,CK,γ(A+B);K,hK,t0,b).

The result now follows from Lemma 3.7.

3.3.1 Proof of Theorem 2.1

Let CK,γ and CK,γ be as given in Theorem 3.1. We apply Theorem 3.1 with Ã = B/2 playing

the role of A in Theorem 3.1 and B̃ = min{Bε−1CK,γ/2, B} − B/2 playing the role of B in

Theorem 3.1. This gives a lower bound so long as ε ≤ ε′ ≤ CK,γ/2. To see this, note that

FHöl(γ, Ã) ∩ FGN(γ, CK,γÃ, CK,γ(Ã+ B̃);K,hK)

⊆ Fself-sim(γ,B,CK,γ/2;K,hK) ⊆ Fself-sim(γ,B, ε;K,hK)

where the last set inclusion holds so long as ε′ ≤ CK,γ/2. Also,

FHöl(γ, Ã+ B̃) ∩ FGN(γ, CK,γÃ, CK,γ(Ã+ B̃);K,hK)

⊆ Fself-sim(γ, Ã+ B̃, CK,γÃ/(Ã+ B̃);K,hK) ⊆ ∪B′∈[B,B]Fself-sim(γ,B′, ε;K,hK)
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where the last set inclusion follows so long as ε ≤ CK,γ/2 since Ã+B̃ = min{Bε−1CK,γ/2, B} ∈
[B,B] where the last step uses ε ≤ CK,γ/2, and

CK,γÃ

Ã+ B̃
=

CK,γB/2

min{Bε−1CK,γ/2, B}
≥

CK,γB/2

Bε−1CK,γ/2
= ε.

Applying Theorem 3.1 gives the lower bound

R∗n,α,β

(
Fself-sim(γ,B, ε′;K,hK),∪B′∈[B,B]Fself-sim(γ,B′, ε;K,hK)

)
≥ (1 + o(1))

(
4

2γ + 1

) γ
2γ+1

B̃
1

2γ+1κ∗γ(0)
(
σ2
n log(1/σn)

)γ/(2γ+1)

The result follows since, so long as ε ≤ CK,γ/2, we have B̃ = min{Bε−1(CK,γ − ε)/2, B −
B/2} ≥ min{Bε−1CK,γ/4, B/2} ≥ min{Bε−1, B} ·min{CK,γ/4, 1/2}.

3.3.2 Proof of Theorem 2.4

We apply Theorem 3.1 with Ã = b1/CK,γ playing the role of A in Theorem 3.1 and B̃ =

B−b1/CK,γ playing the role of B in Theorem 3.1. For b1 small enough so that b1/CK,γ ≤ B,

applying Theorem 3.1 with Ã and B̃ gives a lower bound for the quantity in the display in

the theorem. If b1 is small enough that b1 ≤ CK,γB/2, then B̃ ≥ B/2, and plugging this

into the lower bound obtained using Theorem 3.1 gives the result.

3.4 Adaptation to the Hölder Exponent

We now prove Theorem 2.2. Let a, b and t0 be any constants that satisfy the conditions of

Lemma 3.6 (say, a = 1/4, b = 1/2 and t0 = 3/4). Let δn be the sequence in Lemma 3.10. By

Lemma 3.6 with A = B = 1/2, we have g̃t0,γ,1/2 ∈ FHöl(γ, 1) ∩ FGN(γ, CK/2, CK ;K,hK,t0,b).

For ε′ ≤ CK/2, this set is contained in Fself-sim(γ, 1, ε′;K,hK,t0,b) (and also in Fself-sim(γ, 1, ε;K,hK,t0,b),

since ε ≤ ε′). By Lemma 3.6, we also have F̃(γ, 1/2, a, b) + {f̃t0,γ,δn,2ε/CK ,1/2} ⊆ FHöl(γ −
δn, 1)∩FGN(γ−δn, ε, CK ;K,hK,t0,b). For large enough n, we will have γ−δn ∈ [γ, γ], so that

this set is contained in ∪γ̃∈[γ,γ]

[
FHöl(γ̃, 1) ∩ FGN(γ̃, ε, CK ;K,h)

]
= ∪γ̃∈[γ,γ]

[
Fself-sim(γ̃, 1, ε;K,h)

]
.
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Applying Lemma 3.10 gives the lower bound

R∗n,α,β

(
Fself-sim(γ, 1, ε′;K,hK),∪γ̃∈[γ,γ]

[
Fself-sim(γ̃, 1, ε;K,hK)

])
≥ (2ε/CK)−1/(2γ+1)

[
4

2γ + 1

(∫
κ∗(u)2 du

)−1
] γ

2γ+1

(1/2)
1

2γ+1κ∗(0)
(
σ2
n log(1/σn)

)γ/(2γ+1)
(1 + o(1)).

which gives the result after noting that the terms other than ε−1/(2γ+1) (σ2
n log(1/σn))

γ/(2γ+1)

are bounded away from zero over γ ∈ (0, 1].

A Details for Section 2.2

This appendix provides details for the results in Section 2.2 concerning the confidence band

constructed in that section. In particular, we prove that the conclusions of Theorem 2.3

hold for this confidence band. To this end, we need to show that the upper bound in

Theorem 2.3 holds and [γ̂`, γ̂u] contains γ with probability approaching one uniformly over

f ∈ ∪B∈[B,B],γ∈[γ,γ]FGN(γ, εB,CKB).

A.1 Length of the Confidence Band

This section derives the upper bound on the length of the confidence band. We proceed by

bounding (9). By Theorem A.1 below, we will have max{|γ̂u − γ|, |γ̂` − γ|} ≤ rn with prob-

ability approaching one uniformly over ∪B∈[B,B],γ∈[γ,γ]FGN(γ, εB,CKB) for some sequence

rn → 0. Using this and substituting c̃(h, h′) = c(h) + c(h′) gives the bound (up to the term

(1 + ηn)→ 1) of two times

sup
γ`,γu∈[γ−rn,γ+rn]

inf
h,h1,h2∈(0,h]

[
c(h) +

CKB(hγ1 + hγ2) + 2c(h1) + 2c(h2)

a(ε, h1, h2, h, γ`, γu)

]
where

c(h) =
{
qn(log e/(2Rh))−1/2[log log(ee/(2Rh))] + (2 log(1/(2Rh)))1/2

}
/
[√

nh/(σ‖K‖)
]

for qn a slowly increasing sequence, as defined in Section 2.2.

It turns out that it will suffice to get an upper bound for the infimum by taking h =

hn,γ = [λγ (log n) /n]1/(2γ+1), h1 = h1,n,γ = d1,nhn,γ and h2 = h2,n,γ = d2,nhn,γ where λγ is a

constant depending on γ and d1,n and d2,n are sequences satisfying d2,n →∞, d1,n/d2,n →∞
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and rn log d1,n → 0. For these choices of h, h1 and h2, it can be checked that, letting

c̄n(h) = σ‖K‖(2 log h−1)1/2/
√
nh,

we have cn(hn,γ) = c̄n(hn,γ)(1 + o(1)) where the o(1) term is uniform over γ ∈ [γ, γ], and

similarly for h1,n,γ and h2,n,γ, so long as qn, d1,n and d2,n increase slowly enough. In addition,

we have

sup
γ∈[γ,γ]

sup
γ`,γu∈[γ−rn,γ+rn]

∣∣∣∣a(ε, h1,n,γ, h2,n,γ, hn,γ, γ`, γu)

a(ε, h1,n,γ, h2,n,γ, hn,γ, γ, γ)
− 1

∣∣∣∣→ 0.

(see Lemma A.1 below) and

hγ1,n,γ + hγ2,n,γ
a(ε, h1,n,γ, h2,n,γ, hn,γ, γ, γ)

= hγn,γ(CK/ε)(1 + o(1))

(see Lemma A.2 below). This gives the upper bound[
c̄n(hn,γ) + (C2

KB/ε)h
γ
n,γ + (CK/ε)h

γ
n,γ

2c̄n(h1,n,γ) + 2c̄n(h2,n,γ)

hγ1,n,γ + hγ2,n,γ

]
(1 + o(1))

where the o(1) term is uniform over γ ∈ [γ, γ] and B ∈ [B,B]. Some calculation (Lemma

A.3 below) shows that this is equal to [(log n)/n]γ/(2γ+1) times

σ‖K‖
(

2

2γ + 1

)1/2

λ−1/[2(2γ+1)]
γ + (C2

KB/ε)λ
γ/(2γ+1)
γ

times a term that converges to one uniformly over γ ∈ [γ, γ] and B ∈ [B,B]. Choosing λγ

to minimize this expression for each γ (and noting that the resulting choice of λγ is bounded

away from zero and ∞ as required by the lemmas below) gives the result.

Lemma A.1.

sup
γ∈[γ,γ]

sup
γ`,γu∈[γ−rn,γ+rn]

∣∣∣∣a(ε, h1,n,γ, h2,n,γ, hn,γ, γ`, γu)

a(ε, h1,n,γ, h2,n,γ, hn,γ, γ, γ)
− 1

∣∣∣∣→ 0.

Proof. Note that, once n is large enough so that d1,n ≥ 1 and d2,n ≥ 1, we will have, for any

γ ∈ [γ, γ] and γ`, γu ∈ [γ − rn, γ + rn] with γ` ≤ γu,

(ε/CK)dγ−rn1,n − dγ+rn
2,n ≤ a(ε, h1,n,γ, h2,n,γ, hn,γ, γ`, γu) ≤ (ε/CK)dγ+rn

1,n − dγ−rn2,n
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and a(ε, h1,n,γ, h2,n,γ, hn,γ, γ, γ) = (ε/CK)dγ1,n − d
γ
2,n. Thus, uniformly over γ ∈ [γ, γ],

a(ε, h1,n,γ, h2,n,γ, hn,γ, γ`, γu)

a(ε, h1,n,γ, h2,n,γ, hn,γ, γ, γ)
≤

(ε/CK)dγ+rn
1,n − dγ−rn2,n

(ε/CK)dγ1,n − d
γ
2,n

=
drn1,n − (ε/CK)−1d−rn2,n (d2,n/d1,n)γ

1− (ε/CK)−1(d2,n/d1,n)γ
→ 1,

using the fact that drn1,n = exp(rn log d1,n) → 1 and drn2,n = exp(rn log d2,n) → 1. The result

follows from this and a similar argument for the lower bound.

Lemma A.2.

hγ1,n,γ + hγ2,n,γ
a(ε, h1,n,γ, h2,n,γ, hn,γ, γ, γ)

= hγn,γ(CK/ε)(1 + o(1))

where the o(1) term is uniform over all γ ∈ [γ, γ].

Proof. Once h2,n,γ/h1,n,γ = d2,n/d1,n is small enough,

hγ1,n,γ + hγ2,n,γ
a(ε, h1,n,γ, h2,n,γ, h, γ, γ)

=
(d1,nhn,γ)

γ + (d2,nhn,γ)
γ

(ε/CK)dγ1,n − d
γ
2,n

= hγn,γ(CK/ε)
1 + (d2,n/d1,n)γ

1− (CK/ε)(d2,n/d1,n)γ

and the last term converges to one uniformly over γ ∈ [γ, γ] as required.

Lemma A.3. Let hn,γ be given above with λγ bounded away from zero and infinity uniformly

over γ ∈ [γ, γ]. Then

c̄n(hn,γ) = (1 + o(1))σ‖K‖
(

2

2γ + 1

)1/2 [
log n

n

]γ/(2γ+1)

λ−1/[2(2γ+1)]
γ

where the o(1) term is uniform over γ ∈ [γ, γ]. In addition, c̄n(h1,n,γ)/h
γ
1,n,γ → 0 and

c̄n(h2,n,γ)/h
γ
2,n,γ → 0 uniformly over γ ∈ [γ, γ].
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Proof. We have

c̄n(hn,γ) = σ‖K‖
(

2 log h−1
n,γ

nhn,γ

)1/2

= σ‖K‖

(
2 log

[
λ−1
γ n/ log n

]1/(2γ+1)

n [λγ (log n) /n]1/(2γ+1)

)1/2

= σ‖K‖λ−1/[2(2γ+1)]
γ

(
2

2γ+1
[log n− log λγ − log log n]

n [(log n) /n]1/(2γ+1)

)1/2

= σ‖K‖λ−1/[2(2γ+1)]
γ

(
2

2γ + 1

)1/2
(

log n

n [(log n) /n]1/(2γ+1)

)1/2(
[log n− log λγ − log log n]

log n

)1/2

= σ‖K‖λ−1/[2(2γ+1)]
γ

(
2

2γ + 1

)1/2(
log n

n

)γ/(2γ+1)(
[log n− log λγ − log log n]

log n

)1/2

.

The last term converges to one uniformly over λγ bounded away from zero and infinity. For

the second part of the lemma, it follows from similar calculations that c̄n(h1,n,γ)/h
γ
1,n,γ is

equal to

σ‖K‖(d1,nλγ)
−(1+2γ)/[2(2γ+1)]

(
2

2γ + 1

)1/2(
[log n− log(d1,nλγ)− log log n]

log n

)1/2

,

which converges to zero uniformly over γ ∈ [γ, γ], and similarly for c̄n(h2,n,γ)/h
γ
2,n,γ.

A.2 Estimating γ

The following theorem shows that the estimator γ̂ given in Section 2.2 converges at the

required rate uniformly over ∪γ∈[γ,γ] ∪B∈[B,B] Fself-sim(ε, γ, B).

Theorem A.1. Let h̃1,n and h̃2,n be sequences satisfying h̃1,n → 0, h̃2,n → 0, h̃1,n/h̃2,n →∞
and such that h̃2,nn

δ → ∞ for all δ > 0. Let γ̂ = − log ∆̂(h̃1,n,h̃2,n)

log h̃−1
1,n

. Then, for any ε > 0,

h > 0, 0 < γ < γ <∞ and 0 < B < B <∞ and any sequence b̃n →∞, we have |γ̂ − γ| ≤
b̃n/ log h̃−1

1,n with probability approaching one uniformly over ∪γ∈[γ,γ] ∪B∈[B,B] Fself-sim(ε, γ, B).

Proof. Note that, by (5), we have, letting d̃n = h̃1,n/h̃2,n,

h̃γ1,nCKB[ε/CK − d̃−γn ] ≤ ∆(h̃1,n, h̃2,n; f) ≤ h̃γ1,nCKB[1 + d̃−γn ]
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which implies

− γ log h̃−1
1,n + log{CKB[ε/CK − d̃−γn ]} ≤ log ∆(h̃1,n, h̃2,n; f) ≤ −γ log h̃−1

1,n + log{CKB[1 + d̃−γn ]}

=⇒ −γ +
log{CKB[ε/CK − d̃−γn ]}

log h̃−1
1,n

≤ log ∆(h̃1,n, h̃2,n; f)

log h̃−1
1,n

≤ −γ +
log{CKB[1 + d̃−γn ]}

log h̃−1
1,n

=⇒ − log{CKB[ε/CK − d̃−γn ]}
log h̃−1

1,n

≥ − log ∆(h̃1,n, h̃2,n; f)

log h̃−1
1,n

− γ ≥ − log{CKB[1 + d̃−γn ]}
log h̃−1

1,n

.

For large enough n, we will have, for all γ ∈ [γ, γ], B ∈ [B,B],

max
{
| log{CKB[1 + d̃−γn ]}|, | log{CKB[ε/CK − d̃−γn ]}|

}
≤ b̃n − 1

so that ∣∣∣∣∣− log ∆(h̃1,n, h̃2,n; f)

log h̃−1
1,n

− γ

∣∣∣∣∣ ≤ b̃n − 1

log h̃−1
1,n

.

By Theorem 2.1 of Dumbgen and Spokoiny (2001),

|∆̂(h̃1,n, h̃2,n)−∆(h̃1,n, h̃2,n; f)| ≤ C
[
(log h̃−1

1,n)1/2/(nh̃1,n)1/2 + (log h̃−1
2,n)1/2/(nh̃2,n)1/2

]
≤ 2C(log h̃−1

2,n)1/2/(nh̃2,n)1/2

with probability approaching one, where C is a constant that depends only on σ and

‖K‖. Using the fact that | log a − log b| ≤ |a − b|/min{a, b} along with the lower bound

∆(h̃1,n, h̃2,n; f) ≥ h̃γ1,nCKB[ε/CK − d̃−γn ] ≥ h̃γ1,nCKB[ε/CK − d̃
−γ
n ] ≥ h̃γ2,nCKB[ε/CK − d̃

−γ
n ],

this gives

| log ∆̂(h̃1,n, h̃2,n)− log ∆(h̃1,n, h̃2,n; f)| ≤
2C(log h̃−1

2,n)1/2/(nh̃2,n)1/2

h̃γ2,nCKB[ε/CK − d̃
−γ
n ]− 2C(log h̃−1

2,n)1/2/(nh̃2,n)1/2

so long as the denominator on the right hand side is positive. For large enough n, we will

have h̃γ2,nCKB[ε/CK− d̃
−γ
n ]/2 ≥ 2C(log h̃−1

2,n)1/2/(nh̃2,n)1/2 (using the fact that h̃2,n decreases

more slowly than any power of n), so that the right hand side will be bounded by 1. Thus,

with probability approaching one uniformly over the relevant set of functions f , we have

|γ̂ − γ| ≤ b̃n/ log h̃−1
1,n as required.
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