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Abstract

We characterize revenue maximizing mechanisms in a common value environment
where the value of the object is equal to the highest of bidders’ independent signals.
If the object is optimally sold with probability one, then the optimal mechanism is
simply a posted price, with the highest price such that every type of every bidder is
willing to buy the object. A sufficient condition for the posted price to be optimal
among all mechanisms is that there is at least one potential bidder who is omitted
from the auction. If the object is optimally sold with probability less than one, then
optimal mechanisms skew the allocation towards bidders with lower signals. This can
be implemented via a modified Vickrey auction, where there is a random reserve price
for just the high bidder. The resulting allocation induces a “winner’s blessing,” whereby
the expected value conditional on winning is higher than the unconditional expectation.
By contrast, standard auctions that allocate to the bidder with the highest signal (e.g.,
the first-price, second-price or English auctions) deliver lower revenue because of the
winner’s curse generated by the allocation rule. Our qualitative results extend to more
general common value environments where the winner’s curse is large.

Keywords: Optimal auction, common values, maximum game, posted price, reserve
price, revenue equivalence.
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1 Introduction

Whenever there is interdependence in bidders’ willingness to pay for a good, each bidder
must carefully account for that interdependence in determining how they should bid. A
classic motivating example concerns wildcatters competing for an oil tract in a first- or
second-price auction. Each bidder drills test wells and forms his bids based on his sample.
Richer samples suggest more oil reserves, and are associated with higher equilibrium bids.
Since the high bidder wins the auction, winning means that the other bidders’ samples were
relatively poor. The expected value of the tract conditional on winning is therefore less than
the interim expectation of the winning bidder conditional on just his signal. This winner’s
curse results in more bid shading relative to a naïve model in which bidders do not account
for selection and treat interim values as ex post values.

This paper studies the design of revenue maximizing auctions in settings where there
is the potential for a strong winner’s curse. The prior literature on optimal auctions has
largely focused on the case where values are private, meaning that each bidder’s signal
perfectly reveals his value and there is no interdependence. A notable exception is Bulow
and Klemperer (1996), who generalized the revenue equivalence theorem of Myerson (1981)
to models with interdependent values. They gave a condition on the form of interdependence
under which revenue is maximized by an auction that, whenever the good is sold, allocates
the good to the bidder with the highest signal. We will subsequently interpret the Bulow-
Klemperer condition as saying that the winner’s curse effect is not too strong, which roughly
corresponds to a limit on how informative high signals are about the value. Aside from this
work, the literature on optimal auctions with interdependent values and independent signals
appears to be quite limited.1,2

Our contribution is to study optimal auctions in the opposite case where the winner’s
curse is quite strong, while maintaining the hypothesis that signals are independent. For
our main results, we focus on a simple model where the bidders have a pure common value
for the good, the bidders receive independent signals, and the common value is equal to

1Myerson (1981) includes a case where the bidders have interdependent and additively separable values,
meaning that a bidder’s value is a function of their own signal plus some function of the others’ signals. In
addition, the gains from trade between the seller and a given bidder are assumed to only depend on that
bidder’s private type. In contrast, we study environments where the gains from trade depends on all signals.
Bulow and Klemperer (2002) study the additively separable case where the gains from trade depend on all
the signals. If the winner’s curse is strong, they conclude that an inclusive posted price is optimal among
mechanisms that always allocate the good.

2A great deal of work on auction design with interdependent values has focused on the case where signals
are correlated. For example, Milgrom and Weber (1982) show that when signals are affiliated, English
auctions generate more revenue than second-price auctions, which in turn generate more revenue than first-
price auctions. Importantly, this result follows from correlation in signals, and not interdependence per
se.
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the highest signal. We refer to this as the maximum signal model. For this environment,
the winner’s curse in a standard auction is quite severe. Indeed, there is a precise sense in
which this is the environment that has the largest winner’s curse: As shown by Bergemann,
Brooks and Morris (2017; 2019), among all type spaces with the same distribution of a
common value, this is the one that minimizes expected revenue in the first-price auction.
It also minimizes revenue in second-price and English auctions if one restricts attention to
affiliated-values models as in Milgrom and Weber (1982). Collectively, we refer to these as
standard auctions. Beyond its theoretical interest, the maximum signal model captures the
idea that the most optimistic signal is a sufficient statistic for the value. This would be the
case if the bidders’ signals represented different ways of using the good, e.g., possible resale
opportunities if the bidders are intermediaries,3 or possible designs to fulfill a procurement
order, and the winner of the good will discover the best use ex post.

This model was first studied by Bulow and Klemperer (2002). They showed that the
second-price auction has a “truthful” equilibrium in which each bidder submits a bid equal
to their signal. This bid is less than the interim expected value for every type except the
highest. Indeed, the bid shading is so large that the seller can increase revenue simply by
making the highest take-it-or-leave-it offer that would be accepted by all types. We refer
to this mechanism as an inclusive posted price. In the equilibrium of the inclusive posted
price mechanism, all bidders indicate they are willing to purchase the good and are equally
likely to be allocated the good. Thus, winning the good conveys no information about the
value and hence the winner’s curse is completely eliminated. Importantly, while Bulow and
Klemperer showed that the posted price generates more revenue than standard auctions,
their analysis left open the possibility that there were other mechanisms that generated even
more revenue, even in the case when the good is required to be always sold.4

Indeed, revenue is generally higher if the seller exercises monopoly power and rations the
good when values are low. This is the case in the private value model as established by
Myerson (1981), and it continues to be the case here. A simple way to do so would be to
set an exclusive posted price, i.e., a posted price at which not all types would be willing to
buy. This however turns out to be far from optimal: A high-signal bidder would face less

3One could also assume that resale takes place between the bidders, the values will exogenously become
complete information, and the winner of the good can make a take-it-or-leave-it offer to one of the other
bidders. Such a model of resale has been used by Gupta and LeBrun (1999) and Haile (2003) to study
asymmetric first-price auctions. The recent work of Carroll and Segal (2019) also studies optimal auction
design in the presence of resale. They argue that a worst-case model of resale involves the values becoming
complete information among the bidders, with the high-value bidder having all bargaining power.

4Bulow and Klemperer (2002) establish the optimality of the posted price among mechanisms that always
allocate the good when the bidders’ common value is equal to the sum of their signals, and the distribution of
signals exhibits a decreasing hazard rate, see Proposition 3. Campbell and Levin (2006) provide additional
arguments for the revenue dominance of the posted price mechanism in related common value environments.
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competition in a “tie break” if the others’ signals are low, thus again inducing a winner’s
curse, and depressing bidders’ willingness to pay.

A first key result presents a simple mechanism that improves on any exclusive posted
price. In this mechanism, the good is allocated to all bidders with equal likelihood if and only
if some bidder’s signal exceeds a given threshold. This allocation can be implemented with
the following two-tier posted price: The bidders express either high interest or low interest
in the good. If at least one bidder expresses high interest, the good is offered to a randomly
chosen bidder, and otherwise, the seller keeps the good. When a given bidder is offered the
good, it is offered at the low price if all other bidders expressed low interest, and it is offered
at a high price if at least one other bidder expresses high interest. In equilibrium, bidders
express high interest if and only if their signal exceeds a threshold, and prices are set such
that conditional on being offered the good, bidders want to accept. Curiously, rather than
inducing a winner’s curse, this mechanism induces a winner’s blessing : if a bidder has a low
signal, and therefore expressed low interest, being allocated the good indicates that others’
signals must be relatively high. This leads to a higher posterior expectation of the value,
and hence greater willingness to pay even if one had expressed low interest.

While this mechanism does better than any exclusive posted price, it is possible to go
even further. The optimal mechanism, it turns out, induces a winner’s blessing for every type.
This is achieved by an allocation that—for any realized profile of signals—favors bidders with
lower signals. We discuss a number of ways to implement the optimal mechanism, but one
method is to use a generalization of the two-tier pricing, which is a two-tier random reserve:
The high-signal bidder is allocated the good only if his signal exceeds a random reserve price,
in which case he pays the maximum of that price and the others’ bids. Otherwise, the good
is allocated to one of the other bidders the highest of the others’ bids. A concern is that the
extra hurdle for the high bidder would induce bidders to underreport so as to avoid being
the high bidder. The trade-off is that with a lower report, the bidder would lose surplus from
the event that he still makes the high bid but that bid is less than the realized reserve price.
The reserve price distribution is tuned just so that bidders are indifferent to underreporting.
Indeed, this temptation to underreport is the key to deriving a tight bound on the seller’s
revenue that proves that this mechanism is optimal.

Whenever the optimal two-tier random reserve mechanism allocates the good with prob-
ability one, the mechanism reduces to an inclusive posted price. This occurs whenever the
lowest possible value is sufficiently large. Alternatively, a sufficient condition for an inclu-
sive posted price to be optimal is that there is at least one bidder who is omitted from the
auction. Moreover, if we restrict attention to auctions that allocate the good with probabil-
ity one, then the inclusive posted price is always the revenue maximizing mechanism. We
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thus strengthen the foundation for posted prices introduced in earlier work of Bulow and
Klemperer (2002) by proving optimality in the maximum signal model.

The proof that the two-tier random reserve mechanism is optimal utilizes a novel argu-
ment. Standard optimal mechanism design in the additively separable case, as in Myerson
(1981), relies on the well-known result that an allocation is implementable if and only if each
bidder’s interim allocation probability is weakly increasing in his signal. Even when interim
monotonicity fails to characterize implementability, it is sometimes possible to show that the
optimal allocation subject to only local incentive compatibility is also implementable, as it
is the case in the model of Bulow and Klemperer (1996). By contrast, in the maximum sig-
nal model, interim monotonicity is neither necessary nor sufficient for implementability, and
the optimal allocation subject to the local relaxation only is not incentive compatible. Our
novel argument involves using non-local incentive constraints to establish a lower bound on
bidder surplus. We then construct a mechanism that attains a corresponding upper bound
on revenue.

Finally, we argue that our key qualitative results extend beyond the pure common-value
maximum signal model to a wide range of interdependent-value environments that exhibit
increasing information rents. In the case of common values, this condition captures the idea
that higher signals are substantially more informative about the value than lower signals.
We describe natural mechanisms with exclusion that generate more revenue than either the
inclusive or exclusive posted price mechanisms. We also describe implementable allocations
that generate even more revenue under weak conditions. It remains an open question whether
posted prices continue to be optimal among efficient mechanisms in the presence of increasing
information rents. We suspect that the pattern of binding incentive constraints at the optimal
mechanism could in general be quite complicated. This presents a major challenge for future
research on optimal auctions in general interdependent value settings.

The rest of this paper proceeds as follows. Section 2 describes the model. Section 3 shows
how to increase revenue by moving from standard auctions that generate winner’s curse to
posted price mechanisms that generate winner’s blessing. Section 4 proves the optimality of
these mechanisms. Section 5 generalizes our analysis to the case of increasing information
rents. Section 6 concludes.

5



2 Model

2.1 Environment

There areN bidders for a single unit of a good, indexed by i ∈ N = {1, . . . , N}. Each bidder i
receives a real signal si ∈ S = [s, s], where s ≥ 0, about the good’s value. The bidders’ signals
si are independent draws from an absolutely continuous cumulative distribution F with
strictly positive density f . We adopt the shorthand notation that F−i (s−i) = ×j 6=iFj (sj)

and F k (x) = (F (x))k for positive integers k. The bidders all assign the same value to the
good, which is the maximum of the signals:

v (s1, . . . , sN) , max {s1, . . . , sN} = max s.

We frequently use the shorter expression max s which selects the maximal element from the
vector s = (s1, ..., sN). In Section 5, we discuss corresponding results for general common
value environments.

The distribution of signals, F, induces a distribution G(x) , FN (x) over the maximum
signal from N independent draws. We denote the associated density by:

g (x) , N FN−1 (x) f (x) .

The bidders are expected utility maximizers, with quasilinear preferences over the good
and transfers. Thus, the ordering over pairs (q, t) of probability q of receiving the good and
net transfers t to the seller is represented by the utility index:

u (s, q, t) = v (s) q − t.

2.2 Direct Mechanisms

We will model a seller who can commit to a mechanism and select the equilibrium played by
the bidders. For much of our analysis, and in particular for constructing bounds on revenue
and bidder surplus in Theorem 3, we will restrict attention to direct mechanisms, whereby
each bidder simply reports his own signal, and the set of possible message profiles is SN .
This is without loss of generality, by the revelation-principle arguments as in Myerson (1981).
The probability that bidder i receives the good, given signals s ∈ SN , is qi (s) ≥ 0, with∑N

i=1 qi (s) ≤ 1. Bidder i’s transfer is ti (s), and the interim expected transfer is denoted by:

ti (si) =

∫
s−i∈SN−1

ti (si, s−i) f−i (s−i) ds−i.
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Bidder i’s surplus from reporting a signal s′i when his true signal is si is

ui (si, s
′
i) =

∫
s−i∈SN−1

qi (s
′
i, s−i) v (si, s−i) f−i (s−i) ds−i − ti (s′i) ,

and ui (si) = ui (si, si) is the payoff from truthtelling. Ex-ante bidder surplus is

Ui =

∫ s

si=s

ui (si) f (si) dsi,

and total bidder surplus is

U =
N∑
i=1

Ui.

A direct mechanism {qi, ti}Ni=1 is incentive compatible (IC) if

ui (si) = max
s′i

ui (si, s
′
i) ,

for all i and si ∈ S. This is equivalent to requiring that reporting one’s true signal is a Bayes
Nash equilibrium. The mechanism is individually rational (IR) if ui (si) ≥ 0 for all i and
si ∈ S.

2.3 The Seller’s Problem

The seller’s objective is to maximize expected revenue across all IC and IR mechanisms.
Under a mechanism {qi, ti}Ni=1, expected revenue is

R =
N∑
i=1

∫
si∈S

ti (si) f (si) dsi.

Since values are common, total surplus only depends on whether the good is allocated, not
the identity of the bidder that receives the good. Moreover, the surplus depends only on the
value v(s) = maxi {si}, and not the entire vector s of signals. Let us thus denote by qi (v)

the probability that the good is allocated to bidder i, conditional on the value being v, and
let

q (v) =
N∑
i=1

qi (v) (1)
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be the corresponding total probability that some bidder receives the good. Total surplus is
simply

TS =

∫ s

v=s

v q (v) g (v) dv,

and revenue is obviously R = TS − U .

3 Countering the Winner’s Curse

We start by reviewing the behavior of standard auctions. We then progressively improve the
mechanism and allocation to arrive at the optimal mechanism. Optimality is proven in the
next section.

3.1 Standard Auctions and the Winner’s Curse

First-price, second-price, and English auctions all admit monotonic pure-strategy equilibria,
which result in the highest-signal bidder being allocated the good. For ease of discussion, we
describe the outcome in terms of the second-price auction. A bidder with a signal si forms
his interim expectation of the common value E[v (si, s−i) |si ], and then submits a bid bi(si).
In the maximum signal model, the signal si is a sharp lower bound on the ex post value of
the object: given any signal si, bidder i knows that the true value of the object has to be in
the interval [si, s]. Thus, the interim expectation of the bidder i satisfies

E[v (si, s−i) |si ] > si,

for all si < s. Yet, given the interim expectation, in the second-price auction, there is an
equilibrium in which each bidder i bids only

b∗i (si) = si.

Thus, even though the winning bidder only pays the second-highest bid, the equilibrium bid
is equal to the lowest possible realization of the common value given the interim information
si.

In the monotonic pure-strategy equilibrium b∗, the bidder with the highest signal submits
the highest bid. Thus, the signal si which provided a sharp lower bound on the common
value at the bidding stage, becomes a sharp upper bound conditional on winning. In fact, it

8



coincides with the true common value:

E[v (si, s−i) |si, sj ≤ si, ∀j 6= i ] = si.

The expectation of the value conditional on knowing that si is the highest signal is simply
si!

The resulting allocation is:

qi (s) =

 1
|argmax sj | if si = max s;

0 otherwise.

Thus, the equilibrium of the second-price auction exhibits a winner’s curse: For a realized
profile of signals s, it is the bidder with the highest signal who receives the good. The winner
therefore learns that his signal was more favorable than all the other signals. In turn, each
bidder lowers his equilibrium bid from the interim estimate of the value E[v (si, s−i) |si ] all
the way to the lowest possible value in the support of this posterior probability distribution,
namely si. In this sense, the winner’s curse is as large as it can possibly be. In Bergemann,
Brooks, and Morris (2019), we show that there is revenue equivalence between the first-price,
second-price and the English auction in the specific common value setting, and hence the
same winner’s curse arise across these standard auction formats.

3.2 Inclusive Posted Prices and Zero Winner’s Curse

Given the strength of the winner’s curse and the extent of bid shading, it is natural to ask
whether other mechanisms can mitigate the winner’s curse and thus increase revenue. Bulow
and Klemperer (2002) establish that a simple but very specific posted price mechanism can
attain higher revenue than the standard auctions with their monotonic equilibria.

In a posted price mechanism with price p, the object is allocated with uniform probability
among those bidders who declared their willingness to pay p to receive the object. The
specific posted price suggested by Bulow and Klemperer (2002) is the expectation of the
highest of N − 1 independent draws from the signal distribution F :

pI ,
∫ s

x=s

x d
(
FN−1 (x)

)
. (2)

We refer to pI as the inclusive posted price. To wit, pI is exactly equal to the interim
expectation that a bidder i with the lowest possible signal realization si = s has about
the common value of the object. The price pI is the maximal price with the property that
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every type is willing to buy the object. Thus, all types are “included” in the allocation.
The inclusive posted price can also be interpreted as the expectation of a particular Vickrey
price. That is, for a random bidder to receive the object, he would have to pay the highest
signal among the competing bidders, max s−i, the expectation of which is simply pI .

Proposition 1 (Inclusive Posted Price).
The inclusive posted price yields a higher revenue than the monotonic pure strategy equilib-
rium of any standard auction.

Bulow and Klemperer (2002), Section 9, established the revenue ranking regarding the
English auction. Bergemann, Brooks, and Morris (2019) established a revenue equivalence
result for the maximum signal model that establishes the above proposition. The source of
the revenue ranking can be explained as follows. Revenue under the inclusive posted price is
equal to the expectation of the highest of N − 1 independent and identical signals from F .
By contrast, the revenue in the standard auctions is equal to the expectation of the second
order statistic of N signals. The former must be greater than the latter, since the inclusive
posted price revenue can be obtained by throwing out one of N draws at random and then
taking the highest of the remaining realizations, whereas the standard auction revenue is
obtained by systematically throwing out the highest of the N draws, and then taking the
highest remaining.

Note that the allocation induced by the inclusive posted price assigns an equal probability
to every bidder i: qi (s) ≡ 1/N . As a result, the event of winning conveys no additional
information about the value of the object to any of the winning bidders. Thus, in sharp
contrast to the standard auctions, a bidder’s expected value conditional on receiving the
object is the same as the unconditional expectation, i.e., there is zero winner’s curse.

Proposition 1 establishes that the inclusive posted price generates higher revenue than
the standard auction. An alternative perspective to understand this result is by using the
revenue equivalence theorem. Specifically, using local incentive constraints, one can solve
for the transfers in terms of the allocation to conclude that expected revenue is equal to the
expected virtual value of the buyer who is allocated the good. Bulow and Klemperer (1996)
derive the virtual value for a general interdependent values model. When the bidders have
a common value that is a monotonic and differentiable function v (s) of all bidders’ signals,
bidder i’s virtual value is:

πi (si, s−i) = v(si, s−i)−
1− F (si)

f(si)

∂v(si, s−i)

∂si
. (3)

The first term on the right-hand side is simply the common value of the object, i.e., the
social surplus generated by allocating the good. The second term is the inverse hazard rate,
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which is a measure of the relative number of higher types who gain an information rent by
being able to mimic type si. The final term is the sensitivity of the value to bidder i’s signal.
Clearly there must be some component of this form, for if the value does not depend on
bidder i’s signal, then bidder i has no valuable private information and should not obtain an
information rent.

In the maximum signal model, equation (3) simplifies to:

πi (si, s−i) =

 max s, if si < max s;

max s− 1−F (si)
f(si)

, if si = max s.
(4)

Now the partial derivative of the valuation function with respect to the signal si is simply
the indicator function I{s|si=max s} for whether bidder i has the highest signal or not. A
significant implication is that only the high signal bidder receives an information rent, equal
to the inverse hazard rate (1− F (si)) /f(si), so that all bidders other than the highest-
signal bidder have a higher virtual utility. In consequence, revenue is higher the lower is
the probability that the high-signal bidder is allocated the good. Relative to the standard
auctions, the inclusive posted price attains higher revenue because it allocates the object
uniformly across all bidders, whereas the standard auctions give it to the high signal bidder
with probability one. 5

3.3 Exclusive Auctions and the Winner’s Blessing

A notable feature of the inclusive posted price is that the object is awarded with uniform
probability for every type profile realization s. In particular, this implies that the object is
awarded even if the virtual value of some bidder, or even the average virtual value across all
bidders is negative for a given signal profile s.

A reasonable first attempt at raising revenue would be to post a price p that is strictly
higher than the inclusive posted price pI . By definition then, the price p would exceed the
interim expectation of the bidder with the lowest possible signal si = s. Any such price p
would then induce some threshold r ∈ (s, s], so that every bidder i with a signal si ≥ r

would accept the offer and all types below would reject the offer. The resulting assignment
probabilities would be:

qi (s) =

 1
|{j|sj≥r}| , if si ≥ r;

0, otherwise.
(5)

5Note that the value function in the maximum signal is not differentiable, so that the theorem of Bulow
and Klemperer (1996) does not apply. It is, however, straightforward to extend their theorem to cover the
maximum signal model.
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Consequently, we refer to the threshold r as the exclusion level. The posted price that
implements the exclusion level r is the expectation of the common value for the type si = r

conditional on receiving the good:

pE ,

∫
{s−i|max s−i≥r}max {r, s−i} qi (r, s−i) dF−i (s−i)∫

{s−i|max s−i≥r} qi (r, s−i) dF−i (s−i)
.

By extension, we refer to a posted price pE > pI as an exclusive posted price. But in contrast
to the inclusive posted price, the resulting allocation again tilts the allocation towards the
higher signal bidders, si > r, by excluding the low signal bidders, si < r. Thus, while the
exclusive posted price does ration the object, it reintroduces a winner’s curse and a results
in depressed willingness to pay.

As we realized with the inclusive posted price, revenue would be higher if we reallocated
the good to lower signal bidders. For example, revenue would be higher if were instead to
implement a uniform allocation conditional on assigning the object:

qi (s) =

 1
N

if max s ≥ r;

0 otherwise.
(6)

This mechanism achieves the same exclusion level r and hence maintains the same ex post
surplus, but it attains a higher revenue.

One way to effect this allocation is with a two-tier posted price (pL, pH). Every bidder
is asked to express a high interest or a low interest in the good. If all bidders express low
interest, then the seller keeps the good. If at least one bidder expresses high interest, then all
bidders are offered a chance to purchase, with equal probability. When bidder i is offered the
good, the associated price is either a low price pL if all other bidders expressed low interest
or a high price pH > pL if at least one other bidder expresses high interest. The specific
prices are

pL , r,

and

pH ,

∫ s
r
x d
(
FN−1(x)

)
1− FN−1(r)

.

Thus, pH is the expected value of a bidder with signal si ≤ r conditional on knowing that
the highest signal among the remaining N − 1 bidders weakly exceeds r.

We claim that there is an equilibrium of this mechanism where bidders express high
interest if si ≥ r and express low interest otherwise. Bidders always agree to buy the
good at the offered price, whatever that may be. In fact, this strategy is optimal even if a
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bidder i were to know whether max s−i is less than or greater than r, i.e., whether all of the
other bidders express low interest or at least one expresses high interest. If we condition on
max s−i < r, there is effectively a posted price of r, and the value is at least the price if and
only if si ≥ r. It is a best reply to express high interest and accept the low price when si ≥ r

and to express low interest otherwise. If we condition on max s−i ≥ r, then expressing high
or low interest result in the same outcome, which is a probability 1/N of being offered the
good at the high price. The expected value across all s−i is always at least pH , since the
true value is the maximum of si and s−i. Thus, one best reply is to express high interest if
si ≥ r and express low interest otherwise.

Note that this mechanism implements the same ex post total surplus as the exclusive
posted price, but low-signal bidders are more likely to receive the good for every signal
profile. As a result, information rents are reduced relative to the exclusive posted price, and
we have proven the following.

Proposition 2 (Two-Tier Posted Price).
The two-tier posted price (pL, pH) yields a weakly higher revenue than the exclusive posted
price that implements the same exclusion level.

Note that the two-tier posted price again induces a winner’s blessing for types si < r:
being allocated the good implies that max s−i ≥ r. Thus, we again see the relationship
between higher revenue and the presence of a winner’s blessing.

3.4 The Optimal Mechanism

The inclusive posted price or the two-tier posted price depress the probability of winning
to 1/N for the bidder with the highest signal whereas he would have won with probability
one in any standard auction, such as the second-price auction. The natural next question is
whether there exist mechanisms that reduce the high-signal bidder’s probability of winning
even further, below the uniform probability 1/N . We might think this is impossible, based on
intuition from the private-value case where higher types must have higher interim allocations.
With interdependent values, however, it is possible to skew the allocation against the high-
signal bidder, as we now explain.

As a segue, let us first observe that there is another implementation of the allocation (6)
induced by the two-tier posted price: bidders report their signals, the good is allocated with
uniform probability if the highest report exceeds r, and any bidder who is allocated the good
makes the Vickrey payment max {r, s−i}. We refer to this as a two-tier reserve mechanism:
the high bidder faces a non-trivial reserve price r, whereas the low-signal bidders face no such
reserve price (although they are still not allocated the good if all of the bids are below r). It
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is straightforward to verify that this mechanism is ex-post incentive compatible and ex-post
individually rational, i.e., even if the realized signals are complete information among the
bidders.

Now consider the following modification of this revelation game. The object is allocated
if at least one of the bidders reports a signal exceeding the threshold r. We give the bidder i
with the highest reported signal the priority to purchase the object, but we ask him to pay
a posted price that is the maximum of the reported signals of the others, and an additional
random variable x. Thus, bidder i faces a posted price of max {x, s−i}. The distribution of
x is denoted by H(x) and has support in [r,∞]. In particular, it is possible for this reserve
price to be infinite, in which case it is impossible for the high bid to meet the threshold.
Bidder i is allocated the good at the realized price if it is less than his reported signal.
Otherwise, one of the other bidders is offered the good at a price equal to the highest bid.

Note that the allocation and transfer rules reduce to the two-tier posted price mechanism
when H puts probability 1/N on x = r and probability (N − 1) /N on x =∞, in which case
we have already showed that truthful bidding is an equilibrium. However, if we choose H
to put less probability on x = r, then the allocation is effectively skewed towards low-signal
bidders, as long as bidding is truthful. This begs the question, for which distributions H is
truthful bidding an equilibrium?

Note that for any H, at a truthful strategy, bidders have no incentive to overreport:
This can only result in being allocated the good at a price that exceeds the value. Also,
reporting any signal less than r is equivalent to reporting a signal of r. Thus, for incentive
compatibility, it suffices to check that a bidder i with signal si ≥ r does not want to misreport
s′i ∈ [r, si]. To that end, consider the surplus of such a bidder, assuming that all other bidders
report truthfully. This is

ui (si, s
′
i) =

∫ s′i

x=r

(si − x) d
(
H (x)FN−1 (x)

)
+

∫ s

x=s′i

(max {si, x} − x)
1−H (x)

N − 1
d
(
FN−1 (x)

)
.

The derivative of this expression with respect to s′i is

(si − s′i)
[
d
(
H (s′i)F

N−1 (s′i)
)
− 1−H (s′i)

N − 1
d
(
FN−1 (s′i)

)]
.
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So, a sufficient condition for downward deviations to not be attractive is that the term inside
the brackets is non-negative for all s′i, which reduces to

dH (x)

1−NH (x)
≥ 1

N − 1

d
(
FN−1 (x)

)
FN−1 (x)

.

If we solve the above inequality as an equality, with the boundary condition H (r) = 0, we
obtain

H(x) ,
1

N

(
1−

(
F (r)

F (x)

)N)
. (7)

With this particular distribution for the high-bidder’s reserve, we refer to this game form
as the two-tier random reserve mechanism. We have just verified that this mechanism is
incentive compatible. In fact, bidders are indifferent between truthful reporting and all
downward misreports.

Note that by construction H(r) = 0, so that a bidder with the highest signal close to the
exclusion threshold r is unlikely to receive the object. Moreover, even the bidder with the
highest possible signal s receives the object with probability less than 1/N since

H(s) =
1

N
(1− FN(r)) <

1

N
.

We have therefore completed the proof of the following result:

Proposition 3 (Two-Tier Random Reserve).
The two-tier random reserve mechanism yields a higher revenue than the two-tier posted
price that implements the same exclusion level.

The two-tier random reserve mechanism has the feature that the resulting interim prob-
ability qi(si) of receiving the object is constant in the signal si. Specifically,

qi(si) = FN−1(si)H(si) +

∫ s

x=si

(
1−H(x)

N − 1

)
d
(
FN−1(x)

)
=

1− FN(r)

N
.

The interim allocation probability is the product of the probability that the object is allocated
to some bidder and the probability that bidder i receives the object conditional on it being
allocated at all. The two-tier random reserve in fact favors bidders with lower signals. In
particular, the ex post probability qi(s) of receiving the object in the two-tier random reserve
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mechanism can be computed to be:

qi (s) =


H (max s) if si > sj ∀j 6= i and si ≥ r;

1
N−1 (1−H (max s)) if si < max s and max s ≥ r;

0 otherwise.

Conditional on the realized signal profile, high-signal bidders are strictly less likely to receive
the good. Thus, conditioning on winning results in a higher expected value for all types. In
effect, the random reserve price turns the winner’s curse into a winner’s blessing. This results
in an increased willingness-to-pay in equilibrium, and an increase in the revenue generated
by the auction.

We note that the two-tier random reserve mechanism, while interim incentive compatible,
is not ex-post incentive compatible anymore, as was the inclusive or two-tier posted price.
If more than one bidder reported a signal si that exceeded the threshold r, then ex-post the
high signal bidder would prefer to report a lower signal. Since the report of the other bidder
would already guarantee that the object is allocated, a downward report would increase the
probability of receiving the object, and lower the expected price to be paid.

Note that because the interim allocation is constant, the interim transfer must be constant
as well. The highest type s is certain that the value is s and by construction is indifferent to
all downward deviations, so that the payoff sqi (si)− ti (si) must be independent of si. But
since qi (si) is constant, ti (si) must be constant as well. Thus, another implementation of
this allocation is that every bidder pays the constant interim transfer as an entry fee, after
which they make their reports, and the optimal allocation is implemented.

Until now, we have treated the exclusion threshold r as a fixed parameter. Thus, there
is actually a one-dimensional family of two-tier random reserve mechanisms, indexed by r.
At the extreme where r = 0, the associated allocation reduces to the uniform probabilities
implemented by the inclusive posted price mechanism.

The revenue maximizing threshold can be understood as follows. Expected revenue is the
difference between total surplus and bidder surplus. The effect of increasing the exclusion
threshold on total surplus is immediate: surplus is lost from the good not being allocated
when the value is r. Next, since a bidder receives positive surplus only if he has the highest
signal, bidder surplus in the two-tier random reserve mechanism is:

U =

∫ s

s=r

∫ s

x=r

(s− x) d
(
H (x)FN−1 (x)

)
dF (s)

=

∫ s

x=r

1

N

1− F (x)

F (x)

(
FN (x)− FN (r)

)
dx,
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where we have simply plugged in the definition (7). Thus, the effect of an increase in r on
U is

dU

dr
= − 1

N

∫ s

x=r

1− F (x)

F (x)
dx
d
(
FN (r)

)
dr

.

The overall effect of increasing r on revenue is therefore

dR

dr
= −ψ (r)

d
(
FN (r)

)
dr

,

where

ψ (r) , r −
∫ s

x=r

1− F (x)

F (x)
dx. (8)

Note that ψ (r) is continuous and strictly increasing in r, and it is positive when r is suf-
ficiently large. As a result, revenue is single peaked in the reserve price, and the optimal
reserve price r∗ is the smallest r such that ψ (r) ≥ 0.

Thus, we have established that the two-tier random reserve mechanism with threshold r∗

generates more revenue than standard auctions, inclusive and exclusive posted prices, and
two-tier posted prices. Indeed, our main result is that it is revenue maximizing among all
incentive compatible and individually rational mechanisms:

Theorem 1 (Optimality of Two-Tier Random Reserve).
The two-tier random reserve mechanism with cutoff r∗ maximizes revenue across all IC and
IR direct mechanisms.

When the gains from the bias toward low-signal bidders is small relative to the cost of
restricting supply, the inclusive posted prices indeed emerges as the optimal mechanism.

Corollary 1 (Optimality of Inclusive Posted Price).
The inclusive posted price maximizes revenue across all IC and IR direct mechanisms if and
only if ψ(s) ≥ 0.

We will also show that the inclusive posted is always the optimal mechanism if one
restricts attention to mechanisms where the object has always to be allocated. We refer to
this class of mechanism as must-sell mechanisms.

Theorem 2 (Must-sell Optimality of Inclusive Posted Prices).
If the object is required to be allocated with probability one, then the inclusive posted price
maximizes expected revenue across all IC and IR mechanisms.

We prove these theorems in the next section. We emphasize that the arguments are
novel and require the explicit consideration of global incentive constraints. In particular,
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the optimality of the posted price within must-sell mechanisms does not follow from the
arguments reported in Bulow and Klemperer (2002).6

4 Optimal Mechanisms

The broad strategy in proving Theorems 1 and 2 is to show that the allocations described
above attain an upper bound on revenue, where that upper bound is derived using a subset
of the bidders’ incentive constraints. Before developing this argument, we briefly review
existing approaches and explain why they are inadequate for our purposes.

4.1 Local Versus Global Incentive Compatibility

The standard approach in auction theory is to use local incentive constraints to solve for
transfers in terms of allocations, and rewrite the expected revenue in terms of the expected
virtual value of the bidder who is allocated the good. Note that the formula for the virtual
value (4) tells us what revenue must be as a function of the allocation if local incentive
constraints are satisfied, but it does not tell us which allocations can be implemented subject
to all incentive constraints.

In the case studied by Bulow and Klemperer (1996) where the winner’s curse effect is
weak, the virtual value is pointwise maximized by allocating the good to the bidder with
the highest signal (that is, whenever allocating the good is better than withholding it).
One can then appeal to existing characterizations of equilibria of English auctions with
interdependent values à la Milgrom and Weber (1982) to show that such an allocation is
implementable. This proof strategy will not work in the maximum signal model. As we have
argued, the bidder with the highest signal always has the lowest virtual value, so pointwise
maximization of πi (s) would never allocate the object to the high-signal bidder. Moreover,
it is straightforward to argue that such an allocation would not be incentive compatible. If
it were, then the highest type would receive the good with probability zero, and the lower
types with probability one. The high type must therefore be paid by the mechanism an
amount equal to the positive surplus that could be obtained by pretending to be the lowest
type. But this surplus must be strictly greater than that obtained by the lowest type, thus
tempting the lowest type to misreport as the highest.

6As we mentioned earlier in Footnote 1, Bulow and Klemperer (2002) establish the optimality of the
inclusive posted price mechanism among efficient mechanisms in a different environment (the “wallet game”)
where the value is the sum of independent signals. This case is “additively separable,” so that the usual
monotonicity condition on the interim allocation is necessary and sufficient for implementability. However,
the maximum signal model is not additively separable, and therefore necessitates new arguments.
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When the pointwise maximization approach fails, one needs to explicitly include global
incentive constraints in the optimization problem, in addition to the local incentive con-
straints that are implicit in the revenue equivalence formula. In the additively separable
case, e.g., where the value is the sum of the bidders’ signals, global incentive constraints
are equivalent to the interim allocation being non-decreasing. But in general interdependent
value models, interim monotonicity is neither necessary nor sufficient for incentive compati-
bility, and we know of no general characterization of which allocations are implementable in
these environments.7

Thus, we must find a new way of incorporating global constraints into the seller’s opti-
mization problem. The key question is: which global constraints pin down optimal revenue?
The analysis of the preceding section suggests that the critical constraints might be those
corresponding to downward deviations: Each bidder accrues information rents only when
he is allocated the good and has the highest signal. Thus, the seller wants to distort the
allocation to lower signal bidders as much as possible. But if the allocation is too skewed,
then bidders would want to deviate by reporting strictly lower types. Moreover, all of the
downward constraints are binding in the putative optimal allocations, thus suggesting that
they all must be used to obtain a tight upper bound on revenue.

Note that this intuition is in some sense the opposite of what happens in the private-value
auction model, in which the optimal auction typically discriminates in favor of higher types.
An important difference is that when values are not common, it is not just whether but also
to whom the good is allocated that determines total surplus.

7The following two allocation rules—within the maximum signal model—show that interim monotonicity
of the allocation is neither necessary nor sufficient for incentive compatibility. Consider the case of two
bidders, i = 1, 2 who have binary signals si ∈ {0, 1}, which are equally likely. We consider two allocation
rules for bidder 1, q1, as given by one of the following tables. The allocation for bidder 2 is constant across
signal realizations and is simply q2 = 0.

q1 s2
0 1

s1 1 1 0
0 1 1

q1 s2
0 1

s1 1 0 1
0 1 0

The allocation on the left is not interim monotone in s1 but is easily implemented by charging a price of s2
whenever the good is allocated to bidder 1. The allocation on the right is interim monotone but cannot be
implemented: The low type must pay an interim transfer which is at least that of the high type in order to
prevent the high type from misreporting. But this implies the low type would prefer to misreport, to pay
weakly less and get the good when it is worth 1 rather than 0. These examples could be made efficient by
adding a third bidder, who receives the good when it would not be allocated to bidder 1, with zero transfer.
Note that the third bidder’s allocation probability is independent of their signal. As a result, the example
can be made symmetric simply by randomly permuting the roles of the bidders.
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4.2 Proof of Theorems 1 and 2

We now begin our formal proof. Consider the following one-dimensional family of deviations
in the direct mechanism: instead of reporting the true signal si, report a random s′i ∈ [s, si]

that is drawn from the truncated prior F (s′i) /F (si). We will refer to this deviation as
misreporting a redrawn lower signal. Obviously, for a direct mechanism to be incentive
compatible, bidders must not want to misreport in this manner.

Let us proceed by explicitly describing the incentive constraint associated with misre-
porting a redrawn lower signal. If a bidder with type si reports a randomly redrawn lower
signal, their surplus is

1

F (si)

∫ si

x=s

ui (si, x) f (x) dx

=
1

F (si)

(∫ si

x=s

ui (x) f (x) dx+

∫ si

x=s

(si − x) qi (x) g (x) dx

)
,

where we recall that qi (v) defined in (1) is the probability that the good is allocated to bidder
i conditional on the value being v. This formula requires explanation. When a bidder of type
si misreports a lower signal x, his surplus is higher than what the misreported type receives
in equilibrium, since whenever max {x, s−i} < si, the true value is higher than if bidder
i’s signal had truly been x. The second integral on the second line sums these differences
across all realizations of the highest value of bidders other than i. But because the signal is
redrawn from the prior, the expected difference in surplus across all misreports is simply the
expected difference of (max {si, x} − x), where x is the highest of N draws from the prior
F , and when bidder i is allocated the good.

Thus, a necessary condition for a mechanism to be incentive compatible is that, for all i,

ui (si) ≥
1

F (si)

(∫ si

x=s

ui (x) f (x) dx+

∫ si

x=s

(si − x) qi (x) g (x) dx

)
. (9)

Of course, if this constraint holds for each i, then it must hold on average across i, so that

u (y) ≥ 1

F (y)

(∫ y

x=s

u (x) f (x) dx+ λ (y)

)
, (10)

where

u (y) =
N∑
i=1

ui (y)

and
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λ (y) =

∫ y

x=s

(y − x) q (x) g (x) dx.

If we hold fixed q (v), we can derive a lower bound on bidder surplus (and hence an upper
bound on revenue) by minimizing ex-ante bidder surplus subject to (10). Our first main
result, Theorem 3, asserts that this minimum is attained by the function

u (y) =

∫ y

x=s

λ (x)
f (x)

(F (x))2
dx+

λ (y)

F (y)
,

which solves (10) as an equality when u (s) = 0. In fact, u is the pointwise smallest interim
utility function that is non-negative and satisfies (10). Indeed, if the constraint held as a
strict inequality at some y, then we could decrease u at that point without violating the
constraint, which lowers bidder surplus. But the right-hand side is monotonic in u, so that
this modification actually relaxes the constraint even further. As a result, the lower bound
is attained by an indirect utility function so that all of the redrawn lower signal constraints
are binding.

Thus, if a direct mechanism implements q, total bidder surplus must be at least

U ,
∫ s

y=s

u (y) f (y) ds =

∫ s

y=s

∫ s

x=y

1− F (x)

F (x)
dx q (y) d

(
FN (y)

)
dy, (11)

and revenue is therefore at most

R , TS − U =

∫ s

v=s

ψ (v) q (v) dFN (v) dv, (12)

where ψ (v) was defined in (8) as the virtual value from allocating the good when the value
is v. This result is stated formally as follows:

Theorem 3 (Revenue Upper Bound).
In any auction in which the probability of allocation is given by q, bidder surplus is bounded
below by U and expected revenue is bounded above by R.

Proof of Theorem 3. It remains to prove formally that u is the lowest u that satisfies (10).
Define the function operator

Γ (u) (y) =
1

F (y)

(∫ y

x=s

u (x) f (x) dx+ λ (y)

)
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on the space of non-negative integrable utility functions. From the argument in the text, it is
clear that any average indirect utility function u that is induced by an IC and IR mechanism
must satisfy (10), which is equivalent to u ≥ Γ (u). It is easily verified that u is a fixed point
of Γ. For then

Γ (u) (y) =
1

F (y)

(∫ y

x=s

(∫ x

y=s

λ (y)
f (y)

(F (y))2
dy +

λ (x)

F (x)

)
f (x) dx+ λ (y)

)
=

1

F (y)

(
F (y)

∫ y

x=s

λ (x)
f (x)

(F (x))2
dx+ λ (y)

)
= u (y) ,

where the second line comes from Fubini’s theorem.
We claim that u is the lowest non-negative indirect utility function that satisfies this

constraint. This is a consequence of the following observations: First, Γ is a monotonic
operator on non-negative increasing functions, so by the Knaster-Tarski fixed point theorem,
it must have a smallest fixed point. Second, if Γ has another fixed point û that is smaller
than u, then it must be that û (s) ≤ u (s) for all s, with a strict inequality for some positive
measure set of s. Moreover, it must be that u (x)−û (x) goes to zero as x goes to s (and hence,
cannot be constant for all x). Let ‖·‖ denote the sup norm, and suppose that ‖Γ (u)− Γ (û)‖
is attained at s. Then

‖Γ (u)− Γ (û)‖ =
1

F (s)

∣∣∣∣∫ s

x=s

(u (x)− û (x)) f (x) dx

∣∣∣∣
≤ 1

F (s)

∫ s

x=s

|u (x)− û (x)| f (x) dx

<
1

F (s)

∫ s

x=s

‖u− û‖ f (x) dx

= ‖u− û‖ .

This contradicts the hypothesis that both u and û are fixed points of Γ.
Finally, if û is any function that satisfies (10) but is not everywhere above u, then consider

the sequence
{
uk
}∞
k=0

where u0 = û and uk = Γ
(
uk−1

)
for k ≥ 1. Given the base hypothesis

that u0 ≥ Γ (u0) = u1 and that Γ is a continuous affine operator, and given that u ≥ 0

implies that Γ (u) ≥ 0 as well, we conclude that
{
uk
}∞
k=0

is monotonically decreasing, and
therefore must converge pointwise to a limit that is a fixed point of Γ, which is not uniformly
above u. This implies that there exists a fixed point that is below u, again a contradiction.
Thus, u must be the lowest fixed point of Γ.
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We can now complete the proofs of our main theorems.

Proof of Theorems 1 . If the seller can withhold the good, then we can derive an upper bound
on optimal revenue by maximizing the bound (12) pointwise. Since ψ (v) is monotonic, the
pointwise maximum is attained by the allocation

q̄ (v) =

1 if v ≥ r∗;

0 if v < r∗,
(13)

where
r∗ = min {v|ψ (v) ≥ 0} .

Clearly, this is the allocation that is implemented by the two-tier random reserve mechanism.
Moreover, we have already verified that all downward incentive constraints bind, so that the
revenue upper bound is attained.

Proof of Theorem 2. If the good must be allocated, then q̄ (v) = 1 for all v, which completely
determines the upper bound on revenue from misreporting a redrawn lower signal. The
upper bound will be attained by any mechanism that implements this allocation and makes
all of the downward incentive constraints bind. But all types are treated the same way by
the inclusive posted price, so that all downward constraints bind, and the upper bound on
revenue is attained.

The function ψ (v) can be interpreted as the virtual value from allocating the good
conditional on the value being v, albeit a different virtual value than the one obtained from
only local incentive constraints: Both virtual values have a term equal to the value of the
good, which is simply the change in social surplus from allocating versus not allocating.
They differ in the second part, which is the total information rent from the allocation. The
local incentive constraints indicate that for every unit probability that a bidder of type si is
allocated the good when they have the highest type, all higher types get a unit information
rent, so that the relative information rent is (1− F (si)) /f (si), the inverse hazard rate. In
contrast, the global incentive constraints (10) indicate that the rate of increase in ex-ante
bidder surplus per unit increase in q (v) is precisely∫ s

x=v

1− F (x)

F (x)
dx dFN (v) .
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To see this, observe that increasing q (v) has two effects. There is a direct increase in u (s)

for all s ≥ v at a rate of (v − s) d
(
FN (v)

)
/F (s). But there is also an indirect effect, in

that the direct increase in u (s) is passed on to all types s′ > s at a rate of f (s) /F (s′), i.e.,
the likelihood that the higher type s′ misreports s under the given global deviation. Hence,
if we let ρ (s|v) denote the total rate of change in u (s), then for all s ≥ v, ρ must satisfy the
integral equation

ρ (s|v) =
1

F (s)

(∫ s

x=v

ρ (x|v) f (x) dx+ (s− v) d
(
FN (v)

))
,

and ρ (s|v) = 0 for s < v. By integrating this equation with the integrating factor f (s) /F (s),
we conclude that ∫ s

x=s

ρ (x|v) f (x) dx = d
(
FN (v)

) ∫ s

x=v

F (s)− F (x)

F (x)
dx,

which gives the desired result when s = s.
We can compare the pattern of binding incentive constraints for the standard auctions

(first-price, second-price, and English) and the optimal mechanism visually in Figure 1. Here
we consider an example with two bidders where the value is standard uniform, so G(v) = v

and F (s) =
√
s. Each graph describes the indirect utility for three types, si ∈ {1/4, 1/2, 3/4}

in the second-price auction and the optimal mechanism, respectively. Each curve describes
for each type si the indirect utility the type would receive from reporting any other signal s′i ∈
[0, 1]. The equilibrium utility supported by truth-telling is indicated by the corresponding
vertical line. The first observation is that the equilibrium utility—the information rent of
each bidder—drops by at least a factor of four by moving from the second-price auction
to the optimal mechanism. Thus, the revenue gain from eliminating the winner’s curse is
substantial. Second, in moving from a standard auction to the optimal mechanism, the
structure of the binding incentive constraints reverses completely. In standard auctions, the
winner’s curse is so strong, and consequently the equilibrium bid is so low, that each bidder
is indifferent between his equilibrium bid bi(si) and any higher bid on the entire unit interval!
Thus, all upward incentive constraints are binding. By contrast, in the optimal mechanism,
all downward incentive constraints are binding. That is, the information rent of each bidder
is lowered so far that each bidder is indifferent between reporting truthfully and offering any
misreport between 0 and the true signal si. We note that the contrast in the structure of
the incentive constraints holds true for all continuous signal distributions in the maximum
signal model. That is, all upward constraints bind in standard auctions, and all downward
constraints bind in the optimal mechanism.
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Figure 1: Uniform Downward vs Upward Incentive Constraints

4.3 Uniqueness of the Optimal Allocation

Theorem 3 gives us a bound on revenue that is attained by the two-tier random reserve
mechanism, thus proving its optimality. A natural next question is whether there are other
optimal allocations. The answer is by-and-large no: any optimal allocation must share a
number of key properties with that induced by the one we have constructed.

First, the allocation we constructed has the property that all types have the same interim
allocation probability and interim transfer. This must also be true in any optimal mechanism.
The reason is as follows. In any optimal mechanism, we must have q be the step function
given in (13). Moreover, the average downward deviation constraint (10) must hold as an
equality for all types in order for bidder surplus to be at its lower bound. It must also be that
(9) binds as well, and each bidder i is indifferent to downward deviations. Otherwise, if one of
the individual constraints were slack, some other constraint must be violated, in order for the
bidders to be indifferent on average. Moreover, since each type si is indifferent to reporting
a randomly redrawn lower signal, it must be that si is also indifferent to misreporting any
particular s′i ≤ si. For if there were a positive measure of types for which ui (si) > ui (si, s

′
i),

and if there were indifference on average, then there would be some other type s′i such that
ui (si, s

′
i) > ui (si). Now consider the highest type s, who knows that the value is s. Then

for all si and s′i, ui (s, si) = ui (s, s
′
i) implies that

ti (si)− ti (s′i) = s (qi (si)− qi (s′i)) .

Notice that if this difference were strictly positive, then since the value conditional on a
signal of s′i is strictly less than s with probability 1, we would have

u (s′i)− u (s′i, si) < s (qi (s
′
i)− qi (si))− (ti (s

′
i)− ti (s′i)) = 0,
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which contradicts the indifference of type s′i to reporting si.
In addition, in any optimal mechanism, the bidders’ indirect utility function is precisely

that induced by the two-tier random reserve, which is

ui (si) =

∫ si

x=s

1

F (x)

∫ x

y=s

qi (y) g (y) dydx.

Now, the interim incentive constraint says that

ui (si) = max
s′i

∫
s−i

[max {si, s−i} qi (s′i, s−i)− ti (s′i, s−i)] dF−i (s−i) .

The envelope condition then implies

dui (si)

dsi
= q̂i (si) ,

where
q̂i (si) ,

∫
s−i

qi (si, s−i) Isi≥s−i
dF−i (s−i)

is the interim probability that bidder i is allocated the good and has the highest signal.
Putting these two together, we conclude that

q̂i (si) =
1

F (si)

∫ si

x=s

qi (x) g (x) dx.

Thus, any optimal allocation must share some crucial features with that induced by the two-
tier random reserve mechanism: the interim probability of getting the good and the interim
transfer must be independent of type, and the interim probability of getting the good and
having the high signal must be the same in all optimal allocations. In a symmetric optimal
mechanism, qi = q/N , and these objects are pinned down even more tightly. However, there
is still some flexibility in how the good is allocated among low-signal bidders. In some sense,
the two-tier random reserve mechanism takes the simplest approach by treating all low-signal
bidders symmetrically.

4.4 Alternative Implementations

While the two-tier random reserve mechanism nominally requires detailed knowledge of the
environment in order to calibrate the distribution H, there exist other implementations that
“discover” the optimal distribution in equilibrium. Consider the following mechanism, which
we refer to as the guaranteed demand auction (GDA): Each bidder first decides whether to
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pay an entry fee φ to enter the auction. Upon entering, the bidder then makes demand
δi ∈

[
0, δ
]
of a probability of receiving the good. The only parameters of the auction are

the entry fee φ ≥ 0 and the upper bound δ ∈ [0, 1/N ]. There are no payments beyond the
entry fee. If bidder i decides not to enter, then the auction proceeds without him, and the
payment and assignment probability of bidder i are both zero.

The allocation is determined as follows. Let i∗ denote the identity of the bidder with the
highest demand (chosen randomly if there are multiple high demanders). If δi∗ > 0, then
bidder i∗ is allocated the good with probability δi∗ and each bidder j 6= i∗ receives the good
with probability (1− δi∗) / (N − 1). Thus, a bidder is more likely to be allocated the good
when he does not have the highest demand as

δi∗ <
1− δi∗
N − 1

,

as long as δi∗ ≤ δ < 1/N . In consequence, a bidder is guaranteed to receive the good with
probability at least their demand.

We claim that there is an equilibrium in which each bidder simply demands a quantity
that mimics the earlier random reserve distribution H(x), see (7):

δ (si) =


1
N

(
1−

(
F (r)
F (si)

)N)
if si ≥ r,

0 if si < r;

and where r solves
FN−1(r) = 1−Nδ.

It is easily verified that the induced interim allocation is exactly the same as that induced
by the random price mechanism that implements the exclusion threshold r. Since the in-
terim transfers are constant as well, we conclude that conditional on entering, the proposed
strategies are an equilibrium. Moreover, if δ is chosen so that the exclusion threshold is the
optimal r∗, and if φ is the highest entry fee such that all types are willing to enter, then the
induced allocation and bidder surplus will be precisely those of the two-tier random reserve
mechanism.

4.5 Omitted Bidders and Optimality of the Inclusive Posted Price

In Corollary 1 we gave a necessary and sufficient condition for the inclusive posted price to
be the optimal mechanism. When this condition is not met, the seller can achieve greater
revenue using the two-tier random reserve mechanism to withhold the good when the value
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is low. A trade-off is that the exclusive two-tier random reserve construction is significantly
more complicated than the inclusive posted price. A classic result of Bulow and Klemperer
(1996) demonstrates that the value of such exclusion may be quite limited. They argue that
the difference between optimal revenue and optimal must-sell revenue is bounded above by
the additional revenue from the optimal must-sell mechanism when an additional bidder is
added to the auction in a natural way. In the particular context of Bulow and Klemperer
(1996), which excludes the maximum signal model, the optimal must-sell mechanism is an
English auction. But we now argue that in the context of the maximum signal model of
Bulow and Klemperer (2002) and this paper, this means the posted price mechanism is
optimal.

Let us suppose that there are N potential bidders. As before, they receive independent
signals drawn from F , and the common value of all bidders is the maximum of these signals.
Only the first N ′ ≤ N of the bidders participate in the auction. We say that there are
omitted bidders if N ′ < N . Following Bulow and Klemperer (1996), the expected value of
a bidder i ≤ N ′ conditional on (s1, . . . , sN ′) is the expectation of the maximum of all N
signals, integrated across (sN ′+1, . . . , sN). If we let

w (x) ,
∫ s

y=s

max {x, y} d
(
FN ′−N (y)

)
,

then the expected value conditional on (s1, . . . , sN ′) is simply w (maxi≤N ′ si).

Proposition 4 (Omitted Bidders).
If there are omitted bidders, then the inclusive posted price with price pI as in (2) is an
optimal mechanism.

Proof of 4. Suppose that there is an IC and IR mechanism that generates revenue R when
only bidders i ≤ N ′ < N participate. Then there is an IC and IR must-sell mechanism with
all N bidders in which the seller simply runs the same mechanism as with N ′, and gives the
good away for free to bidder N ′ + 1 whenever it would not have been allocated to a bidder
i ≤ N ′. Clearly this must-sell mechanism generates revenue of R, which must be less than
pI , which is maximum revenue across all must-sell mechanisms. As a result, any achievable
revenue with N ′ bidders must be less than pI . But revenue of pI can be obtained when there
are only N ′ bidders by, say, making a take-it-or-leave-it offer to bidder i = 1 at price pI ,
which would be accepted with probability one. We conclude that optimal revenue with N ′

bidders is pI .

In particular, note that with omitted bidders, the optimal revenue is equal to pI for
all N ′ < N , and optimal must-sell revenue is equal to pI for all N ′ ≤ N . An alternate
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proof of this result could be given using Corollary 1 and showing that ψ (s) ≥ 0. To do
so, it is necessary to change the units of messages so that the expected value conditional
on the highest of the first N ′ signals is exactly the highest of the first N ′ signals, i.e., a
signal si must be relabeled η (si). Using the change of variables formula, and the fact that
dη (x) = FN−N ′ (x) dx, we conclude that

ψ (s) = w (s)−
∫ s

x=s

1− F (x)

F (x)
dw (x)

=

∫ s

x=s

x d
(
FN−N ′ (x)

)
−
∫ s

x=s

(1− F (x))FN−N ′−1 (x) dx

=

∫ s

x=s

x d
(
FN−N ′−1 (x)

)
,

which is positive.
Thus, when there are omitted bidders, the seller does not benefit at all from exclusion,

and posted prices are optimal. Bringing omitted bidders into the auction does not increase
optimal revenue unless all potential bidders are included. We regard this as a further ar-
gument in favor of the inclusive posted price as a simple and robust mechanism for revenue
extraction.

This finding may be contrasted with a more literal and naive interpretation of the result of
Bulow and Klemperer (1996), which is that an English auction with N ′+1 bidders generates
more revenue than the optimal auction with N ′ bidders. This result crucially relies on the
hypothesis that bidders with higher signals have higher virtual values, which is violated in
the maximum signal model. Indeed, as long as there are N ′ ≥ 2 bidders, revenue from an
English auction is actually decreasing in the number of bidders. The reason is that as long
as N ′ ≥ 2, competition between the bidders will make the participation constraints bind,
so that revenue is equal to the expected highest virtual value among the first N ′ bidders.
But when more bidders are included in the auction, it becomes more and more likely that
the bidder who is allocated the good has the highest signal among all N potential bidders,
which is the only case in which a bidder receives an information rent according to (4). This is
consistent with the results of Bulow and Klemperer (2002), Section 7, that when high signal
bidders have lower virtual values, excluding bidders in standard auctions will raise revenue.

5 General Common Values

We now broaden our analysis beyond the maximum signal model, and ask which of our
results will generalize to environments with common values and a strong winner’s curse. We
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shall shortly define a class of such environments. It is always possible to achieve an efficient
allocation with a posted price. We will construct mechanisms that implement uniform allo-
cations across bidders while also withholding the good when the value is low. This can lead
to strictly higher revenue. We finally give conditions under which it is possible to implement
mechanisms that skew the allocation even further away from the high signal bidder and
further increasing revenue. Note that we stop short of characterizing optimal auctions for
these environments. As we indicated in the introduction, the pattern of binding incentive
constraints at the optimal mechanism could in general be quite complicated, and will depend
on the fine details of the information structure.

5.1 Increasing Information Rents

We continue to assume that bidders receive independent real signals, but bidder i’s signal
is now drawn from an idiosyncratic distribution Fi. We continue assume that there is a
common value whose expectation given the signals is given by the function v (s1, ..., sN) that
is weakly increasing in each signal si. The virtual value of a bidder is still given by the
general formula (3).

We say that the common value model displays increasing information rents if for all
signal profiles s and for all i, j:

si > sj =⇒ 1− Fi(si)
fi(si)

∂v (si, s−i)

∂si
≥ 1− Fj(sj)

fj(sj)

∂v (sj, s−j)

∂sj
. (14)

Conversely, the common value model has decreasing information rents if for all signal profiles
s and all i, j:

si > sj =⇒ 1− Fi(si)
fi(si)

∂v (si, s−i)

∂si
≤ 1− Fj(sj)

fj(sj)

∂v (sj, s−j)

∂sj
.

The notion of increasing information rents compares information rents across bidder i and
j but not across signals of any given bidder i. For example, it does not require that each
bidder i has an increasing or decreasing virtual value in his own signal si.

In the maximum signal model, the increasing information rents condition is satisfied for
any distribution function F as the term ∂v (si, s−i) /∂si is positive only for the bidder with
the maximum signal, and it is zero for all other bidders.
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A prominent example of a common value model is the wallet model where the common
value is the sum of the signals:

v(s1, ...., sN) =
N∑
i=1

si.

This model was the focus of the analysis of Bulow and Klemperer (2002). Here, the marginal
value of signal i is constant. The environment satisfies increasing information rents if and
only if the inverse hazard rate is increasing, or equivalently if the hazard rate is decreasing.
Thus, in the wallet game, whether the information rent is increasing or decreasing is entirely
a matter of the monotonicity of the hazard rate. With the exponential distribution, the
wallet model displays weakly increasing information rent. If the value function is given by
the sum of nonlinear elements, for example

v(s1, ..., sN) =
N∑
i=1

(si)
α,

with α > 1, then the wallet game with exponential signals displays strictly increasing infor-
mation rents.

The increasing information rent condition implies that the revenue-maximizing allocation
should be biased towards low-signal bidders. But the additional generality of the common
value model complicates our earlier analysis in two respects. First, the common value of
the object now depends on the entire profile of signals rather than just the highest signal
si. This complicates our constructions in Section 3, as the bidders’ payments will now have
to depend on the entire signal profile, rather than just the highest of the others’ signals.
Second, the virtual value of the bidders with lower signals may now differ across bidders.
Thus, while the optimal mechanism in the maximum signal model could be described just in
terms of the allocation of the high-signal bidder and a representative low-signal bidder, the
optimal mechanism in the general model might be significantly more complicated and must
explicitly specify the allocations of all low-signal bidders.

While the exact characterization of revenue-maximizing mechanisms remains an open
question, we can show two senses in which our results generalize to all increasing information
rent environments. First, we show that allocating to bidders with lower signals must increase
revenue, if it is incentive compatible to do so. Second, we show that we can generalize
the constructions from Section 3 to be incentive compatible. Thus without establishing
optimality, we describe simple revenue enhancing mechanisms building on the insights of the
maximum signal model.
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5.2 More Advantageous Selection

The sequence of mechanisms constructed in Section 3 lead to progressively higher revenue
because they progressively skew the allocation away from high-signal bidders, who have high
information rents, and towards low-signal bidders, who have low information rents. We now
give a general formulation of this comparative static. Fix two allocations q, q′ : SN → [0, 1]

such that
N∑
i=1

qi (s) =
N∑
i=1

q′i (s) . (15)

In words, the allocations have the same total probability of allocating the good conditional
on the signal profile s, and hence induce the same social surplus. We say that q has more
advantageous selection than q′ if for all s and x,∑

{i|si≤x}

qi (s) ≥
∑
{i|si≤x}

q′i (s) . (16)

Thus, the more advantageously selective allocation q places more probability on low-signal
bidders being allocated the good than does q′. It is more advantageously selective because,
for every si, the interim expectation of the value conditional on receiving the good is is higher
under q than under q′:

E[v(s) |si, qi(s) > 0] ≥ E[v(s)′ |si, q′i(s) > 0]. (17)

Our first formal result for this section shows that if information rents are increasing, then
more advantageous selection increases revenue.

Theorem 4 (More Advantageous Selection).
Suppose that information rents are increasing and that q and q′ are implementable allocations.
If q has more advantageous selection than q′, then the revenue maximizing revenue is greater
under q than under q′.

Crucially,

Proof of Theorem 4. Since the two allocations have the same total probability of allocating
the good, for a given signal profile, they must induce the same social surplus. At the same
time, by shifting the allocation to lower signal buyers, the bidders’ information rents are
reduced. Let

Z (x) =
∑

{
i

∣∣∣∣ 1−Fi(si)

fi(si)

∂v(si,s−i)
∂si

<x

} qi (si) ,
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and define Z ′ analogously in terms of q′. Then increasing information rents implies that Z ′

first-order stochastically dominates Z, and hence

N∑
i=1

qi (s)
1− Fi(si)
fi(si)

∂v (si, s−i)

∂si
=

∫ ∞
x=−∞

xdZ (x)

≤
∫ ∞
x=−∞

xdZ ′ (x)

=
N∑
i=1

q′i (s)
1− Fi(si)
fi(si)

∂v (si, s−i)

∂si
.

Since total surplus is the same, and information rents are weakly lower with q, revenue must
be weakly larger.

Similarly, if the information rents are decreasing, and if q has less advantageous selection
than q′—in the sense that the reverse inequalities in 16 hold for all x—then maximum revenue
across mechanisms that implement q is lower than maximum revenue across mechanisms that
implement q′.

5.3 Revenue Improving Mechanisms

Thus, with increasing information rents, more advantageous selection increases revenue.
The question remains how much advantageous selection can be achieved subject to incentive
compatibility. While it is always possible to implement an allocation in which the high-
signal bidder always receives the good, e.g., with standard auctions, there are generally
non-trivial bounds on how much advantageous selection can be created, as in the maximum
signal model. We do not have a general characterization of exactly how much advantageous
selection can be attained. We can, however, describe some simple allocations that can always
be implemented and significantly reduce adverse selection, and hence the winner’s curse.

First, it is always possible to implement a range of neutrally selective allocations, in
which the ex post allocation probability is the same for all bidders. In particular, the
efficient neutrally selective allocation is always implementable via an inclusive posted price,
as previously defined in (2).

Proposition 5 (Inclusive Posted Price).
The inclusive posted price mechanism yields a higher revenue than the standard auctions in
every environment with increasing information rents.

Proof. The inclusive posted price and any standard auction assign the object with probability
one at every type profile s. The inclusive posted price is an incentive compatible and neutrally
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selective mechanism. It thus offers a more advantageous selection than any standard auction
that always selects the bidder with the highest signal. The revenue ranking now follows
directly from Theorem 4.

Similarly, it is always possible to implement an allocation that allocates the good if and
only if the value exceeds a threshold r and, conditional on the signal profile, all bidders
are equally likely to be allocated the good. Such an allocation necessarily leads to higher
revenue. The ex post incentive compatible Vickrey price for agent i now depends on the
entire signal profile s−i of all the other agents. For a given screening level r for the common
value that the seller wishes to select, we can define a personalized price for agent i as follows:

pi(r, s−i) , max {r, v(s, s−i)} . (18)

The payment pi(r, s−i) represents the Vickrey payment of bidder i and thus can vary across
bidders. The revelation game now asks each bidder for his signal si and allocates the object
uniformly across the bidders if the reported signal profile s generates a value v (s) ≥ r:

qi (s) =

 1
N

if v(s) ≥ r,

0 otherwise;
(19)

and asks for the Vickrey payment pi(r, s−i) if the object is assigned to agent i.

Proposition 6 (Personalized Price).
The optimal personal price mechanism yields a (weakly) higher revenue than the inclusive
posted price.

Proof. The personalized price mechanism is clearly ex-post incentive compatible for every r.
It is neutrally selective for every r. For r = v(s), the ex-ante expected payment of each bidder
equals the inclusive posted price. Thus, the optimal personalized price mechanism must
deliver a (weakly) higher revenue than the inclusive posted price. In particular, the optimal
personalized price mechanism attains a strictly higher revenue if the average virtual utility
at the lowest type profile is negative, and thus exclusion becomes strictly beneficial.

If the common value model is given by the maximum signal, then the optimal personalized
price mechanism can be implemented by the two-tier price mechanism

In the general common value setting, though, excluding at a given value threshold may
not be revenue maximizing, even if we restrict to neutrally selective allocations, and the
optimal neutrally selective allocation could be quite complicated. There is a simple condition,

34



however, under which we can say what the optimal such allocation is. Let us say that the
environment is mean-regular if the average virtual value

π (s) ,
1

N

N∑
i=1

πi (s)

is monotonically increasing in the signal profile s. If the environment is mean-regular, then
it is possible to implement the following allocation

qi (s) =

 1
N
, if π (s) ≥ 0;

0, otherwise.
(20)

For under mean-regularity, the allocation defined by (20) is monotonic, so that it can be
implemented by an analogous pricing rule to (18). In particular, a bidder who is allocated
the good must pay

pi (s−i) = min {v (s′i, s−i) |π (s′i, s−i) ≥ 0} .

But just as in the maximum signal model, under increasing information rents, there
is further scope to increase revenue, namely, with a generalization of the two-tier random
reserve mechanism. As in Proposition 3 the good is withheld if the high type si is below
the exclusion threshold r. If si ≥ r, we draw a threshold type x for the highest type
according to a distribution H, which has a density h. We shall shortly describe a class of
such distributions can be implemented. The high type si is allocated the good if and only if
si ≥ x, and otherwise we randomly allocate the good to one of the low bidders.

The complication relative to the maximum signal model is to determine transfers such
that this allocation is incentive compatible. They are now constructed on the basis of the
Vickrey prices which depend on the entire profile s rather than the high signal si only.

Proposition 7 (Generalized Two-Tier Random Reserve).
For symmetric signal distributions Fi = F , there is a generalized two-tier random reserve
mechanism that yields a higher revenue than any personalized price mechanism for the same
exclusion level r.

Proof. Let us define

v̂(x, y) = E[v(si, s−i)|si = x,max s−i = y],

ṽ(x, y) = E[v(si, s−i)|si = x,max s−i ≤ y].
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We further denote by Γ (x) = FN−1 (x) the distribution of the highest of the others’ signals
and γ its density. The prices will be set according to two different cases. First, if the
high-bidder i is allocated the good, then the price is v̂(max s−i,max s−i); second when si >
max s−i > x, and the high-bidder pays

p (x) = ṽ (x, x)− (v̂(x, x)− v̂ (0, x))
1

N − 1

1−H (x)

h (x)

γ (x)

Γ (x)

if si ≥ x > y. Finally, if one of the low-signal bidders is allocated the good, they pay
v̂ (0,max s).

The surplus from a report s′i when the type is si is∫ s′i

y=s

∫ s′i

x=r

(v̂ (si, y)− Ix>yp(x)− Iy>xv̂ (y, y))h(x)dx γ(y)dy

+

∫ s

y=s′i

(v̂(si, y)− v̂ (0, y))
1−H(y)

N − 1
γ(y)dy.

The derivative with respect to s′i is

(ṽ (si, s
′
i)− p (s′i))h (s′i) Γ (s′i) + (v̂ (si, s

′
i)− v̂ (s′i, s

′
i))H (s′i) γ (s′i)

− (v̂ (si, s
′
i)− v̂ (0, s′i))

1−H (s′i)

N − 1
γ (s′i) .

Plugging in the formula for p, the derivative of the indirect utility reduces to

(ṽ (si, s
′
i)− ṽ (s′i, s

′
i))h (s′i) Γ (s′i)

− (v̂ (si, s
′
i)− v̂ (s′i, s

′
i))

(
1−NH (s′i)

N − 1

)
γ (s′i) .

Thus, as long as H satisfies

h (x)

1−NH (x)
≥ 1

N − 1
max
y

v̂ (y, x)− v̂ (x, x)

ṽ (y, x)− ṽ (x, x)

γ (x)

Γ (x)
, (21)

bidder surplus will be single-peaked at s′i = si, and truthful reporting will be incentive
compatible. If we assume that the right-hand side is bounded for all x, then there exist H
functions that satisfy H (0) = 0 and asymptote to H (∞) ≤ 1/N , and satisfy the differential
inequality. Such is the case for the maximum signal model, where the right-hand side reduces
to f (x) /F (x). For such an H, the proposed mechanism is incentive compatible.
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Finally, as the generalized two-tier random reserve mechanism induces an allocation that
is more advantageously selective than that induced by personalized prices, by Theorem 4, it
generates more revenue.

With the above result, we have extended the revenue ranking result from the maximum
signal model to all common value environments with increasing information rents.

6 Conclusion

This paper contributes to the theory of revenue maximizing auctions when the bidders have
a common value for the good being sold. In the classic treatment of revenue maximization
due to Myerson (1981), the potential buyers of the good have independent signals about the
value. While the standard model does encompass some common value environments, the
leading application is to the case of independent private values, wherein each bidder observes
his own value. In benchmark settings, the optimal auction is simply a first- or second-
price auction with a reserve price. More broadly, the optimal auction induces an allocation
that discriminates in favor of more optimistic bidders, i.e., bidders whose expectation of
the value is higher. By contrast, the class of common value models we have studied have
the qualitative feature that value is more sensitive to the private information of bidders
with more optimistic beliefs. This seems like a natural feature in economic environments
where the most optimistic bidder has the most information for determining the best-use
value of the good, and therefore has a greater information rent. This case is not covered
by the characterizations of optimal revenue that exist in the literature, which depend on
information rents being smaller for bidders who are more optimistic about the value.

The qualitative impact is that while earlier results found that optimal auctions discrimi-
nate in favor of more optimistic bidders, we find that optimal auctions discriminate in favor
of less optimistic bidders, since they obtain lower information rents from being allocated the
good. In certain cases, the optimal auction reduces to a fully inclusive posted price, under
which the likelihood that a given bidder wins the good is independent of his private infor-
mation. In many cases, however, the optimal auction strictly favors bidders whose signals
are not the highest. This is necessarily the case when there is no gap between the seller’s
cost and the support of bidders’ values.

Bulow and Klemperer (2002) argued that it may be difficult to tell whether information
rents are increasing or decreasing, and that with interdependent values, the inclusive posted
price may not be as naïve as auction theorists are tempted to assume. We agree with this
conclusion and add the observation that we do not have to give up on using monopoly ex-
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clusionary power. We can construct simple exclusive mechanisms which can be implemented
in a wide range of environments and mitigate the loss in revenue due to the winner’s curse.

More broadly, we have extended the theory of optimal auctions to a new class of common
value models. The analysis yields substantially different insights than those obtained by the
earlier literature. We are hopeful that the methodologies we have developed can be used to
understand optimal auctions in other as-yet unexplored interdependent value environments.
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